WorldWideScience

Sample records for testing materials

  1. Dictionary materials engineering, materials testing

    International Nuclear Information System (INIS)

    1994-01-01

    This dictionary contains about 9,500 entries in each part of the following fields: 1) Materials using and selection; 2) Mechanical engineering materials -Metallic materials - Non-metallic inorganic materials - Plastics - Composites -Materials damage and protection; 3) Electrical and electronics materials -Conductor materials - Semiconductors - magnetic materials - Dielectric materials - non-conducting materials; 4) Materials testing - Mechanical methods - Analytical methods - Structure investigation - Complex methods - Measurement of physical properties - Non-destructive testing. (orig.) [de

  2. Materials testing 1985

    International Nuclear Information System (INIS)

    1985-01-01

    The following subjects were dealt with at the meeting: Testing with vibration loads; Hardness testing; Calibration of test devices and equipment; Test technique for compound materials; Vibration strength testing and expense of experiments; Solving problems in introducing forces into samples and components and process of ambulant materials testing. There are 17 separate abstracts from among 43 lectures. (orig./PW) [de

  3. Testing of abrasion materials

    International Nuclear Information System (INIS)

    Hummert, G.

    1983-01-01

    A method of abrasion testing according to ASTM C 704-76 a is presented for steel fibre concrete mortar, fusion-cast basalt and a surface coating material and results of practical interest are mentioned. Due to the high technical demands on these materials and their specific fields of application, the very first test already supplied interesting findings. From the user's point of view, the method is an interesting alternative to the common test methods, e.g. according to DIN 52 108 (wheel test according to Boehme). In English-speaking countries, testing according to ASTM is often mandatory in the refractory industry in order to assure constant quality of refractory materials after setting. The method is characterized by good comparability and high accuracy of measurement. Only the test piece is exchanged while the test conditions remain constant, so that accurate information on the material studied is obtained. (orig.) [de

  4. Reference materials and representative test materials: the nanotechnology case

    International Nuclear Information System (INIS)

    Roebben, G.; Rasmussen, K.; Kestens, V.; Linsinger, T. P. J.; Rauscher, H.; Emons, H.; Stamm, H.

    2013-01-01

    An increasing number of chemical, physical and biological tests are performed on manufactured nanomaterials for scientific and regulatory purposes. Existing test guidelines and measurement methods are not always directly applicable to or relevant for nanomaterials. Therefore, it is necessary to verify the use of the existing methods with nanomaterials, thereby identifying where modifications are needed, and where new methods need to be developed and validated. Efforts for verification, development and validation of methods as well as quality assurance of (routine) test results significantly benefit from the availability of suitable test and reference materials. This paper provides an overview of the existing types of reference materials and introduces a new class of test materials for which the term ‘representative test material’ is proposed. The three generic concepts of certified reference material, reference material(non-certified) and representative test material constitute a comprehensive system of benchmarks that can be used by all measurement and testing communities, regardless of their specific discipline. This paper illustrates this system with examples from the field of nanomaterials, including reference materials and representative test materials developed at the European Commission’s Joint Research Centre, in particular at the Institute for Reference Materials and Measurements (IRMM), and at the Institute for Health and Consumer Protection (IHCP).

  5. Materials and material testing

    International Nuclear Information System (INIS)

    Joergens, H.

    1978-01-01

    A review based on 105 literature quotations is given on the latest state of development in the steel sector and in the field of non-ferrous metals and plastics. The works quoted also include, preparation, working, welding including simulation methods, improvement of weldability, material mechanics (explanation of defects mechanisms by means of fracture mechanics), defect causes (corrosion, erosion, hydrogen influence), mechanical-technological and non-destructive material testing. Examples from the field of reactor building are also given within there topics. (IHOE) [de

  6. Impact Testing of Stainless Steel Materials

    International Nuclear Information System (INIS)

    R. K. Blandford; D. K. Morton; T. E. Rahl; S. D. Snow

    2005-01-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates (10 to 200 per second) during accidental drop events. Mechanical characteristics of these materials under dynamic (impact) loads in the strain rate range of concern are not well documented. The goal of the work presented in this paper was to improve understanding of moderate strain rate phenomena on these materials. Utilizing a drop-weight impact test machine and relatively large test specimens (1/2-inch thick), initial test efforts focused on the tensile behavior of specific stainless steel materials during impact loading. Impact tests of 304L and 316L stainless steel test specimens at two different strain rates, 25 per second (304L and 316L material) and 50 per second (304L material) were performed for comparison to their quasi-static tensile test properties. Elevated strain rate stress-strain curves for the two materials were determined using the impact test machine and a ''total impact energy'' approach. This approach considered the deformation energy required to strain the specimens at a given strain rate. The material data developed was then utilized in analytical simulations to validate the final elevated stress-strain curves. The procedures used during testing and the results obtained are described in this paper

  7. HFR irradiation testing of fusion materials

    International Nuclear Information System (INIS)

    Conrad, R.; von der Hardt, P.; Loelgen, R.; Scheurer, H.; Zeisser, P.

    1984-01-01

    The present and future role of the High Flux Reactor Petten for fusion materials testing has been assessed. For practical purposes the Tokamak-based fusion reactor is chosen as a point of departure to identify material problems and materials data needs. The identification is largely based on the INTOR and NET design studies, the reported programme strategies of Japan, the U.S.A. and the European Communities for technical development of thermonuclear fusion reactors and on interviews with several experts. Existing and planned irradiation facilities, their capabilities and limitations concerning materials testing have been surveyed and discussed. It is concluded that fission reactors can supply important contributions for fusion materials testing. From the point of view of future availability of fission testing reactors and their performance it appears that the HFR is a useful tool for materials testing for a large variety of materials. Prospects and recommendations for future developments are given

  8. Atomistic Simulations of Small-scale Materials Tests of Nuclear Materials

    International Nuclear Information System (INIS)

    Shin, Chan Sun; Jin, Hyung Ha; Kwon, Jun Hyun

    2012-01-01

    Degradation of materials properties under neutron irradiation is one of the key issues affecting the lifetime of nuclear reactors. Evaluating the property changes of materials due to irradiations and understanding the role of microstructural changes on mechanical properties are required for ensuring reliable and safe operation of a nuclear reactor. However, high dose of neuron irradiation capabilities are rather limited and it is difficult to discriminate various factors affecting the property changes of materials. Ion beam irradiation can be used to investigate radiation damage to materials in a controlled way, but has the main limitation of small penetration depth in the length scale of micro meters. Over the past decade, the interest in the investigations of size-dependent mechanical properties has promoted the development of various small-scale materials tests, e.g. nanoindentation and micro/nano-pillar compression tests. Small-scale materials tests can address the issue of the limitation of small penetration depth of ion irradiation. In this paper, we present small-scale materials tests (experiments and simulation) which are applied to study the size and irradiation effects on mechanical properties. We have performed molecular dynamics simulations of nanoindentation and nanopillar compression tests. These atomistic simulations are expected to significantly contribute to the investigation of the fundamental deformation mechanism of small scale irradiated materials

  9. Radioactive material packaging performance testing

    International Nuclear Information System (INIS)

    Romano, T.; Cruse, J.M.

    1991-02-01

    To provide uniform packaging of hazardous materials on an international level, the United Nations has developed packaging recommendations that have been implemented worldwide. The United Nations packaging recommendations are performance oriented, allowing for a wide variety of package materials and systems. As a result of this international standard, efforts in the United States are being directed toward use of performance-oriented packaging and elimination of specification (designed) packaging. This presentation will focus on trends, design evaluation, and performance testing of radioactive material packaging. The impacts of US Department of Transportation Dockets HM-181 and HM-169A on specification and low-specific activity radioactive material packaging requirements are briefly discussed. The US Department of Energy's program for evaluating radioactive material packings per US Department of Transportation Specification 7A Type A requirements, is used as the basis for discussing low-activity packaging performance test requirements. High-activity package testing requirements are presented with examples of testing performed at the Hanford Site that is operated by Westinghouse Hanford Company for the US Department of Energy. 5 refs., 2 tabs

  10. Developing test materials for dyscalculia

    DEFF Research Database (Denmark)

    Lindenskov, Lena; Bent, Lindhardt,

    Aims, requirements and context for the development of test materials for dyscalculia are analyzed. The test materials are to be used for Grade 4 pupils in Danish primary schools. Preliminary results are presented from focus group interview with adolescents and adults, who see themselves as being...

  11. Materials Test Station

    Data.gov (United States)

    Federal Laboratory Consortium — When completed, the Materials Test Station at the Los Alamos Neutron Science Center will meet mission need. MTS will provide the only fast-reactor-like irradiation...

  12. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1993-01-01

    In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-A19897, R.H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280degF. Table 1 lists the neutron shield materials tested. The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found. The Bisco modified NS-4 and Reactor Experiments HMPP are both acceptable materials from a thermal accident standpoint for use in the shipping cask. Tests of the Kobe PP-R01 and Envirotech HDPE were stopped for safety reasons, due to inability to deal with the heavy smoke, before completion of the 30-minute heating phase. However these materials may prove satisfactory if they could undergo the complete heating. (J.P.N.)

  13. Simulator for materials testing reactors

    International Nuclear Information System (INIS)

    Takemoto, Noriyuki; Sugaya, Naoto; Ohtsuka, Kaoru; Hanakawa, Hiroki; Onuma, Yuichi; Hosokawa, Jinsaku; Hori, Naohiko; Kaminaga, Masanori; Tamura, Kazuo; Hotta, Kohji; Ishitsuka, Tatsuo

    2013-06-01

    A real-time simulator for both reactor and irradiation facilities of a materials testing reactor, “Simulator of Materials Testing Reactors”, was developed for understanding reactor behavior and operational training in order to utilize it for nuclear human resource development and to promote partnership with developing countries which have a plan to introduce nuclear power plant. The simulator is designed based on the JMTR (Japan Materials Testing Reactor), and it simulates operation, irradiation tests and various kinds of anticipated operational transients and accident conditions caused by the reactor and irradiation facilities. The development of the simulator was sponsored by the Japanese government as one of the specialized projects of advanced research infrastructure in order to promote basic as well as applied researches. This report summarizes the simulation components, hardware specification and operation procedure of the simulator. (author)

  14. Material testing facilities and programs for plasma-facing component testing

    Science.gov (United States)

    Linsmeier, Ch.; Unterberg, B.; Coenen, J. W.; Doerner, R. P.; Greuner, H.; Kreter, A.; Linke, J.; Maier, H.

    2017-09-01

    Component development for operation in a large-scale fusion device requires thorough testing and qualification for the intended operational conditions. In particular environments are necessary which are comparable to the real operation conditions, allowing at the same time for in situ/in vacuo diagnostics and flexible operation, even beyond design limits during the testing. Various electron and neutral particle devices provide the capabilities for high heat load tests, suited for material samples and components from lab-scale dimensions up to full-size parts, containing toxic materials like beryllium, and being activated by neutron irradiation. To simulate the conditions specific to a fusion plasma both at the first wall and in the divertor of fusion devices, linear plasma devices allow for a test of erosion and hydrogen isotope recycling behavior under well-defined and controlled conditions. Finally, the complex conditions in a fusion device (including the effects caused by magnetic fields) are exploited for component and material tests by exposing test mock-ups or material samples to a fusion plasma by manipulator systems. They allow for easy exchange of test pieces in a tokamak or stellarator device, without opening the vessel. Such a chain of test devices and qualification procedures is required for the development of plasma-facing components which then can be successfully operated in future fusion power devices. The various available as well as newly planned devices and test stands, together with their specific capabilities, are presented in this manuscript. Results from experimental programs on test facilities illustrate their significance for the qualification of plasma-facing materials and components. An extended set of references provides access to the current status of material and component testing capabilities in the international fusion programs.

  15. Fuels and materials testing capabilities in Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Baker, R.B.; Chastain, S.A.; Culley, G.E.; Ethridge, J.L.; Lovell, A.J.; Newland, D.J.; Pember, L.A.; Puigh, R.J.; Waltar, A.E.

    1989-01-01

    The Fast Flux Test Facility (FFTF) reactor, which started operating in 1982, is a 400 MWt sodium-cooled fast neutron reactor located in Hanford, Washington State, and operated by Westinghouse Hanford Co. under contract with U.S. Department of Energy. The reactor has a wide variety of functions for irradiation tests and special tests, and its major purpose is the irradiation of fuel and material for liquid metal reactor, nuclear reactor and space reactor projects. The review first describes major technical specifications and current conditions of the FFTF reactor. Then the plan for irradiation testing is outlined focusing on general features, fuel pin/assembly irradiation tests, and absorber irradiation tests. Assemblies for special tests include the material open test assembly (MOTA), fuel open test assembly (FOTA), closed loop in-reactor assembly (CLIRA), and other special fuel assemblies. An interim examination and maintenance cell (FFTF/IEM cell) and other hot cells are used for nondestructive/destructive tests and physical/mechanical properties test of material after irradiation. (N.K.)

  16. Test for radioactive material transport package safety

    International Nuclear Information System (INIS)

    Li Guoqiang; Zhao Bing; Zhang Jiangang; Wang Xuexin; Ma Anping

    2012-01-01

    Regulations on radioactive material transport in China were introduced. Test facilities and data acquiring instruments for radioactive material package in China Institute for Radiation Protection were also introduced in this paper, which were used in drop test and thermal test. Test facilities were constructed according to the requirements of IAEA's 'Regulations for the Safe Transport of Radioactive Material' (TS-R-l) and Chinese 'Regulations for the Safe Transport of Radioactive Material' (GB 11806-2004). Drop test facilities were used in free drop test, penetration test, mechanical test (free drop test Ⅰ, free drop test Ⅱ and free drop test Ⅲ) of type A and type B packages weighing less than thirteen tons. Thermal test of type B packages can be carried out in the thermal test facilities. Certification tests of type FCo70-YQ package, type 30A-HB-01 package, type SY-I package and type XAYT-I package according to regulations were done using these facilities. (authors)

  17. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1990-03-01

    The GA-4 and GA-9 spent fuel shipping casks employ a solid neutron shielding material. During a hypothetical thermal accident, any combustion of the neutron shield must not compromise the ability of the cask to contain the radioactive contents. A two-phase thermal testing program was carried out to assist in selecting satisfactory shielding materials. In the first phase, small-scale screening tests were performed on nine candidate materials using ASTM procedures. From these initial results, three of the nine candidates were chosen for inclusion in the second phase of testing, These materials were Bisco Products NS-4-FR, Reactor Experiments 201-1, and Reactor Experiments 207. In the second phase, each selected material was fabricated into a test article which simulated a full-scale of neutron shield from the cask. The test article was heated in an environmental prescribed by NRC regulations. Results of this second testing phase showed that all three materials are thermally acceptable

  18. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.N.

    1990-01-01

    The GA-4 and GA-9 spent fuel shipping casks employ a solid neutron shielding material. During a hypothetical thermal accident, any combustion of the neutron shield must not compromise the ability of the cask to contain the radioactive contents. A two-phase thermal testing program was carried out to assist in selecting satisfactory shielding materials. In the first phase, small-scale screening tests were performed on nine candidate materials using ASTM procedures. From these initial results, three of the nine candidates were chosen for inclusion in the second phase of testing. These materials were Bisco Products NS-4-FR, Reactor Experiments 201-1, and Reactor Experiments 207. In the second phase, each selected material was fabricated into a test article which simulated a full-scale section of neutron shield from the cask. The test article was heated in an environment prescribed by NRC regulations. Results of this second testing phase show that all three materials are thermally acceptable

  19. 46 CFR 154.430 - Material test.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Material test. 154.430 Section 154.430 Shipping COAST... § 154.430 Material test. (a) The membrane and the membrane supporting insulation must be made of... test for the membrane and the membrane supporting insulation must be submitted to the Commandant (CG...

  20. Radioactive material package seal tests

    International Nuclear Information System (INIS)

    Madsen, M.M.; Humphreys, D.L.; Edwards, K.R.

    1990-01-01

    General design or test performance requirements for radioactive materials (RAM) packages are specified in Title 10 of the US Code of Federal Regulations Part 71 (US Nuclear Regulatory Commission, 1983). The requirements for Type B packages provide a broad range of environments under which the system must contain the RAM without posing a threat to health or property. Seals that provide the containment system interface between the packaging body and the closure must function in both high- and low-temperature environments under dynamic and static conditions. A seal technology program, jointly funded by the US Department of Energy Office of Environmental Restoration and Waste Management (EM) and the Office of Civilian Radioactive Waste Management (OCRWM), was initiated at Sandia National Laboratories. Experiments were performed in this program to characterize the behavior of several static seal materials at low temperatures. Helium leak tests on face seals were used to compare the materials. Materials tested include butyl, neoprene, ethylene propylene, fluorosilicone, silicone, Eypel, Kalrez, Teflon, fluorocarbon, and Teflon/silicone composites. Because most elastomer O-ring applications are for hydraulic systems, manufacturer low-temperature ratings are based on methods that simulate this use. The seal materials tested in this program with a fixture similar to a RAM cask closure, with the exception of silicone S613-60, are not leak tight (1.0 x 10 -7 std cm 3 /s) at manufacturer low-temperature ratings. 8 refs., 3 figs., 1 tab

  1. Permeation Tests on Polypropylene Fiber Materials

    Science.gov (United States)

    2018-03-16

    Permeation Tests on Polypropylene Fiber Materials Brandy J. White Martin H. Moore Brian J. Melde Laboratory for the Study of Molecular Interfacial...ABSTRACT Permeation Tests on Polypropylene Fiber Materials Brandy J. White, Martin H. Moore, Brian J. Melde Center for Bio/Molecular Science

  2. FBR metallic materials test manual (English version)

    International Nuclear Information System (INIS)

    Odaka, Susumu; Kato, Shoichi; Yoshida, Eiichi

    2003-06-01

    For the development of the fast breeder reactor, this manual describes the method of in-air and in-sodium material tests and the method of organization the data. This previous manual has revised in accordance with the revision of Japanese Industrial Standard (JIS) and the conversion to the international unit. The test methods of domestic committees such as the VAMAS (Versailles Project on Advanced Materials and Standards) workshop were also refereed. The material test technologies accumulated in this group until now were also incorporated. This English version was prepared in order to provide more engineers with the FBR metallic materials test manual. (author)

  3. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1992-09-01

    Two legal-weight truck casks the GA-4 and GA-9, will carry four PWR and nine BWR spent fuel assemblies, respectively. Each cask has a solid neutron shielding material separating the steel body and the outer steel skin. In the thermal accident specified by NRC regulations in 10CFR Part 71, the cask is subjected to an 800 degree C environment for 30 minutes. The neutron shield need not perform any shielding function during or after the thermal accident, but its behavior must not compromise the ability of the cask to contain the radioactive contents. In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-AL 9897, R. H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series, a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280 degree F. The neutron shield materials tested were boronated (0.8--4.5%) polymers (polypropylene, HDPE, NS-4). The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found

  4. Fusion Materials Irradiation Test Facility: experimental capabilities and test matrix

    International Nuclear Information System (INIS)

    Opperman, E.K.

    1982-01-01

    This report describes the experimental capabilities of the Fusion Materials Irradiation Test Facility (FMIT) and reference material specimen test matrices. The description of the experimental capabilities and the test matrices has been updated to match the current single test cell facility ad assessed experimenter needs. Sufficient detail has been provided so that the user can plan irradiation experiments and conceptual hardware. The types of experiments, irradiation environment and support services that will be available in FMIT are discussed

  5. Testing of Replacement Bag Material

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    1998-01-01

    Recently, the FB-Line bagout material was changed to simplify the processing of sand, slag, and crucible.The results of the strength tests and the outgassing measurements and calculations demonstrate that the proposed replacement nylon bag materials (HRMP and orange anti-static material) are acceptable substitutes for LDPE and the original nylon with respect to mechanical properties

  6. Railgun bore material test results

    International Nuclear Information System (INIS)

    Wang, S.Y.; Burton, R.L.; Witherspoon, F.D.; Bloomberg, H.W.; Goldstein, S.A.; Tidman, D.A.; Winsor, N.K.

    1987-01-01

    GT-Devices, Inc. has constructed a material test facility (MTF) to study the fundamental heat transfer problem of both railgun and electrothermal guns, and to test candidate gun materials under real plasma conditions. The MTF electrothermally produces gigawatt-level plasmas with pulse lengths of 10-30 microseconds. Circular bore and non-circular bore test barrels have been successfully operated under a wide range of simulated heating environments for EM launchers. Diagnostics include piezoelectric MHz pressure probes, time-of-flight probes, and current and voltage probes. Ablation measurements are accomplished by weighing and optical inspection, including borescope, optical microscope, and scanning electron microscope (SEM). From these measurements the ablation threshold for both the rail and insulator materials can be determined as a function of plasma heating. The MTF diagnostics are supported by an unsteady 1-D model of MTF which uses the flux-corrected transport (FCT) algorithm to calculate the fluid equations in conservative form. A major advantage of the FCT algorithm is that it can model gas dynamic shock behaviour without the requirement of numerical diffusion. The principle use of the code is to predict the material surface temperature ΔT/α from the unsteady heat transfer q(t)

  7. Remote-handling demonstration tests for the Fusion Materials Irradiation Test (FMIT) Facility

    International Nuclear Information System (INIS)

    Shen, E.J.; Hussey, M.W.; Kelly, V.P.; Yount, J.A.

    1982-01-01

    The mission of the Fusion Materials Irradiation Test (FMIT) Facility is to create a fusion-like environment for fusion materials development. Crucial to the success of FMIT is the development and testing of remote handling systems required to handle materials specimens and maintenance of the facility. The use of full scale mock-ups for demonstration tests provides the means for proving these systems

  8. Environmental testing techniques for electronics and materials

    CERN Document Server

    Dummer, Geoffrey W A; Fry, D W; Higinbotham, W

    2013-01-01

    Environmental Testing Techniques for Electronics and Materials reviews environmental testing techniques for evaluating the performance of electronic equipment, components, and materials. Environmental test planning, test methods, and instrumentation are described, along with the general environmental conditions under which equipment must operate. This book is comprised of 15 chapters and begins by explaining why environmental testing is necessary and describing the environment in which electronics must operate. The next chapter considers how an environmental test plan is designed; the methods

  9. Principles for supplying virus-tested material.

    Science.gov (United States)

    Varveri, Christina; Maliogka, Varvara I; Kapari-Isaia, Theodora

    2015-01-01

    Production of virus-tested material of vegetatively propagated crops through national certification schemes has been implemented in many developed countries for more than 60 years and its importance for being the best virus control means is well acknowledged by growers worldwide. The two most important elements of certification schemes are the use of sensitive, reliable, and rapid detection techniques to check the health status of the material produced and effective and simple sanitation procedures for the elimination of viruses if present in candidate material before it enters the scheme. New technologies such as next-generation sequencing platforms are expected to further enhance the efficiency of certification and production of virus-tested material, through the clarification of the unknown etiology of several graft-transmissible diseases. The successful production of virus-tested material is a demanding procedure relying on the close collaboration of researchers, official services, and the private sector. Moreover, considerable efforts have been made by regional plant protection organizations such as the European and Mediterranean Plant Protection Organization (EPPO), the North American Plant Protection Organization (NAPPO), and the European Union and the USA to harmonize procedures, methodologies, and techniques in order to assure the quality, safety, and movement of the vegetatively propagated material produced around the world. © 2015 Elsevier Inc. All rights reserved.

  10. Reference Material Kydex(registered trademark)-100 Test Data Message for Flammability Testing

    Science.gov (United States)

    Engel, Carl D.; Richardson, Erin; Davis, Eddie

    2003-01-01

    The Marshall Space Flight Center (MSFC) Materials and Processes Technical Information System (MAPTIS) database contains, as an engineering resource, a large amount of material test data carefully obtained and recorded over a number of years. Flammability test data obtained using Test 1 of NASA-STD-6001 is a significant component of this database. NASA-STD-6001 recommends that Kydex 100 be used as a reference material for testing certification and for comparison between test facilities in the round-robin certification testing that occurs every 2 years. As a result of these regular activities, a large volume of test data is recorded within the MAPTIS database. The activity described in this technical report was undertaken to mine the database, recover flammability (Test 1) Kydex 100 data, and review the lessons learned from analysis of these data.

  11. Plasma-Materials Interactions Test Facility

    International Nuclear Information System (INIS)

    Uckan, T.

    1986-11-01

    The Plasma-Materials Interactions Test Facility (PMITF), recently designed and constructed at Oak Ridge National Laboratory (ORNL), is an electron cyclotron resonance microwave plasma system with densities around 10 11 cm -3 and electron temperatures of 10-20 eV. The device consists of a mirror cell with high-field-side microwave injection and a heating power of up to 0.8 kW(cw) at 2.45 GHz. The facility will be used for studies of plasma-materials interactions and of particle physics in pump limiters and for development and testing of plasma edge diagnostics

  12. Proposal of world network on material testing reactors

    International Nuclear Information System (INIS)

    Takemoto, Noriyuki; Izumo, Hironobu; Hori, Naohiko; Ishitsuka, Etsuo; Ishihara, Masahiro

    2011-01-01

    Establishment of an international cooperation system of worldwide testing reactor network (world network) is proposed in order to achieve efficient facility utilization and provide high quality irradiation data by role sharing of irradiation tests with materials testing reactors in the world. As for the first step, mutual understanding among materials testing reactors is thought to be necessary. From this point, an international symposium on materials testing reactors (ISMTR) was held to construct the world network from 2008, and a common understanding of world network has begun to be shared. (author)

  13. Simulation and material testing of jet engines

    International Nuclear Information System (INIS)

    Tariq, M.M.

    2006-01-01

    The NASA software engine simulator version U 1.7a beta has been used for simulation and material testing of jet engines. Specifications of Modem Jet Engines are stated, and then engine simulator is applied on these specifications. This simulator can simulate turbojet, afterburner, turbofan and ram jet. The material of many components of engine may be varied. Conventional and advanced materials for jet engines can be simulated and tested. These materials can be actively cooled to increase the operating temperature limit. As soon as temperature of any engine component exceeds the temperature limit of material, a warning message flashes across screen. Temperature Limits Exceeded. This flashing message remainst here until necessaryc hangesa re carried out in engine operationp rocedure. Selection Criteria of Engines is stated for piston prop, turboprop, turbofan, turbojet, and turbojet with afterburner and Ramjet. Several standard engines are modeled in Engine Simulator. These engines can. be compared by several engineering specifications. The design, modeling, simulation and testing of engines helps to better understand different types of materials used in jet engines. (author)

  14. TESTING OF GAS REACTOR MATERIALS AND FUEL IN THE ADVANCED TEST REACTOR

    International Nuclear Information System (INIS)

    Grover, S.B.

    2004-01-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations

  15. Testing of Gas Reactor Materials and Fuel in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    S. Blaine Grover

    2004-01-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations

  16. Testing fireproof materials in a combustion chamber

    Directory of Open Access Journals (Sweden)

    Kulhavy Petr

    2017-01-01

    Full Text Available This article deals with a prototype concept, real experiment and numerical simulation of a combustion chamber, designed for testing fire resistance some new insulating composite materials. This concept of a device used for testing various materials, providing possibility of monitoring temperatures during controlled gas combustion. As a fuel for the combustion process propane butane mixture has been used and also several kinds of burners with various conditions of inlet air (forced, free and fuel flows were tested. The tested samples were layered sandwich materials based on various materials or foams, used as fillers in fire shutters. The temperature distribution was measured by using thermocouples. A simulation of whole concept of experimental chamber has been carried out as the non-premixed combustion process in the commercial final volume sw Pyrosim. The result was to design chamber with a construction suitable, according to the international standards, achieve the required values (temperature in time. Model of the combustion based on a stoichiometric defined mixture of gas and the tested layered samples showed good conformity with experimental results – i.e. thermal distribution inside and heat release rate that has gone through the sample.

  17. Development for advanced materials and testing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hishinuma, Akimichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Recent studies using a JMTR and research reactors of JRR-2 and JRR-3 are briefly summarized. Small specimen testing techniques (SSTT) required for an effective use of irradiation volume and also irradiated specimens have been developed focussing on tensile test, fatigue test, Charpy test and small punch test. By using the small specimens of 0.1 - several mm in size, similar values of tensile and fatigue properties to those by standard size specimens can be taken, although the ductile-brittle transition temperature (DBTT) depends strongly on Charpy specimen size. As for advanced material development, R and D about low activation ferritic steels have been done to investigate irradiation response. The low activation ferritic steel, so-called F82H jointly-developed by JAERI and NKK for fusion, has been confirmed to have good irradiation resistance within a limited dose and now selected as a standard material in the fusion material community. It is also found that TiAi intermetallic compounds, which never been considered for nuclear application in the past, have an excellent irradiation resistance under an irradiation condition. Such knowledge can bring about a large expectation for developing advanced nuclear materials. (author)

  18. Material test data of SUS304 welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Asayama, Tai [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center; Kawakami, Tomohiro [Nuclear Energy System Incorporation, Tokyo (Japan)

    1999-10-01

    This report summarizes the material test data of SUS304 welded joints. Numbers of the data are as follows: Tensile tests 71 (Post-irradiation: 39, Others: 32), Creep tests 77 (Post-irradiation: 20, Others: 57), Fatigue tests 50 (Post-irradiation: 0), Creep-fatigue tests 14 (Post-irradiation: 0). This report consists of the printouts from 'the structural material data processing system'. (author)

  19. Fusion Materials Irradiation Test Facility: a facility for fusion-materials qualification

    International Nuclear Information System (INIS)

    Trego, A.L.; Hagan, J.W.; Opperman, E.K.; Burke, R.J.

    1983-01-01

    The Fusion Materials Irradiation Test Facility will provide a unique testing environment for irradiation of structural and special purpose materials in support of fusion power systems. The neutron source will be produced by a deuteron-lithium stripping reaction to generate high energy neutrons to ensure damage similar to that of a deuterium-tritium neutron spectrum. The facility design is now ready for the start of construction and much of the supporting lithium system research has been completed. Major testing of key low energy end components of the accelerator is about to commence. The facility, its testing role, and the status and major aspects of its design and supporting system development are described

  20. Test device for measuring permeability of a barrier material

    Science.gov (United States)

    Reese, Matthew; Dameron, Arrelaine; Kempe, Michael

    2014-03-04

    A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed thereon and an edge seal which seals the test card to the barrier material. Another exemplary embodiment is an electrical calcium test device comprising: a test card an impermeable spacer, an edge seal which seals the test card to the spacer and an edge seal which seals the spacer to the barrier material.

  1. Accelerated irradiation test of Gundremmingen reactor vessel trepan material

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, J.R. [Materials Engineering Associates, Inc., Lanham, MD (United States)

    1992-08-01

    Initial mechanical properties tests of beltline trepanned from the decommissioned KRB-A pressure vessel and archive material irradiated in the UBR test reactor revealed a major anomaly in relative radiation embrittlement sensitivity. Poor correspondence of material behavior in test vs. power reactor environments was observed for the weak test orientation (ASTL C-L) whereas correspondence was good for the strong orientation (ASTM C-L). To resolve the anomaly directly, Charpy-V specimens from a low (essentially-nil) fluence region of the vessel were irradiated together with archive material at 279{degrees}C in the UBR test reactor. Properties tests before UBR irradiation revealed a significant difference in 41-J transition temperature and upper shelf energy level between the materials. However, the materials exhibited essentially the same radiation embrittlement sensitivity (both orientations), proving that the anomaly is not due to a basic difference in material irradiation resistances. Possible causes of the original anomaly and the significance to NRC Regulatory Guide 1.99 are discussed.

  2. Accelerated irradiation test of gundremmingen reactor vessel trepan material

    International Nuclear Information System (INIS)

    Hawthorne, J.R.

    1992-08-01

    Initial mechanical properties tests of beltline trepanned from the decommissioned KRB-A pressure vessel and archive material irradiated in the UBR test reactor revealed a major anomaly in relative radiation embrittlement sensitivity. Poor correspondence of material behavior in test vs. power reactor environments was observed for the weak test orientation (ASTL C-L) whereas correspondence was good for the strong orientation (ASTM C-L). To resolve the anomaly directly, Charpy-V specimens from a low (essentially-nil) fluence region of the vessel were irradiated together with archive material at 279 degrees C in the UBR test reactor. Properties tests before UBR irradiation revealed a significant difference in 41-J transition temperature and upper shelf energy level between the materials. However, the materials exhibited essentially the same radiation embrittlement sensitivity (both orientations), proving that the anomaly is not due to a basic difference in material irradiation resistances. Possible causes of the original anomaly and the significance to NRC Regulatory Guide 1.99 are discussed

  3. Using Virtual Testing for Characterization of Composite Materials

    Science.gov (United States)

    Harrington, Joseph

    Composite materials are finally providing uses hitherto reserved for metals in structural systems applications -- airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. They have high strength-to-weight ratios, are durable and resistant to environmental effects, have high impact strength, and can be manufactured in a variety of shapes. Generalized constitutive models are being developed to accurately model composite systems so they can be used in implicit and explicit finite element analysis. These models require extensive characterization of the composite material as input. The particular constitutive model of interest for this research is a three-dimensional orthotropic elasto-plastic composite material model that requires a total of 12 experimental stress-strain curves, yield stresses, and Young's Modulus and Poisson's ratio in the material directions as input. Sometimes it is not possible to carry out reliable experimental tests needed to characterize the composite material. One solution is using virtual testing to fill the gaps in available experimental data. A Virtual Testing Software System (VTSS) has been developed to address the need for a less restrictive method to characterize a three-dimensional orthotropic composite material. The system takes in the material properties of the constituents and completes all 12 of the necessary characterization tests using finite element (FE) models. Verification and validation test cases demonstrate the capabilities of the VTSS.

  4. Round-Robin Test of Paraffin Phase-Change Material

    Science.gov (United States)

    Vidi, S.; Mehling, H.; Hemberger, F.; Haussmann, Th.; Laube, A.

    2015-11-01

    A round-robin test between three institutes was performed on a paraffin phase-change material (PCM) in the context of the German quality association for phase-change materials. The aim of the quality association is to define quality and test specifications for PCMs and to award certificates for successfully tested materials. To ensure the reproducibility and comparability of the measurements performed at different institutes using different measuring methods, a round-robin test was performed. The sample was unknown. The four methods used by the three participating institutes in the round-robin test were differential scanning calorimetry, Calvet calorimetry and three-layer calorimetry. Additionally, T-history measurements were made. The aim of the measurements was the determination of the enthalpy as a function of temperature. The results achieved following defined test specifications are in excellent agreement.

  5. Coal Ash Corrosion Resistant Materials Testing

    Energy Technology Data Exchange (ETDEWEB)

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2007-12-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that

  6. Design of online testing system of material radiation resistance

    International Nuclear Information System (INIS)

    Wan Junsheng; He Shengping; Gao Xinjun

    2014-01-01

    The capability of radiation resistance is important for some material used in some specifically engineering fields. It is the same principal applied in all existing test system that compares the performance parameter after radiation to evaluate material radiation resistance. A kind of new technique on test system of material radiation resistance is put forward in this paper. Experimentation shows that the online test system for material radiation resistance works well and has an extending application outlook. (authors)

  7. Nuclear material control and accountancy planning and performance testing

    International Nuclear Information System (INIS)

    Mike Enhinger; Dennis Wilkey; Rod Martin; Ken Byers; Brian Smith

    1999-01-01

    An overview of performance testing as used at U.S. Department of Energy facilities is provided. Performance tests are performed on specific aspects of the regulations or site policy. The key issues in establishing a performance testing program are: identifying what needs to be tested; determining how to test; establishing criteria to evaluate test results. The program elements of performance testing program consist of: planning; coordination; conduct; evaluation. A performance test may be conducted of personnel or equipment. The DOE orders for nuclear material control and accountancy are divided into three functional areas: program administration, material accounting, and material control. Examples performance tests may be conducted on program administration, accounting, measurement and measurement control, inventory, and containment [ru

  8. Standard Test Method for Oxyacetylene Ablation Testing of Thermal Insulation Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the screening of ablative materials to determine the relative thermal insulation effectiveness when tested as a flat panel in an environment of a steady flow of hot gas provided by an oxyacetylene burner. 1.2 This test method should be used to measure and describe the properties of materials, products, or assemblies in response to heat and flame under controlled laboratory conditions and should not be used to describe or appraise the fire hazard of materials, products, or assemblies under actual fire conditions. However, results of this test method may be used as elements of a fire risk assessment which takes into account all of the factors which are pertinent to an assessment of the fire hazard of a particular end use. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limi...

  9. Standard Guide for Testing Polymer Matrix Composite Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This guide summarizes the application of ASTM standard test methods (and other supporting standards) to continuous-fiber reinforced polymer matrix composite materials. The most commonly used or most applicable ASTM standards are included, emphasizing use of standards of Committee D30 on Composite Materials. 1.2 This guide does not cover all possible standards that could apply to polymer matrix composites and restricts discussion to the documented scope. Commonly used but non-standard industry extensions of test method scopes, such as application of static test methods to fatigue testing, are not discussed. A more complete summary of general composite testing standards, including non-ASTM test methods, is included in the Composite Materials Handbook (MIL-HDBK-17). Additional specific recommendations for testing textile (fabric, braided) composites are contained in Guide D6856. 1.3 This guide does not specify a system of measurement; the systems specified within each of the referenced standards shall appl...

  10. Disk-bend ductility tests for irradiated materials

    International Nuclear Information System (INIS)

    Klueh, R.L.; Braski, D.N.

    1984-01-01

    We modified the HEDL disk-bend test machine and are using it to qualitatively screen alloys that are susceptible to embrittlement caused by irradiation. Tests designed to understand the disk-bend test in relation to a uniaxial test are discussed. Selected results of tests of neutron-irradiated material are also presented

  11. Capsule Development and Utilization for Material Irradiation Tests

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Goo; Kang, Y H; Cho, M S [and others

    2007-06-15

    The essential technology for an irradiation test of materials and nuclear fuel has been successively developed and utilized to meet the user's requirements in Phase I(July 21, 1997 to March 31, 2000). It enables irradiation tests to be performed for a non-fissile material under a temperature control(300{+-}10 .deg. C) in a He gas environment, and most of the irradiation tests for the internal and external users are able to be conducted effectively. The basic technology was established to irradiate a nuclear fuel, and a creep capsule was also developed to measure the creep property of a material during an irradiation test in HANARO in Phase II(April 1, 2000 to March 31, 2003). The development of a specific purpose capsule, essential technology for a re-irradiation of a nuclear fuel, advanced technology for an irradiation of materials and a nuclear fuel were performed in Phase III(April 1, 2003 to February 28, 2007). Therefore, the technology for an irradiation test was established to support the irradiation of materials and a nuclear fuel which is required for the National Nuclear R and D Programs. In addition, an improvement of the existing capsule design and fabrication technology, and the development of an instrumented capsule for a nuclear fuel and a specific purpose will be able to satisfy the user's requirements. In order to support the irradiation test of materials and a nuclear fuel for developing the next generation nuclear system, it is also necessary to continuously improve the design and fabrication technology of the existing capsule and the irradiation technology.

  12. Real time simulator for material testing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Takemoto, Noriyuki; Imaizumi, Tomomi; Izumo, Hironobu; Hori, Naohiko; Suzuki, Masahide [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan); Ishitsuka, Tatsuo; Tamura, Kazuo [ITOCHU Techno-Solutions Corp., Tokyo (Japan)

    2012-03-15

    Japan Atomic Energy Agency (JAEA) is now developing a real time simulator for a material testing reactor based on Japan Materials Testing Reactor (JMTR). The simulator treats reactor core system, primary and secondary cooling system, electricity system and irradiation facility systems. Possible simulations are normal reactor operation, unusual transient operation and accidental operation. The developed simulator also contains tool to revise/add facility in it for the future development. (author)

  13. Real time simulator for material testing reactor

    International Nuclear Information System (INIS)

    Takemoto, Noriyuki; Imaizumi, Tomomi; Izumo, Hironobu; Hori, Naohiko; Suzuki, Masahide; Ishitsuka, Tatsuo; Tamura, Kazuo

    2012-01-01

    Japan Atomic Energy Agency (JAEA) is now developing a real time simulator for a material testing reactor based on Japan Materials Testing Reactor (JMTR). The simulator treats reactor core system, primary and secondary cooling system, electricity system and irradiation facility systems. Possible simulations are normal reactor operation, unusual transient operation and accidental operation. The developed simulator also contains tool to revise/add facility in it for the future development. (author)

  14. Tests on irradiated magnet-insulator materials

    International Nuclear Information System (INIS)

    Schmunk, R.E.; Miller, L.G.; Becker, H.

    1983-01-01

    Fusion-reactor coils, located in areas where they will be only partially shielded, must be fabricated from materials which are as resistant to radiation as possible. They will probably incorporate resistive conductors with either water or cryogenic cooling. Inorganic insulators have been recommended for these situations, but the possibility exists that some organic insulators may be usuable as well. Results were previously reported for irradiation and testing of three glass reinforced epoxies: G-7, G-10, and G-11. Thin disks of these materials, nominally 0.5 mm thick by 11.1 mm diameter, were tested in compressive fatigue, a configuration and loading which represents reasonably well the magnet environment. In that work G-10 was shown to withstand repeated loading to moderately high stress levels without failure, and the material survived better at liquid nitrogen temperature than at room temperature

  15. Nondestructive testing of materials

    International Nuclear Information System (INIS)

    NUKEM has transferred know-how from reactor technology to materials testing. The high and to a large extent new quality standards in the nuclear industry necessitate reliable measuring and testing equipment of the highest precision. Many of the tasks presented to us could not be solved with the equipment available on the market, for which reason we have developed our own measuring, testing and control systems. We have therefore acquired considerable experience in dealing with specific measuring, testing and control tasks and can handle even out-of-the-way problems that are submitted to us from a wide variety of fields. Our mechanical systems for the checking of close-tolerance gaps, the automatic determination of pellet dimensions and the measurement of absolute lengths and absolute velocities are in use in many different industrial fields. We have succeeded in solving unusual testing and sorting problems with the aid of automated surface testing equipment working on optical principles. Our main activities in the field of non-destructive testing have been concentrated on ultrasonic and eddy current testing and, of late, acoustic emission analysis. NUKEM ultrasonic systems are notable for their high defect detection rate and testing accuracy, combined with high testing speed. The equipment we supply includes ultrasonic rotary systems for the production testing of quality tubes, ultrasonic immersion systems for the final testing of reactor cladding tubes, weld testing equipment, and test equipment for the bonds in multi-layer plates. (orig./RW) [de

  16. Standard test methods for bend testing of material for ductility

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 These test methods cover bend testing for ductility of materials. Included in the procedures are four conditions of constraint on the bent portion of the specimen; a guided-bend test using a mandrel or plunger of defined dimensions to force the mid-length of the specimen between two supports separated by a defined space; a semi-guided bend test in which the specimen is bent, while in contact with a mandrel, through a specified angle or to a specified inside radius (r) of curvature, measured while under the bending force; a free-bend test in which the ends of the specimen are brought toward each other, but in which no transverse force is applied to the bend itself and there is no contact of the concave inside surface of the bend with other material; a bend and flatten test, in which a transverse force is applied to the bend such that the legs make contact with each other over the length of the specimen. 1.2 After bending, the convex surface of the bend is examined for evidence of a crack or surface irregu...

  17. Materials testing using laser energy deposition

    International Nuclear Information System (INIS)

    Wilcox, W.W.; Calder, C.A.

    1977-01-01

    A convenient method for determining the elastic constants of materials has been devised using the energy from a Q-switched neodymium-glass laser. Stress waves are induced in materials having circular rod or rectangular bar geometries by the absorption of energy from the laser. The wave transit times through the material are recorded with a piezoelectric transducer. Both dilatation and shear wave velocities are determined in a single test using an ultrasonic technique and these velocities are used to calculate the elastic constants of the material. A comparison of the constants determined for ten common engineering materials using this method is made with constants derived using the conventional ultrasonic pulse technique and agreement is shown to be about one percent in most cases. Effects of material geometry are discussed and surface damage to the material caused by laser energy absorption is shown

  18. Improved cytotoxicity testing of magnesium materials

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Janine [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Structural Research on Macromolecules, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Proefrock, Daniel [Helmholtz-Zentrum Geesthacht, Institute for Coastal Research, Department for Marine Bioanalytical Chemistry, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Hort, Norbert [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Magnesium Processing, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Willumeit, Regine; Feyerabend, Frank [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Structural Research on Macromolecules, Max-Planck Str. 1, D - 21502 Geesthacht (Germany)

    2011-06-25

    Metallic magnesium (Mg) and its alloys are highly suitable for medical applications as biocompatible and biodegradable implant materials. Magnesium has mechanical properties similar to bone, stimulates bone regeneration, is an essential non-toxic element for the human body and degrades completely within the body environment. In consequence, magnesium is a promising candidate as implant material for orthopaedic applications. Protocols using the guideline of current ISO standards should be carefully evaluated when applying them for the characterization of the cytotoxic potential of degradable magnesium materials. For as-cast material we recommend using 10 times more extraction medium than recommended by the ISO standards to obtain reasonable results for reliable cytotoxicity rankings of degradable materials in vitro. In addition primary isolated human osteoblasts or mesenchymal stem cells should be used to test magnesium materials.

  19. Improved cytotoxicity testing of magnesium materials

    International Nuclear Information System (INIS)

    Fischer, Janine; Proefrock, Daniel; Hort, Norbert; Willumeit, Regine; Feyerabend, Frank

    2011-01-01

    Metallic magnesium (Mg) and its alloys are highly suitable for medical applications as biocompatible and biodegradable implant materials. Magnesium has mechanical properties similar to bone, stimulates bone regeneration, is an essential non-toxic element for the human body and degrades completely within the body environment. In consequence, magnesium is a promising candidate as implant material for orthopaedic applications. Protocols using the guideline of current ISO standards should be carefully evaluated when applying them for the characterization of the cytotoxic potential of degradable magnesium materials. For as-cast material we recommend using 10 times more extraction medium than recommended by the ISO standards to obtain reasonable results for reliable cytotoxicity rankings of degradable materials in vitro. In addition primary isolated human osteoblasts or mesenchymal stem cells should be used to test magnesium materials.

  20. Choose of standard materials in the method of β-testing new materials' mass thickness

    International Nuclear Information System (INIS)

    Chen Zhong

    2007-01-01

    To make sure of the standard mass thickness in beta radials testing mass thickness, this paper calculate using M. C. method and get the result of the relations between the beta radials' transmission rate of different energies and mass thickness in different materials. This result prove that in method of beta test mass thickness choosing materials whose elements are close as standard materials are viable. (authors)

  1. Capsule Development and Utilization for Material Irradiation Tests

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Goo; Kang, Y. H.; Cho, M. S. (and others)

    2007-06-15

    The essential technology for an irradiation test of materials and nuclear fuel has been successively developed and utilized to meet the user's requirements in Phase I(July 21, 1997 to March 31, 2000). It enables irradiation tests to be performed for a non-fissile material under a temperature control(300{+-}10 .deg. C) in a He gas environment, and most of the irradiation tests for the internal and external users are able to be conducted effectively. The basic technology was established to irradiate a nuclear fuel, and a creep capsule was also developed to measure the creep property of a material during an irradiation test in HANARO in Phase II(April 1, 2000 to March 31, 2003). The development of a specific purpose capsule, essential technology for a re-irradiation of a nuclear fuel, advanced technology for an irradiation of materials and a nuclear fuel were performed in Phase III(April 1, 2003 to February 28, 2007). Therefore, the technology for an irradiation test was established to support the irradiation of materials and a nuclear fuel which is required for the National Nuclear R and D Programs. In addition, an improvement of the existing capsule design and fabrication technology, and the development of an instrumented capsule for a nuclear fuel and a specific purpose will be able to satisfy the user's requirements. In order to support the irradiation test of materials and a nuclear fuel for developing the next generation nuclear system, it is also necessary to continuously improve the design and fabrication technology of the existing capsule and the irradiation technology.

  2. Test plan for buried waste containment system materials

    International Nuclear Information System (INIS)

    Weidner, J.; Shaw, P.

    1997-03-01

    The objectives of the FY 1997 barrier material work at the Idaho National Engineering and Environmental Laboratory are to (1) select a waste barrier material and verify that it is compatible with the Buried Waste Containment System Process, and (2) determine if, and how, the Buried Waste Containment System emplacement process affects the material properties and performance (on proof of principle scale). This test plan describes a set of measurements and procedures used to validate a waste barrier material for the Buried Waste Containment System. A latex modified proprietary cement manufactured by CTS Cement Manufacturing Company will be tested. Emplacement properties required for the Buried Waste Containment System process are: slump between 8 and 10 in., set time between 15 and 30 minutes, compressive strength at set of 20 psi minimum, and set temperature less than 100 degrees C. Durability properties include resistance to degradation from carbonate, sulfate, and waste-site soil leachates. A set of baseline barrier material properties will be determined to provide a data base for comparison with the barrier materials when tested in the field. The measurements include permeability, petrographic analysis to determine separation and/or segregation of mix components, and a set of mechanical properties. The measurements will be repeated on specimens from the field test material. The data will be used to determine if the Buried Waste Containment System equipment changes the material. The emplacement properties will be determined using standard laboratory procedures and instruments. Durability of the barrier material will be evaluated by determining the effect of carbonate, sulfate, and waste-site soil leachates on the compressive strength of the barrier material. The baseline properties will be determined using standard ASTM procedures. 9 refs., 1 fig., 2 tabs

  3. Creep property testing of energy power plant component material

    International Nuclear Information System (INIS)

    Nitiswati, Sri; Histori; Triyadi, Ari; Haryanto, Mudi

    1999-01-01

    Creep testing of SA213 T12 boiler piping material from fossil plant, Suralaya has been done. The aim of the testing is to know the creep behaviour of SA213 T12 boiler piping material which has been used more than 10 yeas, what is the material still followed ideal creep curve (there are primary stage, secondary stage, and tertiary stage). This possibility could happened because the material which has been used more than 10 years usually will be through ageing process because corrosion. The testing was conducted in 520 0C, with variety load between 4% until 50% maximum allowable load based on strength of the material in 520 0C

  4. Capsule development and utilization for material irradiation tests

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Hwan; Kim, B G; Joo, K N [and others

    2000-05-01

    The development program of advanced nuclear structural and fuel materials includes the in-pile tests using the instrumented capsule at HANARO. The tests were performed in the in-core test holes of CT, IR 1 and 2 and OR 4 and 5 of HANARO. Extensive efforts have also been made to establish design and manufacturing technology for the instrumented capsule and its related system, which should be compatible with the HANARO's characteristics. Since the first instrumented capsule(97M-01K) had been designed and successfully fabricated, five tests were done to support the users and provided the economic benefits to user by generating the essential in-pile information on the performance and structural integrity of materials. This paper describes the present status and future plans of these R and D activities for the development of the instrumented capsule including in-situ material property measurement capsules and nuclear fuel test capsules.

  5. Capsule development and utilization for material irradiation tests

    International Nuclear Information System (INIS)

    Kang, Young Hwan; Kim, B. G.; Joo, K. N.

    2000-05-01

    The development program of advanced nuclear structural and fuel materials includes the in-pile tests using the instrumented capsule at HANARO. The tests were performed in the in-core test holes of CT, IR 1 and 2 and OR 4 and 5 of HANARO. Extensive efforts have also been made to establish design and manufacturing technology for the instrumented capsule and its related system, which should be compatible with the HANARO's characteristics. Since the first instrumented capsule(97M-01K) had been designed and successfully fabricated, five tests were done to support the users and provided the economic benefits to user by generating the essential in-pile information on the performance and structural integrity of materials. This paper describes the present status and future plans of these R and D activities for the development of the instrumented capsule including in-situ material property measurement capsules and nuclear fuel test capsules

  6. Standard test method for galling resistance of material couples

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers a laboratory test that ranks the galling resistance of material couples using a quantitative measure. Bare metals, alloys, nonmetallic materials, coatings, and surface modified materials may be evaluated by this test method. 1.2 This test method is not designed for evaluating the galling resistance of material couples sliding under lubricated conditions, because galling usually will not occur under lubricated sliding conditions using this test method. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  7. the JHR Material Testing Reactor

    International Nuclear Information System (INIS)

    Roure, C.; Cornu, B.; Berthet, B.; Simon, E.; Estre, N.; Guimbal, P.; Kinnunen, P.; Kotiluoto, P.

    2013-06-01

    The Jules Horowitz Reactor (JHR) is a European experimental reactor under construction in CEA Cadarache. It will be dedicated to material and fuel irradiation tests, and to medical isotopes production. Non-Destructive nuclear Examinations systems (NDE) will be implemented in pools to analyse the irradiated fuel or tested material in their supporting experimental irradiation devices extracted from the core or its immediate periphery. The Nuclear Measurement Laboratory (NML) of CEA Cadarache is working in collaboration with VTT (Technical Research Centre in Finland) in designing and developing NDE systems implementing gamma-ray spectroscopy and high energy X-ray imaging of the sample and irradiation device. CEA is also designing a neutron radiography system for which NML is working on the detection system. Design studies are performed with Monte Carlo transport codes and specific simulation tools developed by the NML for Xray and neutron imaging. (authors)

  8. Erosion testing of hard materials and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.

    2005-04-29

    Erosion is the process by which unconstrained particles, usually hard, impact a surface, creating damage that leads to material removal and component failure. These particles are usually very small and entrained in fluid of some type, typically air. The damage that occurs as a result of erosion depends on the size of the particles, their physical characteristics, the velocity of the particle/fluid stream, and their angle of impact on the surface of interest. This talk will discuss the basics of jet erosion testing of hard materials, composites and coatings. The standard test methods will be discussed as well as alternative approaches to determining the erosion rate of materials. The damage that occurs will be characterized in genera1 terms, and examples will be presented for the erosion behavior of hard materials and coatings (both thick and thin).

  9. Proceedings of the international symposium on materials testing reactors

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Kawamura, Hiroshi

    2009-01-01

    This report is the Proceedings of the International Symposium on Materials Testing Reactors hosted by Japan Atomic Energy Agency (JAEA). The symposium was held on July 16 to 17, 2008, at the Oarai Research and Development Center of JAEA. This symposium was also held for the 40th anniversary ceremony of Japan Materials Testing Reactor (JMTR) from achieving its first criticality. The objective of the symposium is to exchange the information on current status, future plan and so on among each testing reactors for the purpose of mutual understanding. There were 138 participants from Argentina, Belgium, France, Indonesia, Kazakhstan, Korea, the Russian Federation, Sweden, the United State, Vietnam and Japan. The symposium was divided into four technical sessions and three topical sessions. Technical sessions addressed the general topics of 'status and future plan of materials testing reactors', 'material development for research and testing reactors', irradiation technology (including PIE technology)' and 'utilization with materials testing reactors', and 21 presentations were made. Also the topical sessions addressed 'establishment of strategic partnership', 'management on re-operation work at reactor trouble' and 'basic technology for neutron irradiation tests in MTRs', and panel discussion was made. The 21 of the presented papers are indexed individually. (J.P.N.)

  10. Research reactors for power reactor fuel and materials testing - Studsvik's experience

    International Nuclear Information System (INIS)

    Grounes, M.

    1998-01-01

    Presently Studsvik's R2 test reactor is used for BWR and PWR fuel irradiations at constant power and under transient power conditions. Furthermore tests are performed with defective LWR fuel rods. Tests are also performed on different types of LWR cladding materials and structural materials including post-irradiation testing of materials irradiated at different temperatures and, in some cases, in different water chemistries and on fusion reactor materials. In the past, tests have also been performed on HTGR fuel and FBR fuel and materials under appropriate coolant, temperature and pressure conditions. Fuel tests under development include extremely fast power ramps simulating some reactivity initiated accidents and stored energy (enthalpy) measurements. Materials tests under development include different types of in-pile tests including tests in the INCA (In-Core Autoclave) facility .The present and future demands on the test reactor fuel in all these cases are discussed. (author)

  11. Standard test method for dynamic tear testing of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1983-01-01

    1.1 This test method covers the dynamic tear (DT) test using specimens that are 3/16 in. to 5/8 in. (5 mm to 16 mm) inclusive in thickness. 1.2 This test method is applicable to materials with a minimum thickness of 3/16 in. (5 mm). 1.3 The pressed-knife procedure described for sharpening the notch tip generally limits this test method to materials with a hardness level less than 36 HRC. Note 1—The designation 36 HRC is a Rockwell hardness number of 36 on Rockwell C scale as defined in Test Methods E 18. 1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  12. Ultraviolet Testing of Space Suit Materials for Mars

    Science.gov (United States)

    Larson, Kristine; Fries, Marc

    2017-01-01

    Human missions to Mars may require radical changes in the approach to extra-vehicular (EVA) suit design. A major challenge is the balance of building a suit robust enough to complete multiple EVAs under intense ultraviolet (UV) light exposure without losing mechanical strength or compromising the suit's mobility. To study how the materials degrade on Mars in-situ, the Jet Propulsion Laboratory (JPL) invited the Advanced Space Suit team at NASA's Johnson Space Center (JSC) to place space suit materials on the Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC) instrument's calibration target of the Mars 2020 rover. In order to select materials for the rover and understand the effects from Mars equivalent UV exposure, JSC conducted ground testing on both current and new space suit materials when exposed to 2500 hours of Mars mission equivalent UV. To complete this testing, JSC partnered with NASA's Marshall Space Flight Center to utilize their UV vacuum chambers. Materials tested were Orthofabric, polycarbonate, Teflon, Dacron, Vectran, spectra, bladder, nGimat coated Teflon, and nGimat coated Orthofabric. All samples were measured for mass, tensile strength, and chemical composition before and after radiation. Mass loss was insignificant (less than 0.5%) among the materials. Most materials loss tensile strength after radiation and became more brittle with a loss of elongation. Changes in chemical composition were seen in all radiated materials through Spectral Analysis. Results from this testing helped select the materials that will fly on the Mars 2020 rover. In addition, JSC can use this data to create a correlation to the chemical changes after radiation-which is what the rover will send back while on Mars-to the mechanical changes, such as tensile strength.

  13. Electrofracturing test system and method of determining material characteristics of electrofractured material samples

    Science.gov (United States)

    Bauer, Stephen J.; Glover, Steven F.; Pfeifle, Tom; Su, Jiann-Cherng; Williamson, Kenneth Martin; Broome, Scott Thomas; Gardner, William Payton

    2017-08-01

    A device for electrofracturing a material sample and analyzing the material sample is disclosed. The device simulates an in situ electrofracturing environment so as to obtain electrofractured material characteristics representative of field applications while allowing permeability testing of the fractured sample under in situ conditions.

  14. Potential countersample materials for in vitro simulation wear testing.

    Science.gov (United States)

    Shortall, Adrian C; Hu, Xiao Q; Marquis, Peter M

    2002-05-01

    Any laboratory investigation of the wear resistance of dental materials needs to consider oral conditions so that in vitro wear results can be correlated with in vivo findings. The choice of the countersample is a critical factor in establishing the pattern of tribological wear and in achieving an efficient in vitro wear testing system. This research investigated the wear behavior and surface characteristics associated with three candidate countersample materials used for in vitro wear testing in order to identify a possible suitable substitute for human dental enamel. Three candidate materials, stainless steel, steatite and dental porcelain were evaluated and compared to human enamel. A variety of factors including hardness, wear surface evolution and frictional coefficients were considered, relative to the tribology of the in vivo situation. The results suggested that the dental porcelain investigated bore the closest similarity to human enamel of the materials investigated. Assessment of potential countersample materials should be based on the essential tribological simulation supported by investigations of mechanical, chemical and structural properties. The selected dental porcelain had the best simulating ability among the three selected countersample materials and this class of material may be considered as a possible countersample material for in vitro wear test purposes. Further studies are required, employing a wider range of dental ceramics, in order to optimise the choice of countersample material for standardized in vitro wear testing.

  15. Dictionary of materials testing

    International Nuclear Information System (INIS)

    Goedecke, W.

    1992-01-01

    This trilingual dictionary contains about 12000 terms from the field of non-destructive and destructive materials testing; the English and French terms can be looked up in two separate, alphabetical indexes. The compilation also presents terms from related fields such as quality control, production control, environmental protection and radiological protection, and wherever appropriate in the context from the fields of physics, chemistry, mathematics and electronic data processing. (HP) [de

  16. Capsule development and utilization for material irradiation tests

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Hwan; Kim, B. G.; Joo, K. N. [and others

    2000-05-01

    The development program of advanced nuclear structural and fuel materials includes the in-pile tests using the instrumented capsule at HANARO. The tests were performed in the in-core test holes of CT, IR 1 and 2 and OR 4 and 5 of HANARO. Extensive efforts have also been made to establish design and manufacturing technology for the instrumented capsule and its related system, which should be compatible with the HANARO's characteristics. Since the first instrumented capsule(97M-01K) had been designed and successfully fabricated, five tests were done to support the users and provided the economic benefits to user by generating the essential in-pile information on the performance and structural integrity of materials. This paper describes the present status and future plans of these R and D activities for the development of the instrumented capsule including in-situ material property measurement capsules and nuclear fuel test capsules.

  17. Double Retort System for Materials Compatibility Testing

    International Nuclear Information System (INIS)

    V. Munne; EV Carelli

    2006-01-01

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the Space Nuclear Power Plant (SNPP) for Project Prometheus (References a and b) there was a need to investigate compatibility between the various materials to be used throughout the SNPP. Of particular interest was the transport of interstitial impurities from the nickel-base superalloys, which were leading candidates for most of the piping and turbine components to the refractory metal alloys planned for use in the reactor core. This kind of contamination has the potential to affect the lifetime of the core materials. This letter provides technical information regarding the assembly and operation of a double retort materials compatibility testing system and initial experimental results. The use of a double retort system to test materials compatibility through the transfer of impurities from a source to a sink material is described here. The system has independent temperature control for both materials and is far less complex than closed loops. The system is described in detail and the results of three experiments are presented

  18. Data package for the Turkey Point material interaction test capsules

    International Nuclear Information System (INIS)

    Krogness, J.C.; Davis, R.B.

    1979-01-01

    Objective of the Materials Interaction Test (MIT) is to obtain interaction information on candidate package storage materials and geologies under prototypic temperatures in gamma and low level neutron fields. Compatibility, structural properties, and chemical transformations will be studied. The multiple test samples are contained within test capsules connected end-to-end to form a test train. Only passive instrumentation has been used to monitor temperatures and record neutron fluence. The test train contains seven capsules: three to test compatibility, two for structural tests, and two for chemical transformation studies. The materials tested are potential candidates for the spent fuel package canister and repository geologies

  19. Automation software for a materials testing laboratory

    Science.gov (United States)

    Mcgaw, Michael A.; Bonacuse, Peter J.

    1990-01-01

    The software environment in use at the NASA-Lewis Research Center's High Temperature Fatigue and Structures Laboratory is reviewed. This software environment is aimed at supporting the tasks involved in performing materials behavior research. The features and capabilities of the approach to specifying a materials test include static and dynamic control mode switching, enabling multimode test control; dynamic alteration of the control waveform based upon events occurring in the response variables; precise control over the nature of both command waveform generation and data acquisition; and the nesting of waveform/data acquisition strategies so that material history dependencies may be explored. To eliminate repetitive tasks in the coventional research process, a communications network software system is established which provides file interchange and remote console capabilities.

  20. Radioactive material packaging performance testing

    International Nuclear Information System (INIS)

    Romano, T.

    1992-06-01

    In an effort to provide uniform packaging of hazardous material on an international level, recommendations for the transport of dangerous goods have been developed by the United Nations. These recommendations are performance oriented and contrast with a large number of packaging specifications in the US Department of Transportation's hazard materials regulations. This dual system presents problems when international shipments enter the US Department of Transportation's system. Faced with the question of continuing a dual system or aligning with the international system, the Research and Special Programs Administration of the US Department of Transportation responded with Docket HM-181. This began the transition toward the international transportation system. Following close behind is Docket HM-169A, which addressed low specific activity radioactive material packaging. This paper will discuss the differences between performance-oriented and specification packaging, the transition toward performance-oriented packaging by the US Department of Transportation, and performance-oriented testing of radioactive material packaging by Westinghouse Hanford Company. Dockets HM-181 and HM-169A will be discussed along with Type A (low activity) and Type B (high activity) radioactive material packaging evaluations

  1. In-plant test using process monitoring data for nuclear material accounting

    International Nuclear Information System (INIS)

    Smith, B.W.; Fager, J.E.

    1982-11-01

    A test of daily material accounting is being conducted for the NRC as part of a continuing program to estimate the effectiveness of using process monitoring data to enhance strategic special nuclear material accounting in fuel facilities. The test is being conducted at a uranium scrap recovery facility. The purpose is to develop and test procedures for resolving anomalies in material loss indicators. This report describes the results of the first test campaign, in which the emphasis was to characterize the daily material accounting system, test generic resolution procedures, and identify specific conditions that result in anomalies in material loss indicators

  2. Tests of candidate materials for particle bed reactors

    International Nuclear Information System (INIS)

    Horn, F.L.; Powell, J.R.; Wales, D.

    1987-01-01

    Rhenium metal hot frits and zirconium carbide-coated fuel particles appear suitable for use in flowing hydrogen to at least 2000 K, based on previous tests. Recent tests on alternate candidate cooled particle and frit materials are described. Silicon carbide-coated particles began to react with rhenium frit material at 1600 K, forming a molten silicide at 2000 K. Silicon carbide was extensively attacked by hydrogen at 2066 K for 30 minutes, losing 3.25% of its weight. Vitrous carbon was also rapidly attacked by hydrogen at 2123 K, losing 10% of its weight in two minutes. Long term material tests on candidate materials for closed cycle helium cooled particle bed fuel elements are also described. Surface imperfections were found on the surface of pyrocarbon-coated fuel particles after ninety days exposure to flowing (∼500 ppM) impure helium at 1143 K. The imperfections were superficial and did not affect particle strength

  3. Nuclear-waste-package materials degradation modes and accelerated testing

    International Nuclear Information System (INIS)

    1981-09-01

    This report reviews the materials degradation modes that may affect the long-term behavior of waste packages for the containment of nuclear waste. It recommends an approach to accelerated testing that can lead to the qualification of waste package materials in specific repository environments in times that are short relative to the time period over which the waste package is expected to provide containment. This report is not a testing plan but rather discusses the direction for research that might be considered in developing plans for accelerated testing of waste package materials and waste forms

  4. ESP – Data from Restarted Life Tests of Various Silicon Materials

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Jim

    2010-10-06

    Current funding has allowed the restart of testing of various silicone materials placed in Life Tests or Aging Studies from past efforts. Some of these materials have been in test since 1982, with no testing for approximately 10 years, until funding allowed the restart in FY97. Charts for the various materials at different thickness, compression, and temperature combinations illustrate trends for the load-bearing properties of the materials.

  5. Development, simulation and testing of structural materials for DEMO

    International Nuclear Information System (INIS)

    Laesser, R.; Baluc, N.; Boutard, J.-L.; Diegele, E.; Gasparotto, M.; Riccardi, B.; Dudarev, S.; Moeslang, A.; Pippan, R.; Schaaf, B. van der

    2006-01-01

    In DEMO the structural and functional materials of the in-vessel components will be exposed to a very intense flux of fusion neutrons with energies up to 14 MeV creating displacement cascades and gaseous transmutation products. Point defects and transmutations will induce new microstructures leading to changes in mechanical and physical properties such as hardening, swelling, loss of fracture toughness and creep strength. The kinetics of microstructural evolution depends on time, temperature and defect production rates. The structural materials to be used in DEMO should have very special properties: high radiation resistance up to the dose of 100 dpa, low residual activation, high creep strength and good compatibility with the cooling media in as wide a temperature operational window as possible for the achievement of high thermal efficiency. The most promising materials are: Reduced Activation Ferritic Martensitic (RAFM) steels (Eurofer and F82H), Oxide Dispersion Strengthened (ODS) RAFM and RAF steels, SiC fibres reinforced SiC matrix composites (SiCf/SiC), tungsten (W) and W-alloys. Each of these materials has its advantages and drawbacks and will be best used under certain conditions. Presently the best studied group of materials are the RAFM steels. They require the smallest extrapolation for use in DEMO but also offer the lowest upper temperature limit of operation (550 o C) and thus the lowest thermal efficiency. The other materials foreseen for more advanced breeder blanket and divertor concepts require intense fundamental R(and)D and testing before their acceptance, whereas the so-called Test Blanket Modules (TBMs) will be constructed using RAFM steel and tested in ITER. Validation of the DEMO structural materials will be done in IFMIF, the International Fusion Materials Irradiation Facility, which will produce neutron damage and transmutation products very similar to those characterising a fusion device and will allow accelerated testing with damage rates

  6. Preparation of working calibration and test materials: uranyl nitrate solution

    International Nuclear Information System (INIS)

    Yamamura, S.S.; Spraktes, F.W.; Baldwin, J.M.; Hand, R.L.; Lash, R.P.

    1977-05-01

    Reliable working calibration and test materials (WCTMs) are essential to a meaningful analytical measurements quality assurance program. This report describes recommended methods for the preparation of uranyl nitrate solution WCTMs for testing analytical methods, for calibrating methods, and for testing personnel. Uranyl nitrate solution WCTMs can be synthesized from characterized starting materials or prepared from typical plant materials by thorough characterization with reference to primary or secondary reference calibration and test materials (PRCTMs or SRCTMs). Recommended starting materials are described along with detailed procedures for (a) preparing several widely-used types of uranyl nitrate solution WCTMs, (b) packaging the WCTMs, (c) analyzing the WCTMs to establish the reference values or to confirm the synthesis, and (d) statistically evaluating the analytical data to assign reference values and to assess the accuracy of the WCTMs

  7. CANMET Gasifier Liner Coupon Material Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Mark Fitzsimmons; Dave Grimmett; Bryan McEnerney

    2007-01-31

    This report provides detailed test results consisting of test data and post-test inspections from Task 1 ''Cooled Liner Coupon Development and Test'' of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources--Advanced Gasification Systems Development (AGSD)''. The primary objective of this development and test program is to verify that ceramic matrix composite (CMC) liner materials planned for use in an advanced gasifier pilot plant will successfully withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) designed and fabricated the cooled liner test assembly article that was tested in a slagging gasifier at CANMET Energy Technology Center (CETC-O) in Ottawa, Ontario, Canada. The test program conducted in 2006 met the objective of operating the cooled liner test article at slagging conditions in a small scale coal gasifier at CETC-O for over the planned 100 hours. The test hardware was exposed to at least 30 high temperature excursions (including start-up and shut-down cycles) during the test program. The results of the testing has provided valuable information on gasifier startup and required cooling controls in steady state operation of future advanced gasifiers using similar liners. The test program also provided a significant amount of information in the areas of CMC materials and processing for improved capability in a gasifier environment and insight into CMC liner fabrication that will be essential for near-term advanced gasifier projects.

  8. Standard test method for ranking resistance of materials to sliding wear using block-on-ring wear test

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers laboratory procedures for determining the resistance of materials to sliding wear. The test utilizes a block-on-ring friction and wear testing machine to rank pairs of materials according to their sliding wear characteristics under various conditions. 1.2 An important attribute of this test is that it is very flexible. Any material that can be fabricated into, or applied to, blocks and rings can be tested. Thus, the potential materials combinations are endless. However, the interlaboratory testing has been limited to metals. In addition, the test can be run with various lubricants, liquids, or gaseous atmospheres, as desired, to simulate service conditions. Rotational speed and load can also be varied to better correspond to service requirements. 1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. Wear test results are reported as the volume loss in cubic millimetres for both the block and ring. Materials...

  9. Standard Test Methods for Constituent Content of Composite Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 These test methods determine the constituent content of composite materials by one of two approaches. Method I physically removes the matrix by digestion or ignition by one of seven procedures, leaving the reinforcement essentially unaffected and thus allowing calculation of reinforcement or matrix content (by weight or volume) as well as percent void volume. Method II, applicable only to laminate materials of known fiber areal weight, calculates reinforcement or matrix content (by weight or volume), and the cured ply thickness, based on the measured thickness of the laminate. Method II is not applicable to the measurement of void volume. 1.1.1 These test methods are primarily intended for two-part composite material systems. However, special provisions can be made to extend these test methods to filled material systems with more than two constituents, though not all test results can be determined in every case. 1.1.2 The procedures contained within have been designed to be particularly effective for ce...

  10. 44 years of testing radioactive materials packages at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Shappert, L.B.; Ludwig, S.B. [Oak Ridge National Lab., Oak Ridge, TN (United States)

    2004-07-01

    This paper briefly reviews the package testing at the Oak Ridge National Laboratory (ORNL) since 1960 and then examines the trends in the testing activities that occurred during the same period. Radioactive material shipments have been made from ORNL since the 1940s. The first fully operating reactor built at the ORNL site was patterned after the graphite pile constructed by Enrico Fermi under Stagg Field in Chicago. After serving as a test bed for future reactors, it became useful as a producer of radioactive isotopes. The Isotopes Division was established at ORNL to furnish radioactive materials used in the medical community. Often these shipments have been transported by aircraft worldwide due to the short half-lives of many of the materials. This paper touches briefly on the lighter and smaller radioisotope packages that were being shipped from ORNL in large numbers and then deals with the testing of packages designed to handle large radioactive sources, such as spent fuel, and other fissile materials.

  11. 44 years of testing radioactive materials packages at ORNL

    International Nuclear Information System (INIS)

    Shappert, L.B.; Ludwig, S.B.

    2004-01-01

    This paper briefly reviews the package testing at the Oak Ridge National Laboratory (ORNL) since 1960 and then examines the trends in the testing activities that occurred during the same period. Radioactive material shipments have been made from ORNL since the 1940s. The first fully operating reactor built at the ORNL site was patterned after the graphite pile constructed by Enrico Fermi under Stagg Field in Chicago. After serving as a test bed for future reactors, it became useful as a producer of radioactive isotopes. The Isotopes Division was established at ORNL to furnish radioactive materials used in the medical community. Often these shipments have been transported by aircraft worldwide due to the short half-lives of many of the materials. This paper touches briefly on the lighter and smaller radioisotope packages that were being shipped from ORNL in large numbers and then deals with the testing of packages designed to handle large radioactive sources, such as spent fuel, and other fissile materials

  12. Fusion materials irradiation test facility: description and status

    International Nuclear Information System (INIS)

    Trego, A.L.; Parker, E.F.; Hagan, J.W.

    1982-01-01

    The Fusion Materials Irradiation Test (FMIT) Facility will generate a high-flux, high-energy neutron source that will provide a fusion-like radiation environment for fusion reactor materials development. The neutrons will be produced in a nuclear stripping reaction by impinging a 35 MeV beam of deuterons from an Alvarez-type linear accelerator on a flowing lithium target. The target will be located in a test cell which will provide an irradiation volume of over 750l within which 10 cm 3 will have an average neutron flux of greater than 1.4 x 10 15 n/cm 2 -s and 500 cm 3 an average flux of greater than 2.2 by 10 14 n/cm 2- s with an expected availability factor greater than 65%. The projected fluence within the 10 cm 3 high flux region of FMIT will effect damage upon the materials test specimens to 30 dpa (displacements per atom) for each 90 day irradiation period. This irradiation flux volume will be at least 500 times larger than that of any other facility with comparable neutron energy and will fully meet the fusion materials damage research objective of 100 dpa within three years for the first round of tests

  13. Test System for Thermoelectric Modules and Materials

    Science.gov (United States)

    Hejtmánek, J.; Knížek, K.; Švejda, V.; Horna, P.; Sikora, M.

    2014-10-01

    We present a design for a complex measuring device that enables its user to assess the parameters of power-generating thermoelectric modules (TEMs) (or bulk thermoelectric materials) under a wide range of temperatures ( T cold = 25°C to 90°C, T hot TEM, the actual heat flow through the module, and its mechanical load, which can be varied during the measurement. Key components of our testing setup are (i) a measuring chamber where the TEM/material is compressed between thermally shielded heating blocks equipped with a mechanical loading system and water-cooled copper-based cooler, (ii) an electrical load system, (iii) a type K thermocouple array connected to a data acquisition computer, and (iv) a thermostatic water-based cooling system with electronically controlled flow rate and temperature of cooling water. Our testing setup represents a useful tool able to assess, e.g., the thermoelectric parameters of newly developed TEMs and materials or to evaluate the thermoelectric parameters of commercially available modules and materials for comparison with values declared by the manufacturer.

  14. Design of a high-flux test assembly for the Fusion Materials Irradiation Test Facility

    International Nuclear Information System (INIS)

    Opperman, E.K.; Vogel, M.A.

    1982-01-01

    The Fusion Material Test Facility (FMIT) will provide a high flux fusion-like neutron environment in which a variety of structural and non-structural materials irradiations can be conducted. The FMIT experiments, called test assemblies, that are subjected to the highest neutron flux magnitudes and associated heating rates will require forced convection liquid metal cooling systems to remove the neutron deposited power and maintain test specimens at uniform temperatures. A brief description of the FMIT facility and experimental areas is given with emphasis on the design, capabilities and handling of the high flux test assembly

  15. Thermal Response of UHMWPE Materials in a Flash Flame Test Environment

    Science.gov (United States)

    2014-11-13

    protection. The UHMWPE fabric immediately began disintegrating during the flash flame exposure. During the test, one end of the UHMWPE fabric...UHMWPE material after the test. There were places where the fabric material appeared to have melted and re-solidified, creating areas of solid plastic ...and Observations The midscale test results showed that any direct flame on the UHMWPE materials will cause rapid disintegration of the material

  16. FMIT test cell diagnostics: a unique materials challenge

    International Nuclear Information System (INIS)

    Cannon, C.P.; Fuller, J.L.

    1981-08-01

    Basic materials problems are discussed in instrumenting the FMIT test cell, which are applicable to fusion devices in general. Recent data on ceramic-to-metal seals, mineral insulated instrument cables, thermocouples, and optical components are reviewed. The data makes it clear that it would be a mistake to assume that materials and instruments will behave in the FMIT test cell environment as they do in more familiar fission reactors and low power accelerators

  17. Test plan for the irradiation of nonmetallic materials.

    Energy Technology Data Exchange (ETDEWEB)

    Brush, Laurence H.; Farnum, Cathy Ottinger; Gelbard, Fred; Dahl, M.; Joslyn, C. C.; Venetz, T. J.

    2013-03-01

    A comprehensive test program to evaluate nonmetallic materials use in the Hanford Tank Farms is described in detail. This test program determines the effects of simultaneous multiple stressors at reasonable conditions on in-service configuration components by engineering performance testing.

  18. Test plan for the irradiation of nonmetallic materials.

    Energy Technology Data Exchange (ETDEWEB)

    Brush, Laurence H.; Farnum, Cathy Ottinger; Dahl, M.; Joslyn, C. C.; Venetz, T. J.

    2013-05-01

    A comprehensive test program to evaluate nonmetallic materials use in the Hanford tank farms is described in detail. This test program determines the effects of simultaneous multiple stressors at reasonable conditions on in-service configuration components by engineering performance testing.

  19. The concept verification testing of materials science payloads

    Science.gov (United States)

    Griner, C. S.; Johnston, M. H.; Whitaker, A.

    1976-01-01

    The concept Verification Testing (CVT) project at the Marshall Space Flight Center, Alabama, is a developmental activity that supports Shuttle Payload Projects such as Spacelab. It provides an operational 1-g environment for testing NASA and other agency experiment and support systems concepts that may be used in shuttle. A dedicated Materials Science Payload was tested in the General Purpose Laboratory to assess the requirements of a space processing payload on a Spacelab type facility. Physical and functional integration of the experiments into the facility was studied, and the impact of the experiments on the facility (and vice versa) was evaluated. A follow-up test designated CVT Test IVA was also held. The purpose of this test was to repeat Test IV experiments with a crew composed of selected and trained scientists. These personnel were not required to have prior knowledge of the materials science disciplines, but were required to have a basic knowledge of science and the scientific method.

  20. Field tests on migration of TRU-nuclide, (2). Migration test for engineered barrier materials in aerated soil

    International Nuclear Information System (INIS)

    Maeda, Toshikatsu; Tanaka, Tadao; Mukai, Masayuki

    2003-01-01

    Field tests on migration of radionuclides for engineered barrier materials such as bentonite and cementitious materials were performed. The tests were run under both wet conditions with artificial rainfall and dry conditions with natural rainfall. Laboratory experiments such as batch adsorption tests were also conducted to analyze the result of field test. The results of field tests agreed with the predicted moisture conditions and the migration behaviors observed at the laboratory experiment that is reported so far. For bentonite material, the movements of the tracer were calculated using known information such as the results of batch sorption tests and migration mechanism. Comparing the result of field test and calculations, it is suggested that tracer migration behavior in bentonite material in field can be evaluated quantitatively by the known migration mechanism and the results of laboratory experiments such as batch sorption test. (author)

  1. Development of aircraft brake materials. [evaluation of metal and ceramic materials in sliding tests simulation of aircraft braking

    Science.gov (United States)

    Ho, T. L.; Peterson, M. B.

    1974-01-01

    The requirements of brake materials were outlined and a survey made to select materials to meet the needs of high temperature brakes. A number of metals and ceramic materials were selected and evaluated in sliding tests which simulated aircraft braking. Nickel, molybdenum tungsten, Zr02, high temperature cements and carbons were tested. Additives were then incorporated into these materials to optimize their wear or strength behavior with particular emphasis on nickel and molybdenum base materials and a high temperature potassium silicate cement. Optimum materials were developed which improved wear behavior over conventional brake materials in the simulated test. The best materials are a nickel, aluminum oxide, lead tungstate composition containing graphite or molybdenum disulphite; a molybdenum base material containing LPA100 (an intermetallic compound of cobalt, molybdenum, and silicon); and a carbon material (P5).

  2. Standard Test Method for Contamination Outgassing Characteristics of Spacecraft Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers a technique for generating data to characterize the kinetics of the release of outgassing products from materials. This technique will determine both the total mass flux evolved by a material when exposed to a vacuum environment and the deposition of this flux on surfaces held at various specified temperatures. 1.2 This test method describes the test apparatus and related operating procedures for evaluating the total mass flux that is evolved from a material being subjected to temperatures that are between 298 and 398 K. Pressures external to the sample effusion cell are less than 7 × 10−3 Pa (5 × 10−5 torr). Deposition rates are measured during material outgassing tests. A test procedure for collecting data and a test method for processing and presenting the collected data are included. 1.3 This test method can be used to produce the data necessary to support mathematical models used for the prediction of molecular contaminant generation, migration, and deposition. 1.4 Al...

  3. Physical and chemical test results of electrostatic safe flooring materials

    Science.gov (United States)

    Gompf, R. H.

    1988-01-01

    This test program was initiated because a need existed at the Kennedy Space Center (KSC) to have this information readily available to the engineer who must make the choice of which electrostatic safe floor to use in a specific application. The information, however, should be of value throughout both the government and private industry in the selection of a floor covering material. Included are the test results of 18 floor covering materials which by test evaluation at KSC are considered electrostatically safe. Tests were done and/or the data compiled in the following areas: electrostatics, flammability, hypergolic compatibility, outgassing, floor type, material thickness, and available colors. Each section contains the test method used to gather the data and the test results.

  4. Progress and Strategies for Testing of Materials for Solar Panels

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah

    2017-04-25

    Accelerated testing is key to confident launch of a new product. However, for new products like solar panels, the best approach is not always clear. The challenge for materials manufacturers is that test times can be long. Also, small-coupon testing may not predict the behavior in the full-size module, but testing of the full-size module is too expensive. As a result, solar panel test standards like IEC 61215 are useful, but are not sufficient. Material manufacturers have needed to define their own test protocols. This presentation will review some historical data (e.g., data show that manufacturers are making great progress toward reducing encapsulant discoloration) and describe advances in material testing (for example, new techniques are being demonstrated on how to more quantitatively assess adhesion, detect tendency for delamination, and understand how encapsulant properties affect other properties like cracking of cells). The International PV Quality Assurance Task Force has been researching climate-specific weathering tests toward the goal of defining international standards that would simplify qualification and quality assurance testing for materials. The status of these tests and the strategies for how to organize these standards to best meet the needs of the industry will be discussed.

  5. Investigation of contact allergy to dental materials by patch testing

    Directory of Open Access Journals (Sweden)

    Reena Rai

    2014-01-01

    Full Text Available Background: Dental products are widely used by patients and dental personnel alike and may cause problems for both. Dental materials could cause contact allergy with varying manifestations such as burning, pain, stomatitis, cheilitis, ulcers, lichenoid reactions localized to the oral mucosa in patients, and hand dermatitis in dental personnel. Patch testing with the dental series comprising commonly used materials can be used to detect contact allergies to dental materials. Aim: This study aimed to identify contact allergy among patients who have oral mucosal lesions after dental treatment and among dental personnel who came in contact with these materials. Materials and Methods: Twenty patients who had undergone dental procedures with symptoms of oral lichen planus, oral stomatitis, burning mouth, and recurrent aphthosis, were included in the study. Dental personnel with history of hand dermatitis were also included in the study. Patch testing was performed using Chemotechnique Dental Series and results interpreted as recommended by the International Contact Dermatitis Research Group (ICDRG. Results: Out of 13 patients who had undergone dental treatment/with oral symptoms, six patients with stomatitis, lichenoid lesions, and oral ulcers showed positive patch tests to a variety of dental materials, seven patients with ulcers had negative patch tests, seven dental personnel with hand dermatitis showed multiple allergies to various dental materials, and most had multiple positivities. Conclusion: The patch test is a useful, simple, noninvasive method to detect contact allergies among patients and among dental personnel dealing with these products. Long term studies are necessary to establish the relevance of these positive patch tests by eliminating the allergic substances, identifying clinical improvement, and substituting with nonallergenic materials.

  6. Method of measurement on materials shielding effectiveness test in time domain

    International Nuclear Information System (INIS)

    Liu Shunkun; Han Jun; Chen Xiangyue

    2009-01-01

    Windows method is a measurement of slot coupling effect in nature when it is used to measure material's shielding effectiveness. The error of measurement will become serious when it is used to measure material's shielding effectiveness in low frequency band. It is difficult to measure material's shielding effectiveness of electromagnetic pulse with Windows method. Device under test method (DUT method) was presented in this paper to overcome the limitations of Windows method in material's shielding effectiveness test. The method can be used to measure any material's shielding Effectiveness effectively through the design and the test of the DUT.The method was used to measure shielding effectiveness of special cement .Compared with theoretical analysis,the measurement result prove the DUT method to be very efficient in material's shielding effectiveness test. (authors)

  7. Testing of materials and scale models for impact limiters

    International Nuclear Information System (INIS)

    Maji, A.K.; Satpathi, D.; Schryer, H.L.

    1991-01-01

    Aluminum Honeycomb and Polyurethane foam specimens were tested to obtain experimental data on the material's behavior under different loading conditions. This paper reports the dynamic tests conducted on the materials and on the design and testing of scale models made out of these open-quotes Impact Limiters,close quotes as they are used in the design of transportation casks. Dynamic tests were conducted on a modified Charpy Impact machine with associated instrumentation, and compared with static test results. A scale model testing setup was designed and used for preliminary tests on models being used by current designers of transportation casks. The paper presents preliminary results of the program. Additional information will be available and reported at the time of presentation of the paper

  8. Flammability tests for regulation of building and construction materials

    Science.gov (United States)

    K. Sumathipala

    2006-01-01

    The regulation of building materials and products for flammability is critical to ensure the safety of occupants in buildings and other structures. The involvement of exposed building materials and products in fires resulting in the loss of human life often spurs an increase in regulation and new test methods to address the problem. Flammability tests range from those...

  9. Nuclear Materials Management for the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Jesse C. Schreiber

    2007-01-01

    The Nevada Test Site (NTS) has transitioned from its historical role of weapons testing to a broader role that is focused on being a solution to multiple National Nuclear Security Administration (NNSA) challenges and opportunities with nuclear materials for the nation. NTS is supporting other NNSA sites challenged with safe nuclear materials storage and disposition. NNSA, with site involvement, is currently transforming the nuclear stockpile and supporting infrastructure to meet the 2030 vision. Efforts are under way to make the production complex smaller, more consolidated, and more modern. With respect to the nuclear material stockpile, the NNSA sites are currently reducing the complex nuclear material inventory through dispositioning and consolidating nuclear material. This includes moving material from other sites to NTS. State-of-the-art nuclear material management and control practices at NTS are essential for NTS to ensure that these new activities are accomplished in a safe, secure, efficient, and environmentally responsible manner. NTS is aggressively addressing this challenge

  10. Research reactors and materials testing

    International Nuclear Information System (INIS)

    Vidal, H.

    1986-01-01

    Research reactors can be classified in three main groups according to the moderator which is used. Their technical characteristics are given and the three most recent research and materials testing reactors are described: OSIRIS, ORPHEE and the high-flux reactor of Grenoble. The utilization of research reactors is reviewed in four fields of activity: training, fundamental or applied research and production (eg. radioisotopes) [fr

  11. Analysis of the NASA White Sands Test Facility (WSTF) Test System for Friction-Ignition of Metallic Materials

    Science.gov (United States)

    Shoffstall, Michael S.; Wilson, D. Bruce; Stoltzfus, Joel M.

    2000-01-01

    Friction is a known ignition source for metals in oxygen-enriched atmospheres. The test system developed by the NASA White Sands Test Facility in response to ASTM G-94 has been used successfully to determine the relative ignition from friction of numerous metallic materials and metallic materials pairs. These results have been ranked in terms of a pressure-velocity product (PV) as measured under the prescribed test conditions. A high value of 4.1(exp 8) watts per square meter for Inconel MA 754 is used to imply resistance to friction ignition, whereas a low value of 1.04(exp 8) watts per square meter for stainless steel 304 is taken as indicating material susceptible to friction ignition. No attempt has been made to relate PV values to other material properties. This work reports the analysis of the WSTF friction-ignition test system for producing fundamental properties of metallic materials relating to ignition through friction. Three materials, aluminum, titanium, and nickel were tested in the WSTF frictional ignition instrument system under atmospheres of oxygen or nitrogen. Test conditions were modified to reach a steady state of operation, that is applied, the force was reduced and the rotational speed was reduced. Additional temperature measurements were made on the stator sample. The aluminum immediately galled on contact (reproducible) and the test was stopped. Titanium immediately ignited as a result of non-uniform contact of the stator and rotor. This was reproducible. A portion of the stator sampled burned, but the test continued. Temperature measurements on the stator were used to validate the mathematical model used for estimating the interface (stator/rotor) temperature. These interface temperature measurements and the associate thermal flux into the stator were used to distinguish material-phase transitions, chemical reaction, and mechanical work. The mechanical work was used to analyze surface asperities in the materials and to estimate a

  12. Testing of ceramic filter materials at the PCFB test facility; Keraamisten suodinmateriaalien testaus PCFB-koelaitoksessa

    Energy Technology Data Exchange (ETDEWEB)

    Kuivalainen, R; Eriksson, T; Lehtonen, P; Tiensuu, J [Foster Wheeler Energia Oy, Karhula (Finland)

    1997-10-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed in Karhula, Finland since 1986. In 1989, a 10 MW PCFB test facility was constructed. The test facility has been used for performance testing with different coal types through the years 1990-1994 for obtaining data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The main objective of the project Y53 was to evaluate advanced candle filter materials for the Hot Gas Clean-up Unit (HGCU) to be used in a commercial PCFB Demonstration Project. To achieve this goal, the selected candle materials were exposed to actual high temperature, high pressure coal combustion flue gases for a period of 1000-1500 h during the PCFB test runs. The test runs were carried out in three test segments in Foster Wheeler`s PCFB test facility at the Karhula R and D Center. An extensive inspection and sampling program was carried out after the second test segment. Selected sample candles were analyzed by the filter supplier and the preliminary results were encouraging. The material strength had decreased only within expected range. Slight elongation of the silicon carbide candles was observed, but at this phase the elongation can not be addressed to creep, unlike in the candles tested in 1993-94. The third and last test segment was completed successfully in October 1996. The filter system was inspected and several sample candles were selected for material characterization. The results will be available in February - March 1997. (orig.)

  13. Piezoelectric materials involved in road traffic applications test system

    International Nuclear Information System (INIS)

    Vazquez Rodriguez, M.; Jimenez Martinez, F.; Frutos, J. de

    2011-01-01

    The test bench system described in this paper performs experiments on piezoelectric materials used in road traffic applications, covering a range between 14 and 170 km/h, which is considered enough for testing under standard traffic conditions. A software has been developed to control the three phase induction motor driver and to acquire all the measurement data of the piezoelectric materials. The mass over each systems axis can be selected, with a limit of 60 kg over each wheel. The test bench is used to simulate the real behaviour of buried piezoelectric cables in road traffic applications for both light and heavy vehicles. This new test bed system is a powerful research tool and can be applied to determine the optimal installation and configuration of the piezoelectric cable sensors and opens a new field of research: the study of energy harvesting techniques based on piezoelectric materials. (Author) 10 refs.

  14. Strip specimen tests for pipeline materials and girth welds

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, William C. [Edison Welding Institute (EWI), Columbus, Ohio (United States)

    2009-07-01

    Strip specimen testing of pipeline materials has been widely applied as a method of getting data relevant to the performance of pipelines under axial direction loading. Comparisons of strip specimen against smaller standard tests (round tensile bar, fracture toughness specimens, polished round bars) and against full-scale or large-scale testing will be explored. Data from early-generation pipe welds from the 1920's to the 1940's to the most recent materials for offshore reeled pipe will be used for examples. Strip samples can provide full thickness information to take account of varying material properties or imperfection distribution through the thickness. Strip samples can also accommodate measurement of effects of the original surface finish or weld surface shape. Strip samples have more design flexibility than standard tests, but must be designed to limit stress concentrations and effects of local bending. (author)

  15. Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials

    Science.gov (United States)

    Keith, Theo G.

    2005-01-01

    The purpose of this report is to provide a final report for the period of 12/1/03 through 11/30/04 for NASA Cooperative Agreement NCC3-776, entitled "Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials." During this final period, major efforts were focused on both the determination of mechanical properties of advanced ceramic materials and the development of mechanical test methodologies under several different programs of the NASA-Glenn. The important research activities made during this period are: 1. Mechanical properties evaluation of two gas-turbine grade silicon nitrides. 2) Mechanical testing for fuel-cell seal materials. 3) Mechanical properties evaluation of thermal barrier coatings and CFCCs and 4) Foreign object damage (FOD) testing.

  16. New JMTR irradiation test plan on fuels and materials

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Nishiyama, Yutaka; Chimi, Yasuhiro; Sasajima, Hideo; Ogiyanagi, Jin; Nakamura, Jinichi; Suzuki, Masahide; Kawamura, Hiroshi

    2009-01-01

    In order to maintain and enhance safety of light water reactors (LWRs) in long-term and up-graded operations, proper understanding of irradiation behavior of fuels and materials is essentially important. Japanese government and the Japan Atomic Energy Agency (JAEA) have decided to refurbish the Japan Materials Testing Reactor (JMTR) and to install new tests rigs, in order to play an active role for solving irradiation related issues on plant aging and high-duty uses of the current LWRs and on development of next-generation reactors. New tests on fuel integrity under simulated abnormal transients and high-duty irradiation conditions are planned in the JMTR. Power ramp tests of newdesign fuel rods will also be performed in the first stage of the program, which is expected to start in year 2011 after refurbishment of the JMTR. Combination of the JMTR tests with simulated reactivity initiated accident tests in the Nuclear Safety Research Reactor (NSRR) and loss of coolant accident tests in hot laboratories would serve as the integrated fuel safety research on the high performance fuels at extended burnups, covering from the normal to the accident conditions, including abnormal transients. For the materials irradiation, fracture toughness of reactor vessel steels and stress corrosion cracking behavior of stainless steels are being studied in addition to basic irradiation behavior of nuclear materials such as hafnium. The irradiation studies would contribute not only to solve the current problems but also to identify possible seeds of troubles and to make proactive responses. (author)

  17. Capsule Development and Utilization for Material Irradiation Tests

    International Nuclear Information System (INIS)

    Kang, Young Hwan; Kim, B. G.; Joo, K. N.

    2003-05-01

    The objective of this project was to establish basic capsule irradiation technology using the multi-purpose research reactor [HANARO] to eventually support national R and D projects of advanced fuel and materials related to domestic nuclear power plants and next generation reactors. There are several national nuclear projects in KAERI, which require several irradiation tests to investigate in-pile behavior of nuclear reactor fuel and materials for the R and D of several types of fuels such as advanced PWR and DUPIC fuels and for the R and D of structural materials such as RPV(reactor pressure vessel) steel, Inconel, zirconium alloy, and stainless steel. At the moment, internal and external researchers in institutes, industries and universities are interested in investigating the irradiation characteristics of materials using the irradiation facilities of HANARO. For these kinds of material irradiation tests, it is important to develop various capsules using our own techniques. The development of capsules requires several leading-edge technologies and our own experiences related to design and fabrication. In the second phase from April 1,2000 to March 31, 2003, the utilization technologies were developed using various sensors for the measurements of temperature, pressure and displacement, and instrumented capsule technologies for the required fuel irradiation tests were developed. In addition, the improvement of the existing capsule technologies and the development of an in-situ measurable creep capsule for specific purposes were done to meet the various requirements of users

  18. Advanced Gas Cooled Reactor Materials Program. Reducing helium impurity depletion in HTGR materials testing

    International Nuclear Information System (INIS)

    Baldwin, D.H.

    1984-08-01

    Moisture depletion in HTGR materials testing rigs has been empirically studied in the GE High Temperature Reactor Materials Testing Laboratory (HTRMTL). Tests have shown that increased helium flow rates and reduction in reactive (oxidizable) surface area are effective means of reducing depletion. Further, a portion of the depletion has been shown to be due to the presence of free C released by the dissociation of CH 4 . This depletion component can be reduced by reducing the helium residence time (increasing the helium flow rate) or by reducing the CH 4 concentration in the test gas. Equipment modifications to reduce depletion have been developed, tested, and in most cases implemented in the HTRMTL to date. These include increasing the Helium Loop No. 1 pumping capacity, conversion of metallic retorts and radiation shields to alumina, isolation of thermocouple probes from the test gas by alumina thermowells, and substitution of non-reactive Mo-TZM for reactive metallic structural components

  19. Production integrated nondestructive testing of composite materials and material compounds - an overview

    Science.gov (United States)

    Straß, B.; Conrad, C.; Wolter, B.

    2017-03-01

    Composite materials and material compounds are of increasing importance, because of the steadily rising relevance of resource saving lightweight constructions. Quality assurance with appropriate Nondestructive Testing (NDT) methods is a key aspect for reliable and efficient production. Quality changes have to be detected already in the manufacturing flow in order to take adequate corrective actions. For materials and compounds the classical NDT methods for defectoscopy, like X-ray and Ultrasound (US) are still predominant. Nevertheless, meanwhile fast, contactless NDT methods, like air-borne ultrasound, dynamic thermography and special Eddy-Current techniques are available in order to detect cracks, voids, pores and delaminations but also for characterizing fiber content, distribution and alignment. In Metal-Matrix Composites US back-scattering can be used for this purpose. US run-time measurements allow the detection of thermal stresses at the metal-matrix interface. Another important area is the necessity for NDT in joining. To achieve an optimum material utilization and product safety as well as the best possible production efficiency, there is a need for NDT methods for in-line inspection of the joint quality while joining or immediately afterwards. For this purpose EMAT (Electromagnetic Acoustic Transducer) technique or Acoustic Emission testing can be used.

  20. A smart predictor for material property testing

    International Nuclear Information System (INIS)

    Wang, Wilson; Kanneg, Derek

    2008-01-01

    A reliable predictor is very useful for real-world industrial applications to forecast the future behavior of dynamic systems. A smart predictor, based on a novel recurrent neural fuzzy (RNF) scheme, is developed in this paper for multi-step-ahead prediction of material properties. A systematic investigation based on two benchmark data sets is conducted in terms of performance and efficiency. Analysis results reveal that, of the data-driven forecasting schemes, predictors based on step input patterns outperform those based on sequential input patterns; the RNF predictor outperforms those based on recurrent neural networks and ANFIS schemes in multi-step-ahead prediction of nonlinear time series. An adaptive Levenberg–Marquardt training technique is adopted to improve the robustness and convergence of the RNF predictor. Furthermore, the proposed smart predictor is implemented for material property testing. Investigation results show that the developed RNF predictor is a reliable forecasting tool for material property testing; it can capture and track the system's dynamic characteristics quickly and accurately. It is also a robust predictor to accommodate different system conditions

  1. State-of-the-art methods for testing materials outdoors

    Science.gov (United States)

    R. Sam Williams

    2004-01-01

    In recent years, computers, sensors, microelectronics, and communication technologies have made it possible to automate the way materials are tested in the field. It is now possible to purchase monitoring equipment to measure weather and materials properties. The measurement of materials response often requires innovative approaches and added expense, but the...

  2. Two micro fatigue test methods for irradiated materials

    International Nuclear Information System (INIS)

    Nunomura, Shigetomo; Noguchi, Shinji; Okamura, Yuichi; Kumai, Shinji

    1993-01-01

    This paper demonstrates two miniature fatigue test methods in response to the requirements of the fusion reactor wall materials development program. It is known that the fatigue strength evaluated by the axial loading test is independent of the specimen size, while that evaluated by the bend test or torsion test is dependent upon the size of specimen. The new type of gripping system for the axial, tension-tension, fatigue testing of TEM disk-size specimens that has been developed is described in this paper. An alignment tool assists in gripping the miniature specimen. The miniature tension-tension fatigue test method seems to provide reliable S-N curves for SUS304 and SUS316L stainless steels. An indentation method has also been developed to determine fatigue properties. A hard steel ball or ceramic ball was used for cyclically loading the specimen, and an S-N curve was subsequently obtained. The merit of this method is primarily simple handling. S-N curves obtained from four materials by this indentation method compared well with those obtained from the rotary bend fatigue test employing a standard-size specimen

  3. Radioactive material package testing capabilities at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Uncapher, W.L.; Hohnstreiter, G.F.

    1995-01-01

    Evaluation and certification of radioactive and hazardous material transport packages can be accomplished by subjecting these packages to normal transport and hypothetical accident test conditions. The regulations allow package designers to certify packages using analysis, testing, or a combination of analysis and testing. Testing can be used to substantiate assumptions used in analytical models and to demonstrate package structural and thermal response. Regulatory test conditions include impact, puncture, crush, penetration, water spray, immersion, and thermal environments. Testing facilities are used to simulate the required test conditions and provide measurement response data. Over the past four decades, comprehensive testing facilities have been developed at Sandia National Laboratories to perform a broad range of verification and certification tests on hazardous and radioactive material packages or component sections. Sandia's facilities provide an experience base that has been established during the development and certification of many package designs. These unique facilities, along with innovative instrumentation data collection capabilities and techniques, simulate a broad range of testing environments. In certain package designs, package testing can be an economical alternative to complex analysis to resolve regulatory questions or concerns

  4. Electrostatic discharge attenuation test for the characterization of ESD protective materials

    International Nuclear Information System (INIS)

    Paasi, Jaakko; Viheriaekoski, Toni; Sutela, Lassi; Tamminen, Pasi K

    2008-01-01

    New experimental method has been developed to evaluate materials, tools, equipment and packaging used in the electronics production environment under Charged Device Model (CDM) type of electrostatic discharge (ESD) transients. The method is intended to characterize the ability of the material or object to attenuate ESD energy and peak discharge current when a charged device is discharged into the material under test. The test is supplementary for the standard quasi-static measurements of ESD control programs in the cases where standard measurements do not give sufficient information due to voltage non-linearity, complexity or shape of the material or object under test.

  5. Testing of SRS and RFETS Nylon Bag Material

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    1998-01-01

    This report compares the effects of radiation and heating on nylon bagout materials used at the Savannah River Site (SRS) and the Rocky Flats Environmental Technology Site (RFETS). Recently, to simplify the processing of sand, slag, and crucible (SS and C), FB-Line has replaced the low-density polyethylene (LDPE) and polyvinyl chloride (PVC) bags normally used to package cans of plutonium-bearing material with nylon bags. LDPE and PVC are not soluble in the nitric acid dissolver solution used in F-Canyon, so cans bagged using these materials had to be repackaged before they were added to the dissolver. Because nylon dissolves in nitric acid, cans bagged in nylon can be charged to the F-Canyon dissolvers without repackaging, thereby reducing handling requirements and personnel exposure. As part of a program to process RFETS SS and C at SRS, RFETS has also begun to use a nylon bagout material. The RFETS bag materials is made from a copolymer of nylon 6 and nylon 6.9, while the SRS material is made from a nylon 6 monomer. In addition, the SRS nylon has an anti-static agent added. The RFETS nylon is slightly softer than the SRS nylon, but does not appear to be as resistant to flex cracks initiated by contact with sharp corners of the inner can containing the SS and C.2 FB-Line Operations has asked for measurement of the effects of radiation and heating on these materials. Specifically, they have requested a comparison of the material properties of the plastics before and after irradiation, a measurement of the amount of outgassing when the plastics are heated, and a calculation of the amount of radiolytic gas generation. Testing was performed on samples taken from material that is currently used in FB-Line (color coded orange) and at RFETS. The requested tests are the same tests previously performed on the original and replacement nylon and LDPE bag materials.3,4,5. To evaluate the effect of irradiation on material properties, tensile stresses and elongations to break

  6. Test or toy? Materiality and the measurement of infant intelligence.

    Science.gov (United States)

    Young, Jacy L

    2015-05-01

    Adopting a material culture perspective, this article interrogates the composition of the copy of the Cattell Infant Intelligence Scale housed at the University of Toronto Scientific Instruments Collection. As a deliberately assembled collection of toys, the Cattell Scale makes clear the indefinite boundary between test and toy in 20th-century American psychology. Consideration of the current condition of some of the material constituents of this particular Cattell Scale provides valuable insight into some of the elusive practices of intelligence testers in situ and highlights the dynamic nature of the testing process. At the same time, attending to the materiality of this intelligence test reveals some of the more general assumptions about the nature of intelligence inherent in tests for young children. The scale and others like it, I argue, exposes psychologists' often-uncritical equation of childhood intelligence with appropriate play undertaken with an appropriate toy, an approach complicit in, and fostered by, midcentury efforts to cultivate particular forms of selfhood. This analysis serves as an example of the kind of work that may be done on the history of intelligence testing when the material objects that were (and are) inherently a part of the testing process are included in historical scholarship. (c) 2015 APA, all rights reserved).

  7. Engineer Research and Development Center's Materials Testing Center (MTC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Engineer Research and Development Center's Materials Testing Center (MTC) is committed to quality testing and inspection services that are delivered on time and...

  8. Material control test and evaluation system at the ICPP

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1979-01-01

    The US DOE is evaluating process monitoring as part of a total nuclear material safeguards system. A monitoring system is being installed at the Idaho Chemical Processing Plant to test and evaluate material control and surveillance concepts in an operating nuclear fuel reprocessing plant. Process monitoring for nuclear material control complements conventional safeguards accountability and physical protection to assure adherence to approved safeguards procedures and verify containment of nuclear materials within the processing plant

  9. Reprint of: Improved cytotoxicity testing of magnesium materials

    International Nuclear Information System (INIS)

    Fischer, Janine; Pröfrock, Daniel; Hort, Norbert; Willumeit, Regine; Feyerabend, Frank

    2011-01-01

    Metallic magnesium (Mg) and its alloys are highly suitable for medical applications as biocompatible and biodegradable implant materials. Magnesium has mechanical properties similar to bone, stimulates bone regeneration, is an essential non-toxic element for the human body and degrades completely within the body environment. In consequence, magnesium is a promising candidate as implant material for orthopaedic applications. Protocols using the guideline of current ISO standards should be carefully evaluated when applying them for the characterization of the cytotoxic potential of degradable magnesium materials. For as-cast material we recommend using 10 times more extraction medium than recommended by the ISO standards to obtain reasonable results for reliable cytotoxicity rankings of degradable materials in vitro. In addition primary isolated human osteoblasts or mesenchymal stem cells should be used to test magnesium materials.

  10. Reprint of: Improved cytotoxicity testing of magnesium materials

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Janine [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Structural Research on Macromolecules, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Proefrock, Daniel [Helmholtz-Zentrum Geesthacht, Institute for Coastal Research, Department for Marine Bioanalytical Chemistry, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Hort, Norbert [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Magnesium Processing, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Willumeit, Regine; Feyerabend, Frank [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Structural Research on Macromolecules, Max-Planck Str. 1, D - 21502 Geesthacht (Germany)

    2011-12-15

    Metallic magnesium (Mg) and its alloys are highly suitable for medical applications as biocompatible and biodegradable implant materials. Magnesium has mechanical properties similar to bone, stimulates bone regeneration, is an essential non-toxic element for the human body and degrades completely within the body environment. In consequence, magnesium is a promising candidate as implant material for orthopaedic applications. Protocols using the guideline of current ISO standards should be carefully evaluated when applying them for the characterization of the cytotoxic potential of degradable magnesium materials. For as-cast material we recommend using 10 times more extraction medium than recommended by the ISO standards to obtain reasonable results for reliable cytotoxicity rankings of degradable materials in vitro. In addition primary isolated human osteoblasts or mesenchymal stem cells should be used to test magnesium materials.

  11. Evaluation of candidate magnetohydrodynamic materials for the U-02 Phase III test

    International Nuclear Information System (INIS)

    Marchant, D.D.; Bates, J.L.

    1978-06-01

    As part of a cooperative U.S.--U.S.S.R. program, electrode and insulator materials tested at the Westinghouse Electrode Systems Test Facility in Pittsburgh, Pennsylvania, were evaluated. From this evaluation materials will be selected for use in the third phase of tests being conducted in the U-02 magnetohydrodynamics test facility in the Soviet Union. Electrode and insulator materials were examined with both an optical microscope and a scanning electron microscope. The cathodes were found to behave differently from the anodes; most notably, the cathodes showed greater potassium interaction. The lanthanum chromite-based electrodes (excluding those fabricated by plasma-spraying) are recommended for testing in the U-02 Phase III test. Hotpressed, fused-grained MgO and sintered MgAl 2 O 4 are recommended as insulator materials. The electrode attachment techniques used in the Westinghouse Tests were inadequate and need to be modified for the U-02 test

  12. GPR Laboratory Tests For Railways Materials Dielectric Properties Assessment

    Directory of Open Access Journals (Sweden)

    Francesca De Chiara

    2014-10-01

    Full Text Available In railways Ground Penetrating Radar (GPR studies, the evaluation of materials dielectric properties is critical as they are sensitive to water content, to petrographic type of aggregates and to fouling condition of the ballast. Under the load traffic, maintenance actions and climatic effects, ballast condition change due to aggregate breakdown and to subgrade soils pumping, mainly on existing lines with no sub ballast layer. The main purpose of this study was to validate, under controlled conditions, the dielectric values of materials used in Portuguese railways, in order to improve the GPR interpretation using commercial software and consequently the management maintenance planning. Different materials were tested and a broad range of in situ conditions were simulated in laboratory, in physical models. GPR tests were performed with five antennas with frequencies between 400 and 1800 MHz. The variation of the dielectric properties was measured, and the range of values that can be obtained for different material condition was defined. Additionally, in situ GPR measurements and test pits were performed for validation of the dielectric constant of clean ballast. The results obtained are analyzed and the main conclusions are presented herein.

  13. An investigation of neutron irradiation test on superplastic zirconia-ceramic materials

    International Nuclear Information System (INIS)

    Shibata, Taiju; Ishihara, Masahiro; Baba, Shinichi; Hayashi, Kimio

    2000-05-01

    A neutron irradiation test on superplastic ceramic materials at high temperature has been proposed as an innovative basic research on high-temperature engineering using the High Temperature Engineering Test Reactor (HTTR). For the effective execution of the test, we reviewed the superplastic deformation mechanism of ceramic materials and discussed neutron irradiation effects on the superplastic deformation process of stabilized Tetragonal Zirconia Polycrystal (TZP), which is a representative superplastic ceramic material. As a result, we pointed out that the decrease in the activation energy for superplastic deformation is expected by the radiation-enhanced diffusion. We selected a fast neutron fluence of 5x10 20 n/cm 2 and an irradiation temperature of about 600degC as test conditions for the first irradiation test on TZP and decided to perform a preliminary irradiation test by the Japan Materials Testing Reactor (JMTR). Moreover, we estimated the radioactivity of irradiated TZP and indicated that it is in the order of 10 10 Bq/g (about 0.3 Ci/g) immediately after irradiation to a thermal neutron fluence of 3x10 20 n/cm 2 and that it decays to about 1/100 in a year. (author)

  14. Erosion tests of materials by energetic particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Schechter, D.E.; Tsai, C.C.; Sluss, F.; Becraft, W.R.; Hoffman, D.J.

    1985-01-01

    The internal components of magnetic fusion devices must withstand erosion from and high heat flux of energetic plasma particles. The selection of materials for the construction of these components is important to minimize contamination of the plasma. In order to study various materials' comparative resistance to erosion by energetic particles and their ability to withstand high heat flux, water-cooled copper swirl tubes coated or armored with various materials were subjected to bombardment by hydrogen and helium particle beams. Materials tested were graphite, titanium carbide (TiC), chromium, nickel, copper, silver, gold, and aluminum. Details of the experimental arrangement and methods of application or attachment of the materials to the copper swirl tubes are presented. Results including survivability and mass losses are discussed.

  15. Ablative Material Testing at Lewis Rocket Lab

    Science.gov (United States)

    1997-01-01

    The increasing demand for a low-cost, reliable way to launch commercial payloads to low- Earth orbit has led to the need for inexpensive, expendable propulsion systems for new launch vehicles. This, in turn, has renewed interest in less complex, uncooled rocket engines that have combustion chambers and exhaust nozzles fabricated from ablative materials. A number of aerospace propulsion system manufacturers have utilized NASA Lewis Research Center's test facilities with a high degree of success to evaluate candidate materials for application to new propulsion devices.

  16. Regulatory and extra-regulatory testing to demonstrate radioactive material packaging safety

    International Nuclear Information System (INIS)

    Ammerman, D.J.

    1997-01-01

    Packages for the transportation of radioactive material must meet performance criteria to assure safety and environmental protection. The stringency of the performance criteria is based on the degree of hazard of the material being transported. Type B packages are used for transporting large quantities of radioisotopes (in terms of A 2 quantities). These packages have the most stringent performance criteria. Material with less than an A 2 quantity are transported in Type A packages. These packages have less stringent performance criteria. Transportation of LSA and SCO materials must be in open-quotes strong-tightclose quotes packages. The performance requirements for the latter packages are even less stringent. All of these package types provide a high level of safety for the material being transported. In this paper, regulatory tests that are used to demonstrate this safety will be described. The responses of various packages to these tests will be shown. In addition, the response of packages to extra-regulatory tests will be discussed. The results of these tests will be used to demonstrate the high level of safety provided to workers, the public, and the environment by packages used for the transportation of radioactive material

  17. New facilities in Japan materials testing reactor for irradiation test of fusion reactor components

    International Nuclear Information System (INIS)

    Kawamura, H.; Sagawa, H.; Ishitsuka, E.; Sakamoto, N.; Niiho, T.

    1996-01-01

    The testing and evaluation of fusion reactor components, i.e. blanket, plasma facing components (divertor, etc.) and vacuum vessel with neutron irradiation is required for the design of fusion reactor components. Therefore, four new test facilities were developed in the Japan Materials Testing Reactor: an in-pile functional testing facility, a neutron multiplication test facility, an electron beam facility, and a re-weldability facility. The paper describes these facilities

  18. IFMIF [International Fusion Materials Irradiation Facility], an accelerator-based neutron source for fusion components irradiation testing: Materials testing capabilities

    International Nuclear Information System (INIS)

    Mann, F.M.

    1988-08-01

    The International Fusion Materials Irradiation Facility (IFMIF) is proposed as an advanced accelerator-based neutron source for high-flux irradiation testing of large-sized fusion reactor components. The facility would require only small extensions to existing accelerator and target technology originally developed for the Fusion Materials Irradiation Test (FMIT) facility. At the extended facility, neutrons would be produced by a 0.1-A beam of 35-MeV deuterons incident upon a liquid lithium target. The volume available for high-flux (>10/sup 15/ n/cm/sup 2/-s) testing in IFMITF would be over a liter, a factor of about three larger than in the FMIT facility. This is because the effective beam current of 35-MeV deuterons on target can be increased by a factor of ten to 1A or more. Such an increase can be accomplished by funneling beams of deuterium ions from the radio-frequency quadruple into a linear accelerator and by taking advantage of recent developments in accelerator technology. Multiple beams and large total current allow great variety in available testing. For example, multiple simultaneous experiments, and great flexibility in tailoring spatial distributions of flux and spectra can be achieved. 5 refs., 2 figs., 1 tab

  19. Recent developments in dynamic testing of materials

    Directory of Open Access Journals (Sweden)

    Gilat Amos

    2015-01-01

    Full Text Available New techniques for dynamic characterization of materials that have been developed in the last three years (since the last DYMAT conference in 2012, and results from recent dynamic testing of Inconel 718 are presented. The first development is a dynamic punch test in which three dimensional Digital Image Correlation (DIC is used to measure the deformation of the rear surface of a specimen as it being penetrated. The second experimental technique that is under development is a dynamic tension experiment in which full-field strain measurement with DIC and full-field temperature measurement are done simultaneously during the test.

  20. Chairside CAD/CAM materials. Part 2: Flexural strength testing.

    Science.gov (United States)

    Wendler, Michael; Belli, Renan; Petschelt, Anselm; Mevec, Daniel; Harrer, Walter; Lube, Tanja; Danzer, Robert; Lohbauer, Ulrich

    2017-01-01

    Strength is one of the preferred parameters used in dentistry for determining clinical indication of dental restoratives. However, small dimensions of CAD/CAM blocks limit reliable measurements with standardized uniaxial bending tests. The objective of this study was to introduce the ball-on-three-ball (B3B) biaxial strength test for dental for small CAD/CAM block in the context of the size effect on strength predicted by the Weibull theory. Eight representative chairside CAD/CAM materials ranging from polycrystalline zirconia (e.max ZirCAD, Ivoclar-Vivadent), reinforced glasses (Vitablocs Mark II, VITA; Empress CAD, Ivoclar-Vivadent) and glass-ceramics (e.max CAD, Ivoclar-Vivadent; Suprinity, VITA; Celtra Duo, Dentsply) to hybrid materials (Enamic, VITA; Lava Ultimate, 3M ESPE) have been selected. Specimens were prepared with highly polished surfaces in rectangular plate (12×12×1.2mm 3 ) or round disc (Ø=12mm, thickness=1.2mm) geometries. Specimens were tested using the B3B assembly and the biaxial strength was determined using calculations derived from finite element analyses of the respective stress fields. Size effects on strength were determined based on results from 4-point-bending specimens. A good agreement was found between the biaxial strength results for the different geometries (plates vs. discs) using the B3B test. Strength values ranged from 110.9MPa (Vitablocs Mark II) to 1303.21MPa (e.max ZirCAD). The strength dependency on specimen size was demonstrated through the calculated effective volume/surface. The B3B test has shown to be a reliable and simple method for determining the biaxial strength restorative materials supplied as small CAD/CAM blocks. A flexible solution was made available for the B3B test in the rectangular plate geometry. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Multilayer Pressure Vessel Materials Testing and Analysis. Phase 1

    Science.gov (United States)

    Cardinal, Joseph W.; Popelar, Carl F.; Page, Richard A.

    2014-01-01

    To provide NASA a comprehensive suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for aging multilayer pressure vessels, Southwest Research Institute (R) (SwRI) was contracted in two phases to obtain relevant material property data from a representative vessel. This report describes Phase 1 of this effort which includes a preliminary material property assessment as well as a fractographic, fracture mechanics and fatigue crack growth analyses of an induced flaw in the outer shell of a representative multilayer vessel that was subjected to cyclic pressure test. SwRI performed this Phase 1 effort under contract to the Digital Wave Corporation in support of their contract to Jacobs ATOM for the NASA Ames Research Center.

  2. FMIT - the fusion materials irradiation test facility

    International Nuclear Information System (INIS)

    Liska, D.J.

    1980-01-01

    A joint effort by the Hanford Engineering Development Laboratory (HEDL) and Los Alamos Scientific Laboratory (LASL) has produced a preliminary design for a Fusion Materials Irradiation Test Facility (FMIT) that uses a high-power linear accelerator to fire a deuteron beam into a high-speed jet of molten lithium. The result is a continuous energy spectrum of neutrons with a 14-MeV average energy which can irradiate material samples to projected end-of-life levels in about 3 years, with a total accumulated fluence of 10 21 to 10 22 n/cm 2

  3. In-core materials testing under LWR conditions in the Halden reactor

    International Nuclear Information System (INIS)

    Bennett, P.J.; Hauso, E.; Hoegberg, N.W.; Karlsen, T.M.; McGrath, M.A.

    2002-01-01

    The Halden boiling water reactor (HBWR) has been in operation since 1958. It is a test reactor with a maximum power of 18 MW and is cooled and moderated by boiling heavy water, with a normal operating temperature of 230 C and a pressure of 34 bar. In the past 15 years increasing emphasis has been placed on materials testing, both of in-core structural materials and fuel claddings. These tests require representative light water reactor (LWR) conditions, which are achieved by housing the test rigs in pressure flasks that are positioned in fuel channels in the reactor and connected to dedicated water loops, in which boiling water reactor (BWR) or pressurised water reactor (PWR) conditions are simulated. Understanding of the in-core behaviour of fuel or reactor materials can be greatly improved by on-line measurements during power operation. The Halden Project has performed in-pile measurements for a period of over 35 years, beginning with fuel temperature measurements using thermocouples and use of differential transformers for measurement of fuel pellet or cladding dimensional changes and internal rod pressure. Experience gained over this period has been applied to on-line instrumentation for use in materials tests. This paper gives details of the systems used at Halden for materials testing under LWR conditions. The techniques used to provide on-line data are described and illustrative results are presented. (authors)

  4. In-core materials testing under LWR conditions in the Halden reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.J.; Hauso, E.; Hoegberg, N.W.; Karlsen, T.M.; McGrath, M.A. [OECD Halden Reactor Project (Norway)

    2002-07-01

    The Halden boiling water reactor (HBWR) has been in operation since 1958. It is a test reactor with a maximum power of 18 MW and is cooled and moderated by boiling heavy water, with a normal operating temperature of 230 C and a pressure of 34 bar. In the past 15 years increasing emphasis has been placed on materials testing, both of in-core structural materials and fuel claddings. These tests require representative light water reactor (LWR) conditions, which are achieved by housing the test rigs in pressure flasks that are positioned in fuel channels in the reactor and connected to dedicated water loops, in which boiling water reactor (BWR) or pressurised water reactor (PWR) conditions are simulated. Understanding of the in-core behaviour of fuel or reactor materials can be greatly improved by on-line measurements during power operation. The Halden Project has performed in-pile measurements for a period of over 35 years, beginning with fuel temperature measurements using thermocouples and use of differential transformers for measurement of fuel pellet or cladding dimensional changes and internal rod pressure. Experience gained over this period has been applied to on-line instrumentation for use in materials tests. This paper gives details of the systems used at Halden for materials testing under LWR conditions. The techniques used to provide on-line data are described and illustrative results are presented. (authors)

  5. A Cryogenic RF Material Testing Facility at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan; Martin, David; Tantawi, Sami; Yoneda, Charles; /SLAC

    2012-06-22

    The authors have developed an X-band SRF testing system using a high-Q copper cavity with an interchangeable flat bottom for the testing of different materials. By measuring the Q of the cavity, the system is capable to characterize the quenching magnetic field of the superconducting samples at different power level and temperature, as well as the surface resistivity. This paper presents the most recent development of the system and testing results.

  6. Material inertia and size effects in the Charpy V-notch test

    DEFF Research Database (Denmark)

    Desandre, D. A.; Benzerga, A. A.; Tvergaard, Viggo

    2004-01-01

    The effect of material inertia on the size dependence of the absorbed energy in the Charpy V-notch test is investigated. The material response is characterized by an elastic-viscoplastic constitutive relation for a porous plastic solid, with adiabatic heating due to plastic dissipation and the re......The effect of material inertia on the size dependence of the absorbed energy in the Charpy V-notch test is investigated. The material response is characterized by an elastic-viscoplastic constitutive relation for a porous plastic solid, with adiabatic heating due to plastic dissipation...

  7. Repetitively pulsed material testing facility

    International Nuclear Information System (INIS)

    Zucker, O.; Bostick, W.; Gullickson, R.; Long, J.; Luce, J.; Sahlin, H.

    1975-01-01

    A continuously operated, 1 pps, dense-plasma-focus device capable of delivering a minimum of 10 15 neutrons per pulse for material testing purposes is described. Moderate scaling from existing results is sufficient to provide 2 x 10 13 n/cm 2 . s to a suitable target. The average power consumption, which has become a major issue as a result of the energy crisis, is analyzed with respect to other plasma devices and is shown to be highly favorable. A novel approach to the capacitor bank and switch design allowing repetitive operation is discussed

  8. Tests on 'radio-active' material

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The storage of radio-active waste from nuclear power stations is a well known problem and a subject for extensive investigation. In connection with the use of cement as storage material, tests were carried out on cement-filled 200-litre sheet-steel containers. In order to avoid contamination of the cement core by drilling sludge, any drilling operation must be carried out dry, i.e. without liquid cooling. Air-blast cooling was therefore used for the cooling of a diamond drill and also for the removal of swarf. (H.E.G.)

  9. SUMMARY OF CHARACTERISATION DATA ON CLADDING MATERIALS USED IN THE CORROSION TEST IFA-638 AND IN THE CREEP TEST IFA-617

    International Nuclear Information System (INIS)

    Nakata, M.; Hauso, E.

    1998-10-01

    Modern PWR cladding materials are being tested in two joint programme tests; the cladding corrosion test IFA-638 and in the creep test IFA-617. The materials for the two tests, have been provided by four organisations: ABB-Atom, ENUSA, Framatome and Mitsubishi Heavy Industries. This report gives an overview of the different materials being tested as fuelled test rods and unfuelled cladding coupons in IFA-638. For IFA-638, cladding has been used for fabrication of both fresh and pre-irradiated test rods. The coupon materials, all in the unirradiated condition, comprise a range of alloys of different chemical composition, heat treatment, pre-filming and /or pre-hydriding treatment. Four pre-irradiated cladding materials of the same type of those used in IFA-638, have also been used to prepare the four fuelled subsegments that are being studied in the creep rig IFA-617. All currently available information related to the IFA-638 and IFA-617 material characterisation and properties are summarised in this report. (author)

  10. Nuclear waste package materials testing report: basaltic and tuffaceous environments

    International Nuclear Information System (INIS)

    Bradley, D.J.; Coles, D.G.; Hodges, F.N.; McVay, G.L.; Westerman, R.E.

    1983-03-01

    The disposal of high-level nuclear wastes in underground repositories in the continental United States requires the development of a waste package that will contain radionuclides for a time period commensurate with performance criteria, which may be up to 1000 years. This report addresses materials testing in support of a waste package for a basalt (Hanford, Washington) or a tuff (Nevada Test Site) repository. The materials investigated in this testing effort were: sodium and calcium bentonites and mixtures with sand or basalt as a backfill; iron and titanium-based alloys as structural barriers; and borosilicate waste glass PNL 76-68 as a waste form. The testing also incorporated site-specific rock media and ground waters: Reference Umtanum Entablature-1 basalt and reference basalt ground water, Bullfrog tuff and NTS J-13 well water. The results of the testing are discussed in four major categories: Backfill Materials: emphasizing water migration, radionuclide migration, physical property and long-term stability studies. Structural Barriers: emphasizing uniform corrosion, irradiation-corrosion, and environmental-mechanical testing. Waste Form Release Characteristics: emphasizing ground water, sample surface area/solution volume ratio, and gamma radiolysis effects. Component Compatibility: emphasizing solution/rock, glass/rock, glass/structural barrier, and glass/backfill interaction tests. This area also includes sensitivity testing to determine primary parameters to be studied, and the results of systems tests where more than two waste package components were combined during a single test

  11. Ultrasonic testing of materials at level 2

    International Nuclear Information System (INIS)

    1988-06-01

    Ultrasonic inspection is a nondestructive method in which high frequency sound waves are introduced into the material being inspected. Ultrasonic testing has a superior penetrating power to radiography and can detect flaws deep in the test specimen (say up to about 6 to 7 meters of steel). It is quite sensitive to small flaws and allows the precise determination of the location and size of the flaws. Basic ultrasonic test methods such as the through transmission method and the resonance method, sensors and testing techniques are described. Pulse echo type flaw detectors and their applications for inspection of welds are surveyed. Ultrasonic standards, calibration of the equipment and evaluation methods are presented. Examples of practical applications in welding, casting and forging processes are given. Figs and tabs

  12. Bulk-shield design for the Fusion Materials Irradiation Test facility

    International Nuclear Information System (INIS)

    Carter, L.L.; Mann, F.M.; Morford, R.J.; Johnson, D.L.; Huang, S.T.

    1982-07-01

    The accelerator-based Fusion Materials Irradiation Test (FMIT) facility will provide a high-fluence, fusion-like radiation environment for the testing of materials. While the neutron spectrum produced in the forward direction by the 35 MeV deuterons incident upon a flowing lithium target is characterized by a broad peak around 14 MeV, a high energy tail extends up to about 50 MeV. Some shield design considerations are reviewed

  13. Waste package materials testing for a salt repository: 1983 status summary report

    International Nuclear Information System (INIS)

    Moak, D.P.

    1986-09-01

    The United States plans to safely dispose of nuclear waste in deep, stable geologic formations. As part of these plans, the US Department of Energy is sponsoring research on the designing and testing of waste packages and waste package materials. This fiscal year 1983 status report summarizes recent results of waste package materials testing in a salt environment. The results from these tests will be used by waste package designers and performance assessment experts. Release characteristics data are available on two waste forms (spent fuel and waste-containing glass) that were exposed to leaching tests at various radiation levels, temperatures, pH, glass surface area to solution volume ratios, and brine solutions simulating expected salt repository conditions. Candidate materials tested for corrosion resistance and other properties include iron alloys; TI-CODE 12, the most promising titanium alloy for containment; and nickel alloys. In component interaction testing, synergistic effects have not ruled out any candidate material. 21 refs., 37 figs., 15 tabs

  14. Materials Compatibility Testing in RSRM ODC: Free Cleaner Selection

    Science.gov (United States)

    Keen, Jill M.; Sagers, Neil W.; McCool, Alex (Technical Monitor)

    2001-01-01

    Government regulations have mandated production phase-outs of a number of solvents, including 1,1,1-trichloroethane, an ozone-depleting chemical (ODC). This solvent was used extensively in the production of the Reusable Solid Rocket Motors (RSRMs) for the Space Shuttle. Many tests have been performed to identify replacement cleaners. One major area of concern in the selection of a new cleaner has been compatibility. Some specific areas considered included cleaner compatibility with non-metallic surfaces, painted surfaces, support materials such as gloves and wipers as well as corrosive properties of the cleaners on the alloys used on these motors. The intent of this paper is to summarize the test logic, methodology, and results acquired from testing the many cleaner and material combinations.

  15. Experience in testing and inspection and maintenance of material handling equipments

    International Nuclear Information System (INIS)

    Sharma, M.L.

    2009-01-01

    All the Industries, Power Projects/Stations, Organizations engaged in the field of process of manufacturing, power generation, transportation, design, layout, manufacturing, and supply have to utilize material handling equipment, machinery tools tackles, lifting gears for performing their tasks/activities. The major role of the material handling equipments play an important role and a component of 40% of the total activities of the system/process to achieve targeted output with the reliability and quality is performed by material handling equipment and machineries. The material handling equipment shall have to be chosen/selected to suit the process requirement at times to be specifically designed inspected and tested to meet the specific requirement. These equipment/machineries/lifting gears have to undergo for the periodical inspection and testing to qualify for further use in a specified period. All those equipment and machinery to be used for material handling if not found satisfactory during inspection and testing or otherwise also shall be dismantled/stripped to the extent of inspection requirement of the components/sub components and maintenance repair shall have to be done to make them worthy for reuse after testing and inspection duly witnessed by competent authority

  16. Mechanical Testing of Carbon Based Woven Thermal Protection Materials

    Science.gov (United States)

    Pham, John; Agrawal, Parul; Arnold, James O.; Peterson, Keith; Venkatapathy, Ethiraj

    2013-01-01

    Three Dimensional Woven thermal protection system (TPS) materials are one of the enabling technologies for mechanically deployable hypersonic decelerator systems. These materials have been shown capable of serving a dual purpose as TPS and as structural load bearing members during entry and descent operations. In order to ensure successful structural performance, it is important to characterize the mechanical properties of these materials prior to and post exposure to entry-like heating conditions. This research focuses on the changes in load bearing capacity of woven TPS materials after being subjected to arcjet simulations of entry heating. Preliminary testing of arcjet tested materials [1] has shown a mechanical degradation. However, their residual strength is significantly more than the requirements for a mission to Venus [2]. A systematic investigation at the macro and microstructural scales is reported here to explore the potential causes of this degradation. The effects of heating on the sizing (an epoxy resin coating used to reduce friction and wear during fiber handling) are discussed as one of the possible causes for the decrease in mechanical properties. This investigation also provides valuable guidelines for margin policies for future mechanically deployable entry systems.

  17. Special Nuclear Material Portal Monitoring at the Nevada Test Site

    International Nuclear Information System (INIS)

    DeAnn Long; Michael Murphy

    2008-01-01

    Prior to April 2007, acceptance and performance testing of the various Special Nuclear Material (SNM) monitoring devices at the Nevada Test Site (NTS) was performed by the Radiological Health Instrumentation department. Calibration and performance testing on the PM-700 personnel portal monitor was performed, but there was no test program for the VM-250 vehicle portal monitor. The handheld SNM monitors, the TSA model 470B, were being calibrated annually, but there was no performance test program. In April of 2007, the Material Control and Accountability Manager volunteered to take over performance testing of all SNM portal monitors at NTS in order to strengthen the program and meet U.S. Department of Energy Order requirements. This paper will discuss the following activities associated with developing a performance testing program: changing the culture, learning the systems, developing and implementing procedures, troubleshooting and repair, validating the process, physical control of equipment, acquisition of new systems, and implementing the performance test program

  18. Materials testing for in situ stabilization treatability study of INEEL mixed wastes soils

    International Nuclear Information System (INIS)

    Heiser, J.; Fuhrmann, M.

    1997-09-01

    This report describes the contaminant-specific materials testing phase of the In Situ Stabilization Comprehensive Environment Response, Compensation, and Liability Act (CERCLA) Treatability Study (TS). The purpose of materials testing is to measure the effectiveness of grouting agents to stabilize Idaho National Engineering and Environmental Laboratory (INEEL) Acid Pit soils and select a grout material for use in the Cold Test Demonstration and Acid Pit Stabilization Treatability Study within the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC). Test results will assist the selecting a grout material for the follow-on demonstrations described in Test Plan for the Cold Test Demonstration and Acid Pit Stabilization Phases of the In Situ Stabilization Treatability Study at the Radioactive Waste Management Complex

  19. Deducing material quality in cast and hot-forged steels by new bending test

    Science.gov (United States)

    Valberg, Henry; Langøy, Morten; Nedreberg, Mette; Helvig, Torgeir

    2017-10-01

    A special bend test has been developed and applied for the purpose of characterization and comparison of the material ductility in crankpin steel discs manufactured by casting, or casting subsequently followed by hot open-die forging (ODF) or closed-die forging (CDF). The bending test specimen consists of a small rectangular plate of material with a round hole cut out in the middle. The "eye-shape" specimens were cut out from various positions either near to the surface of, or from the interior of the discs. The test method revealed differences in ductility for the investigated materials, and for different depth positions inside the discs. The roughening of the specimen surface on the top-side of the specimen bend also varied dependent on the processing method for the material. Current results show that this test method is useful for evaluation of material quality in differently processed material. Experimental bend test results are presented for differently processed variants of the same material, i.e., crankpin discs either made by solely casting or casting subsequently followed by hot working either by ODF or CDF.

  20. Equipment for long-term testing of material creep in liquid sodium

    International Nuclear Information System (INIS)

    Dufek, F.; Walder, V.; Cech, V.; Winkler, P.

    1980-01-01

    A sodium test plant is described and the methods are shown of securing the desired test specifications. The facility is used for the long-term testing of nonsteady material creep under the action of temperature and mechanical stress due to the static or pulsed overpressure of inert gas inside a tube specimen and a simultaneous effect of sodium flow on the outside wall. The test results are to be used for comparing Czechoslovak-made steels with foreign materials and also for testing the degradation effects of the above phenomena on the standardized long-term properties in inert and steady state conditions. (B.S.)

  1. Lap-joint testing of precoated steel materials

    Directory of Open Access Journals (Sweden)

    Chico, B.

    2003-12-01

    Full Text Available In industry, particularly in the building construction, lap-joint technology for precoated steel sheet materials has undergone rapid development. However, standars for lap-joint testing are lacking. This work analyses the behaviour of four precoated steel materials commonly used in the building industry: 55 % Al-Zn and hot dip galvanized, painted and unpainted. Two-year atmospheric exposure tests have been carried out in Madrid and Avilés (Spain, complemented by accelerated weathering tests in climatic cabinets. The latter have consisted of two salt fog/humidity/drying cycles: VDA cycle 621-415 and the "CENIM cycle", which has been designed to adequately simulate the behaviour of materials in this type of joints.

    En la industria en general y, particularmente, en la industria de la construcción, las tecnologías sobre uniones solapadas han experimentado un rápido desarrollo. Sin embargo, no son abundantes los ensayos para este tipo de uniones. Este trabajo analiza el comportamiento de cuatro materiales de acero pre-recubierto comúnmente usados en la industria de la construcción: 55 % Al-Zn y galvanizado por inmersión en caliente, con recubrimiento orgánico y sin él. Se han realizado ensayos de exposición natural durante dos años en las atmósferas de Madrid y Avilés (España, complementados con ensayos de envejecimiento acelerado en cámaras climáticas. En estos últimos se han ensayado dos ciclos de proyección niebla salina/humedad/secado: ciclo VDA 621-415 y un ciclo desarrollado en el CENIM diseñado.

  2. Electrochemical Corrosion Testing of Neutron Absorber Materials

    International Nuclear Information System (INIS)

    Tedd Lister; Ron Mizia; Sandra Birk; Brent Matteson; Hongbo Tian

    2006-01-01

    The Yucca Mountain Project (YMP) has been directed by DOE-RW to develop a new repository waste package design based on the transport, aging, and disposal canister (TAD) system concept. A neutron poison material for fabrication of the internal spent nuclear fuel (SNF) baskets for these canisters needs to be identified. A material that has been used for criticality control in wet and dry storage of spent nuclear fuel is borated stainless steel. These stainless products are available as an ingot metallurgy plate product with a molybdenum addition and a powder metallurgy product that meets the requirements of ASTM A887, Grade A. A new Ni-Cr-Mo-Gd alloy has been developed by the Idaho National Laboratory (INL) with its research partners (Sandia National Laboratory and Lehigh University) with DOE-EM funding provided by the National Spent Nuclear Fuel Program (NSNFP). This neutron absorbing alloy will be used to fabricate the SNF baskets in the DOE standardized canister. The INL has designed the DOE Standardized Spent Nuclear Fuel Canister for the handling, interim storage, transportation, and disposal in the national repository of DOE owned spent nuclear fuel (SNF). A corrosion testing program is required to compare these materials in environmental conditions representative of a breached waste canister. This report will summarize the results of crevice corrosion tests for three alloys in solutions representative of ionic compositions inside the waste package should a breech occur. The three alloys in these tests are Neutronit A978 (ingot metallurgy, hot rolled), Neutrosorb 304B4 Grade A (powder metallurgy, hot rolled), and Ni-Cr-Mo-Gd alloy (ingot metallurgy, hot rolled)

  3. Compilation of radiation damage test data cable insulating materials

    CERN Document Server

    Schönbacher, H; CERN. Geneva

    1979-01-01

    This report summarizes radiation damage test data on commercially available organic cable insulation and jacket materials: ethylene- propylene rubber, Hypalon, neoprene rubber, polyethylene, polyurethane, polyvinylchloride, silicone rubber, etc. The materials have been irradiated in a nuclear reactor to integrated absorbed doses from 5*10/sup 5/ to 5*10/sup 6/ Gy. Mechanical properties, e.g. tensile strength, elongation at break, and hardness, have been tested on irradiated and non-irradiated samples. The results are presented in the form of tables and graphs, to show the effect of the absorbed dose on the measured properties. (13 refs).

  4. A mucosa-mimetic material for the mucoadhesion testing of thermogelling semi-solids.

    Science.gov (United States)

    da Silva, Jéssica Bassi; Khutoryanskiy, Vitaliy V; Bruschi, Marcos L; Cook, Michael T

    2017-08-07

    Mucosa-mimetic materials are synthetic substrates which aim to replace animal tissue in mucoadhesion experiments. One potential mucosa-mimetic material is a hydrogel comprised of N-acryloyl-d-glucosamine and 2-hydroxyethylmethacrylate, which has been investigated as a surrogate for animal mucosae in the mucoadhesion testing of tablets and solution formulations. This study aims to investigate the efficacy of this mucosa-mimetic material in the testing of thermogelling semi-solid formulations, which transition from solution to gel upon warming. Two methods for assessing mucoadhesion have been used; tensile testing and a flow-through system, which allow for investigation under dramatically different conditions. It was found that the mucosa-mimetic material was a good surrogate for buccal mucosa using both testing methods. This material may be used to replace animal tissue in these experiments, potentially reducing the number of laboratory animals used in studies of this type. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Material characterization of Inconel 718 from free bulging test at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Joon Tae; Yoon, Jong Hoon; Lee, Ho Sung [Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Youn, Sung Kie [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2012-07-15

    Macroscopic superplastic behavior of metallic or non metallic materials is usually represented by the strain rate sensitivity, and it can be determined by tensile tests in uniaxial stress state and bulging tests in multi axial stress state, which is the actual hot forming process. And macroscopic behavior of Non SPF grade materials could be described in a similar way as that of superplastic materials, including strain hardening, cavity and so on. In this study, the material characterization of non SPF grade Inconel 718 has been carried out to determine the material parameters for flow stress throughout free bulging test under constant temperature. The measured height of bulged plate during the test was used for estimation of strain rate sensitivity, strain hardening index and cavity volume fraction with the help of numerical analysis. The bulged height obtained from the simulation showed good agreement with the experimental findings. The effects of strain hardening and cavity volume fraction factor for flow stress were also compared.

  6. Assessment of the quality of test results from selected civil engineering material testing laboratories in Tanzania

    CSIR Research Space (South Africa)

    Mbawala, SJ

    2017-12-01

    Full Text Available Civil and geotechnical engineering material testing laboratories are expected to produce accurate and reliable test results. However, the ability of laboratories to produce accurate and reliable test results depends on many factors, among others...

  7. Developing Ultra-small Scale Mechanical Testing Methods and Microstructural Investigation Procedures for Irradiated Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hosemann, Peter; Kaoumi, Djamel

    2018-04-02

    Nuclear materials are an essential aspect of nuclear engineering. While great effort is spent on designing more advanced reactors or enhancing a reactor’s safety, materials have been the bottleneck of most new developments. The designs of new reactor concepts are driven by neutronic and thermodynamic aspects, leading to unusual coolants (liquid metal, liquid salt, gases), higher temperatures, and higher radiation doses than conventional light water reactors have. However, any (nuclear) engineering design must consider the materials used in the anticipated application in order to ever be realized. Designs which may look easy, simple and efficient considering thermodynamics or neutronic aspects can show their true difficulty in the materials area, which then prevents them from being deployed. In turn, the materials available are influencing the neutronic and thermodynamic designs and therefore must be considered from the beginning, requiring close collaborations between different aspects of nuclear engineering. If a particular design requires new materials, the licensing of the reactor must be considered, but licensing can be a costly and time consuming process that results in long lead times to realize true materials innovation. Extensive materials evaluation and irradiation campaigns need to be conducted in order to introduce a new material in a nuclear system. For licensing purposes, standard materials testing is key. However, basic scientific studies on new materials or even already used materials have the potential to accelerate the process of materials development or foster predictability of materials that are already in service and therefore are essential in order not to face difficulties later in the development or service stage. Therefore a combination of engineering scale materials evaluation as well as basic scientific understanding of the materials property changes under service condition is key to address potential issues in the process. Ion

  8. Liquid Lead-Bismuth Materials Test Loop

    International Nuclear Information System (INIS)

    Tcharnotskaia, Valentina; Ammerman, Curtt; Darling, Timothy; King, Joe; Li, Ning; Shaw, Don; Snodgrass, Leon; Woloshun, Keith

    2002-01-01

    We designed and built the Liquid Lead-Bismuth Materials Test Loop (MTL) to study the materials behavior in a flow of molten lead-bismuth eutectic (LBE). In this paper we present a description of the loop with main components and their functions. Stress distribution in the piping due to sustained, occasional and expansion loads is shown. The loop is designed so that a difference of 100 deg. C can be attained between the coldest and the hottest parts at a nominal flow rate of 8.84 GPM. Liquid LBE flow can be activated by a mechanical sump pump or by natural convection. In order to maintain a self-healing protective film on the surface of the stainless steel pipe, a certain concentration of oxygen has to be maintained in the liquid metal. We developed oxygen sensors and an oxygen control system to be implemented in the loop. The loop is outfitted with a variety of instruments that are controlled from a computer based data acquisition system. Initial experiments include preconditioning the loop, filling it up with LBE, running at uniform temperature and tuning the oxygen control system. We will present some preliminary results and discuss plans for the future tests. (authors)

  9. An electromechanical material testing system for in situ electron microscopy and applications

    OpenAIRE

    Zhu, Yong; Espinosa, Horacio D.

    2005-01-01

    We report the development of a material testing system for in situ electron microscopy (EM) mechanical testing of nanostructures. The testing system consists of an actuator and a load sensor fabricated by means of surface micromachining. This previously undescribed nanoscale material testing system makes possible continuous observation of the specimen deformation and failure with subnanometer resolution, while simultaneously measuring the applied load electronically with nanonewton resolution...

  10. Approved reference and testing materials for use in Nuclear Waste Management Research and Development Programs

    International Nuclear Information System (INIS)

    Mellinger, G.B.; Daniel, J.L.

    1984-12-01

    This document, addressed to members of the waste management research and development community summarizes reference and testing materials available from the Nuclear Waste Materials Characterization Center (MCC). These materials are furnished under the MCC's charter to distribute reference materials essential for quantitative evaluation of nuclear waste package materials under development in the US. Reference materials with known behavior in various standard waste management related tests are needed to ensure that individual testing programs are correctly performing those tests. Approved testing materials are provided to assist the projects in assembling materials data base of defensible accuracy and precision. This is the second issue of this publication. Eight new Approved Testing Materials are listed, and Spent Fuel is included as a separate section of Standard Materials because of its increasing importance as a potential repository storage form. A summary of current characterization information is provided for each material listed. Future issues will provide updates of the characterization status of the materials presented in this issue, and information about new standard materials as they are acquired. 7 references, 1 figure, 19 tables

  11. Repetitively pulsed material testing facility

    International Nuclear Information System (INIS)

    Zucker, O.; Bostick, W.; Gullickson, R; Long, J.; Luce, J.; Sahlin, H.

    1975-01-01

    A continuously operated, 1 pps, dense-plasma-focus device capable of delivering a minimum of 10 15 neutrons per pulse for material testing purposes is described. Moderate scaling from existing results is sufficient to provide 2 x 10 13 n/cm 2 .s to a suitable target. The average power consumption, which has become a major issue as a result of the energy crisis, is analyzed with respect to other plasma devices and is shown to be highly favorable. A novel approach to the capacitor bank and switch design allowing repetitive operation is discussed. (U.S.)

  12. Fusion Materials Irradiation Test Facility

    International Nuclear Information System (INIS)

    Kemp, E.L.; Trego, A.L.

    1979-01-01

    A Fusion Materials Irradiation Test Facility is being designed to be constructed at Hanford, Washington, The system is designed to produce about 10 15 n/cm-s in a volume of approx. 10 cc and 10 14 n/cm-s in a volume of 500 cc. The lithium and target systems are being developed and designed by HEDL while the 35-MeV, 100-mA cw accelerator is being designed by LASL. The accelerator components will be fabricated by US industry. The total estimated cost of the FMIT is $105 million. The facility is scheduled to begin operation in September 1984

  13. Laser-accelerated particle beams for stress testing of materials.

    Science.gov (United States)

    Barberio, M; Scisciò, M; Vallières, S; Cardelli, F; Chen, S N; Famulari, G; Gangolf, T; Revet, G; Schiavi, A; Senzacqua, M; Antici, P

    2018-01-25

    Laser-driven particle acceleration, obtained by irradiation of a solid target using an ultra-intense (I > 10 18  W/cm 2 ) short-pulse (duration testing materials and are particularly suited for identifying materials to be used in harsh conditions. We show that these laser-generated protons can produce, in a very short time scale, a strong mechanical and thermal damage, that, given the short irradiation time, does not allow for recovery of the material. We confirm this by analyzing changes in the mechanical, optical, electrical, and morphological properties of five materials of interest to be used in harsh conditions.

  14. Dredged Material Testing and Evaluation for Ocean Disposal

    Science.gov (United States)

    Evaluation and testing of dredged material proposed for ocean dumping is conducted to help protect human health and the marine environment. National guidance is provided by the Green Book. Regional Implementation Manuals are provided.

  15. Special Nuclear Material Portal Monitoring at the Nevada Test Site

    International Nuclear Information System (INIS)

    Mike Murphy

    2008-01-01

    In the past, acceptance and performance testing of the various Special Nuclear Material (SNM) monitoring devices at the Nevada Test Site has been performed by the Radiological Health Instrumentation Department. Calibration and performance tests on the PM-700 personnel portal monitor were performed but there was no test program for the VM-250 vehicle portal monitor because it had never been put into service. The handheld SNM monitors, the TSA model 470B, were being calibrated annually, but there was no program in place to test them quarterly. In April of 2007, the Material Control and Accountability (MC and A) Manager at the time decided that the program needed to be strengthened and MC and A took over performance testing of all SNM portal monitoring equipment. This paper will discuss the following activities associated with creating a performance testing program: changing the culture, learning the systems, writing procedures, troubleshooting/repairing, validating the process, control of equipment, acquisition of new systems, and running the program

  16. Experimental Verification of an Instrument to Test Flooring Materials

    Science.gov (United States)

    Philip, Rony; Löfgren, Hans, Dr

    2018-02-01

    The focus of this work is to validate the fluid model with different flooring materials and the measurements of an instrument to test flooring materials and its force attenuating capabilities using mathematical models to describe the signature and coefficients of the floor. The main contribution of the present work focus on the development of a mathematical fluid model for floors. The aim of the thesis was to analyze, compare different floor materials and to study the linear dynamics of falling impacts on floors. The impact of the hammer during a fall is captured by an accelerometer and response is collected using a picoscope. The collected data was analyzed using matlab least square method which is coded as per the fluid model. The finding from this thesis showed that the fluid model works with more elastic model but it doesn’t work for rigid materials like wood. The importance of parameters like velocity, mass, energy loss and other coefficients of floor which influences the model during the impact of falling on floors were identified and a standardized testing method was set.

  17. A proposed test for the determination of the grindability of fine materials

    International Nuclear Information System (INIS)

    Levin, J.

    1984-01-01

    The grindability of ores is generally determined by the Bond standard grindability test. However, this test is not applicable to fine matetials such as sands; the grindability of fine materials must therefore be determined by a comparative grinding method, for which a reference material of known grindability is required. Suitable reference materials are not easily obtained, and a grindability test that does not depend on reference materials is needed. This report proposes such a test and records the results of some tests on the validity of the proposed method. The proposed grindability test uses the Bond standard test mill and a quantity called the 'equivalent energy per minute', which is the energy per minute that would be used by the mill if it were scaled up to a wet-grinding industrial mill of 2,44m (8 ft) diameter. The value of this quantity, denoted by E, was calculated from the results of Bond standard grindability test on various materials, and an average value of 1425X10- 6 kW.h/min was determined. It is suggested that values far removed from this figure indicate that the ores concerned do not conform to the Bond Law of Comminution. The proposed grindability test was applied to seven samples of ore from industrial secondary grinding mills and to one sample of sand, and good agreement was found between the energy consumption calculated in the laboratory tests and those reported for the operating plants. The energy consumption calculated from the results of the Bond standard grindability test agreed fairly well with the plant data for the secondary grinding circuits, but the correlation for the primary grinding circuit was erratic

  18. Standard Guide for Recording Mechanical Test Data of Fiber-Reinforced Composite Materials in Databases

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This guide provides a common format for mechanical test data for composite materials for two purposes: (1) to establish data reporting requirements for test methods and ( 2) to provide information for the design of material property databases. This guide should be used in combination with Guide E 1309 which provides similar information to identify the composite material tested. 1.2 These guidelines are specific to mechanical tests of high-modulus fiber-reinforced composite materials. Types of tests considered in this guide include tension, compression, shear, flexure, open/filled hole, bearing, fracture toughness, and fatigue. The ASTM standards for which this guide was developed are listed in . The guidelines may also be useful for additional tests or materials. 1.3 This guide is the second part of a modular approach for which the first part is Guide E 1309. Guide E 1309 serves to identify the material, and this guide serves to describe mechanical testing procedures and variables and to record results....

  19. Historical Evolution of NASA Standard Materials Testing with Hypergolic Propellants and Ammonia (NASA Standard 6001 Test 15)

    Science.gov (United States)

    Greene, Benjamin; McClure, Mark B.

    2012-01-01

    The NASA Johnson Space Center White Sands Test Facility (WSTF) has performed testing of hazardous and reactive aerospace fluids, including hypergolic propellants, with materials since the 1960s with the Apollo program. Amongst other test activities, Test 15 is a NASA standard test for evaluating the reactivity of materials with selected aerospace fluids, in particular hydrazine, monomethylhydrazine, uns-dimethylhydrazine, Aerozine 50, dinitrogen tetroxide oxidizers, and ammonia. This manuscript provides an overview of the history of Test 15 over a timeline ranging from prior to its development and first implementation as a NASA standard test in 1974 to its current refinement. Precursor documents to NASA standard tests, as they are currently known, are reviewed. A related supplementary test, international standardization, and enhancements to Test 15 are also discussed. Because WSTF was instrumental in the development and implementation of Test 15, WSTF experience and practices are referred to in this manuscript.

  20. Standardization of waste acceptance test methods by the Materials Characterization Center

    International Nuclear Information System (INIS)

    Slate, S.C.

    1985-01-01

    This paper describes the role of standardized test methods in demonstrating the acceptability of high-level waste (HLW) forms for disposal. Key waste acceptance tests are standardized by the Materials Characterization Center (MCC), which the US Department of Energy (DOE) has established as the central agency in the United States for the standardization of test methods for nuclear waste materials. This paper describes the basic three-step process that is used to show that waste is acceptable for disposal and discusses how standardized tests are used in this process. Several of the key test methods and their areas of application are described. Finally, future plans are discussed for using standardized tests to show waste acceptance. 9 refs., 1 tab

  1. Design of a materials testing experiment for the INTOR

    International Nuclear Information System (INIS)

    Vogel, M.A.; Opperman, E.K.

    1981-01-01

    The United States, Japan, USSR and the European community are jointly participating in the design of an International Tokamak Reactor called INTOR. In support of the US contribution to the INTOR design, the features of an experiment for bulk neutron irradiation damage studies were developed. It is anticipated that materials testing will be an important part of the programmatic mission of INTOR and consequently the requirements for materials testing in INTOR must be identified early in the reactor design to insure compatibility. The design features of the experiment, called a Channel Test, are given in this paper. The major components of the channel test are the water cooled heat sink (channel module) and the specimen capsule. The temperature within each of the 153 specimen capsules is predetermined by engineering the thermal barrier between the specimen capsule and heat sink. Individual capsules can be independently accessed and are designed to operate at a predetermined temperature within the range of 50 to 700 0 C. The total irradiation volume within a single channel test is 45 liters. Features of the channel test that result in experimental versatility and simplified remote access and handling are discussed

  2. An investigation of high-temperature irradiation test program of new ceramic materials

    International Nuclear Information System (INIS)

    Ishino, Shiori; Terai, Takayuki; Oku, Tatsuo

    1999-08-01

    The Japan Atomic Energy Research Institute entrusted the Atomic Energy Society of Japan with an investigation into the trend of irradiation processing/damage research on new ceramic materials. The present report describes the result of the investigation, which was aimed at effective execution of irradiation programs using the High Temperature Engineering Test Reactor (HTTR) by examining preferential research subjects and their concrete research methods. Objects of the investigation were currently on-going preliminary tests of functional materials (high-temperature oxide superconductor and high-temperature semiconductor) and structural materials (carbon/carbon and SiC/SiC composite materials), together with newly proposed subjects of, e.g., radiation effects on ceramics-coated materials and super-plastic ceramic materials as well as microscopic computer simulation of deformation and fracture of ceramics. These works have revealed 1) the background of each research subject, 2) its objective and significance from viewpoints of science and engineering, 3) research methodology in stages from preliminary tests to real HTTR irradiation, and 4) concrete HTTR-irradiation methods which include main specifications of test specimens, irradiation facilities and post-irradiation examination facilities and apparatuses. The present efforts have constructed the important fundamentals in the new ceramic materials field for further planning and execution of the innovative basic research on high-temperature engineering. (author)

  3. A Micro-Test Structure for the Thermal Expansion Coefficient of Metal Materials

    Directory of Open Access Journals (Sweden)

    Qingying Ren

    2017-02-01

    Full Text Available An innovative micro-test structure for detecting the thermal expansion coefficient (TEC of metal materials is presented in this work. Throughout this method, a whole temperature sensing moveable structures are supported by four groups of cascaded chevrons beams and packed together. Thermal expansion of the metal material causes the deflection of the cascaded chevrons, which leads to the capacitance variation. By detecting the capacitance value at different temperatures, the TEC value of the metal materials can be calculated. A finite element model has been established to verify the relationship between the TEC of the material and the displacement of the structure on horizontal and vertical directions, thus a function of temperature for different values of TEC can be deduced. In order to verify the analytical model, a suspended-capacitive micro-test structure has been fabricated by MetalMUMPs process and tested in a climate chamber. Test results show that in the temperature range from 30 °C to 80 °C, the TEC of the test material is 13.4 × 10−6 °C−1 with a maximum relative error of 0.8% compared with the given curve of relationship between displacement and temperature.

  4. Design and Testing of Braided Composite Fan Case Materials and Components

    Science.gov (United States)

    Roberts, Gary D.; Pereira, J. Michael; Braley, Michael S.; Arnold, William a.; Dorer, James D.; Watson, William R/.

    2009-01-01

    Triaxial braid composite materials are beginning to be used in fan cases for commercial gas turbine engines. The primary benefit for the use of composite materials is reduced weight and the associated reduction in fuel consumption. However, there are also cost benefits in some applications. This paper presents a description of the braided composite materials and discusses aspects of the braiding process that can be utilized for efficient fabrication of composite cases. The paper also presents an approach that was developed for evaluating the braided composite materials and composite fan cases in a ballistic impact laboratory. Impact of composite panels with a soft projectile is used for materials evaluation. Impact of composite fan cases with fan blades or blade-like projectiles is used to evaluate containment capability. A post-impact structural load test is used to evaluate the capability of the impacted fan case to survive dynamic loads during engine spool down. Validation of these new test methods is demonstrated by comparison with results of engine blade-out tests.

  5. Radioactive wear tests of four cylinder liner materials

    International Nuclear Information System (INIS)

    Sylte, G.

    1976-01-01

    An investigation on the wear properties of various liner materials, financed by a research grant from NTNF (Royal Norwegian Council for Scientific and Industrial Research), is reported. The investigation was carried out by the Division of Internal Combustion Engines, Trondheim, Univ.,Norway, on a two-stroke, turbocharged, medium speed diesel engine (Wichmann 2ACAT, 280 by 420 mm). Thin pearlitic cast iron inserts of various compositions were pressed into the upper part of a specially machined cylinder liner. These inserts were activated in a nuclear reactor, and tracer techniques employed to measure the wear rate. Gas oil was used as a fuel throughout all tests. The insert technique employed, and the handling methods devised, were satisfactory. This part of the project must be characterised as being very successful. Originally, six different liner materials were specified, but due to misunderstandings duplications resulted in only four different materials finally being received at the laboratory. The engine tests disclosed that the wear rates of all four materials were low under laboratory conditions, and therefore difficult to measure accurately. Nevertheless, the wear properties of the inserts clearly fell into two distinct classes, which may be termed good and excellent. The relative values inside each group are, however, more uncertain due to the cumulative effects of errors, instrument drift, measurement statistics, etc. (Auth.)

  6. Materials Characterization Center meeting on impact testing of waste forms. Summary report

    International Nuclear Information System (INIS)

    Merz, M.D.; Atteridge, D.; Dudder, G.

    1981-10-01

    A meeting was held on March 25-26, 1981 to discuss impact test methods for waste form materials to be used in nuclear waste repositories. The purpose of the meeting was to obtain guidance for the Materials Characterization Center (MCC) in preparing the MCC-10 Impact Test Method to be approved by the Materials Review Board. The meeting focused on two essential aspects of the test method, namely the mechanical process, or impact, used to effect rapid fracture of a waste form and the analysis technique(s) used to characterize particulates generated by the impact

  7. Organic lining materials test in flue gas ducts

    International Nuclear Information System (INIS)

    Raveh, R.; Sfez, D.; Johannsson, L.

    1998-01-01

    Corrosion protection solutions are being widely used in electric power plants equipped with Flue Gas Desulfurization (FGD) systems. Organic lining materials are one of many solutions available on the market for corrosion protection. This market segment is found in a continuous development in order to fulfill the severe demands of these materials. The main goal of this test is to obtain information about the high temperature resistance of the materials as occurs when the FGD system is by-passed. Aster initial investigation of this market segment only a few lining materials were found compatible according to their manufacturer data. Seven of these materials were installed in the outlet flue gas duct of the Israeli power station M.D. B. This power station is not equipped with a FGD system, thus it gives a real simulation of the environmental conditions into which the lining material is subjected when the FGD system is by-passed. The materials installation was observed carefully and performed by representatives from the manufacturers in order to avoid material failure due to a non-adequate application. The power station was shut down and the lining materials were inspected three and a half months after the lining materials were applied. The inspection results were good and besides changes in the lining color, most materials did not show any damages. During that time the flue gas temperature at the duct was 134?C except some temperature fluctuations

  8. Examination of a size-change test for photovoltaic encapsulation materials

    Science.gov (United States)

    Miller, David C.; Gu, Xiaohong; Ji, Liang; Kelly, George; Nickel, Nichole; Norum, Paul; Shioda, Tsuyoshi; Tamizhmani, Govindasamy; Wohlgemuth, John H.

    2012-10-01

    We examine a proposed test standard that can be used to evaluate the maximum representative change in linear dimensions of sheet encapsulation products for photovoltaic modules (resulting from their thermal processing). The proposed protocol is part of a series of material-level tests being developed within Working Group 2 of the Technical Committee 82 of the International Electrotechnical Commission. The characterization tests are being developed to aid module design (by identifying the essential characteristics that should be communicated on a datasheet), quality control (via internal material acceptance and process control), and failure analysis. Discovery and interlaboratory experiments were used to select particular parameters for the size-change test. The choice of a sand substrate and aluminum carrier is explored relative to other options. The temperature uniformity of +/-5°C for the substrate was confirmed using thermography. Considerations related to the heating device (hot-plate or oven) are explored. The time duration of 5 minutes was identified from the time-series photographic characterization of material specimens (EVA, ionomer, PVB, TPO, and TPU). The test procedure was revised to account for observed effects of size and edges. The interlaboratory study identified typical size-change characteristics, and also verified the absolute reproducibility of +/-5% between laboratories.

  9. Radiation damage calculations for the APT materials test program

    International Nuclear Information System (INIS)

    Corzine, R.K.; Wechsler, M.S.; Dudziak, D.J.; Ferguson, P.D.; James, M.R.

    1999-01-01

    A materials irradiation was performed at the Los Alamos Neutron Science Center (LANSCE) in the fall of 1996 and spring of 1997 in support of the Accelerator Production of Tritium (APT) program. Testing of the irradiated materials is underway. In the proposed APT design, materials in the target and blanket are to be exposed to protons and neutrons over a wide range of energies. The irradiation and testing program was undertaken to enlarge the very limited direct knowledge presently available of the effects of medium-energy protons (∼1 GeV) on the properties of engineering materials. APT candidate materials were placed in or near the LANSCE accelerator 800-MeV, 1-mA proton beam and received roughly the same proton current density in the center of the beam as would be the case for the APT facility. As a result, the proton fluences achieved in the irradiation were expected to approach the APT prototypic full-power-year values. To predict accurately the performance of materials in APT, radiation damage parameters for the materials experiment must be determined. By modeling the experiment, calculations for atomic displacement, helium and hydrogen cross sections and for proton and neutron fluences were done for representative samples in the 17A, 18A, and 18C areas. The LAHET code system (LCS) was used to model the irradiation program, LAHET 2.82 within LCS transports protons > 1 MeV, and neutrons >20 MeV. A modified version of MCNP for use in LCS, HMCNP 4A, was employed to tally neutrons of energies <20 MeV

  10. Mechanical properties test program on structural materials in a sodium environment

    International Nuclear Information System (INIS)

    Natesan, K.; Chopra, O.K.; Kassner, T.F.

    1979-10-01

    This document describes in detail the ongoing and planned US Test program on the mechanical properties of sodium-exposed Type 316 austenitic stainless and Fe-2 1/4 Cr-1 Mo ferritic steels. The test program is based on the Development Requirement Specifications (DRS) established by the DOE/Clinch River Breeder Reactor Project (CRBRP) Program Office, the general need for the development of LMFBR structural-design criteria established by the Nuclear Systems Materials Handbook, and the need for a fundamental understanding of materials behavior in a sodium environment, which is generic to LMFBR systems. The planned test program is an extension of work based on current knowledge of sodium chemistry and the influence of sodium purity on the mechanical properties of structural materials

  11. Small punch test evaluation methods for material characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Janča, Adam, E-mail: adam.janca@fjfi.cvut.cz; Siegl, Jan, E-mail: jan.siegl@fjfi.cvut.cz; Haušild, Petr, E-mail: petr.hausild@fjfi.cvut.cz

    2016-12-01

    The Small Punch Test (SPT) is one of the most widespread mechanical testing methods using miniaturized specimens. The paper presented deals with the time independent SPT, in which a flat specimen is bent by means of a (hemi)spherical punch moving at a constant velocity. The main goal is to relate the measured data to deformation processes taking place during specimen loading. Understanding of such relations is crucial for characterizing a material using any non-standardized experimental procedure. Using enhanced instrumentation, not only traditional load-displacement or load-deflection curves could be obtained, but also specimen thinning could be continuously measured and evaluated. Five alloys having a broad range of mechanical properties were tested. The results obtained were evaluated using both traditional and newly proposed methods and they were correlated with results of the conventional tensile test. The methods proposed seem to lead to a universal correlation between SPT results and tensile characteristics. - Highlights: • The newly proposed methodology significantly improved results of SPT. • Plastic deformation starts inside the specimen from the very beginning of loading. • Specimen thinning = punch displacement−specimen deflection. • Material response to loading is well illustrated by the novel load-thinning curve.

  12. High Flux Materials Testing Reactor (HFR), Petten

    International Nuclear Information System (INIS)

    1975-09-01

    After conversion to burnable poison fuel elements, the High Flux Materials Testing Reactor (HFR) Petten (Netherlands), operated through 1974 for 280 days at 45 MW. Equipment for irradiation experiments has been replaced and extended. The average annual occupation by experiments was 55% as compared to 38% in 1973. Work continued on thirty irradiation projects and ten development activities

  13. Screening tests for hazard classification of complex waste materials – Selection of methods

    International Nuclear Information System (INIS)

    Weltens, R.; Vanermen, G.; Tirez, K.; Robbens, J.; Deprez, K.; Michiels, L.

    2012-01-01

    In this study we describe the development of an alternative methodology for hazard characterization of waste materials. Such an alternative methodology for hazard assessment of complex waste materials is urgently needed, because the lack of a validated instrument leads to arbitrary hazard classification of such complex waste materials. False classification can lead to human and environmental health risks and also has important financial consequences for the waste owner. The Hazardous Waste Directive (HWD) describes the methodology for hazard classification of waste materials. For mirror entries the HWD classification is based upon the hazardous properties (H1–15) of the waste which can be assessed from the hazardous properties of individual identified waste compounds or – if not all compounds are identified – from test results of hazard assessment tests performed on the waste material itself. For the latter the HWD recommends toxicity tests that were initially designed for risk assessment of chemicals in consumer products (pharmaceuticals, cosmetics, biocides, food, etc.). These tests (often using mammals) are not designed nor suitable for the hazard characterization of waste materials. With the present study we want to contribute to the development of an alternative and transparent test strategy for hazard assessment of complex wastes that is in line with the HWD principles for waste classification. It is necessary to cope with this important shortcoming in hazardous waste classification and to demonstrate that alternative methods are available that can be used for hazard assessment of waste materials. Next, by describing the pros and cons of the available methods, and by identifying the needs for additional or further development of test methods, we hope to stimulate research efforts and development in this direction. In this paper we describe promising techniques and argument on the test selection for the pilot study that we have performed on different

  14. Nuclear technology in materials testing and radiation protection

    International Nuclear Information System (INIS)

    Neider, R.

    1975-01-01

    A report of the 1974 activities of the laboratories for physical and measuring technical fundamentals, radiation effects and radiation protection, application of radionuclides and testing of radioactive materials of the Bundesanstalt fuer Materialpruefung (BAM) is given. (RW/LH) [de

  15. Radioactive waste material testing capabilities in Romania

    International Nuclear Information System (INIS)

    Vieru, G.

    1999-01-01

    Radioactive material including wastes, generated by Romanian nuclear facilities are packaged in accordance with national and IAEA's Regulation for a safe transport to the disposal center. The evaluation and certification of packages is accomplished by subjecting these packages to normal and simulated test conditions in order to prove the package to technical performances. The standards provide to package designers the possibility to use analysis, testing or a combination of these. The paper describes the experimental and simulating qualification tests for type A packages used for transport and storage of radioactive wastes (low level). Testing are used to substantiate assumptions used in analytical models and to demonstrate package structural response. There are also presented testing capabilities which are used to perform and simulate the required qualification tests. By direct comparison of analysis and experimental results, the degree of reliability of analytical methods and admissibility of assumptions taken in package designing and in demonstrating its safety under conditions of INR - Pitesti, within the contract between the INR - Pitesti and IAEA - Vienna, were determined. (author)

  16. Brittle fracture tests at low temperature for transport cask materials

    International Nuclear Information System (INIS)

    Kosaki, Akio; Ito, Chihiro; Arai, Taku; Saegusa, Toshiari

    1993-01-01

    The IAEA Regulations for the Safe Transport of Radioactive Material were revised in 1985, and brittle fracture assessment at low temperature for transport packages are now required. This report discusses the applicability of the actual method for brittle fracture assessment of type-B transport cask materials used in JAPAN. The necessity of brittle fracture assessment at low temperature was estimated for each material of type-B transport casks used in Japan and the applicability was investigated. Dynamic fracture toughness values, K Id (J Id ), and RT NDT values of Low-Mn Carbon Steels, that are SA 350 Gr.LF1 Modify and SA 516 Gr.70 material which used in type-B transport cask body, were also obtained to check whether or not an easier and conventional test method, that prescribed in ASME CODE SECTION III, can be substituted for the dynamic fracture test method. And for bolt materials, which include 1.8Ni-0.8Cr-0.3Mo Carbon Steel and type 630 H Stainless Steel, toughness data were obtained for reference. (J.P.N.)

  17. Nondestructive testing technology for measurement coatings thickness on material

    International Nuclear Information System (INIS)

    Yang Mingtai; Wu Lunqiang; Zhang Lianping

    2008-01-01

    The principle, applicability range, advantage and disadvantage of electromagnetic, eddy current method, β backscatter method and XRF methods for nondestructive testing coating thickness of material have been reviewed. The relevant apparatus and manufacturers have been summarized. And the application and developmental direction of manufacturers for nondestructive testing coatings thickness has been foreshowed. (authors)

  18. Material testing of reconditioned orthodontic brackets.

    Science.gov (United States)

    Reimann, S; Rewari, A; Keilig, L; Widu, F; Jäger, A; Bourauel, C

    2012-12-01

    While all manufacturers of orthodontic brackets label these products for single use, there are commercial providers offering bracket reconditioning (or "recycling"). We conducted this study to investigate the effects of different recycling techniques on material-related parameters in orthodontic brackets, aiming to derive indications for clinical use and conclusions about the biocompatibility, longevity, and application of recycled brackets. New metal brackets (equilibrium(®); Dentaurum, Ispringen, Germany) were compared to brackets recycled by different techniques, including direct flaming with a Bunsen burner, chemical reconditioning in an acid bath, a commercial unit (Big Jane; Esmadent, IL, USA), and outsourcing to a company (Ortho Clean, Dellstedt, Germany). Material-related examinations included the following: (1) corrosion behavior by static immersion testing and use of a mass spectrometer to determine nickel-ion concentrations in the corrosive medium, (2) surface features in scanning electron micrographs before and after corrosion testing, (3) Vickers hardness using a hardness testing machine, (4) shear bond strength as defined in DIN 13990-1, (5) dimensional stability of the bracket slots by light microscopy, and (6) frictional loss as assessed by an orthodontic measurement and simulation system (OMSS). Each examination was performed on ten brackets. Student's t-test was used for statistical analysis. Compared to the new brackets, those recycled in an acid bath or by a commercial provider revealed significant dimensional changes (pbrackets varied according to the recycling techniques employed. The group of brackets recycled by one company revealed hardness values that differed from those of all the other groups. No significant differences were observed in nickel-ion release, frictional loss, and shear bond strength. Recycling was found to significantly reduce the corrosion resistance and dimensional stability of orthodontic brackets. As the savings

  19. Test methods for the dynamic mechanical properties of polymeric materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baker, G.K.

    1980-06-01

    Various test geometries and procedures for the dynamic mechanical analysis of polymers employing a mechanical spectrometer have been evaluated. The methods and materials included in this work are forced torsional pendulum testing of Kevlar/epoxy laminates and rigid urethane foams, oscillatory parallel plate testing to determine the kinetics of the cure of VCE with Hylene MP, oscillatory compressive testing of B-3223 cellular silicone, and oscillatory tensile testing of Silastic E and single Kevlar filaments. Fundamental dynamic mechanical properties, including the storage and loss moduli and loss tangent of the materials tested, were determined as a function of temperature and sometimes of frequency.

  20. International fusion materials irradiation facility and neutronic calculations for its test modules

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.

    1997-01-01

    The International Fusion Material Irradiation Facility (IFMIF) is a projected high intensity neutron source for material testing. Neutron transport calculations for the IFMIF project are performed for variety of here explained reasons. The results of MCNP neutronic calculations for IFMIF test modules with NaK and He cooled high flux test cells are presented in this paper. (author). 3 refs., 2 figs., 3 tabs

  1. Introduction to non-destructive testing of materials: part II

    International Nuclear Information System (INIS)

    Ahmed, M.; Ahmed, B.

    2001-01-01

    Ultrasonic waves are mechanical vibrations that require a medium, which functions as carrier. Ultrasonics are widely used in non-destructive testing of materials in which high frequency sound waves are introduced into the material being inspected. If the frequency of sound waves in within the range 10 to 20,000 Hz, the sound is audible, i.e. the range of hearing, above 20,000 Hz, the sound waves are referred to as Ultrasound or Ultrasonics. Sound waves do not cause any permanent change in material although its transient presence is very noticeable. An energy transport through a sound wave is possible only when constituent particles are connected to each other by elastic forces. Liquids and Gases are also suitable media for the transmission of sound. In vacuum no matter exists and thus no sound transmission is possible. At the end of this article advantages and limitations of ultrasonic testing are also given. (A.B.)

  2. Nondestructive Testing of Materials and Structures

    CERN Document Server

    Akkaya, Yılmaz

    2013-01-01

    Condition assessment and characterization of materials and structures by means of nondestructive testing (NDT) methods is a priority need around the world to meet the challenges associated with the durability, maintenance, rehabilitation, retrofitting, renewal and health monitoring of new and existing infrastructures including historic monuments. Numerous NDT methods that make use of certain components of the electromagnetic and acoustic spectra are currently in use to this effect with various levels of success and there is an intensive worldwide research effort aimed at improving the existing methods and developing new ones. The knowledge and information compiled in this book captures the current state-of-the-art in NDT methods and their application to civil and other engineering materials and structures. Critical reviews and advanced interdisciplinary discussions by world-renowned researchers point to the capabilities and limitations of the currently used NDT methods and shed light on current and future res...

  3. Fabrication and characterization of MCC approved testing material - ATM-8 glass

    International Nuclear Information System (INIS)

    Wald, J.W.

    1985-10-01

    The Materials Characterization Center (MCC) Approved Testing Material ATM-8 is a borosilicate glass that incorporates elements typical of high-level waste (HLW) resulting from the reprocessing of commercial nuclear reactor fuel. Its composition is based upon the simulated HLW glass type 76-68 (Mendel, J.E. et al., 1977, Annual Report of the Characteristics of High-Level Waste Glasses, BNWL-2252, Pacific Northwest Laboratory, Richland, Washington), to which depleted uranium, technetium-99, neptunium-237 and plutonium-239 have been added at moderate to low levels. The glass was requested by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. It was produced by the MCC at the Pacific Northwest Laboratory (PNL) operated for the Department of Energy (DOE) by Battelle Memorial Institute. ATM-8 glass was produced in April of 1984, and is the second in a series of testing materials for NNWSI. This report discusses its fabrication (starting materials, batch and glass preparation, measurement and testing equipment, other equipment, procedures, identification system and materials availability and storage, and characterization (bulk density) measurements, chemical analysis, microscopic examination, and x-ray diffraction analysis. 4 refs., 2 figs., 10 tabs

  4. A review on the utilization of the Japan materials testing reactor (JMTR)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Kang, Y. H.; Kim, B. G.; Choo, K. N.; Oh, J. M.; Park, S. J.; Shin, Y. T

    1999-04-01

    The HANARO has possessed the potential capability for the testing of materials and fuels since the beginning of its operation in 1995. Recently, this reactor has contributed to various activities in nuclear power research in Korea. We need the recent technical data of developed countries to support these activities in nuclear power. Most of the developed countries in nuclear power have more than thirty years' experience in the irradiation test of nuclear fuel and material for performing their complicated in-core measurements of the change of material properties. They also have developed various types of sensors, equipment and techniques. This report describes the status of utilization of the irradiation facilities of the Japan Materials Testing Reactor(JMTR). It also describes the recent efforts of the JMTR in order to develop new irradiation test techniques. It will be our great pleasure for this report to help a broad range of people understand the generic contents (JMTR utilization, new techniques) of the JMTR. (author)

  5. A review on the utilization of the Japan materials testing reactor (JMTR)

    International Nuclear Information System (INIS)

    Kim, D. H.; Kang, Y. H.; Kim, B. G.; Choo, K. N.; Oh, J. M.; Park, S. J.; Shin, Y. T.

    1999-04-01

    The HANARO has possessed the potential capability for the testing of materials and fuels since the beginning of its operation in 1995. Recently, this reactor has contributed to various activities in nuclear power research in Korea. We need the recent technical data of developed countries to support these activities in nuclear power. Most of the developed countries in nuclear power have more than thirty years' experience in the irradiation test of nuclear fuel and material for performing their complicated in-core measurements of the change of material properties. They also have developed various types of sensors, equipment and techniques. This report describes the status of utilization of the irradiation facilities of the Japan Materials Testing Reactor(JMTR). It also describes the recent efforts of the JMTR in order to develop new irradiation test techniques. It will be our great pleasure for this report to help a broad range of people understand the generic contents (JMTR utilization, new techniques) of the JMTR. (author)

  6. Needs of in-situ materials testing under neutron irradiation

    International Nuclear Information System (INIS)

    Noda, K.; Hishinuma, A.; Kiuchi, K.

    1989-01-01

    Under neutron irradiation, the component atoms of materials are displaced as primary knock-on atoms, and the energy of the primary knock-on atoms is consumed by electron excitation and nuclear collision. Elementary irradiation defects accumulate to form damage structure including voids and bubbles. In situ test under neutron irradiation is necessary for investigating into the effect of irradiation on creep behavior, the electric properties of ceramics, transport phenomena and so on. The in situ test is also important to investigate into the phenomena related to the chemical reaction with environment during irradiation. Accelerator type high energy neutron sources are preferable to fission reactors. In this paper, the needs and the research items of in situ test under neutron irradiation using a D-Li stripping type high energy neutron source on metallic and ceramic materials are described. Creep behavior is one of the most important mechanical properties, and depends strongly on irradiation environment, also it is closely related to microstructure. Irradiation affects the electric conductibity of ceramics and also their creep behavior. In this way, in situ test is necessary. (K.I.)

  7. Material control and accounting self-test program design

    International Nuclear Information System (INIS)

    Eggers, R.F.; Wilson, R.L.; Byers, K.R.

    1981-01-01

    This paper describes a controversial but potentially beneficial MCandA strategy that has not been widely attempted in the past, called Self-Test. In this strategy a processor of Strategic Special Nuclear Material (SSNM) devises a program of internally administered tests to determine if the MCandA system performs in a reliable, expedient manner in the face of a simulated loss or compromise. Self-Test procedures would include, for example, the actual removal of SSNM from process equipment in order to determine whether the MCandA system will detect the simulated theft. Self-Test programs have several potential problems. However, an approach with the potential for solving many of these problems has been devised and is discussed

  8. Development and Execution of a Large-scale DDT Tube Test for IHE Material Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Gary Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Broilo, Robert M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lopez-Pulliam, Ian Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vaughan, Larry Dean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-24

    Insensitive High Explosive (IHE) Materials are defined in Chapter IX of the DOE Explosive Safety Standard (DOE-STD-1212-2012) as being materials that are massdetonable explosives that are so insensitive that the probability of accidental initiation or transition from burning to detonation is negligible1. There are currently a number of tests included in the standard that are required to qualify a material as IHE, however, none of the tests directly evaluate for the transition from burning to detonation (aka deflagration-to-detonation transition, DDT). Currently, there is a DOE complex-wide effort to revisit the IHE definition in DOE-STD-1212-2012 and change the qualification requirements. The proposal lays out a new approach, requiring fewer, but more appropriate tests, for IHE Material qualification. One of these new tests is the Deflagration-to-Detonation Test. According to the redefinition proposal, the purpose of the new deflagration-todetonation test is “to demonstrate that an IHE material will not undergo deflagration-to-detonation under stockpile relevant conditions of scale, confinement, and material condition. Inherent in this test design is the assumption that ignition does occur, with onset of deflagration. The test design will incorporate large margins and replicates to account for the stochastic nature of DDT events.” In short, the philosophy behind this approach is that if a material fails to undergo DDT in a significant over-test, then it is extremely unlikely to do so in realistic conditions. This effort will be valuable for the B61 LEP to satisfy their need qualify the new production lots of PBX 9502. The work described in this report is intended as a preliminary investigation to support the proposed design of an overly conservative, easily fielded DDT test for updated IHE Material Qualification standard. Specifically, we evaluated the aspects of confinement, geometry, material morphology and temperature. We also developed and tested a

  9. Impact Testing of Orbiter Thermal Protection System Materials

    Science.gov (United States)

    Kerr, Justin

    2006-01-01

    This viewgraph presentation reviews the impact testing of the materials used in designing the shuttle orbiter thermal protection system (TPS). Pursuant to the Columbia Accident Investigation Board recommendations a testing program of the TPS system was instituted. This involved using various types of impactors in different sizes shot from various sizes and strengths guns to impact the TPS tiles and the Leading Edge Structural Subsystem (LESS). The observed damage is shown, and the resultant lessons learned are reviewed.

  10. Radioactive material package test standards and performance requirements - public perception

    International Nuclear Information System (INIS)

    Pope, R.B.; Shappert, L.B.; Rawl, R.R.

    1992-01-01

    This paper addresses issues related to the public perception of the regulatory test standards and performance requirements for packaging and transporting radioactive material. Specifically, it addresses the adequacy of the package performance standards and testing for Type B packages, which are those packages designed for transporting the most hazardous quantities and forms of radioactive material. Type B packages are designed to withstand accident conditions in transport. To improve public perception, the public needs to better understand: (a) the regulatory standards and requirements themselves, (b) the extensive history underlying their development, and (c) the soundness of the technical foundation. The public needs to be fully informed on studies, tests, and analyses that have been carried out worldwide and form the basis of the regulatory standards and requirements. This paper provides specific information aimed at improving the public perception of packages test standards

  11. Numerical regulation of a test facility of materials for PWR

    International Nuclear Information System (INIS)

    Zauq, M.H.

    1982-02-01

    The installation aims at testing materials used in nuclear power plants; tests consists in simulations of a design basis accident (failure of a primary circuit of a PWR type reactor) for a qualification of these materials. A description of the test installation, of the thermodynamic control, and of the control system is presented. The organisation of the software is then given: description of the sequence chaining monitor, operation, list and function of the programs. The analog information processing is also presented (data transmission). A real-time microcomputer and clock are used for this work. The microprocessor is the 6800 of MOTOROLA. The microcomputer used has been built around the MC 6800; its structure is described. The data acquisition include an analog data acquisition system and a numerical data acquisition system. Laboratory and on-site tests are finally presented [fr

  12. Standard Test Method for Testing Nonmetallic Seal Materials by Immersion in a Simulated Geothermal Test Fluid

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1985-01-01

    1.1 This test method covers a procedure for a laboratory test for performing an initial evaluation (screening) of nonmetallic seal materials by immersion in a simulated geothermal test fluid. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 6 and 11.7.

  13. Qualification test of packages for transporting radioactive materials and wastes

    International Nuclear Information System (INIS)

    Oliveira Santos, P. de; Miaw, S.T.W.

    1990-01-01

    Since 1979 the Waste Treatment Division of Nuclear Tecnology Development Center has been developed and tested packagings for transporting radioactive materials and wastes. The Division has designed facilities for testing Type A packages in accordance with the adopted regulations. The Division has tested several packages for universities, research centers, industries, INB, FURNAS, etc. (author) [pt

  14. Permeation Testing of Materials With Chemical Agents or Simulants (Swatch Testing)

    Science.gov (United States)

    2013-08-05

    nerve agents, sarin (GB), soman (GD), and persistent nerve agent (VX). These procedures can also be applied to toxic industrial chemicals (TICs...garment, cap, clothing liner, mask, glove, footwear , etc. The swatch should be selected to be representative of the area of the material to be tested...solvent and the extract analyzed. This reduces the sensitivity but obviates problems arising from one-shot thermal desorption. c. NRT and real

  15. High temperature testing of TRUPACT-I materials: Kevlar, honeycomb, rigid polyurethane foam

    International Nuclear Information System (INIS)

    Hudson, M.L.

    1985-12-01

    When the Transuranic Package Transporter Model-I (TRUPACT-I) failed to afford sufficient containment after a 35-minute JP-4 fueled open-pool fire, component tests were conducted, in conjunction with analyses, to guide and assess the redesign of TRUPACT-I. Since materials which change phase or combust are difficult to numerically analyze, the component tests determined the behavior of these materials in TRUPACT-I. The component tests approximated the behavior of Kevlar (registered trademark of DuPont), metal honeycomb, and rigid polyurethane foam, as they appear in TRUPACT-I, in an open-pool fire environment. Six series of tests were performed at Sandia's Radiant Heat Facility and one test at the wind-shielded fire test facility (LAARC Chimney). Each test facility was controlled to yield temperatures or heat fluxes equivalent to those measured in the TRUPACT-I, Unit 0, open-pool fire. This extensive series of component tests (34 runs total) provided information on the high-temperature behavior of unique materials which was not previously available or otherwise attainable. The component tests were a timely and cost-effective means of providing the data for the TRUPACT-I redesign

  16. System Studies for the ADTF: Target and Materials Test Station

    International Nuclear Information System (INIS)

    Cappiello, M.; Pitcher, E.; Pasamehmetoglu, K.

    2002-01-01

    To meet the objectives of the Advanced Accelerator Applications (AAA) program, the Accelerator-Driven Test Facility (ADTF) provides a world-class accelerator-driven test facility to: - Provide the capability to assess technology options for the transmutation of spent nuclear fuel and waste through a proof-of-performance. - Provide a user facility that allows testing of advanced nuclear technologies and applications, material science and research, experimental physics, and conventional nuclear engineering science applications. - Provide the capability, through upgrades or additions to the ADTF accelerator, to produce tritium for defense purposes, if required. - Provide the capability, through upgrades or additions, to produce radioisotopes for medical and commercial purposes. These missions are diverse and demand a facility with significant flexibility. In order to meet them, it is envisioned that we construct two target stations: the Target and Materials Test (TMT) station and the Subcritical Multiplier (SCM) test station. The two test stations share common hot-cell facilities for post-irradiation examination. It is expected the TMT will come online first, closely followed by the SCM. The TMT will provide the capability to: - Irradiate small samples of proposed ATW (accelerator-driven transmutation of waste) fuels and materials at prototypic flux, temperature, and coolant conditions (requires intense source of neutrons). - Perform transient testing. - Test liquid (lead-bismuth) and solid spallation targets with water, sodium, or helium coolant. - Test generation-IV fuels for advance nuclear systems (requires high-intensity thermal flux). - Irradiate fission product transmutation targets. - Test advanced fuel and coolant combinations, including helium, water, sodium, and lead-bismuth. - Produce isotopes for commercial and medical applications. - Perform neutron physics experiments. The SCM will provide the capability to: - Irradiate large samples of proposed ATW

  17. Modern methods of eddy-current testing for avoiding material mistakes

    International Nuclear Information System (INIS)

    Baumgartner, H.

    1987-01-01

    The conservation of raw materials and energy as a general goal in all fields is the reason why also in mechanical engineering and motor vehicle engineering, cross-sectional areas are reduced. The advantages thus obtained, - lower weight and lower manufacturing cost-, on the other hand require special core on the part of the manufacturer who has to enhance the testing activities in order to assure the appropriate structural conditions, also in mass production. Any wrong thermal treatment, or use of wrong material which remain undetected, may have disastrous effects. The eddy-current testing method now offers a mature procedure of quality assurance and is shown to be highly reliable with the attached computing equipment, guaranteeing 100 p.c. testing of manufactured goods. (orig.) [de

  18. Proceedings of the 4th international symposium on material testing reactors

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Suzuki, Masahide

    2012-03-01

    This report is the Proceedings of the fourth International Symposium on Material Testing Reactors hosted by Japan Atomic Energy Agency (JAEA). The first symposium was held on 2008, at the Oarai Research and Development Center of JAEA, the second, 2009, Idaho National Laboratory (INL) of United States and the third 2010, Nuclear Research Institute (NRI) in Czech Republic to exchange information for deep mutual understanding of material testing reactors. The fourth symposium was originally scheduled to be held INVAP in Argentina. However, the aftermath of volcanic explosion at Chili forced the symposium to change place. Total 111 participants attended from Argentina, Belgium, France, Germany, Indonesia, Malasia, Korea, South Africa, Switzerland, the United State and Japan. This symposium addressed the general topics of 'status and future plan of material testing reactors', 'advancement of irradiation technology', 'expansion of industry use(RI)', 'facility, upgrade, aging management', 'new generation MTR', 'advancement of PIE technology', 'development of advanced driver fuel', and 'nuclear human resource development(HRD) for next generation', and 39 presentations were made. Furthermore, three topics, 'Necessity of cooperation for Mo-99 production by (n,gamma) reaction', 'Necessity of standardization of irradiation technology' and 'Conceptual design of next generation materials testing reactor by collaboration', were selected and discussed. (author)

  19. Proceedings of the 4th international symposium on material testing reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Masahiro; Suzuki, Masahide [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    This report is the Proceedings of the fourth International Symposium on Material Testing Reactors hosted by Japan Atomic Energy Agency (JAEA). The first symposium was held on 2008, at the Oarai Research and Development Center of JAEA, the second, 2009, Idaho National Laboratory (INL) of United States and the third 2010, Nuclear Research Institute (NRI) in Czech Republic to exchange information for deep mutual understanding of material testing reactors. The fourth symposium was originally scheduled to be held INVAP in Argentina. However, the aftermath of volcanic explosion at Chili forced the symposium to change place. Total 111 participants attended from Argentina, Belgium, France, Germany, Indonesia, Malasia, Korea, South Africa, Switzerland, the United State and Japan. This symposium addressed the general topics of 'status and future plan of material testing reactors', 'advancement of irradiation technology', 'expansion of industry use(RI)', 'facility, upgrade, aging management', 'new generation MTR', 'advancement of PIE technology', 'development of advanced driver fuel', and 'nuclear human resource development(HRD) for next generation', and 39 presentations were made. Furthermore, three topics, 'Necessity of cooperation for Mo-99 production by (n,gamma) reaction', 'Necessity of standardization of irradiation technology' and 'Conceptual design of next generation materials testing reactor by collaboration', were selected and discussed. (author)

  20. Growing and testing mycelium bricks as building insulation materials

    Science.gov (United States)

    Xing, Yangang; Brewer, Matthew; El-Gharabawy, Hoda; Griffith, Gareth; Jones, Phil

    2018-02-01

    In order to improve energy performance of buildings, insulation materials (such as mineral glass and rock wools, or fossil fuel-based plastic foams) are being used in increasing quantities, which may lead to potential problem with materials depletions and landfill disposal. One sustainable solution suggested is the use of bio-based, biodegradable materials. A number of attempts have been made to develop biomaterials, such as sheep wood, hemcrete or recycled papers. In this paper, a novel type of bio insulation materials - mycelium is examined. The aim is to produce mycelium materials that could be used as insulations. The bio-based material was required to have properties that matched existing alternatives, such as expanded polystyrene, in terms of physical and mechanical characteristics but with an enhanced level of biodegradability. The testing data showed mycelium bricks exhibited good thermal performance. Future work is planned to improve growing process and thermal performance of the mycelium bricks.

  1. New method of thermal cycling stability test of phase change material

    Directory of Open Access Journals (Sweden)

    Putra Nandy

    2017-01-01

    Full Text Available Phase Change Material (PCM is the most promising material as thermal energy storage nowadays. As thermal energy storage, examination on endurance of material for long-term use is necessary to be carried out. Therefore, thermal cycling test is performed to ensure thermal stability of PCM. This study have found a new method on thermal cycling test of PCM sample by using thermoelectric as heating and cooling element. RT 22 HC was used as PCM sample on this thermal cycling test. The new method had many advantages compared to some references of the same test. It just needed a small container for PCM sample. The thermoelectric could release heat to PCM sample and absorb heat from PCM sample uniformly, respectively, was called as heating and cooling process. Hence, thermoelectric had to be supported by a relay control device to change its polarity so it could heat and cool PCM sample alternately and automatically. On the other hand, the thermoelectric was cheap, easy to be found and available in markets. It can be concluded that new method of thermal cycling test by using thermoelectric as source of heating and cooling can be a new reference for performing thermal cycling test on PCM.

  2. Drop Weight Device Fabrication and Tests for a Dynamic Material Property of Shock-Absorbing Material and Structure in Transportation Package

    International Nuclear Information System (INIS)

    Choi, Woo Seok; Jeon, Jea Eon; Han, Sang Hyeok; Lee, Sang Hoon; Seo, Ki Seok

    2009-01-01

    A radioactive material transportation package consists of canister and impact limiters. IAEA Safety Standard Series No. TS-R-1 recommends a drop test to evaluate the structural integrity of a transportation package under a hypothetical accident condition. The free drop test of a transportation package from 9 m height simulates one of accident conditions. The transportation package has a potential energy corresponding to 9 m drop height, and this energy changes to a kinetic energy when it impacts on the target. The energy is absorbed by a deformation of shock-absorbing material so that the minimum energy is transferred to canister. Accordingly, the shock-absorbing material is a very important part in transportation package design. Since the data for shock-absorbing material characteristics is acquired by a static test in general, it is quite different to that of dynamic characteristics. And the dynamic characteristics data is hardly found in literature. In this study, a drop weight facility was designed and fabricated which produces an impact speed like that of free drop of 9 m height. Several materials considered for an impact limiter and impact limiter structures were tested by a drop weight facility to acquire a dynamic material characteristics data

  3. Drop Weight Device Fabrication and Tests for a Dynamic Material Property of Shock-Absorbing Material and Structure in Transportation Package

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Woo Seok; Jeon, Jea Eon; Han, Sang Hyeok; Lee, Sang Hoon; Seo, Ki Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    A radioactive material transportation package consists of canister and impact limiters. IAEA Safety Standard Series No. TS-R-1 recommends a drop test to evaluate the structural integrity of a transportation package under a hypothetical accident condition. The free drop test of a transportation package from 9 m height simulates one of accident conditions. The transportation package has a potential energy corresponding to 9 m drop height, and this energy changes to a kinetic energy when it impacts on the target. The energy is absorbed by a deformation of shock-absorbing material so that the minimum energy is transferred to canister. Accordingly, the shock-absorbing material is a very important part in transportation package design. Since the data for shock-absorbing material characteristics is acquired by a static test in general, it is quite different to that of dynamic characteristics. And the dynamic characteristics data is hardly found in literature. In this study, a drop weight facility was designed and fabricated which produces an impact speed like that of free drop of 9 m height. Several materials considered for an impact limiter and impact limiter structures were tested by a drop weight facility to acquire a dynamic material characteristics data.

  4. An Approach to the Flammability Testing of Aerospace Materials

    Science.gov (United States)

    Hirsch, David B.

    2012-01-01

    Presentation reviews: (1) Current approach to evaluation of spacecraft materials flammability (2) The need for and the approach to alternative routes (3) Examples of applications of the approach recommended a) Crew Module splash down b) Crew Module depressurization c) Applicability of NASA's flammability test data to other sample configurations d) Applicability of NASA's ground flammability test data to spacecraft environments

  5. Multilayer Pressure Vessel Materials Testing and Analysis Phase 2

    Science.gov (United States)

    Popelar, Carl F.; Cardinal, Joseph W.

    2014-01-01

    To provide NASA with a suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for the vessels described above, Southwest Research Institute® (SwRI®) was contracted in two phases to obtain relevant material property data from a representative vessel. An initial characterization of the strength, fracture and fatigue crack growth properties was performed in Phase 1. Based on the results and recommendations of Phase 1, a more extensive material property characterization effort was developed in this Phase 2 effort. This Phase 2 characterization included additional strength, fracture and fatigue crack growth of the multilayer vessel and head materials. In addition, some more limited characterization of the welds and heat affected zones (HAZs) were performed. This report

  6. Prediction of material damage in orthotropic metals for virtual structural testing

    OpenAIRE

    Ravindran, S.

    2010-01-01

    Models based on the Continuum Damage Mechanics principle are increasingly used for predicting the initiation and growth of damage in materials. The growing reliance on 3-D finite element (FE) virtual structural testing demands implementation and validation of robust material models that can predict the material behaviour accurately. The use of these models within numerical analyses requires suitable material data. EU aerospace companies along with Cranfield University and other similar resear...

  7. Baseline Assessment of 25-Hydroxyvitamin D Reference Material and Proficiency Testing/External Quality Assurance Material Commutability: A Vitamin D Standardization Program Study.

    Science.gov (United States)

    Phinney, Karen W; Sempos, Christopher T; Tai, Susan S-C; Camara, Johanna E; Wise, Stephen A; Eckfeldt, John H; Hoofnagle, Andrew N; Carter, Graham D; Jones, Julia; Myers, Gary L; Durazo-Arvizu, Ramon; Miller, W Greg; Bachmann, Lorin M; Young, Ian S; Pettit, Juanita; Caldwell, Grahame; Liu, Andrew; Brooks, Stephen P J; Sarafin, Kurtis; Thamm, Michael; Mensink, Gert B M; Busch, Markus; Rabenberg, Martina; Cashman, Kevin D; Kiely, Mairead; Galvin, Karen; Zhang, Joy Y; Kinsella, Michael; Oh, Kyungwon; Lee, Sun-Wha; Jung, Chae L; Cox, Lorna; Goldberg, Gail; Guberg, Kate; Meadows, Sarah; Prentice, Ann; Tian, Lu; Brannon, Patsy M; Lucas, Robyn M; Crump, Peter M; Cavalier, Etienne; Merkel, Joyce; Betz, Joseph M

    2017-09-01

    The Vitamin D Standardization Program (VDSP) coordinated a study in 2012 to assess the commutability of reference materials and proficiency testing/external quality assurance materials for total 25-hydroxyvitamin D [25(OH)D] in human serum, the primary indicator of vitamin D status. A set of 50 single-donor serum samples as well as 17 reference and proficiency testing/external quality assessment materials were analyzed by participating laboratories that used either immunoassay or LC-MS methods for total 25(OH)D. The commutability test materials included National Institute of Standards and Technology Standard Reference Material 972a Vitamin D Metabolites in Human Serum as well as materials from the College of American Pathologists and the Vitamin D External Quality Assessment Scheme. Study protocols and data analysis procedures were in accordance with Clinical and Laboratory Standards Institute guidelines. The majority of the test materials were found to be commutable with the methods used in this commutability study. These results provide guidance for laboratories needing to choose appropriate reference materials and select proficiency or external quality assessment programs and will serve as a foundation for additional VDSP studies.

  8. Materials interactions test methods to measure radionuclide release from waste forms under repository-relevant conditions

    International Nuclear Information System (INIS)

    Strickert, R.G.; Erikson, R.L.; Shade, J.W.

    1984-10-01

    At the request of the Basalt Waste Isolation Project, the Materials Characterization Center has collected and developed a set of procedures into a waste form compliance test method (MCC-14.4). The purpose of the test is to measure the steady-state concentrations of specified radionuclides in solutions contacting a waste form material. The test method uses a crushed waste form and basalt material suspended in a synthetic basalt groundwater and agitated for up to three months at 150 0 C under anoxic conditions. Elemental and radioisotopic analyses are made on filtered and unfiltered aliquots of the solution. Replicate experiments are performed and simultaneous tests are conducted with an approved test material (ATM) to help ensure precise and reliable data for the actual waste form material. Various features of the test method, equipment, and test conditions are reviewed. Experimental testing using actinide-doped borosilicate glasses are also discussed. 9 references, 2 tables

  9. Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development

    Science.gov (United States)

    Pereira, J. Michael; Revilock, Duane M.; Lerch, Bradley A.; Ruggeri, Charles R.

    2013-01-01

    One of the difficulties with developing and verifying accurate impact models is that parameters such as high strain rate material properties, failure modes, static properties, and impact test measurements are often obtained from a variety of different sources using different materials, with little control over consistency among the different sources. In addition there is often a lack of quantitative measurements in impact tests to which the models can be compared. To alleviate some of these problems, a project is underway to develop a consistent set of material property, impact test data and failure analysis for a variety of aircraft materials that can be used to develop improved impact failure and deformation models. This project is jointly funded by the NASA Glenn Research Center and the FAA William J. Hughes Technical Center. Unique features of this set of data are that all material property data and impact test data are obtained using identical material, the test methods and procedures are extensively documented and all of the raw data is available. Four parallel efforts are currently underway: Measurement of material deformation and failure response over a wide range of strain rates and temperatures and failure analysis of material property specimens and impact test articles conducted by The Ohio State University; development of improved numerical modeling techniques for deformation and failure conducted by The George Washington University; impact testing of flat panels and substructures conducted by NASA Glenn Research Center. This report describes impact testing which has been done on aluminum (Al) 2024 and titanium (Ti) 6Al-4vanadium (V) sheet and plate samples of different thicknesses and with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a jet engine fan blade. Data from this testing will be used in validating material models developed under this program. The material

  10. Fracture Toughness Round Robin Test International in pressure tube materials

    International Nuclear Information System (INIS)

    Villagarcia, M.P.; Liendo, M.F.

    1993-01-01

    Part of the pressure tubes surveillance program of CANDU type reactors is to determine the fracture toughness using a special fracture specimen and test procedure. Atomic Energy of Canada Limited decided to hold a Round Robin Test International and 9 laboratories participated worldwide in which several pressure tube materials were selected: Zircaloy-2, Zr-2.5%Nb cold worked and Zr-2.5%Nb heat treated. The small specimens used held back the thickness and curvature of the tube. J-R curves at room temperature were obtained and the crack extension values were determined by electrical potential drop techniques. These values were compared with results generated from other laboratories and a bid scatter was founded. It could be due to slight variations in the test method or inhomogeneity of the materials and a statistical study must be done to see if there is any pattern. The next step for the Round Robin Test would be to make some modifications in the test method in order to reduce the scatter. (Author)

  11. Apparatus Tests Peeling Of Bonded Rubbery Material

    Science.gov (United States)

    Crook, Russell A.; Graham, Robert

    1996-01-01

    Instrumented hydraulic constrained blister-peel apparatus obtains data on degree of bonding between specimen of rubbery material and rigid plate. Growth of blister tracked by video camera, digital clock, pressure transducer, and piston-displacement sensor. Cylinder pressure controlled by hydraulic actuator system. Linear variable-differential transformer (LVDT) and float provide second, independent measure of change in blister volume used as more precise volume feedback in low-growth-rate test.

  12. Irradiation experiments and materials testing capabilities in High Flux Reactor in Petten

    International Nuclear Information System (INIS)

    Luzginova, N.; Blagoeva, D.; Hegeman, H.; Van der Laan, J.

    2011-01-01

    The text of publication follows: The High Flux Reactor (HFR) in Petten is a powerful multi-purpose research and materials testing reactor operating for about 280 Full Power Days per year. In combination with hot cells facilities, HFR provides irradiation and post-irradiation examination services requested by nuclear energy research and development programs, as well as by industry and research organizations. Using a variety of the custom developed irradiation devices and a large experience in executing irradiation experiments, the HFR is suitable for fuel, materials and components testing for different reactor types. Irradiation experiments carried out at the HFR are mainly focused on the understanding of the irradiation effects on materials; and providing databases for irradiation behavior of materials to feed into safety cases. The irradiation experiments and materials testing at the HFR include the following issues. First, materials irradiation to support the nuclear plant life extensions, for instance, characterization of the reactor pressure vessel stainless steel claddings to insure structural integrity of the vessel, as well as irradiation of the weld material coupons to neutron fluence levels that are representative for Light Water Reactors (LWR) internals applications. Secondly, development and qualification of the structural materials for next generation nuclear fission reactors as well as thermo-nuclear fusion machines. The main areas of interest are in both conventional stainless steel and advanced reduced activation steels and special alloys such as Ni-base alloys. For instance safety-relevant aspects of High Temperature Reactors (HTR) such as the integrity of fuel and structural materials with increasing neutron fluence at typical HTR operating conditions has been recently assessed. Thirdly, support of the fuel safety through several fuel irradiation experiments including testing of pre-irradiated LWR fuel rods containing UO 2 or MOX fuel. Fourthly

  13. Material test of concrete for PCCV

    International Nuclear Information System (INIS)

    Okada, Katsuya; Kamiyama, Yukio; Iwasawa, Jiro.

    1987-01-01

    The concrete used for the prestressed concrete containment vessel (PCCV) for Tsuruga No.2 plant of Japan Atomic Power Co. has the design standard strength as high as 420 kg/cm 2 , but for the purpose of preventing the cracking due to hydration heat at the time of concrete hardening, the medium heat cement mixed with flyash was adopted. The example of using the cement of this kind for high strength concrete has been few, and the data on its various properties have been scarce. First, the various mixing proportion for the high strength concrete using the medium heat cement mixed with flyash was experimented, and the basic mixing proportion for satisfying the design standard strength 420 kg/cm 2 was determined. Next, about this basic mixing proportion, the tests on the crrep characteristics and the thermal characteristics required for the design of PCCVs were carried out. In this report, the results of these tests on the concrete are described. By combining the concrete materials available in Tsuruga district, the test on unsolidified concrete and hardened concrete was carried out. The experimental method and the results are reported. Uniaxial compression creep test was carried out on the concrete having the selected mixing proportion to evaluate the propriety of the design creep factor. In the test of the thermal characteristics, the heat conductivity, heat diffusivity, linear thermal expansion and specific heat were measured. (Kako, I.)

  14. Composite Material Testing Data Reduction to Adjust for the Systematic 6-DOF Testing Machine Aberrations

    Science.gov (United States)

    Athanasios lliopoulos; John G. Michopoulos; John G. C. Hermanson

    2012-01-01

    This paper describes a data reduction methodology for eliminating the systematic aberrations introduced by the unwanted behavior of a multiaxial testing machine, into the massive amounts of experimental data collected from testing of composite material coupons. The machine in reference is a custom made 6-DoF system called NRL66.3 and developed at the NAval...

  15. Using photons for non-destructive testing of thick materials: a simulation study

    International Nuclear Information System (INIS)

    Oishi, Ryutaro; Nagai, Hideki

    2004-01-01

    Positron annihilation spectroscopy using positron annihilation lifetimes has been successfully studied for non-destructive material testing. A positron inspection probe is annihilated with an electron at the front of the material. The application of the positron lifetime method is restricted to thin materials. A photon with energy exceeding 1.02MeV reaches the materials' depth and can produce a positron through γ-conversion. Such a photon-produced positron is a probe for thick materials. The probability of γ-conversion, however, is low. The method of photon-produced positron annihilation lifetimes is restricted by statistics. We estimated the expected number of events and the statistical uncertainties of the lifetime measurements for a non-destructive test, such as an SUS316 fatigue monitoring, to construct a fatigue-monitoring system

  16. Standard test method for conducting friction tests of piston ring and cylinder liner materials under lubricated conditions

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This test method covers procedures for conducting laboratory bench-scale friction tests of materials, coatings, and surface treatments intended for use in piston rings and cylinder liners in diesel or spark-ignition engines. The goal of this procedure is to provide a means for preliminary, cost-effective screening or evaluation of candidate ring and liner materials. A reciprocating sliding arrangement is used to simulate the contact that occurs between a piston ring and its mating liner near the top-dead-center position in the cylinder where liquid lubrication is least effective, and most wear is known to occur. Special attention is paid to specimen alignment, running-in, and lubricant condition. 1.2 This test method does not purport to simulate all aspects of a fired engine’s operating environment, but is intended to serve as a means for preliminary screening for assessing the frictional characteristics of candidate piston ring and liner material combinations in the presence of fluids that behave as u...

  17. Remote replacement of materials open-test assembly specimens at the FFTF/IEM cell

    International Nuclear Information System (INIS)

    Gibbons, P.W.; Ramsey, E.B.

    1990-01-01

    The Fast Flux Test Facility (FFTF) interim examination and maintenance (IEM) cell is used for the remote disassembly of irradiated fuel and materials experiments. The materials open-test assembly (MOTA) is brought to the IEM cell for materials test specimen removal. The specimens are shipped to the materials laboratory for sorting and installation in new specimen holders and then returned within 10 days to the IEM cell where they are installed in a new MOTA vehicle for further irradiation. Reconstituting a MOTA is a challenging remote operation involving dozens of steps and two separate facilities. Handling and disassembling sodium-wetted components pose interesting handling, cleaning, and disposal challenges. The success of this system is evidenced by its timely completion in the critical path of FFTF outage schedules

  18. Examination of a Size-Change Test for Photovoltaic Encapsulation Materials: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. C.; Wohlgemuth, J. H.; Gu, X.; Ji, L.; Kelly, G.; Gu, X.; Nickel, N.; Norum, P.; Shioda, T.; Tamizhmani, G.

    2012-08-01

    We examine a proposed test standard that can be used to evaluate the maximum representative change in linear dimensions of sheet encapsulation products for photovoltaic modules (resulting from their thermal processing). The proposed protocol is part of a series of material-level tests being developed within Working Group 2 of the Technical Committee 82 of the International Electrotechnical Commission. The characterization tests are being developed to aid module design (by identifying the essential characteristics that should be communicated on a datasheet), quality control (via internal material acceptance and process control), and failure analysis. Discovery and interlaboratory experiments were used to select particular parameters for the size-change test. The choice of a sand substrate and aluminum carrier is explored relative to other options. The temperature uniformity of +/- 5C for the substrate was confirmed using thermography. Considerations related to the heating device (hot-plate or oven) are explored. The time duration of 5 minutes was identified from the time-series photographic characterization of material specimens (EVA, ionomer, PVB, TPO, and TPU). The test procedure was revised to account for observed effects of size and edges. The interlaboratory study identified typical size-change characteristics, and also verified the absolute reproducibility of +/- 5% between laboratories.

  19. Dynamic material characterization by combining ballistic testing and an engineering model

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.; Wal, R. van der

    2013-01-01

    At TNO several energy-based engineering models have been created for various failure mechanism occurring in ballistic testing of materials, like ductile hole growth, denting, plugging, etc. Such models are also under development for ceramic and fiberbased materials (fabrics). As the models are

  20. Radiation tests at cryogenic temperature on selected organic materials for LHC

    International Nuclear Information System (INIS)

    Humer, K.; Weber, H.W.; Szeless, B.; Tavlet, M.

    1997-01-01

    Future multi-TeV particle accelerators like the CERN Large Hadron Collider (LHC) will use superconducting magnets in which organic materials will be exposed to high radiation levels at temperatures as low as 2 K. A representative selection of organic materials comprising insulating films, cable insulations, epoxy resins and composites were exposed to neutron and gamma radiation of a nuclear reactor. Depending on the type of materials, the integrated radiation doses varied between 180 kGy and 155 MGy. During irradiation, the samples were kept close to the boiling temperature of liquid nitrogen, i.e. at 80 K, and thereafter stored in liquid nitrogen and transferred at the same temperature into the testing device for measurement of tensile and flexural strength. Tests were carried out on the same materials at similar dose rates at room temperature, and the results are compared with the ones obtained at cryogenic temperature. They show that within the selected dose range, a number of organic materials are suitable for use in radiation fields of the LHC at cryogenic temperature

  1. Influence of heat treatment and indenter tip material on depth sensing hardness tests at high temperatures of fusion relevant materials

    International Nuclear Information System (INIS)

    Bredl, Julian; Dany, Manuel; Albinski, Bartlomiej; Schneider, Hans-Christian; Kraft, Oliver

    2015-01-01

    Highlights: • Operation of a custom-made indentation device designed for test temperatures up to 650 °C and a remote handled operation in a Hot Cell. • Instrumented indentation and conventional hardness testing of unirradiated MANET II and EUROFER. • Comparison of diamond and sapphire as indenter tip materials. - Abstract: The instrumented indentation is a suitable method for testing of even small neutron-irradiated specimens. From the continuously recorded indentation depth and the indentation force, it is possible to deduce mechanical parameters of the tested material. In this paper, a brief description of the high temperature device is given and representative results are presented. In the study, unirradiated steels are investigated by instrumented indentation at temperatures up to 500 °C. It is shown that the hardness is highly depending on the testing-temperature and can be correlated to the results of conventional tensile testing experiments. A not negligible influence of the indenter tip material is observed. The results show the functionality of the high-temperature indentation device.

  2. Influence of heat treatment and indenter tip material on depth sensing hardness tests at high temperatures of fusion relevant materials

    Energy Technology Data Exchange (ETDEWEB)

    Bredl, Julian, E-mail: julian.bredl@kit.edu; Dany, Manuel; Albinski, Bartlomiej; Schneider, Hans-Christian; Kraft, Oliver

    2015-10-15

    Highlights: • Operation of a custom-made indentation device designed for test temperatures up to 650 °C and a remote handled operation in a Hot Cell. • Instrumented indentation and conventional hardness testing of unirradiated MANET II and EUROFER. • Comparison of diamond and sapphire as indenter tip materials. - Abstract: The instrumented indentation is a suitable method for testing of even small neutron-irradiated specimens. From the continuously recorded indentation depth and the indentation force, it is possible to deduce mechanical parameters of the tested material. In this paper, a brief description of the high temperature device is given and representative results are presented. In the study, unirradiated steels are investigated by instrumented indentation at temperatures up to 500 °C. It is shown that the hardness is highly depending on the testing-temperature and can be correlated to the results of conventional tensile testing experiments. A not negligible influence of the indenter tip material is observed. The results show the functionality of the high-temperature indentation device.

  3. Performance evaluation of DAAF as a booster material using the onionskin test

    Energy Technology Data Exchange (ETDEWEB)

    Morris, John S [Los Alamos National Laboratory; Francois, Elizabeth G [Los Alamos National Laboratory; Hooks, Daniel E [Los Alamos National Laboratory; Hill, Larry G [Los Alamos National Laboratory; Harry, Herbert H [Los Alamos National Laboratory

    2010-12-02

    Initiation of insensitive high explosive (IHE) formulations requires the use of a booster explosive in the initiation train. Booster material selection is crucial, as the initiation must reliably function across some spectrum of physical parameters. The interest in Diaminoazoxyfurazan (DAAF) for this application stems from the fact that it possesses many traits of an IHE but is shock sensitive enough to serve as an explosive booster. A hemispherical wave breakout test, termed the onionskin test, is one of the methods used to evaluate the performance of a booster material. The wave breakout time-position history at the surface of a hemispherical IHE charge is recorded and the relative uniformity of the breakout can be quantitatively compared between booster materials. A series of onionskin tests were performed to investigate breakout and propagation diaminoazoxyfurazan (DAAF) at low temperatures to evaluate ignition and detonation spreading in comparison to other explosives commonly used in booster applications. Some wave perturbation was observed with the DAAF booster in the onionskin tests presented. The results of these tests will be presented and discussed.

  4. Build green and conventional materials off-gassing tests: A final report

    Energy Technology Data Exchange (ETDEWEB)

    Piersol, P.

    1995-12-31

    Build Green is a certification program that will identify and label building products with a known recycled content. The introduction of these recycled materials has raised the concern that they may emit more indoor pollutants than conventional materials. This study addresses that concern by analyzing Build Green and conventional materials to assess their potential for off-gassing. The study involved emission tests of 37 materials including carpets, carpet undercushions, structural lumber, foundation material, insulation, drywall, fiberboard, counter tops, and cabinetry. The results presented in this report include comparisons of Build Green and conventional materials in terms of emissions of volatile organic compounds and formaldehyde, the material loading ratio, and discussion of the specific sources of the emissions.

  5. Investigation of a precise static leach test for the testing of simulated nuclear waste materials

    International Nuclear Information System (INIS)

    Kingston, H.M.; Cronin, D.J.; Epstein, M.S.

    1984-01-01

    The precision of the nuclear waste static leach test was evaluated using controlled experimental conditions and homogeneous glass materials. The majority of the leachate components were subjected to simultaneous multielement DCP analysis. The overall precision of the static leach test is determined by the summation of random effects caused by: variance in the experimental conditions of the leaching procedure; inhomogeneity of the material to be leached; and variance of the analytical techniques used to determine elemental concentrations in the leachate. In this study, strict control of key experimental parameters was employed to reduce the first source of variance. In addition, special attention to the preparation of glass samples to be tested assured a high degree of homogeneity. Described here are the details of the reduction of these two sources of variance to a point where the overall test precision is limited by that of the analysis step. Of the elements determined - B, Ba, Ca, Cs, Mo, Na, Si, Sr, and Zn - only Ca and Zn exhibited replicate imprecision significantly greater than that observed in the analysis of the leachate solutions. The imprecision in the Zn was partially attributed to the non-reproducible adsorption onto the leach vessel walls during the 28 day test period. None of the other elements exhibited this behavior

  6. Determination of radon exhalation from construction materials using VOC emission test chambers.

    Science.gov (United States)

    Richter, M; Jann, O; Kemski, J; Schneider, U; Krocker, C; Hoffmann, B

    2013-10-01

    The inhalation of (222) Rn (radon) decay products is one of the most important reasons for lung cancer after smoking. Stony building materials are an important source of indoor radon. This article describes the determination of the exhalation rate of stony construction materials by the use of commercially available measuring devices in combination with VOC emission test chambers. Five materials - two types of clay brick, clinker brick, light-weight concrete brick, and honeycomb brick - generally used for wall constructions were used for the experiments. Their contribution to real room concentrations was estimated by applying room model parameters given in ISO 16000-9, RP 112, and AgBB. This knowledge can be relevant, if for instance indoor radon concentration is limited by law. The test set-up used here is well suited for application in test laboratories dealing with VOC emission testing. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Advanced Materials Test Methods for Improved Life Prediction of Turbine Engine Components

    National Research Council Canada - National Science Library

    Stubbs, Jack

    2000-01-01

    Phase I final report developed under SBIR contract for Topic # AF00-149, "Durability of Turbine Engine Materials/Advanced Material Test Methods for Improved Use Prediction of Turbine Engine Components...

  8. Materials for the field test - students' attitudes to nuclear power stations

    International Nuclear Information System (INIS)

    Hoffmann, L.; Kattmann, U.; Lucht, H.; Spada, H.

    1975-01-01

    This working paper contains all the materials developed for and used in the field test of 'Student Attitudes toward Atomic Power Stations'. This research is a component of a larger project called 'Attitudes and Attitudes Change with Regard to Problems of Energy Supply and their Consequences for our Environment'. A central aim of this project is the development of instrumental strategies enabling the student to build up in this field a critically reflective and active behavior and attitudes based on sound problem consciousness. These instrumental strategies are derived from theories of social, learning and environmental psychology. A concrete result of these efforts are the materials of the field test mentioned above. They include: a) The draft of an instructional unit 'Atomic Power Stations - Prosperity or Disaster' with - a booklet on the subject matter for students and teachers - a paper on the contents of the instructional unit and their sequence - information for the students concerning the aims of the investigation - working materials for the students - reading materials for the teachers informing them about the proposed instructional strategies based on the psychological theories: (1) model-learning and the structuring of knowledge, (2) how to activate and motivate students, (3) the stabilization of attitudes and (4) small group work. b) Instruments for testing and observation. These instruments were used within a criterion-oriented evaluation and for a test of the effects of the different proposed items used in the instruction. (orig./HP) [de

  9. The feasibility of small size specimens for testing of environmentally assisted cracking of irradiated materials and of materials under irradiation in reactor core

    International Nuclear Information System (INIS)

    Toivonen, A.; Moilanen, P.; Pyykkoenen, M.; Taehtinen, S.; Rintamaa, R.; Saario, T.

    1998-01-01

    Environmentally assisted cracking (EAC) of core materials has become an increasingly important issue of downtime and maintenance costs in nuclear power plants. Small size specimens are necessary in stress corrosion testing of irradiated materials because of difficulties in handling high dose rate materials and because of restricted availability of the materials. The drawback of using small size specimens is that in some cases they do not fulfil the requirements of the relevant testing standards. Recently VTT has developed J-R testing with irradiated and non-irradiated sub size 3 PB specimens, both in inert and in LWR environments. Also, a new materials testing system which will enable simultaneous multiple specimen testing both in laboratory conditions and in operating reactor core is under development. The new testing system will utilize Charpy and sub size 3 PB specimens. The feasibility study of the system has been carried out using different materials. Fracture resistance curves of a Cu-Zr-Cr alloy are shown to be independent of the specimen geometry and size, to some extent. Results gained from tests in simulated boiling water reactor (BWR) water are presented for sensitized SIS 2333 stainless steel. The experimental results indicate that the size of the plastic zone or stress triaxiality must be further studied although no significant effect on the environmentally assisted crack growth rate was observed. (orig.)

  10. The feasibility of small size specimens for testing of environmentally assisted cracking of irradiated materials and of materials under irradiation in reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Toivonen, A.; Moilanen, P.; Pyykkoenen, M.; Taehtinen, S.; Rintamaa, R.; Saario, T. [Valtion Teknillinen Tutkimuskeskus, Espoo (Finland)

    1998-11-01

    Environmentally assisted cracking (EAC) of core materials has become an increasingly important issue of downtime and maintenance costs in nuclear power plants. Small size specimens are necessary in stress corrosion testing of irradiated materials because of difficulties in handling high dose rate materials and because of restricted availability of the materials. The drawback of using small size specimens is that in some cases they do not fulfil the requirements of the relevant testing standards. Recently VTT has developed J-R testing with irradiated and non-irradiated sub size 3 PB specimens, both in inert and in LWR environments. Also, a new materials testing system which will enable simultaneous multiple specimen testing both in laboratory conditions and in operating reactor core is under development. The new testing system will utilize Charpy and sub size 3 PB specimens. The feasibility study of the system has been carried out using different materials. Fracture resistance curves of a Cu-Zr-Cr alloy are shown to be independent of the specimen geometry and size, to some extent. Results gained from tests in simulated boiling water reactor (BWR) water are presented for sensitized SIS 2333 stainless steel. The experimental results indicate that the size of the plastic zone or stress triaxiality must be further studied although no significant effect on the environmentally assisted crack growth rate was observed. (orig.)

  11. Material control system design: Test Bed Nitrate Storage Area (TBNSA)

    International Nuclear Information System (INIS)

    Clark, G.A.; Da Roza, R.A.; Dunn, D.R.; Sacks, I.J.; Harrison, W.; Huebel, J.G.; Ross, W.N.; Salisbury, J.D.; Sanborn, R.H.; Weissenberger, S.

    1978-05-01

    This report provides an example of a hypothetical Special Nuclear Material (SNM) Safeguard Material Control and Accounting (MC and A) System which will be used as a subject for the demonstration of the Lawrence Livermore Laboratory MC and A System Evaluation Methodology in January 1978. This methodology is to become a tool in the NRC evaluation of license applicant submittals for Nuclear Fuel Cycle facilities. The starting point for this test bed design was the Allied-General Nuclear Services--Barnwell Nuclear Fuel Plant Reprocessing plant as described in the Final Safety Analysis Report (FSAR), of August 1975. The test bed design effort was limited to providing an SNM safeguard system for the plutonium nitrate storage area of this facility

  12. Review of WWER fuel and material tests in the Halden reactor

    International Nuclear Information System (INIS)

    Volkov, B.; Kolstad, E.

    2006-01-01

    A review of the tests with WWER fuels and materials conducted in HBWR over the years of cooperation with Russia is presented. The first test with old generation WWER-440 fuel and PWR specification fuel was carried out from 1995 to 1998. Some differences between these fuels regarding irradiation induced densification and pellet design as well as similar fuel thermal behaviour, swelling and FGR were revealed during the test. The data from this test are reviewed and compared with PIE recently performed to confirm the in-pile measurements. The second test was started in March 1999 with the main objective to study different modified WWER fuels also in comparison with PWR fuel. The results indicated that all these modified WWER fuels exhibit improved densification properties relative to earlier tested fuel. In-pile data on fuel densification have been analysed with respect to as fabricated fuel microstructure and can be used for verification of fuel behaviour models. Corrosion and creep tests in the Halden reactor encompass WWER cladding alloys and some results are given. Prospective WWER fuel and material tests foreseen within the frame of the joint program of OECD HRP are also presented. (authors)

  13. Standard test method for plane-strain (Chevron-Notch) fracture toughness of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    1.1 This test method covers the determination of plane-strain (chevron-notch) fracture toughnesses, KIv or KIvM, of metallic materials. Fracture toughness by this method is relative to a slowly advancing steady state crack initiated at a chevron-shaped notch, and propagating in a chevron-shaped ligament (Fig. 1). Some metallic materials, when tested by this method, exhibit a sporadic crack growth in which the crack front remains nearly stationary until a critical load is reached. The crack then becomes unstable and suddenly advances at high speed to the next arrest point. For these materials, this test method covers the determination of the plane-strain fracture toughness, KIvj or KIvM, relative to the crack at the points of instability. Note 1—One difference between this test method and Test Method E 399 (which measures KIc) is that Test Method E 399 centers attention on the start of crack extension from a fatigue precrack. This test method makes use of either a steady state slowly propagating crack, or a...

  14. A Review of Material Properties Estimation Using Eddy Current Testing and Capacitor Imaging

    Directory of Open Access Journals (Sweden)

    Mohd. Amri Yunus

    2009-01-01

    Full Text Available he non destructive testing applications based on inductive (eddy current testing and capacitive sensors are widely used for imaging of material properties. The simple structure, safe to use, low cost, non contact application, good response at medium range frequency of the sensors make them preferable to be used in the industries. The aim of this study is to talk about the material properties estimation applications using eddy current testing and capacitive sensing. The basic operations of eddy current testing and capacitive sensing with example of application in the non destructive testing are discussed. Next, the recent advancements of eddy current testing and capacitive testing in imaging technique are presented in this paper.

  15. Ultrasonic tests on materials with protective coatings

    International Nuclear Information System (INIS)

    Whaley, H.L.

    1977-01-01

    Protective coatings are applied to some nuclear components such as reactor vessels to inhibit surface corrosion. Since in-service ultrasonic inspection is required for such components, a study was performed to determine whether the use of protective coatings can affect ultrasonic tests. Two 2 in. thick steel plates were uniformly machined, sandblasted, and used as bases for two types of protective coatings. The type and thickness of the coating and the presence of contamination, such as fingerprints or mild oxidation under the paint, were the independent variables associated with the coating. Tests were run to determine the effects of the protective coatings on ultrasonic tests conducted on the steel plates. Significant variations in ultrasonic test sensitivity occurred as a function of the type and thickness of protective coating, couplant (material that conducts the ultrasound from the transducer into the test part, normally water or some type of oil), transducer wear plate, and ultrasonic test frequency. Ultrasonic tests can be strongly affected by a protective coating on the component to be inspected. As compared to the test sensitivity for an uncoated reference sample, the sensitivity may be dramatically shifted up or down on the coated surface. In certain coating thickness ranges, the sensitivity can fluctuate widely with small changes in coating thickness. If a coating is chosen properly, however, components with protective coatings can be tested ultrasonically with valid results. These results are for the case of ultrasonic input on the coated surface. It is not expected that an ultrasonic test conducted from the front surface would be appreciably affected by a coating on the rear surface

  16. A new tensile impact test for the toughness characterization of sheet material

    Science.gov (United States)

    Könemann, Markus; Lenz, David; Brinnel, Victoria; Münstermann, Sebastian

    2018-05-01

    In the past, the selection of suitable steels has been carried out primarily based on the mechanical properties of different steels. One of these properties is the resistance against crack propagation. For many constructions, this value plays an important role, because it can compare the impact toughness of different steel grades easily and gives information about the loading capacity of the specific materials. For thin sheets, impact toughness properties were usually not considered. One of the reasons for this is that the Charpy-impact test is not applicable for sheets with thicknesses below 2 mm. For a long time, this was not relevant because conventional steels had a sufficient impact toughness in a wide temperature range. However, since new multiphase steel grades with improved mechanical property exploitations are available, it turned out that impact toughness properties need to be considered during the component design phase, as the activation of the cleavage fracture mechanism is observed under challenging loading conditions. Therefore, this work aims to provide a new and practical testing procedure for sheet material or thin walled structures. The new testing procedure is based on tensile tests conducted in an impact pendulum similar to the Charpy impact hammer. A new standard geometry is provided, which enables a comparison between different steels or steel grades. A connection to the conventional Charpy test is presented using a damage mechanics model, which predicts material failure with consideration of to the stress state at various temperatures. Different specimen geometries are analysed to cover manifold stress states. A special advantage of the damage mechanics model is also the possibility to predict the materials behaviour in the transition area. To verify the method a conventional steel was tested in Charpy tests as well as in the new tensile impact test.

  17. Tests with ceramic waste form materials made by pressureless consolidation

    International Nuclear Information System (INIS)

    Lewis, M. A.; Hash, M. C.; Hebden, A. S.; Ebert, W. L.

    2002-01-01

    A multiphase waste form referred to as the ceramic waste form (CWF) will be used to immobilize radioactively contaminated salt wastes recovered after the electrometallurgical treatment of spent sodium-bonded nuclear fuel. The CWF is made by first occluding salt in zeolite and then encapsulating the zeolite in a borosilicate binder glass. A variety of surrogate CWF materials were made using pressureless consolidation (PC) methods for comparison with CWF consolidated using a hot isostatic press (HIP) method and to study the effects of glass/zeolite batching ratio and processing conditions on the physical and chemical properties of the resulting materials. The data summarized in this report will also be used to support qualification of the PC CWF for disposal in the proposed federal high-level radioactive waste repository at Yucca Mountain. The phase composition and microstructure of HIP CWF and PC CWF are essentially identical: both are composed of about 70% sodalite, 25% binder glass, and a 5% total of inclusion phases (halite, nepheline, and various oxides and silicates). The primary difference is that PC CWF materials have higher porosities than HIP CWFs. The product consistency test (PCT) that was initially developed to monitor homogeneous glass waste forms was used to measure the chemical durabilities of the CWF materials. Series of replicate tests with several PC CWF materials indicate that the PCT can be conducted with the same precision with CWF materials as with borosilicate glasses. Short-term (7-day) PCTs were used to evaluate the repeatability of making the PC CWF and the effects of the glass/zeolite mass ratio, process temperature, and processing time on the chemical durability. Long-term (up to 1 year) PCTs were used to compare the durabilities of HIP and PC CWFs and to estimate the apparent solubility limit for the PC CWF that is needed for modeling. The PC and HIP CWF materials had similar disabilities, based on the release of silicon in long

  18. Installation for fatigue testing of materials at cryogenic temperatures

    International Nuclear Information System (INIS)

    Abushenkov, I.D.; Chernetskij, V.K.; Il'ichev, V.Ya.

    1986-01-01

    A new installation for mechanical fatigue tests of structural material samples is described, in which the possibility to conduct tests in the range of lower temperatures (4.2-300 K) is ensured. The installation permits to carry out fatigue tests using the method of axial loading of annular (up to 6 mm in diameter) and plane (up to 12 mm wide) samples during symmetric, asymmetric and pulsing loading cycles. It is shown that the installation suggested has quite extended operation possibilities and, coincidentally, it is characterized by design simplicity, compactness, comparatively low metal consumption and maintenance convenience

  19. Study on Identification of Material Model Parameters from Compact Tension Test on Concrete Specimens

    Science.gov (United States)

    Hokes, Filip; Kral, Petr; Husek, Martin; Kala, Jiri

    2017-10-01

    Identification of a concrete material model parameters using optimization is based on a calculation of a difference between experimentally measured and numerically obtained data. Measure of the difference can be formulated via root mean squared error that is often used for determination of accuracy of a mathematical model in the field of meteorology or demography. The quality of the identified parameters is, however, determined not only by right choice of an objective function but also by the source experimental data. One of the possible way is to use load-displacement curves from three-point bending tests that were performed on concrete specimens. This option shows the significance of modulus of elasticity, tensile strength and specific fracture energy. Another possible option is to use experimental data from compact tension test. It is clear that the response in the second type of test is also dependent on the above mentioned material parameters. The question is whether the parameters identified within three-point bending test and within compact tension test will reach the same values. The presented article brings the numerical study of inverse identification of material model parameters from experimental data measured during compact tension tests. The article also presents utilization of the modified sensitivity analysis that calculates the sensitivity of the material model parameters for different parts of loading curve. The main goal of the article is to describe the process of inverse identification of parameters for plasticity-based material model of concrete and prepare data for future comparison with identified values of the material model parameters from different type of fracture tests.

  20. Standard test methods for elevated temperature tension tests of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 These test methods cover procedure and equipment for the determination of tensile strength, yield strength, elongation, and reduction of area of metallic materials at elevated temperatures. 1.2 Determination of modulus of elasticity and proportional limit are not included. 1.3 Tension tests under conditions of rapid heating or rapid strain rates are not included. 1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  1. Soil washing treatability testing for rad-waste material

    International Nuclear Information System (INIS)

    Leis, K.S.; Lear, P.R.

    1997-01-01

    Soil washing treatability testing was successfully completed on soil contaminated with Ra-226 and Th-232. The objective of the soil washing study was to determine if the radiologically contaminated fraction of the soil could be separated from the bulk of the soil material. The cleanup criteria was 38 microm) fraction was allowed to settle and was washed to separate it from the highly contaminated fine (< 38 microm) fraction. The clean coarse fraction comprised 85.7% of the total solids and had less than 15 pCi/g of Ra-226 and Th-232. This material was to be disposed at a RCRA Subtitle D disposal facility. The suspended fines were flocculated and dewatered to minimize the amount of highly contaminated material produced by the soil washing. The dewatered fines would require disposal at a low-level radiological disposal facility. Mass balance calculations were made to determine production rates and chemical and equipment requirements for the full-scale soil washing treatment

  2. Quantifying and Addressing the DOE Material Reactivity Requirements with Analysis and Testing of Hydrogen Storage Materials & Systems

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Y. F. [United Technologies Research Center (UTRC), East Hartford, CT (United States)

    2012-04-30

    The objective of this project is to examine safety aspects of candidate hydrogen storage materials and systems being developed in the DOE Hydrogen Program. As a result of this effort, the general DOE safety target will be given useful meaning by establishing a link between the characteristics of new storage materials and the satisfaction of safety criteria. This will be accomplished through the development and application of formal risk analysis methods, standardized materials testing, chemical reactivity characterization, novel risk mitigation approaches and subscale system demonstration. The project also will collaborate with other DOE and international activities in materials based hydrogen storage safety to provide a larger, highly coordinated effort.

  3. Standard test methods for rockwell hardness of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 These test methods cover the determination of the Rockwell hardness and the Rockwell superficial hardness of metallic materials by the Rockwell indentation hardness principle. This standard provides the requirements for Rockwell hardness machines and the procedures for performing Rockwell hardness tests. 1.2 This standard includes additional requirements in annexes: Verification of Rockwell Hardness Testing Machines Annex A1 Rockwell Hardness Standardizing Machines Annex A2 Standardization of Rockwell Indenters Annex A3 Standardization of Rockwell Hardness Test Blocks Annex A4 Guidelines for Determining the Minimum Thickness of a Test Piece Annex A5 Hardness Value Corrections When Testing on Convex Cylindrical Surfaces Annex A6 1.3 This standard includes nonmandatory information in appendixes which relates to the Rockwell hardness test. List of ASTM Standards Giving Hardness Values Corresponding to Tensile Strength Appendix X1 Examples of Procedures for Determining Rockwell Hardness Uncertainty Appendix X...

  4. Standard test methods for rockwell hardness of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 These test methods cover the determination of the Rockwell hardness and the Rockwell superficial hardness of metallic materials by the Rockwell indentation hardness principle. This standard provides the requirements for Rockwell hardness machines and the procedures for performing Rockwell hardness tests. 1.2 This standard includes additional requirements in annexes: Verification of Rockwell Hardness Testing Machines Annex A1 Rockwell Hardness Standardizing Machines Annex A2 Standardization of Rockwell Indenters Annex A3 Standardization of Rockwell Hardness Test Blocks Annex A4 Guidelines for Determining the Minimum Thickness of a Test Piece Annex A5 Hardness Value Corrections When Testing on Convex Cylindrical Surfaces Annex A6 1.3 This standard includes nonmandatory information in appendixes which relates to the Rockwell hardness test. List of ASTM Standards Giving Hardness Values Corresponding to Tensile Strength Appendix X1 Examples of Procedures for Determining Rockwell Hardness Uncertainty Appendix X...

  5. Thermal testing transport packages for radioactive materials: Reality vs regulation

    International Nuclear Information System (INIS)

    Hovingh, J.; Carlson, R.W.

    1994-03-01

    The principle objective of this paper is to provide information that will help describe the physical thermal tests performed to demonstrate compliance with the hypothetical accident conditions specified in 10 CFR 71.73. Physical testing should be applied to packages that cannot be modeled by analysis to adequately predict their response to hypothetical accident conditions. These tests should be used when chemical decomposition or material changes occur during an accident that would be difficult to analytically predict or model

  6. An electromechanical material testing system for in situ electron microscopy and applications.

    Science.gov (United States)

    Zhu, Yong; Espinosa, Horacio D

    2005-10-11

    We report the development of a material testing system for in situ electron microscopy (EM) mechanical testing of nanostructures. The testing system consists of an actuator and a load sensor fabricated by means of surface micromachining. This previously undescribed nanoscale material testing system makes possible continuous observation of the specimen deformation and failure with subnanometer resolution, while simultaneously measuring the applied load electronically with nanonewton resolution. This achievement was made possible by the integration of electromechanical and thermomechanical components based on microelectromechanical system technology. The system capabilities are demonstrated by the in situ EM testing of free-standing polysilicon films, metallic nanowires, and carbon nanotubes. In particular, a previously undescribed real-time instrumented in situ transmission EM observation of carbon nanotubes failure under tensile load is presented here.

  7. Radiation resistance of polymer materials. Degradation evaluation by accelerated testing for application condition

    International Nuclear Information System (INIS)

    Seguchi, Tadao; Tamura, Kiyotoshi; Sorimachi, Masami

    2010-02-01

    This paper presents re-evaluated radiation resistance property data of polymer materials, which had been tested in past times in TAKASAKI Quantum Beam Science Directorate, for the future study of ageing evaluation of low voltage electric cable insulation materials used in light-water nuclear reactors. The radiation resistance of 25 types of plastics and rubbers materials applied in practical environments was evaluated by the accelerated testing of gamma-ray irradiation under oxygen pressure, and was compared with the radiation resistance determined from the traditional testing by irradiation with a high dose rate in air. The polymer materials were formulated to be similar or equivalent to practical materials, and the most of formulation (chemical compounds and quantities) were described. For all materials, the tensile properties (elongation at break, ultimate strength, 100% or 200% modulus), electric resistivity, gel-fraction, and density were measured after irradiation in oxidation conditions and irradiation in air with a high dose rate (non-oxidation conditions). The data of relations between each properties and total dose at various conditions were compiled, and the relations among the changes of mechanical properties, electrical properties, and radiation induced chemical reactions were discussed. (author)

  8. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, L. M., E-mail: garrisonlm@ornl.gov; Egle, B. J. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831 (United States); Fusion Technology Institute, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Zenobia, S. J.; Kulcinski, G. L.; Santarius, J. F. [Fusion Technology Institute, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States)

    2016-08-15

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA–500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10{sup 14} ions/(cm{sup 2} s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

  9. Material Compressing Test of the High Polymer Part Used in Draft Gear of Heavy Load Locomotive

    Directory of Open Access Journals (Sweden)

    Wei Yangang

    2016-01-01

    Full Text Available According to the actual load cases of heavy load locomotive, the material compressing tests of the high polymer parts used in the locomotive are researched. The relationship between stress and strain during the material compressing are acquired by means of comparing the many results of the material compressing tests under different test condition. The relationship between stress and strain during the material compressing is nonlinear in large range of strain, but the relationship is approximately linear in small range of strain. The material of the high polymer made in China and the material of the high polymer imported are compared through the tests. The results show that the compressing property of the material of the high polymer made in China and the material of the high polymer imported are almost same. The research offers the foundation to study the structure elasticity of the draft gear.

  10. Design and production of a novel sand materials strength testing machine for foundry applications

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Hansen, K. S.; Tiedje, Niels Skat

    2012-01-01

    testing machine was designed and built for both green sand and chemically-bonded sand materials. This machine measures and presents the loading response as a force-displacement profile from which the mechanical properties of the moulding materials can be deduced. The system was interfaced to a computer......In the foundry, existing strength testing machines are used to measure only the maximum fracture strength of mould and core materials. With traditionally used methods, the loading history to ascertain deformation of the material is not available. In this paper, a novel moulding material strength...... with a commercial PC based-control and data acquisition software. The testing conditions and operations are specified in the user interface and the data acquisition is made according to specifications. The force and displacements were calibrated to ensure consistency and reliability of the measurement data...

  11. Review Paper: Review of Instrumentation for Irradiation Testing of Nuclear Fuels and Materials

    International Nuclear Information System (INIS)

    Kim, Bong Goo; Rempe, Joy L.; Villard, Jean-Francois; Solstadd, Steinar

    2011-01-01

    Over 50 years of nuclear fuels and materials irradiation testing has led to many countries developing significant improvements in instrumentation to monitor physical parameters and to control the test conditions in material test reactors (MTRs). Recently, there is increased interest to irradiate new materials and reactor fuels for advanced pressurized water reactors and Gen-IV reactor systems, such as sodium-cooled fast reactors, very high temperature reactors, supercritical water-cooled reactors, and gas-cooled fast reactors. This review paper documents the current state of instrumentation technologies in MTRs in the world and summarizes ongoing research efforts to deploy new sensors. As described in this paper, a wide range of sensors is available to measure key parameters of interest during fuels and materials irradiations in MTRs. Ongoing development efforts focus on providing MTR users a wider range of parameter measurements with smaller, higher accuracy sensors.

  12. Possible checking of technical parameters in nondestructive materials and products testing

    International Nuclear Information System (INIS)

    Kesl, J.

    1987-01-01

    The requirements are summed up for partial technical parameters of instruments and facilities for nondestructive testing by ultrasound, radiography, by magnetic, capillary and electric induction methods. The requirements and procedures for testing instrument performance are presented for the individual methods as listed in domestic and foreign standards, specifications and promotional literature. The parameters to be tested and the methods of testing, including the testing and calibration instruments are shown in tables. The Czechoslovak standards are listed currently valid for nondestructive materials testing. (M.D.)

  13. Versatile equipment for mechanical testing of active materials

    International Nuclear Information System (INIS)

    Bertsch, Johannes; Heimgartner, Peter

    2005-01-01

    At the Paul Scherrer Institute (PSI) 3 different project groups presently perform aging research on active materials. The research fields are fusion, high neutron flux targets and LWR relevant components. Up to now mechanical testing has been performed with small, low dose rate samples behind local shielding, not appropriate for highly activated material. To overcome this situation, a cell concept for active mechanical testing was elaborated and has been erected in PSI's Hotlab. It consists of 4 shielded cells. 3 connected cells are versatile and independently operable for highly beta/gamma active samples. One cell is an alpha/beta/gamma-box which will be realized in a second phase. This paper presents the versatility especially of the beta/gamma-cells: The different user groups perform experiments in these cells, whereas different machines can be placed into the cells. As consequence of the need of heavily shielded cell doors, a special strengthening and levelling of the floor has been required. In all cells the relevant media are installed. Besides the performance of the cells, the project progress as the difficulties and their solutions are described. (Author)

  14. Present status of Japan materials testing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hori, Naohiko; Kaminaga, Masanori; Kusunoki, Tsuyoshi; Ishihara, Masahiro; Niimi, Motoji; Komori, Yoshihiro; Suzuki, Masahide; Kawamura, Hiroshi [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    The Japan Materials Testing Reactor (JMTR) in Japan Atomic Energy Agency (JAEA) is a light water cooled tank type reactor with first criticality in March 1968. Owing to the connection between the JMTR and hot laboratory by a canal, easy re-irradiation tests can be conducted with safe and quick transportation of irradiated samples. The JMTR has been applied to fuel/material irradiation examinations for LWRs, HTGR, fusion reactor and RI production. However, the JMTR operation was once stopped in August 2006, and check and review on the reoperation had been conducted by internal as well as external committees. As a result of the discussion, the JMTR reoperation was determined, and refurbishment works started from the beginning of JFY 2007. The refurbishment works have finished in March 2011 taking four years from JFY 2007. Unfortunately, at the end of the JFY 2010 on March 11, the Great-Eastern-Japan-Earthquake occurred, and functional tests before the JMTR restart, such as cooling system, reactor control system and so on, were delayed by the earthquake. Moreover, a detail inspection found some damages such as slight deformation of the truss structure at the roof of the JMTR reactor building. Consequently, the restart of the JMTR will be delayed from June to next October, 2012. Now, the safety evaluation after the earthquake disaster is being carried out aiming at the restart of the JMTR. The renewed JMTR will be started from JFY 2012 and operated for a period of about 20 years until around JFY 2030. The usability improvement of the JMTR, e.g. higher reactor availability, shortening turnaround time to get irradiation results, attractive irradiation cost, business confidence, is also discussed with users as the preparations for re-operation. (author)

  15. Present status of Japan materials testing reactor

    International Nuclear Information System (INIS)

    Hori, Naohiko; Kaminaga, Masanori; Kusunoki, Tsuyoshi; Ishihara, Masahiro; Niimi, Motoji; Komori, Yoshihiro; Suzuki, Masahide; Kawamura, Hiroshi

    2012-01-01

    The Japan Materials Testing Reactor (JMTR) in Japan Atomic Energy Agency (JAEA) is a light water cooled tank type reactor with first criticality in March 1968. Owing to the connection between the JMTR and hot laboratory by a canal, easy re-irradiation tests can be conducted with safe and quick transportation of irradiated samples. The JMTR has been applied to fuel/material irradiation examinations for LWRs, HTGR, fusion reactor and RI production. However, the JMTR operation was once stopped in August 2006, and check and review on the reoperation had been conducted by internal as well as external committees. As a result of the discussion, the JMTR reoperation was determined, and refurbishment works started from the beginning of JFY 2007. The refurbishment works have finished in March 2011 taking four years from JFY 2007. Unfortunately, at the end of the JFY 2010 on March 11, the Great-Eastern-Japan-Earthquake occurred, and functional tests before the JMTR restart, such as cooling system, reactor control system and so on, were delayed by the earthquake. Moreover, a detail inspection found some damages such as slight deformation of the truss structure at the roof of the JMTR reactor building. Consequently, the restart of the JMTR will be delayed from June to next October, 2012. Now, the safety evaluation after the earthquake disaster is being carried out aiming at the restart of the JMTR. The renewed JMTR will be started from JFY 2012 and operated for a period of about 20 years until around JFY 2030. The usability improvement of the JMTR, e.g. higher reactor availability, shortening turnaround time to get irradiation results, attractive irradiation cost, business confidence, is also discussed with users as the preparations for re-operation. (author)

  16. Challenges in high temperature low cycle fatigue testing of metallic materials

    International Nuclear Information System (INIS)

    Sandhya, R.; Valsan, M.; Bhanu Sankara Rao, K.

    2007-01-01

    The evaluation of the high strain Low Cycle Fatigue properties of structural materials is an involved and complicated procedure requiring skill and diligence from the experimentalist. This presentation describes the various testing methods to evaluate the LCF properties of structural materials, the complexities involved and some solutions to exacting requirements, not covered by the testing procedure standards. The basic components of servo-hydraulic fatigue testing machines is described, as are the calibration and maintenance procedures. Results of LCF tests conducted at the authors' laboratory on AISI 316L(N) stainless steel and Mod.9Cr-1Mo ferritic steel are described. The complications in total strain controlled testing of weld joints is brought out and soft zone development in Mod. 9Cr-1Mo ferritic steel is described. The special requirements for testing in environmental chambers is a challenging task. In-house chambers, designed to carry out testing in dynamic sodium environment is highlighted. These chambers have provision to accommodate extensometers for strain measurements, and also house all the safety instrumentation needed to carry out to mechanical testing in dynamic sodium environment. The variation of LCF results as a function of specimen geometry is examined. The various failure criteria adopted by laboratories in different countries are also touched upon. (author)

  17. Mechanical and Vibration Testing of Carbon Fiber Composite Material with Embedded Piezoelectric Sensors

    Science.gov (United States)

    Duffy, Kirsten P.; Lerch, Bradley A.; Wilmoth, Nathan G.; Kray, Nicholas; Gemeinhardt, Gregory

    2012-01-01

    Piezoelectric materials have been proposed as a means of decreasing turbomachinery blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite (PMFC) blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. Before implementation of a piezoelectric element within a PMFC blade, the effect on PMFC mechanical properties needs to be understood. This study attempts to determine how the inclusion of a packaged piezoelectric patch affects the material properties of the PMFC. Composite specimens with embedded piezoelectric patches were tested in four-point bending, short beam shear, and flatwise tension configurations. Results show that the embedded piezoelectric material does decrease the strength of the composite material, especially in flatwise tension, attributable to failure at the interface or within the piezoelectric element itself. In addition, the sensing properties of the post-cured embedded piezoelectric materials were tested, and performed as expected. The piezoelectric materials include a non-flexible patch incorporating solid piezoceramic material, and two flexible patch types incorporating piezoelectric fibers. The piezoceramic material used in these patches was Navy Type-II PZT.

  18. Database on gas migration tests through bentonite buffer material

    International Nuclear Information System (INIS)

    Tanai, Kenji

    2009-02-01

    Carbon steel is a candidate material for an overpack for geological disposal of high-level radioactive waste in Japan. The corrosion of the carbon steel overpack in aqueous solution under anoxic conditions will cause the generation of hydrogen gas, which may affect hydrological and mechanical properties of the bentonite buffer. To evaluate such an effect of gas generation, it is necessary to develop a model of gas migration through bentonite buffer material taking account of data obtained from experiments. The gas migration experiments under both unsaturated and saturated conditions have been carried out to clarify the fundamental characteristics of bentonite for gas migration. This report compiles the experimental data obtained from gas migration tests for buffer material which has been conducted by JAEA until December, 2007. A CD-ROM is attached as an appendix. (author)

  19. Standard Test Method for Solar Photometric Transmittance of Sheet Materials Using Sunlight

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This test method covers the measurement of solar photometric transmittance of materials in sheet form. Solar photometric transmittance is measured using a photometer (illuminance meter) in an enclosure with the sun and sky as the source of radiation. The enclosure and method of test is specified in Test Method E 1175 (or Test Method E 1084). 1.2 The purpose of this test method is to specify a photometric sensor to be used with the procedure for measuring the solar photometric transmittance of sheet materials containing inhomogeneities in their optical properties. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  20. Standard Test Method for Solar Transmittance (Terrestrial) of Sheet Materials Using Sunlight

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1986-01-01

    1.1 This test method covers the measurement of solar transmittance (terrestrial) of materials in sheet form by using a pyranometer, an enclosure, and the sun as the energy source. 1.2 This test method also allows measurement of solar transmittance at angles other than normal incidence. 1.3 This test method is applicable to sheet materials that are transparent, translucent, textured, or patterned. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  1. Accelerators for Fusion Materials Testing

    Science.gov (United States)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  2. NNWSI Phase II materials interaction test procedure and preliminary results

    International Nuclear Information System (INIS)

    Bates, J.K.; Gerding, T.J.

    1985-01-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) project is investigating the volcanic tuff beds of Yucca Mountain, Nevada, as a potential location for a high-level radioactive waste repository. This report describes a test method (Phase II) that has been developed to measure the release of radionuclides from the waste package under simulated repository conditions, and provides information on materials interactions that may occur in the repository. The results of 13 weeks of testing using the method are presented, and an analog test is described that investigates the relationship between the test method and expected repository conditions. 9 references, 10 figures, 11 tables

  3. Emission of biocides from treated materials: test procedures for water and air.

    Science.gov (United States)

    Schoknecht, Ute; Wegner, Robby; Horn, Wolfgang; Jann, Oliver

    2003-01-01

    Methods for the determination of biocide emissions from treated materials into water and air were developed and tested in order to support a comparative ecological assessment of biocidal products. Leaching tests, experiments with simulated rain, extraction cleaning of carpets and emission chamber tests were performed with a series of treated materials. The experiments focused on the effect of changes in the procedure as well as characteristics of the specimens and demonstrate the suitability of the proposed methods for biocides of different product types. It was demonstrated that emissions of biocides into water can be compared on the basis of leaching tests in which the emission kinetics of the active ingredients are recorded. However, the water volume per surface area and the timetable for water changes have to be defined in such tests. Functions of flux rates related to time can be well described for inorganic compounds, whereas modelling of the data is more complicated for organic substances. Emission chamber tests using 20-litre and 23-litre glass exsiccators, originally developed to study volatile organic compounds, were successfully adapted for the investigation of the emission of biocides from treated materials which are usually semi volatile organic compounds. However test parameters and the method of analysis have to be adapted to the substances to be determined. Generally, it was found that the emission curves for the semi volatile organic compounds investigated differ from those of volatile organic compounds.

  4. Characterization of a backfill candidate material, IBECO-RWC-BF Baclo Project - Phase 3 Laboratory tests

    International Nuclear Information System (INIS)

    Johannesson, Lars-Erik; Sanden, Torbjoern; Dueck, Ann; Ohlsson, Lars

    2010-01-01

    A backfill candidate material, IBECO-RWC-BF, which origin from Milos, Greece, has been investigated. The material was delivered both as granules and as pellets. The investigation described in this report aimed to characterize the material and evaluate if it can be used in a future repository. The following investigations have been done and are presented in this report: 1. Standard laboratory tests. Water content, liquid limit and swelling potential are examples on standard tests that have been performed. 2. Block manufacturing. The block compaction properties of the material have been determined. A first test was performed in laboratory but also tests in large scale have been performed. After finishing the test phase, 60 tons of blocks were manufactured at Hoeganaes Bjuf AB. The blocks will be used in large scale laboratory tests at Aespoe HRL. 3. Mechanical parameters. The compressibility of the material was investigated with oedometer tests (four tests) where the load was applied in steps after saturation. The evaluated oedometer modulus varied between 34.50 MPa. Tests were made to evaluate the elastic parameters of the material (E, ν). Altogether three tests were made on specimens with dry densities of about 1,710 kg/m 3 . The evaluated E-modulus and Poisson's ratio varied between 231-263 MPa and 0.16-0.19 respectively. The strength of the material, both the compressive strength and the tensile strength were measured on specimens compacted to different dry densities. The test results yielded a relation between density and the two types of strength. Furthermore, tests have been made in order to determine the compressibility of the unsaturated filling of pellets. Two tests were made where the pellets were loosely filled in a Proctor cylinder and then compressed at a constant rate of strain during continuously measurement of the applied load. 4. Swelling pressure and hydraulic conductivity. There is, as expected, a very clear influence of the dry density on the

  5. Manipulator-controlled manufacturing and on-line testing of composite materials. Subproject: Development and trial of test techniques. Final report

    International Nuclear Information System (INIS)

    Nuding, W.; Schroeder, P.

    1991-10-01

    ZAT Juelich was in charge of the assessment of the basic nondestructive materials testing requirements relevant to manufacturing, the application and testing of the hardware and software developed by ITS, the supply of the required X-ray systems including sensors and basic manipulation systems, microfocus X-raying of the newly developed special welding materials, hard-facing parameter studies applicable to components which consist of different composite materials and are characterized by complex geometries, and computer-aided evaluation and scanning of components. The ITS developments were based on nondestructive radiography because radiography provides reliable data about the types, location and sizes of defects. The test object is X-rayed by means of an X-ray tube, and radiograph is displayed on a TV monitor by means of an image intensifying TV chain after improvement of the signal-to-noise ratio by an image processing system. (orig.) [de

  6. Optimization of a fuel converter for the MERLIN materials testing facility

    International Nuclear Information System (INIS)

    Pouleur, Y.; Raedt, Ch. de; Malambu, E.; Minsart, G.; Vermunt, J.

    1998-01-01

    SCK-CEN is at the present time developing the MERLIN materials testing facility, to be placed in the pool at the BR2 high flux materials testing reactor. It aims at irradiating large amounts of steel samples that are subsequently to be analyzed in the framework of reactor vessel embrittlement research programmes. In order to fulfill the required fast neutron flux conditions, a converter made of highly enriched uranium fuel plates, has to be inserted between the reactor vessel and the samples. The converter will transform the BR2 thermal neutron outflow into the required fast neutron flux. This converter has to be optimised. (author)

  7. Data package for the Turkey Point material interaction test capsules

    International Nuclear Information System (INIS)

    Krogness, J.C.; Davis, R.B.

    1980-02-01

    Objective of the test is to obtain interaction information on candidate package storage materials and geologies under prototypic temperatures in gamma and low-level neutron fields. This document provides a fabrication record of the experiment

  8. [Validity assessment of a low level phonological processing test material in preschool children].

    Science.gov (United States)

    Ptok, M; Altwein, F

    2012-07-01

    The BISC (Bielefelder Screening) is a German test to evaluate phonological skills believed to be a prerequisite for future reading and writing skills. BISC results may indicate an elevated risk for dyslexia. Our research group has put forward test material in order to specifically examine low-level phonological processing LLPP. In this study we analysed whether BISC and low-level phonological processing correlate. A retrospective correlation analysis was carried out on primary school children's test results of the BISC and the newly developed low-level phonological processing test material. Spearman's rho was 0.52 between total LLPP and total BISC. The subscales correlated with a rho below 0.5. Results indicate that a low level phonological processing and higher level phonological processing can be differentiated. Future studies will have to clarify whether these results can be used to construct specifically targeting therapy strategies and whether the LLPP test material can be used to assess the risk of subsequent dyslexia also. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Small Punch Test Techniques for Irradiated Materials in Hot Cell

    International Nuclear Information System (INIS)

    Kim, Do Sik; Ahn, S. B.; Oh, W. H.; Yoo, B. O.; Choo, Y. S.

    2006-06-01

    Detailed procedures of the small punch test including the apparatus, the definition of small punch-related parameters, and the interpretation of results were presented. The testing machine should have a capability of the compressive loading and unloading at a given deflection level. The small punch specimen holder consists of an upper and lower die and clamping screws. The clamped specimen is deformed by using ball or spherical head punch. Two type of specimens with a circular and a square shape were used. The irradiated small punch specimen is made from the undamaged portion of the broken CVN bars or prepared by the irradiation of the specimen fabricated from the fresh materials. The heating and cooling devices should have the capability of the temperature control within ±2 .deg. C for the target value during the test. Based on the load-deflection data obtained from the small punch test. the empirical correlation between the small punch related parameters and a tensile properties such as 0.2% yield strength and ultimate tensile strength, fracture toughness, ductile-brittle transition temperature and creep properties determined from the standard test method is established and used to evaluate the mechanical properties of an irradiated materials. In addition, from the quantitative fractographic assessment of small punch test specimens, the relationship between the small punch energy and the quantity of ductile crack growth is obtained. Analytical formulations demonstrated good agreement with experimental load-deflection curves

  10. State of the art report on the materials testing capabilities for IASCC susceptibility testing at SCK-CEN

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, R.-W.; Boydens, P.; Vankeerbergen, R.; Van Nieuwenhove, R.; Van Dyck, S

    1999-08-01

    An overview of the current IASCC testing facilities at the Belgian Nuclear Research Centre SCK-CEN is given. The testing techniques are reviewed, and their capabilities as well as their limitations are discussed. Possible future developments in testing techniques are discussed. IASCC is caused by a complex interaction between materials, its environment and mechanical stresses. Characterisation techniques assessing mechanical stresses as well as electrochemical and microstructural characteristics are reported on.

  11. Accurate anisotropic material modelling using only tensile tests for hot and cold forming

    Science.gov (United States)

    Abspoel, M.; Scholting, M. E.; Lansbergen, M.; Neelis, B. M.

    2017-09-01

    Accurate material data for simulations require a lot of effort. Advanced yield loci require many different kinds of tests and a Forming Limit Curve (FLC) needs a large amount of samples. Many people use simple material models to reduce the effort of testing, however some models are either not accurate enough (i.e. Hill’48), or do not describe new types of materials (i.e. Keeler). Advanced yield loci describe the anisotropic materials behaviour accurately, but are not widely adopted because of the specialized tests, and data post-processing is a hurdle for many. To overcome these issues, correlations between the advanced yield locus points (biaxial, plane strain and shear) and mechanical properties have been investigated. This resulted in accurate prediction of the advanced stress points using only Rm, Ag and r-values in three directions from which a Vegter yield locus can be constructed with low effort. FLC’s can be predicted with the equations of Abspoel & Scholting depending on total elongation A80, r-value and thickness. Both predictive methods are initially developed for steel, aluminium and stainless steel (BCC and FCC materials). The validity of the predicted Vegter yield locus is investigated with simulation and measurements on both hot and cold formed parts and compared with Hill’48. An adapted specimen geometry, to ensure a homogeneous temperature distribution in the Gleeble hot tensile test, was used to measure the mechanical properties needed to predict a hot Vegter yield locus. Since for hot material, testing of stress states other than uniaxial is really challenging, the prediction for the yield locus adds a lot of value. For the hot FLC an A80 sample with a homogeneous temperature distribution is needed which is due to size limitations not possible in the Gleeble tensile tester. Heating the sample in an industrial type furnace and tensile testing it in a dedicated device is a good alternative to determine the necessary parameters for the FLC

  12. A measurement method for piezoelectric material properties under longitudinal compressive stress–-a compression test method for thin piezoelectric materials

    International Nuclear Information System (INIS)

    Kang, Lae-Hyong; Lee, Dae-Oen; Han, Jae-Hung

    2011-01-01

    We introduce a new compression test method for piezoelectric materials to investigate changes in piezoelectric properties under the compressive stress condition. Until now, compression tests of piezoelectric materials have been generally conducted using bulky piezoelectric ceramics and pressure block. The conventional method using the pressure block for thin piezoelectric patches, which are used in unimorph or bimorph actuators, is prone to unwanted bending and buckling. In addition, due to the constrained boundaries at both ends, the observed piezoelectric behavior contains boundary effects. In order to avoid these problems, the proposed method employs two guide plates with initial longitudinal tensile stress. By removing the tensile stress after bonding a piezoelectric material between the guide layers, longitudinal compressive stress is induced in the piezoelectric layer. Using the compression test specimens, two important properties, which govern the actuation performance of the piezoelectric material, the piezoelectric strain coefficients and the elastic modulus, are measured to evaluate the effects of applied electric fields and re-poling. The results show that the piezoelectric strain coefficient d 31 increases and the elastic modulus decreases when high voltage is applied to PZT5A, and the compression in the longitudinal direction decreases the piezoelectric strain coefficient d 31 but does not affect the elastic modulus. We also found that the re-poling of the piezoelectric material increases the elastic modulus, but the piezoelectric strain coefficient d 31 is not changed much (slightly increased) by re-poling

  13. 1000–ton testing machine for cyclic fatigue tests of materials at liquid nitrogen temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Khitruk, A. A.; Klimchenko, Yu. A.; Kovalchuk, O. A.; Marushin, E. L.; Mednikov, A. A.; Nasluzov, S. N.; Privalova, E. K.; Rodin, I. Yu.; Stepanov, D. B.; Sukhanova, M. V. [The D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA), 3 Doroga na Metallostroy, Metallostroy, Saint Petersburg 196641 (Russian Federation)

    2014-01-29

    One of the main tasks of superconductive magnets R and D is to determine the mechanical and fatigue properties of structural materials and the critical design elements in the cryogenic temperature range. This paper describes a new facility built based on the industrial 1000-ton (10 MN) testing machine Schenk PC10.0S. Special equipment was developed to provide the mechanical and cyclic tensile fatigue tests of large-scale samples at the liquid nitrogen temperature and in a given load range. The main feature of the developed testing machine is the cryostat, in which the device converting a standard compression force of the testing machine to the tensile force affected at the test object is placed. The control system provides the remote control of the test and obtaining, processing and presentation of test data. As an example of the testing machine operation the test program and test results of the cyclic tensile fatigue tests of fullscale helium inlet sample of the PF1 coil ITER are presented.

  14. 1000–ton testing machine for cyclic fatigue tests of materials at liquid nitrogen temperatures

    International Nuclear Information System (INIS)

    Khitruk, A. A.; Klimchenko, Yu. A.; Kovalchuk, O. A.; Marushin, E. L.; Mednikov, A. A.; Nasluzov, S. N.; Privalova, E. K.; Rodin, I. Yu.; Stepanov, D. B.; Sukhanova, M. V.

    2014-01-01

    One of the main tasks of superconductive magnets R and D is to determine the mechanical and fatigue properties of structural materials and the critical design elements in the cryogenic temperature range. This paper describes a new facility built based on the industrial 1000-ton (10 MN) testing machine Schenk PC10.0S. Special equipment was developed to provide the mechanical and cyclic tensile fatigue tests of large-scale samples at the liquid nitrogen temperature and in a given load range. The main feature of the developed testing machine is the cryostat, in which the device converting a standard compression force of the testing machine to the tensile force affected at the test object is placed. The control system provides the remote control of the test and obtaining, processing and presentation of test data. As an example of the testing machine operation the test program and test results of the cyclic tensile fatigue tests of fullscale helium inlet sample of the PF1 coil ITER are presented

  15. Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers the determination of fracture toughness (KIc) of metallic materials under predominantly linear-elastic, plane-strain conditions using fatigue precracked specimens having a thickness of 1.6 mm (0.063 in.) or greater subjected to slowly, or in special (elective) cases rapidly, increasing crack-displacement force. Details of test apparatus, specimen configuration, and experimental procedure are given in the Annexes. Note 1—Plane-strain fracture toughness tests of thinner materials that are sufficiently brittle (see 7.1) can be made using other types of specimens (1). There is no standard test method for such thin materials. 1.2 This test method is divided into two parts. The first part gives general recommendations and requirements for KIc testing. The second part consists of Annexes that give specific information on displacement gage and loading fixture design, special requirements for individual specimen configurations, and detailed procedures for fatigue precracking. Additional a...

  16. Newly developed non-destructive testing method for evaluation of irradiation brittleness of structural materials using ultrasonic

    International Nuclear Information System (INIS)

    Ishii, Toshimitsu; Ooka, Norikazu; Kato, Yoshiaki; Saito, Junichi; Hoshiya, Taiji; Shibata, Saburo; Kobayashi, Hideo

    1999-01-01

    Surveillance testing is important to evaluate neutron irradiation embrittlement of reactor pressure vessel material for long life operation. An alternative test method for evaluating the irradiation embrittlement of the pressure vessel material will have to be proposed to support the limited number of surveillance test specimens in order to manage the plant life to be extended. In this study, ultrasonic testing for irradiated A533B-1 steel and weld metal was applied to examine material degradation nondestructively. With increasing the shift of Charpy 41 J transition temperature, ultrasonic velocity decreased and attenuation coefficient of ultrasonic wave increased. Especially, the difference of ultrasonic velocity for 5 MHz shear wave between as-received and irradiated material is corresponding to the shift of transition temperature showing material degradation. (author)

  17. Key parameters in testing biodegradation of bio-based materials in soil.

    Science.gov (United States)

    Briassoulis, D; Mistriotis, A

    2018-05-05

    Biodegradation of plastics in soil is currently tested by international standard testing methods (e.g. ISO 17556-12 or ASTM D5988-12). Although these testing methods have been developed for plastics, it has been shown in project KBBPPS that they can be extended also to lubricants with small modifications. Reproducibility is a critical issue regarding biodegradation tests in the laboratory. Among the main testing variables are the soil types and nutrients available (mainly nitrogen). For this reason, the effect of the soil type on the biodegradation rates of various bio-based materials (cellulose and lubricants) was tested for five different natural soil types (loam, loamy sand, clay, clay-loam, and silt-loam organic). It was shown that use of samples containing 1 g of C in a substrate of 300 g of soil with the addition of 0.1 g of N as nutrient strongly improves the reproducibility of the test making the results practically independent of the soil type with the exception of the organic soil. The sandy soil was found to need addition of higher amount of nutrients to exhibit similar biodegradation rates as those achieved with the other soil types. Therefore, natural soils can be used for Standard biodegradation tests of bio-based materials yielding reproducible results with the addition of appropriate nutrients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Standard Guide for Selection of Test Methods for Interlayer Materials for Aerospace Transparent Enclosures

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This guide summarizes the standard test methods available for determining physical and mechanical characteristics of interlayer materials used in multi-ply aerospace transparent enclosures. 1.2 Interlayer materials are used to laminate glass-to-glass, glass-to-plastic, and plastic-to-plastic. Interlayer materials are basically transparent adhesives with high-quality optical properties. They can also serve as an energy absorbing medium, a fail-safe membrane to contain cockpit pressure and to prevent entry of impact debris; a strain insulator to accommodate different thermal expansion rates of members being laminated and as an adherent to prevent spalling of inner surface ply material fragments. The relative importance of an interlayer characteristic will be a function of the prime use it serves in its particular application. 1.3 This guide, as a summary of various methods in Section 2, is intended to facilitate the selection of tests that can be applied to interlayer materials. 1.4 The test methods list...

  19. Laboratory Testing of Waste Isolation Pilot Plant Surrogate Waste Materials

    Science.gov (United States)

    Broome, S.; Bronowski, D.; Pfeifle, T.; Herrick, C. G.

    2011-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. The waste is emplaced in rooms excavated in the bedded Salado salt formation at a depth of 655 m below the ground surface. After emplacement of the waste, the repository will be sealed and decommissioned. WIPP Performance Assessment modeling of the underground material response requires a full and accurate understanding of coupled mechanical, hydrological, and geochemical processes and how they evolve with time. This study was part of a broader test program focused on room closure, specifically the compaction behavior of waste and the constitutive relations to model this behavior. The goal of this study was to develop an improved waste constitutive model. The model parameters are developed based on a well designed set of test data. The constitutive model will then be used to realistically model evolution of the underground and to better understand the impacts on repository performance. The present study results are focused on laboratory testing of surrogate waste materials. The surrogate wastes correspond to a conservative estimate of the degraded containers and TRU waste materials after the 10,000 year regulatory period. Testing consists of hydrostatic, uniaxial, and triaxial tests performed on surrogate waste recipes that were previously developed by Hansen et al. (1997). These recipes can be divided into materials that simulate 50% and 100% degraded waste by weight. The percent degradation indicates the anticipated amount of iron corrosion, as well as the decomposition of cellulosics, plastics, and rubbers. Axial, lateral, and volumetric strain and axial and lateral stress measurements were made. Two unique testing techniques were developed during the course of the experimental program. The first involves the use of dilatometry to measure sample volumetric strain under a hydrostatic condition. Bulk

  20. Comments on Thermal Physical Properties Testing Methods of Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Jingchao Xie

    2013-01-01

    Full Text Available There is no standard testing method of the thermal physical properties of phase change materials (PCM. This paper has shown advancements in this field. Developments and achievements in thermal physical properties testing methods of PCM were commented, including differential scanning calorimetry, T-history measurement, the water bath method, and differential thermal analysis. Testing principles, advantages and disadvantages, and important points for attention of each method were discussed. A foundation for standardized testing methods for PCM was made.

  1. Investigation of special capsule technologies for material in-pile irradiation test and development plan in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Cho, M. S.; Son, J. M.; Kim, D. S.; Park, S. J.; Cho, Y. G.; Seo, C. K.; Kang, Y. H. [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    In-pile test for several materials such as Zr alloy, stainless steel, Cr-Ni steel etc. which are used as structural material of the advanced reactor and KNGR(Korea Next Generation Reactor) like SMART, is necessary to produce the design data for developing new reactor materials. Advanced countries like USA, Europe and Japan etc. are not only performing the simple irradiation test for materials, but developing many kinds of special capsule to perform in-pile test having special purpose. For the special test items of fuel rod, fission products, total heat generation, swelling, deformation, sweep gas, temperature ramping and BOCA etc. are being actively concerned. There are capsules measuring creep, fatigue, crack growth, and controlling fluence etc. for special irradiation test of materials. In addition, the advanced countries are developing several instrument technologies suitable for the special capsules. In HANARO, non-instrumented, instrumented material capsules and non-instrumented fuel capsule have been developed and they have been utilized in the irradiation test for users, and creep capsule loading single specimen was made and is planned to test in the reactor soon. For some forthcoming years, special capsules not only measuring creep deformation with multi-specimens, fatigue, controlling fluence but crack propagation and gas sweep considering the requirements of users will be developed in HANARO.

  2. Influence of residual stresses during eddy current testing of zircaloy bar material

    International Nuclear Information System (INIS)

    Saibaba, N.; Das, G.; Pratap, Y.; Acharya, S.; Chaube, R.K.; Jayaraj, R.N.

    2009-01-01

    Full text: Zirconium alloy bar is the input material for making end plugs required for encapsulating the fuel tubes after loading of uranium di-oxide pellets. These bars are manufactured through extrusion followed by multi-pass swaging and intermediate vacuum annealing. The bar is subjected to 100% Ultrasonic testing to ensure that defect free material is used for making the end plugs. The elements thus welded are subjected to helium leak testing for checking the weld integrity. However, stray cases of helium leakage from fuel elements were observed on few occasions. On investigation, it was found that the leakage was from small porosity present in the plugs. In order to isolate such an eventuality, stricter ultrasonic standards were adopted and additionally eddy current testing was introduced. It was observed that a number of eddy current signals equal to the defect standard were noticed and the reasons for these indications could not be identified. This led to a significant fall in the material recovery. An in-depth study with various heat treatment cycles and process steps was carried out. It was finally concluded that the indications observed in eddy current testing were due to the residual stresses on the periphery of the bar material caused due by improper straightening being carried out at the final stage of the bar manufacture. This paper presents the systematic studies carried out and correlation established between the eddy current signals and the residual stresses

  3. A comparison of the Nordtest and Japanese test methods for the moisture buffering performance of building materials

    DEFF Research Database (Denmark)

    Roels, Staf; Janssen, Hans

    2006-01-01

    Two test methods, one worked out in a Nordtest project and the other available as a Japanese Industrial Standard, both developed to characterize building materials with respect to moisture buffering performance, are analyzed in detail by a numerical study on four different materials. Both test...... by confronting the values obtained for the four materials with the dynamic response of a small room with each of the materials used in turns as finishing material. Finally, the results determined according to the dynamic test protocol are compared with values calculated from steady-state material data....

  4. Honeycomb technology materials, design, manufacturing, applications and testing

    CERN Document Server

    Bitzer, Tom

    1997-01-01

    Honeycomb Technology is a guide to honeycomb cores and honeycomb sandwich panels, from the manufacturing methods by which they are produced, to the different types of design, applications for usage and methods of testing the materials. It explains the different types of honeycomb cores available and provides tabulated data of their properties. The author has been involved in the testing and design of honeycomb cores and sandwich panels for nearly 30 years. Honeycomb Technology reflects this by emphasizing a `hands-on' approach and discusses procedures for designing sandwich panels, explaining the necessary equations. Also included is a section on how to design honeycomb energy absorbers and one full chapter discussing honeycomb core and sandwich panel testing. Honeycomb Technology will be of interest to engineers in the aircraft, aerospace and building industries. It will also be of great use to engineering students interested in basic sandwich panel design.

  5. Work plan for testing silicone impression material and fixture on pool cell capsule

    International Nuclear Information System (INIS)

    Lundeen, J.E.

    1994-01-01

    The purpose of this work plan is to provide a safe procedure to test a cesium capsule impression fixture at Waste Encapsulation and Storage Facility (WESF). The impression will be taken with silicone dental impression material pressed down upon the capsule using the impression fixture. This test will evaluate the performance of the fixture and impression material under high radiation and temperature conditions on a capsule in a WESF pool cell

  6. Characterization of a backfill candidate material, IBECO-RWC-BF Baclo Project - Phase 3 Laboratory tests

    Energy Technology Data Exchange (ETDEWEB)

    Johannesson, Lars-Erik; Sanden, Torbjoern; Dueck, Ann; Ohlsson, Lars (Clay Technology AB, Lund (Sweden))

    2010-01-15

    A backfill candidate material, IBECO-RWC-BF, which origin from Milos, Greece, has been investigated. The material was delivered both as granules and as pellets. The investigation described in this report aimed to characterize the material and evaluate if it can be used in a future repository. The following investigations have been done and are presented in this report: 1. Standard laboratory tests. Water content, liquid limit and swelling potential are examples on standard tests that have been performed. 2. Block manufacturing. The block compaction properties of the material have been determined. A first test was performed in laboratory but also tests in large scale have been performed. After finishing the test phase, 60 tons of blocks were manufactured at Hoeganaes Bjuf AB. The blocks will be used in large scale laboratory tests at Aespoe HRL. 3. Mechanical parameters. The compressibility of the material was investigated with oedometer tests (four tests) where the load was applied in steps after saturation. The evaluated oedometer modulus varied between 34.50 MPa. Tests were made to evaluate the elastic parameters of the material (E, nu). Altogether three tests were made on specimens with dry densities of about 1,710 kg/m3. The evaluated E-modulus and Poisson's ratio varied between 231-263 MPa and 0.16-0.19 respectively. The strength of the material, both the compressive strength and the tensile strength were measured on specimens compacted to different dry densities. The test results yielded a relation between density and the two types of strength. Furthermore, tests have been made in order to determine the compressibility of the unsaturated filling of pellets. Two tests were made where the pellets were loosely filled in a Proctor cylinder and then compressed at a constant rate of strain during continuously measurement of the applied load. 4. Swelling pressure and hydraulic conductivity. There is, as expected, a very clear influence of the dry density on the

  7. NASA GRC's High Pressure Burner Rig Facility and Materials Test Capabilities

    Science.gov (United States)

    Robinson, R. Craig

    1999-01-01

    The High Pressure Burner Rig (HPBR) at NASA Glenn Research Center is a high-velocity. pressurized combustion test rig used for high-temperature environmental durability studies of advanced materials and components. The facility burns jet fuel and air in controlled ratios, simulating combustion gas chemistries and temperatures that are realistic to those in gas turbine engines. In addition, the test section is capable of simulating the pressures and gas velocities representative of today's aircraft. The HPBR provides a relatively inexpensive. yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials. The facility has the unique capability of operating under both fuel-lean and fuel-rich gas mixtures. using a fume incinerator to eliminate any harmful byproduct emissions (CO, H2S) of rich-burn operation. Test samples are easily accessible for ongoing inspection and documentation of weight change, thickness, cracking, and other metrics. Temperature measurement is available in the form of both thermocouples and optical pyrometery. and the facility is equipped with quartz windows for observation and video taping. Operating conditions include: (1) 1.0 kg/sec (2.0 lbm/sec) combustion and secondary cooling airflow capability: (2) Equivalence ratios of 0.5- 1.0 (lean) to 1.5-2.0 (rich), with typically 10% H2O vapor pressure: (3) Gas temperatures ranging 700-1650 C (1300-3000 F): (4) Test pressures ranging 4-12 atmospheres: (5) Gas flow velocities ranging 10-30 m/s (50-100) ft/sec.: and (6) Cyclic and steady-state exposure capabilities. The facility has historically been used to test coupon-size materials. including metals and ceramics. However complex-shaped components have also been tested including cylinders, airfoils, and film-cooled end walls. The facility has also been used to develop thin-film temperature measurement sensors.

  8. Tests and studies of USSR materials at the US coal burning MHD facility UTSI-2

    Energy Technology Data Exchange (ETDEWEB)

    Telegin, G P; Romanov, A I; Rekov, A I; Spiridonov, E G; Barodina, T I; Vysotsky, D A

    1978-10-01

    In accordance with the overall program of the US--USSR cooperation in the field of MHD power generation tests of Soviet electrode materials were conducted at the coal burning MHD facility UTSI-2 of the University of Tennessee Space Institute. The main purposes of the tests are evaluation of electrode materials behavior in the channel of the MHD generator operating with combustion products of coal containing ionizing alkali seed, study of thermal and physical stability of materials in the presence of corrosive slag, study of electrophysical characteristics of electrode materials when they are subjected to the passage of current through the plasma-slag-electrode system. Tests were conducted on electrodes made of silicon carbide doped with titanium and LaCrO/sub 3/--Cr cermet. Results are reported on the phase and chemical composition and structure of these two materials, their thermophysical and electrophysical properties, and the electrode fabrication methods. The MHD facility UTSI-2, where the tests were conducted is one of few utilizing actual coal as the fuel. A description of this facility is given, and its main operating parameters and the methods used to conduct electrode tests with and without an applied current are described.

  9. Hydramite II screening tests of potential bremsstrahlung converter debris shield materials

    International Nuclear Information System (INIS)

    Reedy, E.D. Jr.; Hedemann, M.A.; Stark, M.A.

    1986-03-01

    Results of a brief test series aimed at screening a number of potential bremsstrahlung converter debris shield materials are reported. These tests were run on Sandia National Laboratories' Hydramite II accelerator using a diode configuration which produces a pinched electron beam. The materials tested include: (1) laminated Kevlar 49/polyester and E-glass/polyester composites, (2) a low density laminated Kevlar 49 composite, and (3) two types of through-the-thickness reinforced Kevlar 49 composites. As expected, tests using laminated Kevlar 49/polyester shields showed that shield permanent set (i.e., permanent deflection) increased with increasing tantalum conversion foil thickness and decreased with increasing shield thickness. The through-the-thickness reinforced composites developed localized, but severe, back surface damage. The laminated composites displayed little back surface damage, although extensive internal matrix cracking and ply delaminations were generated. Roughly the same degree of permanent set was produced in shields made from the low density Kevlar 49 composite and the Kevlar 49/polyester. The E-glass reinforced shields exhibited relatively low levels of permanent set

  10. Exposure testing and evaluation of solar utilization materials. Semiannual report, May 1, 1975--October 31, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Gilligan, J.E.; Brzuskiewicz, J.

    1975-01-01

    The initial efforts of a program of research and experimental testing is described in which the optical performance of materials for use in solar energy utilization devices will be determined before and after exposure to outdoor weathering tests. Materials which are currently in use and others which are being considered or developed for these applications will be characterized and exposed to natural solar radiation. Outdoor testing will be accomplished in Phoenix (Ariz.), Miami (Fla.), and Chicago (Ill.). The results of these tests, primarily the effects of outdoor exposure on optical and physical properties, will be compiled in a handbook, along with cost, availability and other pertinent information. These data are vital to the intelligent selection of solar utilization materials, since a knowledge of the cost performance and lifetime characteristics of candidate materials will greatly assist the design of efficient and reliable solar energy utilization devices. Primary accomplishments include the definition of sample requirements, specification of test samples and test configurations, formulation of acceptance/rejection criteria and contacts with numerous potential materials suppliers.

  11. Comparison of the release of constituents from granular materials under batch and column testing.

    Science.gov (United States)

    Lopez Meza, Sarynna; Garrabrants, Andrew C; van der Sloot, Hans; Kosson, David S

    2008-01-01

    Column leaching testing can be considered a better basis for assessing field impact data than any other available batch test method and thus provides a fundamental basis from which to estimate constituent release under a variety of field conditions. However, column testing is time-intensive compared to the more simplified batch testing, and may not always be a viable option when making decisions for material reuse. Batch tests are used most frequently as a simple tool for compliance or quality control reasons. Therefore, it is important to compare the release that occurs under batch and column testing, and establish conservative interpretation protocols for extrapolation from batch data when column data are not available. Five different materials (concrete, construction debris, aluminum recycling residue, coal fly ash and bottom ash) were evaluated via batch and column testing, including different column flow regimes (continuously saturated and intermittent unsaturated flow). Constituent release data from batch and column tests were compared. Results showed no significant difference between the column flow regimes when constituent release data from batch and column tests were compared. In most cases batch and column testing agreed when presented in the form of cumulative release. For arsenic in carbonated materials, however, batch testing underestimates the column constituent release for most LS ratios and also on a cumulative basis. For cases when As is a constituent of concern, column testing may be required.

  12. Development of reference material for proficiency tests: arsenic in fish tissue

    International Nuclear Information System (INIS)

    Santana, Luciana Vieira de; Sarkis, Jorge E.S.; Ulrich, Joao C.; Hortellani, Marcos Antonio

    2013-01-01

    Proficiency tests (PT) are extensively used to evaluate the analytical competence of laboratories, and are also used as a part of accreditation processes. For this reason are important tool for quality control of laboratories including laboratories that act directly with food exporting companies. In Brazil there are no providers of proficiency testing for toxic metals, such as arsenic in fish tissue. This study presents a protocol to produce reference material to be used in proficiency test for arsenic in fish tissue following the recommendations of the ISO Guide 35. The preparation scheme consisted of: selecting of individuals, cleaning of scale and skin, trituration, homogenization, and spiking with arsenic at two levels of concentration. The mixture was then irradiated in a cyclotron Cyclone 30 Applications ion beam with cobalt 60 at 10.00 ± 1.05 KGy, before being packed into sachets. To verify the efficacy of the irradiation procedure, 26 (randomly selected) irradiated sachets and 26 non-irradiated sachets were assessed for homogeneity and stability. The results indicate that irradiation with cobalt 60 is crucial for ensuring the preservation of the integrity of the material, providing stable material at room temperature for 2 months. The samples can therefore be transported at room temperature. (author)

  13. Development of reference material for proficiency tests: arsenic in fish tissue

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Luciana Vieira de; Sarkis, Jorge E.S.; Ulrich, Joao C.; Hortellani, Marcos Antonio, E-mail: santana-luciana@ig.com.br, E-mail: jesarkis@ipen.br, E-mail: jculrich@ipen.br, E-mail: mahortel@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Proficiency tests (PT) are extensively used to evaluate the analytical competence of laboratories, and are also used as a part of accreditation processes. For this reason are important tool for quality control of laboratories including laboratories that act directly with food exporting companies. In Brazil there are no providers of proficiency testing for toxic metals, such as arsenic in fish tissue. This study presents a protocol to produce reference material to be used in proficiency test for arsenic in fish tissue following the recommendations of the ISO Guide 35. The preparation scheme consisted of: selecting of individuals, cleaning of scale and skin, trituration, homogenization, and spiking with arsenic at two levels of concentration. The mixture was then irradiated in a cyclotron Cyclone 30 Applications ion beam with cobalt 60 at 10.00 ± 1.05 KGy, before being packed into sachets. To verify the efficacy of the irradiation procedure, 26 (randomly selected) irradiated sachets and 26 non-irradiated sachets were assessed for homogeneity and stability. The results indicate that irradiation with cobalt 60 is crucial for ensuring the preservation of the integrity of the material, providing stable material at room temperature for 2 months. The samples can therefore be transported at room temperature. (author)

  14. Radiation tests on selected electrical insulating materials for high-power and high voltage application

    International Nuclear Information System (INIS)

    Liptak, G.; Schuler, R.; Haberthuer, B.; Mueller, H.; Zeier, W.; Maier, P.; Schoenbacher, H.

    1985-01-01

    This report presents a comprehensive set of test results on the irradiation of insulating materials and systems used for the windings of rotating machines, dry-type transformers, and magnet coils. The materials were: Novolac, bisphenol-A, and cycloaliphatic types of epoxy; saturated and unsaturated polyesterimide; silicone, phenolic, and acrylic resins. The reinforcement consisted of glass mat, glass roving, glass cloth, mica paper, polyester mat, polyester roving, polyester cloth, aromatic polyamide paper, or combinations thereof. The materials were irradiated in an 8 MW pool reactor up to integrated doses of 10 8 Gy. On most samples, flexural properties were examined as recommended by IEC Standard 544. For tapes and varnishes, the breakdown voltage was measured. The adhesion of copper bars glued together with an epoxy resin was examined by means of a lap-shear test. A cupping test by means of the Erichsen apparatus was used to measure the flexibility of varnishes. The results are presented in tables and graphs for each of the materials tested. Those from mechanical tests show that the radiation resistance of composite resin-rich insulations depends not only on the base resin combination and the reinforcement material but, to a large degree, also on the adhesion between the two. It appears that better adhesion, and consequently higher radiation resistance, is obtained by special surface treatments of glass fibres. For laminates, higher radiation resistance is obtained with glass mat and resin combinations than with glass cloth as reinforcing materials. The breakdown voltage tests show that the application of mechanical stress to most irradiated samples causes the insulation layer to crack, resulting in lower dielectric strength. For a number of materials, the critical properties of flexural strength and breakdown voltage are above 50% of the initial value at doses between 10 7 and 10 8 Gy, i.e. a radiation index of 7 to 8 at 10 5 Gy/h. (orig.)

  15. Testing and modeling the dynamic response of foam materials for blast protection

    Science.gov (United States)

    Fitek, John H.

    The pressure wave released from an explosion can cause injury to the lungs. A personal armor system concept for blast lung injury protection consists of a polymer foam layer behind a rigid armor plate to be worn over the chest. This research develops a method for testing and modeling the dynamic response of foam materials to be used for down-selection of materials for this application. Constitutive equations for foam materials are incorporated into a lumped parameter model of the combined armor plate and foam system. Impact testing and shock tube testing are used to measure the foam model parameters and validate the model response to a pressure wave load. The plate and foam armor model is then coupled to a model of the human thorax. With a blast pressure wave input, the armor model is evaluated based on how it affects the injury-causing mechanism of chest wall motion. Results show that to reduce chest wall motion, the foam must compress at a relatively constant stress level, which requires a sufficient foam thickness.

  16. Materials interaction tests to identify base and coating materials for an enhanced in-vessel core catcher design

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J.L.; Knudson, D.L.; Condie, K.G.; Swank, W.D. [Idaho National Engineering and Environmental Laboratory, Idaho Falls ID (United States); Cheung, F.B. [Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park PA (United States); Suh, K.Y. [Seoul National University, Department of Nuclear Engineering, Seoul (Korea, Republic of); Kim, S.B. [Korea Atomic Energy Research Institute, Severe Accident Research Project, Taejon (Korea, Republic of)

    2004-07-01

    An enhanced in-vessel core catcher is being designed and evaluated, it must ensure In-Vessel Retention of core materials that may relocate under severe accident conditions in advanced reactors. To reduce cost and simplify manufacture and installation, this new core catcher design consists of several interlocking sections that are machined to fit together when inserted into the lower head. If needed, the core catcher can be manufactured with holes to accommodate lower head penetrations. Each section of the core catcher consists of two material layers with an option to add a third layer (if deemed necessary): a base material, which has the capability to support and contain the mass of core materials that may relocate during a severe accident; an insulating oxide coating material on top of the base material, which resists interactions with high-temperature core materials; and an optional coating on the bottom side of the base material to prevent any potential oxidation of the base material during the lifetime of the reactor. Initial evaluations suggest that a thermally-sprayed oxide material is the most promising candidate insulator coating for a core catcher. Tests suggest that 2 coatings can provide adequate protection to a stainless steel core catcher: -) a 500 {mu}m thick zirconium dioxide coating over a 100-200 {mu}m Inconel 718 bond coating, and -) a 500 {mu}m thick magnesium zirconate coating.

  17. Materials and test methods

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1984-01-01

    The industrial specification for production of the G-10CR grade of cryogenic high-pressure laminate has been revised and accepted by US manufacturers. The objective was to make the specification as generic as possible without adversely affecting performance and to add a material performance criteria to the specification. G-10CR and G-11CR products have been produced by five US industrial laminating forms. No significant differences in cryogenic mechanical properties were found among G-10CR material produced by these manufacturers. This indicates that the specifications are fulfilling their intended purpose. An efficient system for producing research materials for systematic screening of the parameters influencing cryogenic radiation resistance was devised. Laboratories in Japan and England have agreed to actively cooperate with NBS in further development of this system

  18. Quasi-brittle material behavior under cyclic loading: from virtual testing to structural computation

    International Nuclear Information System (INIS)

    Vassaux, Maxime

    2015-01-01

    Macroscopic constitutive laws are developed not only because they allow for large-scale computations but also because refine dissipative mechanisms observed at lower scales. Within the framework of this study, the development of such models is carried out in the context of seismic loading, that is to say reverse cyclic loading, applied to the quasi-brittle materials and more precisely, concrete-like materials. Nowadays, robust and predictive macroscopic constitutive laws are still rare because of the complexity of cracking related phenomena. Among the challenges to face, the material parameters identification is far from being the easiest due to the lack of experimental data. Indeed, the difficulties to carry out cyclic tests on concrete-like materials are numerous. To overcome these difficulties, a virtual testing approach based on a refine model is proposed in this study in order to feed continuum models with the missing material parameters. Adopting a microscopic point of view, a representative volume element is seen as a structure. The microscopic model has been developed with the aim to require a minimal number of material parameters which only need basic mechanical tests to be identified. From an existing lattice model developed to deal with monotonic loading, several enhancements have been realized in order to extend its range of applicability, making it capable of dealing with complex multi-axial cyclic loadings. The microscopic model has been validated as a virtual testing machine that is able to help the identification procedure of continuous constitutive laws. This identification approach has been applied on a new constitutive law developed within the framework of isotropic continuum damage mechanics accounting for cyclic related effects. In particular, the concept of regularized unilateral effect has been introduced to describe the progressive crack closure. The macroscopic model has been calibrated with the help from the aforementioned virtual testing

  19. Stress-strain relation of bentonite at undrained shear. Laboratory tests to investigate the influence of material composition and test technique

    Energy Technology Data Exchange (ETDEWEB)

    Dueck, Ann; Boergesson, Lennart; Johannesson, Lars-Erik (Clay Technology AB, Lund (Sweden))

    2010-12-15

    This report describes a laboratory study conducted to update the material model of the buffer material used in the analyses of the effect of a rock shear through a deposition hole. The study considers some new conditions and is especially focused on the reference case with MX-80Ca developed for SR-Site (MX-80 ion exchanged to Ca). The material model is based on relations between density, swelling pressure, shear strength and rate of strain. The reference model is described by Boergesson et al. (2010). The laboratory study is focused on undrained stress-strain-strength properties, which have been studied mainly by conducting triaxial tests and unconfined compression tests. The test results are compared to the earlier measurements and models which show that the new results fit very well into the general picture and models. For the new conditions suitable values of constants included in the model are proposed

  20. Stress-strain relation of bentonite at undrained shear. Laboratory tests to investigate the influence of material composition and test technique

    International Nuclear Information System (INIS)

    Dueck, Ann; Boergesson, Lennart; Johannesson, Lars-Erik

    2010-12-01

    This report describes a laboratory study conducted to update the material model of the buffer material used in the analyses of the effect of a rock shear through a deposition hole. The study considers some new conditions and is especially focused on the reference case with MX-80Ca developed for SR-Site (MX-80 ion exchanged to Ca). The material model is based on relations between density, swelling pressure, shear strength and rate of strain. The reference model is described by Boergesson et al. (2010). The laboratory study is focused on undrained stress-strain-strength properties, which have been studied mainly by conducting triaxial tests and unconfined compression tests. The test results are compared to the earlier measurements and models which show that the new results fit very well into the general picture and models. For the new conditions suitable values of constants included in the model are proposed

  1. Small ring testing of a creep resistant material

    International Nuclear Information System (INIS)

    Hyde, C.J.; Hyde, T.H.; Sun, W.; Nardone, S.; De Bruycker, E.

    2013-01-01

    Many components in conventional and nuclear power plant, aero-engines, chemical plant etc., operate at temperatures which are high enough for creep to occur. These include steam pipes, pipe branches, gas and steam turbine blades, etc. The manufacture of such components may also require welds to be part of them. In most cases, only nominal operating conditions (i.e. pressure, temperatures, system load, etc.) are known and hence precise life predictions for these components are not possible. Also, the proportion of life consumed will vary from position to position within a component. Hence, non-destructive techniques are adopted to assist in making decisions on whether to repair, continue operating or replace certain components. One such approach is to test a small sample removed from the component to make small creep test specimens which can be tested to give information on the remaining creep life of the component. When such a small sample cannot be removed from the operating component, e.g. in the case of small components, the component can be taken out of operation in order to make small creep test specimens, the results from which can then be used to assist with making decisions regarding similar or future components. This paper presents a small creep test specimen which can be used for the testing of particularly strong and creep resistant materials, such as nickel-based superalloys

  2. Significance of tests and properties of concrete and concrete-making materials

    CERN Document Server

    Pielert, James H

    2006-01-01

    Reflects a decade of technological changes in concrete industry! The newest edition of this popular ASTM publication reflects the latest technology in concrete and concrete-making materials. Six sections cover: (1) General information on the nature of concrete, sampling, variability, and testing laboratories. A new chapter deals with modeling cement and concrete properties. (2) Properties of freshly mixed concrete. (3) Properties of hardened concrete. (4) Concrete aggregates—this section has been revised and the chapters are presented in the order that most concerns concrete users: grading, density, soundness, degradation resistance, petrographic examination, reactivity, and thermal properties. (5) Materials other than aggregates—the chapter on curing materials now reflects the current technology of materials applied to new concrete surfaces. The chapter on mineral admixtures has been separated into two chapters: supplementary cementitious materials and ground slag. (6) Specialized concretes—contains a ...

  3. Performance and Test Results of Harshaw Pelletised LiF:Mg,Ti TLD Material

    International Nuclear Information System (INIS)

    Velbeck, K.J.; Zhang, L.; Green, R.; Tomlins, P.

    1999-01-01

    BICRON NE has recently introduced a pelletised version of their popular TLD-100, 600 and 700 lithium fluoride based thermoluminescence dosemeters (TLDs). These materials can be used unmounted or in card and ring formats. Applications include whole-body, environmental, medical, and extremity monitoring. The former manufacturing process included purifying, growing doped LiF, grinding, blending, pressing, slicing, and dicing. The new process eliminates the last four steps, replacing them with a pelletising process. This process transforms the material directly from a powder to its final form. This new process provides the benefits of better batch uniformity and excellent dimensional consistency. The testing is described that was performed for the purpose of accepting the pelletised material as a directly interchangeable substitute for the same material produced by the former process. Tests performed include reproducibility, batch homogeneity, linearity, detection threshold, and light sensitivity. (author)

  4. Materials of large wind turbine blades: Recent results in testing and modeling

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl; Nijssen, Rogier

    2012-01-01

    The reliability of rotor blades is the pre-condition for the development and wide use of large wind turbines. In order to accurately predict and improve the wind turbine blade behavior, three main aspects of the reliability and strength of rotor blades were considered: (i) development of methods...... of the effect of the microstructure of wind turbine blade composites on their strength and ways of microstructural optimization of the materials. By testing reference coupons, the effect of testing parameters (temperature and frequency) on the lifetime of blade composites was investigated, and the input data...... clustering, misalignments, interface properties and other factors on the strength and lifetime of the wind turbine blade materials were investigated in the micromechanical finite element simulations. The results described in this paper stem from the Rotor Structure and Materials task of the UPWIND project...

  5. Homogeneity test of the ceramic reference materials for non-destructive quantitative

    International Nuclear Information System (INIS)

    Li Li; Fong Songlin; Zhu Jihao; Feng Xiangqian; Xie Guoxi; Yan Lingtong

    2010-01-01

    In order to study elemental composition of ancient porcelain samples, we developed a set of ceramic reference materials for non-destructive quantitative analysis. In this paper,homogeneity of Al, Si, K, Ca, Ti, Mn and Fe contents in the ceramic reference materials is investigated by EDXRF. The F test and the relative standard deviation are used to treat the normalized net counts by SPSS. The results show that apart from the DY2 and JDZ4 reference materials, to which further investigation would be needed, homogeneity of the DH, DY3, JDZ3, JDZ6, GY1, RY1, LQ4, YJ1, YY2 and JY2 meets the requirements of ceramic reference materials for non-destructive quantitative analysis. (authors)

  6. The design, construction and testing of packaging[Radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-01

    Essentially uniform regulations, based on the IAEA Regulations for the Safe Transport of Radioactive Materials, have been adopted on a world-wide basis with the aim of ensuring safety in the transport of radioactive and fissile substances by road, rail, sea and air. The application of these regulations over a period of almost 20 years has resulted in practically complete safety in the sense that there has been no evidence of death or injury that could be attributed to the special properties of the material even when consignments were involved in serious accidents. In the regulations, reliance is placed, to the greatest extent possible, on the packaging to provide adequate shielding and containment of the contents under both normal transport and accident conditions. The Agency organized an international seminar in 1971 to consider the performance tests that have to be applied to packaging to demonstrate compliance with the regulatory requirements. The general conclusion was that the testing programme specified in the regulations was adequate for the near future, but that further consideration should be given to assessing the risks presented by the increasing volume of transport. The second international seminar, which is the subject of this report, dealt with all aspects of the design, construction and testing of packaging for the transport both of relatively small quantities of radioactive substances, which are being used to an ever increasing extent for medical and research purposes, and of the much larger quantities arising in various stages of the nuclear fuel cycle. The programme covered the general requirements for packaging; risk assessment for the transport of various radioactive and fissile substances, including plutonium; specific features of the design and construction of packaging; quality assurance; damage simulation tests, including calculational methods and scale-model testing; tests for the retention of shielding and containment after damage; and the

  7. Biomechanical testing and material characterization for the rat large intestine: regional dependence of material parameters.

    Science.gov (United States)

    Sokolis, Dimitrios P; Orfanidis, Ioannis K; Peroulis, Michalis

    2011-12-01

    The function of the large bowel is to absorb water from the remaining indigestible food matter and subsequently pass useless waste material from the body, but there has been only a small amount of data in the literature on its biomechanical characteristics that would facilitate our understanding of its transport function. Our study aims to fill this gap by affording comprehensive inflation/extension data of intestinal segments from distinct areas, spanning a physiologically relevant deformation range (100-130% axial stretches and 0-15 mmHg lumen pressures). These data were characterized by the Fung-type exponential model in the thick-walled setting, showing reasonable agreement, i.e. root-mean-square error ~30%. Based on optimized material parameters, i.e. a(1)testing and material characterization results for the large intestine of healthy young animals are expected to aid in comprehending the adaptation/remodeling that occurs with ageing, pathological conditions and surgical procedures, as well as for the development of suitable biomaterials for replacement.

  8. Toxicity Testing of Restorative Dental Materials Using Brine Shrimp Larvae (Artemia salina

    Directory of Open Access Journals (Sweden)

    Manar M. Milhem

    2008-08-01

    Full Text Available This study investigated the effect of extracts of different composites, glass ionomer cement (GICs and compomers on the viability of brine shrimp larvae. Ethanolic extracts of four dental composites (Z-100; Solitaire 2; Filtek P60 and Synergy, a conventional GIC (Ketac-Fil, a resin-modified glass ionomer cement (Vitremer, two compomers (F2000; Dyract AP, and a flowable compomer (Dyract Flow were prepared from each material. Following evaporation of the ethanol, the extracts were resuspended in distilled water, which was then used to test the effects on the viability of brine shrimp larvae. For the composites, the extract of Synergy was the least toxic (88% viability followed by the extracts of Solitaire 2, Z100 and P60 (75%, 67.5% and 50% viability, respectively. One-way ANOVA revealed highly significant differences between the resin composite materials (p<0.001. Follow-up comparison between the composite groups by Tukey's pairwise multiple-comparison test (α =0.05 showed that the extract of Synergy was significantly less toxic than the extracts of all the other materials except that of Solitaire 2. The compomers showed 100% lethality, while the percentage of viable larvae for the extracts of Ketac-Fil, and Vitremer were 32.3%, and 37.0%, respectively. One-way ANOVA revealed highly significant differences between the groups of materials (p<0.001. Follow-up comparison between the groups by Tukey's test (α = 0.05 showed that the toxic effect of the extracts of the compomers were significantly greater than that of Ketac-Fil, and Vitremer. The differences in the toxic effects of Vitremer and Ketac-Fil were not statistically significant. In conclusion, the toxicity of composite materials varied according to their chemical composition. Compomers were the most lethal materials to brine shrimp larvae followed by GICs and then composites.

  9. Multi-energy radiography for non-destructive testing of materials and structures for civil engineering

    International Nuclear Information System (INIS)

    Naydenov, S.V.; Ryzhikov, V.

    2003-01-01

    Development of the technological base of modern non-destructive testing require new methods allowing determination of specified properties of materials and structures under study. A traditional direction of works is determination of internal spatial structure of the materials and other constructions. Restoration of this geometrical information is of qualitative character, though provides for determination of technical parameters affecting physical properties of the system. Reconstruction of the chemical composition, density and atomic structure (effective atomic number) is an inverse problem of direct quantitative determination of properties starting from data obtained by means of non-destructive testing. In the present work, we propose the use of multi-energy radiography for reconstruction of the substantial structure of materials. In framework of simple theoretical model it is shown that, using multi-channel absorption of X-rays, important substantial characteristics of materials and multi-compound structures can be readily reconstructed. The results obtained show high efficiency of 2-energy radiography for non-destructive testing in civil engineering

  10. Compendium of information on identification and testing of materials for plastic solar thermal collectors

    Energy Technology Data Exchange (ETDEWEB)

    McGinniss, V.D.; Sliemers, F.A.; Landstrom, D.K.; Talbert, S.G.

    1980-07-31

    This report is intended to organize and summarize prior and current literature concerning the weathering, aging, durability, degradation, and testing methodologies as applied to materials for plastic solar thermal collectors. Topics covered include (1) rate of aging of polymeric materials; (2) environmental factors affecting performance; (3) evaluation and prediction of service life; (4) measurement of physical and chemical properties; (5) discussion of evaluation techniques and specific instrumentation; (6) degradation reactions and mechanisms; (7) weathering of specific polymeric materials; and (8) exposure testing methodology. Major emphasis has been placed on defining the current state of the art in plastics degradation and on identifying information that can be utilized in applying appropriate and effective aging tests for use in projecting service life of plastic solar thermal collectors. This information will also be of value where polymeric components are utilized in the construction of conventional solar collectors or any application where plastic degradation and weathering are prime factors in material selection.

  11. Design and fabrication of irradiation testing capsule for research reactor materials

    International Nuclear Information System (INIS)

    Yang, Seong Woo; Kim, Bong Goo; Park, Seung Jae; Cho, Man Soon; Choo, Kee Nam; Oh, Jong Myeong; Choi, Myeong Hwan; Lee, Byung Chul; Kang, Suk Hoon; Kim, Dae Jong; Chun, Young Bum; Kim, Tae Kyu

    2012-01-01

    Recently, the demand of research reactors is increasing because there are many ageing research reactors in the world. Also, the production of radioisotope related with the medical purpose is very important. Korea Atomic Energy Research Institute (KAERI) is designing and licensing for Jordan Research and Training Reactor (JRTR) and new type research reactor for export which will be constructed in Amman, Jordan and Busan, Korea, respectively. Thus, It is expected that more research reactors will be designed and constructed by KAERI. To design the research reactor, the irradiation performance and behavior of core structure material are necessary. However, the irradiation behavior of these materials is not yet investigated. Therefore, the irradiation performance must be verified by irradiation test. 11M 20K and 11M 21K irradiation capsules were designed and fabricated to conduct the irradiation test for some candidate core materials, Zircaloy 4, beryllium, and graphite, at HANARO. In this paper, the design and fabrication features of 11M 20K and 11M 21K were discussed

  12. Design and fabrication of irradiation testing capsule for research reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seong Woo; Kim, Bong Goo; Park, Seung Jae; Cho, Man Soon; Choo, Kee Nam; Oh, Jong Myeong; Choi, Myeong Hwan; Lee, Byung Chul; Kang, Suk Hoon; Kim, Dae Jong; Chun, Young Bum; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    Recently, the demand of research reactors is increasing because there are many ageing research reactors in the world. Also, the production of radioisotope related with the medical purpose is very important. Korea Atomic Energy Research Institute (KAERI) is designing and licensing for Jordan Research and Training Reactor (JRTR) and new type research reactor for export which will be constructed in Amman, Jordan and Busan, Korea, respectively. Thus, It is expected that more research reactors will be designed and constructed by KAERI. To design the research reactor, the irradiation performance and behavior of core structure material are necessary. However, the irradiation behavior of these materials is not yet investigated. Therefore, the irradiation performance must be verified by irradiation test. 11M 20K and 11M 21K irradiation capsules were designed and fabricated to conduct the irradiation test for some candidate core materials, Zircaloy 4, beryllium, and graphite, at HANARO. In this paper, the design and fabrication features of 11M 20K and 11M 21K were discussed.

  13. Instrumentation Technologies for Improving an Irradiation Testing of Nuclear Fuels and Materials at the HANARO

    International Nuclear Information System (INIS)

    Kim, Bong Goo; Park, Sung Jae; Choo, Ki Nam

    2011-01-01

    Over 50 years of nuclear fuels and materials irradiation testing has led to many countries developing significant improvements in instrumentation to monitor physical parameters and to control the test conditions in Materials Test Reactors (MTRs) or research reactors. Recent effort to deploy new fuels and materials in existing and advanced reactors has increased the demand for well-instrumented irradiation tests. Specifically, demand has increased for tests with sensors capable of providing real-time measurement of key parameters, such as temperature, geometry changes, thermal conductivity, fission gas release, cracking, coating buildup, thermal and fast flux, etc. This review paper documents the current state of instrumentation technologies in MTRs in the world and summarizes on-going research efforts to deploy new sensors. There is increased interest to irradiate new materials and reactor fuels for advanced PWRs and the Gen-IV reactor systems, such as SFRs (Sodium-cooled Fast Reactors), VHTRs (Very-High-Temperature Reactors), SCWRs (Supercritical-Water-cooled Reactors) and GFRs (Gas-cooled Fast Reactor). This review documents the current state of instrumentation technologies in MTRs in the world, identifies challenges faced by previous testing methods and how these challenges were overcome. A wide range of sensors are available to measure key parameters of interest during fuels and materials irradiations in MTRs. Such sensors must be reliable, small size, highly accurate, and able to withstand harsh conditions. On-going development efforts are focusing on providing MTR users a wider range of parameter measurements with increased accuracy. In addition, development efforts are focusing on reducing the impact of sensor on measurements by reducing sensor size. This report includes not only status of instrumentation using research reactors in the world to irradiate nuclear fuels and materials but also future directions relating to instrumentation technologies for

  14. Test facilities for radioactive material transport packages (AEA Technology plc, Winfrith,UK)

    International Nuclear Information System (INIS)

    Gillard, J.E.

    2001-01-01

    Transport containers for radioactive materials are tested to demonstrate compliance with national and international standards. Transport package design, testing, assessment and approval requires a wide range of skills and facilities. The comprehensive capability of AEA Technology in these areas is described. The facilities described include drop-test cranes and targets (up to 700 tonne); pool fires, furnaces and rigs for thermal tests, including heat dissipation on prototype flasks; shielding facilities; criticality simulations and leak test techniques. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  15. Test facilities for radioactive material transport packages (AEA Technology plc, Winfrith,UK)

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, J.E

    2001-07-01

    Transport containers for radioactive materials are tested to demonstrate compliance with national and international standards. Transport package design, testing, assessment and approval requires a wide range of skills and facilities. The comprehensive capability of AEA Technology in these areas is described. The facilities described include drop-test cranes and targets (up to 700 tonne); pool fires, furnaces and rigs for thermal tests, including heat dissipation on prototype flasks; shielding facilities; criticality simulations and leak test techniques. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  16. Materials development for ITER shielding and test blanket in China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.M., E-mail: Chenjm@swip.ac.cn [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China); Wu, J.H.; Liu, X.; Wang, P.H. [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China); Wang, Z.H.; Li, Z.N. [Ningxia Orient Non-ferrous Metals Group Co. Ltd., P.O. Box 105, Shizuishan (China); Wang, X.S.; Zhang, P.C. [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621900 (China); Zhang, N.M.; Fu, H.Y.; Liu, D.H. [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China)

    2011-10-01

    China is a member of the ITER program and is developing her own materials for its shielding and test blanket modules. The materials include vacuum-hot-pressing (VHP) Be, CuCrZr alloy, 316L(N) and China low activation ferritic/martensitic (CLF-1) steels. Joining technologies including Be/Cu hot isostatic pressing (HIP) and electron beam (EB) weldability of 316L(N) were investigated. Chinese VHP-Be showed good properties, with BeO content and ductility that satisfy the ITER requirements. Be/Cu mock-ups were fabricated for Be qualification tests at simulated ITER vertical displacement event (VDE) and heat flux cycling conditions. Fine microstructure and good mechanical strength of the CuCrZr alloy were achieved by a pre-forging treatment, while the weldability of 316L(N) by EB was demonstrated for welding depths varying from 5 to 80 mm. Fine microstructure, high strength, and good ductility were achieved in CLF-1 steel by an optimized normalizing, tempering and aging procedure.

  17. Characterization of spent fuel approved testing material: ATM-106

    International Nuclear Information System (INIS)

    Guenther, R.J.; Blahnik, D.E.; Campbell, T.K.; Jenquin, U.P.; Mendel, J.E.; Thornhill, C.K.

    1988-10-01

    The characterization data obtained to date are described for Approved Testing Material (ATM)-106 spent fuel from Assembly BT03 of pressurized-water reactor Calvert Cliffs No. 1. This report is one in a series being prepared by the Materials Characterization Center at Pacific Northwest Laboratory on spent fuel ATMs. The ATMs are receiving extensive examinations to provide a source of well- characterized spent fuel for testing in the US Department of Energy Office of Civilian Radioactive Waste Management (OCWRM) program. ATM-106 consists of 20 full-length irradiated fuel rods with rod-average burnups of about 3700 GJ/kgM (43 MWd/kgM) and expected fission gas release of /approximately/10%. Characterization data include (1) as-fabricated fuel design, irradiation history, and subsequent storage and handling; (2) isotopic gamma scans; (3) fission gas analyses; (4) ceramography of the fuel and metallography of the cladding; (5) calculated nuclide inventories and radioactivities in the fuel and cladding; and (6) radiochemical analyses of the fuel and cladding. Additional analyses of the fuel rod are being conducted and will be included in planned revisions of this report. 12 refs., 110 figs., 81 tabs

  18. Thermo-magneto-elastoplastic coupling model of metal magnetic memory testing method for ferromagnetic materials

    Science.gov (United States)

    Shi, Pengpeng; Zhang, Pengcheng; Jin, Ke; Chen, Zhenmao; Zheng, Xiaojing

    2018-04-01

    Metal magnetic memory (MMM) testing (also known as micro-magnetic testing) is a new non-destructive electromagnetic testing method that can diagnose ferromagnetic materials at an early stage by measuring the MMM signal directly on the material surface. Previous experiments have shown that many factors affect MMM signals, in particular, the temperature, the elastoplastic state, and the complex environmental magnetic field. However, the fact that there have been only a few studies of either how these factors affect the signals or the physical coupling mechanisms among them seriously limits the industrial applications of MMM testing. In this paper, a nonlinear constitutive relation for a ferromagnetic material considering the influences of temperature and elastoplastic state is established under a weak magnetic field and is used to establish a nonlinear thermo-magneto-elastoplastic coupling model of MMM testing. Comparing with experimental data verifies that the proposed theoretical model can accurately describe the thermo-magneto-elastoplastic coupling influence on MMM signals. The proposed theoretical model can predict the MMM signals in a complex environment and so is expected to provide a theoretical basis for improving the degree of quantification in MMM testing.

  19. Ballistic Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development

    Science.gov (United States)

    Pereira, J. Michael; Revilock, Duane M.; Ruggeri, Charles R.; Emmerling, William C.; Altobelli, Donald J.

    2012-01-01

    An experimental program is underway to develop a consistent set of material property and impact test data, and failure analysis, for a variety of materials that can be used to develop improved impact failure and deformation models. Unique features of this set of data are that all material property information and impact test results are obtained using identical materials, the test methods and procedures are extensively documented and all of the raw data is available. This report describes ballistic impact testing which has been conducted on aluminum (Al) 2024 and titanium (Ti) 6Al-4vanadium (V) sheet and plate samples of different thicknesses and with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a jet engine fan blade.

  20. Finite Element Verification of Non-Homogeneous Strain and Stress Fields during Composite Material Testing

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    2015-01-01

    Uni-directional glass fiber reinforced polymers play a central role in the task increasing the length of wind turbines blades and thereby lowering the cost of energy from wind turbine installations. During this, optimizing the mechanical performance regarding material stiffness, compression...... strength and fatigue performance is essential. Nevertheless, testing composites includes some challenges regarding stiffness determination using conventional strain gauges and achieving correct material failure unaffected by the gripping region during fatigue testing. Challenges, which in the present study......, has been addressed using the finite element method. During this, a verification of experimental observations, a deeper understanding on the test coupon loading and thereby improved test methods has been achieved....

  1. Material Properties Test to Determine Ultimate Strain and True Stress-True Strain Curves for High Yield Steels

    Energy Technology Data Exchange (ETDEWEB)

    K.R. Arpin; T.F. Trimble

    2003-04-01

    This testing was undertaken to develop material true stress-true strain curves for elastic-plastic material behavior for use in performing transient analysis. Based on the conclusions of this test, the true stress-true strain curves derived herein are valid for use in elastic-plastic finite element analysis for structures fabricated from these materials. In addition, for the materials tested herein, the ultimate strain values are greater than those values cited as the limits for the elastic-plastic strain acceptance criteria for transient analysis.

  2. The role and use of materials-testing reactors in France

    International Nuclear Information System (INIS)

    Colomez, Gerard; Mas, Pierre

    1981-01-01

    The authors outline the role played by polyvalent materials-testing reactors in France - in the area of primary and applied research - in neutronic irradiation production and the acquisition and diffusion of nuclear know-how. They then go on to describe the fields of application of these reactors [fr

  3. Low Temperature Mechanical Testing of Carbon-Fiber/Epoxy-Resin Composite Materials

    Science.gov (United States)

    Nettles, Alan T.; Biss, Emily J.

    1996-01-01

    The use of cryogenic fuels (liquid oxygen and liquid hydrogen) in current space transportation vehicles, in combination with the proposed use of composite materials in such applications, requires an understanding of how such materials behave at cryogenic temperatures. In this investigation, tensile intralaminar shear tests were performed at room, dry ice, and liquid nitrogen temperatures to evaluate the effect of temperature on the mechanical response of the IM7/8551-7 carbon-fiber/epoxy-resin system. Quasi-isotropic lay-ups were also tested to represent a more realistic lay-up. It was found that the matrix became both increasingly resistant to microcracking and stiffer with decreasing temperature. A marginal increase in matrix shear strength with decreasing temperature was also observed. Temperature did not appear to affect the integrity of the fiber-matrix bond.

  4. A test material for tissue characterisation and system calibration in MRI

    International Nuclear Information System (INIS)

    Walker, P.M.; Lerski, R.A.

    1989-01-01

    A tissue-equivalent test material for MR1 has been produced from a polysaccharide gel, agarose, containing gadolinium chloride chelated to EDTA. By varying the amounts of each constituent, the T 1 and T 2 of the material can be varied independently. As a result, the entire range of in vivo tissue relaxation times can be covered. Through the mathematical modelling of the 1 H relaxation theories for both the gel and chelated paramagnetic ion, it has been possible to create a material with relaxation properties and behaviour predictable as functions of both the Larmor frequency and temperature. The similarity of the material to in vivo tissues, in terms of its biological and physical NMR characteristics, makes it an excellent tissue-equivalent substance, in addition to being an accurate calibration standard for routine MRI. (author)

  5. Quality Assurance Protocol for AFCI Advanced Structural Materials Testing

    Energy Technology Data Exchange (ETDEWEB)

    Busby, Jeremy T [ORNL

    2009-05-01

    The objective of this letter is to inform you of recent progress on the development of advanced structural materials in support of advanced fast reactors and AFCI. As you know, the alloy development effort has been initiated in recent months with the procurement of adequate quantities of the NF616 and HT-UPS alloys. As the test alloys become available in the coming days, mechanical testing, evaluation of optimizing treatments, and screening of environmental effects will be possible at a larger scale. It is therefore important to establish proper quality assurance protocols for this testing effort in a timely manner to ensure high technical quality throughout testing. A properly implemented quality assurance effort will also enable preliminary data taken in this effort to be qualified as NQA-1 during any subsequent licensing discussions for an advanced design or actual prototype. The objective of this report is to describe the quality assurance protocols that will be used for this effort. An essential first step in evaluating quality protocols is assessing the end use of the data. Currently, the advanced structural materials effort is part of a long-range, basic research and development effort and not, as yet, involved in licensing discussions for a specific reactor design. After consultation with Mark Vance (an ORNL QA expert) and based on the recently-issued AFCI QA requirements, the application of NQA-1 quality requirements will follow the guidance provided in Part IV, Subpart 4.2 of the NQA-1 standard (Guidance on Graded Application of QA for Nuclear-Related Research and Development). This guidance mandates the application of sound scientific methodology and a robust peer review process in all phases, allowing for the data to be qualified for use even if the programmatic mission changes to include licensing discussions of a specific design or prototype. ORNL has previously implemented a QA program dedicated to GNEP activities and based on an appropriately graded

  6. Quality Assurance Protocol for AFCI Advanced Structural Materials Testing

    International Nuclear Information System (INIS)

    Busby, Jeremy T.

    2009-01-01

    The objective of this letter is to inform you of recent progress on the development of advanced structural materials in support of advanced fast reactors and AFCI. As you know, the alloy development effort has been initiated in recent months with the procurement of adequate quantities of the NF616 and HT-UPS alloys. As the test alloys become available in the coming days, mechanical testing, evaluation of optimizing treatments, and screening of environmental effects will be possible at a larger scale. It is therefore important to establish proper quality assurance protocols for this testing effort in a timely manner to ensure high technical quality throughout testing. A properly implemented quality assurance effort will also enable preliminary data taken in this effort to be qualified as NQA-1 during any subsequent licensing discussions for an advanced design or actual prototype. The objective of this report is to describe the quality assurance protocols that will be used for this effort. An essential first step in evaluating quality protocols is assessing the end use of the data. Currently, the advanced structural materials effort is part of a long-range, basic research and development effort and not, as yet, involved in licensing discussions for a specific reactor design. After consultation with Mark Vance (an ORNL QA expert) and based on the recently-issued AFCI QA requirements, the application of NQA-1 quality requirements will follow the guidance provided in Part IV, Subpart 4.2 of the NQA-1 standard (Guidance on Graded Application of QA for Nuclear-Related Research and Development). This guidance mandates the application of sound scientific methodology and a robust peer review process in all phases, allowing for the data to be qualified for use even if the programmatic mission changes to include licensing discussions of a specific design or prototype. ORNL has previously implemented a QA program dedicated to GNEP activities and based on an appropriately graded

  7. Wear Test Results of Candidate Materials for the OK-542 Towed Array Handling Machine Level Winder

    Science.gov (United States)

    1994-12-29

    10 6. Wear Testing Photograph B ....................................................... .11 7. Clad Inconel 625 ...interfere with this wear test. Other materials that were tested included Inconel 625 , Titanium, 304 Stainless, 316 Stainless, and Ni-Al-Br. All of these...Stainless Steel, Inconel 625 , Nickel-Aluminum-Bronze, and Titanium. The specialty materials: Inconel 625 , Monel, Stainless and Stellite, were clad-welded

  8. Drop Test Using Finite Element Method for Transport Package of Radioactive Material

    International Nuclear Information System (INIS)

    Xu Xiaoxiao; Zhao Bing; Zhang Jiangang; Li Gouqiang; Wang Xuexin; Tang Rongyao

    2010-01-01

    Mechanical test for transport package of radioactive material is one of the important tests for demonstrating package structure design. Drop test of package is a kind of destructive test. It is a common method of adopting the pre-analysis to determine drop orientation.Mechanical test of a sealed source package was calculated with finite element method (FEM) software. Based on the analysis of the calculation results, some values were obtained such as the stress, strain, acceleration and the drop orientation which causes the most severe damage, and the calculation results were compared with the results of test. (authors)

  9. Sulcus reproduction with elastomeric impression materials: a new in vitro testing method.

    Science.gov (United States)

    Finger, Werner J; Kurokawa, Rie; Takahashi, Hidekazu; Komatsu, Masashi

    2008-12-01

    Aim of this study was to investigate the depth reproduction of differently wide sulci with elastomeric impression materials by single- and double-mix techniques using a tooth and sulcus model, simulating clinical conditions. Impressions with one vinyl polysiloxane (VPS; FLE), two polyethers (PE; IMP and P2), and one hybrid VPS/PE elastomer (FUS) were taken from a truncated steel cone with a circumferential 2 mm deep sulcus, 50, 100 or 200 microm wide. The "root surface" was in steel and the "periodontal tissue" in reversible hydrocolloid. Single-mix impressions were taken with light-body (L) or monophase (M) pastes, double-mix impressions with L as syringe and M or heavy-body (H) as tray materials (n=8). Sulcus reproduction was determined by 3D laser topography of impressions at eight locations, 45 degrees apart. Statistical data analysis by ANOVA and multiple comparison tests (pimpression materials only: FLE=IMP>FUS=P2. At 50 and 100 microm width, significant differences were found between materials (IMP>FUS=FLE>P2) and techniques (L+H=L+M>M>L). The sulcus model is considered useful for screening evaluation of elastomeric impression materials ability to reproduce narrow sulci. All tested materials and techniques reproduced 200 microm wide sulci to almost nominal depth. Irrespective of the impression technique used, IMP showed the best penetration ability in 50 and 100 microm sulci. Double-mix techniques are more suitable to reproduce narrow sulci than single-mix techniques.

  10. Field test of near real time materials accountancy at the Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Miura, N.; Masui, J.; Komatsu, H.; Todokoro, A.; Iwanaga, M.; Komori, Y.; Kusano, T.

    1987-01-01

    A study on near real time materials accountancy (NRTA) in Japan has been in progress since 1978. Subsequent to the establishment of the ten-day detection time model based on weekly in-process inventory measurement, the Power Reactor and Nuclear Fuel Development Corporation (PNC) initiated data acquisition in 1980 to study the practicality and effectiveness of NRTA. By the end of 1985 the PNC had accumulated about 80 material balance data. During the latter half of 1985 data acquisition was performed in the IAEA-PNC joint field test under the Japan Support Programme for Agency Safeguards. The field test involved the participation of IAEA staff members to collect data. Weekly material balance data acquisition required about 41 man-hours per week over the manpower required for usual process control and materials accountancy. Weekly in-process inventory measurement caused a peak load increase of 10-15%. Field test data suggested that NRTA is effective against abrupt diversion. However, at the same time, the data suggested the existence of flow measurement biases which will possibly affect the effectiveness of NRTA against protracted diversion. Therefore, investigation of measurement biases will be an important future activity for helping to improve the effectiveness of NRTA. (author)

  11. Protocol for production of a chewable material for masticatory function tests (Optocal - Brazilian version

    Directory of Open Access Journals (Sweden)

    Rafael de Liz Pocztaruk

    2008-12-01

    Full Text Available The present article aimed to present a standardized protocol for the production of a chewable test material that has been used in masticatory efficiency and performance studies. This chewable material has advantages in respect to its physical properties when compared to other artificial and natural test foods. It is constituted by mixing condensation silicon (58.3% by weight, common plaster (10.2% by weight, alginate (12.5% by weight, solid vaseline (11.5% by weight, tooth paste (7.5% by weight, and catalyst paste (20.8 mg/g, adding also three drops of mint essence. The mixed material is then inserted into an acrylic mould with perforations of 12 mm in diameter and 5 mm in height to produce rounded tablets with those measures after polymerization. It was named "Optocal - Brazilian version". A volume of 3 cm³ is indicated for a chewing test, which corresponds to 12 tablets using the present methodology. The present protocol can make the production of this chewable material easier, helping in its standardization for studies on masticatory function.

  12. Testing of irradiated and annealed 15H2MFA materials

    International Nuclear Information System (INIS)

    Gillemot, F.; Uri, G.

    1994-01-01

    A set of surveillance samples made from 15H2MFA material has been studied in the laboratory of AEKI. Miniature notched tensile specimens were cut from some remnants of irradiated and broke surveillance charpy remnants. The Absorbed Specific Fracture Energy (ASFE) was measured on the specimens. A cutting machine and testing technique were elaborated for the measurements. The second part of the Charpy remnants was annealed at 460 deg. C and 490 deg. C for 6-8 hours. The specimens were tested similarity and the results were compared. (author). 5 refs, 9 figs

  13. THE REACTION TO FIRE TEST FOR FIRE RETARDANT AND FOR COMBUSTIBLE MATERIAL

    Directory of Open Access Journals (Sweden)

    Adelaida FANFAROVÁ

    2016-12-01

    Full Text Available Currently the natural materials become popular building material for houses, buildings and recreational property. The risk of fires in residential timber construction or eco houses cannot be completely ruled out, therefore there is a need for proper and correct implementing preventive measures and application of all available solutions, which may reduce the risk of fire as far as possible, to slow down the combustion process, to protect the life of people, animals and also the building itself until arrival members of the Fire and Rescue Services. Fireproofing of combustible materials is a specific area of fire protection. For scientific research as well as for real-life practice, not only their structural and physical properties, but also fire-technical characteristics are really important. The present researchers mostly focus on fire-retardant treatment of wood that is why the authors of this contribution focused on a different combustible material. This research article presents the experimental testing and examination of the reaction to fire test of the selected thermal insulation of hemp fiber that was impregnated by the selected fire retardant in laboratory conditions.

  14. Test facilities for radioactive materials transport packages (Chicago Bridge and Iron, USA)

    International Nuclear Information System (INIS)

    Gallagher, T.A.

    1991-01-01

    Chicago Bridge and Iron, Research and Development Center located in Plainfield, Illinois offers the total capabilities required to perform design verification testing of hazardous waste shipping containers. The tests, defined in the United States Code of Federal Regulations, Title 10, Part 71 (10CFR71), include vertical drop tests, puncture tests, crush tests, immersion tests, thermal tests, and container leak rate tests. Container structural design analysis, container manufacturing analysis, materials development testing plus dimensional analysis of individual components is also available. The test facilities meet or exceed the requirements given in the International Atomic Energy Agency (IAEA) Safety Guide, Safety Series No. 37, 1987. Additional capabilities for the design and fabrication of scale models and components for the test programme are also presented. (author)

  15. Scoping Future Policy Dynamics in Raw Materials Through Scenarios Testing

    Science.gov (United States)

    Correia, Vitor; Keane, Christopher; Sturm, Flavius; Schimpf, Sven; Bodo, Balazs

    2017-04-01

    The International Raw Materials Observatory (INTRAW) project is working towards a sustainable future for the European Union in access to raw materials, from an availability, economical, and environmental framework. One of the major exercises for the INTRAW project is the evaluation of potential future scenarios for 2050 to frame economic, research, and environmental policy towards a sustainable raw materials supply. The INTRAW consortium developed three possible future scenarios that encompass defined regimes of political, economic, and technological norms. The first scenario, "Unlimited Trade," reflects a world in which free trade continues to dominate the global political and economic environment, with expectations of a growing demand for raw materials from widely distributed global growth. The "National Walls" scenario reflects a world where nationalism and economic protectionism begins to dominate, leading to stagnating economic growth and uneven dynamics in raw materials supply and demand. The final scenario, "Sustainability Alliance," examines the dynamics of a global political and economic climate that is focused on environmental and economic sustainability, leading towards increasingly towards a circular raw materials economy. These scenarios were reviewed, tested, and provided simulations of impacts with members of the Consortium and a panel of global experts on international raw materials issues which led to expected end conditions for 2050. Given the current uncertainty in global politics, these scenarios are informative to identifying likely opportunities and crises. The details of these simulations and expected responses to the research demand, technology investments, and economic components of raw materials system will be discussed.

  16. Material characterization models and test methods for historic building materials

    DEFF Research Database (Denmark)

    Hansen, Tessa Kvist; Peuhkuri, Ruut Hannele; Møller, Eva B.

    2017-01-01

    Predictions of long term hygrothermal performance can be assessed by dynamic hygrothermal simulations, in which material parameters are crucial input. Material parameters for especially historic materials are often unknown; therefore, there is a need to determine important parameters, and simple...

  17. Standardization Efforts for Mechanical Testing and Design of Advanced Ceramic Materials and Components

    Science.gov (United States)

    Salem, Jonathan A.; Jenkins, Michael G.

    2003-01-01

    Advanced aerospace systems occasionally require the use of very brittle materials such as sapphire and ultra-high temperature ceramics. Although great progress has been made in the development of methods and standards for machining, testing and design of component from these materials, additional development and dissemination of standard practices is needed. ASTM Committee C28 on Advanced Ceramics and ISO TC 206 have taken a lead role in the standardization of testing for ceramics, and recent efforts and needs in standards development by Committee C28 on Advanced Ceramics will be summarized. In some cases, the engineers, etc. involved are unaware of the latest developments, and traditional approaches applicable to other material systems are applied. Two examples of flight hardware failures that might have been prevented via education and standardization will be presented.

  18. L'Uso dei Materiali Video nei Test Linguistici (The Use of Video Materials in Language Tests).

    Science.gov (United States)

    Diadori, Pierangela

    1995-01-01

    This article argues that a communicative language course must have communicative exams. It explains how to choose and use material to test students' listening comprehension and socio-cultural knowledge. Transcripts of a commercial, a talk show, a film, a TV news show, and a documentary are included accompanied by exercises. (CFM)

  19. Alternative buffer material. Status of the ongoing laboratory investigation of reference materials and test package 1

    International Nuclear Information System (INIS)

    Svensson, Daniel; Dueck, Ann; Nilsson, Ulf; Olsson, Siv; Sanden, Torbjoern; Lydmark, Sara; Jaegerwall, Sara; Pedersen, Karsten; Hansen, Staffan

    2011-07-01

    Bentonite clay is part of the Swedish KBS-3 design of final repositories for high level radioactive waste. Wyoming bentonite with the commercial name MX-80 (American Colloid Co) has long been the reference for buffer material in the KBS-3 concept. Extending the knowledge base of alternative buffer materials will make it possible to optimize regarding safety, availability and cost. For this reason the field experiment Alternative Buffer Material (ABM) was started at Aespoe Hard Rock Laboratory during 2006. The experiment includes three medium-scale test packages, each consisting of a central steel tube with heaters, and a buffer of compacted clay. Eleven different clays were chosen for the buffers to examine effects of smectite content, interlayer cations and overall iron content. Also bentonite pellets with and without additional quartz are being tested. The buffer in package 1 had been subjected to wetting by formation water and heating for more than two years (at 130 deg C for ∼ 1 year) when it was retrieved and analyzed. The main purposes of the project were to characterise the clays with respect to hydro-mechanical properties, mineralogy and chemical composition and to identify any differences in behaviour or long term stability. The diversity of clays and the heater of steel also make the experiment suitable for studies of iron-bentonite interactions. This report concerns the work accomplished up to now and is not to be treated as any final report of the project

  20. Alternative buffer material. Status of the ongoing laboratory investigation of reference materials and test package 1

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Daniel [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Dueck, Ann; Nilsson, Ulf; Olsson, Siv; Sanden, Torbjoern [Clay Technology AB, Lund (Sweden); Lydmark, Sara; Jaegerwall, Sara; Pedersen, Karsten [Microbial Analytics Sweden AB, Moelnlycke (Sweden); Hansen, Staffan [LTH Lund Univ., Lund (Sweden)

    2011-07-15

    Bentonite clay is part of the Swedish KBS-3 design of final repositories for high level radioactive waste. Wyoming bentonite with the commercial name MX-80 (American Colloid Co) has long been the reference for buffer material in the KBS-3 concept. Extending the knowledge base of alternative buffer materials will make it possible to optimize regarding safety, availability and cost. For this reason the field experiment Alternative Buffer Material (ABM) was started at Aespoe Hard Rock Laboratory during 2006. The experiment includes three medium-scale test packages, each consisting of a central steel tube with heaters, and a buffer of compacted clay. Eleven different clays were chosen for the buffers to examine effects of smectite content, interlayer cations and overall iron content. Also bentonite pellets with and without additional quartz are being tested. The buffer in package 1 had been subjected to wetting by formation water and heating for more than two years (at 130 deg C for {approx} 1 year) when it was retrieved and analyzed. The main purposes of the project were to characterise the clays with respect to hydro-mechanical properties, mineralogy and chemical composition and to identify any differences in behaviour or long term stability. The diversity of clays and the heater of steel also make the experiment suitable for studies of iron-bentonite interactions. This report concerns the work accomplished up to now and is not to be treated as any final report of the project.

  1. Spiked environmental matrix for use as a reference material for gamma-ray spectrometry: Production and homogeneity test

    International Nuclear Information System (INIS)

    Sobiech-Matura, K.; Máté, B.; Altzitzoglou, T.

    2016-01-01

    The application of a spiking method for reference material production and its utilisation for a food matrix is presented. The raw rice powder was tested by means of γ-ray spectrometry and spiked with a "1"3"7Cs solution. The spiked material was mixed and tested for homogeneity. The future use of the rice powder reference material after the entire characterisation cycle will be for γ-ray spectrometry method validation. - Highlights: • Spiking blank substance with a traceable radioactive solution • Spiked reference material for γ-ray emitting radionuclides in food matrix • Results of the homogeneity tests are presented

  2. Test facilities for radioactive material transport packages (AEA Technology, Winfrith, UK)

    International Nuclear Information System (INIS)

    Burgess, M.H.

    1991-01-01

    Transport packages for radioactive materials are tested to demonstrate compliance with national and international regulations. The involvement of AEA Technology is traced from the establishment of the early IAEA Regulations. Transport package design, testing, assessment and approval requires a wide variety of skills and facilities. The comprehensive capability of AEA Technology in these areas is described with references to practical experience in the form of a short bibliography. The facilities described include drop-test cranes and targets (up to 700te); air guns for impacts up to sonic velocities; pool fires, furnaces and rigs for thermal tests including heat dissipation on prototype flasks; shielding facilities and instruments; criticality simulations and leak test instruments. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  3. Scoping corrosion tests on candidate waste package basket materials for the Yucca Mountain project

    International Nuclear Information System (INIS)

    Konynenburg, R.A. van; Curtis, P.G.; Summers, T.S.E.

    1998-03-01

    A scoping corrosion test was performed on candidate waste package basket materials. The corrosion medium was a pH-buffered solution of chemical species expected to be produced by radiolysis. The test was conducted at 90 C for 96 hours. Samples included aluminum-, copper-, stainless steel- and zirconium-based metallic materials and several ceramics, incorporating neutron-absorbing elements. Sample weight losses and solution chemical changes were measured. Both corrosion of the host materials and dissolution of the neutron-absorbing elements were studied. The ceramics and the zirconium-based materials underwent only minor corrosion. The stainless steel-based materials performed well except for a welded sample. The aluminum- and copper-based materials exhibited the highest corrosion rates. Boron dissolution depends on its chemical form. Boron oxide and many metal borides dissolve readily in acidic solutions while high-chromium borides and boron carbide, though thermodynamically unstable, exhibit little dissolution in short times. The results of solution chemical analyses were consistent with this. Gadolinium did not dissolve significantly from monazite, and hafnium showed little dissolution from a variety of host materials, in keeping with its low solubility

  4. Radiochemical analyses of several spent fuel Approved Testing Materials

    International Nuclear Information System (INIS)

    Guenther, R.J.; Blahnik, D.E.; Wildung, N.J.

    1994-09-01

    Radiochemical characterization data are described for UO 2 and UO 2 plus 3 wt% Gd 2 O 3 commercial spent nuclear fuel taken from a series of Approved Testing Materials (ATMs). These full-length nuclear fuel rods include MLA091 of ATM-103, MKP070 of ATM-104, NBD095 and NBD131 of ATM-106, and ADN0206 of ATM-108. ATMs 103, 104, and 106 were all irradiated in the Calvert Cliffs Nuclear Power Plant (Reactor No.1), a pressurized-water reactor that used fuel fabricated by Combustion Engineering. ATM-108 was part of the same fuel bundle designed as ATM-105 and came from boiling-water reactor fuel fabricated by General Electric and irradiated in the Cooper Nuclear Power Plant. Rod average burnups and expected fission gas releases ranged from 2,400 to 3,700 GJ/kgM. (25 to 40 Mwd/kgM) and from less than 1% to greater than 10%, respectively, depending on the specific ATM. The radiochemical analyses included uranium and plutonium isotopes in the fuel, selected fission products in the fuel, fuel burnup, cesium and iodine on the inner surfaces of the cladding, 14 C in the fuel and cladding, and analyses of the gases released to the rod plenum. Supporting examinations such as fuel rod design and material descriptions, power histories, and gamma scans used for sectioning diagrams are also included. These ATMs were examined as part of the Materials Characterization Center Program conducted at Pacific Northwest Laboratory provide a source of well-characterized spent fuel for testing in support of the US Department of Energy Office of Civilian Radioactive Waste Management Program

  5. Some problems on materials tests in high temperature hydrogen base gas mixture

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Tanabe, Tatsuhiko; Fujitsuka, Masakazu; Yoshida, Heitaro; Watanabe, Ryoji

    1980-01-01

    Some problems have been examined on materials tests (creep rupture tests and corrosion tests) in high temperature mixture gas of hydrogen (80%H 2 + 15%CO + 5%CO 2 ) simulating the reducing gas for direct steel making. H 2 , CO, CO 2 and CH 4 in the reducing gas interact with each other at elevated temperature and produce water vapor (H 2 O) and carbon (soot). Carbon deposited on the walls of retorts and the water condensed at pipings of the lower temperature gas outlet causes blocking of gas flow. The gas reactions have been found to be catalyzed by the retort walls, and appropriate selection of the materials for retorts has been found to mitigate the problems caused by water condensation and carbon deposition. Quartz has been recognized to be one of the most promising materials for minimizing the gas reactions. And ceramic coating, namely, BN (born nitride) on the heat resistant superalloy, MO-RE II, has reduced the amounts of water vapor and deposited carbon (sooting) produced by gas reactions and has kept dew points of outlet gas below room temperature. The well known emf (thermo-electromotive force) deterioration of Alumel-Chromel thermocouples in the reducing gases at elevated temperatures has been also found to be prevented by the ceramic (BN) coating. (author)

  6. Profile of Students' Creative Thinking Skills on Quantitative Project-Based Protein Testing using Local Materials

    Directory of Open Access Journals (Sweden)

    D. K. Sari

    2017-04-01

    Full Text Available The purpose of this study is to obtain a profile of students’ creative thinking skills on quantitative project-based protein testing using local materials. Implementation of the research is using quasi-experimental method pre-test post-test control group design with 40 students involved in Biochemistry lab. The research instrument is pre-test and post-test using creative thinking skills in the form of description and students’ questionnaire. The analysis was performed with SPSS 22.0 program to see the significance normality, U Mann-Whitney test for nonparametric statistics, N-Gain score, and the percentage of student responses to the practicum performed. The research result shows that the pretest rate in the experimental group is 8.25 while in the control group is 6.90. After attending a project-based practicum with local materials, the experimental group obtained the mean of posttest is 37.55 while in control class is 11.18. The students’ improvement on creative thinking skills can be seen from the average of N-Gain in the experimental class with 0.32 (medium category and in the control category with 0.05 (low category. The experimental and control class have different creative thinking skills significantly different fluency, flexibility, novelty, and detail. It can be concluded that quantitative project-based protein testing using local materials can improve students’ creative thinking skills. 71% of total students feel that quantitative project-based protein testing using local materials make them more creative in doing a practicum in the laboratory.

  7. Characterization of spent fuel approved testing material---ATM-105

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, R.J.; Blahnik, D.E.; Campbell, T.K.; Jenquin, U.P.; Mendel, J.E.; Thomas, L.E.; Thornhill, C.K.

    1991-12-01

    The characterization data obtained to data are described for Approved Testing Material 105 (ATM-105), which is spent fuel from Bundles CZ346 and CZ348 of the Cooper Nuclear Power Plant, a boiling-water reactor. This report is one in a series being prepared by the Materials Characterization Center at Pacific Northwest Laboratory (PNL) on spent fuel ATMs. The ATMs are receiving extensive examinations to provide a source of well-characterized spent fuel for testing in the US Department of Energy Office of Civilian Radioactive Waste Management (OCRWM) Program. ATM-105 consists of 88 full-length irradiated fuel rods with rod-average burnups of about 2400 GJ/kgM (28 MWd/kgM) and expected fission gas release of about 1%. Characterization data include (1) descriptions of as-fabricated fuel design, irradiation history, and subsequent storage and handling; (2) isotopic gamma scans; (3) fission gas analyses; (4) ceramography of the fuel and metallography of the cladding; (5) special fuel studies involving analytical transmission electron microscopy (AEM); (6) calculated nuclide inventories and radioactivities in the fuel and cladding; and (7) radiochemical analyses of the fuel and cladding. Additional analyses of the fuel are being conducted and will be included in planned revisions of this report.

  8. Guidelines for conducting impact tests on shipping packages for radioactive material

    International Nuclear Information System (INIS)

    Mok, G.C.; Carlson, R.W.; Lu, S.C.; Fischer, L.E.

    1995-09-01

    Federal regulation (10 CFR Part 71) specifies a number of impact conditions (free-drop, penetration, and puncture), under which a package for the transport of radioactive materials must be tested or evaluated to demonstrate compliance with the regulation. This report is a comprehensive guide to the planning and execution of these impact tests. The report identifies the required considerations for both the design, pre-, and post-test inspections of the test model and the measurement, recording, analysis, and reporting of the test data. The report also presents reasons for the requirements, identifies the major difficulties in meeting these requirements, and suggests possible methods to overcome the difficulties. Discussed in substantial detail is the use of scale models and instrumented measurements

  9. The Use of Digital Radiography in the Evaluation of Radioactive Materials. Packaging Performance Testing

    International Nuclear Information System (INIS)

    May, C; Lawrence Gelder, L; Boyd Howard, B

    2007-01-01

    New designs of radioactive material shipping packages are required to be evaluated in accordance with 10 CFR Part 71, ''Packaging and Transportation of Radioactive Material''. This paper will discuss the use of digital radiography to evaluate the effects of the tests required by 10 CFR 71.71, Normal Conditions of Transport (NCT), and 10 CFR 71.73, Hypothetical Accident Conditions (HAC). One acceptable means of evaluating packaging performance is to subject packagings to the series of NCT and HAC tests. The evaluation includes a determination of the effect on the packaging by the conditions and tests. That determination has required that packagings be cut and sectioned to learn the actual effects on internal components. Digital radiography permits the examination of internal packaging components without sectioning a package. This allows a single package to be subjected to a series of tests. After each test, the package is digitally radiographed and the effects of particular tests evaluated. Radiography reduces the number of packages required for testing and also reduces labor and materials required to section and evaluate numerous packages. This paper will include a description of the digital radiography equipment used in the testing and evaluation of the 9977 and 9978 packages at SRNL. The equipment is capable of making a single radiograph of a full-sized package in one exposure. Radiographs will be compared to sectioned packages that show actual conditions compared to radiographic images

  10. Compatibility tests of materials for a prototype ceramic melter for defense glass-waste products

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1979-01-01

    Objective is to evaluate the corrosion/erosion resistance of melter materials. Materials tested were Monofrox K3 and E, Serv, Inconel 690, Pt, and SnO. Results show that Inconel 690 is the leading electrode material and Monofrox K3 the leading refractory candidate. Melter lifetime is estimated to be 2 to 5 years for defense waste

  11. Molding of strength testing samples using modern PDCPD material for purpose of automotive industry

    Science.gov (United States)

    Grabowski, L.; Baier, A.; Sobek, M.

    2017-08-01

    The casting of metal materials is widely known but the molding of composite polymer materials is not well-known method still. The initial choice of method for producing composite bodies was the method of casting of PDCPD material. For purpose of performing casting of polymer composite material, a special mold was made. Firstly, the 3D printed, using PLA material, mold was used. After several attempts of casting PDCPD many problems were encountered. The second step was to use mold milled from a firm and dense isocyanate foam. After several attempts research shown that this solution is more resistant to high-temperature peak, but this material is too fragile to use it several times. This solution also prevents mold from using external heating, which can be necessary for performing correct molding process. The last process was to use the aluminum mold, which is dedicated to PDCPD polymer composite, because of low adhesiveness. This solution leads to perform correct PDCPD polymer composite material injection. After performing casting operation every PDCPD testing samples were tested. These results were compared together. The result of performed work was to archive correct properties of injection of composite material. Research and results were described in detail in this paper.

  12. A review of a radioactive material shipping container including design, testing, upgrading compliance program and shipping logistics

    International Nuclear Information System (INIS)

    Celovsky, A.; Lesco, R.; Gale, B.; Sypes, J.

    2003-01-01

    Ten years ago Atomic Energy of Canada developed a Type B(U)-85 shipping container for the global transport of highly radioactive materials. This paper reviews the development of the container, including a summary of the design requirements, a review of the selected materials and key design elements, and the results of the major qualification tests (drop testing, fire test, leak tightness testing, and shielding integrity tests). As a result of the testing, improvements to the structural, thermal and containment design were made. Such improvements, and reasons thereof, are noted. Also provided is a summary of the additional analysis work required to upgrade the package from a Type B(U) to a Type B(F), i.e. essentially upgrading the container to include fissile radioisotopes to the authorized radioactive contents list. Having a certified shipping container is only one aspect governing the global shipments of radioactive material. By necessity the shipment of radioactive material is a highly regulated environment. This paper also explores the experiences with other key aspects of radioactive shipments, including the service procedures used to maintain the container certification, the associated compliance program for radioactive material shipments, and the shipping logistics involved in the transport. (author)

  13. A quality assurance program for nuclear power reactor materials tests at the Ford nuclear reactor

    International Nuclear Information System (INIS)

    Burn, R.R.

    1989-01-01

    The University of Michigan Nuclear Reactor Laboratory Quality Assurance Program has been established to assure that materials testing services provided to electric utilities produce accurate results in accordance with industry standards, sound engineering practice, and customer requirements. The program was prepared to comply with applicable requirements of 10CFR50, Appendix B, of the Code of Federal Regulations and a standard of the American National Standards Institute (ANSI), N45.2. The paper discusses the quality assurance program applicability, organization, qualification and training of personnel, material identification and control, examination and testing, measuring and test equipment, nonconforming test equipment, records, audits, and distribution

  14. Full scale tests of moisture buffer capacity of wall materials

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard; Rode, Carsten; Peuhkuri, Ruut Hannele

    2005-01-01

    that are harmful such as growth of house dust mites, surface condensation and mould growth. Therefore a series of experiments has been carried out in a full scale test facility to determine the moisture buffer effect of interior walls of cellular concrete and plaster board constructions. For the cellular concrete......Moisture buffer capacity of hygroscopic materials can be used to moderate peaks in the relative humidity (RH) of indoor air as well as moisture content variations in building materials and furnishing. This can help to ensure healthier indoor environments by preventing many processes...... of the changes of moisture content in specimens of the wall composites exposed to the same environment. It was found that the finishes had a big impact on the buffer performance of the underlying materials. Even though the untreated cellular concrete had a very high buffer capacity, the effect was strongly...

  15. Verification test for radiation reduction effect and material integrity on PWR primary system by zinc injection

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, H.; Nagata, T.; Yamada, M. [Nuclear Power Engineering Corp. (Japan); Kasahara, K.; Tsuruta, T.; Nishimura, T. [Mitsubishi Heavy Industries, Ltd. (Japan); Ishigure, K. [Saitama Inst. of Tech. (Japan)

    2002-07-01

    Zinc injection is known to be an effective method for the reduction of radiation source in the primary water system of a PWR. There is a need to verify the effect of Zn injection operation on radiation source reduction and materials integrity of PWR primary circuit. In order to confirm the effectiveness of Zn injection, verification test as a national program sponsored by Ministry of Economy, Trade and Industry (METI) was started in 1995 for 7-year program, and will be finished by the end of March in 2002. This program consists of irradiation test and material integrity test. Irradiation test as an In-Pile-Test managed by AEAT Plc(UK) was performed using the LVR-15 reactor of NRI Rez in Check Republic. Furthermore, Out-of-Pile-Test using film adding unit was also performed to obtain supplemental data for In-Pile-Test at Takasago Engineering Laboratory of NUPEC. Material Integrity test was planned to perform constant load test, constant strain test and corrosion test at the same time using large scale Loop and slow strain extension rate testing (SSRT) at Takasago Engineering Laboratory of NUPEC. In this paper, the results of the verification test for Zinc program at present are discussed. (authors)

  16. Static pile load tests on driven piles into Intermediate-Geo Materials.

    Science.gov (United States)

    2016-09-01

    The Wisconsin Department of Transportation (WisDOT) has concerns with both predicting pile lengths and pile capacities for H-piles driven into Intermediate-Geo Materials (IGM). The goal of the research was to perform 7 static axial load tests at 7 lo...

  17. A comparison of conventional mechanical testing techniques with innovative testing techniques for the evaluation of mechanical properties of NPP structural materials

    International Nuclear Information System (INIS)

    Liddell, P.A.; Kopriva, R.

    2015-01-01

    The innovative testing methods of Small Punch (SP) and Automated Ball Indentation (ABI) tests are based on the determination of material properties from sub-sized samples. These methods are promising to evaluate the components of nuclear power plants since they preserve the structural integrity of the component. The SP test is a semi-destructive method that employs miniaturised plate-shaped samples of various geometries. The method is based on the penetration of a sample with a semi-spherical punch. The sample deflection is measured throughout the test. The ABI test is a fully automatic test based on multiple indentations at a single penetration location on a polished sample surface with a spherical indenter of various diameters. The purpose of the test is to determine the tensile properties of materials in a non-destructive and localised fashion. A comparison has been made between SP, ABI and conventional tensile tests on the measurement of yield strength for the A533B (JRQ) ferritic steel which is a base metal of the pressure vessels of western PWR. The results show an excellent correlation for both innovative methods and the conventional tensile tests

  18. Alternate Material Pallet, 40" x 48", MIL-STD-1660, Engineering Evaluation Tests

    National Research Council Canada - National Science Library

    Dugan, Jeffery

    2003-01-01

    The U.S. Army Defense Ammunition Center (DAC), Validation Engineering Division (SJMAC-DEV) conducted Engineering Evaluation Tests to determine if the Alternate Material Pallet manufactured by Hunter Paine Enterprise, Inc...

  19. Neutron irradiation test of copper alloy/stainless steel joint materials

    International Nuclear Information System (INIS)

    Yamada, Hirokazu; Kawamura, Hiroshi

    2006-01-01

    As a study about the joint technology of copper alloy and stainless steel for utilization as cooling piping in International Thermonuclear Experimental Reactor (ITER), Al 2 O 3 -dispersed strengthened copper or CuCrZr was jointed to stainless steel by three kinds of joint methods (casting joint, brazing joint and friction welding method) for the evaluation of the neutron irradiation effect on joints. A neutron irradiation test was performed to three types of joints and each copper alloy. The average value of fast neutron fluence in this irradiation test was about 2 x 10 24 n/m 2 (E>1 MeV), and the irradiation temperature was about 130degC. As post-irradiation examinations, tensile tests, hardness tests and observation of fracture surface after the tensile tests were performed. All type joints changed to be brittle by the neutron irradiation effect like each copper alloy material, and no particular neutron irradiation effect due to the effect of joint process was observed. On the casting and friction welding, hardness of copper alloy near the joint boundary changed to be lower than that of each copper alloy by the effect of joint procedure. However, tensile strength of joints was almost the same as that of each copper alloy before/after neutron irradiation. On the other hand, tensile strength of joints by brazing changed to be much lower than CuAl-25 base material by the effect of joint process before/after neutron irradiation. Results in this study showed that the friction welding method and the casting would be able to apply to the joint method of piping in ITER. This report is based on the final report of the ITER Engineering Design Activities (EDA). (author)

  20. Technical committee on transport package test standards (for radioactive materials transport). Vienna, 6-10 August 1979

    International Nuclear Information System (INIS)

    White, M.C.

    1979-11-01

    The report of a meeting of the technical committee on transport package test standards is presented. The committee assigned high priority to work on Low Level Solid material and Low Specific Activity material, on the justification for and requirements of a Crush Test and on leakage from packages

  1. Testing capabilities of Los Alamos National Laboratory for irradiated materials

    International Nuclear Information System (INIS)

    Maloy, S.A.; James, M.R.; Sommer, W.F.

    1999-01-01

    Spallation neutron sources expose materials to high energy (>100 MeV) proton and neutron spectra. Although numerous studies have investigated the effects of radiation damage in a lower energy neutron flux from fission or fusion reactors on the mechanical properties of materials, very little work has been performed on the effects that exposure to a spallation neutron spectrum has on the mechanical properties of materials. These effects can be significantly different than those observed in a fission or fusion reactor spectrum because exposure to high energy protons and neutrons produces more He and H along with the atomic displacement damage. Los Alamos National Laboratory has unique facilities to study the effects of spallation radiation damage on the mechanical properties of materials. The Los Alamos Neutron Science Center (LANSCE) has a pulsed linear accelerator which operates at 800 MeV and 1 mA. The Los Alamos Spallation Radiation Effect Facility (LASREF) located at the end of this accelerator is designed to allow the irradiation of components in a proton beam while water cooling these components and measuring their temperature. After irradiation, specimens can be investigated at hot cells located at the Chemical Metallurgy Research Building. Wing 9 of this facility contains 16 hot cells set up in two groups of eight, each having a corridor in the center to allow easy transfer of radioactive shipments into and out of the hot cells. These corridors have been used to prepare specimens for shipment to collaborating laboratories such as PNNL, ORNL, BNL, and the Paul Scherrer Institute to perform specialized testing at their hot cells. The LANL hot cells contain capabilities for opening radioactive components and testing their mechanical properties as well as preparing specimens from irradiated components

  2. Modelling of ultrasonic nondestructive testing in anisotropic materials - Rectangular crack

    International Nuclear Information System (INIS)

    Bostroem, A.

    2001-12-01

    Nondestructive testing with ultrasound is a standard procedure in the nuclear power industry when searching for defects, in particular cracks. To develop and qualify testing procedures extensive experimental work on test blocks is usually required. This can take a lot of time and therefore be quite costly. A good mathematical model of the testing situation is therefore of great value as it can reduce the experimental work to a great extent. A good model can be very useful for parametric studies and as a pedagogical tool. A further use of a model is as a tool in the qualification of personnel. In anisotropic materials, e.g. austenitic welds, the propagation of ultrasound becomes much more complicated as compared to isotropic materials. Therefore, modelling is even more useful for anisotropic materials, and it in particular has a greater pedagogical value. The present project has been concerned with a further development of the anisotropic capabilities of the computer program UTDefect, which has so far only contained a strip-like crack as the single defect type for anisotropic materials. To be more specific, the scattering by a rectangular crack in an anisotropic component has been studied and the result is adapted to include transmitting and receiving ultrasonic probes. The component under study is assumed to be anisotropic with arbitrary anisotropy. On the other hand, it is assumed to be homogeneous, and this in particular excludes most welds, where it is seldom an adequate approximation to assume homogeneity. The anisotropy may be arbitrarily oriented and the same is true of the rectangular crack. The crack may also be located near a backside of the component. To solve the scattering problem for the crack an integral equation method is used. The probe model has been developed in an earlier project and to compute the signal response in the receiving probe an electromechanical reciprocity argument is employed. As a rectangle is a truly 3D scatterer the sizes of the

  3. Decontamination tests on tritium-contaminated materials

    International Nuclear Information System (INIS)

    Boutot, P.; Schipfer, P.

    1967-01-01

    These tests are designed to try out various processes liable to be applied to the decontamination of a material contaminated with tritium. The samples are thin stainless- steel slabs contaminated in the laboratory with elements extracted from industrial installations. The measurement of the initial and residual activities is carried out using an open-window BERTHOLD counter. The best results are obtained by passing a current of pre-heated (300 deg. C) air containing water vapour. This process makes it possible to reach a decontamination factor of 99.5 per cent in 4 hours. In a vacuum, the operation has to be prolonged to 100 hours in order to obtain a decontamination factor of 99.2 per cent. Wet-chemical or electrolytic treatments are efficient but their use is limited by the inherent corrosion risks. A study of the reappearance of the contamination has made it possible to observe that this phenomenon occurs whatever the process used. (authors) [fr

  4. Reaction-to-Fire of Wood Products and Other Building Materials: Part 1, Room/Corner Test Performance

    Science.gov (United States)

    Ondrej Grexa; Mark A. Dietenberger; Robert H. White

    2012-01-01

    This project researched the assessment of reaction-to-fire of common materials using the full-scale room/corner test (ISO 9705) protocol and the predictions of time to flashover using results from the bench-scale cone calorimeter test (ISO 5660-1). Using a burner protocol of 100 kW for 10 min, followed by 300 kW for 10 min and the test materials on the walls only, we...

  5. Testing Systems and Results for Advanced Nuclear Fuel Materials

    International Nuclear Information System (INIS)

    Rooyen, I.J. van; Griffith, G.W.; Garnier, J.E.

    2012-01-01

    Light Water Reactor Sustainability (LWRS) Program Advanced LWR Nuclear Fuel Development (ALFD) Pathway. Development and testing of high performance fuel cladding identified as high priority to support: enhancement of fuel performance, reliability, and reactor safety. One of the technologies being examined is an advanced fuel cladding made from ceramic matrix composites (CMC) utilizing silicon carbide (SiC) as a structural material supplementing a commercial Zircaloy-4 (Zr-4) tube. A series of out-of-pile tests to fully characterize the SiC CMC hybrid design to produce baseline data. The planned tests are intended to either produce quantitative data or to demonstrate the properties required to achieve two initial performance conditions relative to standard zircaloybased cladding: decreased hydrogen uptake (corrosion) and decreased fretting of the cladding tube under normal operating and postulated accident conditions. These two failure mechanisms account for approximately 70% of all in-pile failures of LWR commercial fuel assemblies

  6. Questions of qualification exam for non-destructive testing and materials science - the first level

    International Nuclear Information System (INIS)

    Shaaban, H.I.; Addarwish, J.M.A.

    2013-01-01

    The book contains seven chapters: Questions of qualification for magnetic particles testing method - Questions of qualification for liquids penetrant testing method - Questions of qualification for the visual inspection testing method - Questions of qualification for the ultrasonic testing method - Questions of qualification for the eddy current testing method - Questions of rehabilitation for industrial radiographic testing method - Qualification questions about materials science and manufacturing defects of castings and welding and comparison between non-destructive testing methods.

  7. Developing standard performance testing procedures for material control and accounting components at a site

    International Nuclear Information System (INIS)

    Scherer, Carolynn P.; Bushlya, Anatoly V.; Efimenko, Vladimir F.; Ilyanstev, Anatoly; Regoushevsky, Victor I.

    2010-01-01

    The condition of a nuclear material control and accountability system (MC and A) and its individual components, as with any system combining technical elements and documentation, may be characterized through an aggregate of values for the various parameters that determine the system's ability to perform. The MC and A system's status may be functioning effectively, marginally or not functioning based on a summary of the values of the individual parameters. This work included a review of the following subsystems, MC and A and Detecting Material Losses, and their respective elements for the material control and accountability system: (a) Elements of the MC and A Subsystem - Information subsystem (Accountancy/Inventory), Measurement subsystem, Nuclear Material Access subsystem, including tamper-indicating device (TID) program, and Automated Information-gathering subsystem; (b) Elements for Detecting Nuclear Material Loses Subsystem - Inventory Differences, Shipper/receiver Differences, Confirmatory Measurements and differences with accounting data, and TID or Seal Violations. In order to detect the absence or loss of nuclear material there must be appropriate interactions among the elements and their respective subsystems from the list above. Additionally this work includes a review of regulatory requirements for the MC and A system component characteristics and criteria that support the evaluation of the performance of the listed components. The listed components had performance testing algorithms and procedures developed that took into consideration the regulatory criteria. The developed MC and A performance-testing procedures were the basis for a Guide for MC and A Performance Testing at the material balance areas (MBAs) of State Scientific Center of the Russian Federation - Institute for Physics and Power Engineering (SSC RF-IPPE).

  8. 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials

    CERN Document Server

    Partl, Manfred

    2016-01-01

    This work presents the results of RILEM TC 237-SIB (Testing and characterization of sustainable innovative bituminous materials and systems). The papers have been selected for publication after a rigorous peer review process and will be an invaluable source to outline and clarify the main directions of present and future research and standardization for bituminous materials and pavements. The following topics are covered: - Characterization of binder-aggregate interaction - Innovative testing of bituminous binders, additives and modifiers - Durability and aging of asphalt pavements - Mixture design and compaction analysis - Environmentally sustainable materials and technologies - Advances in laboratory characterization of bituminous materials - Modeling of road materials and pavement performance prediction - Field measurement and in-situ characterization - Innovative materials for reinforcement and interlayer systems - Cracking and damage characterization of asphalt pavements - Rec...

  9. Development and Testing the Technology of Complex Transformation of Carbohydrates from Vegetable Raw Materials into Bioethanol

    Directory of Open Access Journals (Sweden)

    S.P. Tsygankov

    2013-07-01

    Full Text Available Results of development and testing the tentative technology of sweet sorghum and finger millet processing into bioethanol are described. The carbohydrates content and range of the studied vegetable biomass as the raw material is defined. Bioethanol potential output from sugar sorghum and finger millet carbohydrates and key technological parameters of preparation of both types of vegetable raw material for alcohol fermentation are defined. The concept of the tentative technology of bioethanol production from carbohydrate raw material of the first and second generations is offered. Testing of complex transformation of carbohydrates from vegetable raw materials into bioethanol is performed.

  10. X-ray computerized tomography used in non-destructive testing of aerospace materials

    International Nuclear Information System (INIS)

    Maschio, Celio; Alencar Lotufo, Roberto de

    1996-01-01

    This work reports the development of nondestructive testing procedures for aerospace materials, using a medical tomograph (80 to 150 KeV), associated to the image digital processing techniques through the KHOROS system

  11. Methodically finding solutions of equipments for carrying out experiments in materials testing and research. Pt. 2

    International Nuclear Information System (INIS)

    Findeisen, D.; Nachtweide, D.; Kuntze, G.

    1983-01-01

    In comparison with the development of industrial products the development of test equipments is of special kind, which is demonstrated by methodical proceeding for finding solutions and by potentialities for technical design and production of test equipment engineering. Some general principles are turned out and explained by several realized examples of design belonging to the sphere of materials testing in den Federal Institute of Materials Testing (BAM) representative of other problems. User are large scientific institutes independent of university, scientific institutes as members of university just as test stands and quality control offices of industrial works. (orig.) [de

  12. Simulation Research on Adaptive Control of a Six-degree-of-freedom Material-testing Machine

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2014-02-01

    Full Text Available This paper presents an adaptive controller equipped with a stiffness estimation method for a novel material-testing machine, in order to alleviate the performance depression caused by the stiffness variance of the tested specimen. The dynamic model of the proposed machine is built using the Kane method, and kinematic model is established with a closed-form solution. The stiffness estimation method is developed based on the recursive least-squares method and the proposed stiffness equivalent matrix. Control performances of the adaptive controller are simulated in detail. The simulation results illustrate that the proposed controller can greatly improve the control performance of the target material-testing machine by online stiffness estimation and adaptive parameter tuning, especially in low-cycle fatigue (LCF and high-cycle fatigue (HCF tests.

  13. Estimation of RPV material embrittlement for Ukrainian NPP based on surveillance test data

    International Nuclear Information System (INIS)

    Revka, V.; Chyrko, L.; Chaikovsky, Yu.; Gulchuk, Yu.

    2012-01-01

    The WWER-1000 RPV material embrittlement has been evaluated using the surveillance test data for the nuclear power plant which is under operation in Ukraine. The RPV materials after the neutron (E > 0,5 MeV) irradiation up to fluence of 22,9.10 22 m -2 have been studied. Fracture toughness tests were performed using pre-cracked Charpy specimens for the beltline materials (base and weld metal). The maximum shift of T 0 reference temperature is equal to 44 o C. A radiation embrittlement rate, A F , for the RPV materials was estimated using the standard and reconstituted specimens. A comparison of the A F values has shown a good agreement between the specimen sets before and after reconstitution both for base and weld metal. Furthermore it has been revealed there is no nickel effect for the studied materials. In spite of the high nickel content the radiation embrittlement rate for weld metal is not higher than for base metal with low nickel content. Fracture toughness analysis has shown the Master curve shape describes well a temperature dependence of K Jc values. However a higher scatter of K Jc values is observed in comparison to 95 % tolerance bounds. (author)

  14. Standard test method for translaminar fracture toughness of laminated and pultruded polymer matrix composite materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This test method covers the determination of translaminar fracture toughness, KTL, for laminated and pultruded polymer matrix composite materials of various ply orientations using test results from monotonically loaded notched specimens. 1.2 This test method is applicable to room temperature laboratory air environments. 1.3 Composite materials that can be tested by this test method are not limited by thickness or by type of polymer matrix or fiber, provided that the specimen sizes and the test results meet the requirements of this test method. This test method was developed primarily from test results of various carbon fiber – epoxy matrix laminates and from additional results of glass fiber – epoxy matrix, glass fiber-polyester matrix pultrusions and carbon fiber – bismaleimide matrix laminates (1-4, 6, 7). 1.4 A range of eccentrically loaded, single-edge-notch tension, ESE(T), specimen sizes with proportional planar dimensions is provided, but planar size may be variable and adjusted, with asso...

  15. Critical outlook and trends for environmental reference materials at the Measurements & Testing Generic Activity (European Commission).

    Science.gov (United States)

    Quevauviller, P; Bennink, D; Bøwadt, S

    2001-05-01

    It is now well recognised that the quality control (QC) of all types of analyses, including environmental analyses depends on the appropriate use of reference materials. One of the ways to check the accuracy of methods is based on the use of Certified Reference Materials (CRMs), whereas other types of (not certified) Reference Materials (RMs) are used for routine quality control (establishment of control charts) and interlaboratory testing (e.g. proficiency testing). The perception of these materials, in particular with respect to their production and use, differs widely according to various perspectives (e.g. RM producers, routine laboratories, researchers). This review discusses some critical aspects of RM use and production for the QC of environmental analyses and describes the new approach followed by the Measurements & Testing Generic Activity (European Commission) to tackle new research and production needs.

  16. In-Pile Experiment of a New Hafnium Aluminide Composite Material to Enable Fast Neutron Testing in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Douglas L. Porter; James R. Parry; Heng Ban

    2010-06-01

    A new hafnium aluminide composite material is being developed as a key component in a Boosted Fast Flux Loop (BFFL) system designed to provide fast neutron flux test capability in the Advanced Test Reactor. An absorber block comprised of hafnium aluminide (Al3Hf) particles (~23% by volume) dispersed in an aluminum matrix can absorb thermal neutrons and transfer heat from the experiment to pressurized water cooling channels. However, the thermophysical properties, such as thermal conductivity, of this material and the effect of irradiation are not known. This paper describes the design of an in-pile experiment to obtain such data to enable design and optimization of the BFFL neutron filter.

  17. Results from low cycle fatigue testing of 316L plate and weld material

    International Nuclear Information System (INIS)

    Kaellstroem, R.; Josefsson, B.; Haag, Y.

    1993-01-01

    Specimens for low cycle fatigue testing from the second heat of the CEC reference 316L plate and from Tungsten Inert Gas (TIG) weld material have been neutron irradiated near room temperature to a displacement dose of approximately 0.3 dpa. The low cycle fatigue testing of both irradiated and unirradiated specimens was performed at 75, 250 and 450 degrees C, and with strain ranges of 0.75, 1.0 and 1.5%. There is no clear effect of the irradiation on low cycle fatigue properties. For the weld material the endurance is shorter than for plate, and the dependences on temperature and strain range are not clear

  18. Materials, manufacture and testing of pressurized components of high-power steam power plants

    International Nuclear Information System (INIS)

    Blind, D.; Foehl, J.; Issler, L.; Schellhammer, W.; Sturm, D.; Kussmaul, K.; Heinrich, D.; Meyer, H.J.; Prestel, W.

    1981-01-01

    This is the first German review of materials, production and testing of pressure components of high-capacity steam power plants. The authors have been working in this field for years; their special subject has been the availability and reliability of pressure vessels, in particular in nuclear engineering. Fundamentals are presented as well as the findings obtained at the state Materials Testing Institute in Stuttgart. The material is presented in a well-structured classification; the most recent international findings, especially of the USA, are presented. This is possible due to the close cooperation between the Stuttgart institute and a number of US research institutes. The new subject of fracture mechanics is treated in some detail; its fundamentals are discussed from the American point of view while German considerations - in particular of the Reactor Safety Commission - are taken into account in the field of applications. (orig.) [de

  19. Long term test of buffer material. Final Report on the pilot parcels

    Energy Technology Data Exchange (ETDEWEB)

    Karnland, Ola; Sanden, Torbjoern; Johannesson, Lars-Erik [Clay Technology AB, Lund (Sweden); Eriksen, Trygve E; Jansson, Mats; Wold, Susanna [Royal Inst. of Tech., Stockholm (Sweden); Pedersen, Karsten; Motamedi, Mehrdad [Goeteborg Univ. (Sweden); Rosborg, Bo [Studsvik Material AB, Nykoeping (Sweden)

    2000-12-01

    The 'Long Term Test of Buffer Material' (LOT) series at the Aespoe HRL aims at checking models and hypotheses for a bentonite buffer material under conditions similar to those in a KBS3 repository. The test series comprises seven test parcels, which are exposed to repository conditions for 1, 5 and 20 years. This report concerns the two completed pilot tests (1-year tests) with respect to construction, field data and laboratory results. Four research groups were engaged in this part of the project working on physical properties - mineralogy, cation diffusion, bacteria and copper corrosion, respectively. The experimental layout was to place parcels containing heater, central copper tube, pre-compacted bentonite blocks and instruments in vertical boreholes in crystalline rock. The heaters were used for simulating the decay power from spent nuclear fuel at standard KBS3 conditions (S1 parcel, 90 deg C) and to give adverse conditions (A1 parcel, 130 deg C). The latter was used in order to accelerate possible processes. Temperature, total pressure, water pressure and water content were measured during the heating period. The two pilot tests were terminated after approximately 12 months of heating, and the parcels were extracted by overlapping core drilling outside the original borehole. The entire 4.5 m long S1-parcel with approximately 20 cm rock cover was successfully lifted in one piece from the rock, whereas the central part of the A1 parcel was lost during drilling. The upper and lower parts were however retrieved. Reference and exposed bentonite material were analysed with respect to physical properties (triaxial, beam and oedometer tests), and to mineralogical properties (XRD, CEC, ICP-AES and SEM analyses) according to a defined test program. Some precipitation, mainly gypsum, was found in the warmest part of the parcels, and the only unpredicted change was minor uptake of Cu into the clay matrix. An overarching conclusion is that no degrading

  20. Long term test of buffer material. Final Report on the pilot parcels

    International Nuclear Information System (INIS)

    Karnland, Ola; Sanden, Torbjoern; Johannesson, Lars-Erik; Eriksen, Trygve E; Jansson, Mats; Wold, Susanna; Pedersen, Karsten; Motamedi, Mehrdad; Rosborg, Bo

    2000-12-01

    The 'Long Term Test of Buffer Material' (LOT) series at the Aespoe HRL aims at checking models and hypotheses for a bentonite buffer material under conditions similar to those in a KBS3 repository. The test series comprises seven test parcels, which are exposed to repository conditions for 1, 5 and 20 years. This report concerns the two completed pilot tests (1-year tests) with respect to construction, field data and laboratory results. Four research groups were engaged in this part of the project working on physical properties - mineralogy, cation diffusion, bacteria and copper corrosion, respectively. The experimental layout was to place parcels containing heater, central copper tube, pre-compacted bentonite blocks and instruments in vertical boreholes in crystalline rock. The heaters were used for simulating the decay power from spent nuclear fuel at standard KBS3 conditions (S1 parcel, 90 deg C) and to give adverse conditions (A1 parcel, 130 deg C). The latter was used in order to accelerate possible processes. Temperature, total pressure, water pressure and water content were measured during the heating period. The two pilot tests were terminated after approximately 12 months of heating, and the parcels were extracted by overlapping core drilling outside the original borehole. The entire 4.5 m long S1-parcel with approximately 20 cm rock cover was successfully lifted in one piece from the rock, whereas the central part of the A1 parcel was lost during drilling. The upper and lower parts were however retrieved. Reference and exposed bentonite material were analysed with respect to physical properties (triaxial, beam and oedometer tests), and to mineralogical properties (XRD, CEC, ICP-AES and SEM analyses) according to a defined test program. Some precipitation, mainly gypsum, was found in the warmest part of the parcels, and the only unpredicted change was minor uptake of Cu into the clay matrix. An overarching conclusion is that no degrading processes, with

  1. Test facilities for radioactive materials transport packages (Transportation Technology Center Inc., Pueblo, Colorado, USA)

    International Nuclear Information System (INIS)

    Conlon, P.C.L.

    2001-01-01

    Transportation Technology Center, Inc. is capable of conducting tests on rail vehicle systems designed for transporting radioactive materials including low level waste debris, transuranic waste, and spent nuclear fuel and high level waste. Services include rail vehicle dynamics modelling, on-track performance testing, full scale structural fatigue testing, rail vehicle impact tests, engineering design and technology consulting, and emergency response training. (author)

  2. Thermo-hydro-mechanical tests of buffer material

    International Nuclear Information System (INIS)

    Pintado, X.; Hassan, Md. M.; Martikainen, J.

    2013-10-01

    MX-80 bentonite is the reference clay material for the buffer component planned to be used in the deep geological repository for the disposal of spent nuclear fuel in Finland. The buffer presents complex thermo-hydro-mechanical behavior which is modeled with different constitutive models for heat flow, water flow and stress-strain evolution in the buffer. Thermo, hydro and mechanical models need parameters to evaluate the THM-behavior. These modeling parameters were determined by performing series of laboratory experiments as follows: Water retention curve tests were performed on compacted bentonite samples, encompassing a range of initial dry density values from 1397 to 1718 kg/m 3 as the initial water content was around of 5-8 %. The water retention curve was determined by imposing different suctions to the samples and the suctions were then checked using capacitive hygrometer and chilled mirror psychrometer. Oedometer tests were performed on compacted bentonite samples, encompassing a range of initial dry density values from 1590 to 1750 kg/m 3 as the initial water content was around of 6 %. Samples were saturated with tap water, 35 or 70 g/L salt solutions. Infiltration tests were performed on compacted unsaturated bentonite samples, encompassing a range of initial dry density values from 1400 to 1720 kg/m 3 as the initial water content was approximately between 4-7 %. Samples were saturated with tap water, 0.87, 35 or 70 g/L salt solutions. Tortuosity tests were performed on bentonite samples, encompassing a range of dry density values from 1460 to 1750 kg/m 3 and the degree of saturation varied between 33-93 %. Thermal conductivity tests were performed on compacted bentonite samples, encompassing a range of dry density values from 1545 to 1715 kg/m 3 and the degree of saturation varied between 31-88 %. The measurement was performed using a thermal needle probe. The general trend of all analyzed parameters was as expected when dry density, water content, and

  3. Thermo-hydro-mechanical tests of buffer material

    Energy Technology Data Exchange (ETDEWEB)

    Pintado, X.; Hassan, Md. M.; Martikainen, J. [B and Tech Oy, Helsinki (Finland)

    2013-10-15

    MX-80 bentonite is the reference clay material for the buffer component planned to be used in the deep geological repository for the disposal of spent nuclear fuel in Finland. The buffer presents complex thermo-hydro-mechanical behavior which is modeled with different constitutive models for heat flow, water flow and stress-strain evolution in the buffer. Thermo, hydro and mechanical models need parameters to evaluate the THM-behavior. These modeling parameters were determined by performing series of laboratory experiments as follows: Water retention curve tests were performed on compacted bentonite samples, encompassing a range of initial dry density values from 1397 to 1718 kg/m{sup 3} as the initial water content was around of 5-8 %. The water retention curve was determined by imposing different suctions to the samples and the suctions were then checked using capacitive hygrometer and chilled mirror psychrometer. Oedometer tests were performed on compacted bentonite samples, encompassing a range of initial dry density values from 1590 to 1750 kg/m{sup 3} as the initial water content was around of 6 %. Samples were saturated with tap water, 35 or 70 g/L salt solutions. Infiltration tests were performed on compacted unsaturated bentonite samples, encompassing a range of initial dry density values from 1400 to 1720 kg/m{sup 3} as the initial water content was approximately between 4-7 %. Samples were saturated with tap water, 0.87, 35 or 70 g/L salt solutions. Tortuosity tests were performed on bentonite samples, encompassing a range of dry density values from 1460 to 1750 kg/m{sup 3} and the degree of saturation varied between 33-93 %. Thermal conductivity tests were performed on compacted bentonite samples, encompassing a range of dry density values from 1545 to 1715 kg/m{sup 3} and the degree of saturation varied between 31-88 %. The measurement was performed using a thermal needle probe. The general trend of all analyzed parameters was as expected when dry

  4. Physical test report to drop test of a 9975 radioactive material shipping packaging

    International Nuclear Information System (INIS)

    Blanton, P.S.

    1997-01-01

    This report presents the drop test results for the 9975 radioactive material shipping package being dropped 30 feet onto a unyielding surface followed by a 40-inch puncture pin drop. The purpose of these drops was to show that the package lid would remain attached to the drum. The 30-foot drop was designed to weaken the lid closure lug while still maintaining maximum extension of the lugs from the drum surface. This was accomplished by angling the drum approximately 30 degrees from horizontal in an inverted position. In this position, the drum was rotated slightly so as not to embed the closure lugs into the drum as a result of the 30-foot drop. It was determined that this orientation would maximize deformation to the closure ring around the closure lug while still maintaining the extension of the lugs from the package surface. The second drop was from 40 inches above a 40-inch tall 6-inch diameter puncture pin. The package was angled 10 degrees from vertical and aligned over the puncture pin to solidly hit the drum lug(s) in an attempt to disengage the lid when dropped.Tests were performed in response to DOE EM-76 review Q5 inquires that questioned the capability of the 9975 drum lid to remain in place under this test sequence. Two packages were dropped utilizing this sequence, a 9974 and 9975. Test results for the 9974 package are reported in WSRC-RP-97-00945. A series of 40-inch puncture pin tests were also performed on undamaged 9975 and 9974 packages

  5. Research process of nondestructive testing pitting corrosion in metal material

    Directory of Open Access Journals (Sweden)

    Bo ZHANG

    2017-12-01

    Full Text Available Pitting corrosion directly affects the usability and service life of metal material, so the effective nondestructive testing and evaluation on pitting corrosion is of great significance for fatigue life prediction because of data supporting. The features of pitting corrosion are elaborated, and the relation between the pitting corrosion parameters and fatigue performance is pointed out. Through introducing the fundamental principles of pitting corrosion including mainly magnetic flux leakage inspection, pulsed eddy current and guided waves, the research status of nondestructive testing technology for pitting corrosion is summarized, and the key steps of nondestructive testing technologies are compared and analyzed from the theoretical model, signal processing to industrial applications. Based on the analysis of the signal processing specificity of different nondestructive testing technologies in detecting pitting corrosion, the visualization combined with image processing and signal analysis are indicated as the critical problems of accurate extraction of pitting defect information and quantitative characterization for pitting corrosion. The study on non-contact nondestructive testing technologies is important for improving the detection precision and its application in industries.

  6. Results of ASTM round robin testing for mode 1 interlaminar fracture toughness of composite materials

    Science.gov (United States)

    Obrien, T. Kevin; Martin, Roderick H.

    1992-01-01

    The results are summarized of several interlaboratory 'round robin' test programs for measuring the mode 1 interlaminar fracture toughness of advanced fiber reinforced composite materials. Double Cantilever Beam (DCB) tests were conducted by participants in ASTM committee D30 on High Modulus Fibers and their Composites and by representatives of the European Group on Fracture (EGF) and the Japanese Industrial Standards Group (JIS). DCB tests were performed on three AS4 carbon fiber reinforced composite materials: AS4/3501-6 with a brittle epoxy matrix; AS4/BP907 with a tough epoxy matrix; and AS4/PEEK with a tough thermoplastic matrix. Difficulties encountered in manufacturing panels, as well as conducting the tests are discussed. Critical issues that developed during the course of the testing are highlighted. Results of the round robin testing used to determine the precision of the ASTM DCB test standard are summarized.

  7. Developing the MAPLE materials test reactor concept

    International Nuclear Information System (INIS)

    Lee, A.G.; Lidstone, R.F.; Donnelly, J.V.

    1992-05-01

    MAPLE-MTR is a new multipurpose research facility being planned by AECL Research as a possible replacement for the 35-year-old NRU reactor. In developing the MAPLE-MTR concept, AECL is starting from the recent design and licensing experience with the MAPLE-X10 reactor. By starting from technology developed to support the MAPLE-X10 design and adapting it to produce a concept that satisfies the requirements of fuel channel materials testing and fuel irradiation programs, AECL expects to minimize the need for major advances in nuclear technology (e.g., fuel, heat transfer). Formulation of the MAPLE-MTR concept is at an early stage. This report describes the irradiation requirements of the research areas, how these needs are translated into design criteria for the project and elements of the preliminary design concept

  8. New electron beam facility for irradiated plasma facing materials testing in hot cell

    International Nuclear Information System (INIS)

    Sakamoto, N.; Kawamura, H.; Akiba, M.

    1995-01-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop of plasma facing components which can resist these. Then, we have established electron beam heat facility (open-quotes OHBISclose quotes, Oarai Hot-cell electron Beam Irradiating System) at a hot cell in JMTR (Japan Materials Testing Reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30kV (constant) and 1.7A, respectively. The loading time of electron beam is more than 0.1ms. The shape of vacuum vessel is cylindrical, and the mainly dimensions are 500mm in inner diameter, 1000mm in height. The ultimate vacuum of this vessel is 1 x 10 -4 Pa. At present, the facility for thermal shock test has been established in a hot cell. And performance estimation on the electron beam is being conducted. Presently, the devices for heat loading tests under steady state will be added to this facility

  9. EMERIS: an advanced information system for a materials testing reactor

    International Nuclear Information System (INIS)

    Adorjan, F.; Buerger, L.; Lux, I.; Mesko, L.; Szabo, K.; Vegh, J.; Ivanov, V.V.; Mozhaev, A.A.; Yakovlev, V.V.

    1990-06-01

    The basic features of the Materials Testing Reactor of IAE, Moscow (MR) Information System (EMERIS) are outlined. The purpose of the system is to support reactor and experimental test loop operators by a flexible, fully computerized and user-friendly tool for the aquisition, analysis, archivation and presentation of data obtained during operation of the experimental facility. High availability of EMERIS services is ensured by redundant hardware and software components, and by automatic configuration procedure. A novel software feature of the system is the automatic Disturbance Analysis package, which is aimed to discover primary causes of irregularities occurred in the technology. (author) 2 refs.; 2 figs

  10. Performance testing of elastomeric seal materials under low and high temperature conditions: Final report

    Energy Technology Data Exchange (ETDEWEB)

    BRONOWSKI,DAVID R.

    2000-06-01

    The US Department of Energy Offices of Defense Programs and Civilian Radioactive Waste Management jointly sponsored a program to evaluate elastomeric O-ring seal materials for radioactive material shipping containers. The report presents the results of low- and high-temperature tests conducted on 27 common elastomeric compounds.

  11. Improving students’ creative thinking skill through local material-based experiment (LMBE) on protein qualitative test

    Science.gov (United States)

    Supriyanti, F. M. T.; Halimatul, H. S.

    2018-05-01

    This study aims to enhance chemistry students’ creative thinking skills using material from local resources on protein qualitative test experiment (LMBE). In this study, a quasi experiment method using one group pretest-postest non-equivalen control group design was carried out on the effectiveness of local material-based experiment approach. The data was collected using the test consists of five assay test and student work sheet (LKM). The effectiveness of the local material-based experiment was tested by means of percentage of normalized gain and score percentage of students’ worksheet. Comparison of creative thinking skills pretest and postest scores showed that the implementation of local material- based experiment (LMBE) enhanced students’s creative thinking skills in experiment class with the value of normalized gain (=0,77) at high category, while in control class reached to =0,44 at medium category. In addition, the LKM shown the enhancements of all aspect of creative thinking skills, including fluency, flexibility, and elaboration skills with the score of in experiment class are 0.79; 0.75; and 0.87 at high category, respectively. In contrast, the only the elaboration skill of control group was improved at high category (=0.76), while fluency and flexibility indicators enhanced at medium category (=0.48 and 0.56, respectively).

  12. Preliminary geochemical and physical testing of materials for plugging of man-made accesses to a repository in basalt

    International Nuclear Information System (INIS)

    Taylor, C.L.; Anttonen, G.J.; O'Rourke, J.E.; Allirot, D.

    1980-04-01

    The available data on environmental conditions (both natural and man-made) at the Hanford Site are sufficient for preconceptual plug system design. Results of the geochemical testing program indicate that preferred candidate plug materials are chemically nonreactive during laboratory tests that simulated some of the expected environmental conditions. Agitated, crushed-basalt samples and mixtures containing basalt were found to be self-cementing under the hydrothermal conditions. Materials considered most suitable for consideration in future test programs and preconceptual plug design are mixtures of natural materials (basalt, clay, glaciofluvial sand, gravel, and zeolite) and processed natural materials

  13. Effects of particle size and confining pressure on breakage factor of rockfill materials using medium triaxial test

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Gupta

    2016-06-01

    Full Text Available Rockfill dams are mostly constructed using blasted rockfill materials obtained by blasting rocks or alluvial rockfill materials collected from the riverbeds. Behaviors of rockfill materials and their characterization significantly depend on breakage factor observed during triaxial loading. In this paper, two modeled rockfill materials are investigated by using medium triaxial cell. Drained triaxial tests are conducted on various sizes of modeled rockfill materials used in the two dams, and test data are analyzed accordingly. Breakage factor of rockfill material is studied and the effects of particle size and confining pressure on breakage factor are investigated using medium triaxial cell as many researchers have already conducted investigation using large triaxial cell.

  14. Standard practice for slow strain rate testing to evaluate the susceptibility of metallic materials to environmentally assisted cracking

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This practice covers procedures for the design, preparation, and use of axially loaded, tension test specimens and fatigue pre-cracked (fracture mechanics) specimens for use in slow strain rate (SSR) tests to investigate the resistance of metallic materials to environmentally assisted cracking (EAC). While some investigators utilize SSR test techniques in combination with cyclic or fatigue loading, no attempt has been made to incorporate such techniques into this practice. 1.2 Slow strain rate testing is applicable to the evaluation of a wide variety of metallic materials in test environments which simulate aqueous, nonaqueous, and gaseous service environments over a wide range of temperatures and pressures that may cause EAC of susceptible materials. 1.3 The primary use of this practice is to furnish accepted procedures for the accelerated testing of the resistance of metallic materials to EAC under various environmental conditions. In many cases, the initiation of EAC is accelerated through the applic...

  15. Health assessment of gasoline and fuel oxygenate vapors: generation and characterization of test materials.

    Science.gov (United States)

    Henley, Michael; Letinski, Daniel J; Carr, John; Caro, Mario L; Daughtrey, Wayne; White, Russell

    2014-11-01

    In compliance with the Clean Air Act regulations for fuel and fuel additive registration, the petroleum industry, additive manufacturers, and oxygenate manufacturers have conducted comparative toxicology testing on evaporative emissions of gasoline alone and gasoline containing fuel oxygenates. To mimic real world exposures, a generation method was developed that produced test material similar in composition to the re-fueling vapor from an automotive fuel tank at near maximum in-use temperatures. Gasoline vapor was generated by a single-step distillation from a 1000-gallon glass-lined kettle wherein approximately 15-23% of the starting material was slowly vaporized, separated, condensed and recovered as test article. This fraction was termed vapor condensate (VC) and was prepared for each of the seven test materials, namely: baseline gasoline alone (BGVC), or gasoline plus an ether (G/MTBE, G/ETBE, G/TAME, or G/DIPE), or gasoline plus an alcohol (G/EtOH or G/TBA). The VC test articles were used for the inhalation toxicology studies described in the accompanying series of papers in this journal. These studies included evaluations of subchronic toxicity, neurotoxicity, immunotoxicity, genotoxicity, reproductive and developmental toxicity. Results of these studies will be used for comparative risk assessments of gasoline and gasoline/oxygenate blends by the US Environmental Protection Agency. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Test plan for qualification of the S-type fiberglass materials for use as the liquid observation well casing

    International Nuclear Information System (INIS)

    Parra, S.A.

    1995-01-01

    This test plan presents the guidelines and requirements for acceptance of the S-type fiberglass material for use as the liquid observation well casing material. The plan for evaluating the physical properties of the candidate fiberglass materials when subjected to radiation, corrosive chemicals, and high temperatures typically found in the waste tanks are outlined. The tests also include tube connection evaluations. Finally, the test plan identifies the participants, their responsibilities, and the schedule for completion of the work

  17. Development status of irradiation devices and instrumentation for material and nuclear fuel irradiation tests in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Goo; Sohn, Jae Min; Choo, Kee Nam [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-04-15

    The High flux Advanced Neutron Application ReactOr (HANARO), an open-tank-in-pool type reactor, is one of the multi-purpose research reactors in the world. Since the commencement of HANARO's operations in 1995, a significant number of experimental facilities have been developed and installed at HANARO, and continued efforts to develop more facilities are in progress. Owing to the stable operation of the reactor and its frequent utilization, more experimental facilities are being continuously added to satisfy various fields of study and diverse applications. The irradiation testing equipment for nuclear fuels and materials at HANARO can be classified into capsules and the Fuel Test Loop (FTL). Capsules for irradiation tests of nuclear fuels in HANARO have been developed for use under the dry conditions of the coolant and materials at HANARO and are now successfully utilized to perform irradiation tests. The FTL can be used to conduct irradiation testing of a nuclear fuel under the operating conditions of commercial nuclear power plants. During irradiation tests conducted using these capsules in HANARO, instruments such as the thermocouple, Linear Variable Differential Transformer (LVDT), small heater, Fluence Monitor (F/M) and Self-Powered Neutron Detector (SPND) are used to measure various characteristics of the nuclear fuel and irradiated material. This paper describes not only the status of HANARO and the status and perspective of irradiation devices and instrumentation for carrying out nuclear fuel and material tests in HANARO but also some results from instrumentation during irradiation tests

  18. Thermophysical tests of buffer materials

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H. [ITC, Tokyo (Japan); Taniguchi, Wataru

    1999-03-01

    Thermodynamic properties of buffer materials were measured for putting in order thermodynamic constants to be used in the near-field thermal analysis. The thermal diffusivity and thermal conductivity were measured as functions of the water content and temperature to deduce the specific heat. The thermal conductivity and specific heat varied significantly as the water content changed. Obtained values of the specific heat agreed well the expected values calculated based on the constituents of the buffer material. Temperature dependence of the thermodynamic constants was found small below 90degC. From the findings, the thermal conductivity and specific heat of the buffer material were formulated as functions of the water content. Thermodynamic study of powdery bentonite was carried out as well with a purpose of use for filling apertures in the artificial barrier. (H. Baba)

  19. The physical interpretation of the parameters measured during the tensile testing of materials at elevated temperatures

    International Nuclear Information System (INIS)

    Burton, B.

    1984-01-01

    Hot tensile (or compression) testing, where the stress developed in a material is measured under an imposed strain rate, is often used as an alternative to conventional creep testing. The advantages of the hot tensile test are that its duration can be more closely controlled by the experimenter and also that the technique is more convenient, since high precision testing machines are available. The main disadvantage is that the interpretation of results is more complex. The present paper relates the parameters which are measured in hot tensile tests, to physical processes which occur in materials deforming by a variety of mechanisms. For cases where no significant structural changes occur, as in viscous or superplastic flow, analytical expressions are derived which relate the stresses measured in these tests to material constants. When deformation is controlled by recovery processes, account has to be taken of the structural changes which occur concurrently. A wide variety of behaviour may then be exhibited which depends on the initial dislocation density, the presence of second-phase particles and the relative values of the recovery rate parameters and the velocity imposed by the testing machine. Numerical examples are provided for simple recovery models. (author)

  20. LOT Project long term test of buffer material at the Aespoe HRL

    International Nuclear Information System (INIS)

    Karnland, O.; Olsson, S.; Dueck, A.; Birgersson, M.; Nilsson, U.; Hernan-Haakansson, T.; Pedersen, K.; Eriksson, S.; Eriksen, T.; Eriksson, S.; Rosborg, B.; Muurinen, A.; Rousset, D.; Mosser-Ruck, R.; Cathelineau, M.; Villieras, F.; Pelletier, M.; Kaufold, S.; Dohrmann, R.; Fernandez, R.; Maeder, U.; Koroleva, M.

    2010-01-01

    Document available in extended abstract form only. Bentonite clay has been proposed as buffer material in several concepts for HLW repositories. The decaying spent fuel in the HLW canisters will increase temperature of the bentonite buffer. A number of laboratory test series, made by different research groups, have resulted in various bentonite alteration models. According to these models no significant alteration of the buffer is expected to take place at the prevailing physico-chemical conditions in the proposed Swedish KBS-3 repository, neither during, nor after water saturation. The ongoing LOT test series is focused on quantifying the mineralogical alteration in the buffer in a repository like environment at the Aespoe HRL. Further, buffer related processes concerning bacterial survival/activity, cation transport, and copper corrosion are studied. In total, the LOT test series includes seven test parcels, of which three are exposed to standard KBS-3 conditions and four test parcels are exposed to adverse conditions. Each test parcel contains a central Cu-tube surrounded by bentonite cylinder rings with a diameter of 30 cm, additional test material (Cu coupons, 60 Co tracers, bacteria etc) and instruments. Electrical heaters were place within the copper tube in order to simulate effect of decaying power from the spent fuel. The entire test parcels were released from the rock after the field exposure by overlapping boring and the bentonite material was analyzed with respect to: - physical properties (water content, density, swelling pressure, hydraulic conductivity, rheology); - mineralogical alteration in the bentonite; - distribution of added substances (e.g diffusional transport of 60 Co); - copper corrosion; - bacterial survival/activity. Two one year tests were started in 1996 and terminated in 1998. The results from tests and analyses are presented in SKB TR-00-22. The remaining four test parcels were installed during the fall 1999 plus one additional one

  1. Technical performance of cementitious grouting materials for ONKALO. Laboratory tests 2006

    International Nuclear Information System (INIS)

    Raivio, P.; Hansen, J.

    2007-09-01

    During 2006 the development of high and low-pH cementitious grouts for fractures > 100 μm designed for the ONKALO rock was continued within the LPHTEK/IMAproject. The main focus in laboratory was to study high pH micro cement grouts. The low pH (≥ 11.0) of the cementitious grout material is required in deep repository as natural pH plume deriving from pure cement paste is very high and moves via ground water circulation in bedrock. This may be deleterious to the protective covers of nuclear waste. The objective to study high pH grouts in laboratory was to optimise their composition and to get preliminary test results. Low pH grouts based on Portland cement + micro silica were also studied further in laboratory to understand their behaviour more thoroughly in different conditions and due to quality changes in materials and to compare the laboratory results with the field results. Alternative fine-grained glass material was briefly studied to replace silica in low pH grout. Low and high pH rock bolt mortars were also developed and tested to get the preliminary test results. The results of the 2006 laboratory work are presented in this report. The high pH micro cement mix U1 with no silica, mix 5/5 with moderate silica and low pH mix P308B rich in silica show generally good properties at fresh and hardening stage at +12 deg C. Lower temperature gives weaker strength build-up with all the mixes and weakens especially the Marsh fluidity and penetration ability of the mixes 5/5 and P308B as bulk density rises a little at lower temperature. Cement quality variation and insufficient mixing may also weaken the properties of all mixes. Deformation of the hardened mixes was observed in laboratory tests. This may weaken their durability if cracks are formed in the grouts at later ages and need to be studied more thoroughly. (orig.)

  2. Testing smooth and notched samples for identification of brittle material fracture mechanism

    International Nuclear Information System (INIS)

    Barinov, S.M.; Ivanov, V.S.

    1987-01-01

    Mechanical tests of cermet made of LaCrO 3 and Cr powder mixture in 3:2 mass ratio were conducted in LaCrO 3 -Cr system. Powder mixtures were exposed to static pressing and sintering (sintered cermets) or to high-speed pressing with following thermal treatment (high-speed pressing cermets). It is shown, that nonlinear deformation strength at deformation of brittle material smooth and notched samples allows to evaluate properly correlation of microplasticity and microcracking at brittle powder materials fracture

  3. Standard Test Method for Water Absorption of Core Materials for Structural Sandwich Constructions

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This test method covers the determination of the relative amount of water absorption by various types of structural core materials when immersed or in a high relative humidity environment. This test method is intended to apply to only structural core materials; honeycomb, foam, and balsa wood. 1.2 The values stated in SI units are to be regarded as the standard. The inch-pound units given may be approximate. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  4. Standard test method for compressive (crushing) strength of fired whiteware materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This test method covers two test procedures (A and B) for the determination of the compressive strength of fired whiteware materials. 1.2 Procedure A is generally applicable to whiteware products of low- to moderately high-strength levels (up to 150 000 psi or 1030 MPa). 1.3 Procedure B is specifically devised for testing of high-strength ceramics (over 100 000 psi or 690 MPa). 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  5. Application of mass spectrometry to fuels and materials testing at FFTF

    International Nuclear Information System (INIS)

    Plucinski, C.E.; Goheen, M.W.; McCown, J.J.

    1983-01-01

    The Fast Flux Test Facility (FFTF) is a sodium cooled reactor operated for the Department of Energy by Westinghouse Hanford Company. In FFTF the 78 fuel pin assemblies have been tagged with a unique combination of Kr and Xe isotopes. In addition to fuel pin assemblies, other test assemblies can also be similarly tagged as in the Materials Open Test Assembly (MOTA). During power operations leaks are monitored by single channel gamma analyzers in the reactor cover gas system. When radioactive Kr and Xe isotopes are detected a gas tag sample trap (GTST) is used to take a sample of the reactor cover gas, the Kr and Xe are concentration, and isotopic analysis is obtained by mass spectrometry

  6. The qualification requirements for personnel carry out the testing for the pressure equipment materials

    International Nuclear Information System (INIS)

    Wojas, M.; Walczak, M.

    2006-01-01

    The article contains information about qualification requirements for personnel carry out the destructive and non-destructive testing for the pressure equipment materials based on the Directive 97/23/CE(PED). Competence laboratory carry out the testing. The responsibility lies with producer / employer. The producer / employer could elaborate the written practice procedure for qualification and certification testing personnel. (authors)

  7. Autoclave Testing on Zirconium Alloy Materials

    International Nuclear Information System (INIS)

    Hoffmann, Petra-Britt; Sell, Hans-Juergen; Garzarolli, Friedrich

    2012-09-01

    The corrosion of Zirconium components like fuel rod claddings and spacer grids is limiting lifetime and duty of these components. In Pressurized and Boiling Water Reactors (PWR and BWR), different corrosion phenomena are of interest. Although in-pile experience is the final proof for a material development, significant experience was gained by autoclave tests, trying to simulate in-pile conditions but reducing time for return of experience by increased temperatures. For PWR application, the uniform corrosion is studied in water at up to 370 deg. C and in high pressure steam at 400 deg. C, and for BWR, the nodular corrosion is studied in high pressure steam at 500-520 deg. C. Particular attention has to be given to the corrosion media, because oxidative traces in the water can significantly affect the corrosion response. An extensive air removal is thus important for all corrosion tests. This links to the different water chemistry conditions that have been investigated as separate effects otherwise difficult to separate under in-pile conditions. Uniform corrosion in 350 deg. C water is usually a cyclic process with repeated rate transitions. In addition, at high exposure times an acceleration of corrosion can occur, e.g. for Zr-Sn alloys with a high Sn content. In 400 deg. C steam, corrosion rate decreases somewhat with increasing time. Uniform corrosion rate of Zr alloys depends on their Sn- and Fe+Cr contents as well as on their annealing parameters with a similar trend as in PWR and on their yield strength, however with an opposite trend compared to BWR conditions. Nodular corrosion of BWR alloys depends on the annealing parameter with a similar trend as in PWR and out-of-reactor also significantly on the Fe+Cr content. The hydrogen pickup fraction (HPUF) depends largely on details of the water chemistry and can particularly depend on autoclave degassing and probably also on autoclave contaminations. Thus any HPUF value from out-of- pile corrosion tests is only

  8. Manufacturing and material properties of forgings for reactor pressure vessel of high temperature engineering test reactor

    International Nuclear Information System (INIS)

    Sato, I.; Suzuki, K.

    1994-01-01

    For the reactor pressure vessel (RPV) of high temperature engineering test reactor (HTTR) which has been developed by Japan Atomic Energy Research Institute (JAERI), 2 1/4Cr-1Mo steel is used first in the world. Material confirmation test has been carried out to demonstrate good applicability of forged low Si 2 1/4Cr-1Mo steel to the RPV of HTTR. Recently, JSW has succeeded in the manufacturing of large size ring forgings and large size forged cover dome integrated with nozzles for stand pipe for the RPV. This paper describes the results of the material confirmation test as well as the manufacturing and material properties of the large forged cover dome integrated with nozzles for stand pipe. (orig.)

  9. Unmanned Vehicle Material Flammability Test

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Fernandez-Pello, A. Carlos; T’ien, James S.; Torero, Jose L.; Cowlard, Adam; Rouvreau, Sebastian; Minster, Olivier; Toth, Balazs; Legros, Guillaume; hide

    2013-01-01

    Microgravity combustion phenomena have been an active area of research for the past 3 decades however, there have been very few experiments directly studying spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample and environment sizes typical of those expected in a spacecraft fire. All previous experiments have been limited to samples of the order of 10 cm in length and width or smaller. Terrestrial fire safety standards for all other habitable volumes on earth, e.g. mines, buildings, airplanes, ships, etc., are based upon testing conducted with full-scale fires. Given the large differences between fire behavior in normal and reduced gravity, this lack of an experimental data base at relevant length scales forces spacecraft designers to base their designs using 1-g understanding. To address this question a large scale spacecraft fire experiment has been proposed by an international team of investigators. This poster presents the objectives, status and concept of this collaborative international project to examine spacecraft material flammability at realistic scales. The concept behind this project is to utilize an unmanned spacecraft such as Orbital Cygnus vehicle after it has completed its delivery of cargo to the ISS and it has begun its return journey to earth. This experiment will consist of a flame spread test involving a meter scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. A computer modeling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the examination of fire behavior on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This will be

  10. Integrated Corrosion Facility for long-term testing of candidate materials for high-level radioactive waste containment

    International Nuclear Information System (INIS)

    Estill, J.C.; Dalder, E.N.C.; Gdowski, G.E.; McCright, R.D.

    1994-10-01

    A long-term-testing facility, the Integrated Corrosion Facility (I.C.F.), is being developed to investigate the corrosion behavior of candidate construction materials for high-level-radioactive waste packages for the potential repository at Yucca Mountain, Nevada. Corrosion phenomena will be characterized in environments considered possible under various scenarios of water contact with the waste packages. The testing of the materials will be conducted both in the liquid and high humidity vapor phases at 60 and 90 degrees C. Three classes of materials with different degrees of corrosion resistance will be investigated in order to encompass the various design configurations of waste packages. The facility is expected to be in operation for a minimum of five years, and operation could be extended to longer times if warranted. A sufficient number of specimens will be emplaced in the test environments so that some can be removed and characterized periodically. The corrosion phenomena to be characterized are general, localized, galvanic, and stress corrosion cracking. The long-term data obtained from this study will be used in corrosion mechanism modeling, performance assessment, and waste package design. Three classes of materials are under consideration. The corrosion resistant materials are high-nickel alloys and titanium alloys; the corrosion allowance materials are low-alloy and carbon steels; and the intermediate corrosion resistant materials are copper-nickel alloys

  11. Evaluation of thermal aging effect on primary pipe material in nuclear power plant by micro hardness test method

    International Nuclear Information System (INIS)

    Xue Fei; Yu Weiwei; Wang Zhaoxi; Ma Qinzheng; Liu Wei

    2012-01-01

    The investigation was carried out on the changes in mechanical properties of the primary pipe material Z3CN20.09M after 10000 h aging at 400℃ by using micro- Vickers and impact testing machine. The results show that the impact energy of testing material decreases. However, the micro-Vickers hardness of ferrite phase and austenite phase which constitute the testing material increase and keep constant, respectively. The intrinsic relations were analyzed between the micro-Vickers hardness and the impact energy to make an attempt to present the micro-Vickers hardness measurement as a method applicable to evaluating the thermal aging of the primary pipe material. (authors)

  12. Preliminary geochemical and physical testing of materials for plugging of man-made accesses to a repository in basalt

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.L.; Anttonen, G.J.; O' Rourke, J.E.; Allirot, D.

    1980-04-01

    The available data on environmental conditions (both natural and man-made) at the Hanford Site are sufficient for preconceptual plug system design. Results of the geochemical testing program indicate that preferred candidate plug materials are chemically nonreactive during laboratory tests that simulated some of the expected environmental conditions. Agitated, crushed-basalt samples and mixtures containing basalt were found to be self-cementing under the hydrothermal conditions. Materials considered most suitable for consideration in future test programs and preconceptual plug design are mixtures of natural materials (basalt, clay, glaciofluvial sand, gravel, and zeolite) and processed natural materials (portland cement Type V and grouts plus additives).

  13. Removal of the Materials Test Reactor overhead working reservoir

    International Nuclear Information System (INIS)

    Lunis, B.C.

    1975-10-01

    Salient features of the removal of an excessed contaminated facility, the Materials Test Reactor (MTR) overhead working reservoir (OWR) from the Test Reactor Area to the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory are described. The 125-ton OWR was an overhead 160,000-gallon-capacity tank approximately 193 feet high which supplied cooling water to the MTR. Radiation at ground level beneath the tank was 5 mR/hr and approximately 600 mR/hr at the exterior surface of the tank. Sources ranging from 3 R/hr to in excess of 500 R/hr exist within the tank. The tank interior is contaminated with uranium, plutonium, and miscellaneous fission products. The OWR was lowered to ground level with the use of explosive cutters. Dismantling, decontamination, and disposal were performed by Aerojet Nuclear Company maintenance forces

  14. Assessment of the gas dynamic trap mirror facility as intense neutron source for fusion material test irradiations

    International Nuclear Information System (INIS)

    Fischer, U.; Moeslang, A.; Ivanov, A.A.

    2000-01-01

    The gas dynamic trap (GDT) mirror machine has been proposed by the Budker Institute of nuclear physics, Novosibirsk, as a volumetric neutron source for fusion material test irradiations. On the basis of the GDT plasma confinement concept, 14 MeV neutrons are generated at high production rates in the two end sections of the axially symmetrical central mirror cell, serving as suitable irradiation test regions. In this paper, we present an assessment of the GDT as intense neutron source for fusion material test irradiations. This includes comparisons to irradiation conditions in fusion reactor systems (ITER, Demo) and the International Fusion Material Irradiation Facility (IFMIF), as well as a conceptual design for a helium-cooled tubular test assembly elaborated for the largest of the two test zones taking proper account of neutronics, thermal-hydraulic and mechanical aspects. This tubular test assembly incorporates ten rigs of about 200 cm length used for inserting instrumented test capsules with miniaturized specimens taking advantage of the 'small specimen test technology'. The proposed design allows individual temperatures in each of the rigs, and active heating systems inside the capsules ensures specimen temperature stability even during beam-off periods. The major concern is about the maximum achievable dpa accumulation of less than 15 dpa per full power year on the basis of the present design parameters of the GDT neutron source. A design upgrading is proposed to allow for higher neutron wall loadings in the material test regions

  15. Synthesis of functional materials by radiation and qualification testing of organic materials in nuclear power plant

    International Nuclear Information System (INIS)

    Nho, Young Chang; Kim, Ki Yup; Kang, Phil Hyun and others; Jun, Hong Jae; Suh, Dong Hak; Lee, Young Moo; Min, Byung Kak; Bae, You Han

    2003-05-01

    The radiation crosslinking and grafting can be easily adjusted and is easily reproducible by controlling the radiation dose. These studies aim to develop new biomaterials such as covering for burns and wound, and controlled release of drug. A radiation technology was used to develop PTC materials useful in devices that limit electric fault currents. Radiation-curing of fiber-matrix composites is a promising application. There are a number of advantages to radiation curing of composites, compared with conventional thermal processing. Radiation curing at ambient temperature allows tighter control of part dimensions, and elimination of internal stresses which otherwise occur on cooling and which reduce material strength. These studies involved radiation curing of epoxy resins with various fibers and filler for structural application for aerospace and sport goods. The chain scission is the basis of other radiation treatments aimed at enhancing processing characteristics of polymers. These studies aim to make PTFE powder from PTFE scrap using the radiation degradation which allows incorporation of the material into coatings, inks etc. Low density polyethylene, crosslinked polyethylene, ethylene propylene rubber, and acrylonitrile butadiene rubber as cable insulating, seathing and sealing materials were irradiated for the accelerated ageing tests. Degradation was investigated by measuring dielectric analysis, thermogravimetric analysis, and dynamic mechanical analysis. Dielectric tanδ, storage modulus and loss modulus were increased with irradiation doses. However, decomposition temperature decreased with irradiation doses

  16. Compilation of radiation damage test data part III: materials used around high-energy accelerators

    CERN Document Server

    Beynel, P; Schönbacher, H; CERN. Geneva

    1982-01-01

    For pt.II see CERN report 79-08 (1979). This handbook gives the results of radiation damage tests on various engineering materials and components intended for installation in radiation areas of the CERN high-energy particle accelerators. It complements two previous volumes covering organic cable-insulating materials and thermoplastic and thermosetting resins.

  17. Mafic Materials in Scott Crater? A Test for Lunar Reconnaissance Orbiter

    Science.gov (United States)

    Cooper, Bonnie L.

    2007-01-01

    Clementine 750 nm and multispectral ratio data, along with Lunar Orbiter and radar data, were used to study the crater Scott in the lunar south polar region. The multispectral data provide evidence for mafic materials, impact melts, anorthositic materials, and a small pyroclastic deposit. High-resolution radar data and Lunar Orbiter photography for this area show differences in color and surface texture that correspond with the locations of the hypothesized mafic and anorthositic areas on the crater floor. This region provides a test case for the upcoming Lunar Reconnaissance Orbiter. Verification of the existence of a mafic deposit at this location is relevant to future lunar resource utilization planning.

  18. Space Environmental Effects Testing and Characterization of the Candidate Solar Sail Material Aluminized Mylar

    Science.gov (United States)

    Edwards, D. L.; Hubbs, W. S.; Wertz, G. E.; Alstatt, R.; Munafo, Paul (Technical Monitor)

    2001-01-01

    The usage of solar sails as a propellantless propulsion system has been proposed for many years. The technical challenges associated with solar sails are fabrication of ultralightweight films, deploying the sails and controlling the spacecraft. Integral to all these challenges is the mechanical property integrity of the sail while exposed to the harsh environment of space. This paper describes testing and characterization of a candidate solar sail material, Aluminized Mylar. This material was exposed to a simulated Geosynchronous Transfer Orbit (GTO) and evaluated by measuring thermooptical and mechanical property changes. Testing procedures and results are presented.

  19. The development of an enhanced strain measurement device to support testing of radioactive material packages

    International Nuclear Information System (INIS)

    Uncapkher, W.L.; Arviso, M.

    1995-01-01

    Radioactive material package designers use structural testing to verify and demonstrate package performance. A major part of evaluating structural response is the collection of reliable instrumentation measurement data. Over the last four decades, Sandia National Laboratories (SNL) has been actively involved in the development, testing, and evaluation of measurement devices for a broad range of applications, resulting in the commercialization of several measurement devices commonly used today. SNL maintains an ongoing program sponsored by the US Department of Energy (DOE) to develop and evaluate measurement devices to support testing of packages used to transport radioactive or hazardous materials. The development of the enhanced strain measurement device is part of this program

  20. Chalcogenide Glass Radiation Sensor; Materials Development, Design and Device Testing

    Energy Technology Data Exchange (ETDEWEB)

    Mitkova, Maria; Butt, Darryl; Kozicki, Michael; Barnaby, Hugo

    2013-04-30

    studied the effect of x-rays and γ-rays, on thin film chalcogenide glasses and applied them in conjunction with film incorporating a silver source in a new type of radiation sensor for which we have an US patent application [3]. In this report, we give data about our studies regarding our designed radiation sensor along with the testing and performance at various radiation doses. These studies have been preceded by materials characterization research related to the compositional and structural characteristics of the active materials used in the radiation sensor design. During the work on the project, we collected a large volume of material since every experiment was repeated many times to verify the results. We conducted a comprehensive material research, analysis and discussion with the aim to understand the nature of the occurring effects, design different structures to harness these effects, generated models to aid in the understanding the effects, built different device structures and collected data to quantify device performance. These various aspects of our investigation have been detailed in previous quarterly reports. In this report, we present our main results and emphasize on the results pertaining to the core project goals materials development, sensor design and testing and with an emphasis on classifying the appropriate material and design for the optimal application. The report has three main parts: (i) Presentation of the main data; (ii) Bulleted summary of the most important results; (iii) List of the patent, journal publications, conference proceedings and conferences participation, occurring as a result of working on the project.

  1. State of art report for high temperature wear test of SMART MCP and CEDM bearing material

    International Nuclear Information System (INIS)

    Cho, Yong Hu; Lee, Jae Seon; Park, Jin Seok; Kim, Ji Ho; Kim, Jong In

    2000-03-01

    Wear resistance properties of machine elements has been more critical in view of its significant effect on life extension, economics and material saving because it has been recognized that nearly 80 percent of damages of mechanical elements in the friction pairs are due to the material loss by wear. And wear properties have direct influence on the life of a machine in a great extend under extremely severe operating condition. Therefore highly improved wear properties of machine elements operating in such circumstances is heavily required. The purpose of this report is to survey current technology for high temperature wear test in order to establish the test plan for the life evaluation of SMART MCP and CEDM bearing materials. Friction and wear test will be done under high pressure (170 MPa) and high temperature (350 degree C) with water as lubricant to simulate the operating condition of the nuclear power reactor. Because pump type for MCP is selected as the caned motor pump which needs no mechanical sealing, the rotating shaft on which bearing is fully submerged by main coolant with high temperature. So MCP bearing operates without additional lubricant. CEDM is adopted as the ball-screw type with fine controllability. So the driving part is designed as the immersed-in type by main coolant. Therefore the anti-wear and reliability of driving parts are much consequent to guarantee the lifetime and the safety of the whole system. Tribometer adapted to high temperature and pressure circumstance is needed to execute bearing material testing. Test parameters are material, sliding speed, sliding distance and applied load. In order to identify the wear mechanism, optical microscope and surface roughness testers are required. The result of this report will provide an elementary data to develop bearing materials and to estimate bearing lifetime for the bearings of MCP and CEDM in SMART. (author)

  2. Standard Test Method for Testing Polymeric Seal Materials for Geothermal and/or High Temperature Service Under Sealing Stress

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1985-01-01

    1.1 This test method covers the initial evaluation of (screening) polymeric materials for seals under static sealing stress and at elevated temperatures. 1.2 This test method applies to geothermal service only if used in conjunction with Test Method E 1068. 1.3 The test fluid is distilled water. 1.4 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  3. Compatibility tests between molten salts and metal materials (2)

    International Nuclear Information System (INIS)

    Shiina, Yasuaki

    2003-08-01

    Latent heat storage technology using molten salts can reduce temperature fluctuations of heat transfer fluid by latent heat for middle and high temperature regions. This enables us to operate several heat utilization systems in cascade connected to High Temperature Gas Cooled Reactors (HTGRs) from high to low temperature range by setting the latent heat storage system after a heat utilization system to reduce thermal load after the heat utilization systems. This latent heat technology is expected to be used for effective use of heat such as equalization of electric load between night and daytime. In the application of the latent heat technology, compatibility between molten salts and metal materials is very important because molten salts are corrosive, and heat transfer pipes and vessels will contact with the molten salts. It will be necessary to prevail the latent heat storage technique that normal metal materials can be used for the pipes and vessels. However, a few studies have been reported of compatibility between molten salts and metals in middle and high temperature ranges. In this study, four molten salts, range of the melting temperature from 490degC to 800degC, are selected and five metals, high temperature and corrosion resistance steels of Alloy600, HastelloyB2, HastelloyC276, SUS310S and pure Nickel are selected for the test with the consideration of metal composition. Test was performed in an electric furnace by setting the molten salts and the metals in melting pots in an atmosphere of nitrogen. Results revealed excellent corrosion resistance of pure Nickel and comparatively low corrosion resistance of nickel base alloys such as Alloy600 and Hastelloys against Li 2 CO 3 . Corrosion resistance of SUS310S was about same as nickel based alloys. Therefore, if some amount of corrosion is permitted, SUS310S would be one of the candidate alloys for structure materials. These results will be used as reference data to select metals in latent heat technology

  4. Ecological evaluation of proposed dredged material from the John F. Baldwin Ship Channel: Phase 3 -- biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, N.P.; Karle, L.M.; Pinza, M.R.; Mayhew, H.L.; White, P.J.; Gruendell, B.D.; Word, J.Q. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

    1993-10-01

    The John F. Baldwin Ship Channel is a 28-mile-long portion of the San Francisco Bay to Stockton Ship Channel, the primary shipping lane through San Francisco Bay and Delta. The San Francisco District of the US Army Corps of Engineers (USACE) is responsible for construction of the John F. Baldwin Ship Channel, which is authorized to be deepened to a project depth of {minus}45 ft relative to mean lower low water (MLLW). Approximately 8.5 million cubic yards (mcy) of sediment will be removed from the channel to reach this project depth. The USACE requested Battelle/Marine Sciences Laboratory (MSL) to conduct testing for ocean disposal under the guidelines in Evaluation of Dredged Material Proposed for Ocean Disposal-Testing Manual (EPA/USACE 1991). This testing manual contains a tiered evaluation approach developed specifically for ocean disposal of dredged material at a selected site. In this study, John F. Baldwin Ship Channel sediments were evaluated under the Tier III (biological) testing guidance, which is considered to be highly stringent and protective of the environment. The Tier III guidance for ocean disposal testing requires tests of water column effects, (following dredged material disposal), deposited sediment toxicity, and bioaccumulation of contaminants from deposited sediment (dredged material).

  5. Intercomparative tests on phase change materials characterisation with differential scanning calorimeter

    International Nuclear Information System (INIS)

    Lazaro, Ana; Peñalosa, Conchita; Solé, Aran; Diarce, Gonzalo; Haussmann, Thomas; Fois, Magali; Zalba, Belén; Gshwander, Stefan; Cabeza, Luisa F.

    2013-01-01

    Highlights: ► Advances in intercomparative tests of enthalpy of phase change material (PCM). ► Enthalpy of PCM determined by DSC is influenced by certain factors. ► The influence factors were identified. ► A methodology to avoid these influences for heating measurements is proposed. ► Forthcoming steps are focused on calibration and cooling measurements. - Abstract: For the correct design of thermal storage systems using phase change materials (PCMs) in any application, as well as for their simulation, it is essential to characterise the materials from thermophysical and rheological standpoints (phase change enthalpy, thermal conductivity in solid and liquid phases, viscosity and density in function of temperature). Taking advantage of the different research groups facilities available in two international networks: within the IEA (International Energy Agency), the ECES Implementing Agreement (Energy Conservation through Energy Storage IA) and SHC Programme (Solar Heating and Cooling) Task 42/Annex 24 “Compact Thermal Energy Storage – Material Development for System Integration”, and the COST Action TU0802 “Next generation cost effective phase change materials for increased energy efficiency in renewable energy systems in buildings (NeCoE-PCM)” a set of Round Robin Tests (RRTs) was proposed. The objective was to come to comparable results for PCMs using Differential Scanning Calorimetry (DSC) to determine their melting enthalpy as well as their melting and solidification behaviour. The first RRT was without defining the procedure, the second one with a predefined procedure for the measurements, but not for calibration and the third one with a predefined procedure for calibration, for the measurements and also for the data evaluation. This paper presents the conclusions after the three RRT. The main conclusion of the paper is that enthalpy in function of temperature determined using a dynamic method for DSC can be influenced by certain reasons

  6. Standard Test Method for Stress-Corrosion of Titanium Alloys by Aircraft Engine Cleaning Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This test method establishes a test procedure for determining the propensity of aircraft turbine engine cleaning and maintenance materials for causing stress corrosion cracking of titanium alloy parts. 1.2 The evaluation is conducted on representative titanium alloys by determining the effect of contact with cleaning and maintenance materials on tendency of prestressed titanium alloys to crack when subsequently heated to elevated temperatures. 1.3 Test conditions are based upon manufacturer's maximum recommended operating solution concentration. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see and .

  7. A study of statistical tests for near-real-time materials accountancy using field test data of Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Ihara, Hitoshi; Nishimura, Hideo; Ikawa, Koji; Miura, Nobuyuki; Iwanaga, Masayuki; Kusano, Toshitsugu.

    1988-03-01

    An Near-Real-Time Materials Accountancy(NRTA) system had been developed as an advanced safeguards measure for PNC Tokai Reprocessing Plant; a minicomputer system for NRTA data processing was designed and constructed. A full scale field test was carried out as a JASPAS(Japan Support Program for Agency Safeguards) project with the Agency's participation and the NRTA data processing system was used. Using this field test data, investigation of the detection power of a statistical test under real circumstances was carried out for five statistical tests, i.e., a significance test of MUF, CUMUF test, average loss test, MUF residual test and Page's test on MUF residuals. The result shows that the CUMUF test, average loss test, MUF residual test and the Page's test on MUF residual test are useful to detect a significant loss or diversion. An unmeasured inventory estimation model for the PNC reprocessing plant was developed in this study. Using this model, the field test data from the C-1 to 85 - 2 campaigns were re-analyzed. (author)

  8. Physicists purchase materials testing machine in support of pioneering particle physics experiments

    CERN Multimedia

    Sharpe, Suzanne

    2007-01-01

    "The particle physics group at Liverpool University has purchased an LRXPlus singlecolumn materials testing machine from Lloyd Instruments, which will be used to help characterise the carbon-fibre support frames for detectors used for state-of-the-art particle physics experiments." (1 page)

  9. Breakdown Tests of Composite Materials, and the Importance of the Volume Effect

    DEFF Research Database (Denmark)

    Madsen, Søren Find; Holbøll, Joachim; Henriksen, Mogens

    2005-01-01

    High voltage testing of inhomogeneous composite materials often shows that the stressed volume has a great influence on the result. This paper tries to develop methods of estimating the stressed volume by calculating the theoretical extent of streamer propagation along insulating surfaces...

  10. Modular high-throughput test stand for versatile screening of thin-film materials libraries

    International Nuclear Information System (INIS)

    Thienhaus, Sigurd; Hamann, Sven; Ludwig, Alfred

    2011-01-01

    Versatile high-throughput characterization tools are required for the development of new materials using combinatorial techniques. Here, we describe a modular, high-throughput test stand for the screening of thin-film materials libraries, which can carry out automated electrical, magnetic and magnetoresistance measurements in the temperature range of −40 to 300 °C. As a proof of concept, we measured the temperature-dependent resistance of Fe–Pd–Mn ferromagnetic shape-memory alloy materials libraries, revealing reversible martensitic transformations and the associated transformation temperatures. Magneto-optical screening measurements of a materials library identify ferromagnetic samples, whereas resistivity maps support the discovery of new phases. A distance sensor in the same setup allows stress measurements in materials libraries deposited on cantilever arrays. A combination of these methods offers a fast and reliable high-throughput characterization technology for searching for new materials. Using this approach, a composition region has been identified in the Fe–Pd–Mn system that combines ferromagnetism and martensitic transformation.

  11. Preliminary cleaning tests on candidate materials for APS beamline and front end UHV components

    International Nuclear Information System (INIS)

    Nielsen, R.; Kuzay, T.M.

    1992-01-01

    Comparative cleaning tests have been done on four candidate materials for use in APS beamline and front-end vacuum components. These materials are 304 SS, 304L SS, OFHC copper, and Glidcop* (Cu-Al 2 O 3 )- Samples of each material were prepared and cleaned using two different methods. After cleaning, the sample surfaces were analyzed using ESCA (Electron Spectography for Chemical Analysis). Uncleaned samples were used as a reference. The cleaning methods and surface analysis results are further discussed

  12. Results of radiation tests at cryogenic temperature on some selected organic materials for the LHC

    International Nuclear Information System (INIS)

    Schoenbacher, H.; Szeless, B.; Tavlet, M.; Humer, K.; Weber, H.W.

    1996-01-01

    Future multi-TeV particle accelerators like the CERN Large Hadron Collider (LHC) will use superconducting magnets where organic materials will be exposed to high radiation levels at temperatures as low as 2 K. A representative selection of organic materials comprising insulating films, cable insulations, and epoxy-type impregnated resins were exposed to neutron and gamma radiation of a nuclear reactor. Depending on the type of materials, the integrated radiation doses varied between 180 kGy and 155 MGy. During irradiation, the samples were kept close to the boiling temperature of liquid nitrogen i.e. ∼ 80 K and thereafter stored in liquid nitrogen and transferred at the same temperature into the testing device for measurement of tensile and flexural strength. Tests were carried out on the same materials at similar dose rates at room temperature, and the results were compared with those obtained at cryogenic temperature. They show that, within the selected dose range, a number of organic materials are suitable for use in the radiation field of the LHC at cryogenic temperature. (orig.)

  13. A simple surrogate test method to rank the wear performance of prospective ceramic materials under hip prosthesis edge-loading conditions.

    Science.gov (United States)

    Sanders, Anthony P; Brannon, Rebecca M

    2014-02-01

    This research has developed a novel test method for evaluating the wear resistance of ceramic materials under severe contact stresses simulating edge loading in prosthetic hip bearings. Simply shaped test specimens - a cylinder and a spheroid - were designed as surrogates for an edge-loaded, head/liner implant pair. Equivalency of the simpler specimens was assured in the sense that their theoretical contact dimensions and pressures were identical, according to Hertzian contact theory, to those of the head/liner pair. The surrogates were fabricated in three ceramic materials: Al2 O3 , zirconia-toughened alumina (ZTA), and ZrO2 . They were mated in three different material pairs and reciprocated under a 200 N normal contact force for 1000-2000 cycles, which created small (material pairs were ranked by their wear resistance, quantified by the volume of abraded material measured using an interferometer. Similar tests were performed on edge-loaded hip implants in the same material pairs. The surrogates replicated the wear rankings of their full-scale implant counterparts and mimicked their friction force trends. The results show that a proxy test using simple test specimens can validly rank the wear performance of ceramic materials under severe, edge-loading contact stresses, while replicating the beginning stage of edge-loading wear. This simple wear test is therefore potentially useful for screening and ranking new, prospective materials early in their development, to produce optimized candidates for more complicated full-scale hip simulator wear tests. Copyright © 2013 Wiley Periodicals, Inc.

  14. PROGRAM ASTEC (ADVANCED SOLAR TURBO ELECTRIC CONCEPT). PART 1. CANDIDATE MATERIALS LABORATORY TESTS

    Science.gov (United States)

    A space power system of the type envisioned by the ASTEC program requires the development of a lightweight solar collector of high reflectance...capable of withstanding the space environment for an extended period. A survey of the environment of interest for ASTEC purposes revealed 4 potential...developed by the solar-collector industry for use in the ASTEC program, and to test the effects of space environment on these materials. Of 6 material

  15. Characterization of Ceramic Material Produced From a Cold Crucible Induction Melter Test

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-04-30

    This report summarizes the results from characterization of samples from a melt processed surrogate ceramic waste form. Completed in October of 2014, the first scaled proof of principle cold crucible induction melter (CCIM) test was conducted to process a Fe-hollandite-rich titanate ceramic for treatment of high level nuclear waste. X-ray diffraction, electron microscopy, inductively coupled plasma-atomic emission spectroscopy (and inductively coupled plasma-mass spectroscopy for Cs), and product consistency tests were used to characterize the CCIM material produced. Core samples at various radial locations from the center of the CCIM were taken. These samples were also sectioned and analyzed vertically. Together, the various samples were intended to provide an indication of the homogeneity throughout the CCIM with respect to phase assemblage, chemical composition, and chemical durability. Characterization analyses confirmed that a crystalline ceramic with desirable phase assemblage was produced from a melt using a CCIM. Hollandite and zirconolite were identified in addition to possible highly-substituted pyrochlore and perovskite. Minor phases rich in Fe, Al, or Cs were also identified. Remarkably only minor differences were observed vertically or radially in the CCIM material with respect to chemical composition, phase assemblage, and durability. This recent CCIM test and the resulting characterization in conjunction with demonstrated compositional improvements support continuation of CCIM testing with an improved feed composition and improved melter system.

  16. Earth-based construction material field tests characterization in the Alto Douro Wine Region

    Science.gov (United States)

    Cardoso, Rui; Pinto, Jorge; Paiva, Anabela; Lanzinha, João Carlos

    2017-12-01

    The Alto Douro Wine Region, located in the northeast of Portugal, a UNESCO World Heritage Site, presents an abundant vernacular building heritage. This building technology is based on a timber framed structure filled with a composite earth-based material. A lack of scientific studies related to this technology is evident, furthermore, principally in rural areas, this traditional building stock is highly deteriorated and damaged because of the rareness of conservation and strengthening works, which is partly related to the non-engineered character of this technology and to the knowledge loosed on that technique. Those aspects motivated the writing of this paper, whose main purpose is the physical and chemical characterization of the earth-based material applied in the tabique buildings of that region through field tests. Consequently, experimental work was conducted and the results obtained allowed, among others, the proposal of a series of adequate field tests. At our knowledge, this is the first time field tests are undertaken for tabique technology. This information will provide the means to assess the suitability of a given earth-based material with regards to this technology. The knowledge from this study could also be very useful for the development of future normative documents and as a reference for architects and engineers that work with this technology to guide and regulate future conservation, rehabilitation or construction processes helping to preserve this important legacy.

  17. Stress corrosion cracking tests on high-level-waste container materials in simulated tuff repository environments

    International Nuclear Information System (INIS)

    Abraham, T.; Jain, H.; Soo, P.

    1986-06-01

    Types 304L, 316L, and 321 austenitic stainless steel and Incoloy 825 are being considered as candidate container materials for emplacing high-level waste in a tuff repository. The stress corrosion cracking susceptibility of these materials under simulated tuff repository conditions was evaluated by using the notched C-ring method. The tests were conducted in boiling synthetic groundwater as well as in the steam/air phase above the boiling solutions. All specimens were in contact with crushed Topopah Spring tuff. The investigation showed that microcracks are frequently observed after testing as a result of stress corrosion cracking or intergranular attack. Results showing changes in water chemistry during test are also presented

  18. Proposed rf system for the fusion materials irradiation test facility

    International Nuclear Information System (INIS)

    Fazio, M.V.; Johnson, H.P.; Hoffert, W.J.; Boyd, T.J.

    1979-01-01

    Preliminary rf system design for the accelerator portion of the Fusion Materials Irradiation Test (FMIT) Facility is in progress. The 35-MeV, 100-mA, cw deuteron beam will require 6.3 MW rf power at 80 MHz. Initial testing indicates the EIMAC 8973 tetrode is the most suitable final amplifier tube for each of a series of 15 amplifier chains operating at 0.5-MW output. To satisfy the beam dynamics requirements for particle acceleration and to minimize beam spill, each amplifier output must be controlled to +-1 0 in phase and the field amplitude in the tanks must be held within a 1% tolerance. These tolerances put stringent demands on the rf phase and amplitude control system

  19. Performance tests on column materials for {sup 99}Mo-{sup 99m}Tc generator

    Energy Technology Data Exchange (ETDEWEB)

    Sombrito, E Z; Bulos, A D; Tangonan, M C [Chemistry Research Section, Atomic Research Div., Philippine Nuclear Research Inst., Quezon (Philippines)

    1998-10-01

    To meet the need of producing a {sup 99}Mo-{sup 99m}Tc generator, based on low specific activity reactor-produced {sup 99}Mo, different procedures for preparing zirconium molybdate gels were tested. Performance tests were done on molybdate gel columns prepared using the procedures developed by Vietnam and China, and recently, on a polyzirconium compound (PZC) prepared in Japan. The conditions for the batch drying of a large volume of the gel material were studied as well as the conditions in preparing a column to concentrate technetium-99m. The performance of PZC sample as column material for the generator was also evaluated. (author)

  20. Recent progress and tests of radiation resistant impregnation materials for Nb3Sn coils

    International Nuclear Information System (INIS)

    Bossert, R.; Krave, S.; Ambrosio, G.; Andreev, N.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Yu, M.; Zlobin, A. V.

    2014-01-01

    Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) (US-LARP collaboration) to develop a large-aperture Nb 3 Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. An important component of this work is the development of materials that are sufficiently radiation resistant for use in critical areas of the upgrade. This paper describes recent progress in characterization of materials, including the baseline CTD101K epoxy, cyanate ester blends, and Matrimid 5292, a bismaleimide-based system. Structural properties of “ten stacks” of cable impregnated with these materials are tested at room and cryogenic temperatures and compared to the baseline CT-101K. Experience with potting 1 and 2 meter long coils with Matrimid 5292 are described. Test results of a single 1-m coil impregnated with Matrimid 5292 are reported and compared to similar coils impregnated with the traditional epoxy

  1. Recent progress and tests of radiation resistant impregnation materials for Nb3Sn coils

    Science.gov (United States)

    Bossert, R.; Krave, S.; Ambrosio, G.; Andreev, N.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Yu, M.; Zlobin, A. V.

    2014-01-01

    Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) (US-LARP collaboration) to develop a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. An important component of this work is the development of materials that are sufficiently radiation resistant for use in critical areas of the upgrade. This paper describes recent progress in characterization of materials, including the baseline CTD101K epoxy, cyanate ester blends, and Matrimid 5292, a bismaleimide-based system. Structural properties of "ten stacks" of cable impregnated with these materials are tested at room and cryogenic temperatures and compared to the baseline CT-101K. Experience with potting 1 and 2 meter long coils with Matrimid 5292 are described. Test results of a single 1-m coil impregnated with Matrimid 5292 are reported and compared to similar coils impregnated with the traditional epoxy.

  2. Thermophysical and Optical Properties of Materials Considered for Use on the LDSD Test Vehicle

    Science.gov (United States)

    Redmond, Matthew; Mastropietro, A.J.

    2015-01-01

    In June 2014, the first of multiple flights in the Low Density Supersonic Decelerator (LDSD) technology development program took place and successfully demonstrated a Supersonic Inflatable Aerodynamic Decelerator (SIAD) in Mars-like conditions. Although the primary goal of the technology program was the development of new decelerators for landing heavier payloads on Mars, the low-cost thermal design of the test vehicle was only possible through the innovative use of a combination of both commercial off the shelf (COTS) and aerospace grade materials. As a result, numerous thermophysical and optical property measurements were undertaken to characterize material candidates before the final material selection was made. This paper presents thermophysical and optical property measurements performed over the course of the LDSD test vehicle development, including those not ultimately selected for use on the vehicle. These properties are compared and contrasted with the existing measurements available in previous literature.

  3. Reliability of wind turbine blades: An overview of materials testing

    DEFF Research Database (Denmark)

    Holmes, John W.; Sørensen, Bent F.; Brøndsted, Povl

    2007-01-01

    an understanding of how damage develops in composite structures, composite materials and adhesives. Designing reliable wind turbine blades also requires the further development of laboratory scale and full scale test methods to evaluate the structural response and durability of new materials under various loading......The structural reliability of wind turbine components can have a profound impact on both the profitability and reputation of a wind turbine manufacturer or supplier of wind turbine components. The issue of reliability is of critical concern when large wind farm co-operatives are considered......, and when wind turbines are located in remote regions where the cost of inspections and repairs can be very high. From a structural viewpoint, wind turbine blades are subjected to very complex loading histories with coupled deformation modes. The long-term reliability of wind turbine blades requires...

  4. Project GRETE: evaluation of non destructive testing techniques for monitoring of material degradation

    International Nuclear Information System (INIS)

    Coste, J.F.

    2001-01-01

    The material aging of major critical components of nuclear installations due to in-service conditions may lead to a degradation of their mechanical characteristics. The early detection of material changes and their monitoring using innovative non destructive testing techniques would allow to plan actions in order to prevent the apparition of macroscopic damage (e.g. cracks). One major difficulty in using these particular techniques is to correlate the changes in the measured NDT signals to the microstructural changes in the material due to aging. This problem may be solved through careful microstructural examinations of the material damage. The objective of the project GRETE is to illustrate the potential use of NDT techniques for the monitoring of material degradation through two examples: neutron irradiation of reactor pressure vessel steel and thermal fatigue of piping. The purpose of this paper is to present the project and its programme of work. (author)

  5. Glass solidification material confinement test device

    International Nuclear Information System (INIS)

    Namiki, Shigekazu.

    1997-01-01

    In a device for confining glass solidification materials, a pipeline connecting a detection vessel and a detector is formed to have a double walled structure, and air blowing holes are formed on the wall of the inner pipe, and an air supply mechanism is connected to inner and outer pipes for supplying blowing air thereby preventing deposition on the inner pipe wall. The air blowing holes are formed by constituting the pipe by using a porous sintered material and porous portions thereof are defined as the air blowing holes, or holes are formed on the pipe wall made of a metal by machining. A blowing boundary layer is formed by blowing the supplied air along the pipe wall of the inner pipe, by which deposition of the sucked materials to the inner wall of the inner pipe is prevented, and all of the materials sucked from the detection vessel are collected to the detector. In addition, an air exit pipe is formed into a double walled structure so as to be supplied blowing air from the air supply mechanism thereby enabling to prevent deposition of sucked materials more reliably. (N.H.)

  6. An overview of the fuels and materials testing programme at the OECD Halden Reactor Project

    Energy Technology Data Exchange (ETDEWEB)

    Wiesenack, W [Institutt for Energiteknikk, Halden (Norway). OECD Halden Reaktor Projekt

    1997-08-01

    The fuels and materials testing programme of the OECD Halden Reactor Project is aimed at investigations of fuel and cladding properties at high burnup, water chemistry effects and in-core materials ageing problems. For the execution of this programme, different types of irradiation rigs and experimental facilities providing typical power reactors conditions are available. Data are obtained from in-core sensors developed at the Halden Project; these are shortly described. An overview of the current test programme and the scope of the following years are briefly presented. (author). 5 refs, 3 figs.

  7. Shield design for the Fusion Materials Irradiation Test facility

    International Nuclear Information System (INIS)

    Carter, L.L.; Mann, F.M.; Morford, R.J.; Wilcox, A.D.; Johnson, D.L.; Huang, S.T.

    1983-03-01

    The shield design for the Fusion Materials Irradiation Test facility is based upon one-, two- and three-dimensional transport calculations with experimental measurements utilized to refine the nuclear data including the neutron cross sections from 20 to 50 MeV and the gamma ray and neutron source terms. The high energy neutrons and deuterons produce activation products from the numerous reactions that are kinematically allowed. The analyses for both beam-on and beam-off (from the activation products) conditions have required extensive nuclear data libraries and the utilization of Monte Carlo, discrete ordinates, point kernel and auxiliary computer codes

  8. PIE technology on mechanical tests for HTTR core component and structural materials developed at Research Hot Laboratory

    International Nuclear Information System (INIS)

    Kizaki, Minoru; Honda, Junichi; Usami, Kouji; Ouchi, Asao; Oeda, Etsuro; Matsumoto, Seiichiro

    2001-02-01

    The high temperature engineering test reactor (HTTR) with the target operation temperature of 950degC established the first criticality on November, 1998 based on a large amount of R and D results on fuel and materials. In such R and D works, the development of reactor materials are one of the key issues from the view point of reactor environments such as extremely high temperature, neutron irradiation and so on for the HTTR. The Research Hot Laboratory (RHL) had carried out much kind of post irradiation examinations (PIEs) on core component and pressure vessel materials for during more than a quarter century. And obtained data played an important role in development, characterization and licensing of those materials for the HTTR. This paper describes the PIE technology developed at RHL and typical results on mechanical tests such as elevated temperature tensile and creep rupture tests for Hasteloy-X, Incolloy 800H and so on, and Charpy impact, J IC fracture toughness, K Id fracture toughness and small punch tests for normalized and tempered 2 1/4Cr-1Mo steel from historical view. In addition, an electrochemical test technique established for investigating the irradiation embrittlement mechanism on 2 1/4Cr-1Mo steel is also mentioned. (author)

  9. Extracting material response from simple mechanical tests on hardening-softening-hardening viscoplastic solids

    Science.gov (United States)

    Mohan, Nisha

    Compliant foams are usually characterized by a wide range of desirable mechanical properties. These properties include viscoelasticity at different temperatures, energy absorption, recoverability under cyclic loading, impact resistance, and thermal, electrical, acoustic and radiation-resistance. Some foams contain nano-sized features and are used in small-scale devices. This implies that the characteristic dimensions of foams span multiple length scales, rendering modeling their mechanical properties difficult. Continuum mechanics-based models capture some salient experimental features like the linear elastic regime, followed by non-linear plateau stress regime. However, they lack mesostructural physical details. This makes them incapable of accurately predicting local peaks in stress and strain distributions, which significantly affect the deformation paths. Atomistic methods are capable of capturing the physical origins of deformation at smaller scales, but suffer from impractical computational intensity. Capturing deformation at the so-called meso-scale, which is capable of describing the phenomenon at a continuum level, but with some physical insights, requires developing new theoretical approaches. A fundamental question that motivates the modeling of foams is `how to extract the intrinsic material response from simple mechanical test data, such as stress vs. strain response?' A 3D model was developed to simulate the mechanical response of foam-type materials. The novelty of this model includes unique features such as the hardening-softening-hardening material response, strain rate-dependence, and plastically compressible solids with plastic non-normality. Suggestive links from atomistic simulations of foams were borrowed to formulate a physically informed hardening material input function. Motivated by a model that qualitatively captured the response of foam-type vertically aligned carbon nanotube (VACNT) pillars under uniaxial compression [2011,"Analysis of

  10. Penerapan Three Tier-Test untuk Identifikasi Kuantitas Siswa Yang Miskonsepsi Pada Materi Magnet

    Directory of Open Access Journals (Sweden)

    Reny Silviani

    2017-10-01

    Full Text Available Proses pembelajaran yang bersifat informative dan hanya ditekankan pada konsep teoritik saja dapat menyebabkan siswa kurang menguasai konsep ilmiah.Faktor yang menyebabkan rendahnya penguasaan konsep siswa adalah miskonsepsi. Miskonsepsi merupakan kekeliruan dalam memahami suatu konsep materi pembelajaran yang tidak akurat, yang dapat menyebabkan ketidaksesuaian antara konsep yang dimiliki pribadi dengan konsep ilmiah. Dengan adanya miskonsepsi yang terjadi, hal ini dapat menghambat siswa untuk menerima informasi yang baru, sehingga siswa menolak untuk mengubah miskonsepsinya menjadi konsep ilmiah. Penelitian ini bertujuan untuk mengidentifikasi mengenai kuantitas siswa yang miskonsepsi pada materi magnet. Penelitian ini merupakan penelitian deskriptif kuantitatif dengan teknik pengambilan sampel adalah purposive sampling.Instrumen penelitian yang digunakan adalah three tier-test. Penggunaan three tier-test yaitu untuk mengidentifikasi kuantita ssiswa yang miskonsepsi. Jawaban yang telah dianalisis, selanjutnya akan dihitung dalam bentuk persentase. Hasil dari penelitian menunjukkan bahwa terdapat 3 konsep distribusi atau sebaran miskonsepsi pada materi magnet, yaitu; 1. Semua benda berwarna perak ditarik magnet; 2. Tarikan magnet yang lebih besar pasti lebih kuat dari tarikan magnet yang kecil; 3. Semua logam dapat ditarik magnet.Miskonsepsi tertinggi terdapat pada konsep tarikan magnet yang lebih besar pasti lebih kuat dari tarikan magnet yang kecil. Diharapkan hasil dari penelitian ini dapat dijadikan referensi untuk mencari solusi dalam menurunkan kuantitas siswa yang miskonsepsik hususnya pada materi magnet.

  11. SRB thermal protection systems materials test results in an arc-heated nitrogen environment

    Science.gov (United States)

    Wojciechowski, C. J.

    1979-01-01

    The external surface of the Solid Rocket Booster (SRB) will experience imposed thermal and shear environments due to aerodynamic heating and radiation heating during launch, staging and reentry. This report is concerned with the performance of the various TPS materials during the staging maneuver. During staging, the wash from the Space Shuttle Main Engine (SSME) exhust plumes impose severe, short duration, thermal environments on the SRB. Five different SRB TPS materials were tested in the 1 MW Arc Plasma Generator (APG) facility. The maximum simulated heating rate obtained in the APG facility was 248 Btu/sq ft./sec, however, the test duration was such that the total heat was more than simulated. Similarly, some local high shear stress levels of 0.04 psia were not simulated. Most of the SSME plume impingement area on the SRB experiences shear stress levels of 0.02 psia and lower. The shear stress levels on the test specimens were between 0.021 and 0.008 psia. The SSME plume stagnation conditions were also simulated.

  12. The tensile strength test of thermoplastic materials based on poly(butylene terephtalate

    Directory of Open Access Journals (Sweden)

    Rzepecka Anna

    2017-01-01

    Full Text Available Thermoplastic composites go toward making an increasingly greater percentage of all manufacturing polymer composites. They have a lot of beneficial properties and their manufacturing using injecting and extrusion methods is a very easy and cheap process. Their properties significantly overtake the properties of traditional materials and it is the reason for their use. Scientists are continuously carrying out research to find new applications of composites materials in new industries, not only in the automotive or aircraft industry. When thermoplastic composites are manufactured a very important factor is the appropriate accommodation of tensile strength to their predestination. Scientists need to know the behaviour of these materials during the impact of different forces, and the factors of working in normal conditions too. The main aim of this article was macroscopic and microscopic analysis of the structure of thermoplastic composites after static tensile strength test. Materials which were analysed were thermoplastic materials which have poly(butylene terephthalate – PBT matrix reinforced with different content glass fibres – from 10% for 30%. In addition, research showed the necessary force to receive fracture and set their distinguishing characteristic down.

  13. Design and fabrication report on capsule (11M 19K for out of pile test) for irradiation testing of research reactor materials at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.G.; Yang, S.W.; Park, S.J.; Shim, K.T.; Choo, K.N.; Oh, J.M.; Lee, B.C.; Choi, M.H.; Kim, D.J.; Kim, J.M.; Kang, S.H.; Chun, Y.B.; Kim, T.K.; Jeong, Y.H.

    2012-05-15

    As a part of the research reactor development project with a plate type fuel, the irradiation tests of graphite (Gr), beryllium (Be), and zircaloy 4 materials using the capsule have been investigating to obtain the mechanical characteristics such as an irradiation growth, hardness, swelling and tensile strength at the temperature below 100 .deg. C and the 30 MW reactor power. Then, A capsule to be able to irradiate materials(graphite, Be, zircaloy 4) under 100 .deg. C at the HANARO was designed and fabricated. After performing out of pile testing in single channel test loop by using the capsule, the final design of the capsules to be irradiated in CT and IR2 test hole of HANARO was approved, and 2 sets of capsule were fabricated. These capsules will be loaded in CT and IR2 test hole of HANARO, and be started the irradiation from the end of June, 2012. After performing the irradiation testing of 2 sets of capsule, PIE (Post Irradiation Examination) on irradiated specimens (Gr, Be, and zircaloy 4) will be carry out in IMEF (Irradiated Material Examination Facility). So, the irradiation testing will be contributed to obtain the characteristic data induced neutron irradiation on Gr, Be, and zircaloy 4. And then, it is convinced that these data will be also contributed to obtain the license for JRTR (Jordan Research and Training Reactor) and new research reactor in Korea, and export research reactors.

  14. Long-term water absorption tests for frost insulation materials taking into account frost attack

    Directory of Open Access Journals (Sweden)

    Toni A. Pakkala

    2014-01-01

    Full Text Available Water absorption of several different frost insulation materials was tested for four years. The test took into account both immersion and frost attack to materials. On the basis of the research the water absorption on XPS specimens is significantly minor compared to EPS specimens that were studied. The most significant result was that freezing of test specimens did not affect on water absorption of XPS specimens but had a major effect on water absorption of EPS specimens. With frozen EPS specimen the absorption continued increasing even after 48 months of immersion. Presumably the reason for such a behaviour is that the pore structure of EPS is not able to resist the tension caused by freezing water and therefore cracks are formed. Thus, more water absorbs inside the EPS through the cracks and it causes cracking deeper in the specimen which is why absorption increases after every freezing period.

  15. Evaluation of patients with oral lichenoid lesions by dental patch testing and results of removal of the dental restoration material

    Directory of Open Access Journals (Sweden)

    Emine Buket Şahin

    2016-12-01

    Full Text Available Background and Design: Oral lichenoid lesions (OLL are contact stomatitis characterized by white reticular or erosive patches, plaque-like lesions that are clinically and histopathologically indistinguishable from oral lichen planus (OLP. Amalgam dental fillings and dental restoration materials are among the etiologic agents. In the present study, it was aimed to evaluate the standard and dental series patch tests in patients with OLL in comparison to a control group and evaluate our results. Materials and Methods: Thirty-three patients with OLL or OLP and 30 healthy control subjects, who had at least one dental restoration material and/or dental filling, were included in the study. Both groups received standard series and dental patch test and the results were evaluated simultaneously. Results: The most frequent allergens in the dental series patch test in the patient group were palladium chloride (n=4; 12.12% and benzoyl peroxide (n=2, 6.06%. Of the 33 patients with OLL; 8 had positive reaction to allergents in the standard patch test series and 8 had positive reaction in the dental patch test series. There was no significant difference in the rate of patch test reaction to the dental and standard series between the groups. Ten patients were advised to have the dental restoration material removed according to the results of the patch tests. The lesions improved in three patients [removal of all amalgam dental fillings (n=1, replacement of all amalgam dental fillings with an alternative filling material (n=1 and replacement of the dental prosthesis (n=1] following the removal or replacement of the dental restoration material. Conclusion: Dental patch test should be performed in patients with OLL and dental restoration material. Dental filling and/or prosthesis should be removed/replaced if there is a reaction against a dental restoration material-related allergen.

  16. Test methods for selection of materials of construction for high-level radioactive waste vitrification. Revision

    International Nuclear Information System (INIS)

    Bickford, D.F.; Corbett, R.A.; Morrison, W.S.

    1986-01-01

    Candidate materials of construction were evaluated for a facility at the Department of Energy's Savannah River Plant to vitrify high-level radioactive waste. Limited operating experience was available under the corrosive conditions of the complex vitrification process. The objective of the testing program was to provide a high degree of assurance that equipment will meet or exceed design lifetimes. To meet this objective in reasonable time and minimum cost, a program was designed consisting of a combination of coupon immersion and electrochemical laboratory tests and pilot-scale tests. Stainless steels and nickel-based alloys were tested. Alloys that were most resistant to general and local attack contained nickel, molybdenum (>9%), and chromium (where Cr + Mo > 30%). Alloy C-276 was selected as the reference material for process equipment. Stellite 6 was selected for abrasive service in the presence of formic acid. Alloy 690 and ALLCORR were selected for specific applications

  17. Earth-based construction material field tests characterization in the Alto Douro Wine Region

    Directory of Open Access Journals (Sweden)

    Cardoso Rui

    2017-12-01

    Full Text Available The Alto Douro Wine Region, located in the northeast of Portugal, a UNESCO World Heritage Site, presents an abundant vernacular building heritage. This building technology is based on a timber framed structure filled with a composite earth-based material. A lack of scientific studies related to this technology is evident, furthermore, principally in rural areas, this traditional building stock is highly deteriorated and damaged because of the rareness of conservation and strengthening works, which is partly related to the non-engineered character of this technology and to the knowledge loosed on that technique. Those aspects motivated the writing of this paper, whose main purpose is the physical and chemical characterization of the earth-based material applied in the tabique buildings of that region through field tests. Consequently, experimental work was conducted and the results obtained allowed, among others, the proposal of a series of adequate field tests. At our knowledge, this is the first time field tests are undertaken for tabique technology. This information will provide the means to assess the suitability of a given earth-based material with regards to this technology. The knowledge from this study could also be very useful for the development of future normative documents and as a reference for architects and engineers that work with this technology to guide and regulate future conservation, rehabilitation or construction processes helping to preserve this important legacy.

  18. What is materialism? Testing two dominant perspectives on materialism in the marketing literature

    Directory of Open Access Journals (Sweden)

    Manchiraju Srikant

    2015-09-01

    Full Text Available Materialism is defined as the importance an individual attaches to worldly possessions, which has been considered as an important construct in consumer behavior and marketing literature. There are two dominant perspectives on individual materialism in the marketing literature that focus on (1 personality traits or (2 individual personal values. However, several scholars have questioned the aforementioned materialism conceptualizations. Therefore, the present study directly compares the constructs of personality materialism and value materialism. Structural equation modeling was employed to address the following issues: (1 what are the key conceptual dimensions of materialism, (2 how much do they overlap, and (3 what is their discriminant validity in predicting outcomes linked to materialism. We suggest these two dominant perspectives on individual materialism are two distinct constructs, as they shared only 21 percent of common variance. Furthermore, we stress the multi-faceted nature of materialism, with an emphasis on future research directions related to materialism in marketing.

  19. Formulation of a candidate glass for use as an acceptance test standard material

    International Nuclear Information System (INIS)

    Ebert, W.L.; Strachan, D.M.; Wolf, S.F.

    1998-04-01

    In this report, the authors discuss the formulation of a glass that will be used in a laboratory testing program designed to measure the precision of test methods identified in the privatization contracts for the immobilization of Hanford low-activity wastes. Tests will be conducted with that glass to measure the reproducibility of tests and analyses that must be performed by glass producers as a part of the product acceptance procedure. Test results will be used to determine if the contractually required tests and analyses are adequate for evaluating the acceptability of likely immobilized low-activity waste (ILAW) products. They will also be used to evaluate if the glass designed for use in these tests can be used as an analytical standard test material for verifying results reported by vendors for tests withg ILAW products. The results of those tests and analyses will be presented in a separate report. The purpose of this report is to document the strategy used to formulate the glass to be used in the testing program. The low-activity waste reference glass LRM that will be used in the testing program was formulated to be compositionally similar to ILAW products to be made with wastes from Hanford. Since the ILAW product compositions have not been disclosed by the vendors participating in the Hanford privatization project, the composition of LRM was formulated based on simulated Hanford waste stream and amounts of added glass forming chemicals typical for vitrified waste forms. The major components are 54 mass % SiO 2 , 20 mass % Na 2 O, 10 mass % Al 2 O 3 , 8 mass % B 2 O 3 , and 1.5 mass % K 2 O. Small amounts of other chemicals not present in Hanford wastes were also included in the glass, since they may be included as chemical additives in ILAW products. This was done so that the use of LRM as a composition standard could be evaluated. Radionuclides were not included in LRM because a nonradioactive material was desired

  20. Qualification testing facility for packages to be used for transport and storage of radioactive materials

    International Nuclear Information System (INIS)

    Vieru, Gheorghe

    2009-01-01

    The radioactive materials (RAM) packaging have to comply to all modes and transport condition, routine or in accident conditions possibly to occur during transportation operations. It is well known that the safety in the transport of RAM is dependent on packaging appropriate for the contents being shipped rather than on operational and/or administrative actions required for the package. The quality of these packages - type A, B or C has to be proved by performing qualification tests in accordance with the ROMANIAN nuclear regulation conditions provided by CNCAN Order no. 357/22.12.2005- 'Norms for a Safe Transport of Radioactive Material', the IAEA Vienna Recommendation stipulated in the Safety standard TS-R-1- Regulation for the Safe Transport of Radioactive Material, 2005 Edition, and other applicable international recommendations. The paper will describe the components of the designed testing facilities, and the qualification testing to be performed for all type A, B and C packages subjected to the testing. In addition, a part of the qualification tests for a package (designed and manufactured in INR Pitesti) used for transport and storage of spent fuel LEU elements of a TRIGA nuclear reactor will be described and analyzed. Quality assurance and quality controls measures taken in order to meet technical specification provided by the design are also presented and commented. The paper concludes that the new Romanian Testing Facilities for RAM packages will comply with the national safe standards as well as with the IAEA applicable recommendation provided by the TS-R-1 safety standard. (author)

  1. Springback study in aluminum alloys based on the Demeri Benchmark Test : influence of material model

    International Nuclear Information System (INIS)

    Greze, R.; Laurent, H.; Manach, P. Y.

    2007-01-01

    Springback is a serious problem in sheet metal forming. Its origin lies in the elastic recovery of materials after a deep drawing operation. Springback modifies the final shape of the part when removed from the die after forming. This study deals with Springback in an Al5754-O aluminum alloy. An experimental test similar to the Demeri Benchmark Test has been developed. The experimentally measured Springback is compared to predicted Springback simulation using Abaqus software. Several material models are analyzed, all models using isotropic hardening of Voce type and plasticity criteria such as Von Mises and Hill48's yield criterion

  2. Recommendations for Filler Material Composition and Delivery Method for Bench-Scale Testing

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-03-01

    This report supplements Joint Workplan on Filler Investigations for DPCs (SNL 2017) providing new and some corrected information for use in planning Phase 1 laboratory testing of slurry cements as possible DPC fillers. The scope description is to "Describe a complete laboratory testing program for filler composition, delivery, emplacement in surrogate canisters, and post-test examination. To the extent possible specify filler material and equipment sources." This report includes results from an independent expert review (Dr. Arun Wagh, retired from Argonne National Laboratory and contracted by Sandia) that helped to narrow the range of cement types for consideration, and to provide further guidance on mix variations to optimize injectability, durability, and other aspects of filler performance.

  3. Irradiation capsule for testing magnetic fusion reactor first-wall materials at 60 and 2000C

    International Nuclear Information System (INIS)

    Conlin, J.A.

    1985-08-01

    A new type of irradiation capsule has been designed, and a prototype has been tested in the Oak Ridge Research Reactor (ORR) for low-temperature irradiation of Magnetic Fusion Reactor first-wall materials. The capsule meets the requirements of the joint US/Japanese collaborative fusion reactor materials irradiation program for the irradiation of first-wall fusion reactor materials at 60 and 200 0 C. The design description and results of the prototype capsule performance are presented

  4. Performance tests on new chromatographic material for 99Mo-99mTc generators

    International Nuclear Information System (INIS)

    Sombrito, Elvira Z.; Bulos, Adelina D.M.

    2004-01-01

    Technetium-99m continues to be the main workhorse of nuclear medicine in the Philippines. Almost 13TBq of 99m Tc was imported to the country in 2002 supplied as 99m Tc- 99 Mo generators. These generators make use of fission molybdenum adsorbed onto an alumina column. Problems associated with the alumina chromatographic generators arise due to safety and economic issues that would be remedied by gel-type generators using low specific activity reactor-produced molybdenum-99 adsorbed on a high capacity gel column material. The Philippine Nuclear Research Institute (PNRI) exerted efforts in this direction by developing a gel-type column, which showed satisfactory molybdenum adsorptive capacity. Likewise, Kaken Co. in Japan in cooperation with Japan Atomic Energy Research Institute (JAERI) developed a dried form of a gel-type polyzirconium compound (PZC). It is a ready-to-use high molybdenum capacity column material for adsorbing reactor-produced molybedum-99. The performance of this material is being tested under the framework of the FNCA project on Research Reactor Utilization. Performance tests on four batches of PZC were performed using fission molybdenum eluted from a 99 Mo- 99m Tc generator. A total of 3.3 GBq 99 Mo was extracted from an alumina column of a commercial generator and mixed with carrier molybdenum solution. About 0.67 GBq was loaded into each of the 12 x 90 mm column. One batch was prepared and distributed in 1999 and tests showed very poor elution yield of 30%. Three recent batches of PZC (2002) gave elution yields of 71% (Range of 69-75). The adsorptive capacity is 99% with about 4% desorption rate. Elution volume is at 5-6 ml. Daily elution for five days gave from 1.6 to 5.5% variability. The tests were performed all at the same time and a trend of improving elution yield and consistency of daily elution yield was observed with the time of testing nearer to the sample preparation date. X-ray diffraction analysis showed an amorphous structure for

  5. EFAM GTP 02 - the GKSS test procedure for determining the fracture behaviour of materials

    International Nuclear Information System (INIS)

    Schwalbe, K.H.; Heerens, J.; Zerbst, U.; Kocak, M.

    2002-01-01

    This document describes a unified fracture mechanics test method in procedural form for quasi-static testing of materials. It is based on the ESIS Procedures P1 and P2 and introduces additional features, such as middle cracked tension specimens, shallow cracks, the δ 5 crack tip opening displacement, the crack tip opening angle, the rate of dissipated energy, testing of weldments, and guidance for statistical treatment of scatter. Special validity criteria are given for tests on specimens with low constraint. This document represents an updated version of EFAM GTP 94. (orig.) [de

  6. Comparison of Weibull strength parameters from flexure and spin tests of brittle materials

    Science.gov (United States)

    Holland, Frederic A., Jr.; Zaretsky, Erwin V.

    1991-01-01

    Fracture data from five series of four point bend tests of beam and spin tests of flat annular disks were reanalyzed. Silicon nitride and graphite were the test materials. The experimental fracture strengths of the disks were compared with the predicted strengths based on both volume flaw and surface flaw analyses of four point bend data. Volume flaw analysis resulted in a better correlation between disks and beams in three of the five test series than did surface flaw analysis. The Weibull (moduli) and characteristic gage strengths for the disks and beams were also compared. Differences in the experimental Weibull slopes were not statistically significant. It was shown that results from the beam tests can predict the fracture strength of rotating disks.

  7. Licence template for mobile handling and storage of radioactive substances for the nondestructive testing of materials

    International Nuclear Information System (INIS)

    Lange, A.; Schumann, J.; Huhn, W.

    2016-01-01

    The Technical Committee ''Radiation Protection'' (Fachausschuss ''Strahlenschutz'') and the Laender Committee ''X-ray ordinance'' (Laenderausschuss ''Roentgenverordnung'') have appointed a working group for the formulation of licence templates for the nationwide use of X-ray equipment or handling of radioactive substances. To date, the following licence templates have been adopted: - Mobile operation of X-ray equipment under technical radiography to the coarse structural analysis in material testing; - Mobile operation of a handheld X-ray fluorescence system; - Mobile operation of a flash X-ray system; - Operation of an X-ray system for teleradiology The licence template ''Mobile handling and storage of radioactive substances for the nondestructive testing of materials'' is scheduled for publication. The licence template ''Practices in external facilities and installations'' is currently being revised. The licence template ''Mobile handling and storage of radioactive substances for the nondestructive testing of materials'' is used as an example to demonstrate the legal framework and the results of the working group.

  8. Full scale impact testing for environmental and safety control of energy material shipping container systems

    International Nuclear Information System (INIS)

    Seagren, R.D.

    1978-01-01

    Heavily-shielded energy material shipping systems, similar in size and weight to those presently employed to transport irradiated reactor fuel elements, are being destructively tested under dynamic conditions. In these tests, the outer and inner steel shells interact in a complex manner with the massive biological shielding in the system. Results obtained from these tests provide needed information for new design concepts. Containment failure (and the resulting release of radioactive material to the environment which might occur in an extremely severe accident) is most likely through the seals and other ancillary features of the shipping systems. Analyses and experiments provide engineering data on the behavior of these shipping systems under severe accident conditions and information for predicting potential survivability and environmental control with a rational margin of safety

  9. Nondestructive testing of delaminated interfaces between two materials using electromagnetic interrogation

    Science.gov (United States)

    Cakoni, Fioralba; de Teresa, Irene; Monk, Peter

    2018-06-01

    We consider the problem of detecting whether two materials that should be in contact have separated or delaminated using electromagnetic radiation. The interface damage is modeled as a thin opening between two materials of different electromagnetic properties. To derive a reconstruction algorithm that focuses on testing for the delamination at the interface between the two materials, we use the approximate asymptotic model for the forward problem derived in de Teresa (2017 PhD Thesis University of Delaware). In this model, the differential equations in the small opening are replaced by approximate transmission conditions for the electromagnetic fields across the interface. We also assume that the undamaged or background state is known and it is desired to find where the delamination has opened. We adapt the linear sampling method to this configuration in order to locate the damaged part of the interface from a knowledge of the scattered field and the undamaged configuration, but without needing to know the electromagnetic properties of the opening. Numerical examples are presented to validate our algorithm.

  10. Apparatus and test method for characterizing the temperature regulating properties of thermal functional porous polymeric materials.

    Science.gov (United States)

    Yao, Bao-Guo; Zhang, Shan; Zhang, De-Pin

    2017-05-01

    In order to evaluate the temperature regulating properties of thermal functional porous polymeric materials such as fabrics treated with phase change material microcapsules, a new apparatus was developed. The apparatus and the test method can measure the heat flux, temperature, and displacement signals during the dynamic contact and then quickly give an evaluation for the temperature regulating properties by simulating the dynamic heat transfer and temperature regulating process when the materials contact the body skin. A series of indices including the psychosensory intensity, regulating capability index, and relative regulating index were defined to characterize the temperature regulating properties. The measurement principle, the evaluation criteria and grading method, the experimental setup and the test results discussion, and the gage capability analysis of the apparatus are presented. The new apparatus provides a method for the objective measurement and evaluation of the temperature regulating properties of thermal functional porous polymeric materials.

  11. Materials and test methods

    International Nuclear Information System (INIS)

    Kase, M.B.

    1985-01-01

    The objective of this study was to provide, in cooperation with ORNL and LANL, specimens required for studies to develop organic insulators having the cryogenic neutron irradiation resistance required for MFE systems utilizing superconducting magnetic confinement. To develop test methods and analytical procedures for assessing radiation damage. To stimulate and participate in international cooperation directed toward accomplishing these objectives. The system for producing uniaxially reinforced, 3-4 mm (0.125 in) diameter rod specimens has been refined and validated by production of excellent quality specimens using liquid-mix epoxy resin systems. The methodology is undergoing further modification to permit use of hot-melt epoxy and polyimide resin systems as will be required for the experimental program to be conducted in the NLTNIF reactor at ORNL. Preliminary studies indicate that short beam and torsional shear test methods will be useful in evaluating radiation degradation. Development of these and other applicable test methods are continuing. A cooperative program established with laboratories in Japan and in England has resulted in the production and testing of specimens having an identical configuration

  12. Digital Radiography of a Drop Tested 9975 Radioactive Materials Packaging

    International Nuclear Information System (INIS)

    Blanton, P.S.

    2001-01-01

    This paper discusses the use of radiography as a tool for evaluating damage to radioactive material packaging subjected to regulatory accident conditions. The Code of Federal Regulations, 10 CFR 71, presents the performance based requirements that must be used in the development (design, fabrication and testing) of a radioactive material packaging. The use of various non-destructive examination techniques in the fabrication of packages is common. One such technique is the use of conventional radiography in the examination of welds. Radiography is conventional in the sense that images are caught one at a time on film stock. Most recently, digital radiography has been used to characterize internal damage to a package subjected to the 30-foot hypothetical accident conditions (HAC) drop. Digital radiography allows for real time evaluation of the item being inspected. This paper presents a summary discussion of the digital radiographic technique and an example of radiographic results of a 9975 package following the HAC 30-foot drop

  13. Triaxial extensometer for volumetric strain measurement in a hydro-compression loading test for foam materials

    International Nuclear Information System (INIS)

    Feng, Bo; Xu, Ming-long; Zhao, Tian-fei; Zhang, Zhi-jun; Lu, Tian-jian

    2010-01-01

    A new strain gauge-based triaxial extensometer (radial extensometers x, y and axial extensometer z) is presented to improve the volumetric strain measurement in a hydro-compression loading test for foam materials. By the triaxial extensometer, triaxial deformations of the foam specimen can be measured directly, from which the volumetric strain is determined. Sensitivities of the triaxial extensometer are predicted using a finite-element model, and verified through experimental calibrations. The axial extensometer is validated by conducting a uniaxial compression test in aluminium foam and comparing deformation measured by the axial extensometer to that by the advanced optical 3D deformation analysis system ARAMIS; the result from the axial extensometer agrees well with that from ARAMIS. A new modus of two-wire measurement and transmission in a hydrostatic environment is developed to avoid the punching and lead sealing techniques on the pressure vessel for the hydro-compression test. The effect of hydrostatic pressure on the triaxial extensometer is determined through an experimental test. An application in an aluminium foam hydrostatic compression test shows that the triaxial extensometer is effective for volumetric strain measurement in a hydro-compression loading test for foam materials

  14. New electron beam facility for irradiated plasma facing materials testing in hot cell

    International Nuclear Information System (INIS)

    Shimakawa, S.; Akiba, M.; Kawamura, H.

    1996-01-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop plasma facing components which can resist these. We have established electron beam heat facility ('OHBIS', Oarai hot-cell electron beam irradiating system) at a hot cell in JMTR (Japan materials testing reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50 kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30 kV (constant) and 1.7 A, respectively. The loading time of the electron beam is more than 0.1 ms. The shape of vacuum vessel is cylindrical, and the main dimensions are 500 mm in inside diameter, 1000 mm in height. The ultimate vacuum of this vessel is 1 x 10 -4 Pa. At present, the facility for the thermal shock test has been established in a hot cell. The performance of the electron beam is being evaluated at this time. In the future, the equipment for conducting static heat loadings will be incorporated into the facility. (orig.)

  15. Dynamic testing of horseshoe designs at impact on synthetic and dirt Thoroughbred racetrack materials.

    Science.gov (United States)

    Mahaffey, C A; Peterson, M L; Thomason, J J; McIlwraith, C W

    2016-01-01

    Different horseshoe designs have been developed in an attempt to optimise footing for equine athletes. Horseshoe performance is assumed to be dependent on the surface and gait, but there are limited data on horseshoe performance on different surfaces, independent of gait variation. To quantify the dynamic loading for 3 aluminium racing shoe designs on Thoroughbred racetrack surface materials, using a biomechanical surface tester. A flat racing plate, a serrated V-Grip and a shoe with a 6 mm toe grab and 10 mm heel calks were tested on synthetic and dirt surfaces under typical operating conditions of temperature and moisture content for the respective material samples. Samples were tested under laboratory conditions, replicating a track surface by compacting material into a latex-lined mould surrounded by silica sand for representative boundary conditions. Peak loading and loading rates were measured vertically and horizontally (craniocaudal), simulating aspects of primary and secondary impacts of the hoof in a galloping horse. Maximum vertical and shear loads and loading rates were not significantly different between shoe types, with the exception of a reduced craniocaudal loading rate for the V-Grip shoe on the synthetic surface. All other statistical significance was related to the surface material. These 3 different Thoroughbred racing shoes do not have a significant impact on loading and loading rate, with the exception of the V-Grip shoe on a synthetic surface. Although the V-Grip may reduce craniocaudal peak load rates in a synthetic material with relatively high wax and/or low oil content, the reduction in load rate is less than the difference found between materials. This study indicates that shoeing has little effect, and that a track's surface material and its preparation have a significant effect on the dynamic loading during the impact phase of the stance. © 2015 EVJ Ltd.

  16. Evaluation of physicochemical properties of root-end filling materials using conventional and Micro-CT tests

    Directory of Open Access Journals (Sweden)

    Fernanda Ferrari Esteves TORRES

    Full Text Available Abstract Objective To evaluate solubility, dimensional stability, filling ability and volumetric change of root-end filling materials using conventional tests and new Micro-CT-based methods. Material and Methods Solubility (loss of mass after 7 and 30 days, and dimensional stability (in mm were evaluated in accordance with Carvalho-Junior, et al. 7 (2007. The filling ability and volumetric change (in mm3 were evaluated by Micro-CT (Bruker-MicroCT, Kontich, Belgium using resin models with cavities 3 mm deep and 1 mm in diameter. The cavities were filled with materials to evaluate filling ability, and then scanned by Micro-CT. After 7 and 30 days immersed in distilled water, the filled cavities were scanned again to evaluate the volumetric change. MTA Angelus (MTA, Biodentine (BIO and zinc oxide-eugenol cement (ZOE were evaluated. Data were submitted to analysis of variance (ANOVA and Tukey's test with 5% significance level. Results The results suggested correlated or complementary data between the proposed tests. At 7 days, BIO showed higher solubility and at 30 days, showed higher volumetric change in comparison with MTA (p0.05 at 7 days. At 30 days, they presented similar solubility. BIO and MTA showed higher dimensional stability than ZOE (p<0.05. ZOE and BIO showed higher filling ability (p<0.05. Conclusions ZOE presented a higher dimensional change, and BIO had greater solubility after 7 days. BIO presented filling ability and dimensional stability, but greater volumetric change than MTA after 30 days. Micro-CT can provide important data on the physicochemical properties of materials complementing conventional tests.

  17. Standard Test Methods for Solar Energy Transmittance and Reflectance (Terrestrial) of Sheet Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1971-01-01

    1.1 These test methods cover the measurement of solar energy transmittance and reflectance (terrestrial) of materials in sheet form. Method A, using a spectrophotometer, is applicable for both transmittance and reflectance and is the referee method. Method B is applicable only for measurement of transmittance using a pyranometer in an enclosure and the sun as the energy source. Specimens for Method A are limited in size by the geometry of the spectrophotometer while Method B requires a specimen 0.61 m2 (2 ft2). For the materials studied by the drafting task group, both test methods give essentially equivalent results. 1.2 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  18. Standard test method for determining a threshold stress intensity factor for environment-assisted cracking of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This test method covers the determination of the environment-assisted cracking threshold stress intensity factor parameters, KIEAC and KEAC, for metallic materials from constant-force testing of fatigue precracked beam or compact fracture specimens and from constant-displacement testing of fatigue precracked bolt-load compact fracture specimens. 1.2 This test method is applicable to environment-assisted cracking in aqueous or other aggressive environments. 1.3 Materials that can be tested by this test method are not limited by thickness or by strength as long as specimens are of sufficient thickness and planar size to meet the size requirements of this test method. 1.4 A range of specimen sizes with proportional planar dimensions is provided, but size may be variable and adjusted for yield strength and applied force. Specimen thickness is a variable independent of planar size. 1.5 Specimen configurations other than those contained in this test method may be used, provided that well-established stress ...

  19. Material characterization and non destructive testing by ultrasounds; modelling, simulation and experimental validation

    International Nuclear Information System (INIS)

    Noroy-Nadal, M.H.

    2002-06-01

    This memory presents the research concerning the characterization of materials and the Non Destructive Testing (N.D.T) by ultrasonics. The different topics include three steps: modeling, computations and experimental validation. The studied materials concern mainly metals. The memory is divided in four parts. The first one concerns the characterization of materials versus temperature. The determination of the shear modulus G(T) is especially studied for a large temperature range, and around the melting point. The second part is devoted to studies by photothermal devices essentially focused on the modeling of the mechanical displacement and the stress field in coated materials. In this particular field of interest, applications concern either the mechanical characterization of the coating, the defect detection in the structure and finally the evaluation of the coating adhesion. The third section is dedicated to microstructural characterization using acoustic microscopy. The evaluation of crystallographic texture is especially approached, for metallic objects obtained by forming. Before concluding and pointing out some perspectives to this work, the last section concerns the introduction of optimization techniques, applied to the material characterization by acoustic microscopy. (author)

  20. Selection Criteria and Methods for Testing Different Surface Materials for Contact Frying Processes

    DEFF Research Database (Denmark)

    Ashokkumar, Saranya

    Inner surfaces of industrial process equipment for food are often coated to give the surfaces particular properties with respect to adhesion and cleanability. Existing coating materials (PTFE (Teflon®) or silicone based polymers) suffer from drawbacks when used in contact frying, because these co...... surface materials for contact frying processes. The surfaces selected for this purpose cover a wide spectrum of materials that range from hydrophobic to hydrophilic materials. The different surface materials investigated include stainless steel (reference), aluminium (Al Mg 5754), PTFE......, an experimental rig has been constructed which enabled a controlled fouling of different coatings on steel and aluminium substrates under realistic frying conditions. A subjective rating procedure was employed for screening different surfaces according to their non-stick properties when used for frying of a model...... defects and surface roughness play a significant role. The wear resistance of the coatings was tested by performing abrasive wear experiments. The ceramic coatings: TiAlN and ZrN were found to show the best wear resistance properties. The experiments also revealed the poor wear resistance of stainless...