WorldWideScience

Sample records for testing gravitational parity

  1. Testing gravitational parity violation with coincident gravitational waves and short gamma-ray bursts

    International Nuclear Information System (INIS)

    Yunes, Nicolas; O'Shaughnessy, Richard; Owen, Benjamin J.; Alexander, Stephon

    2010-01-01

    Gravitational parity violation is a possibility motivated by particle physics, string theory, and loop quantum gravity. One effect of it is amplitude birefringence of gravitational waves, whereby left and right circularly polarized waves propagate at the same speed but with different amplitude evolution. Here we propose a test of this effect through coincident observations of gravitational waves and short gamma-ray bursts from binary mergers involving neutron stars. Such gravitational waves are highly left or right circularly polarized due to the geometry of the merger. Using localization information from the gamma-ray burst, ground-based gravitational wave detectors can measure the distance to the source with reasonable accuracy. An electromagnetic determination of the redshift from an afterglow or host galaxy yields an independent measure of this distance. Gravitational parity violation would manifest itself as a discrepancy between these two distance measurements. We exemplify such a test by considering one specific effective theory that leads to such gravitational parity violation, Chern-Simons gravity. We show that the advanced LIGO-Virgo network and all-sky gamma-ray telescopes can be sensitive to the propagating sector of Chern-Simons gravitational parity violation to a level roughly 2 orders of magnitude better than current stationary constraints from the LAGEOS satellites.

  2. Chirality and gravitational parity violation.

    Science.gov (United States)

    Bargueño, Pedro

    2015-06-01

    In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented. © 2015 Wiley Periodicals, Inc.

  3. Probing gravitational parity violation with gravitational waves from stellar-mass black hole binaries

    Science.gov (United States)

    Yagi, Kent; Yang, Huan

    2018-05-01

    The recent discovery of gravitational-wave events has offered us unique test beds of gravity in the strong and dynamical field regime. One possible modification to General Relativity is the gravitational parity violation that arises naturally from quantum gravity. Such parity violation gives rise to the so-called amplitude birefringence in gravitational waves, in which one of the circularly polarized modes is amplified while the other one is suppressed during their propagation. In this paper, we study how well one can measure gravitational parity violation via the amplitude birefringence effect of gravitational waves sourced by stellar-mass black hole binaries. We choose Chern-Simons gravity as an example and work within an effective field theory formalism to ensure that the approximate theory is well posed. We consider gravitational waves from both individual sources and stochastic gravitational-wave backgrounds. Regarding bounds from individual sources, we estimate such bounds using a Fisher analysis and carry out Monte Carlo simulations by randomly distributing sources over their sky location and binary orientation. We find that the bounds on the scalar field evolution in Chern-Simons gravity from the recently discovered gravitational-wave events are too weak to satisfy the weak Chern-Simons approximation, while aLIGO with its design sensitivity can place meaningful bounds. Regarding bounds from stochastic gravitational-wave backgrounds, we set the threshold signal-to-noise ratio for detection of the parity-violation mode as 5 and estimate projected bounds with future detectors assuming that signals are consistent with no parity violation. In an ideal situation in which all the source parameters and binary black hole merger-rate history are known a priori, we find that a network of two third-generation detectors is able to place bounds that are comparable to or slightly stronger than binary pulsar bounds. In a more realistic situation in which one does not have

  4. Cauchy horizon stability in a collapsing spherical dust cloud: II. Energy bounds for test fields and odd-parity gravitational perturbations

    Science.gov (United States)

    Ortiz, Néstor; Sarbach, Olivier

    2018-01-01

    We analyze the stability of the Cauchy horizon associated with a globally naked, shell-focussing singularity arising from the complete gravitational collapse of a spherical dust cloud. In a previous work, we have studied the dynamics of spherical test scalar fields on such a background. In particular, we proved that such fields cannot develop any divergences which propagate along the Cauchy horizon. In the present work, we extend our analysis to the more general case of test fields without symmetries and to linearized gravitational perturbations with odd parity. To this purpose, we first consider test fields possessing a divergence-free stress-energy tensor satisfying the dominant energy condition, and we prove that a suitable energy norm is uniformly bounded in the domain of dependence of the initial slice. In particular, this result implies that free-falling observers co-moving with the dust particles measure a finite energy of the field, even as they cross the Cauchy horizon at points lying arbitrarily close to the central singularity. Next, for the case of Klein–Gordon fields, we derive point-wise bounds from our energy estimates which imply that the scalar field cannot diverge at the Cauchy horizon, except possibly at the central singular point. Finally, we analyze the behaviour of odd-parity, linear gravitational and dust perturbations of the collapsing spacetime. Similarly to the scalar field case, we prove that the relevant gauge-invariant combinations of the metric perturbations stay bounded away from the central singularity, implying that no divergences can propagate in the vacuum region. Our results are in accordance with previous numerical studies and analytic work in the self-similar case.

  5. Parity breaking signatures from a Chern-Simons coupling during inflation: the case of non-Gaussian gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Bartolo, Nicola; Orlando, Giorgio, E-mail: nicola.bartolo@pd.infn.it, E-mail: giorgio.orlando@phd.unipd.it [Dipartimento di Fisica e Astronomia ' ' G. Galilei' , Università degli Studi di Padova, via Marzolo 8, 35131, Padova (Italy)

    2017-07-01

    Considering high-energy modifications of Einstein gravity during inflation is an interesting issue. We can constrain the strength of the new gravitational terms through observations of inflationary imprints in the actual universe. In this paper we analyze the effects on slow-roll models due to a Chern-Simons term coupled to the inflaton field through a generic coupling function f (φ). A well known result is the polarization of primordial gravitational waves (PGW) into left and right eigenstates, as a consequence of parity breaking. In such a scenario the modifications to the power spectrum of PGW are suppressed under the conditions that allow to avoid the production of ghost gravitons at a certain energy scale, the so-called Chern-Simons mass M {sub CS}. In general it has been recently pointed out that there is very little hope to efficiently constrain chirality of PGW on the basis solely of two-point statistics from future CMB data, even in the most optimistic cases. Thus we search if significant parity breaking signatures can arise at least in the bispectrum statistics. We find that the tensor-tensor-scalar bispectra ( γ γ ζ ) for each polarization state are the only ones that are not suppressed. Their amplitude, setting the level of parity breaking during inflation, is proportional to the second derivative of the coupling function f (φ) and they turn out to be maximum in the squeezed limit. We comment on the squeezed-limit consistency relation arising in the case of chiral gravitational waves, and on possible observables to constrain these signatures.

  6. Chiral primordial gravitational waves from a Lifshitz point.

    Science.gov (United States)

    Takahashi, Tomohiro; Soda, Jiro

    2009-06-12

    We study primordial gravitational waves produced during inflation in quantum gravity at a Lifshitz point proposed by Horava. Assuming power-counting renormalizability, foliation-preserving diffeomorphism invariance, and the condition of detailed balance, we show that primordial gravitational waves are circularly polarized due to parity violation. The chirality of primordial gravitational waves is a quite robust prediction of quantum gravity at a Lifshitz point which can be tested through observations of cosmic microwave background radiation and stochastic gravitational waves.

  7. Testing effective quantum gravity with gravitational waves from extreme mass ratio inspirals

    International Nuclear Information System (INIS)

    Yunes, N; Sopuerta, C F

    2010-01-01

    Testing deviation of GR is one of the main goals of the proposed Laser Interferometer Space Antenna. For the first time, we consistently compute the generation of gravitational waves from extreme-mass ratio inspirals (stellar compact objects into supermassive black holes) in a well-motivated alternative theory of gravity, that to date remains weakly constrained by double binary pulsar observations. The theory we concentrate on is Chern-Simons (CS) modified gravity, a 4-D, effective theory that is motivated both from string theory and loop-quantum gravity, and which enhances the Einstein-Hilbert action through the addition of a dynamical scalar field and the parity-violating Pontryagin density. We show that although point particles continue to follow geodesics in the modified theory, the background about which they inspiral is a modification to the Kerr metric, which imprints a CS correction on the gravitational waves emitted. CS modified gravitational waves are sufficiently different from the General Relativistic expectation that they lead to significant dephasing after 3 weeks of evolution, but such dephasing will probably not prevent detection of these signals, but instead lead to a systematic error in the determination of parameters. We end with a study of radiation-reaction in the modified theory and show that, to leading-order, energy-momentum emission is not CS modified, except possibly for the subdominant effect of scalar-field emission. The inclusion of radiation-reaction will allow for tests of CS modified gravity with space-borne detectors that might be two orders of magnitude larger than current binary pulsar bounds.

  8. Testing R-parity with geometry

    Energy Technology Data Exchange (ETDEWEB)

    He, Yang-Hui [Department of Mathematics, City University, London,Northampton Square, London EC1V 0HB (United Kingdom); School of Physics, NanKai University,94 Weijin Road, Tianjin, 300071 (China); Merton College, University of Oxford,Merton Street, OX1 4JD (United Kingdom); Jejjala, Vishnu [Mandelstam Institute for Theoretical Physics, NITheP, and School of Physics,University of the Witwatersrand,1 Jan Smuts Avenue, Johannesburg, WITS 2050 (South Africa); Matti, Cyril [Department of Mathematics, City University, London,Northampton Square, London EC1V 0HB (United Kingdom); Mandelstam Institute for Theoretical Physics, NITheP, and School of Physics,University of the Witwatersrand,1 Jan Smuts Avenue, Johannesburg, WITS 2050 (South Africa); Nelson, Brent D. [Department of Physics, Northeastern University,360 Huntington Avenue, Boston, MA 02115 (United States)

    2016-03-14

    We present a complete classification of the vacuum geometries of all renormalizable superpotentials built from the fields of the electroweak sector of the MSSM. In addition to the Severi and affine Calabi-Yau varieties previously found, new vacuum manifolds are identified; we thereby investigate the geometrical implication of theories which display a manifest matter parity (or R-parity) via the distinction between leptonic and Higgs doublets, and of the lepton number assignment of the right-handed neutrino fields. We find that the traditional R-parity assignments of the MSSM more readily accommodate the neutrino see-saw mechanism with non-trivial geometry than those superpotentials that violate R-parity. However there appears to be no geometrical preference for a fundamental Higgs bilinear in the superpotential, with operators that violate lepton number, such as νHH̄, generating vacuum moduli spaces equivalent to those with a fundamental bilinear.

  9. Gravitational Quasinormal Modes of Regular Phantom Black Hole

    Directory of Open Access Journals (Sweden)

    Jin Li

    2017-01-01

    Full Text Available We investigate the gravitational quasinormal modes (QNMs for a type of regular black hole (BH known as phantom BH, which is a static self-gravitating solution of a minimally coupled phantom scalar field with a potential. The studies are carried out for three different spacetimes: asymptotically flat, de Sitter (dS, and anti-de Sitter (AdS. In order to consider the standard odd parity and even parity of gravitational perturbations, the corresponding master equations are derived. The QNMs are discussed by evaluating the temporal evolution of the perturbation field which, in turn, provides direct information on the stability of BH spacetime. It is found that in asymptotically flat, dS, and AdS spacetimes the gravitational perturbations have similar characteristics for both odd and even parities. The decay rate of perturbation is strongly dependent on the scale parameter b, which measures the coupling strength between phantom scalar field and the gravity. Furthermore, through the analysis of Hawking radiation, it is shown that the thermodynamics of such regular phantom BH is also influenced by b. The obtained results might shed some light on the quantum interpretation of QNM perturbation.

  10. Purchasing power parity in OECD countries: nonlinear unit root tests revisited

    OpenAIRE

    Juan Carlos Cuestas; Paulo José Regis

    2010-01-01

    The aim of this paper is to provide additional evidence on the purchasing power parity empirical fulfillment in a pool of OECD countries. We apply the Harvey et al. (2008) linearity test and the Kruse (2010) nonlinear unit root test. The results point to the fact that the purchasing power parity theory holds in a greater number of countries than has been reported in previous studies.

  11. Purchasing Power Parity : Evidence from a New Test

    NARCIS (Netherlands)

    Klaassen, F.J.G.M.

    1999-01-01

    Most economists intuitively consider purchasing power parity (PPP) to be true. Nevertheless, quite surprisingly, the empirical literature is not very supportive for PPP. In this paper, however, we find evidence in favor of PPP using a new test. The test is embedded in a Markov regime-switching model

  12. Testing the gravitational instability hypothesis?

    Science.gov (United States)

    Babul, Arif; Weinberg, David H.; Dekel, Avishai; Ostriker, Jeremiah P.

    1994-01-01

    We challenge a widely accepted assumption of observational cosmology: that successful reconstruction of observed galaxy density fields from measured galaxy velocity fields (or vice versa), using the methods of gravitational instability theory, implies that the observed large-scale structures and large-scale flows were produced by the action of gravity. This assumption is false, in that there exist nongravitational theories that pass the reconstruction tests and gravitational theories with certain forms of biased galaxy formation that fail them. Gravitational instability theory predicts specific correlations between large-scale velocity and mass density fields, but the same correlations arise in any model where (a) structures in the galaxy distribution grow from homogeneous initial conditions in a way that satisfies the continuity equation, and (b) the present-day velocity field is irrotational and proportional to the time-averaged velocity field. We demonstrate these assertions using analytical arguments and N-body simulations. If large-scale structure is formed by gravitational instability, then the ratio of the galaxy density contrast to the divergence of the velocity field yields an estimate of the density parameter Omega (or, more generally, an estimate of beta identically equal to Omega(exp 0.6)/b, where b is an assumed constant of proportionality between galaxy and mass density fluctuations. In nongravitational scenarios, the values of Omega or beta estimated in this way may fail to represent the true cosmological values. However, even if nongravitational forces initiate and shape the growth of structure, gravitationally induced accelerations can dominate the velocity field at late times, long after the action of any nongravitational impulses. The estimated beta approaches the true value in such cases, and in our numerical simulations the estimated beta values are reasonably accurate for both gravitational and nongravitational models. Reconstruction tests

  13. Testing for purchasing power parity in 21 African countries using several unit root tests

    Science.gov (United States)

    Choji, Niri Martha; Sek, Siok Kun

    2017-04-01

    Purchasing power parity is used as a basis for international income and expenditure comparison through the exchange rate theory. However, empirical studies show disagreement on the validity of PPP. In this paper, we conduct the testing on the validity of PPP using panel data approach. We apply seven different panel unit root tests to test the validity of the purchasing power parity (PPP) hypothesis based on the quarterly data on real effective exchange rate for 21 African countries from the period 1971: Q1-2012: Q4. All the results of the seven tests rejected the hypothesis of stationarity meaning that absolute PPP does not hold in those African Countries. This result confirmed the claim from previous studies that standard panel unit tests fail to support the PPP hypothesis.

  14. Testing for purchasing power parity in the long-run for ASEAN-5

    Science.gov (United States)

    Choji, Niri Martha; Sek, Siok Kun

    2017-04-01

    For more than a decade, there has been a substantial interest in testing for the validity of the purchasing power parity (PPP) hypothesis empirically. This paper performs a test on revealing a long-run relative Purchasing Power Parity for a group of ASEAN-5 countries for the period of 1996-2016 using monthly data. For this purpose, we used the Pedroni co-integration method to test for the long-run hypothesis of purchasing power parity. We first tested for the stationarity of the variables and found that the variables are non-stationary at levels but stationary at first difference. Results of the Pedroni test rejected the null hypothesis of no co-integration meaning that we have enough evidence to support PPP in the long-run for the ASEAN-5 countries over the period of 1996-2016. In other words, the rejection of null hypothesis implies a long-run relation between nominal exchange rates and relative prices.

  15. From hadronic parity violation to electron parity-violating experiments

    International Nuclear Information System (INIS)

    Oers, Willem T.H. van

    2010-01-01

    The weak interaction is manifested in parity-violating observables. With the weak interaction extremely well known parity-violating measurements in hadronic systems can be used to deduce strong interaction effects in those systems. Parity-violating analyzing powers in electron-proton scattering have led to determining the strange quark contributions to the charge and magnetization distributions of the nucleon. Parity-violating electron-proton and electron-electron scattering can also be performed to test the predictions of the Standard Model in the 'running' of the electroweak mixing angle or sin 2 θ W .

  16. A new method for testing Newton's gravitational law

    International Nuclear Information System (INIS)

    Schurr, J.; Klein, N.; Meyer, H.; Piel, H.; Walesch, H.

    1991-01-01

    A new experimental method is reported for determining the gravitational force of a laboratory test mass on a Fabry-Perot microwave resonator. The resonator consists of two Fabry-Perot mirrors suspended as pendulums. Changes of 2·10 -11 m in the pendulum separation can be resolved as a shift of the resonance frequency of the resonator. This limit corresponds to an acceleration of 7·10 -11 m s -2 of one mirror with respect to the other. In a first experiment, the gravitational acceleration generated by a 125 kg test mass was measured as a function of distance in the range of 10 to 15 cm and tested Newton's gravitational law with an accuracy of 1%. No deviation is found. Furthermore, the gravitational constant G is determined with similar precision. (author) 5 refs., 2 figs

  17. Experimental hint for gravitational CP violation

    Energy Technology Data Exchange (ETDEWEB)

    Gharibyan, Vahagn [Deutsches Elektronen-Synchrotron, Hamburg (Germany). MDI Group

    2016-01-15

    An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Gravity dependence on rotation or spin direction is experimentally constrained only at low energies. Here a method based on high energy Compton scattering is developed to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a gravitational CP violation around 13 GeV energies, at a maximal level of 1.3±0.2% for the charge and 0.68±0.09% for the space parity. A stronger gravitational coupling to left helicity electrons relative to right helicity positrons is detected.

  18. Experimental hint for gravitational CP violation

    International Nuclear Information System (INIS)

    Gharibyan, Vahagn

    2016-01-01

    An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Gravity dependence on rotation or spin direction is experimentally constrained only at low energies. Here a method based on high energy Compton scattering is developed to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a gravitational CP violation around 13 GeV energies, at a maximal level of 1.3±0.2% for the charge and 0.68±0.09% for the space parity. A stronger gravitational coupling to left helicity electrons relative to right helicity positrons is detected.

  19. Use of (Time-Domain) Vector Autoregressions to Test Uncovered Interest Parity

    OpenAIRE

    Takatoshi Ito

    1984-01-01

    In this paper, a vector autoregression model (VAR) is proposed in order to test uncovered interest parity (UIP) in the foreign exchange market. Consider a VAR system of the spot exchange rate (yen/dollar), the domestic (US) interest rate and the foreign (Japanese) interest rate, describing the interdependence of the domestic and international financia lmarkets. Uncovered interest parity is stated as a null hypothesis that the current difference between the two interest rates is equal to the d...

  20. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors.

    Science.gov (United States)

    Gair, Jonathan R; Vallisneri, Michele; Larson, Shane L; Baker, John G

    2013-01-01

    We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10 -5 - 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  1. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors

    Directory of Open Access Journals (Sweden)

    John G. Baker

    2013-09-01

    Full Text Available We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10^{-5} – 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  2. A Panel Test of Purchasing Power Parity Under the Null of Stationarity

    OpenAIRE

    Hunter, J; Simpson, M

    2001-01-01

    Purchasing Power Parity (PPP) is tested using a sample of real exchange rate data for twelve European countries. Acknowledging that Augmented Dickey Fuller tests have low power, we apply a Panel test that considers the null of stationarity and corrects for serial dependence using a non-parametric kernel based method.

  3. Global gravitational anomalies and transport

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Subham Dutta; David, Justin R. [Centre for High Energy Physics, Indian Institute of Science,C. V. Raman Avenue, Bangalore 560012 (India)

    2016-12-21

    We investigate the constraints imposed by global gravitational anomalies on parity odd induced transport coefficients in even dimensions for theories with chiral fermions, gravitinos and self dual tensors. The η-invariant for the large diffeomorphism corresponding to the T transformation on a torus constraints the coefficients in the thermal effective action up to mod 2. We show that the result obtained for the parity odd transport for gravitinos using global anomaly matching is consistent with the direct perturbative calculation. In d=6 we see that the second Pontryagin class in the anomaly polynomial does not contribute to the η-invariant which provides a topological explanation of this observation in the ‘replacement rule’. We then perform a direct perturbative calculation for the contribution of the self dual tensor in d=6 to the parity odd transport coefficient using the Feynman rules proposed by Gaumé and Witten. The result for the transport coefficient agrees with that obtained using matching of global anomalies.

  4. Time reversal and parity tests

    International Nuclear Information System (INIS)

    Terwilliger, K.

    1975-01-01

    A recent review by Henley discusses the present status of Time Reversal and Parity symmetry violations, and comments on the implications for high energy hadron scattering. This note will briefly summarize the situation with particular attention to the sizes of possible effects, relating them to experimental accuracy available or reasonably possible at the ZGS

  5. Testing strong gravity with gravitational waves and Love numbers

    International Nuclear Information System (INIS)

    Franzin, E; Cardoso, V; Raposo, G; Pani, P

    2017-01-01

    The LIGO observation of GW150914 has inaugurated the gravitational-wave astronomy era and the possibility of testing gravity in extreme regimes. While distorted black holes are the most convincing sources of gravitational waves, similar signals might be produced also by other compact objects. In particular, we discuss what the gravitational-wave ringdown could tell us about the nature of the emitting object, and how measurements of the tidal Love numbers could help us in understanding the internal structure of compact dark objects. (paper)

  6. The Standard-Model Extension and Gravitational Tests

    Directory of Open Access Journals (Sweden)

    Jay D. Tasson

    2016-10-01

    Full Text Available The Standard-Model Extension (SME provides a comprehensive effective field-theory framework for the study of CPT and Lorentz symmetry. This work reviews the structure and philosophy of the SME and provides some intuitive examples of symmetry violation. The results of recent gravitational tests performed within the SME are summarized including analysis of results from the Laser Interferometer Gravitational-Wave Observatory (LIGO, sensitivities achieved in short-range gravity experiments, constraints from cosmic-ray data, and results achieved by studying planetary ephemerids. Some proposals and ongoing efforts will also be considered including gravimeter tests, tests of the Weak Equivalence Principle, and antimatter experiments. Our review of the above topics is augmented by several original extensions of the relevant work. We present new examples of symmetry violation in the SME and use the cosmic-ray analysis to place first-ever constraints on 81 additional operators.

  7. Why Panel Tests of Purchasing Power Parity Should Allow for Heterogeneous Mean Reversion

    NARCIS (Netherlands)

    C.G. Koedijk (Kees); B. Tims (Ben); M.A. van Dijk (Mathijs)

    2010-01-01

    textabstractAbstract Recent studies of purchasing power parity (PPP) use panel tests that fail to take into account heterogeneity in the speed of mean reversion across real exchange rates. In contrast to several other severe restrictions of panel models and tests of PPP, the assumption of

  8. Testing the Speed of Gravitational Waves over Cosmological Distances with Strong Gravitational Lensing.

    Science.gov (United States)

    Collett, Thomas E; Bacon, David

    2017-03-03

    Probing the relative speeds of gravitational waves and light acts as an important test of general relativity and alternative theories of gravity. Measuring the arrival time of gravitational waves (GWs) and electromagnetic (EM) counterparts can be used to measure the relative speeds, but only if the intrinsic time lag between emission of the photons and gravitational waves is well understood. Here we suggest a method that does not make such an assumption, using future strongly lensed GW events and EM counterparts; Biesiada et al. [J. Cosmol. Astropart. Phys.10 (2014) 080JCAPBP1475-751610.1088/1475-7516/2014/10/080] forecast that 50-100 strongly lensed GW events will be observed each year with the Einstein Telescope. A single strongly lensed GW event would produce robust constraints on c_{GW}/c_{γ} at the 10^{-7} level, if a high-energy EM counterpart is observed within the field of view of an observing γ-ray burst monitor.

  9. An improved single sensor parity space algorithm for sequential probability ratio test

    Energy Technology Data Exchange (ETDEWEB)

    Racz, A. [Hungarian Academy of Sciences, Budapest (Hungary). Atomic Energy Research Inst.

    1995-12-01

    In our paper we propose a modification of the single sensor parity algorithm in order to make the statistical properties of the generated residual determinable in advance. The algorithm is tested via computer simulated ramp failure at the temperature readings of the pressurizer. (author).

  10. Experimental tests for some quantum effects in gravitation

    International Nuclear Information System (INIS)

    Hari Dass, N.D.

    1976-01-01

    The existing impressive tests for general relativity are shown not to yield very useful information on the possible quantum gravitational interactions. The possibility is raised here that intrinsic spins may behave differently from orbital angular momenta in external gravitational fields. The dominant spin interactions are most generally characterised by three parameters α 1 , α 2 , α 3 . All the metric theories of gravitation predict α 1 = α 2 = 0. Indirect limits posed on these parameters by existing data are not very meaningful (αsub(i) 10 ). Feasible experiments based on the neutron electric dipole moment measurement techniques are discussed and shown to offer the possibility of measuring αsub(i) approximately 1. Other possible experimental set ups are also briefly reviewed. The existence of these effects is shown to imply the breakdown of the equivalence principle. In particular αsub(i)not equal 0 α 2 not equal 0 also implies the breakdown of discrete symmetries in gravitation (C.P.T.). Theoretical frameworks that accomodate such effects are analysed. A reinterpretation of Einstein's generalised gravitational theory as well as a recent theoretical proposal of Hayashi are shown to be sufficiently general for this purpose. Other important implications of these quantum effects are discussed in detail. (Auth.)

  11. The specification of cross exchange rate equations used to test Purchasing Power Parity

    OpenAIRE

    Hunter, J; Simpson, M

    2004-01-01

    The Article considers the speciÞcation of models used to test Pur- chasing Power Parity when applied to cross exchange rates. SpeciÞcally, conventional dynamic models used to test stationarity of the real exchange rate are likely to be misspeciÞed, except when the parameters of each ex- change rate equation are the same

  12. Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays

    Directory of Open Access Journals (Sweden)

    Nicolás Yunes

    2013-11-01

    Full Text Available This review is focused on tests of Einstein's theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein’s theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime. Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.

  13. Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays.

    Science.gov (United States)

    Yunes, Nicolás; Siemens, Xavier

    2013-01-01

    This review is focused on tests of Einstein's theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein's theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime . Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.

  14. Radio Ranging Techniques to test Relativistic Gravitation

    OpenAIRE

    Cowsik, R.

    1999-01-01

    It is suggested that modern techniques of radio ranging when applied to study the motion of the Moon, can improve the accuracy of tests of relativistic gravitation obtained with currently operating laser ranging techniques. Other auxillary information relevant to the Solar system would also emerge from such a study.

  15. The Influence of International Parity on the Exchange Rate: Purchasing Power Parity and International Fisher Effect

    OpenAIRE

    Oana Mionel

    2012-01-01

    This article assesses the impact of the inflation and interest rates on the exchange rates. The analysis tests the relation between the inflation rate and the exchange rate by applying the Purchasing Power Parity Theory, while the relation between the interest rate and the inflation rate is tested by applying the International Fisher Effect Theory. In order to test the Purchasing Power Parity the study takes into account the period of time between 1990 – 2009, and the following countries – th...

  16. Purchasing power parity and interest parity in the laboratory

    OpenAIRE

    Fisher, Eric O'N.

    2001-01-01

    This paper analyzes purchasing power parity and uncovered interest parity in the laboratory. It finds strong evidence that purchasing power parity, covered interest parity, and uncovered interest parity hold. Subjects are endowed with an intrinsically useless (green) currency that can be used to purchase another useless (red) currency. Green goods can be bought only with green currency, and red goods can be bought only with red currency. The foreign exchange markets are organized as call mark...

  17. Testing Fundamental Gravitation in Space

    Energy Technology Data Exchange (ETDEWEB)

    Turyshev, Slava G.

    2013-10-15

    General theory of relativity is a standard theory of gravitation; as such, it is used to describe gravity when the problems in astronomy, astrophysics, cosmology, and fundamental physics are concerned. The theory is also relied upon in many modern applications involving spacecraft navigation, geodesy, and time transfer. Here we review the foundations of general relativity and discuss its current empirical status. We describe both the theoretical motivation and the scientific progress that may result from the new generation of high-precision tests that are anticipated in the near future.

  18. Test of parity and time reversal invariance with low energy polarized neutrons

    International Nuclear Information System (INIS)

    Masaike, Akira

    1996-01-01

    Measurements of helicity asymmetries in slow neutron reactions on nuclei have been performed by transmission and capture γ-ray detection. Large enhancements of parity-violation effects have been observed on p-wave resonances of various medium and heavy nuclei. The weak matrix elements in hadron reactions have been deduced from these experimental results. Neutron spin precession near the p-wave resonance has been measured. In recent years violation of time reversal invariance is being searched for in the neutron reactions in which large enhancements of the parity violation effects have been observed. The measurement of the term σ n ·(k n x I) in a neutron reaction using polarized neutrons and a polarized target is an example of the test of T-violation. Polarizations of the neutron and lanthanum nucleus for these experiments are also presented. (author)

  19. Black-hole spectroscopy: testing general relativity through gravitational-wave observations

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, Olaf [Perimeter Institute of Theoretical Physics, 35 King Street North, Waterloo, Ontario, N2J 2G9 (Canada); Kelly, Bernard [Center for Gravitational Wave Physics, Center for Gravitational Physics and Geometry and Department of Physics, 104 Davey Laboratory, University Park, PA 16802 (United States); Krishnan, Badri [Max Planck Institut fuer Gravitationsphysik, Am Muehlenberg 1, D-14476 Golm (Germany); Finn, Lee Samuel [Center for Gravitational Wave Physics, Center for Gravitational Physics and Geometry, Department of Physics and Department of Astronomy and Astrophysics, 104 Davey Laboratory, University Park, PA 16802 (United States); Garrison, David [University of Houston, Clear Lake, 2700 Bay Area Bvd, Room 3531-2, Houston, TX 77058 (United States); Lopez-Aleman, Ramon [Physical Sciences Department, University of Puerto Rico, Rio Piedras Campus, Rio Piedras, Puerto Rico 00931 (Puerto Rico)

    2004-02-21

    Assuming that general relativity is the correct theory of gravity in the strong-field limit, can gravitational-wave observations distinguish between black holes and other compact object sources? Alternatively, can gravitational-wave observations provide a test of one of the fundamental predictions of general relativity: the no-hair theorem? Here we describe a definitive test of the hypothesis that observations of damped, sinusoidal gravitational waves originate from a black hole or, alternatively, that nature respects the general relativistic no-hair theorem. For astrophysical black holes, which have a negligible charge-to-mass ratio, the black-hole quasi-normal mode spectrum is characterized entirely by the black-hole mass and angular momentum and is unique to black holes. In a different theory of gravity, or if the observed radiation arises from a different source (e.g., a neutron star, strange matter or boson star), the spectrum will be inconsistent with that predicted for general relativistic black holes. We give a statistical characterization of the consistency between the noisy observation and the theoretical predictions of general relativity and a demonstration, through simulation, of the effectiveness of the test for strong sources.

  20. Black-hole spectroscopy: testing general relativity through gravitational-wave observations

    International Nuclear Information System (INIS)

    Dreyer, Olaf; Kelly, Bernard; Krishnan, Badri; Finn, Lee Samuel; Garrison, David; Lopez-Aleman, Ramon

    2004-01-01

    Assuming that general relativity is the correct theory of gravity in the strong-field limit, can gravitational-wave observations distinguish between black holes and other compact object sources? Alternatively, can gravitational-wave observations provide a test of one of the fundamental predictions of general relativity: the no-hair theorem? Here we describe a definitive test of the hypothesis that observations of damped, sinusoidal gravitational waves originate from a black hole or, alternatively, that nature respects the general relativistic no-hair theorem. For astrophysical black holes, which have a negligible charge-to-mass ratio, the black-hole quasi-normal mode spectrum is characterized entirely by the black-hole mass and angular momentum and is unique to black holes. In a different theory of gravity, or if the observed radiation arises from a different source (e.g., a neutron star, strange matter or boson star), the spectrum will be inconsistent with that predicted for general relativistic black holes. We give a statistical characterization of the consistency between the noisy observation and the theoretical predictions of general relativity and a demonstration, through simulation, of the effectiveness of the test for strong sources

  1. Parity non-conservation in atoms

    International Nuclear Information System (INIS)

    Barkov, L.M.

    1982-01-01

    The parity non-conservation discovered in particle physics in 1959 has consequences on the behaviour of atoms illuminated by light of circular polarization. The theoretical treatments of this topic and recent experimental test of detecting the effects of parity non-conservation on atomic physics are listed, reviewed and illustrated. The main experimental results and limits are summarized. Proposed future experiments are discussed. (D.Gy.)

  2. Cosmological tests of a scale covariant theory of gravitation

    International Nuclear Information System (INIS)

    Owen, J.R.

    1979-01-01

    The Friedmann models with #betta# = 0 are subjected to several optical and radio tests within the standard and scale covariant theories of gravitation. Within standard cosmology, both interferometric and scintillation data are interpreted in terms of selection effects and evolution. Within the context of scale covariant cosmology are derived: (1) the full solution to Einstein's gravitational equations in atomic units for a matter dominated universe, (2) the study of the magnitude vs. redshift relation for elliptical galaxies, (3) the derivation of the evolutionary parameter used in (2), (4) the isophotal angular diameter vs. redshift relation, (5) the metric angular diameter vs. redshift relation, (6) the N(m) vs. magnitude relation for QSO's and their m vs z relation, and finally (7) the integrated and differential expressions for the number count vs. radio flux test. The results, both in graphical and tabular form, are presented for four gauges (i.e. parametrized relations between atomic and gravitational units). No contradiction between the new theory and the data is found with any of the tests studied. For some gauges, which are suggested by a recent analysis of the time variation of the Moon's period which is discussed in the text in terms of the new theory, the effect of the deceleration parameter on cosmological predictions is enhanced over standard cosmology and it is possible to say that the data are more easily reconciled with an open universe. Within the same gauge, the main features of both the N(m) vs. m and m-z test are accounted for by the same simple evolutionary parametrization whereas different evolutionary rates were indicated by interpretation within standard cosmology. The same consistency, lacking in standard cosmology on this level of analysis, is achieved for the integrated and differential number count - radio flux tests within the same gauge

  3. Solar-System Tests of Gravitational Theories

    Science.gov (United States)

    Shapiro, Irwin

    1997-01-01

    We are engaged in testing gravitational theory by means of observations of objects in the solar system. These tests include an examination of the Principle Of Equivalence (POE), the Shapiro delay, the advances of planetary perihelia, the possibility of a secular variation G in the "gravitational constant" G, and the rate of the de Sitter (geodetic) precession of the Earth-Moon system. These results are consistent with our preliminary results focusing on the contribution of Lunar Laser Ranging (LLR), which were presented at the seventh Marcel Grossmann meeting on general relativity. The largest improvement over previous results comes in the uncertainty for (eta): a factor of five better than our previous value. This improvement reflects the increasing strength of the LLR data. A similar analysis presented at the same meeting by a group at the Jet Propulsion Laboratory gave a similar result for (eta). Our value for (beta) represents our first such result determined simultaneously with the solar quadrupole moment from the dynamical data set. These results are being prepared for publication. We have shown how positions determined from different planetary ephemerides can be compared and how the combination of VLBI and pulse timing information can yield a direct tie between planetary and radio frames. We have continued to include new data in our analysis as they became available. Finally, we have made improvement in our analysis software (PEP) and ported it to a network of modern workstations from its former home on a "mainframe" computer.

  4. Gravitational quadrupolar coupling to equivalence principle test masses: the general case

    International Nuclear Information System (INIS)

    Lockerbie, N A

    2002-01-01

    This paper discusses the significance of the quadrupolar gravitational force in the context of test masses destined for use in equivalence principle (EP) experiments, such as STEP and MICROSCOPE. The relationship between quadrupolar gravity and rotational inertia for an arbitrary body is analysed, and the special, gravitational, role of a body's principal axes of inertia is revealed. From these considerations the gravitational quadrupolar force acting on a cylindrically symmetrical body, due to a point-like attracting source mass, is derived in terms of the body's mass quadrupole tensor. The result is shown to be in agreement with that obtained from MacCullagh's formula (as the starting point). The theory is then extended to cover the case of a completely arbitrary solid body, and a compact formulation for the quadrupolar force on such a body is derived. A numerical example of a dumb-bell's attraction to a local point-like gravitational source is analysed using this theory. Close agreement is found between the resulting quadrupolar force on the body and the difference between the net and the monopolar forces acting on it, underscoring the utility of the approach. A dynamical technique for experimentally obtaining the mass quadrupole tensors of EP test masses is discussed, and a means of validating the results is noted

  5. Test of the law of gravitation at small accelerations

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, H. [Wuppertal Univ. (Germany); Lohrmann, E.; Schubert, S. [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Bartel, W.; Glazov, A.; Loehr, B.; Niebuhr, C.; Wuensch, E. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Joensson, L.; Kempf, G. [Lund Univ. (Sweden)

    2011-12-15

    Newton's Law of Gravitation has been tested at small values a of the acceleration, down to a {approx}10{sup -10} ms{sup -2}, the approximate value of MOND's constant a{sub 0}. No deviations were found. (orig.)

  6. Gravitational quadrupolar coupling to equivalence principle test masses: the general case

    CERN Document Server

    Lockerbie, N A

    2002-01-01

    This paper discusses the significance of the quadrupolar gravitational force in the context of test masses destined for use in equivalence principle (EP) experiments, such as STEP and MICROSCOPE. The relationship between quadrupolar gravity and rotational inertia for an arbitrary body is analysed, and the special, gravitational, role of a body's principal axes of inertia is revealed. From these considerations the gravitational quadrupolar force acting on a cylindrically symmetrical body, due to a point-like attracting source mass, is derived in terms of the body's mass quadrupole tensor. The result is shown to be in agreement with that obtained from MacCullagh's formula (as the starting point). The theory is then extended to cover the case of a completely arbitrary solid body, and a compact formulation for the quadrupolar force on such a body is derived. A numerical example of a dumb-bell's attraction to a local point-like gravitational source is analysed using this theory. Close agreement is found between th...

  7. The parity-preserving massive QED3: Vanishing β-function and no parity anomaly

    Directory of Open Access Journals (Sweden)

    O.M. Del Cima

    2015-11-01

    Full Text Available The parity-preserving massive QED3 exhibits vanishing gauge coupling β-function and is parity and infrared anomaly free at all orders in perturbation theory. Parity is not an anomalous symmetry, even for the parity-preserving massive QED3, in spite of some claims about the possibility of a perturbative parity breakdown, called parity anomaly. The proof is done by using the algebraic renormalization method, which is independent of any regularization scheme, based on general theorems of perturbative quantum field theory.

  8. Parity violation in the nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1989-01-01

    I discuss the present status of our understanding of parity nonconservation (PNC) in the nucleon-nucleon interaction, and some of the difficulties inherent in nuclear tests of PNC. I also discuss the nucleon/nuclear anapole moment, the parity violating coupling of the photon, and its relation to the PNC NN interaction. 13 refs., 1 fig., 2 tabs

  9. An experimental test of Newton's law of gravitation for small accelerations

    International Nuclear Information System (INIS)

    Schubert, Sven

    2011-10-01

    The experiment presented in this thesis has been designed to test Newton's law of gravitation in the limit of small accelerations caused by weak gravitational forces. It is located at DESY, Hamburg, and is a modification of an experiment that was carried out in Wuppertal, Germany, until 2002 in order to measure the gravitational constant G. The idea of testing Newton's law in the case of small accelerations emerged from the question whether the flat rotation curves of spiral galaxies can be traced back to Dark Matter or to a law of gravitation that deviates from Newton on cosmic scales like e.g. MOND (Modified Newtonian Dynamics). The core of this experiment is a microwave resonator which is formed by two spherical concave mirrors that are suspended as pendulums. Masses between 1 and 9 kg symmetrically change their distance to the mirrors from far to near positions. Due to the increased gravitational force the mirrors are pulled apart and the length of the resonator increases. This causes a shift of the resonance frequency which can be translated into a shift of the mirror distance. The small masses are sources of weak gravitational forces and cause accelerations on the mirrors of about 10 -10 m/s 2 . These forces are comparable to those between stars on cosmic scales and the accelerations are in the vicinity of the characteristic acceleration of MOND a 0 ∼ 1.2.10 -10 m/s 2 , where deviations from Newton's law are expected. Thus Newton's law could be directly checked for correctness under these conditions. First measurements show that due to the sensitivity of this experiment many systematic influences have to be accounted for in order to get consistent results. Newton's law has been confirmed with an accuracy of 3%. MOND has also been checked. In order to be able to distinguish Newton from MOND with other interpolation functions the accuracy of the experiment has to be improved. (orig.)

  10. Res-Parity: Parity Violation in Inelastic scattering at Low Q2

    International Nuclear Information System (INIS)

    Paul Reimer; Peter Bosted; John Arrington; Hamlet Mkrtchyan; Xiaochao Zheng

    2006-01-01

    Parity violating electron scattering has become a well established tool which has been used, for example, to probe the Standard Model and the strange-quark contribution to the nucleon. While much of this work has focused on elastic scattering, the RES-Parity experiment, which has been proposed to take place at Jefferson Laboratory, would focus on inelastic scattering in the low-Q 2 , low-W domain. RES-Parity would search for evidence of quark-hadron duality and resonance structure with parity violation in the resonance region. In terms of parity violation, this region is essentially unexplored, but the interpretation of other high-precision electron scattering experiments will rely on a reasonable understanding of scattering at lower energy and low-W through the effects of radiative corrections. RES-Parity would also study nuclear effects with the weak current. Because of the intrinsic broad band energy spectrum of neutrino beams, neutrino experiments are necessarily dependent on an untested, implicit assumption that these effects are identical to electromagnetic nuclear effects. RES-Parity is a relatively straight forward experiment. With a large expected asymmetry (∼ 0.5 x 10 -4 ) these studies may be completed with in a relatively brief period

  11. On the possibility of a fourth test of general relativity in earth's gravitational field

    International Nuclear Information System (INIS)

    Zhang Yuan-zhong.

    1981-03-01

    In the paper the possibility for a fourth test of general relativity (i.e. relativistic time delay) in Earth's gravitational field is discussed. The effects of Earth's gravitational field on an interferometer and a resonant cavity are calculated by means of both two definitions of physical length. (author)

  12. Effect of the Earth's gravitational field on the detection of gravitational waves

    International Nuclear Information System (INIS)

    Denisov, V.I.; Eliseev, V.A.

    1988-01-01

    We consider the laboratory detection of high-frequency gravitational waves in theories of gravitation based on a pseudo-Euclidean space-time. We analyze the effects due to the Earth's gravitational field on the propagation velocities of gravitational and electromagnetic waves in these theories. Experiments to test the predictions of this class of theories are discussed

  13. Measuring test mass acceleration noise in space-based gravitational wave astronomy

    Science.gov (United States)

    Congedo, Giuseppe

    2015-03-01

    The basic constituent of interferometric gravitational wave detectors—the test-mass-to-test-mass interferometric link—behaves as a differential dynamometer measuring effective differential forces, comprising an integrated measure of gravity curvature, inertial effects, as well as nongravitational spurious forces. This last contribution is going to be characterized by the LISA Pathfinder mission, a technology precursor of future space-borne detectors like eLISA. Changing the perspective from displacement to acceleration can benefit the data analysis of LISA Pathfinder and future detectors. The response in differential acceleration to gravitational waves is derived for a space-based detector's interferometric link. The acceleration formalism can also be integrated into time delay interferometry by building up the unequal-arm Michelson differential acceleration combination. The differential acceleration is nominally insensitive to the system's free evolution dominating the slow displacement dynamics of low-frequency detectors. Working with acceleration also provides an effective way to subtract measured signals acting as systematics, including the actuation forces. Because of the strong similarity with the equations of motion, the optimal subtraction of systematic signals, known within some amplitude and time shift, with the focus on measuring the noise provides an effective way to solve the problem and marginalize over nuisance parameters. The F statistic, in widespread use throughout the gravitation waves community, is included in the method and suitably generalized to marginalize over linear parameters and noise at the same time. The method is applied to LPF simulator data and, thanks to its generality, can also be applied to the data reduction and analysis of future gravitational wave detectors.

  14. Purchasing Power Parity in Transition Countries: Panel Stationary Test with Smooth and Sharp Breaks

    Directory of Open Access Journals (Sweden)

    Mohsen Bahmani-Oskooee

    2015-05-01

    Full Text Available This study examines whether the long-run purchasing power parity (PPP holds in transition economies (Bulgaria, the Czech Republic, Hungary, Latvia, Lithuania, Poland, Romania and Russia using monthly data over the 1995–2011 period. We apply a recently introduced panel stationary test, which accounts for sharp breaks and smooth shifts. The results indicate that the PPP holds only in two countries (i.e., Lithuania and Poland.

  15. Does an atom interferometer test the gravitational redshift at the Compton frequency?

    International Nuclear Information System (INIS)

    Wolf, Peter; Borde, Christian J; Blanchet, Luc; Reynaud, Serge; Salomon, Christophe; Cohen-Tannoudji, Claude

    2011-01-01

    Atom interferometers allow the measurement of the acceleration of freely falling atoms with respect to an experimental platform at rest on Earth's surface. Such experiments have been used to test the universality of free fall by comparing the acceleration of the atoms to that of a classical freely falling object. In a recent paper, Mueller et al (2010 Nature 463 926-9) argued that atom interferometers also provide a very accurate test of the gravitational redshift (or universality of clock rates). Considering the atom as a clock operating at the Compton frequency associated with the rest mass, they claimed that the interferometer measures the gravitational redshift between the atom-clocks in the two paths of the interferometer at different values of gravitational potentials. In this paper, we analyze this claim in the frame of general relativity and of different alternative theories. We show that the difference of 'Compton phases' between the two paths of the interferometer is actually zero in a large class of theories, including general relativity, all metric theories of gravity, most non-metric theories and most theoretical frameworks used to interpret the violations of the equivalence principle. Therefore, in most plausible theoretical frameworks, there is no redshift effect and atom interferometers only test the universality of free fall. We also show that frameworks in which atom interferometers would test the redshift pose serious problems, such as (i) violation of the Schiff conjecture, (ii) violation of the Feynman path integral formulation of quantum mechanics and of the principle of least action for matter waves, (iii) violation of energy conservation, and more generally (iv) violation of the particle-wave duality in quantum mechanics. Standard quantum mechanics is no longer valid in such frameworks, so that a consistent interpretation of the experiment would require an alternative formulation of quantum mechanics. As such an alternative has not been

  16. Parity mixing

    International Nuclear Information System (INIS)

    Adelberger, E.G.

    1975-01-01

    The field of parity mixing in light nuclei bears upon one of the exciting and active problems of physics--the nature of the fundamental weak interaction. It is also a subject where polarization techniques play a very important role. Weak interaction theory is first reviewed to motivate the parity mixing experiments. Two very attractive systems are discussed where the nuclear physics is so beautifully simple that the experimental observation of tiny effects directly measures parity violating (PV) nuclear matrix elements which are quite sensitive to the form of the basic weak interaction. Since the measurement of very small analyzing powers and polarizations may be of general interest to this conference, some discussion is devoted to experimental techniques

  17. Theory and experiment in gravitational physics

    Science.gov (United States)

    Will, C. M.

    New technological advances have made it feasible to conduct measurements with precision levels which are suitable for experimental tests of the theory of general relativity. This book has been designed to fill a new need for a complete treatment of techniques for analyzing gravitation theory and experience. The Einstein equivalence principle and the foundations of gravitation theory are considered, taking into account the Dicke framework, basic criteria for the viability of a gravitation theory, experimental tests of the Einstein equivalence principle, Schiff's conjecture, and a model theory devised by Lightman and Lee (1973). Gravitation as a geometric phenomenon is considered along with the parametrized post-Newtonian formalism, the classical tests, tests of the strong equivalence principle, gravitational radiation as a tool for testing relativistic gravity, the binary pulsar, and cosmological tests.

  18. Testing the gravitational inverse-square law

    International Nuclear Information System (INIS)

    Adelberger, Eric; Heckel, B.; Hoyle, C.D.

    2005-01-01

    If the universe contains more than three spatial dimensions, as many physicists believe, our current laws of gravity should break down at small distances. When Isaac Newton realized that the acceleration of the Moon as it orbited around the Earth could be related to the acceleration of an apple as it fell to the ground, it was the first time that two seemingly unrelated physical phenomena had been 'unified'. The quest to unify all the forces of nature is one that still keeps physicists busy today. Newton showed that the gravitational attraction between two point bodies is proportional to the product of their masses and inversely proportional to the square of the distance between them. Newton's theory, which assumes that the gravitational force acts instantaneously, remained essentially unchallenged for roughly two centuries until Einstein proposed the general theory of relativity in 1915. Einstein's radical new theory made gravity consistent with the two basic ideas of relativity: the world is 4D - the three directions of space combined with time - and no physical effect can travel faster than light. The theory of general relativity states that gravity is not a force in the usual sense but a consequence of the curvature of this space-time produced by mass or energy. However, in the limit of low velocities and weak gravitational fields, Einstein's theory still predicts that the gravitational force between two point objects obeys an inverse-square law. One of the outstanding challenges in physics is to finish what Newton started and achieve the ultimate 'grand unification' - to unify gravity with the other three fundamental forces (the electromagnetic force, and the strong and weak nuclear forces) into a single quantum theory. In string theory - one of the leading candidates for an ultimate theory - the fundamental entities of nature are 1D strings and higher-dimensional objects called 'branes', rather than the point-like particles we are familiar with. String

  19. R-parity violating supersymmetry

    CERN Document Server

    Barbier, R.; Besancon, M.; Chemtob, M.; Deandrea, A.; Dudas, E.; Fayet, Pierre; Lavignac, S.; Moreau, G.; Perez, E.; Sirois, Y.

    2004-01-01

    The possible appearance of R-parity violating couplings, and hence implicitly the question of lepton and baryon number conservation, has been emphasised since the early development of supersymmetric theories. The rich phenomenology implied by R-parity violation has now gained full attention in the search for supersymmetry. In this review, theoretical and phenomenological implications of R-parity violation in supersymmetric theories are discussed, in relation with particle and astroparticle physics. Fundamental aspects include the relation with continuous and discrete symmetries, up to more recent developments on the Abelian family symmetries and hierarchy of R-parity violating couplings. The question of the generation of the standard model neutrino masses and mixings is presented. The possible contributions of R-parity violating Yukawa couplings in processes involving virtual supersymmetric particles and the resulting constraints are reviewed. Finally, a survey of the direct production of supersymmetric parti...

  20. THE THIRD GRAVITATIONAL LENSING ACCURACY TESTING (GREAT3) CHALLENGE HANDBOOK

    International Nuclear Information System (INIS)

    Mandelbaum, Rachel; Kannawadi, Arun; Simet, Melanie; Rowe, Barnaby; Kacprzak, Tomasz; Bosch, James; Miyatake, Hironao; Chang, Chihway; Gill, Mandeep; Courbin, Frederic; Jarvis, Mike; Armstrong, Bob; Lackner, Claire; Leauthaud, Alexie; Nakajima, Reiko; Rhodes, Jason; Zuntz, Joe; Bridle, Sarah; Coupon, Jean; Dietrich, Jörg P.

    2014-01-01

    The GRavitational lEnsing Accuracy Testing 3 (GREAT3) challenge is the third in a series of image analysis challenges, with a goal of testing and facilitating the development of methods for analyzing astronomical images that will be used to measure weak gravitational lensing. This measurement requires extremely precise estimation of very small galaxy shape distortions, in the presence of far larger intrinsic galaxy shapes and distortions due to the blurring kernel caused by the atmosphere, telescope optics, and instrumental effects. The GREAT3 challenge is posed to the astronomy, machine learning, and statistics communities, and includes tests of three specific effects that are of immediate relevance to upcoming weak lensing surveys, two of which have never been tested in a community challenge before. These effects include many novel aspects including realistically complex galaxy models based on high-resolution imaging from space; a spatially varying, physically motivated blurring kernel; and a combination of multiple different exposures. To facilitate entry by people new to the field, and for use as a diagnostic tool, the simulation software for the challenge is publicly available, though the exact parameters used for the challenge are blinded. Sample scripts to analyze the challenge data using existing methods will also be provided. See http://great3challenge.info and http://great3.projects.phys.ucl.ac.uk/leaderboard/ for more information

  1. Anomalous cosmic-microwave-background polarization and gravitational chirality.

    Science.gov (United States)

    Contaldi, Carlo R; Magueijo, João; Smolin, Lee

    2008-10-03

    We consider the possibility that gravity breaks parity, with left and right-handed gravitons coupling to matter with a different Newton's constant and show that this would affect their zero-point vacuum fluctuations during inflation. Should there be a cosmic background of gravity waves, the effect would translate into anomalous cosmic microwave background polarization. Nonvanishing temperature-magnetic (TB) mode [and electric-magnetic mode] components emerge, revealing interesting experimental targets. Indeed, if reasonable chirality is present a TB measurement would provide the easiest way to detect a gravitational wave background. We speculate on the theoretical implications of such an observation.

  2. An experimental test of Newton's law of gravitation for small accelerations

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Sven

    2011-10-15

    The experiment presented in this thesis has been designed to test Newton's law of gravitation in the limit of small accelerations caused by weak gravitational forces. It is located at DESY, Hamburg, and is a modification of an experiment that was carried out in Wuppertal, Germany, until 2002 in order to measure the gravitational constant G. The idea of testing Newton's law in the case of small accelerations emerged from the question whether the flat rotation curves of spiral galaxies can be traced back to Dark Matter or to a law of gravitation that deviates from Newton on cosmic scales like e.g. MOND (Modified Newtonian Dynamics). The core of this experiment is a microwave resonator which is formed by two spherical concave mirrors that are suspended as pendulums. Masses between 1 and 9 kg symmetrically change their distance to the mirrors from far to near positions. Due to the increased gravitational force the mirrors are pulled apart and the length of the resonator increases. This causes a shift of the resonance frequency which can be translated into a shift of the mirror distance. The small masses are sources of weak gravitational forces and cause accelerations on the mirrors of about 10{sup -10} m/s{sup 2}. These forces are comparable to those between stars on cosmic scales and the accelerations are in the vicinity of the characteristic acceleration of MOND a{sub 0} {approx} 1.2.10{sup -10} m/s{sup 2}, where deviations from Newton's law are expected. Thus Newton's law could be directly checked for correctness under these conditions. First measurements show that due to the sensitivity of this experiment many systematic influences have to be accounted for in order to get consistent results. Newton's law has been confirmed with an accuracy of 3%. MOND has also been checked. In order to be able to distinguish Newton from MOND with other interpolation functions the accuracy of the experiment has to be improved. (orig.)

  3. Parity horizons in shape dynamics

    International Nuclear Information System (INIS)

    Herczeg, Gabriel

    2016-01-01

    I introduce the notion of a parity horizon, and show that many simple solutions of shape dynamics possess them. I show that the event horizons of the known asymptotically flat black hole solutions of shape dynamics are parity horizons and that this notion of parity implies that these horizons possess a notion of CPT invariance that can in some cases be extended to the solution as a whole. I present three new solutions of shape dynamics with parity horizons and find that not only do event horizons become parity horizons in shape dynamics, but observer-dependent horizons and Cauchy horizons do as well. The fact that Cauchy horizons become (singular) parity horizons suggests a general chronology protection mechanism in shape dynamics that prevents the formation of closed timelike curves. (paper)

  4. Mental Health Insurance Parity and Provider Wages.

    Science.gov (United States)

    Golberstein, Ezra; Busch, Susan H

    2017-06-01

    Policymakers frequently mandate that employers or insurers provide insurance benefits deemed to be critical to individuals' well-being. However, in the presence of private market imperfections, mandates that increase demand for a service can lead to price increases for that service, without necessarily affecting the quantity being supplied. We test this idea empirically by looking at mental health parity mandates. This study evaluated whether implementation of parity laws was associated with changes in mental health provider wages. Quasi-experimental analysis of average wages by state and year for six mental health care-related occupations were considered: Clinical, Counseling, and School Psychologists; Substance Abuse and Behavioral Disorder Counselors; Marriage and Family Therapists; Mental Health Counselors; Mental Health and Substance Abuse Social Workers; and Psychiatrists. Data from 1999-2013 were used to estimate the association between the implementation of state mental health parity laws and the Paul Wellstone and Pete Domenici Mental Health Parity and Addiction Equity Act and average mental health provider wages. Mental health parity laws were associated with a significant increase in mental health care provider wages controlling for changes in mental health provider wages in states not exposed to parity (3.5 percent [95% CI: 0.3%, 6.6%]; pwages. Health insurance benefit expansions may lead to increased prices for health services when the private market that supplies the service is imperfect or constrained. In the context of mental health parity, this work suggests that part of the value of expanding insurance benefits for mental health coverage was captured by providers. Given historically low wage levels of mental health providers, this increase may be a first step in bringing mental health provider wages in line with parallel health professions, potentially reducing turnover rates and improving treatment quality.

  5. Testing fundamental physics with gravitational waves

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The landmark detection of gravitational waves (GWs) has opened a new era in physics, giving access to the hitherto unexplored strong-gravity regime, where spacetime curvature is extreme and the relevant speed is close to the speed of light. In parallel to its countless astrophysical applications, this discovery can have also important implications for fundamental physics. In this context, I will discuss some outstanding, cross-cutting problems that can be finally investigated in the GW era: the nature of black holes and of spacetime singularities, the limits of classical gravity, the existence of extra light fields, and the effects of dark matter near compact objects. Future GW measurements will provide unparalleled tests of quantum-gravity effects at the horizon scale, exotic compact objects, ultralight dark matter, and of general relativity in the strong-field regime.

  6. Tests of the gravitational redshift effect in space-born and ground-based experiments

    Science.gov (United States)

    Vavilova, I. B.

    2018-02-01

    This paper provides a brief overview of experiments as concerns with the tests of the gravitational redshift (GRS) effect in ground-based and space-born experiments. In particular, we consider the GRS effects in the gravitational field of the Earth, the major planets of the Solar system, compact stars (white dwarfs and neutron stars) where this effect is confirmed with a higher accuracy. We discuss availabilities to confirm the GRS effect for galaxies and galaxy clusters in visible and X-ray ranges of the electromagnetic spectrum.

  7. Purchasing Power Parity and Heterogeneous Mean Reversion

    NARCIS (Netherlands)

    C.G. Koedijk (Kees); B. Tims (Ben); M.A. van Dijk (Mathijs)

    2005-01-01

    textabstractThis paper analyzes the properties of multivariate tests of purchasing power parity (PPP) that fail to take heterogeneity in the speed of mean reversion across real exchange rates into account. We compare the performance of homogeneous and heterogeneous unit root testing methodologies.

  8. Gravitational wave generation by stellar core collapse

    International Nuclear Information System (INIS)

    Moore, T.A.

    1981-01-01

    Stars which have masses greater than 5 to 8 solar masses are thought to undergo a stage of catastrophic core collapse and subsequent supernova explosion at the end of their lives. If the core is not spherically symmetric, the bounce which halts its collapse at transnuclear densities will generate a pulse of gravitational waves. This thesis presents a fully relativistic model of core collapse which treats deviations from spherical symmetry as small perturbations on a spherical background. This model may be used to predict qualitative and quantitative features of the gravitational radiation emitted by stellar cores with odd-parity, axisymmetric fluid perturbations, and represents a first step in the application of perturbative methods to more general asymmetries. The first chapter reviews the present consensus on the physics of core collapse and outlines the important features, assumptions, and limitations of the model. A series of model runs are presented and discussed. Finally, several proposals for future research are presented. Subsequent chapters explore in detail the mathematical features of the present model and its realization on the computer

  9. Permutation parity machines for neural synchronization

    International Nuclear Information System (INIS)

    Reyes, O M; Kopitzke, I; Zimmermann, K-H

    2009-01-01

    Synchronization of neural networks has been studied in recent years as an alternative to cryptographic applications such as the realization of symmetric key exchange protocols. This paper presents a first view of the so-called permutation parity machine, an artificial neural network proposed as a binary variant of the tree parity machine. The dynamics of the synchronization process by mutual learning between permutation parity machines is analytically studied and the results are compared with those of tree parity machines. It will turn out that for neural synchronization, permutation parity machines form a viable alternative to tree parity machines

  10. Fall of parity

    International Nuclear Information System (INIS)

    Forman, P.

    1982-01-01

    The historical background behind the discovery of the violation of parity by T. D. Lee and [N. Yand is described. The experimental techniques used by Chien-Shiung Wu, Ernst Ambler, and their collaborators at the Cryogenic Physics Laboratory of the NBS to first demonstrate the violation of parity are also described

  11. The gravitational-optical methods for examination of the hypothesis about galaxies and antigalaxies in the Universe

    Science.gov (United States)

    Gribov, I. A.; Trigger, S. A.

    2018-01-01

    The optical-gravitational methods for distinction between photons and antiphotons (galaxies, emitting photons and antigalaxies, emitting antiphotons) in the proposed hypothesis of totally gravitationally neutral (TGN)-Universe are considered. These methods are based on the extension of the earlier proposed the gravitationally neutral Universe concept, including now gravitational neutrality of vacuum. This concept contains (i) enlarged unbroken baryon-like, charge, parity and time and full ±M gr gravitational symmetries between all massive elementary particles-antiparticles, including (ia) ordinary matter (OM)-ordinary antimatter (OAM), (ib) dark matter (DM)-dark antimatter (DAM) and (ii) the resulting gravitational repulsion between equally presented (OM+DM)-galactic and (OAM+DAM)-antigalactic clusters, what spatially isolates and preserves their mutual annihilations in the large-scale TGN-Universe. It is assumed the gravitational balance not only between positive and negative gravitational masses of elementary particles and antiparticles, but also between all massless fields of the quantum field theory (QFT), including the opposite gravitational properties of photons and antiphotons, etc, realizing the totally gravitationally neutral vacuum in the QFT. These photons and antiphotons could be distinguishable optically-gravitationally, if one can observe a massive, deviating OM-star or a deviating (OM+DM)-galaxy from our galactic group, moving fast enough on the heavenly sphere, crossing the line directed to spatially separated far-remote galactic clusters (with the visible OM-markers, emitting photons) or antigalactic cluster (with the visible OAM-markers, emitting antiphotons). The deviations and gravitational microlensing with temporarily increased or decreased brightness of their OM and OAM rays will be opposite, indicating the galaxies and antigalaxies in the Universe.

  12. Empirical investigation of purchasing power parity for Turkey: Evidence from recent nonlinear unit root tests

    Directory of Open Access Journals (Sweden)

    Dilem Yıldırım

    2017-06-01

    Full Text Available This study explores the empirical validity of the purchasing power parity (PPP hypothesis between Turkey and its four major trading partners, the European Union, Russia, China and the US. Accounting for the nonlinear nature of real exchange rates, we employ a battery of recently developed nonlinear unit root tests. Our empirical results reveal that nonlinear unit root tests deliver stronger evidence in favour of the PPP hypothesis when compared to the conventional unit root tests only if nonlinearities in real exchange rates are correctly specified. Furthermore, it emerges from our findings that the real exchange rates of the countries having a free trade agreement are more likely to behave as linear stationary processes.

  13. Holographic entanglement entropy for gravitational anomaly in four dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Tibra [Perimeter Institute for Theoretical Physics, 31 Caroline Street N., Waterloo, ON N2L 2Y5 (Canada); Haque, S. Shajidul [Laboratory for Quantum Gravity & Strings, Department of Mathematics & Applied Mathematics,University of Cape Town, Mathematics Building, Rondebosch, Cape Town, 7700 (South Africa); Murugan, Jeff [Laboratory for Quantum Gravity & Strings, Department of Mathematics & Applied Mathematics,University of Cape Town, Mathematics Building, Rondebosch, Cape Town, 7700 (South Africa); School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr., Princeton, NJ 08540 (United States)

    2017-03-15

    We compute the holographic entanglement entropy for the anomaly polynomial TrR{sup 2} in 3+1 dimensions. Using the perturbative method developed for computing entanglement entropy for quantum field theories, we also compute the parity odd contribution to the entanglement entropy of the dual field theory that comes from a background gravitational Chern-Simons term. We find that, in leading order in the perturbation of the background geometry, the two contributions match except for a logarithmic divergent term on the field theory side. We interpret this extra contribution as encoding our ignorance of the source which creates the perturbation of the geometry.

  14. The confrontation between gravitation theory and experiment

    International Nuclear Information System (INIS)

    Will, C.M.

    1979-01-01

    After an introductory section, an analysis is given of the foundations of gravitation theory - principles of equivalence, the fundamental criteria for the viability of a gravitational theory, and the experiments that support those criteria. One of the principal conclusions is that the correct, viable theory of gravity must in all probability be a 'metric' theory. Attention is focussed on solar-system tests, using a 'theory of theories' known as the parametrized post-Newtonian formalism that encompasses most metric theories of gravity and that is ideally suited to the solar-system arena. Gravitational radiation is discussed as a possible tool for testing gravitational theory. The binary pulsar, a new , 'stellar-system' testing ground is studied. Tests of gravitation theory in a cosmic arena are described. (U.K.)

  15. Testing for the validity of purchasing power parity theory both in the long-run and the short-run for ASEAN-5

    Science.gov (United States)

    Choji, Niri Martha; Sek, Siok Kun

    2017-11-01

    The purchasing power parity theory says that the trade rates among two nations ought to be equivalent to the proportion of the total price levels between the two nations. For more than a decade, there has been substantial interest in testing for the validity of the Purchasing Power Parity (PPP) empirically. This paper performs a series of tests to see if PPP is valid for ASEAN-5 nations for the period of 2000-2016 using monthly data. For this purpose, we conducted four different tests of stationarity, two cointegration tests (Pedroni and Westerlund), and also the VAR model. The stationarity (unit root) tests reveal that the variables are not stationary at levels however stationary at first difference. Cointegration test results did not reject the H0 of no cointegration implying the absence long-run association among the variables and results of the VAR model did not reveal a strong short-run relationship. Based on the data, we, therefore, conclude that PPP is not valid in long-and short-run for ASEAN-5 during 2000-2016.

  16. From parity violation to hadronic structure and more

    CERN Document Server

    Jager, K; Kox, S; Lhuillier, D; Maas, F; Page, S; Papanicolas, C; Stiliaris, S; Wiele, J; 3rd International Workshop on From Parity Violation to Hadronic Structure and More (PAVI06); PAVI 06; PAVI 2006

    2007-01-01

    This book contains the proceedings of the third international workshop on “From Parity Violation to Hadronic Structure and more ...” which was held from May 16 to May 20, 2006, at the George Eliopoulos conference center on the Greek island of Milos. It is part of a series that started in Mainz in 2002 and was followed by a second workshop in Grenoble in 2004. While originally initiated by the extraction of the strangeness contribution to the electromagnetic form factors of the nucleon, the workshop series has continuously broadened the focus to the application of Parity Violation using hadronic probes and to Parity Violation experiments in atomic physics. Meanwhile there have been many exciting new proposals for using Parity Violation in other areas like in the search for new physics beyond the standard model or in exploring hadron structure. There are also close connections to the open question on the size of the two photon exchange amplitude. Fifty years after the 1956 proposal of Lee and Yang to test t...

  17. Parity violation in electron scattering

    International Nuclear Information System (INIS)

    Lhuillier, D.

    2007-09-01

    The elaboration of the electroweak standard model from the discovery of parity violation to the weak neutral current is described in the first chapter. In the second chapter the author discusses the 2 experimental approaches of the parity violation experiments. In the first approach the weak neutral current can be assumed to be well known and can be used as a probe for the hadronic matter. The second approach consists in measuring the weak neutral current between 2 particles with known internal structure in order to test the predictions of the standard model in the low energy range. The chapters 3 and 4 are an illustration of the first approach through the HAPPEx series of experiments that took place in the Jefferson Laboratory from 1998 to 2005. The HAPPEx experiments aimed at measuring the contribution of strange quarks in the electromagnetic form factors of the nucleon through the violation of parity in the elastic scattering at forward angles. The last chapter is dedicated to the E158 experiment that was performed at the Slac (California) between 2000 and 2003. The weak neutral current was measured between 2 electrons and the high accuracy obtained allowed the physics beyond the standard model to be indirectly constraint up to a few TeV. (A.C.)

  18. Permutation parity machines for neural cryptography.

    Science.gov (United States)

    Reyes, Oscar Mauricio; Zimmermann, Karl-Heinz

    2010-06-01

    Recently, synchronization was proved for permutation parity machines, multilayer feed-forward neural networks proposed as a binary variant of the tree parity machines. This ability was already used in the case of tree parity machines to introduce a key-exchange protocol. In this paper, a protocol based on permutation parity machines is proposed and its performance against common attacks (simple, geometric, majority and genetic) is studied.

  19. Permutation parity machines for neural cryptography

    International Nuclear Information System (INIS)

    Reyes, Oscar Mauricio; Zimmermann, Karl-Heinz

    2010-01-01

    Recently, synchronization was proved for permutation parity machines, multilayer feed-forward neural networks proposed as a binary variant of the tree parity machines. This ability was already used in the case of tree parity machines to introduce a key-exchange protocol. In this paper, a protocol based on permutation parity machines is proposed and its performance against common attacks (simple, geometric, majority and genetic) is studied.

  20. Parity-non-conserving nuclear forces

    International Nuclear Information System (INIS)

    Desplanques, B.

    1979-01-01

    Theoretical and phenomenological approaches to parity-non-conserving nuclear forces are reviewed. Recent developments in the calculation of weak meson-nucleon coupling constants, whose knowledge is necessary to determine theoretically the parity-non-conserving nucleon-nucleon potential, are described. The consistency of different measurements of parity-non-conserving effects is discussed and the information they provide is compared to theoretical predictions

  1. R-parity breaking phenomenology

    International Nuclear Information System (INIS)

    Vissani, F.

    1996-02-01

    We review various features of the R-parity breaking phenomenology, with particular attention to the low energy observables, and to the patterns of the R-parity breaking interactions that arise in Grand Unified models. (author). 22 refs, 1 fig., 3 tabs

  2. General relativity and gravitation, 1989

    International Nuclear Information System (INIS)

    Ashby, N.; Bartlett, D.F.; Wyss, W.

    1990-01-01

    This volume records the lectures and symposia of the 12th International Conference on General Relativity and Gravitation. Plenary lecturers reviewed the major advances since the previous conference in 1986. The reviews cover classical and quantum theory of gravity, colliding gravitational waves, gravitational lensing, relativistic effects on pulsars, tests of the inverse square law, numerical relativity, cosmic microwave background radiation, experimental tests of gravity theory, gravitational wave detectors, and cosmology. The plenary lectures are complemented by summaries of symposia, provided by the chairmen. Almost 700 contributed papers were presented at these and they cover an even wider range of topics than the plenary talks. The book provides a comprehensive guide to research activity in both experimental and theoretical gravitation and its applications in astrophysics and cosmology. It will be essential reading for research workers in these fields, as well as theoretical and experimental physicists, astronomers, and mathematicians who wish to be acquainted with modern developments in gravitational theory and general relativity. All the papers and summaries of the workshop sessions are indexed separately. (16 united talks, 20 workshop sessions). (author)

  3. [Obesity in Brazilian women: association with parity and socioeconomic status].

    Science.gov (United States)

    Ferreira, Regicely Aline Brandão; Benicio, Maria Helena D'Aquino

    2015-05-01

    To determine the influence of reproductive history on the prevalence of obesity in Brazilian women and the possible modifying effect of socioeconomic variables on the association between parity and excess weight. A retrospective analysis of complex sample data collected as part of the 2006 Brazilian National Survey on Demography and Health, which included a group representative of women of childbearing age in Brazil was conducted. The study included 11 961 women aged 20 to 49 years. The association between the study factor (parity) and the outcome of interest (obesity) was tested using logistic regression analysis. The adjusted effect of parity on obesity was assessed in a multiple regression model containing control variables: age, family purchasing power, as defined by the Brazilian Association of Research Enterprises (ABEP), schooling, and health care. Significance level was set at below 0.05. The prevalence of obesity in the study population was 18.6%. The effect of parity on obesity was significant (P for trend parity and age. Family purchase power had a significant odds ratio for obesity only in the unadjusted analysis. In the adjusted model, this variable did not explain obesity. The present findings suggest that parity has an influence on obesity in Brazilian women of childbearing age, with higher prevalence in women vs. without children.

  4. Models of dynamical R-parity violation

    Energy Technology Data Exchange (ETDEWEB)

    Csáki, Csaba; Kuflik, Eric [Department of Physics, LEPP, Cornell University, Ithaca, NY 14853 (United States); Slone, Oren; Volansky, Tomer [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel)

    2015-06-08

    The presence of R-parity violating interactions may relieve the tension between existing LHC constraints and natural supersymmetry. In this paper we lay down the theoretical framework and explore models of dynamical R-parity violation in which the breaking of R-parity is communicated to the visible sector by heavy messenger fields. We find that R-parity violation is often dominated by non-holomorphic operators that have so far been largely ignored, and might require a modification of the existing searches at the LHC. The dynamical origin implies that the effects of such operators are suppressed by the ratio of either the light fermion masses or the supersymmetry breaking scale to the mediation scale, thereby providing a natural explanation for the smallness of R-parity violation. We consider various scenarios, classified by whether R-parity violation, flavor breaking and/or supersymmetry breaking are mediated by the same messenger fields. The most compact case, corresponding to a deformation of the so called flavor mediation scenario, allows for the mediation of supersymmetry breaking, R-parity breaking, and flavor symmetry breaking in a unified manner.

  5. Non-planar ABJ theory and parity

    International Nuclear Information System (INIS)

    Caputa, Pawel; Kristjansen, Charlotte; Zoubos, Konstantinos

    2009-01-01

    While the ABJ Chern-Simons-matter theory and its string theory dual manifestly lack parity invariance, no sign of parity violation has so far been observed on the weak coupling spin chain side. In particular, the planar two-loop dilatation generator of ABJ theory is parity invariant. In this Letter we derive the non-planar part of the two-loop dilatation generator of ABJ theory in its SU(2)xSU(2) sub-sector. Applying the dilatation generator to short operators, we explicitly demonstrate that, for operators carrying excitations on both spin chains, the non-planar part breaks parity invariance. For operators with only one type of excitation, however, parity remains conserved at the non-planar level. We furthermore observe that, as for ABJM theory, the degeneracy between planar parity pairs is lifted when non-planar corrections are taken into account.

  6. Non-planar ABJ Theory and Parity

    DEFF Research Database (Denmark)

    Caputa, Pawel; Kristjansen, Charlotte; Zoubos, Konstantinos

    2009-01-01

    we derive the non-planar part of the two-loop dilatation generator of ABJ theory in its SU(2)xSU(2) sub-sector. Applying the dilatation generator to short operators, we explicitly demonstrate that, for operators carrying excitations on both spin chains, the non-planar part breaks parity invariance......While the ABJ Chern-Simons-matter theory and its string theory dual manifestly lack parity invariance, no sign of parity violation has so far been observed on the weak coupling spin chain side. In particular, the planar two-loop dilatation generator of ABJ theory is parity invariant. In this letter....... For operators with only one type of excitation, however, parity remains conserved at the non-planar level. We furthermore observe that, as for ABJM theory, the degeneracy between planar parity pairs is lifted when non-planar corrections are taken into account....

  7. Parity violation in neutron resonances

    International Nuclear Information System (INIS)

    Mitchell, G.E.; Lowie, L.Y.; Bowman, J.D.; Knudson, J.; Crawford, B.E.; Delheij, P.P.J.; Haseyama, T.; Masaike, A.; Matsuda, Y.; Masuda, Y.

    1997-01-01

    The observation of very large parity violation in neutron resonances has led to a new approach to the study of symmetry breaking in nuclei. The origin of the enhancement of parity violation is discussed, as well as the new (statistical) analysis approach. The TRIPLE experimental system and analysis methods, their improvements are described. Sign correlation and results from recent parity violation experiments are presented and discussed. (author)

  8. Equation of Motion of a Mass Point in Gravitational Field and Classical Tests of Gauge Theory of Gravity

    International Nuclear Information System (INIS)

    Wu Ning; Zhang Dahua

    2007-01-01

    A systematic method is developed to study the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge field is obtained, which is just the traditional Schwarzschild solution. Combining the principle of gauge covariance and Newton's second law of motion, the equation of motion of a mass point in gravitational field is deduced. Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field, we can discuss classical tests of gauge theory of gravity, including the deflection of light by the sun, the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun. It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.

  9. Effect of parity on healthy promotion lifestyle behavior in women.

    Science.gov (United States)

    Nazik, Hakan; Nazik, Evşen; Özdemir, Funda; Gül, Şule; Tezel, Ayfer; Narin, Raziye

    2015-01-01

    Health-promoting lifestyle behaviors are not only for the prevention of a disease or discomfort, but are also behaviors that aim to improve the individual's general health and well-being. Nurses have an important position in the development of healthy lifestyle behaviors in women. The aim of this study was to assess the effect of parity on health-promoting lifestyle behaviors in women. This descriptive and cross-sectional survey was performed in Adana, Turkey. This study was conducted with 352 women. The questionnaire consisted of two parts; the first part consisted of questions that assessed the socio-demographic and obstetric characteristics, and the second part employed the "Health Promotion Lifestyle Profile Scale" (HPLP). Data analysis included percentage, arithmetic average, and ANOVA tests. The results revealed that 24.1% of the women had no parity, 13.6% had one parity, 30.7% had two parities, 14.6% had three parities, and 17% had four and above parities. The mean total HPLP was 126.66±18.12 (interpersonal support subscale, 24.46±4.02; nutrition subscale, 21.59±3.92; self-actualization subscale, 24.42±4.30; stress management subscale, 18.73±3.81; health responsibility subscale, 21.75±4.31; and exercise subscale, 15.71±4.22). The health behavior of women was moderate. A statistically significant correlation was found between the number of parities and the Health Responsibility, Nutrition, Interpersonal Support, which is the subscale of the HPLP Scale.

  10. Parity violation in deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Souder, P. [Syracuse Univ., NY (United States)

    1994-04-01

    AA beam of polarized electrons at CEBAF with an energy of 8 GeV or more will be useful for performing precision measurements of parity violation in deep inelastic scattering. Possible applications include precision tests of the Standard Model, model-independent measurements of parton distribution functions, and studies of quark correlations.

  11. Extreme gravity tests with gravitational waves from compact binary coalescences: (II) ringdown

    Science.gov (United States)

    Berti, Emanuele; Yagi, Kent; Yang, Huan; Yunes, Nicolás

    2018-05-01

    The LIGO/Virgo detections of binary black hole mergers marked a watershed moment in astronomy, ushering in the era of precision tests of Kerr dynamics. We review theoretical and experimental challenges that must be overcome to carry out black hole spectroscopy with present and future gravitational wave detectors. Among other topics, we discuss quasinormal mode excitation in binary mergers, astrophysical event rates, tests of black hole dynamics in modified theories of gravity, parameterized "post-Kerr" ringdown tests, exotic compact objects, and proposed data analysis methods to improve spectroscopic tests of Kerr dynamics by stacking multiple events.

  12. Gravitational-wave detector realized by a superconductor

    International Nuclear Information System (INIS)

    Ishidoshiro, K.; Ando, M.; Takamori, A.; Okada, K.; Tsubono, K.

    2010-01-01

    In this article, we present a new gravitational-wave detector based on superconducting magnetic levitation and results of its prototype test. Our detector is composed of the suspended test mass that is rotated by gravitational waves. Gravitational wave signals are readout by monitoring its angular motion. Superconducting magnetic levitation is used for the suspension of the test mass, since it has many advantages, such as zero mechanical loss and resonant frequency around its suspension axis in an ideal situation. For the study of actual performance of such gravitational-wave detector, a prototype detector has been developed. Using the prototype detector, the actual loss factor and resonant frequency are measured as 1.2 x 10 -8 Nms/rad and 5 mHz respectively. A detector noise is also evaluated. The current noise level is determined by the magnetic coupling with external magnetic field and mechanical coupling between translation and angular motion. The prototype detector has already one of the lowest noise levels for gravitational waves at 0.1 Hz among current gravitational-wave detectors. We have succeeded at the demonstration of the advantages of our torsion gravitational-wave detector.

  13. Photovoltaic is redolent of grid parity

    International Nuclear Information System (INIS)

    Signoret, Stephane

    2015-01-01

    This article indicates and comments the current trends of decrease of photovoltaic costs and increase of electricity prices. As a result, grid parity is starting to be reached in some countries (Mexico city, California, Australia, Italy, Germany, Israel, Chile) and nearly in southern France only, as the prices of residential electricity are rather low and therefore don't give any chance to network parity for solar photovoltaic. Curves of evolutions of photovoltaic costs and retail electricity prices are given for different towns (Berlin, London, Rome, Madrid, Marseilles, San Francisco, Sydney, and Copiapo in Chile). These evolutions are a positive factor for the development of self-consumption. The article thus evokes the PV-NET project which gathers several European regions or countries to test and assess different economic solutions of self-consumption

  14. Feasibility analysis of gravitational experiments in space

    Science.gov (United States)

    Everitt, C. W. F.

    1977-01-01

    Experiments on gravitation and general relativity suggested by different workers in the past ten or more years are reviewed, their feasibility examined, and the advantages of performing them in space were studied. The experiments include: (1) the gyro relativity experiment; (2) experiments to test the equivalence of gravitational and inertial mass; (3) an experiment to look for nongeodesic motion of spinning bodies in orbit around the earth; (4) experiments to look for changes of the gravitational constant G with time; (5) a variety of suggestions; laboratory tests of experimental gravity; and (6) gravitational wave experiments.

  15. R-parity violation at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Dercks, Daniel [Universitaet Bonn, Physikalisches Institut, Bethe Center for Theoretical Physics, Bonn (Germany); Universitaet Hamburg, II. Institut fuer Theoretische Physik, Hamburg (Germany); Dreiner, Herbi; Krauss, Manuel E.; Opferkuch, Toby; Reinert, Annika [Universitaet Bonn, Physikalisches Institut, Bethe Center for Theoretical Physics, Bonn (Germany)

    2017-12-15

    We investigate the phenomenology of the MSSM extended by a single R-parity-violating coupling at the unification scale. For all R-parity-violating couplings, we discuss the evolution of the particle spectra through the renormalization group equations and the nature of the lightest supersymmetric particle (LSP) within the CMSSM, as an example of a specific complete supersymmetric model. We use the nature of the LSP to classify the possible signatures. For each possible scenario we present in detail the current LHC bounds on the supersymmetric particle masses, typically obtained using simplified models. From this we determine the present coverage of R-parity-violating models at the LHC. We find several gaps, in particular for a stau-LSP, which is easily obtained in R-parity-violating models. Using the program CheckMATE we recast existing LHC searches to set limits on the parameters of all R-parity-violating CMSSMs. We find that virtually all of them are either more strongly constrained or similarly constrained in comparison to the R-parity-conserving CMSSM, including the anti U anti D anti D models. For each R-parity-violating CMSSM we then give the explicit lower mass bounds on all relevant supersymmetric particles. (orig.)

  16. Gravitational decoherence

    International Nuclear Information System (INIS)

    Bassi, Angelo; Großardt, André; Ulbricht, Hendrik

    2017-01-01

    We discuss effects of loss of coherence in low energy quantum systems caused by or related to gravitation, referred to as gravitational decoherence. These effects, resulting from random metric fluctuations, for instance, promise to be accessible by relatively inexpensive table-top experiments, way before the scales where true quantum gravity effects become important. Therefore, they can provide a first experimental view on gravity in the quantum regime. We will survey models of decoherence induced both by classical and quantum gravitational fluctuations; it will be manifest that a clear understanding of gravitational decoherence is still lacking. Next we will review models where quantum theory is modified, under the assumption that gravity causes the collapse of the wave functions, when systems are large enough. These models challenge the quantum-gravity interplay, and can be tested experimentally. In the last part we have a look at the state of the art of experimental research. We will review efforts aiming at more and more accurate measurements of gravity ( G and g ) and ideas for measuring conventional and unconventional gravity effects on nonrelativistic quantum systems. (topical review)

  17. Impact of maternal smoking on birth size: effect of parity and sex dimorphism.

    Science.gov (United States)

    Varvarigou, Anastasia A; Asimakopoulou, Aspasia; Beratis, Nicholas G

    2009-01-01

    Maternal smoking during pregnancy causes a delay of intrauterine growth. To examine the effect of maternal smoking during pregnancy on fetal growth in relationship to maternal parity, age and number of cigarettes smoked/day, and offspring's gender. We studied 2,108 term newborns (1,102 male, 1,006 female) delivered at the General University Hospital of Patras from 1994 to 2004. The 1,443 were born to mothers who did not smoke and 665 to mothers who smoked during pregnancy. Birth weight, length and head circumference were measured prospectively in all newborns. Also, maternal smoking status and number of cigarettes smoked per day, age, and parity were recorded. For the analysis, t test, one-way ANOVA, Mann-Whitney U test, Spearman rank correlation, and factorial MANOVA with covariates were used. With increasing parity, in the neonates of nonsmoking mothers there was a gradual increase of growth, whereas in neonates of smoking mothers there was a gradual decrease of growth. This effect was more pronounced in males. A significant negative main effect on growth resulted from the interaction of smoking with parity (p = 0.013), and with gender and parity (p = 0.001). There was a significant negative correlation between number of cigarettes smoked per day and growth, the strength of which increased with parity, mainly in males. Maternal smoking during pregnancy causes a delay in fetal growth, which is greater in male offspring, an effect that is enhanced with parity but is independent of maternal age. (c) 2008 S. Karger AG, Basel.

  18. Parity violation experiments at RHIC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1993-01-01

    With longitudinally polarized protons at RHIC, even a 1 month dedicated run utilizing both approved major detectors could produce a significant search for new physics in hadron collisions via parity violation. Additionally, in the energy range of RHIC, large ''conventional'' parity violating effects are predicted due to the direct production of the weak bosons W ± and Z 0 . One can even envision measurements of the spin dependent sea-quark structure functions of nucleons using the single-spin parity violating asymmetry of W ± and Z 0

  19. Relationship between parity and bone mass in postmenopausal women according to number of parities and age.

    Science.gov (United States)

    Heidari, Behzad; Heidari, Parnaz; Nourooddini, Haj Ghorban; Hajian-Tilaki, Karim Ollah

    2013-01-01

    To investigate the impact of multiple pregnancies on postmenopausal bone mineral density (BMD). BMD at the femoral neck (FN) and lumbar spine (LS) was measured by dual energy X-ray absorptiometry (DXA) method. Diagnosis of osteoporosis (OP) was confirmed by World Health Organization criteria. Women were stratified according to number of parity as 7 parity groups as well as in age groups of or = 65 years. BMD values and frequency of OP were compared across the groups according to age. Multiple logistic regression analysis with calculation of adjusted odds ratio (OR) was used for association. A total of 264 women with mean age of 63 +/- 8.7 and mean menopausal duration of 15.8 +/- 10.2 years were studied. LS-OP and FN-OP were observed in 28% and 58.3% of women, respectively. There were significant differences in BMD values across different parity groups at both sites of LS and FN (p = 0.011 and p = 0.036, respectively). Parity 4-7 (vs. 7 significantly decreased LS-BMD and FN-BMD as compared with 0-7 parity (p = 0.006 and p = 0.009, respectively). Parity > 7 increased the risk of LS-OP by OR = 1.81 (95% CI 1.03-3.1, p = 0.037) and FN-OP by OR = 1.67 (95% CI 0.97-2.8, p = 0.063). In addition, women with high parity had lower BMD decline at LS and FN by age (> or = 65 vs. 7 is associated with spinal trabecular bone loss in younger postmenopausal women as well as an osteoprotective effect against age-related bone loss, which counteracts the early negative effect. Therefore, parity should not be considered as a risk factor for postmenopausal osteoporosis.

  20. Parity at the Planck scale

    Science.gov (United States)

    Arzano, Michele; Gubitosi, Giulia; Magueijo, João

    2018-06-01

    We explore the possibility that well known properties of the parity operator, such as its idempotency and unitarity, might break down at the Planck scale. Parity might then do more than just swap right and left polarized states and reverse the sign of spatial momentum k: it might generate superpositions of right and left handed states, as well as mix momenta of different magnitudes. We lay down the general formalism, but also consider the concrete case of the Planck scale kinematics governed by κ-Poincaré symmetries, where some of the general features highlighted appear explicitly. We explore some of the observational implications for cosmological fluctuations. Different power spectra for right handed and left handed tensor modes might actually be a manifestation of deformed parity symmetry at the Planck scale. Moreover, scale-invariance and parity symmetry appear deeply interconnected.

  1. Comparison of parametric instabilities for different test mass materials in advanced gravitational wave interferometers

    International Nuclear Information System (INIS)

    Ju, L.; Zhao, C.; Gras, S.; Degallaix, J.; Blair, D.G.; Munch, J.; Reitze, D.H.

    2006-01-01

    Following the recognition that parametric instabilities can significantly compromise the performance of advanced laser interferometer gravitational wave detectors, we compare the performance of three different test mass configurations: all fused silica test masses, all sapphire test masses and fused silica inboard test masses with sapphire end test masses. We show that the configuration with sapphire end test masses offers the opportunity for thermal tuning on a time scale comparable to the ring up time of oscillatory instabilities. This approach may enable significant reduction of parametric gain

  2. Optical-Gravitation Nonlinearity: A Change of Gravitational Coefficient G induced by Gravitation Field

    OpenAIRE

    R. Vlokh; M. Kostyrko

    2006-01-01

    Nonlinear effect of the gravitation field of spherically symmetric mass on the gravitational coefficient G has been analysed. In frame of the approaches of parametric optics and gravitation nonlinearity we have shown that the gravitation field of spherically symmetric mass can lead to changes in the gravitational coefficient G.

  3. Winning Cores in Parity Games

    DEFF Research Database (Denmark)

    Vester, Steen

    2016-01-01

    We introduce the novel notion of winning cores in parity games and develop a deterministic polynomial-time under-approximation algorithm for solving parity games based on winning core approximation. Underlying this algorithm are a number properties about winning cores which are interesting...... in their own right. In particular, we show that the winning core and the winning region for a player in a parity game are equivalently empty. Moreover, the winning core contains all fatal attractors but is not necessarily a dominion itself. Experimental results are very positive both with respect to quality...

  4. Parity Increases Insulin Requirements in Pregnant Women With Type 1 Diabetes.

    Science.gov (United States)

    Skajaa, Gitte Ø; Fuglsang, Jens; Kampmann, Ulla; Ovesen, Per G

    2018-06-01

    Tight glycemic control throughout pregnancy in women with type 1 diabetes is crucial, and knowledge about which factors that affect insulin sensitivity could improve the outcome for both mother and offspring. To evaluate insulin requirements in women with type 1 diabetes during pregnancy and test whether parity affects insulin requirements. Observational cohort study consisting of women with type 1 diabetes who gave birth at Aarhus University Hospital, Denmark, from 2004 to 2014. Daily insulin requirement (the hypothesis that parity could affect insulin resistance was formulated before data collection). A total of 380 women with a total of 536 pregnancies were included in the study. Mean age was 31.1 years, and prepregnancy hemoglobin A1c was 60 mmol/mol. Parity was as follows: P0, 43%; P1, 40%; P2, 14%; and P3+4, 3%. Insulin requirements from weeks 11 to 16 decreased significantly by 4% (P = 0.0004) and rose from week 19 to delivery with a peak of 70% (P insulin requirements increased significantly with parity. The unadjusted differences between P0 and P1, P2, and P3+4 were 9% (P insulin requirements from week to week in pregnancy and indicate that insulin requirements increase with parity. This suggests that the patient's parity probably should be considered in choosing insulin dosages for pregnant women with type 1 diabetes.

  5. Stuttering mostly speeds up solving parity games

    NARCIS (Netherlands)

    Cranen, S.; Keiren, J.J.A.; Willemse, T.A.C.; Bobaru, M.; Havelund, K.; Holzmann, G.J.; Joshi, R.

    2011-01-01

    We study the process theoretic notion of stuttering equivalence in the setting of parity games. We demonstrate that stuttering equivalent vertices have the same winner in the parity game. This means that solving a parity game can be accelerated by minimising the game graph with respect to stuttering

  6. Purchasing Power Parity and the Euro Area

    NARCIS (Netherlands)

    C.G. Koedijk (Kees); B. Tims (Ben); M.A. van Dijk (Mathijs)

    2004-01-01

    textabstractThis paper analyzes purchasing power parity (PPP) for the euro area. We study the impact of the introduction of the euro in 1999 on the behavior of real exchange rates. We test the PPP hypothesis for a panel of real exchange rates within the euro area over the period 1973-2003. Our

  7. Charge measurement and mitigation for the main test masses of the GEO 600 gravitational wave observatory

    International Nuclear Information System (INIS)

    Hewitson, M; Danzmann, K; Grote, H; Hild, S; Hough, J; Lueck, H; Rowan, S; Smith, J R; Strain, K A; Willke, B

    2007-01-01

    Spurious charging of the test masses in gravitational wave interferometers is a well-known problem. Typically, concern arises due to the possibility of increased thermal noise due to a lowering of the quality factor of modes of the test-mass suspension, or due to the potential for increased displacement noise arising from charge migration on the surface of the test masses. Recent experience gained at the GEO 600 gravitational wave detector has highlighted an additional problem. GEO 600 uses electrostatic actuators to control the longitudinal position of the main test masses. The presence of charge on the test masses is shown to strongly affect the performance of the electrostatic actuators. This paper reports on a measurement scheme whereby the charge state of the GEO 600 test masses can be measured using the electrostatic actuators. The resulting measurements are expressed in terms of an effective bias voltage on the electrostatic actuators. We also describe attempts to remove the charge from the test masses and we show that the use of UV illumination was the most successful. Using UV illumination we were able to discharge and re-charge the test masses

  8. Interest Parity Conditions as Indicators of Financial Integration in East Asia

    OpenAIRE

    Gordon de Brouwer

    1997-01-01

    Market participants and policymakers have a growing interest in the development of East Asian financial markets, and to the extent to which these markets are open and influenced by world markets. This paper examines the information contained in interest parity conditions about the international integration of a wide range of economies in East Asia. Legal restrictions on the capital account and tests of covered, uncovered and real interest parity are presented in some detail. Using standard re...

  9. Advanced instrumentation for Solar System gravitational physics

    Science.gov (United States)

    Peron, Roberto; Bellettini, G.; Berardi, S.; Boni, A.; Cantone, C.; Coradini, A.; Currie, D. G.; Dell'Agnello, S.; Delle Monache, G. O.; Fiorenza, E.; Garattini, M.; Iafolla, V.; Intaglietta, N.; Lefevre, C.; Lops, C.; March, R.; Martini, M.; Nozzoli, S.; Patrizi, G.; Porcelli, L.; Reale, A.; Santoli, F.; Tauraso, R.; Vittori, R.

    2010-05-01

    The Solar System is a complex laboratory for testing gravitational physics. Indeed, its scale and hierarchical structure make possible a wide range of tests for gravitational theories, studying the motion of both natural and artificial objects. The usual methodology makes use of tracking information related to the bodies, fitted by a suitable dynamical model. Different equations of motion are provided by different theories, which can be therefore tested and compared. Future exploration scenarios show the possibility of placing deep-space probes near the Sun or in outer Solar System, thereby extending the available experimental data sets. In particular, the Earth-Moon is the most accurately known gravitational three-body laboratory, which is undergoing a new, strong wave of research and exploration (both robotic and manned). In addition, the benefits of a synergetic study of planetary science and gravitational physics are of the greatest importance (as shown by the success of the Apollo program), especially in the Earth-Moon, Mars-Phobos, Jovian and Saturnian sub-suystems. This scenarios open critical issues regarding the quality of the available dynamical models, i.e. their capability of fitting data without an excessive number of empirical hypotheses. A typical case is represented by the non-gravitational phenomena, which in general are difficult to model. More generally, gravitation tests with Lunar Laser Ranging, inner or outer Solar System probes and the appearance of the so-called 'anomalies'(like the one indicated by the Pioneers), whatever their real origin (either instrumental effects or due to new physics), show the necessity of a coordinated improvement of tracking and modelization techniques. A common research path will be discussed, employing the development and use of advanced instrumentation to cope with current limitations of Solar System gravitational tests. In particular, the use of high-sensitivity accelerometers, combined with microwave and laser

  10. PARITY ODD BUBBLES IN HOT QCD.

    Energy Technology Data Exchange (ETDEWEB)

    KHARZEEV,D.; PISARSKI,R.D.; TYTGAT,M.H.G.

    1998-04-16

    We consider the topological susceptibility for an SU(N) gauge theory in the limit of a large number of colors, N {r_arrow} {infinity}. At nonzero temperature, the behavior of the topological susceptibility depends upon the order of the deconfining phase transition. The most interesting possibility is if the deconfining transition, at T = T{sub d}, is of second order. Then we argue that Witten's relation implies that the topological susceptibility vanishes in a calculable fashion at Td. As noted by Witten, this implies that for sufficiently light quark masses, metastable states which act like regions of nonzero {theta}--parity odd bubbles--can arise at temperatures just below T{sub d}. Experimentally, parity odd bubbles have dramatic signatures: the {eta}{prime} meson, and especially the {eta} meson, become light, and are copiously produced. Further, in parity odd bubbles, processes which are normally forbidden, such as {eta} {r_arrow} {pi}{sup 0}{pi}{sup 0}, are allowed. The most direct way to detect parity violation is by measuring a parity odd global asymmetry for charged pions, which we define.

  11. Generating and Solving Symbolic Parity Games

    Directory of Open Access Journals (Sweden)

    Gijs Kant

    2014-07-01

    Full Text Available We present a new tool for verification of modal mu-calculus formulae for process specifications, based on symbolic parity games. It enhances an existing method, that first encodes the problem to a Parameterised Boolean Equation System (PBES and then instantiates the PBES to a parity game. We improved the translation from specification to PBES to preserve the structure of the specification in the PBES, we extended LTSmin to instantiate PBESs to symbolic parity games, and implemented the recursive parity game solving algorithm by Zielonka for symbolic parity games. We use Multi-valued Decision Diagrams (MDDs to represent sets and relations, thus enabling the tools to deal with very large systems. The transition relation is partitioned based on the structure of the specification, which allows for efficient manipulation of the MDDs. We performed two case studies on modular specifications, that demonstrate that the new method has better time and memory performance than existing PBES based tools and can be faster (but slightly less memory efficient than the symbolic model checker NuSMV.

  12. PARITY ODD BUBBLES IN HOT QCD

    International Nuclear Information System (INIS)

    KHARZEEV, D.; PISARSKI, R.D.; TYTGAT, M.H.G.

    1998-01-01

    We consider the topological susceptibility for an SU(N) gauge theory in the limit of a large number of colors, N r a rrow ∞. At nonzero temperature, the behavior of the topological susceptibility depends upon the order of the deconfining phase transition. The most interesting possibility is if the deconfining transition, at T = T d , is of second order. Then we argue that Witten's relation implies that the topological susceptibility vanishes in a calculable fashion at Td. As noted by Witten, this implies that for sufficiently light quark masses, metastable states which act like regions of nonzero θ--parity odd bubbles--can arise at temperatures just below T d . Experimentally, parity odd bubbles have dramatic signatures: the ηprime meson, and especially the η meson, become light, and are copiously produced. Further, in parity odd bubbles, processes which are normally forbidden, such as η r a rrow π 0 π 0 , are allowed. The most direct way to detect parity violation is by measuring a parity odd global asymmetry for charged pions, which we define

  13. Gravitational properties of antimatter

    International Nuclear Information System (INIS)

    Goldman, T.; Nieto, M.M.

    1985-01-01

    Quantum gravity is at the forefront of modern particle physics, yet there are no direct tests, for antimatter, of even the principle of equivalence. We note that modern descriptions of gravity, such as fibre bundles and higher dimensional spacetimes, allow violations of the commonly stated form of the principle of equivalence, and of CPT. We review both indirect arguments and experimental tests of the expected gravitational properties of CPT-conjugate states. We conclude that a direct experimental test of the gravitational properties of antimatter, at the 1% (or better) level, would be of great value. We identify some experimental reasons which make the antiproton a prime candidate for this test, and we strongly urge that such an experiment be done at LEAR. 21 references

  14. Parity and Overweight/Obesity in Peruvian Women.

    Science.gov (United States)

    Huayanay-Espinoza, Carlos A; Quispe, Renato; Poterico, Julio A; Carrillo-Larco, Rodrigo M; Bazo-Alvarez, Juan Carlos; Miranda, J Jaime

    2017-10-19

    The rise in noncommunicable diseases and their risk factors in developing countries may have changed or intensified the effect of parity on obesity. We aimed to assess this association in Peruvian women using data from a nationally representative survey. We used data from Peru's Demographic and Health Survey, 2012. Parity was defined as the number of children ever born to a woman. We defined overweight as having a body mass index (BMI, kg/m 2 ) of 25.0 to 29.9 and obesity as a BMI ≥30.0. Generalized linear models were used to evaluate the association between parity and BMI and BMI categories, by area of residence and age, adjusting for confounders. Data from 16,082 women were analyzed. Mean parity was 2.25 (95% confidence interval [CI], 2.17-2.33) among rural women and 1.40 (95% CI, 1.36-1.43) among urban women. Mean BMI was 26.0 (standard deviation, 4.6). We found evidence of an association between parity and BMI, particularly in younger women; BMI was up to 4 units higher in rural areas and 2 units higher in urban areas. An association between parity and BMI categories was observed in rural areas as a gradient, being highest in younger women. We found a positive association between parity and overweight/obesity. This relationship was stronger in rural areas and among younger mothers.

  15. A computational test facility for distributed analysis of gravitational wave signals

    International Nuclear Information System (INIS)

    Amico, P; Bosi, L; Cattuto, C; Gammaitoni, L; Punturo, M; Travasso, F; Vocca, H

    2004-01-01

    In the gravitational wave detector Virgo, the in-time detection of a gravitational wave signal from a coalescing binary stellar system is an intensive computational task. A parallel computing scheme using the message passing interface (MPI) is described. Performance results on a small-scale cluster are reported

  16. Parity Symmetry and Parity Breaking in the Quantum Rabi Model with Addition of Ising Interaction

    International Nuclear Information System (INIS)

    Wang Qiong; He Zhi; Yao Chun-Mei

    2015-01-01

    We explore the possibility to generate new parity symmetry in the quantum Rabi model after a bias is introduced. In contrast to a mathematical treatment in a previous publication [J. Phys. A 46 (2013) 265302], we consider a physically realistic method by involving an additional spin into the quantum Rabi model to couple with the original spin by an Ising interaction, and then the parity symmetry is broken as well as the scaling behavior of the ground state by introducing a bias. The rule can be found that the parity symmetry is broken by introducing a bias and then restored by adding new degrees of freedom. Experimental feasibility of realizing the models under discussion is investigated. (paper)

  17. Parity and the medicalization of addiction treatment.

    Science.gov (United States)

    Roy, Ken; Miller, Michael

    2010-06-01

    Parity, the idea that insurance coverage for the treatment of addiction should be on a par with insurance coverage for the treatment of other medical illnesses, is not a new idea, but the path to achieving "real parity" has been a long, hard and complex journey. Action by Congress to pass major parity legislation in 2008 was a huge step forward, but does not mean that parity has been achieved. Parity has required a paradigm shift in the understanding of addiction as a biological illness: many developments of science and policy changes by professional organizations and governmental entities have contributed to that paradigm shift. Access to adequate treatment for patients must acknowledge the paradigm shift reflected in parity as it has evolved to the current point: that this biological illness is widespread, that it is important that it be treated effectively, that appropriate third party payment for physician-provided or physician-supervised addiction treatment is critical for addiction medicine to become a part of the mainstream of our nation's healthcare delivery system, and that medical specialty care provides the most effective and cost effective benefit to patients and therefore to our society.

  18. Gravitational Waves from Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    Chris L. Fryer

    2011-01-01

    Full Text Available Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  19. Gravitational waves from gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, Christopher L [Los Alamos National Laboratory; New, Kimberly C [Los Alamos National Laboratory

    2008-01-01

    Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  20. Quaternionic formulation of the exact parity model

    Energy Technology Data Exchange (ETDEWEB)

    Brumby, S.P.; Foot, R.; Volkas, R.R.

    1996-02-28

    The exact parity model (EPM) is a simple extension of the standard model which reinstates parity invariance as an unbroken symmetry of nature. The mirror matter sector of the model can interact with ordinary matter through gauge boson mixing, Higgs boson mixing and, if neutrinos are massive, through neutrino mixing. The last effect has experimental support through the observed solar and atmospheric neutrino anomalies. In the paper it is shown that the exact parity model can be formulated in a quaternionic framework. This suggests that the idea of mirror matter and exact parity may have profound implications for the mathematical formulation of quantum theory. 13 refs.

  1. Quaternionic formulation of the exact parity model

    International Nuclear Information System (INIS)

    Brumby, S.P.; Foot, R.; Volkas, R.R.

    1996-01-01

    The exact parity model (EPM) is a simple extension of the standard model which reinstates parity invariance as an unbroken symmetry of nature. The mirror matter sector of the model can interact with ordinary matter through gauge boson mixing, Higgs boson mixing and, if neutrinos are massive, through neutrino mixing. The last effect has experimental support through the observed solar and atmospheric neutrino anomalies. In the paper it is shown that the exact parity model can be formulated in a quaternionic framework. This suggests that the idea of mirror matter and exact parity may have profound implications for the mathematical formulation of quantum theory. 13 refs

  2. Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests on Advanced LIGO data

    International Nuclear Information System (INIS)

    Powell, Jade; Heng, Ik Siong; Torres-Forné, Alejandro; Font, José A; Lynch, Ryan; Trifirò, Daniele; Cuoco, Elena; Cavaglià, Marco

    2017-01-01

    The data taken by the advanced LIGO and Virgo gravitational-wave detectors contains short duration noise transients that limit the significance of astrophysical detections and reduce the duty cycle of the instruments. As the advanced detectors are reaching sensitivity levels that allow for multiple detections of astrophysical gravitational-wave sources it is crucial to achieve a fast and accurate characterization of non-astrophysical transient noise shortly after it occurs in the detectors. Previously we presented three methods for the classification of transient noise sources. They are Principal Component Analysis for Transients (PCAT), Principal Component LALInference Burst (PC-LIB) and Wavelet Detection Filter with Machine Learning (WDF-ML). In this study we carry out the first performance tests of these algorithms on gravitational-wave data from the Advanced LIGO detectors. We use the data taken between the 3rd of June 2015 and the 14th of June 2015 during the 7th engineering run (ER7), and outline the improvements made to increase the performance and lower the latency of the algorithms on real data. This work provides an important test for understanding the performance of these methods on real, non stationary data in preparation for the second advanced gravitational-wave detector observation run, planned for later this year. We show that all methods can classify transients in non stationary data with a high level of accuracy and show the benefits of using multiple classifiers. (paper)

  3. Gravitational perturbations of the Schwarzschild spacetime: A practical covariant and gauge-invariant formalism

    International Nuclear Information System (INIS)

    Martel, Karl; Poisson, Eric

    2005-01-01

    We present a formalism to study the metric perturbations of the Schwarzschild spacetime. The formalism is gauge invariant, and it is also covariant under two-dimensional coordinate transformations that leave the angular coordinates unchanged. The formalism is applied to the typical problem of calculating the gravitational waves produced by material sources moving in the Schwarzschild spacetime. We examine the radiation escaping to future null infinity as well as the radiation crossing the event horizon. The waveforms, the energy radiated, and the angular-momentum radiated can all be expressed in terms of two gauge-invariant scalar functions that satisfy one-dimensional wave equations. The first is the Zerilli-Moncrief function, which satisfies the Zerilli equation, and which represents the even-parity sector of the perturbation. The second is the Cunningham-Price-Moncrief function, which satisfies the Regge-Wheeler equation, and which represents the odd-parity sector of the perturbation. The covariant forms of these wave equations are presented here, complete with covariant source terms that are derived from the stress-energy tensor of the matter responsible for the perturbation

  4. Analysing the Effect on CMB in a Parity and Charge Parity Violating Varying Alpha Theory

    Energy Technology Data Exchange (ETDEWEB)

    Maity, Debaprasad; /NCTS, Taipei /Taiwan, Natl. Taiwan U.; Chen, Pisin; /NCTS, Taipei /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC

    2012-09-14

    In this paper we study in detail the effect of our recently proposed model of parity and charge-parity (PCP) violating varying alpha on the Cosmic Microwave Background (CMB) photon passing through the intra galaxy-cluster medium (ICM). The ICM is well known to be composed of magnetized plasma. According to our model, the polarization and intensity of the CMB would be affected when traversing through the ICM due to non-trivial scalar photon interactions. We have calculated the evolution of such polarization and intensity collectively, known as the stokes parameters of the CMB photon during its journey through the ICM and tested our results against the Sunyaev-Zel'dovich (SZ) measurement on Coma galaxy cluster. Our model contains a PCP violating parameter, {beta}, and a scale of alpha variation {omega}. Using the derived constrained on the photon-to-scalar conversion probability, {bar P}{sub {gamma}{yields}{phi}}, for Coma cluster in ref.[34] we found a contour plot in the ({omega},{beta}) parameter plane. The {beta} = 0 line in this parameter space corresponds to well-studied Maxwell-dilaton type models which has lower bound on {omega} {approx}> 6.4 x 10{sup 9} GeV. In general, as the absolute value of {beta} increases, lower bound on {omega} also increases. Our model in general predicts the modification of the CMB polarization with a non-trivial dependence on the parity violating coupling parameter {beta}. However, it is unconstrained in this particular study. We show that this effect can in principle be detected in the future measurements on CMB polarization such that {beta} can also be constrained.

  5. Gravitational Waves from Gravitational Collapse.

    Science.gov (United States)

    Fryer, Chris L; New, Kimberly C B

    2011-01-01

    Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars. Supplementary material is available for this article at 10.12942/lrr-2011-1.

  6. Gravitation. [Book on general relativity

    Science.gov (United States)

    Misner, C. W.; Thorne, K. S.; Wheeler, J. A.

    1973-01-01

    This textbook on gravitation physics (Einstein's general relativity or geometrodynamics) is designed for a rigorous full-year course at the graduate level. The material is presented in two parallel tracks in an attempt to divide key physical ideas from more complex enrichment material to be selected at the discretion of the reader or teacher. The full book is intended to provide competence relative to the laws of physics in flat space-time, Einstein's geometric framework for physics, applications with pulsars and neutron stars, cosmology, the Schwarzschild geometry and gravitational collapse, gravitational waves, experimental tests of Einstein's theory, and mathematical concepts of differential geometry.

  7. A cure for stuttering parity games

    NARCIS (Netherlands)

    Cranen, S.; Keiren, J.J.A.; Willemse, T.A.C.; Roychoudhury, A.; D'Souza, M.

    2012-01-01

    We define governed stuttering bisimulation for parity games, weakening stuttering bisimulation by taking the ownership of vertices into account only when this might lead to observably different games. We show that governed stuttering bisimilarity is an equivalence for parity games and allows for a

  8. Test-particle motion in the nonsymmetric gravitation theory

    International Nuclear Information System (INIS)

    Moffat, J.W.

    1987-01-01

    A derivation of the motion of test particles in the nonsymmetric gravitational theory (NGT) is given using the field equations in the presence of matter. The motion of the particle is governed by the Christoffel symbols, which are formed from the symmetric part of the fundamental tensor g/sub μ//sub ν/, as well as by a tensorial piece determined by the skew part of the contracted curvature tensor R/sub μ//sub ν/. Given the energy-momentum tensor for a perfect fluid and the definition of a test particle in the NGT, the equations of motion follow from the conservation laws. The tensorial piece in the equations of motion describes a new force in nature that acts on the conserved charge in a body. Particles that carry this new charge do not follow geodesic world lines in the NGT, whereas photons do satisfy geodesic equations of motion and the equivalence principle of general relativity. Astronomical predictions, based on the exact static, spherically symmetric solution of the field equations in a vacuum and the test-particle equations of motion, are derived in detail. The maximally extended coordinates that remove the event-horizon singularities in the static, spherically symmetric solution are presented. It is shown how an inward radially falling test particle can be prevented from forming an event horizon for a value greater than a specified critical value of the source charge. If a test particle does fall through an event horizon, then it must continue to fall until it reaches the singularity at r = 0

  9. Test-particle motion in the nonsymmetric gravitation theory

    Science.gov (United States)

    Moffat, J. W.

    1987-06-01

    A derivation of the motion of test particles in the nonsymmetric gravitational theory (NGT) is given using the field equations in the presence of matter. The motion of the particle is governed by the Christoffel symbols, which are formed from the symmetric part of the fundamental tensor gμν, as well as by a tensorial piece determined by the skew part of the contracted curvature tensor Rμν. Given the energy-momentum tensor for a perfect fluid and the definition of a test particle in the NGT, the equations of motion follow from the conservation laws. The tensorial piece in the equations of motion describes a new force in nature that acts on the conserved charge in a body. Particles that carry this new charge do not follow geodesic world lines in the NGT, whereas photons do satisfy geodesic equations of motion and the equivalence principle of general relativity. Astronomical predictions, based on the exact static, spherically symmetric solution of the field equations in a vacuum and the test-particle equations of motion, are derived in detail. The maximally extended coordinates that remove the event-horizon singularities in the static, spherically symmetric solution are presented. It is shown how an inward radially falling test particle can be prevented from forming an event horizon for a value greater than a specified critical value of the source charge. If a test particle does fall through an event horizon, then it must continue to fall until it reaches the singularity at r=0.

  10. A naturally narrow positive-parity Θ+

    International Nuclear Information System (INIS)

    Carlson, Carl E.; Carone, Christopher D.; Kwee, Herry J.; Nazaryan, Vahagn

    2004-01-01

    We present a consistent color-flavor-spin-orbital wave function for a positive-parity Θ + that naturally explains the observed narrowness of the state. The wave function is totally symmetric in its flavor-spin part and totally antisymmetric in its color-orbital part. If flavor-spin interactions dominate, this wave function renders the positive-parity Θ + lighter than its negative-parity counterpart. We consider decays of the Θ + and compute the overlap of this state with the kinematically allowed final states. Our results are numerically small. We note that dynamical correlations between quarks are not necessary to obtain narrow pentaquark widths

  11. Physics of interferometric gravitational wave detectors

    Indian Academy of Sciences (India)

    The Caltech-MIT joint LIGO project is operating three long-baseline interferometers (one of 2 km and two of 4 km) in order to unambiguously measure the infinitesimal displacements of isolated test masses which convey the signature of gravitational waves from astrophysical sources. An interferometric gravitational wave ...

  12. Education Attainment and Parity Explain the Relationship Between Maternal Age and Breastfeeding Duration in U.S. Mothers.

    Science.gov (United States)

    Whipps, Mackenzie D M

    2017-02-01

    Prior research in high-income countries finds that young mothers tend to breastfeed their infants for shorter durations than older mothers; however, there are gaps in our understanding of the processes by which age influences breastfeeding. Research aim: The primary objective of this study was to test the mediating effects of parity and education attainment on the association between maternal age and two breastfeeding outcomes: total duration and duration of exclusive breastfeeding. This study was a secondary data analysis of the IFPS II, a prospective, longitudinal study of ~ 4,900 American mothers. Robust and bias-corrected regression analyses tested the direct effect of age and the indirect effects of age through parity and education for each outcome of interest. Parity and education attainment together explain nearly all of the association between maternal age and both measures of breastfeeding duration. The mediating role of education is significantly larger than parity for both outcomes. These findings indicate that maternal age primarily indexes parity and education but contributes minimally to breastfeeding duration via a direct effect. The findings have implications for intervention development and targeting strategies.

  13. Generating and Solving Symbolic Parity Games

    NARCIS (Netherlands)

    Kant, Gijs; van de Pol, Jan Cornelis

    We present a new tool for verification of modal mu-calculus formulae for process specifications, based on symbolic parity games. It enhances an existing method, that first encodes the problem to a Parameterised Boolean Equation System (PBES) and then instantiates the PBES to a parity game. We

  14. A cure for stuttering parity games

    NARCIS (Netherlands)

    Cranen, S.; Keiren, J.J.A.; Willemse, T.A.C.

    2012-01-01

    We de¿ne governed stuttering bisimulation for parity games, weakening stuttering bisimulation by taking the ownership of vertices into account only when this might lead to observably different games. We show that governed stuttering bisimilarity is an equivalence for parity games and allows for a

  15. Encoding of QC-LDPC Codes of Rank Deficient Parity Matrix

    Directory of Open Access Journals (Sweden)

    Mohammed Kasim Mohammed Al-Haddad

    2016-05-01

    Full Text Available the encoding of long low density parity check (LDPC codes presents a challenge compared to its decoding. The Quasi Cyclic (QC LDPC codes offer the advantage for reducing the complexity for both encoding and decoding due to its QC structure. Most QC-LDPC codes have rank deficient parity matrix and this introduces extra complexity over the codes with full rank parity matrix. In this paper an encoding scheme of QC-LDPC codes is presented that is suitable for codes with full rank parity matrix and rank deficient parity matrx. The extra effort required by the codes with rank deficient parity matrix over the codes of full rank parity matrix is investigated.

  16. Spontaneous parity violation and minimal Higgs models

    International Nuclear Information System (INIS)

    Chavez, H.; Martins Simoes, J.A.

    2007-01-01

    In this paper we present a model for the spontaneous breaking of parity with two Higgs doublets and two neutral Higgs singlets which are even and odd under D-parity. The condition υ R >>υ L can be satisfied without introducing bidoublets, and it is induced by the breaking of D-parity through the vacuum expectation value of the odd Higgs singlet. Examples of left-right symmetric and mirror fermions models in grand unified theories are presented. (orig.)

  17. Reconsidering solar grid parity

    International Nuclear Information System (INIS)

    Yang, C.-J.

    2010-01-01

    Grid parity-reducing the cost of solar energy to be competitive with conventional grid-supplied electricity-has long been hailed as the tipping point for solar dominance in the energy mix. Such expectations are likely to be overly optimistic. A realistic examination of grid parity suggests that the cost-effectiveness of distributed photovoltaic (PV) systems may be further away than many are hoping for. Furthermore, cost-effectiveness may not guarantee commercial competitiveness. Solar hot water technology is currently far more cost-effective than photovoltaic technology and has already reached grid parity in many places. Nevertheless, the market penetration of solar water heaters remains limited for reasons including unfamiliarity with the technologies and high upfront costs. These same barriers will likely hinder the adoption of distributed solar photovoltaic systems as well. The rapid growth in PV deployment in recent years is largely policy-driven and such rapid growth would not be sustainable unless governments continue to expand financial incentives and policy mandates, as well as address regulatory and market barriers.

  18. Testing the Kerr black hole hypothesis: Comparison between the gravitational wave and the iron line approaches

    Energy Technology Data Exchange (ETDEWEB)

    Cárdenas-Avendaño, Alejandro [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 200433 Shanghai (China); Programa de Matemática, Fundación Universitaria Konrad Lorenz, 110231 Bogotá (Colombia); Jiang, Jiachen [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 200433 Shanghai (China); Bambi, Cosimo, E-mail: bambi@fudan.edu.cn [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 200433 Shanghai (China); Theoretical Astrophysics, Eberhard-Karls Universität Tübingen, 72076 Tübingen (Germany)

    2016-09-10

    The recent announcement of the detection of gravitational waves by the LIGO/Virgo Collaboration has opened a new window to test the nature of astrophysical black holes. Konoplya & Zhidenko have shown how the LIGO data of GW 150914 can constrain possible deviations from the Kerr metric. In this letter, we compare their constraints with those that can be obtained from accreting black holes by fitting their X-ray reflection spectrum, the so-called iron line method. We simulate observations with eXTP, a next generation X-ray mission, finding constraints much stronger than those obtained by Konoplya & Zhidenko. Our results can at least show that, contrary to what is quite commonly believed, it is not obvious that gravitational waves are the most powerful approach to test strong gravity. In the presence of high quality data and with the systematics under control, the iron line method may provide competitive constraints.

  19. Quasi Cyclic Low Density Parity Check Code for High SNR Data Transfer

    Directory of Open Access Journals (Sweden)

    M. R. Islam

    2010-06-01

    Full Text Available An improved Quasi Cyclic Low Density Parity Check code (QC-LDPC is proposed to reduce the complexity of the Low Density Parity Check code (LDPC while obtaining the similar performance. The proposed QC-LDPC presents an improved construction at high SNR with circulant sub-matrices. The proposed construction yields a performance gain of about 1 dB at a 0.0003 bit error rate (BER and it is tested on 4 different decoding algorithms. Proposed QC-LDPC is compared with the existing QC-LDPC and the simulation results show that the proposed approach outperforms the existing one at high SNR. Simulations are also performed varying the number of horizontal sub matrices and the results show that the parity check matrix with smaller horizontal concatenation shows better performance.

  20. Experimental tests of the gravitational inverse-square law for mass separations from 2 to 105 cm

    International Nuclear Information System (INIS)

    Hoskins, J.K.; Newman, R.D.; Spero, R.; Schultz, J.

    1985-01-01

    We report two experiments which test the inverse-square distance dependence of the Newtonian gravitational force law. One experiment uses a torsion balance consisting of a 60-cm-long copper bar suspended at its midpoint by a tungsten wire, to compare the torque produced by copper masses 105 cm from the balance axis with the torque produced by a copper mass 5 cm from the side of the balance bar, near its end. Defining R/sub expt/ to be the measured ratio of the torques due to the masses at 105 cm and 5 cm, and R/sub Newton/ to be the corresponding ratio computed assuming an inverse-square force law, we find deltaequivalent(R/sub expt//R/sub Newton/-1) = (1.2 +- 7) x 10 -4 . Assuming a force deviating from an inverse-square distance dependence by a factor [1+epsilon lnr(cm)], this result implies epsilon = (0.5 +- 2.7) x 10 -4 . An earlier experiment, which has been reported previously, is described here in detail. This experiment tested the inverse-square law over a distance range of approximately 2 to 5 cm, by probing the gravitational field inside a steel mass tube using a copper test mass suspended from the end of a torsion balance bar. This experiment yielded a value for the parameter epsilon defined above: epsilon = (1 +- 7) x 10 -5 . The results of both of these experiments are in good agreement with the Newton- ian prediction. Limits on the strength and range of a Yukawa potential term superimposed on the Newtonian gravitational potential are discussed

  1. Local Strategy Improvement for Parity Game Solving

    OpenAIRE

    Friedmann, Oliver; Lange, Martin

    2010-01-01

    The problem of solving a parity game is at the core of many problems in model checking, satisfiability checking and program synthesis. Some of the best algorithms for solving parity game are strategy improvement algorithms. These are global in nature since they require the entire parity game to be present at the beginning. This is a distinct disadvantage because in many applications one only needs to know which winning region a particular node belongs to, and a witnessing winning strategy may...

  2. Separation of the 1+ /1- parity doublet in 20Ne

    Science.gov (United States)

    Beller, J.; Stumpf, C.; Scheck, M.; Pietralla, N.; Deleanu, D.; Filipescu, D. M.; Glodariu, T.; Haxton, W.; Idini, A.; Kelley, J. H.; Kwan, E.; Martinez-Pinedo, G.; Raut, R.; Romig, C.; Roth, R.; Rusev, G.; Savran, D.; Tonchev, A. P.; Tornow, W.; Wagner, J.; Weller, H. R.; Zamfir, N.-V.; Zweidinger, M.

    2015-02-01

    The (J , T) = (1 , 1) parity doublet in 20Ne at 11.26 MeV is a good candidate to study parity violation in nuclei. However, its energy splitting is known with insufficient accuracy for quantitative estimates of parity violating effects. To improve on this unsatisfactory situation, nuclear resonance fluorescence experiments using linearly and circularly polarized γ-ray beams were used to determine the energy difference of the parity doublet ΔE = E (1-) - E (1+) = - 3.2(± 0.7) stat(-1.2+0.6)sys keV and the ratio of their integrated cross sections Is,0(+) /Is,0(-) = 29(± 3) stat(-7+14)sys. Shell-model calculations predict a parity-violating matrix element having a value in the range 0.46-0.83 eV for the parity doublet. The small energy difference of the parity doublet makes 20Ne an excellent candidate to study parity violation in nuclear excitations.

  3. Displacement-noise-free gravitational-wave detection

    International Nuclear Information System (INIS)

    Kawamura, Seiji; Chen Yanbei

    2004-01-01

    We present a new idea that allows us to detect gravitational waves without being disturbed by any kind of displacement noise, based on the fact that gravitational waves and test-mass motions affect the propagations of light differently. We demonstrate this idea by analyzing a simple toy model consisting of three equally-separated objects on a line. By taking a certain combination of light travel times between these objects, we construct an observable free from the displacement of each object, which has a reasonable sensitivity to gravitational waves

  4. International parity relations between Poland and Germany: a cointegrated VAR approach

    OpenAIRE

    Stazka, Agnieszka

    2008-01-01

    This paper analyses empirically the purchasing power parity, the uncovered interest parity and the real interest parity (Fisher parity) between Poland and Germany. The international parity relations are investigated jointly within the cointegrated VAR framework. Our analysis fails to find evidence that the parities, or any linear combinations of them, hold for our data set. We identify two long-run equilibrium relations: one imposing a long-run homogeneity restriction on the domestic (i.e. Po...

  5. Vacuum polarization and non-Newtonian gravitation

    International Nuclear Information System (INIS)

    Long, D.R.

    1980-01-01

    Gell-Mann and Low have emphasized that, as first pointed out by Uehling and Serber, vacuum polarization effects produce a logarithmic modification to the Coulomb potential at small distances. Here, it is pointed out that, if these same considerations are applied to gravitation, the logarithmic term will have a sign opposite to that in the Coulomb case and in agreement with recent laboratory results on the gravitational ''constant''. Of considerable importance is the fact that such vacuum polarization effects cannot be observed in null experiments to test the gravitational inverse square law because the polarizing field is absent. It is a striking circumstance that the coefficient of the logarithm in QED is nearly the same as that found in gravitational experiments. (author)

  6. The gravitational-wave memory effect

    International Nuclear Information System (INIS)

    Favata, Marc

    2010-01-01

    The nonlinear memory effect is a slowly growing, non-oscillatory contribution to the gravitational-wave amplitude. It originates from gravitational waves that are sourced by the previously emitted waves. In an ideal gravitational-wave interferometer a gravitational wave with memory causes a permanent displacement of the test masses that persists after the wave has passed. Surprisingly, the nonlinear memory affects the signal amplitude starting at leading (Newtonian-quadrupole) order. Despite this fact, the nonlinear memory is not easily extracted from current numerical relativity simulations. After reviewing the linear and nonlinear memory I summarize some recent work, including (1) computations of the memory contribution to the inspiral waveform amplitude (thus completing the waveform to third post-Newtonian order); (2) the first calculations of the nonlinear memory that include all phases of binary black hole coalescence (inspiral, merger, ringdown); and (3) realistic estimates of the detectability of the memory with LISA.

  7. No parity anomaly in massless QED3: A BPHZL approach

    International Nuclear Information System (INIS)

    Del Cima, O.M.; Franco, D.H.T.; Piguet, O.; Schweda, M.

    2009-01-01

    In this Letter we call into question the perturbatively parity breakdown at 1-loop for the massless QED 3 frequently claimed in the literature. As long as perturbative quantum field theory is concerned, whether a parity anomaly owing to radiative corrections exists or not shall be definitely proved by using a renormalization method independent of any regularization scheme. Such a problem has been investigated in the framework of BPHZL renormalization method, by adopting the Lowenstein-Zimmermann subtraction scheme. The 1-loop parity-odd contribution to the vacuum-polarization tensor is explicitly computed in the framework of the BPHZL renormalization method. It is shown that a Chern-Simons term is generated at that order induced through the infrared subtractions - which violate parity. We show then that, what is called 'parity anomaly', is in fact a parity-odd counterterm needed for restauring parity.

  8. Separation of the 1+/1− parity doublet in 20Ne

    Directory of Open Access Journals (Sweden)

    J. Beller

    2015-02-01

    Full Text Available The (J,T=(1,1 parity doublet in 20Ne at 11.26 MeV is a good candidate to study parity violation in nuclei. However, its energy splitting is known with insufficient accuracy for quantitative estimates of parity violating effects. To improve on this unsatisfactory situation, nuclear resonance fluorescence experiments using linearly and circularly polarized γ-ray beams were used to determine the energy difference of the parity doublet ΔE=E(1−−E(1+=−3.2(±0.7stat(−1.2+0.6sys keV and the ratio of their integrated cross sections Is,0(+/Is,0(−=29(±3stat(−7+14sys. Shell-model calculations predict a parity-violating matrix element having a value in the range 0.46–0.83 eV for the parity doublet. The small energy difference of the parity doublet makes 20Ne an excellent candidate to study parity violation in nuclear excitations. Keywords: Parity doublet, Parity violation

  9. Gravitational waves from scalar field accretion

    International Nuclear Information System (INIS)

    Nunez, Dario; Degollado, Juan Carlos; Moreno, Claudia

    2011-01-01

    Our aim in this work is to outline some physical consequences of the interaction between black holes and scalar field halos in terms of gravitational waves. In doing so, the black hole is taken as a static and spherically symmetric gravitational source, i.e. the Schwarzschild black hole, and we work within the test field approximation, considering that the scalar field lives in the curved space-time outside the black hole. We focused on the emission of gravitational waves when the black hole is perturbed by the surrounding scalar field matter. The symmetries of the space-time and the simplicity of the matter source allow, by means of a spherical harmonic decomposition, to study the problem by means of a one-dimensional description. Some properties of such gravitational waves are discussed as a function of the parameters of the infalling scalar field, and allow us to make the conjecture that the gravitational waves carry information on the type of matter that generated them.

  10. Fundamentals of interferometric gravitational wave detectors

    CERN Document Server

    Saulson, Peter R

    2017-01-01

    LIGO's recent discovery of gravitational waves was headline news around the world. Many people will want to understand more about what a gravitational wave is, how LIGO works, and how LIGO functions as a detector of gravitational waves.This book aims to communicate the basic logic of interferometric gravitational wave detectors to students who are new to the field. It assumes that the reader has a basic knowledge of physics, but no special familiarity with gravitational waves, with general relativity, or with the special techniques of experimental physics. All of the necessary ideas are developed in the book.The first edition was published in 1994. Since the book is aimed at explaining the physical ideas behind the design of LIGO, it stands the test of time. For the second edition, an Epilogue has been added; it brings the treatment of technical details up to date, and provides references that would allow a student to become proficient with today's designs.

  11. Environmental Effects for Gravitational-wave Astrophysics

    International Nuclear Information System (INIS)

    Barausse, Enrico; Cardoso, Vitor; Pani, Paolo

    2015-01-01

    The upcoming detection of gravitational waves by terrestrial interferometers will usher in the era of gravitational-wave astronomy. This will be particularly true when space-based detectors will come of age and measure the mass and spin of massive black holes with exquisite precision and up to very high redshifts, thus allowing for better understanding of the symbiotic evolution of black holes with galaxies, and for high-precision tests of General Relativity in strong-field, highly dynamical regimes. Such ambitious goals require that astrophysical environmental pollution of gravitational-wave signals be constrained to negligible levels, so that neither detection nor estimation of the source parameters are significantly affected. Here, we consider the main sources for space-based detectors - the inspiral, merger and ringdown of massive black-hole binaries and extreme mass-ratio inspirals - and account for various effects on their gravitational waveforms, including electromagnetic fields, cosmological evolution, accretion disks, dark matter, “firewalls” and possible deviations from General Relativity. We discover that the black-hole quasinormal modes are sharply different in the presence of matter, but the ringdown signal observed by interferometers is typically unaffected. The effect of accretion disks and dark matter depends critically on their geometry and density profile, but is negligible for most sources, except for few special extreme mass-ratio inspirals. Electromagnetic fields and cosmological effects are always negligible. We finally explore the implications of our findings for proposed tests of General Relativity with gravitational waves, and conclude that environmental effects will not prevent the development of precision gravitational-wave astronomy. (paper)

  12. Parity-even and time-reversal-odd neutron optical potential in spinning matter induced by gravitational torsion

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A.N., E-mail: ivanov@kph.tuwien.ac.at [Atominstitut, Technische Universität Wien, Stadionallee 2, A-1020 Wien (Austria); Snow, W.M., E-mail: wsnow@indiana.edu [Indiana University, Bloomington, IN 47408 (United States); Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 (United States)

    2017-01-10

    Recent theoretical work has shown that spin 1/2 particles moving through unpolarized matter which sources torsion fields experience a new type of parity-even and time-reversal-odd optical potential if the matter is spinning in the lab frame. This new type of optical potential can be sought experimentally using the helicity dependence of the total cross sections for longitudinally polarized neutrons moving through a rotating cylindrical target. In combination with recent experimental constraints on short-range P-odd, T-even torsion interactions derived from polarized neutron spin rotation in matter one can derive separate constraints on the time components of scalar and pseudoscalar torsion fields in matter. We estimate the sensitivity achievable in such an experiment and briefly outline some of the potential sources of systematic error to be considered in any future experimental search for this effect.

  13. Parity-even and time-reversal-odd neutron optical potential in spinning matter induced by gravitational torsion

    Directory of Open Access Journals (Sweden)

    A.N. Ivanov

    2017-01-01

    Full Text Available Recent theoretical work has shown that spin 1/2 particles moving through unpolarized matter which sources torsion fields experience a new type of parity-even and time-reversal-odd optical potential if the matter is spinning in the lab frame. This new type of optical potential can be sought experimentally using the helicity dependence of the total cross sections for longitudinally polarized neutrons moving through a rotating cylindrical target. In combination with recent experimental constraints on short-range P-odd, T-even torsion interactions derived from polarized neutron spin rotation in matter one can derive separate constraints on the time components of scalar and pseudoscalar torsion fields in matter. We estimate the sensitivity achievable in such an experiment and briefly outline some of the potential sources of systematic error to be considered in any future experimental search for this effect.

  14. The Influence of International Parity on the Exchange Rate: Purchasing Power Parity and International Fisher Effect

    Directory of Open Access Journals (Sweden)

    Oana Mionel

    2012-02-01

    Full Text Available This article assesses the impact of the inflationand interest rates on the exchange rates.The analysis tests the relation between the inflation rate and the exchange rate by applying thePurchasing Power Parity Theory, while the relationbetween the interest rate and the inflation rate istested by applying the International Fisher EffectTheory. In order to test the Purchasing Power Paritythe study takes into account the period of time between 1990 – 2009, and the following countries –the USA, Germany, the UK, Switzerland, Canada, Japan and China. As for testing the InternationalFisher Effect Theory the period of time is the same, 1990 – 2009, but a few countries are different –the USA, Germany, the UK, Switzerland, Canada, Australia and New Zeeland. Thus, both theoriesanalyse the USA as home country.

  15. Parity violation in polarized electron scattering

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1980-10-01

    The weak forces are responsible for the decay of radioactive nuclei, and it was in these decay processes where parity non-conservation was first observed. Beta decay occurs through emission of e + or e - particles, indicating that the weak force can carry charge of both signs, and it was natural to speculate on the existence of a neutral component of the weak force. Even though weak neutral forces had not been observed it was conjectured that a neutral component of weak decay could exist, and Zel'dovich in 1957 suggested that parity violating effects may be observable in electron scattering and in atomic spectra. More than twenty years have passed since the early conjectures, and a great deal has been learned. Progress in quantum field theory led to the development of the SU(2) x U(1) gauge theory of weak and electromagnetic interactions and provided a renormalizable theory with a minimum of additional assumptions. Gauge theories predicted the existence of a new force, the neutral current interaction. This new interaction was first seen in 1973 in the Gargamelle bubble chamber at CERN. Today the neutral currents are accepted as well established, and it is the details of the neutral current structure that occupy attention. In particular the role that electrons play cannot be tested readily in neutrino beams (recent neutrino-electron scattering experiments are, however, rapidly improving this situation) and therefore interest in electron-hadron neutral current effects has been high. Parity violation is a unique signature of weak currents, and measurements of its size are a particularly important and sensitive means for determining the neutral current structure

  16. Gravitational Waves

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jonah Maxwell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-18

    This report has slides on Gravitational Waves; Pound and Rebka: A Shocking Fact; Light is a Ruler; Gravity is the Curvature of Spacetime; Gravitational Waves Made Simple; How a Gravitational Wave Affects Stuff Here; LIGO; This Detection: Neutron Stars; What the Gravitational Wave Looks Like; The Sound of Merging Neutron Stars; Neutron Star Mergers: More than GWs; The Radioactive Cloud; The Kilonova; and finally Summary, Multimessenger Astronomy.

  17. GLINT. Gravitational-wave laser INterferometry triangle

    Science.gov (United States)

    Aria, Shafa; Azevedo, Rui; Burow, Rick; Cahill, Fiachra; Ducheckova, Lada; Holroyd, Alexa; Huarcaya, Victor; Järvelä, Emilia; Koßagk, Martin; Moeckel, Chris; Rodriguez, Ana; Royer, Fabien; Sypniewski, Richard; Vittori, Edoardo; Yttergren, Madeleine

    2017-11-01

    When the universe was roughly one billion years old, supermassive black holes (103-106 solar masses) already existed. The occurrence of supermassive black holes on such short time scales are poorly understood in terms of their physical or evolutionary processes. Our current understanding is limited by the lack of observational data due the limits of electromagnetic radiation. Gravitational waves as predicted by the theory of general relativity have provided us with the means to probe deeper into the history of the universe. During the ESA Alpach Summer School of 2015, a group of science and engineering students devised GLINT (Gravitational-wave Laser INterferometry Triangle), a space mission concept capable of measuring gravitational waves emitted by black holes that have formed at the early periods after the big bang. Morespecifically at redshifts of 15 big bang) in the frequency range 0.01 - 1 Hz. GLINT design strain sensitivity of 5× 10^{-24} 1/√ { {Hz}} will theoretically allow the study of early black holes formations as well as merging events and collapses. The laser interferometry, the technology used for measuring gravitational waves, monitors the separation of test masses in free-fall, where a change of separation indicates the passage of a gravitational wave. The test masses will be shielded from disturbing forces in a constellation of three geocentric orbiting satellites.

  18. Local tests of gravitation with Gaia observations of Solar System Objects

    Science.gov (United States)

    Hees, Aurélien; Le Poncin-Lafitte, Christophe; Hestroffer, Daniel; David, Pedro

    2018-04-01

    In this proceeding, we show how observations of Solar System Objects with Gaia can be used to test General Relativity and to constrain modified gravitational theories. The high number of Solar System objects observed and the variety of their orbital parameters associated with the impressive astrometric accuracy will allow us to perform local tests of General Relativity. In this communication, we present a preliminary sensitivity study of the Gaia observations on dynamical parameters such as the Sun quadrupolar moment and on various extensions to general relativity such as the parametrized post-Newtonian parameters, the fifth force formalism and a violation of Lorentz symmetry parametrized by the Standard-Model extension framework. We take into account the time sequences and the geometry of the observations that are particular to Gaia for its nominal mission (5 years) and for an extended mission (10 years).

  19. Judging children's participatory parity from social justice and the ...

    African Journals Online (AJOL)

    This article proposes a model for judging children's participatory parity in different social spaces. The notion of participatory parity originates in Nancy Fraser's normative theory for social justice, where it concerns the participatory status of adults. What, then, constitutes participatory parity for children? How should we judge ...

  20. On spontaneous parity breaking in three-dimensional gauge-Higgs systems

    International Nuclear Information System (INIS)

    Ambjoern, J.; Farakos, K.; Shaposhnikov, M.E.

    1991-04-01

    We address the question of spontaneous breaking of parity in three-dimensional euclidian SU(2) gauge-Higgs theory by Monte Carlo simulations. We observe no sign of spontaneous parity breaking in the behaviour of local gauge invariant operators. However, the presence of parity odd terms in the action can induce a phase transition to a parity odd ground state. (orig.)

  1. Investigations on the parity of Fano resonances in photonic crystals

    DEFF Research Database (Denmark)

    Østerkryger, Andreas Dyhl; de Lasson, Jakob Rosenkrantz; Yu, Yi

    We investigate the relation between the parity of Fano resonances and field distribution in a photonic crystal structure using Fourier modal method, establishing a correlation between Fano parity and field profile.......We investigate the relation between the parity of Fano resonances and field distribution in a photonic crystal structure using Fourier modal method, establishing a correlation between Fano parity and field profile....

  2. Parity violation workshop: CEBAF [Continuous Electron Beam Accelerator Facility

    International Nuclear Information System (INIS)

    Walecka, J.D.

    1986-01-01

    This paper discusses the use of electron scattering experiments for exploring parity violation in the nuclear domain. It is shown how such experiments can test the structure of strong interactions, the local gauge theory quantum chromodynamics based on color, and the unified gauge theory of electroweak interactions. 14 refs., 13 figs., 1 tab

  3. Gravitational perturbation theory and synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, R A [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany). Inst. fuer Astrophysik

    1975-01-01

    This article presents methods and results for a gravitational perturbation theory which treats massless fields as linearized perturbations of an arbitrary gravitational vacuum background spacetime. The formalism is outlined for perturbations of type (22) spacetimes. As an application, high-frequency radiation emitted by particles moving approximately on relativistic circular geodesic orbits is computed. More precisely, the test particle assumption is made; throughout it is therefore assumed that the reaction of the radiation on the particle motion is negligible. In particular, these orbits are studied in the gravitational field of a spherically symmetric (Schwarzschild-) black hole as well as of a rotating (Kerr-) black hole. In this model, the outgoing radiation is highly focussed and of much higher fequency than the orbital frequency, i.e. one is dealing with 'gravitational synchrotron radiation'.

  4. Iron-Based Superconductors as Odd-Parity Superconductors

    Directory of Open Access Journals (Sweden)

    Jiangping Hu

    2013-07-01

    Full Text Available Parity is a fundamental quantum number used to classify a state of matter. Materials rarely possess ground states with odd parity. We show that the superconducting state in iron-based superconductors is classified as an odd-parity s-wave spin-singlet pairing state in a single trilayer FeAs/Se, the building block of the materials. In a low-energy effective model constructed on the Fe square bipartite lattice, the superconducting order parameter in this state is a combination of an s-wave normal pairing between two sublattices and an s-wave η pairing within the sublattices. The state has a fingerprint with a real-space sign inversion between the top and bottom As/Se layers. The results suggest that iron-based superconductors are a new quantum state of matter, and the measurement of the odd parity can help to establish high-temperature superconducting mechanisms.

  5. NONLINEAR GRAVITATIONAL-WAVE MEMORY FROM BINARY BLACK HOLE MERGERS

    International Nuclear Information System (INIS)

    Favata, Marc

    2009-01-01

    Some astrophysical sources of gravitational waves can produce a 'memory effect', which causes a permanent displacement of the test masses in a freely falling gravitational-wave detector. The Christodoulou memory is a particularly interesting nonlinear form of memory that arises from the gravitational-wave stress-energy tensor's contribution to the distant gravitational-wave field. This nonlinear memory contributes a nonoscillatory component to the gravitational-wave signal at leading (Newtonian-quadrupole) order in the waveform amplitude. Previous computations of the memory and its detectability considered only the inspiral phase of binary black hole coalescence. Using an 'effective-one-body' (EOB) approach calibrated to numerical relativity simulations, as well as a simple fully analytic model, the Christodoulou memory is computed for the inspiral, merger, and ringdown. The memory will be very difficult to detect with ground-based interferometers, but is likely to be observable in supermassive black hole mergers with LISA out to redshifts z ∼< 2. Detection of the nonlinear memory could serve as an experimental test of the ability of gravity to 'gravitate'.

  6. Do Firms Believe in Interest Rate Parity?

    OpenAIRE

    Matthew R. McBrady; Sandra Mortal; Michael J. Schill

    2010-01-01

    Using a broad sample of international corporate bond offerings, we provide evidence that corporate borrowers make opportunistic currency choices, in that they denominate the currency of their bonds in a manner that is inconsistent with a belief in either covered or uncovered interest rate parity. Using firm-level tests, we identify a number of characteristics of firms that engage in opportunistic behavior. We observe that large issuers located in developed markets with investment-grade rating...

  7. The Impact of Structural Break(s on the Validity of Purchasing Power Parity in Turkey: Evidence from Zivot-Andrews and Lagrange Multiplier Unit Root Tests

    Directory of Open Access Journals (Sweden)

    Hakan Kum

    2012-01-01

    Full Text Available This study examines the validity of the purchasing power parity (PPP in Turkey for annual data from 1953 to 2009. While results from both the ADF unit root and the DF-GLS unit root test indicate mixed results, PPP holds for Turkey with the presence of structural breaks which are obtained by Zivot and Andrews and Lagrange Multiplier unit root tests.

  8. Grid parity: the quest for the Grail

    International Nuclear Information System (INIS)

    Bahjejian, L.

    2012-01-01

    The cost of photovoltaic systems is decreasing and the price of electrical power is increasing, so at one moment the 2 curves will meet and at that moment there will be grid parity, it means that the photovoltaic power will be as competitive as other energies and will need no more subsidies. In Denmark the electricity is so expensive that the grid parity has already been reached and photovoltaic power is developing there on the basis of net metering. According to the EPIA (European Association for Photovoltaic Industry), France, Germany, Italy, Spain and United-Kingdom will reach grid parity by 2020. (A.C.)

  9. Poincare gauge theory of gravity: Friedman cosmology with even and odd parity modes: Analytic part

    International Nuclear Information System (INIS)

    Baekler, Peter; Hehl, Friedrich W.; Nester, James M.

    2011-01-01

    We propose a cosmological model in the framework of the Poincare gauge theory of gravity (PG). The gravitational Lagrangian is quadratic in both curvature and torsion. In our specific model, the Lagrangian contains (i) the curvature scalar R and the curvature pseudoscalar X linearly and quadratically (including an RX term) and (ii) pieces quadratic in the torsion vector V and the torsion axial vector A (including a VA term). We show generally that in quadratic PG models we have nearly the same number of parity conserving terms ('world') and of parity violating terms ('shadow world'). This offers new perspectives in cosmology for the coupling of gravity to matter and antimatter. Our specific model generalizes the fairly realistic ''torsion cosmologies'' of Shie-Nester-Yo (2008) and Chen et al. (2009). With a Friedman type ansatz for an orthonormal coframe and a Lorentz connection, we derive the two field equations of PG in an explicit form and discuss their general structure in detail. In particular, the second field equation can be reduced to first order ordinary differential equations for the curvature pieces R(t) and X(t). Including these along with certain relations obtained from the first field equation and curvature definitions, we present a first order system of equations suitable for numerical evaluation. This is deferred to the second, numerical part of this paper.

  10. Leptogenesis from R parity non-conservation

    Energy Technology Data Exchange (ETDEWEB)

    Hambye, T. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati, RM (Italy); Ma, E. [Riverside Univ. of California, Riverside, CA (United States). Dept. of Physics; Sarkar, U. [Physical Research Laboratory, Ahmedabad (India)

    2000-07-01

    It is known that realistic neutrino masses for neutrino oscillations may be obtained from R parity nonconserving supersymmetry. It is also known that such interactions would erase any preexisting lepton or baryon asymmetry of the Universe because of the inevitable intervention of the electroweak sphalerons. It is showed how a crucial subset of these R parity nonconserving terms may in fact create its own successful leptogenesis.

  11. Leptogenesis from R parity non-conservation

    International Nuclear Information System (INIS)

    Hambye, T.; Ma, E.

    2000-01-01

    It is known that realistic neutrino masses for neutrino oscillations may be obtained from R parity nonconserving supersymmetry. It is also known that such interactions would erase any preexisting lepton or baryon asymmetry of the Universe because of the inevitable intervention of the electroweak sphalerons. It is showed how a crucial subset of these R parity nonconserving terms may in fact create its own successful Leptogenesis

  12. Stochastic Background of Relic Scalar Gravitational Waves tuned by Extended Gravity

    International Nuclear Information System (INIS)

    De Laurentis, Mariafelicia; Capozziello, Salvatore

    2009-01-01

    A stochastic background of relic gravitational waves is achieved by the so called adiabatically-amplified zero-point fluctuations process derived from early inflation. It provides a distinctive spectrum of relic gravitational waves. In the framework of scalar-tensor gravity, we discuss the scalar modes of gravitational waves and the primordial production of this scalar component which is generated beside tensorial one. Then analyze seven different viable f(R)-gravities towards the Solar System tests and stochastic gravitational waves background. It is demonstrated that seven viable f(R)-gravities under consideration not only satisfy the local tests, but additionally, pass the above PPN-and stochastic gravitational waves bounds for large classes of parameters.

  13. PENENTUAN NILAI TUKAR: PENGUJIAN PURCHASING POWER PARITY DI INDONESIA

    Directory of Open Access Journals (Sweden)

    Sri Yani Kusumastuti

    2016-11-01

    PPP to data drawn from the period 1969.1 through 2001.4. The tests are also run for sub-periods. Symmetry and proportionality restrictions find little support for the unit root tests though the Johansen test suggests that foreign exchange rate and inflation rate are linked in a long run sense. Error correction models are then estimated on the basis of the assumption that the United States inflation rate is exogenous. The error correction models result also rejects the PPP. Keywords: purchasing power parity, exchage rate

  14. Local Strategy Improvement for Parity Game Solving

    Directory of Open Access Journals (Sweden)

    Oliver Friedmann

    2010-06-01

    Full Text Available The problem of solving a parity game is at the core of many problems in model checking, satisfiability checking and program synthesis. Some of the best algorithms for solving parity game are strategy improvement algorithms. These are global in nature since they require the entire parity game to be present at the beginning. This is a distinct disadvantage because in many applications one only needs to know which winning region a particular node belongs to, and a witnessing winning strategy may cover only a fractional part of the entire game graph. We present a local strategy improvement algorithm which explores the game graph on-the-fly whilst performing the improvement steps. We also compare it empirically with existing global strategy improvement algorithms and the currently only other local algorithm for solving parity games. It turns out that local strategy improvement can outperform these others by several orders of magnitude.

  15. Nonlinear parity readout with a microwave photodetector

    Science.gov (United States)

    Schöndorf, M.; Wilhelm, F. K.

    2018-04-01

    Robust high-fidelity parity measurement is an important operation in many applications of quantum computing. In this work we show how in a circuit QED architecture, one can measure parity in a single shot at very high contrast by taking advantage of the nonlinear behavior of a strongly driven microwave cavity coupled to one or multiple qubits. We work in a nonlinear dispersive regime treated in an exact dispersive transformation. We show that appropriate tuning of experimental parameters leads to very high contrast in the cavity and therefore to a high-efficiency parity readout with a microwave photon counter or another amplitude detector. These tuning conditions are based on nonlinearity and are hence more robust than previously described linear tuning schemes. In the first part of the paper we show in detail how to achieve this for two-qubit parity measurements and extend this to N qubits in the second part of the paper. We also study the quantum nondemolition character of the protocol.

  16. Constraints of a Parity-Conserving Interaction

    Science.gov (United States)

    van Oers, Willem T. H.

    2002-09-01

    Time-Reversal-Invariance non-conservation has for the first time been unequivocally demonstrated in a direct measurement at CPLEAR. One then can ask the question: What about tests of time-reversal-invariance in systems other than the kaon system? Tests of time-reversal-invariance can be distinguished as belonging to two classes: the first one deals with time-reversal-invariance-non-conserving (T-odd)/parity violating (P-odd) interactions, while the second one deals with T-odd/P-even interactions (assuming CPT conservation this implies C-conjugation non-conservation). Limits on a T-odd/P-odd interaction follow from measurements of the electric dipole moment of the neutron (room for further experimentation?

  17. Tests of conservation laws

    International Nuclear Information System (INIS)

    Goldhaber, M.

    1988-01-01

    For quite a while it has been realized that some discrete quantum numbers are conserved in some interactions but not in others. The most conspicuous cases are parity P, charge conjugation C, and the product CP which are conserved in strong and electromagnetic interactions but not in weak interactions. The question arises whether for some of the other conserved quantities, which are conserved in strong, electromagnetic and weak interactions, there is an interaction intermediate in strength between weak and gravitational which violates these quantum numbers, e.g., baryon number B and lepton number L. The possibility exists that these conservation laws, if they are broken at all, are only broken by the gravitational force which would make the mass of an intermediate boson which induces the break-down equal to the Planck mass. (orig.)

  18. Scattering of spinning test particles by gravitational plane waves

    International Nuclear Information System (INIS)

    Bini, D.; Gemelli, G.

    1997-01-01

    The authors study the motion of spinning particles in the gravitational plane-wave background and discuss particular solutions under a suitable choice of supplementary conditions. An analysis of the discontinuity of the motion across the wavefront is presented too

  19. Can R-parity violation hide vanilla supersymmetry at the LHC?

    International Nuclear Information System (INIS)

    Asano, Masaki

    2012-09-01

    Current experimental constraints on a large parameter space in supersymmetric models rely on the large missing energy signature. This is usually provided by the lightest neutralino which stability is ensured by the R-parity. However, if the R-parity is violated, the lightest neutralino decays into the standard model particles and the missing energy cut is not efficient anymore. In particular, the UDD type R-parity violation induces the neutralino decay to three quarks which potentially leads to the most difficult signal to be searched at hadron colliders. In this paper, we study the constraints on the R-parity violating supersymmetric models using a same-sign dilepton and a multijet signatures. We show that the gluino and squarks lighter than a TeV are already excluded in constrained minimal supersymmetric standard model with R-parity violation if their masses are approximately equal. We also analyze constraints in a simplified model with R-parity violation. We compare how R-parity violation changes some of the observables typically used to distinguish a supersymmetric signal from standard model backgrounds.

  20. Can R-parity violation hide vanilla supersymmetry at the LHC?

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Masaki [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Rolbiecki, Krzysztof; Sakurai, Kazuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-09-15

    Current experimental constraints on a large parameter space in supersymmetric models rely on the large missing energy signature. This is usually provided by the lightest neutralino which stability is ensured by the R-parity. However, if the R-parity is violated, the lightest neutralino decays into the standard model particles and the missing energy cut is not efficient anymore. In particular, the UDD type R-parity violation induces the neutralino decay to three quarks which potentially leads to the most difficult signal to be searched at hadron colliders. In this paper, we study the constraints on the R-parity violating supersymmetric models using a same-sign dilepton and a multijet signatures. We show that the gluino and squarks lighter than a TeV are already excluded in constrained minimal supersymmetric standard model with R-parity violation if their masses are approximately equal. We also analyze constraints in a simplified model with R-parity violation. We compare how R-parity violation changes some of the observables typically used to distinguish a supersymmetric signal from standard model backgrounds.

  1. Parity violation in two-nucleon systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.-P., E-mail: cpliu@mail.ndhu.edu.tw [National Dong Hwa University, Department of Physics (China)

    2013-03-15

    Nuclear few-body systems become attractive avenues for the study of low-energy parity violation because experiments start to meet the precision requirements and theoretical calculations can be performed reliably. In this talk, an attempt of parametrizing low-energy parity-violating observables by the Danilov parameters will be introduced. Analyses of two-nucleon observables, based on the modern phenomenological potentials or the one of effective field theory, will be discussed.

  2. On gravitational wave energy in Einstein gravitational theory

    International Nuclear Information System (INIS)

    Folomeshkin, V.N.; Vlasov, A.A.

    1978-01-01

    By the example of precise wave solutions for the Einstein equations it is shown that a standard commonly adopted formulation of energy-momentum problem with pseudotensors provides us either with a zero or sign-variable values for the energy of gravitational waves. It is shown that if in the Einstein gravitational theory a strict transition to the limits of weak fields is realised then the theory gives us an unambiguous zero result for weak gravitational waves. The well-known non-zero result arises due to incorrect transition to weak field approximation in the Einstein gravitation theory

  3. Magic state parity-checker with pre-distilled components

    Directory of Open Access Journals (Sweden)

    Earl T. Campbell

    2018-03-01

    Full Text Available Magic states are eigenstates of non-Pauli operators. One way of suppressing errors present in magic states is to perform parity measurements in their non-Pauli eigenbasis and postselect on even parity. Here we develop new protocols based on non-Pauli parity checking, where the measurements are implemented with the aid of pre-distilled multiqubit resource states. This leads to a two step process: pre-distillation of multiqubit resource states, followed by implementation of the parity check. These protocols can prepare single-qubit magic states that enable direct injection of single-qubit axial rotations without subsequent gate-synthesis and its associated overhead. We show our protocols are more efficient than all previous comparable protocols with quadratic error reduction, including the protocols of Bravyi and Haah.

  4. Hunting for dark particles with gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Giudice, Gian F.; McCullough, Matthew; Urbano, Alfredo [CERN, Theoretical Physics Department,Geneva (Switzerland)

    2016-10-03

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking’s area theorem.

  5. Hunting for Dark Particles with Gravitational Waves

    Science.gov (United States)

    Giudice, Gian F.

    2017-12-01

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking's area theorem.

  6. Hunting for dark particles with gravitational waves

    International Nuclear Information System (INIS)

    Giudice, Gian F.; McCullough, Matthew; Urbano, Alfredo

    2016-01-01

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking’s area theorem.

  7. Hunting for Dark Particles with Gravitational Waves

    CERN Document Server

    Giudice, Gian F.; Urbano, Alfredo

    2016-01-01

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking's area theorem.

  8. Odd-parity light baryon resonances

    International Nuclear Information System (INIS)

    Gamermann, D.; Garcia-Recio, C.; Salcedo, L. L.; Nieves, J.

    2011-01-01

    We use a consistent SU(6) extension of the meson-baryon chiral Lagrangian within a coupled channel unitary approach in order to calculate the T matrix for meson-baryon scattering in the s wave. The building blocks of the scheme are the π and N octets, the ρ nonet and the Δ decuplet. We identify poles in this unitary T matrix and interpret them as resonances. We study here the nonexotic sectors with strangeness S=0, -1, -2, -3 and spin J=(1/2), (3/2) and (5/2). Many of the poles generated can be associated with known N, Δ, Σ, Λ, Ξ and Ω resonances with negative parity. We show that most of the low-lying three and four star odd-parity baryon resonances with spin (1/2) and (3/2) can be related to multiplets of the spin-flavor symmetry group SU(6). This study allows us to predict the spin-parity of the Ξ(1620), Ξ(1690), Ξ(1950), Ξ(2250), Ω(2250) and Ω(2380) resonances, which have not been determined experimentally yet.

  9. Association of secondary sex ratio with smoking and parity.

    Science.gov (United States)

    Beratis, Nicholas G; Asimacopoulou, Aspasia; Varvarigou, Anastasia

    2008-03-01

    To assess the sex ratio in offspring of smoking and nonsmoking mothers in relationship to parity. Prospective study. University hospital. The authors studied 2,108 term singleton neonates born between 1993 and 2002, 665 from smoking mothers and 1,443 from nonsmoking mothers. A prospective recording of maternal age, parity and smoking status, and gender of neonates delivered over a 10-year period. Secondary sex ratio in regard to maternal smoking and parity. The offspring sex ratio in the total sample studied was 1.09; in the offspring of smoking and nonsmoking mothers, it was 1.26 and 1.03, respectively, a statistically significant difference. In the offspring of smoking women who had parity 1, 2, and >or=3, it was 1.47, 1.35, and 0.92, whereas in those of nonsmoking women, it was 1.04, 1.00, and 1.03, respectively (the differences of the parity 1 and 2 groups between the offspring of smoking and nonsmoking mothers were statistically significant). Logistic regression analysis showed that the possibility of a boy being delivered by a mother who smoked was significantly greater in primiparous women than in women who had parity >or=3, independent of the maternal age. Conversely, parity did not affect significantly the sex ratio in the offspring of nonsmoking women. The findings suggest that among women who smoked, significantly more male than female offspring are born from primiparous women, whereas women who had parity >or=3 gave birth to more female offspring; biparous women give birth to significantly more male offspring, but the offspring sex ratio declined with the number of cigarettes when the mothers smoked >or=10 cigarettes per day.

  10. Relativistic gravitation theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1984-01-01

    On the basis of the special relativity and geometrization principle a relativistic gravitation theory (RGT) is unambiguously constructed with the help of a notion of a gravitational field as a physical field in Faraday-Maxwell spirit, which posesses energy momentum and spins 2 and 0. The source of gravitation field is a total conserved energy-momentum tensor for matter and for gravitation field in Minkowski space. In the RGT conservation laws for the energy momentum and angular momentum of matter and gravitational field hold rigorously. The theory explains the whole set of gravitation experiments. Here, due to the geometrization principle the Riemannian space is of a field origin since this space arises effectively as a result of the gravitation field origin since this space arises effectively as a result of the gravitation field action on the matter. The RGT astonishing prediction is that the Universe is not closed but ''flat''. It means that in the Universe there should exist a ''missing'' mass in some form of matter

  11. Demonstration of a Sensitive Method to Measure Nuclear-Spin-Dependent Parity Violation

    Science.gov (United States)

    Altuntaş, Emine; Ammon, Jeffrey; Cahn, Sidney B.; DeMille, David

    2018-04-01

    Nuclear-spin-dependent parity violation (NSD-PV) effects in atoms and molecules arise from Z0 boson exchange between electrons and the nucleus, and from the magnetic interaction between electrons and the parity-violating nuclear anapole moment. We demonstrate measurements of NSD-PV that use an enhancement of the effect in diatomic molecules, here using the test system 138Ba 19. Our sensitivity surpasses that of any previous atomic parity violation measurement. We show that systematic errors can be suppressed to at least the level of the present statistical sensitivity. We measure the matrix element W of the NSD-PV interaction with total uncertainty δ W /(2 π )<0.7 Hz , for each of two configurations where W must have different signs. This sensitivity would be sufficient to measure NSD-PV effects of the size anticipated across a wide range of nuclei including 137Ba in 137BaF, where |W |/(2 π )≈5 Hz is expected.

  12. Gravitational Waves and Dark Energy

    Directory of Open Access Journals (Sweden)

    Peter L. Biermann

    2014-12-01

    Full Text Available The idea that dark energy is gravitational waves may explain its strength and its time-evolution. A possible concept is that dark energy is the ensemble of coherent bursts (solitons of gravitational waves originally produced when the first generation of super-massive black holes was formed. These solitons get their initial energy as well as keep up their energy density throughout the evolution of the universe by stimulating emission from a background, a process which we model by working out this energy transfer in a Boltzmann equation approach. New Planck data suggest that dark energy has increased in strength over cosmic time, supporting the concept here. The transit of these gravitational wave solitons may be detectable. Key tests include pulsar timing, clock jitter and the radio background.

  13. Can the Sun shed light on neutrino gravitational interactions?

    International Nuclear Information System (INIS)

    Halprin, A.; Leung, C.N.

    1991-01-01

    We have examined the effects of a large gravitational field on the phenomenon of neutrino oscillations as contemplated in the Mikheyev-Smirnov-Wolfenstein mechanism. We find that the Sun's gravitational field would amplify any small breakdown in the universality of the gravitational coupling by many orders of magnitude. A breakdown of only 1 part in 10 14 would still make the gravitational effect comparable to the conventional weak interaction. The differing energy dependences of the two level-crossing mechanisms can therefore be used as a very sensitive tool to test the conventional universality hypothesis

  14. Japanese space gravitational wave antenna DECIGO and DPF

    Science.gov (United States)

    Musha, Mitsuru

    2017-11-01

    The gravitational wave detection will open a new gravitational wave astronomy, which gives a fruitful insight about early universe or birth and death of stars. In order to detect gravitational wave, we planed a space gravitational wave detector, DECIGO (DECi-heltz Interferometer Gravitational wave Observatory), which consists of three drag-free satellites forming triangle shaped Fabry-Perot laser interferometer with the arm length of 1000 km, and whose strain sensitivity is designed to be 2x10-24 /√Hz around 0.1 Hz. Before launching DECIGO around 2030, a milestone mission named DECIGO pathfinder (DPF) is planed to be launched whose main purpose is the feasibility test of the key technologies for DECIGO. In the present paper, the conceptual design and current status of DECIGO and DPF are reviewed.

  15. No parity anomaly in massless QED{sub 3}: A BPHZL approach

    Energy Technology Data Exchange (ETDEWEB)

    Del Cima, O.M. [Universidade Federal Fluminense (UFF), Polo Universitario de Rio das Ostras (PURO), Departamento de Ciencia e Tecnologia, Rua Recife s/n, 28890-000, Rio das Ostras, RJ (Brazil)], E-mail: wadodelcima@if.uff.br; Franco, D.H.T. [Universidade Federal de Vicosa (UFV), Departamento de Fisica - Campus Universitario, Avenida Peter Henry Rolfs s/n, 36570-000, Vicosa, MG (Brazil)], E-mail: dhtfranco@gmail.com; Piguet, O. [Universidade Federal do Espirito Santo (UFES), CCE, Departamento de Fisica, Campus Universitario de Goiabeiras, 29060-900, Vitoria, ES (Brazil)], E-mail: opiguet@pq.cnpq.br; Schweda, M. [Institut fuer Theoretische Physik, Technische Universitaet Wien (TU-Wien), Wiedner Hauptstrasse 8-10, A-1040, Vienna (Austria)], E-mail: mschweda@tph.tuwien.ac.at

    2009-09-14

    In this Letter we call into question the perturbatively parity breakdown at 1-loop for the massless QED{sub 3} frequently claimed in the literature. As long as perturbative quantum field theory is concerned, whether a parity anomaly owing to radiative corrections exists or not shall be definitely proved by using a renormalization method independent of any regularization scheme. Such a problem has been investigated in the framework of BPHZL renormalization method, by adopting the Lowenstein-Zimmermann subtraction scheme. The 1-loop parity-odd contribution to the vacuum-polarization tensor is explicitly computed in the framework of the BPHZL renormalization method. It is shown that a Chern-Simons term is generated at that order induced through the infrared subtractions - which violate parity. We show then that, what is called 'parity anomaly', is in fact a parity-odd counterterm needed for restauring parity.

  16. Weak NNM couplings and nuclear parity violation

    International Nuclear Information System (INIS)

    Holstein, B.R.

    1987-01-01

    After many years of careful theoretical and experimental study of nuclear parity violation, rough empirical values for weak parity violation nucleon-nucleon-meson vertices have been deduced. We address some of the physics which has been learned from this effort and show that it has implications for work going on outside this field. (author)

  17. Parity violating nuclear force by meson mixing

    International Nuclear Information System (INIS)

    Iqbal, M.J.; Niskanen, J.A.

    1990-01-01

    We study a mechanism for parity violation in the two nucleon meson-exchange interaction by way of the mixing of mesons of opposite parities. This mixing arises from parity violating W ± and Z exchange between the q bar q pair in the meson. Numerically its effect turns out to be as important as vector meson exchange with a weak meson-nucleon vertex and may partly be used to model this vertex. The calculation is performed using both the standard Born approximation adding the amplitude phases by Watson's theorem and also using the exact correlated two-nucleon wave functions. The effect of correlations and form factors is found to be crucially important at intermediate energies

  18. Identification of new negative-parity levels in 152,154Nd

    International Nuclear Information System (INIS)

    Zhang, X.Q.; Hamilton, J.H.; Ramayya, A.V.; Peker, L.K.; Hwang, J.K.; Jones, E.F.; Komicki, J.; Beyer, C.J.; Gore, P.M.; Babu, B.R.; Ginter, T.N.; Ter-Akopian, G.M.; Daniel, A.V.; Asztalos, S.J.; Chu, S.Y.; Gregorich, K.E.; Lee, I.Y.; Macchiavelli, A.O.; Macleod, R.W.; Rasmussen, J.O.; Gilat, J.; Ter-Akopian, G.M.; Oganessian, Y.T.; Daniel, A.V.; Ter-Akopian, G.M.; Daniel, A.V.; Ma, W.C.; Varmette, P.G.; Cole, J.D.; Aryaeinejad, R.; Butler-Moore, K.; Dardenne, Y.X.; Drigert, M.W.; Stoyer, M.A.; Wild, J.F.; Becker, J.A.; Bernstein, L.A.; Lougheed, R.W.; Moody, K.J.; Donangelo, R.; Prussin, S.G.; Griffin, H.C.

    1998-01-01

    From an experiment with Gammasphere and a 252 Cf spontaneous fission source, a new negative-parity band in 154 Nd and new negative-parity levels in 152 Nd were identified and the yrast bands were extended to 18 + in 154 Nd and 20 + in 152 Nd in a triple gamma coincidence study. These new negative-parity bands are consistent with octupole vibrational mode. There is a constant difference as a function of spin between the J 1 values for the negative-parity band in 152 Nd and J 1 for the similar negative-parity band in 154 Nd, however, their J 2 values are essentially identical. These bands indicate a new kind of identical band. copyright 1998 The American Physical Society

  19. Testing the gravitational interaction in the field of the Earth via satellite laser ranging and the Laser Ranged Satellites Experiment (LARASE)

    International Nuclear Information System (INIS)

    Lucchesi, D M; Peron, R; Visco, M; Anselmo, L; Pardini, C; Bassan, M; Pucacco, G

    2015-01-01

    In this work, the Laser Ranged Satellites Experiment (LARASE) is presented. This is a research program that aims to perform new refined tests and measurements of gravitation in the field of the Earth in the weak field and slow motion (WFSM) limit of general relativity (GR). For this objective we use the free available data relative to geodetic passive satellite lasers tracked from a network of ground stations by means of the satellite laser ranging (SLR) technique. After a brief introduction to GR and its WFSM limit, which aims to contextualize the physical background of the tests and measurements that LARASE will carry out, we focus on the current limits of validation of GR and on current constraints on the alternative theories of gravity that have been obtained with the precise SLR measurements of the two LAGEOS satellites performed so far. Afterward, we present the scientific goals of LARASE in terms of upcoming measurements and tests of relativistic physics. Finally, we introduce our activities and we give a number of new results regarding the improvements to the modelling of both gravitational and non-gravitational perturbations to the orbit of the satellites. These activities are a needed prerequisite to improve the forthcoming new measurements of gravitation. An innovation with respect to the past is the specialization of the models to the LARES satellite, especially for what concerns the modelling of its spin evolution, the neutral drag perturbation and the impact of Earth's solid tides on the satellite orbit. (paper)

  20. Parity anomalies in gauge theories in 2 + 1 dimensions

    International Nuclear Information System (INIS)

    Rao, S.; Yahalom, R.

    1986-01-01

    We show that the introduction of massless fermions in an abelian gauge theory in 2+1 dimensions does not lead to any parity anomaly despite a non-commutativity of limits in the structure function of the odd part of the vacuum polarization tensor. However, parity anomaly does exist in non-abelian theories due to a conflict between gauge invariance under large gauge transformations and the parity symmetry. 6 refs

  1. Little Higgs models and T parity

    International Nuclear Information System (INIS)

    Perelstein, Maxim

    2006-01-01

    Little Higgs models are an interesting extension of the standard model at the TeV scale. They provide a simple and attractive mechanism of electroweak symmetry breaking. We review one of the simplest models of this class, the littlest Higgs model, and its extension with T parity. The model with T parity satisfies precision electroweak constraints without fine-tuning, contains an attractive dark matter candidate, and leads to interesting phenomenology at the Large Hadron Collider (LHC). (author)

  2. Gravitational Waves from Oscillons with Cuspy Potentials.

    Science.gov (United States)

    Liu, Jing; Guo, Zong-Kuan; Cai, Rong-Gen; Shiu, Gary

    2018-01-19

    We study the production of gravitational waves during oscillations of the inflaton around the minimum of a cuspy potential after inflation. We find that a cusp in the potential can trigger copious oscillon formation, which sources a characteristic energy spectrum of gravitational waves with double peaks. The discovery of such a double-peak spectrum could test the underlying inflationary physics.

  3. Gravitational Waves from a Dark Phase Transition.

    Science.gov (United States)

    Schwaller, Pedro

    2015-10-30

    In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early Universe, which could lead to a detectable gravitational wave signal. We summarize the basic conditions for a strong first order phase transition for SU(N) dark sectors with n_{f} flavors, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes the twin Higgs and strongly interacting massive particle models as well as symmetric and asymmetric composite dark matter scenarios.

  4. Parity asymmetric boost invariant plasma in AdS/CFT correspondence

    International Nuclear Information System (INIS)

    Yee, Ho-Ung

    2009-06-01

    We consider a simple extension to the previously found gravity solution corresponding to a boost invariant Bjorken plasma, by allowing components that are asymmetric under parity flipping of the spacetime rapidity. Besides the question whether this may have a realization in collisions of different species of projectiles, such as lead-gold collision, our new time-dependent gravity background can serve as a test ground for the recently proposed second order conformal viscous hydrodynamics. We find that non-trivial parity-asymmetric effects start to appear at second order in late time expansion, and we map the corresponding energy-momentum tensor to the second order conformal hydrodynamics to find certain second order transport coefficients. Our results are in agreement with the previous results in literature, giving one more corroborative evidence for the validity of the framework. (author)

  5. The Boulder measurement of parity violation and an anapole moment in cesium

    International Nuclear Information System (INIS)

    Cho, D.; Wood, C.S.; Bennett, S.C.; Roberts, J.L.; Masterson, B.P.; Tanner, C.E.; Wieman, C.E.

    1999-01-01

    The amplitude of the parity-nonconserving transition between the 6S and 7S states of cesium was precisely measured with the use of a spin-polarized atomic beam. This measurement gives Im(E1 pnc )/β = - 1.5935(56) milli-volts per centimeter and provides an improved test of the standard model at low energy, including a value for the S parameter of -1.3(3) exp (11) theory . The nuclear spin-dependent contributions was 0.077(11) milli-volts per centimeter, this contribution is a manifestation of parity violation in atomic nuclei and is a measurement of the long-sought anapole moment. (authors)

  6. Foundations of gravitation theory: the principle of equivalence

    International Nuclear Information System (INIS)

    Haugan, M.P.

    1978-01-01

    A new framework is presented within which to discuss the principle of equivalence and its experimental tests. The framework incorporates a special structure imposed on the equivalence principle by the principle of energy conservation. This structure includes relations among the conceptual components of the equivalence principle as well as quantitative relations among the outcomes of its experimental tests. One of the most striking new results obtained through use of this framework is a connection between the breakdown of local Lorentz invariance and the breakdown of the principle that all bodies fall with the same acceleration in a gravitational field. An extensive discussion of experimental tests of the equivalence principle and their significance is also presented. Within the above framework, theory-independent analyses of a broad range of equivalence principle tests are possible. Gravitational redshift experiments. Doppler-shift experiments, the Turner-Hill and Hughes-Drever experiments, and a number of solar-system tests of gravitation theories are analyzed. Application of the techniques of theoretical nuclear physics to the quantitative interpretation of equivalence principle tests using laboratory materials of different composition yields a number of important results. It is found that current Eotvos experiments significantly demonstrate the compatibility of the weak interactions with the equivalence principle. It is also shown that the Hughes-Drever experiment is the most precise test of local Lorentz invariance yet performed. The work leads to a strong, tightly knit empirical basis for the principle of equivalence, the central pillar of the foundations of gravitation theory

  7. Noise-tolerant parity learning with one quantum bit

    Science.gov (United States)

    Park, Daniel K.; Rhee, June-Koo K.; Lee, Soonchil

    2018-03-01

    Demonstrating quantum advantage with less powerful but more realistic devices is of great importance in modern quantum information science. Recently, a significant quantum speedup was achieved in the problem of learning a hidden parity function with noise. However, if all data qubits at the query output are completely depolarized, the algorithm fails. In this work, we present a quantum parity learning algorithm that exhibits quantum advantage as long as one qubit is provided with nonzero polarization in each query. In this scenario, the quantum parity learning naturally becomes deterministic quantum computation with one qubit. Then the hidden parity function can be revealed by performing a set of operations that can be interpreted as measuring nonlocal observables on the auxiliary result qubit having nonzero polarization and each data qubit. We also discuss the source of the quantum advantage in our algorithm from the resource-theoretic point of view.

  8. Gravitational effects in field gravitation theory

    International Nuclear Information System (INIS)

    Denisov, V.I.; Logunov, A.A.; Mestvirishvili, M.A.; Vlasov, A.A.

    1979-01-01

    The possibilities to describe various gravitation effects of field gravitation theory (FGT) are considered. Past-Newtonian approximation of the FGT has been constructed and on the basis of this approximation it has been shown that the field theory allows one to describe the whole set of experimental facts. The comparison of post-Newtonian parameters in FGT with those in the Einstein's theory makes it clear that these two; theories are undistinguishable from the viewpoint of any experiments, realized with post-Newtonian accuracy. Gravitational field of an island type source with spherically symmetrical distribution of matter and unstationary homogeneous model of Universe, which allows to describe the effect of cosmological red shift, are considered

  9. Parity-Time Symmetric Photonics

    KAUST Repository

    Zhao, Han; Feng, Liang

    2018-01-01

    The establishment of non-Hermitian quantum mechanics (such as parity-time (PT) symmetry) stimulates a paradigmatic shift for studying symmetries of complex potentials. Owing to the convenient manipulation of optical gain and loss in analogy

  10. Testing general relativity using Bayesian model selection: Applications to observations of gravitational waves from compact binary systems

    International Nuclear Information System (INIS)

    Del Pozzo, Walter; Veitch, John; Vecchio, Alberto

    2011-01-01

    Second-generation interferometric gravitational-wave detectors, such as Advanced LIGO and Advanced Virgo, are expected to begin operation by 2015. Such instruments plan to reach sensitivities that will offer the unique possibility to test general relativity in the dynamical, strong-field regime and investigate departures from its predictions, in particular, using the signal from coalescing binary systems. We introduce a statistical framework based on Bayesian model selection in which the Bayes factor between two competing hypotheses measures which theory is favored by the data. Probability density functions of the model parameters are then used to quantify the inference on individual parameters. We also develop a method to combine the information coming from multiple independent observations of gravitational waves, and show how much stronger inference could be. As an introduction and illustration of this framework-and a practical numerical implementation through the Monte Carlo integration technique of nested sampling-we apply it to gravitational waves from the inspiral phase of coalescing binary systems as predicted by general relativity and a very simple alternative theory in which the graviton has a nonzero mass. This method can (and should) be extended to more realistic and physically motivated theories.

  11. Parity nonconservation and nuclear polarizabilities

    International Nuclear Information System (INIS)

    Haxton, W.

    1990-01-01

    The hadronic weak interaction contributes to parity nonconserving observables in semileptonic interactions. Weak nuclear polarizabilities are frequently important in such interactions. Some of the interesting physics is illustrated by 18 F, a nucleus that provides an important constraint on the neutral weak hadronic current. One observable where the nuclear polarizability is expected to dominate is the nuclear anapole moment. The long-range pion contribution to this weak radiative correction is explored for both nucleons and nuclei. Similar polarizabilities that arise for time-reversal-odd hadronic interactions that conserve or violate parity are discussed in connection with atomic electric dipole moments. 20 refs., 4 figs

  12. Effect of Earth gravitational field on the detection of gravitational waves

    International Nuclear Information System (INIS)

    Denisov, V.I.; Eliseev, V.A.

    1987-01-01

    Results of laboratory detection of high-frequency gravitational waves from the view point of gravitation theories formulated on the basis of pseudoeuclidean space-time are calculated. Peculiarities due to different effects of the Earth gravitational field on the rates of gravitational and electromagnetic wave propagation in these theories are analysed. Experiments on check of predictions of the given class of theories are suggested

  13. Testing chirality of primordial gravitational waves with Planck and future CMB data: no hope from angular power spectra

    Energy Technology Data Exchange (ETDEWEB)

    Gerbino, Martina [The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Gruppuso, Alessandro [INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, via P. Gobetti 101, I-40129 Bologna (Italy); Natoli, Paolo [Dipartimento di Fisica e Scienze della Terra and INFN, Università degli Studi di Ferrara, Via Saragat 1, I-44100 Ferrara (Italy); Shiraishi, Maresuke [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, Chiba, 277-8583 (Japan); Melchiorri, Alessandro, E-mail: martina.gerbino@fysik.su.se, E-mail: gruppuso@iasfbo.inaf.it, E-mail: paolo.natoli@gmail.com, E-mail: maresuke.shiraishi@ipmu.jp, E-mail: alessandro.melchiorri@roma1.infn.it [Physics Department and INFN, Università di Roma ' La Sapienza' , P.le Aldo Moro 2, 00185, Rome (Italy)

    2016-07-01

    We use the 2015 Planck likelihood in combination with the Bicep2/Keck likelihood (BKP and BK14) to constrain the chirality, χ, of primordial gravitational waves in a scale-invariant scenario. In this framework, the parameter χ enters theory always coupled to the tensor-to-scalar ratio, r , e.g. in combination of the form χ ⋅ r . Thus, the capability to detect χ critically depends on the value of r . We find that with present data sets χ is de facto unconstrained. We also provide forecasts for χ from future CMB experiments, including COrE+, exploring several fiducial values of r . We find that the current limit on r is tight enough to disfavor a neat detection of χ. For example, in the unlikely case in which r ∼0.1(0.05), the maximal chirality case, i.e. χ = ±1, could be detected with a significance of ∼2.5(1.5)σ at best. We conclude that the two-point statistics at the basis of CMB likelihood functions is currently unable to constrain chirality and may only provide weak limits on χ in the most optimistic scenarios. Hence, it is crucial to investigate the use of other observables, e.g. provided by higher order statistics, to constrain these kinds of parity violating theories with the CMB.

  14. Anisotropic gravitational instability

    International Nuclear Information System (INIS)

    Polyachenko, V.L.; Fridman, A.M.

    1988-01-01

    Exact solutions of stability problems are obtained for two anisotropic gravitational systems of different geometries - a layer of finite thickness at rest and a rotating cylinder of finite radius. It is shown that the anisotropic gravitational instability which develops in both cases is of Jeans type. However, in contrast to the classical aperiodic Jeans instability, this instability is oscillatory. The physics of the anisotropic gravitational instability is investigated. It is shown that in a gravitating layer this instability is due, in particular, to excitation of previously unknown interchange-Jeans modes. In the cylinder, the oscillatory Jeans instability is associated with excitation of a rotational branch, this also being responsible for the beam gravitational instability. This is the reason why this instability and the anisotropic gravitational instability have so much in common

  15. The gravitational lens effect and its optical equivalents

    International Nuclear Information System (INIS)

    Freitas, L.R. de.

    1987-01-01

    This work presents the evolution of the use of the so called gravitational lens effect from a simple observational teste of the General Relativity theory to an instrument to measure cosmological parameters. A detailed analysis of how a gravitational ''lens'' deflects light without forming images is shown for the case of the deflector with spherical symmetry. In addition, the exact optical equivalent of a cylindrical gravitational lens, which forms true images, is proposed. Finally the problem of the formation of multiple images and the related astronomical observations is discussed. (author) [pt

  16. Test the mergers of the primordial black holes by high frequency gravitational-wave detector

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin; Wang, Li-Li; Li, Jin [Chongqing University, Department of Physics, Chongqing (China)

    2017-09-15

    The black hole could have a primordial origin if its mass is less than 1M {sub CircleDot}. The mergers of these black hole binaries generate stochastic gravitational-wave background (SGWB). We investigate the SGWB in high frequency band 10{sup 8}-10{sup 10} Hz. It can be detected by high frequency gravitational-wave detector. Energy density spectrum and amplitude of the SGWB are derived. The upper limit of the energy density spectrum is around 10{sup -7}. Also, the upper limit of the amplitude ranges from 10{sup -31.5} to 10{sup -29.5}. The fluctuation of spacetime origin from gravitational wave could give a fluctuation of the background electromagnetic field in a high frequency gravitational-wave detector. The signal photon flux generated by the SGWB in the high frequency band 10{sup 8}-10{sup 10} Hz is derived, which ranges from 1 to 10{sup 2} s{sup -1}. The comparison between the signal photon flux generated by relic gravitational waves (RGWs) and the SGWB is also discussed in this paper. It is shown that the signal photon flux generated by the RGW, which is predicted by the canonical single-field slow-roll inflation models, is sufficiently lower than the one generated by the SGWB in the high frequency band 10{sup 8}-10{sup 10} Hz. Our results indicate that the SGWB in the high frequency band 10{sup 8}-10{sup 10} Hz is more likely to be detected by the high frequency gravitational-wave detector. (orig.)

  17. Parity generator and parity checker in the modified trinary number system using savart plate and spatial light modulator

    Science.gov (United States)

    Ghosh, Amal K.

    2010-09-01

    The parity generators and the checkers are the most important circuits in communication systems. With the development of multi-valued logic (MVL), the proposed system with parity generators and checkers is the most required using the recently developed optoelectronic technology in the modified trinary number (MTN) system. This system also meets up the tremendous needs of speeds by exploiting the savart plates and spatial light modulators (SLM) in the optical tree architecture (OTA).

  18. Role of age, bowel function and parity on anorectocele pathogenesis according to cinedefecography and anal manometry evaluation.

    Science.gov (United States)

    Soares, F A; Regadas, F S P; Murad-Regadas, S M; Rodrigues, L V; Silva, F R S; Escalante, R D; Bezerra, R F

    2009-11-01

    The study aimed to verify the role of parity, age and bowel function in the pathogenesis of anorectocele. A cross-sectional study was conducted regarding age, obstetrical history, Cleveland Clinic Constipation Score (CCCS), cinedefecography and anal manometry findings. Forty-five adult women complaining of obstructed defecation were evaluated; the median age was 46 years and median CCCS, 13. Fifteen patients were nulliparous and 23 multiparous (median parity 2). Eighteen had a history of episiotomy, fourteen delivered large babies and two had forceps-assisted delivery. Statistical analysis was performed using Spearman's correlation test and Fisher's exact test. Anal hypertonia was found in 14 (31.1%) patients, anal hypotonia in eight (17.8%), anismus in 13 (28.9%) and anorectoceles in 34 (75.6%) [median size 2.8 cm (0-6.4)]. There were no correlations between anorectocele and anal hypertonia (P = 0.7171), anismus (P = 0.4666), parity comparing nulliparous and multiparous patients (P = 1.000), episiotomy (P = 1.0000), forceps assistance (P = 1.0000), delivery of a large baby (P = 1.0000) anal resting pressure (P = 0.0883), anal voluntary pressure (P = 0.7327), parity (P = 0.4987) and age (P = 0.8603). There were correlations between anorectocele and the CCCS (P = 0.0082) and anal hypotonia (P = 0.0141). Anorectocele is not correlated with parity, age, episiotomy, delivery of a large baby and anismus. It was more frequent in patients with severe constipation and less common in patients with anal hypotonia.

  19. Parity violation in polarized p-p scattering at 222 MEV

    International Nuclear Information System (INIS)

    Bandyopadhyay, D.; Birchall, J.; Campbell, J.; Davis, C.A.; Davison, N.E.; Page, S.A.; Ramsay, W.D.; Sekulovich, A.M.; Oers, W.T.H. van; Davis, C.A.; Healey, D.C.; Schmor, P.W.; Stinson, G.M.; Boyce, M.; Green, P.W.; Korkmaz, E.; Soukup, J.; Bowman, J.D.; Mischke, R.E.

    1989-01-01

    An experiment is in progess at TRIUMF to measure the parity-violating longitudinal analyzing power A z in polarizedp-p scattering at 222 MeV. Previous measurements at 15 and 45 MeV have determined the parity-mixed partial wave scattering amplitude to high precision. In contrast, only the ( 3 P 2 - 1 D 2 ) amplitude contributes to A z at 222 MeV. These two amplitudes yield complementary information on the underlying parity violating reaction mechanism. In a weak meson exchange model, the ( 3 P 2 - 1 D 2 ) amplitude is entirely due to rho meson exchange, and the present experiment affords a unique opportunity to measure the weak ρ-N coupling strength h ρ . At TRIUMF, a 500 nA beam of longitudinally polarized protons (p z ∼0.8) from the optically pumped polarized ion source will be scattered from a 20 cm liquid hydrogen target. A unique feature of this experiment is that A z will be measured in two different geometries (scattering and transmission mode) simultaneously, which will provide a crucial consistency check on the results. Monte Carlo simulations have confirmed that d.c. ionization chambers used to collect the transmitted and scattered protons in the two simultaneous measurements will achieve comparable statistical accuracies in the ∼ 300 hour counting time proposed for the experiment. High precision monitoring devices are being constructed and tested at TRIUMF to monitor changes in beam properties, such as beam position and residual transverse polarization, that can contribute to systematic errors in the parity violation measurements. The present status of the detector developments and systematic error controls will be discussed

  20. Evidence of parity violation in 118Sn and 36Cl

    International Nuclear Information System (INIS)

    Benkoula, H.

    1978-01-01

    Parity violation in nuclear systems was studied by forward-backward asymmetry measurement methods in radiative capture of polarized neutrons in the reactions 117 Sn(n,γ) 118 Sn and 35 Cl(n,γ) 36 Cl. The experimental set ups used two INa detectors situated at left and right sides of the beam and parallel to polarisation direction, and an electronic system adapted to high-counting rate. The asymmetry measurement, A=(4.56+-0.6)x10 -4 in the 9.328 MeV Ml transition demonstrates the existence of parity violation effects. The 8.58 MeV (M1+E2) transition in 36 Cl was also studied and the asymmetry value is A=(1.11+-0.35)x10 -4 . Several beam and electronic tests have shown that there was no spurious asymmetry in the measurement due to the equipment [fr

  1. A new source for parity violating nuclear force

    International Nuclear Information System (INIS)

    Iqbal, M.J.; Niskanen, J.A.

    1989-02-01

    We propose a mechanism for parity violation in the two nucleon meson-exchange interaction by way of the mixing of mesons of opposite parities. This mixing arises from parity violating W ± and Z exchange between the q-antiq pari in the meson. Numerically is effect turns out to be as important as vector meson exchange with a weak meson-nucleon vertex. The calculation is performed using both the standard Born approximation adding the amplitude phases by Watson's theorem and also using the exact correlated two-nucleon wave functions. The effect of correlations and form factors is found to be crucially important at intermediate energies

  2. The sky pattern of the linearized gravitational memory effect

    International Nuclear Information System (INIS)

    Mädler, Thomas; Winicour, Jeffrey

    2016-01-01

    The gravitational memory effect leads to a net displacement in the relative positions of test particles. This memory is related to the change in the strain of the gravitational radiation field between infinite past and infinite future retarded times. There are three known sources of the memory effect: (i) the loss of energy to future null infinity by massless fields or particles, (ii) the ejection of massive particles to infinity from a bound system and (iii) homogeneous, source-free gravitational waves. In the context of linearized theory, we show that asymptotic conditions controlling these known sources of the gravitational memory effect rule out any other possible sources with physically reasonable stress–energy tensors. Except for the source-free gravitational waves, the two other known sources produce gravitational memory with E -mode radiation strain, characterized by a certain curl-free sky pattern of their polarization. Thus our results show that the only known source of B -mode gravitational memory is of primordial origin, corresponding in the linearized theory to a homogeneous wave entering from past null infinity. (paper)

  3. The gravitational Schwinger effect and attenuation of gravitational waves

    Science.gov (United States)

    McDougall, Patrick Guarneri

    This paper will discuss the possible production of photons from gravitational waves. This process is shown to be possible by examining Feynman diagrams, the Schwinger Effect, and Hawking Radiation. The end goal of this project is to find the decay length of a gravitational wave and assert that this decay is due to photons being created at the expense of the gravitational wave. To do this, we first find the state function using the Klein Gordon equation, then find the current due to this state function. We then take the current to be directly proportional to the production rate per volume. This is then used to find the decay length that this kind of production would produce, gives a prediction of how this effect will change the distance an event creating a gravitational wave will be located, and shows that this effect is small but can be significant near the source of a gravitational wave.

  4. The nondiscovery of parity nonconservation

    International Nuclear Information System (INIS)

    Franklin, A.

    1989-01-01

    Although experiments in 1928 and 1930 provided evidence for the nonconservation of parity in the weak interactions, it was not until weak interactions were needed in the 1950s to match experiment to theory that these were re-examined. After describing the two experiments and their results, the author concludes that while errors existed, the early works did show parity nonconservation, but their contemporaries in the scientific community rejected their evidence, partly because the theoretical framework to explain it did not yet exist. High energy electron beams meant that experiments reproducing earlier work on beta decay were unlikely to be repeated and because the difference between thermion, C and decay electrons was not then understood. (UK)

  5. Gravitational radiation and the validity of general relativity

    International Nuclear Information System (INIS)

    Will, C.M.

    2001-01-01

    The regular observation of gravitational radiation by a world-wide network of resonant and laser-interferometric detectors will usher in a new form of astronomy. At the same time, it will provide new and interesting tests of general relativity. We review the current empirical status of general relativity, and discuss three areas in which direct observation of gravitational radiation could test the theory further: polarization of the waves, speed of the waves, and back-reaction of the waves on the evolution of the source. (author)

  6. Odd-even parity splittings and octupole correlations in neutron-rich Ba isotopes

    Science.gov (United States)

    Fu, Y.; Wang, H.; Wang, L.-J.; Yao, J. M.

    2018-02-01

    The odd-even parity splittings in low-lying parity-doublet states of atomic nuclei with octupole correlations have usually been interpreted as rotational excitations on top of octupole vibration in the language of collective models. In this paper, we report a deep analysis of the odd-even parity splittings in the parity-doublet states of neutron-rich Ba isotopes around neutron number N =88 within a full microscopic framework of beyond-mean-field multireference covariant energy density functional theory. The dynamical correlations related to symmetry restoration and quadrupole-octupole shape fluctuation are taken into account with a generator coordinate method combined with parity, particle-number, and angular-momentum projections. We show that the behavior of odd-even parity splittings is governed by the interplay of rotation, quantum tunneling, and shape evolution. Similar to 224Ra, a picture of rotation-induced octupole shape stabilization in the positive-parity states is exhibited in the neutron-rich Ba isotopes.

  7. The inverse square law of gravitation

    International Nuclear Information System (INIS)

    Cook, A.H.

    1987-01-01

    The inverse square law of gravitation is very well established over the distances of celestial mechanics, while in electrostatics the law has been shown to be followed to very high precision. However, it is only within the last century that any laboratory experiments have been made to test the inverse square law for gravitation, and all but one has been carried out in the last ten years. At the same time, there has been considerable interest in the possibility of deviations from the inverse square law, either because of a possible bearing on unified theories of forces, including gravitation or, most recently, because of a possible additional fifth force of nature. In this article the various lines of evidence for the inverse square law are summarized, with emphasis upon the recent laboratory experiments. (author)

  8. Gravitation Waves

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort, with special emphasis on the LIGO detectors and search results.

  9. 'Kludge' gravitational waveforms for a test-body orbiting a Kerr black hole

    International Nuclear Information System (INIS)

    Babak, Stanislav; Fang Hua; Gair, Jonathan R.; Glampedakis, Kostas; Hughes, Scott A.

    2007-01-01

    One of the most exciting potential sources of gravitational waves for low-frequency, space-based gravitational wave (GW) detectors such as the proposed Laser Interferometer Space Antenna (LISA) is the inspiral of compact objects into massive black holes in the centers of galaxies. The detection of waves from such 'extreme mass ratio inspiral' systems (EMRIs) and extraction of information from those waves require template waveforms. The systems' extreme mass ratio means that their waveforms can be determined accurately using black hole perturbation theory. Such calculations are computationally very expensive. There is a pressing need for families of approximate waveforms that may be generated cheaply and quickly but which still capture the main features of true waveforms. In this paper, we introduce a family of such kludge waveforms and describe ways to generate them. Different kinds of kludges have already been used to scope out data analysis issues for LISA. The models we study here are based on computing a particle's inspiral trajectory in Boyer-Lindquist coordinates, and subsequent identification of these coordinates with flat-space spherical polar coordinates. A gravitational waveform may then be computed from the multipole moments of the trajectory in these coordinates, using well-known solutions of the linearised gravitational perturbation equations in flat space time. We compute waveforms using a standard slow-motion quadrupole formula, a quadrupole/octupole formula, and a fast-motion, weak-field formula originally developed by Press. We assess these approximations by comparing to accurate waveforms obtained by solving the Teukolsky equation in the adiabatic limit (neglecting GW backreaction). We find that the kludge waveforms do extremely well at approximating the true gravitational waveform, having overlaps with the Teukolsky waveforms of 95% or higher over most of the parameter space for which comparisons can currently be made. Indeed, we find these

  10. Search for R-parity violating decays of sfermions at LEP

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Warsinsky, M.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2004-01-01

    A search for pair-produced scalar fermions under the assumption that R-parity is not conserved has been performed using data collected with the OPAL detector at LEP. The data samples analysed correspond to an integrated luminosity of about 610 pb-1 collected at centre-of-mass energies of sqrt(s) 189-209 GeV. An important consequence of R-parity violation is that the lightest supersymmetric particle is expected to be unstable. Searches of R-parity violating decays of charged sleptons, sneutrinos and squarks have been performed under the assumptions that the lightest supersymmetric particle decays promptly and that only one of the R-parity violating couplings is dominant for each of the decay modes considered. Such processes would yield final states consisting of leptons, jets, or both with or without missing energy. No significant single-like excess of events has been observed with respect to the Standard Model expectations. Limits on the production cross- section of scalar fermions in R-parity violating scena...

  11. Searches for Prompt R-Parity-Violating Supersymmetry at the LHC

    International Nuclear Information System (INIS)

    Redelbach, Andreas

    2015-01-01

    Searches for supersymmetry (SUSY) at the LHC frequently assume the conservation of R-parity in their design, optimization, and interpretation. In the case that R-parity is not conserved, constraints on SUSY particle masses tend to be weakened with respect to R-parity-conserving models. We review the current status of searches for R-parity-violating (RPV) supersymmetry models at the ATLAS and CMS experiments, limited to 8 TeV search results published or submitted for publication as of the end of March 2015. All forms of renormalisable RPV terms leading to prompt signatures have been considered in the set of analyses under review. Discussing results for searches for prompt R-parity-violating SUSY signatures summarizes the main constraints for various RPV models from LHC Run I and also defines the basis for promising signal regions to be optimized for Run II. In addition to identifying highly constrained regions from existing searches, also gaps in the coverage of the parameter space of RPV SUSY are outlined

  12. Gravitational Waves From a Dark (Twin) Phase Transition

    CERN Document Server

    Schwaller, Pedro

    2015-01-01

    In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early universe, which could lead to a detectable gravitational wave signal. We summarise the basic conditions for a strong first order phase transition for SU(N) dark sectors with n_f flavours, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes Twin Higgs and SIMP models as well as symmetric and asymmetric composite dark matter scenarios.

  13. Gravitational Physics Research

    Science.gov (United States)

    Wu, S. T.

    2000-01-01

    Gravitational physics research at ISPAE is connected with NASA's Relativity Mission (Gravity Probe B (GP-B)) which will perform a test of Einstein's General Relativity Theory. GP-B will measure the geodetic and motional effect predicted by General Relativity Theory with extremely stable and sensitive gyroscopes in an earth orbiting satellite. Both effects cause a very small precession of the gyroscope spin axis. The goal of the GP-B experiment is the measurement of the gyroscope precession with very high precision. GP-B is being developed by a team at Stanford University and is scheduled for launch in the year 2001. The related UAH research is a collaboration with Stanford University and MSFC. This research is focussed primarily on the error analysis and data reduction methods of the experiment but includes other topics concerned with experiment systems and their performance affecting the science measurements. The hydrogen maser is the most accurate and stable clock available. It will be used in future gravitational physics missions to measure relativistic effects such as the second order Doppler effect. The HMC experiment, currently under development at the Smithsonian Astrophysical Observatory (SAO), will test the performance and capability of the hydrogen maser clock for gravitational physics measurements. UAH in collaboration with the SAO science team will study methods to evaluate the behavior and performance of the HMC. The GP-B data analysis developed by the Stanford group involves complicated mathematical operations. This situation led to the idea to investigate alternate and possibly simpler mathematical procedures to extract the GP-B measurements form the data stream. Comparison of different methods would increase the confidence in the selected scheme.

  14. Einstein-Rosen gravitational waves

    International Nuclear Information System (INIS)

    Astefanoaei, Iordana; Maftei, Gh.

    2001-01-01

    In this paper we analyse the behaviour of the gravitational waves in the approximation of the far matter fields, considering the indirect interaction between the matter sources and the gravitational field, in a cosmological model based on the Einstein-Rosen solution, Because the properties of the gravitational waves obtained as the solutions of Einstein fields equations (the gravitational field equations) are most obvious in the weak gravitational fields we consider here, the gravitational field in the linear approximation. Using the Newman-Penrose formalism, we calculate in the null-tetradic base (e a ), the spin coefficients, the directional derivates and the tetradic components of Ricci and Weyl tensors. From the Einstein field equations we obtained the solution for b(z, t) what described the behaviour of gravitational wave in Einstein-Rosen Universe and in the particular case, when t → ∞, p(z, t) leads us to the primordial gravitational waves in the Einstein-Rosen Universe. (authors)

  15. Systemic sclerosis, birth order and parity.

    Science.gov (United States)

    Russo, Paul A J; Lester, Susan; Roberts-Thomson, Peter J

    2014-06-01

    A recent study identified increasing birth order to be a risk factor for the development of systemic sclerosis (SSc). This finding supports the theory that transplacental microchimerism may be a key pathological event in the initiation of SSc. We investigated the relationship between birth order and parity and the age of onset of SSc in South Australia. A retrospective analysis of patient data in the South Australian Scleroderma Register was performed. Data were obtained from a mailed questionnaire. Control data was collected prospectively using a similar questionnaire. The relationship between birth order, family size or parity and risk of subsequent development of SSc was analyzed by mixed effects logistic regression analysis. Three hundred and eighty-seven index probands were identified and compared with 457 controls. Controls were well matched for gender, but not for age. No statistically significant relationship was identified between SSc and birth order, parity in females, family size, age at first pregnancy in females or gender of first child in parous females. Our data suggests that parity, age at first pregnancy and the gender of the first child are not relevant factors in our understanding of the epidemiology and pathogenesis of SSc. Birth order and family size in both genders also appears irrelevant. These results argue against microchimerism as being relevant in the pathogenesis of SSc and add further support to the theory that stochastic events may be important in the etiopathogenesis of SSc. © 2013 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  16. Static Test for a Gravitational Force Coupled to Type 2 YBCO Superconductors

    Science.gov (United States)

    Li, Ning; Noever, David; Robertson, Tony; Koczor, Ron; Brantley, Whitt

    1997-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cc. Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating type II, YBCO superconductor, with the percentage change (0.05 - 2.1 %) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 10' was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field. Changes in acceleration were measured to be less than 2 parts in 108 of the normal gravitational acceleration. This result puts new limits on the strength and range of the proposed coupling between static superconductors and gravity.

  17. Gravitational waves from inflation

    International Nuclear Information System (INIS)

    Guzzetti, M.C.; Bartolo, N.; Liguori, M.; Matarrese, S.

    2016-01-01

    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index ηT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.

  18. Measuring gravitational effects on antimatter in space

    Directory of Open Access Journals (Sweden)

    Piacentino Giovanni Maria

    2017-01-01

    Full Text Available A direct measurement of the gravitational acceleration of antimatter has never been performed to date. Recently, such an experiment has been proposed, using antihydrogen with an atom interferometer and an antihydrogen confinament has been realized at CERN. In alternative we propose an experimental test of the gravitational interaction with antimatter by measuring the branching fraction of the CP violating decay of KL in space. In fact, even if the theoretical Standard Model explains the CPV with the presence of pure phase in the KMC Kobaiashi-Maskava-Cabibbo matrix, ample room is left for contributions by other interactions and forces to generate CPV in the mixing of the neutral K and B mesons. Gravitation is a good candidate and we show that at the altitude of the International Space Station, gravitational effects may change the level of CP violation such that a 5 sigma discrimination may be obtained by collecting the KL produced by the cosmic proton flux within a few years.

  19. Gravitation and relativity

    CERN Document Server

    Hoffmann, William F

    1964-01-01

    Remarks on the observational basis of general relativity ; Riemannian geometry ; gravitation as geometry ; gravitational waves ; Mach's principle and experiments on mass anisotropy ; the many faces of Mach ; the significance for the solar system of time-varying gravitation ; relativity principles and the role of coordinates in physics ; the superdense star and the critical nucleon number ; gravitation and light ; possible effects on the solar system of φ waves if they exist ; the Lyttleton-Bondi universe and charge equality ; quantization of general relativity ; Mach's principle as boundary condition for Einstein's equations.

  20. Nonlinear Lorentz-invariant theory of gravitation

    International Nuclear Information System (INIS)

    Petry, W.

    1976-01-01

    A nonlinear Lorentz-invariant theory of gravitation and a Lorentz-invariant Hamiltonian for a particle with spin in the gravitational field are developed. The equations of motions are studied. The theory is applied to the three well known tests of General Relativity. In the special case of the red shift of spectral lines and of the deflection of light, the theory gives the same results as the General Theory of Relativity, whereas in the case of the perihelion of the Mercury, the theory gives 40,3'', in good agreement with experimental results of Dicke. (author)

  1. Is rooftop solar PV at socket parity without subsidies?

    International Nuclear Information System (INIS)

    Hagerman, Shelly; Jaramillo, Paulina; Morgan, M. Granger

    2016-01-01

    Installations of rooftop solar photovoltaic (PV) technology in the United States have increased dramatically in recent years, in large part because of state and federal subsidies. In the future, such subsidies may be reduced or eliminated. From the homeowner's perspective, solar PV is competitive when it can produce electricity at a cost equivalent to the retail electricity rate, a condition sometimes referred to as “socket parity”. In assessing the economic viability of residential solar PV, most existing literature considers only a few locations and fails to consider the differences in PV system cost and electricity prices that exist across the U.S. We combined insolation data from more than 1000 locations, installation costs by region, and county-level utility rates to provide a more complete economic assessment of rooftop solar PV across the U.S. We calculated the break-even electricity prices and evaluated the reductions in installed costs needed to reach socket parity. Among the scenarios considered, we estimate that only Hawaii has achieved socket parity without the use of subsidies. With subsidies, six states reach socket parity, yet widespread parity is still not achieved. We find that high installation costs and financing rates are two of the largest barriers to socket parity. - Highlights: • We evaluate the economic viability of residential rooftop solar PV across the U.S. • Widespread socket parity has not been achieved in the U.S. without subsidies. • Net metering may be critical for the economic viability of rooftop solar PV.

  2. Gravitational waves — A review on the theoretical foundations of gravitational radiation

    Science.gov (United States)

    Dirkes, Alain

    2018-05-01

    In this paper, we review the theoretical foundations of gravitational waves in the framework of Albert Einstein’s theory of general relativity. Following Einstein’s early efforts, we first derive the linearized Einstein field equations and work out the corresponding gravitational wave equation. Moreover, we present the gravitational potentials in the far away wave zone field point approximation obtained from the relaxed Einstein field equations. We close this review by taking a closer look on the radiative losses of gravitating n-body systems and present some aspects of the current interferometric gravitational waves detectors. Each section has a separate appendix contribution where further computational details are displayed. To conclude, we summarize the main results and present a brief outlook in terms of current ongoing efforts to build a spaced-based gravitational wave observatory.

  3. Electron scattering violates parity

    CERN Multimedia

    2004-01-01

    Parity violation has been observed in collisions between electrons at the Stanford Linear Accelerator Center (SLAC) in the US. The resuls, which are in agreement with the Stanford Model of particle physics, also provide a new measurement of the weak charge of the electron (½ page)

  4. Gravitation and electromagnetism

    CERN Document Server

    Apsel, D

    1979-01-01

    Through an examination of the Bohm-Aharonov experiment, a new theory of gravitation and electromagnetism is proposed. The fundamental assumption of the theory is that the motion of a particle in a combination of gravitational and electromagnetic fields is determined from a variational principle of the form delta integral /sub A//sup B /d tau =0. The form of the physical time is determined from an examination of the Maxwell-Einstein action function. The field and motion equations are formally identical to those of Maxwell-Einstein theory. The theory predicts that even in a field-free region of space, electromagnetic potentials can alter the phase of a wave function and the lifetime of a charged particle. The phase alteration has been observed in the Bohm-Aharonov experiment. There is an indication that the lifetime alteration has shown up in a recent CERN storage ring experiment. Experimental tests are proposed. (11 refs).

  5. Gravitational Waves in Locally Rotationally Symmetric (LRS Class II Cosmologies

    Directory of Open Access Journals (Sweden)

    Michael Bradley

    2017-10-01

    Full Text Available In this work we consider perturbations of homogeneous and hypersurface orthogonal cosmological backgrounds with local rotational symmetry (LRS, using a method based on the 1 + 1 + 2 covariant split of spacetime. The backgrounds, of LRS class II, are characterised by that the vorticity, the twist of the 2-sheets, and the magnetic part of the Weyl tensor all vanish. They include the flat Friedmann universe as a special case. The matter contents of the perturbed spacetimes are given by vorticity-free perfect fluids, but otherwise the perturbations are arbitrary and describe gravitational, shear, and density waves. All the perturbation variables can be given in terms of the time evolution of a set of six harmonic coefficients. This set decouples into one set of four coefficients with the density perturbations acting as source terms, and another set of two coefficients describing damped source-free gravitational waves with odd parity. We also consider the flat Friedmann universe, which has been considered by several others using the 1 + 3 covariant split, as a check of the isotropic limit. In agreement with earlier results we find a second-order wavelike equation for the magnetic part of the Weyl tensor which decouples from the density gradient for the flat Friedmann universes. Assuming vanishing vector perturbations, including the density gradient, we find a similar equation for the electric part of the Weyl tensor, which was previously unnoticed.

  6. Parity and age at menopause in a Danish sample

    DEFF Research Database (Denmark)

    Jeune, B

    1986-01-01

    A random sample of 151 Danish women who had undergone natural menopause reported the age at which this occurred and answered a questionnaire. A significant association was found between parity and age at menopause after correction for the effects of age at the first and last births, weight, smoking...... and occupation. However, there is no evidence that the age at menopause has fallen in recent decades, even though the average parity in developed populations has dropped dramatically over this period. It is therefore possible that potential fertility is a confounding variable in the relationship between parity...... and age at menopause....

  7. Gravitational Casimir–Polder effect

    Directory of Open Access Journals (Sweden)

    Jiawei Hu

    2017-04-01

    Full Text Available The interaction due to quantum gravitational vacuum fluctuations between a gravitationally polarizable object modelled as a two-level system and a gravitational boundary is investigated. This quantum gravitational interaction is found to be position-dependent, which induces a force in close analogy to the Casimir–Polder force in the electromagnetic case. For a Dirichlet boundary, the quantum gravitational potential for the polarizable object in its ground-state is shown to behave like z−5 in the near zone, and z−6 in the far zone, where z is the distance to the boundary. For a concrete example, where a Bose–Einstein condensate is taken as a gravitationally polarizable object, the relative correction to the radius of the BEC caused by fluctuating quantum gravitational waves in vacuum is found to be of order 10−21. Although the correction is far too small to observe in comparison with its electromagnetic counterpart, it is nevertheless of the order of the gravitational strain caused by a recently detected black hole merger on the arms of the LIGO.

  8. Quadrupole mass detector in the field of weak plane gravitational waves

    International Nuclear Information System (INIS)

    Borisova, L.B.

    1978-01-01

    Studied is the behaviour of the system which consists of two test particles connected by a string (quadrupole mass detector) and placed in the field of weak plane monochromatic gravitational waves. It is shown that at cross orientation of the detector the gravitational wave effecting such a system excites oscillations in it with the frequency equal to that of the gravitational wave source. The role of the driving force is played by the periodical change with the time of the equilibrium position. The gravitational wave does not influence the detector at its longitudinal orientation

  9. On tidal phenomena in a strong gravitational field

    International Nuclear Information System (INIS)

    Mashoon, B.

    1975-01-01

    A simple framework based on the concept of quadrupole tidal potential is presented for the calculation of tidal deformation of an extended test body in a gravitational field. This method is used to study the behavior of an initially faraway nonrotating spherical body that moves close to a Schwarzschild or an extreme Kerr black hole. In general, an extended body moving in an external gravitational field emits gravitational radiation due to its center of mass motion, internal tidal deformation, and the coupling between the internal and center of mass motions. Estimates are given of the amount of tidal radiation emitted by the body in the gravitational fields considered. The results reported in this paper are expected to be of importance in the dynamical evolution of a dense stellar system with a massive black hole in its center

  10. Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise

    International Nuclear Information System (INIS)

    Chatterji, Shourov; Lazzarini, Albert; Stein, Leo; Sutton, Patrick J.; Searle, Antony; Tinto, Massimo

    2006-01-01

    The sensitivity of current searches for gravitational-wave bursts is limited by non-Gaussian, nonstationary noise transients which are common in real detectors. Existing techniques for detecting gravitational-wave bursts assume the output of the detector network to be the sum of a stationary Gaussian noise process and a gravitational-wave signal. These techniques often fail in the presence of noise nonstationarities by incorrectly identifying such transients as possible gravitational-wave bursts. Furthermore, consistency tests currently used to try to eliminate these noise transients are not applicable to general networks of detectors with different orientations and noise spectra. In order to address this problem we introduce a fully coherent consistency test that is robust against noise nonstationarities and allows one to distinguish between gravitational-wave bursts and noise transients in general detector networks. This technique does not require any a priori knowledge of the putative burst waveform

  11. Theory of gravitational interactions

    CERN Document Server

    Gasperini, Maurizio

    2017-01-01

    This is the second edition of a well-received book that is a modern, self-contained introduction to the theory of gravitational interactions. The new edition includes more details on gravitational waves of cosmological origin, the so-called brane world scenario, and gravitational time-delay effects. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field, while the second, more advanced part discusses the deep analogies (and differences) between a geometric theory of gravity and the “gauge” theories of the other fundamental interactions. This fills a gap within the traditional approach to general relativity which usually leaves students puzzled about the role of gravity. The required notions of differential geometry are reduced to the minimum, allowing room for aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational inter...

  12. Absolute purchasing power parity in industrial countries

    OpenAIRE

    Zhang, Zhibai; Bian, Zhicun

    2015-01-01

    Different from popular studies that focus on relative purchasing power parity, we study absolute purchasing power parity (APPP) in 21 main industrial countries. Three databases are used. Both the whole period and the sub-period are analyzed. The empirical proof shows that the phenomenon that APPP holds is common, and the phenomenon that APPP does not hold is also common. In addition, some country pairs and the pooled country data indicate that the nearer the GDPPs of two countries are, the mo...

  13. Efficient Parallel Strategy Improvement for Parity Games

    OpenAIRE

    Fearnley, John

    2017-01-01

    We study strategy improvement algorithms for solving parity games. While these algorithms are known to solve parity games using a very small number of iterations, experimental studies have found that a high step complexity causes them to perform poorly in practice. In this paper we seek to address this situation. Every iteration of the algorithm must compute a best response, and while the standard way of doing this uses the Bellman-Ford algorithm, we give experimental results that show that o...

  14. Evaluation of the influence of maternal parity on neonatal ...

    African Journals Online (AJOL)

    Maternal Parity has been shown to increase the risk of adverse neonatal outcomes, such as intrauterine growth restriction (IUGR), prematurity, and mortality. The study was designed to evaluate the influence of maternal parity on neonatal anthropometric parameters among Hausas in Kano. Five hundred and twenty one ...

  15. The relationship between parity and overweight varies with household wealth and national development.

    Science.gov (United States)

    Kim, Sonia A; Yount, Kathryn M; Ramakrishnan, Usha; Martorell, Reynaldo

    2007-02-01

    Recent studies support a positive relationship between parity and overweight among women of developing countries; however, it is unclear whether these effects vary by household wealth and national development. Our objective was to determine whether the association between parity and overweight [body mass index (BMI) > or =25 kg/m(2)] in women living in developing countries varies with levels of national human development and/or household wealth. We used data from 28 nationally representative, cross-sectional surveys conducted between 1996 and 2003 (n = 275 704 women, 15-49 years). The relationship between parity and overweight was modelled using logistic regression, controlling for several biological and sociodemographic factors and national development, as reflected by the United Nations' Human Development Index. We also modelled the interaction between parity and national development, and the three-way interaction between parity, household wealth and national development. Parity had a weak, positive association with overweight, which varied by household wealth and national development. Among the poorest women and women in the second tertile of household wealth, parity was positively related to overweight only in the most developed countries. Among the wealthiest women, parity was positively related to overweight regardless of the level of national development. As development increases, the burden of parity-related overweight shifts to include poor as well as wealthy women. In the least-developed countries, programmes to prevent parity-related overweight should target wealthy women, whereas such programmes should be provided to all women in more developed countries.

  16. Excited negative parity bands in 160Yb

    Science.gov (United States)

    Saha, A.; Bhattacharjee, T.; Curien, D.; Dedes, I.; Mazurek, K.; Banerjee, S. R.; Rajbanshi, S.; Bisoi, A.; de Angelis, G.; Bhattacharya, Soumik; Bhattacharyya, S.; Biswas, S.; Chakraborty, A.; Das Gupta, S.; Dey, B.; Goswami, A.; Mondal, D.; Pandit, D.; Palit, R.; Roy, T.; Singh, R. P.; Saha Sarkar, M.; Saha, S.; Sethi, J.

    2018-03-01

    Negative parity rotational bands in {} 70160Yb{}90 nucleus have been studied. They were populated in the 148Sm(16O, 4n)160Yb reaction at 90 MeV. The gamma-coincidence data have been collected using Indian National Gamma Array composed of twenty Compton suppressed clover germanium (Ge) detectors. Double gating on triple gamma coincidence data were selectively used to develop the decay scheme for these negative parity bands by identifying and taking care of the multiplet transitions. The even- and odd-spin negative parity bands in 160Yb have been studied by comparing the reduced transition probability ratios with the similar bands in neighbouring even-even rare earth nuclei. It is concluded that the concerned odd-spin and even-spin bands are not signature partners and that their structures are compatible with those of the ‘pear-shape’ and ‘pyramid-shape’ oscillations, respectively, the octupole shapes superposed with the quadrupole shape of the ground-state.

  17. Testing and interpreting uncovered interest parity in Russia

    Directory of Open Access Journals (Sweden)

    Dmitry Vasilyev

    2017-06-01

    Full Text Available The failure of uncovered interest rate parity (UIP is a well-known phenomenon of the last thirty years. UIP failure is more prominent in advanced economies than in emerging market economies. Typically, UIP estimation for an advanced economy generates a negative coefficient, meaning that a higher interest rate in advanced economy A will result in the appreciation of economy A's exchange rate. For emerging market economies, higher interest rates usually correspond to future depreciation, although this depreciation is not sufficient for UIP to hold. This paper shows that UIP holds in Russia better than in other emerging market economies when the UIP equation accounts for a constant risk premium. Consequently, there is no forward premium puzzle for Russian data for 2001–2014. To determine the results for Russia and to compare them with the results for other countries, we estimate UIP first for Russia and then for advanced and emerging market economies using seemingly unrelated regressions and panel data analysis. By comparing the profitability of static and dynamic carry trade strategies, we also confirm that in emerging market economies, risk premiums are often constant, whereas in advanced economies, risk premiums are almost always volatile. This may explain why UIP holds better in emerging market economies. It also enables us to formulate a hypothesis that macroeconomic policies of emerging market economies (e.g., the accumulation of large foreign exchange reserves stabilize risk premiums.

  18. Study of positive-parity yrast band in 83Rb

    International Nuclear Information System (INIS)

    Ganguly, S.; Banerjee, P.; Ray, I.; Kshetri, R.; Bhattacharya, S.; Saha Sarkar, M.; Goswami, A.; Muralithar, S.; Singh, R.P.; Kumar, R.; Bhowmik, R.K.

    2005-01-01

    The properties of the positive-parity yrast band in the odd-A 81,83,85 Rb (Z=37) isotopes show remarkable changes as N increases. The objective of the present work is to study the structure of the lowest positive-parity band in 83 Rb from lifetime studies

  19. Purchasing power parity theory in a model without international trade of goods

    OpenAIRE

    Läufer, Nikolaus K. A.

    1980-01-01

    In recent discussions it frequently occurs that the Purchasing Power Parity Theory is identified with Jevons law of one price. By pointing to real world obstacles working against perfect goods arbitrage it is then erroneously concluded that the Purchasing Power Parity Theory cannot be valid while a dinstiction between an absolute version and a relative version of the Purchasing Power Parity Theory is neglected. In the present paper it is shown that the Purchasing Power Parity Theory in the re...

  20. Gauge models of planar high-temperature superconductivity without parity violation

    International Nuclear Information System (INIS)

    Mavromatos, N.E.; Grenoble-1 Univ., 74 - Annecy

    1993-02-01

    A status report is given of a parity-invariant model of two-dimensional superconductivity. The model consists of two-species of fermions coupled with opposite sign to an Abelian gauge field and is closely related to QED 3 . The dynamical generation of a parity-conserving fermion mass and the finite temperature symmetry restoration transition is studied, and it is shown, how the parity-invariant model arises as an effective long-wavelength theory of the dynamics of holes in a two-dimensional quantum antiferromagnetic system on a bi-partite lattice. The model exhibits type-II superconductivity without parity or time-reversal symmetry violation, a high value of 2 Δ /k B T c , flux quantization with quantum hc/2e and a two-dimensional Meissner effect. (author) 82 refs.; 15 figs.; 4 tabs

  1. Summary of session C1: experimental gravitation

    International Nuclear Information System (INIS)

    Laemmerzahl, C

    2008-01-01

    The fact that gravity is a metric theory follows from the Einstein equivalence principle. This principle consists of (i) the universality of free fall, (ii) the universality of the gravitational redshift and (iii) the local validity of Lorentz invariance. Many experiments searching for deviations from standard general relativity test the various aspects of the Einstein equivalence principle. Here we report on experiments covering the whole Einstein equivalence principle. Until now all experiments have been in agreement with the Einstein equivalence principle. As a consequence, gravity has to be described by a metric theory. Any metric theory of gravity leads to effects such as perihelion shift, deflection of light, gravitational redshift, gravitational time delay, Lense-Thirring effect, Schiff effect, etc. A particular theory of that sort is Einstein's general relativity. For weak gravitational fields which are asymptotically flat any deviation from Einstein's general relativity can be parametrized by a few constants, the PPN parameters. Many astrophysical observations and space experiments are devoted to a better measurement of the effects and, thus, of the PPN parameters. It is clear that gravity is best tested for intermediate ranges, that is, for distances between 1 m and several astronomical units. It is highly interesting to push forward our domain of experience and to strengthen the experimental foundation of gravity also beyond these scales. This point is underlined by the fact that many quantum gravity and unification-inspired theories suggest deviation from the standard laws of gravity at very small or very large scales. In this session summary we briefly outline the status and report on the talks presented in session C1 about experimental gravitation

  2. Velocity Memory Effect for polarized gravitational waves

    Science.gov (United States)

    Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.

    2018-05-01

    Circularly polarized gravitational sandwich waves exhibit, as do their linearly polarized counterparts, the Velocity Memory Effect: freely falling test particles in the flat after-zone fly apart along straight lines with constant velocity. In the inside zone their trajectories combine oscillatory and rotational motions in a complicated way. For circularly polarized periodic gravitational waves some trajectories remain bounded, while others spiral outward. These waves admit an additional "screw" isometry beyond the usual five. The consequences of this extra symmetry are explored.

  3. To a physical interpretation of a weak gravitational field in GRT

    International Nuclear Information System (INIS)

    Pavlov, N.V.

    1981-01-01

    The problem of separation of Newton components of weak vacuum gravitational fields is discussed. Chronometric- invariant (CI) characteristics of space-time and the corresponding Newton values are compared in the fixed systems of reference. Attention is paid to the following facts. ''Weak'' sources of weak gravitational fields do not interact gravitationally. If the CI characteristics of vacuum space- time permit series expansion in 1/c powers then the coefficients at odd 1/c powers are connected with the presence of non-gravitational material fields inside the sources. Masses producing gravitational field may not be the sources of gravitational waves in the form of which this field manifests itself. Perspectives of detecting laboratory gravitational waves are discussed: the simplest metrics of plane wave is considered in the quasi-inertial reference system; the flowsheet of the generator of this wave is suggested; relativistic oscillation of a test massive particle is calculated in the postnewtonian approximation. The numerical evaluations show that attempts of mechanical detection of laboratory gravitational waves are hopeless [ru

  4. Fault tolerance in parity-state linear optical quantum computing

    International Nuclear Information System (INIS)

    Hayes, A. J. F.; Ralph, T. C.; Haselgrove, H. L.; Gilchrist, Alexei

    2010-01-01

    We use a combination of analytical and numerical techniques to calculate the noise threshold and resource requirements for a linear optical quantum computing scheme based on parity-state encoding. Parity-state encoding is used at the lowest level of code concatenation in order to efficiently correct errors arising from the inherent nondeterminism of two-qubit linear-optical gates. When combined with teleported error-correction (using either a Steane or Golay code) at higher levels of concatenation, the parity-state scheme is found to achieve a saving of approximately three orders of magnitude in resources when compared to the cluster state scheme, at a cost of a somewhat reduced noise threshold.

  5. Parity and isospin in pion condensation and tensor binding

    International Nuclear Information System (INIS)

    Pace, E.; Palumbo, F.

    1978-01-01

    In infinite nuclear matter with pion condensates or tensor binding both parity and isospin symmetries are broken. Finite nuclei with pion condensates or tensor binding, however, can have definite parity. They cannot have a definite value of isospin, whose average value is of the order of the number of nucleons. (Auth.)

  6. The Purchasing Power Parity Hypothesis:

    African Journals Online (AJOL)

    2011-10-02

    Oct 2, 2011 ... reject the unit root hypothesis in real exchange rates may simply be due to the shortness ..... Violations of Purchasing Power Parity and Their Implications for Efficient ... Official Intervention in the Foreign Exchange Market:.

  7. Gravitational mass and Newton's universal gravitational law under relativistic conditions

    International Nuclear Information System (INIS)

    Vayenas, Constantinos G; Grigoriou, Dimitrios; Fokas, Athanasios

    2015-01-01

    We discuss the predictions of Newton's universal gravitational law when using the gravitational, m g , rather than the rest masses, m o , of the attracting particles. According to the equivalence principle, the gravitational mass equals the inertial mass, m i , and the latter which can be directly computed from special relativity, is an increasing function of the Lorentz factor, γ, and thus of the particle velocity. We consider gravitationally bound rotating composite states, and we show that the ratio of the gravitational force for gravitationally bound rotational states to the force corresponding to low (γ ≈ 1) particle velocities is of the order of (m Pl /m o ) 2 where mpi is the Planck mass (ħc/G) 1/2 . We also obtain a similar result, within a factor of two, by employing the derivative of the effective potential of the Schwarzschild geodesics of GR. Finally, we show that for certain macroscopic systems, such as the perihelion precession of planets, the predictions of this relativistic Newtonian gravitational law differ again by only a factor of two from the predictions of GR. (paper)

  8. Deviation from Covered Interest Rate Parity in Korea

    Directory of Open Access Journals (Sweden)

    Seungho Lee

    2003-06-01

    Full Text Available This paper tested the factors which cause deviation from covered interest rate parity (CIRP in Korea, using regression and VAR models. The empirical evidence indicates that the difference between the swap rate and interest rate differential exists and is greatly affected by variables which represent the currency liquidity situation of foreign exchange banks. In other words, the deviation from CIRP can easily occur due to the lack of foreign exchange liquidity of banks in a thin market, despite few capital constraints, small transaction costs, and trivial default risk in Korea.

  9. The Fixpoint-Iteration Algorithm for Parity Games

    Directory of Open Access Journals (Sweden)

    Florian Bruse

    2014-08-01

    Full Text Available It is known that the model checking problem for the modal mu-calculus reduces to the problem of solving a parity game and vice-versa. The latter is realised by the Walukiewicz formulas which are satisfied by a node in a parity game iff player 0 wins the game from this node. Thus, they define her winning region, and any model checking algorithm for the modal mu-calculus, suitably specialised to the Walukiewicz formulas, yields an algorithm for solving parity games. In this paper we study the effect of employing the most straight-forward mu-calculus model checking algorithm: fixpoint iteration. This is also one of the few algorithms, if not the only one, that were not originally devised for parity game solving already. While an empirical study quickly shows that this does not yield an algorithm that works well in practice, it is interesting from a theoretical point for two reasons: first, it is exponential on virtually all families of games that were designed as lower bounds for very particular algorithms suggesting that fixpoint iteration is connected to all those. Second, fixpoint iteration does not compute positional winning strategies. Note that the Walukiewicz formulas only define winning regions; some additional work is needed in order to make this algorithm compute winning strategies. We show that these are particular exponential-space strategies which we call eventually-positional, and we show how positional ones can be extracted from them.

  10. Parents' Child Care Experience: Effects of Sex and Parity.

    Science.gov (United States)

    Gilpin, Andrew R.; Glanville, Bradley B.

    1985-01-01

    Surveyed 94 couples to determine effects on child care experience associated with gender, parity, and various other demographic variables. As expected, women had higher scores than men. Experience was a linear function of parity for men, but not for women, and was unrelated to attitudes toward women. Implications for child care responsibility are…

  11. Search for R-Parity Violating Decays of Scalar Fermions at LEP

    CERN Document Server

    Abbiendi, G.; Alexander, G.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bloodworth, I.J.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couchman, J.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; de Roeck, A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Fiedler, F.; Fierro, M.; Fleck, I.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon-Shotkin, S.M.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hobson, P.R.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klier, A.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lauber, J.; Lawson, I.; Layter, J.G.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Poli, B.; Polok, J.; Przybycien, M.; Quadt, A.; Rembser, C.; Rick, H.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Steuerer, J.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; Wetterling, D.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.

    2000-01-01

    A search for pair produced scalar fermions with couplings that violate R-parity has been performed using a data sample corresponding to an integrated luminosity of 56 pb-1 at a centre-of-mass energy of sqrt{s}= 183 GeV collected with the OPAL detector at LEP. An important consequence of R-parity breaking interactions is that the lightest supersymmetric particle is expected to be unstable. Searches for R-parity violating decays of charged sleptons, sneutrinos and stop quarks have been performed under the assumptions that the lightest supersymmetric particle decays promptly and that only one of the R-parity violating couplings is dominant for each of the decay modes considered. Such processes would yield multi-leptons, jets plus leptons or multi-jets, with or without missing energy, in the final state. No significant excess of such events has been observed. Limits on the production cross-sections of scalar fermions in R-parity violating scenarios are obtained. Mass exclusion regions are also presented in the fr...

  12. Parity doubling in the baryon string model

    International Nuclear Information System (INIS)

    Khokhlachev, S.B.

    1990-01-01

    The nature of parity doubling of baryon states with non-zero angular momentum is considered. The idea of explaining this phenomenon lies in the fact that the rotation of the gluon string leads to a centrifugal potential for quarks. The quarks on the string form a quark-diquark system. Quark tunneling from one end of the string to the other is not probable for systems with large angular momentum due to a large centrifugal potential, and the smallness of the underbarrier transition amplitude explains the small mass difference of the states with opposite parity. (orig.)

  13. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvilli, M.A.

    1985-01-01

    In the present paper a relativistic theory of gravitation (RTG) is constructed in a unique way on the basis of the special relativity and geometrization principle. In this, a gravitational field is treated as the Faraday-Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG, the conservation laws are strictly fulfilled for the energy-momentum and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravitation. In virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTg leads to an exceptionally strong prediction: The Universe is not closed but just ''flat''. This suggests that in the Universe a ''hidden mass'' should exist in some form of matter

  14. Neural redundancy applied to the parity space for signal validation

    International Nuclear Information System (INIS)

    Mol, Antonio Carlos de Abreu; Pereira, Claudio Marcio Nascimento Abreu; Martinez, Aquilino Senra

    2005-01-01

    The objective of signal validation is to provide more reliable information from the plant sensor data The method presented in this work introduces the concept of neural redundancy and applies it to the space parity method [1] to overcome an inherent deficiency of this method - the determination of the best estimative of the redundant measures when they are inconsistent. The concept of neural redundancy consists on the calculation of a redundancy through neural networks based on the time series of the own state variable. Therefore, neural networks, dynamically trained with the time series, will estimate the current value of the own measure, which will be used as referee of the redundant measures in the parity space. For this purpose the neural network should have the capacity to supply the neural redundancy in real time and with maximum error corresponding to the group deviation. The historical series should be enough to allow the estimate of the next value, during transients and at the same time, it should be optimized to facilitate the retraining of the neural network to each acquisition. In order to have the capacity to reproduce the tendency of the time series even under accident condition, the dynamic training of the neural network privileges the recent points of the time series. The tests accomplished with simulated data of a nuclear plant, demonstrated that this method applied on the parity space method improves the signal validation process. (author)

  15. Neural redundancy applied to the parity space for signal validation

    Energy Technology Data Exchange (ETDEWEB)

    Mol, Antonio Carlos de Abreu; Pereira, Claudio Marcio Nascimento Abreu [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)]. E-mail: cmnap@ien.gov.br; Martinez, Aquilino Senra [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia]. E-mail: aquilino@lmp.br

    2005-07-01

    The objective of signal validation is to provide more reliable information from the plant sensor data The method presented in this work introduces the concept of neural redundancy and applies it to the space parity method [1] to overcome an inherent deficiency of this method - the determination of the best estimative of the redundant measures when they are inconsistent. The concept of neural redundancy consists on the calculation of a redundancy through neural networks based on the time series of the own state variable. Therefore, neural networks, dynamically trained with the time series, will estimate the current value of the own measure, which will be used as referee of the redundant measures in the parity space. For this purpose the neural network should have the capacity to supply the neural redundancy in real time and with maximum error corresponding to the group deviation. The historical series should be enough to allow the estimate of the next value, during transients and at the same time, it should be optimized to facilitate the retraining of the neural network to each acquisition. In order to have the capacity to reproduce the tendency of the time series even under accident condition, the dynamic training of the neural network privileges the recent points of the time series. The tests accomplished with simulated data of a nuclear plant, demonstrated that this method applied on the parity space method improves the signal validation process. (author)

  16. Parity effect of bipolar quantum Hall edge transport around graphene antidots.

    Science.gov (United States)

    Matsuo, Sadashige; Nakaharai, Shu; Komatsu, Katsuyoshi; Tsukagoshi, Kazuhito; Moriyama, Takahiro; Ono, Teruo; Kobayashi, Kensuke

    2015-06-30

    Parity effect, which means that even-odd property of an integer physical parameter results in an essential difference, ubiquitously appears and enables us to grasp its physical essence as the microscopic mechanism is less significant in coarse graining. Here we report a new parity effect of quantum Hall edge transport in graphene antidot devices with pn junctions (PNJs). We found and experimentally verified that the bipolar quantum Hall edge transport is drastically affected by the parity of the number of PNJs. This parity effect is universal in bipolar quantum Hall edge transport of not only graphene but also massless Dirac electron systems. These results offer a promising way to design electron interferometers in graphene.

  17. The equivalence principle and the gravitational constant in experimental relativity

    International Nuclear Information System (INIS)

    Spallicci, A.D.A.M.

    1988-01-01

    Fischbach's analysis of the Eotvos experiment, showing an embedded fifth force, has stressed the importance of further tests of the Equivalence Principle (EP). From Galilei and Newton, the EP played the role of a postulate for all gravitational physics and mechanics (weak EP), until Einstein, who extended the validity of the EP to all physics (strong EP). After Fischbach's publication on the fifth force, several experiments have been performed or simply proposed to test the WEP. They are concerned with possible gravitational potential anomalies, depending upon distances or matter composition. While the low level of accuracy with which the gravitational constant G is known has been recognized, experiments have been proposed to test G in the range from few cm until 200 m. This paper highlights the different features of the proposed space experiments. Possible implications on the metric formalism for objects in low potential and slow motion are briefly indicated

  18. Gravitation Waves seminar

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort.

  19. R-parity violating supersymmetry and neutrino physics: experimental signatures

    CERN Document Server

    Mitsou, Vasiliki A.

    2015-10-09

    $R$-parity violating supersymmetric models (RPV SUSY) are becoming increasingly more appealing than its $R$-parity conserving counterpart in view of the hitherto non-observation of SUSY signals at the LHC. In this paper, we discuss RPV scenarios where neutrino masses are naturally generated, namely RPV through bilinear terms (bRPV) and the $\\mu$-from-$\

  20. Cosmological viability of the bimetric theory of gravitation

    International Nuclear Information System (INIS)

    Krygier, B.; Krempec-Krygier, J.

    1983-01-01

    The approximate solutions of field equations for flat radiative cosmological models in the second version of bimetric gravitation theory are discussed. They indicate that these cosmological models are ever expanding. The apparent magnitude-redshift relations for flat dust cosmological models for different theories of gravitation are described and compared. One can reject Dirac's additive creation theory and the first version of Rosen's bimetric theory on the basis of this observational test. (author)

  1. PARITY IN THE COSMIC MICROWAVE BACKGROUND: SPACE ODDITY

    Energy Technology Data Exchange (ETDEWEB)

    Ben-David, Assaf; Kovetz, Ely D.; Itzhaki, Nissan, E-mail: bd.assaf@gmail.com, E-mail: elykovetz@gmail.com, E-mail: nitzhaki@post.tau.ac.il [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv, 69978 (Israel)

    2012-03-20

    We search for a direction in the sky that exhibits parity symmetry under reflections through a plane. We use the natural estimator, which compares the power in even and odd l + m multipoles, and apply minimal blind masking of outliers to the Internal Linear Combination map in order to avoid large errors in the reconstruction of multipoles. The multipoles of the cut sky are calculated both naively and by using the covariance inversion method, and we estimate the significance of our results using {Lambda}CDM simulations. Focusing on low multipoles, 2 {<=} l {<=} l{sub max} with l{sub max} = 5, 6, or even 7, we find two perpendicular directions of even and odd parity in the map. While the even parity direction does not appear significant, the odd direction is quite significant-at least a 3.6{sigma} effect.

  2. Parity violation in nuclei

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1980-01-01

    A summary of parity violating effects in nuclei is given. Thanks to vigorous experimental and theoretical effort, it now appears that a reasonably well-defined value for the weak isovector π-nucleon coupling constant can be obtained. There is one major uncertainty in the analysis, namely the M2/E1 mixing ratio for the 2.79 MeV transition in 21 Ne. This quantity is virtually impossible to calculate reliably and must be measured. If it turns out to be much larger than 1, then a null result in 21 Ne is expected no matter what the weak interaction, so an experimental determination is urgently needed. The most promising approach is perhaps a measurement of the pair internal conversion coefficient. Of course, a direct measurement of a pure isovector case is highly desirable, and it is to be hoped that the four ΔT = 1 experiments will be pushed still further, and that improved calculations will be made for the 6 Li case. Nuclear parity violation seems to be rapidly approaching an interesting and useful synthesis

  3. Gender parity in Senegal – A continuing struggle

    OpenAIRE

    Tøraasen, Marianne

    2017-01-01

    In 2010, the Senegalese women’s movement, supported by political elites and international norms, managed to push for the adoption of one of the world’s most radical gender quota laws to date. This was achieved without the support of the powerful religious leaders, the marabouts. However, the marabouts fought back in the 2014 local elections and thwarted the full implementation of parity. This CMI Insight explores the on-going fight for parity in Senegal.

  4. Relativity theory and gravitation

    International Nuclear Information System (INIS)

    Bondi, H.

    1986-01-01

    The paper on relativity theory and gravitation is presented as a preface to the first of the articles submitted to the Journal on general relativity. Newtonian gravitation and and observation, relativity, and the sources of the gravitational field, are all discussed. (UK)

  5. Gravitational wave tests of general relativity with the parameterized post-Einsteinian framework

    International Nuclear Information System (INIS)

    Cornish, Neil; Sampson, Laura; Yunes, Nicolas; Pretorius, Frans

    2011-01-01

    Gravitational wave astronomy has tremendous potential for studying extreme astrophysical phenomena and exploring fundamental physics. The waves produced by binary black hole mergers will provide a pristine environment in which to study strong-field dynamical gravity. Extracting detailed information about these systems requires accurate theoretical models of the gravitational wave signals. If gravity is not described by general relativity, analyses that are based on waveforms derived from Einstein's field equations could result in parameter biases and a loss of detection efficiency. A new class of ''parameterized post-Einsteinian'' waveforms has been proposed to cover this eventuality. Here, we apply the parameterized post-Einsteinian approach to simulated data from a network of advanced ground-based interferometers and from a future space-based interferometer. Bayesian inference and model selection are used to investigate parameter biases, and to determine the level at which departures from general relativity can be detected. We find that in some cases the parameter biases from assuming the wrong theory can be severe. We also find that gravitational wave observations will beat the existing bounds on deviations from general relativity derived from the orbital decay of binary pulsars by a large margin across a wide swath of parameter space.

  6. Precessing Black Hole Binaries and Their Gravitational Radiation

    Directory of Open Access Journals (Sweden)

    László Á. Gergely

    2018-02-01

    Full Text Available The first and second observational runs of Advanced Laser Interferometer Gravitational-wave Observatory (LIGO have marked the first direct detections of gravitational waves, either from black hole binaries or, in one case, from coalescing neutron stars. These observations opened up the era of gravitational wave astronomy, but also of gravitational wave cosmology, in the form of an independent derivation of the Hubble constant. They were equally important to prove false a plethora of modified gravity theories predicting gravitational wave propagation speed different from that of light. For a continued and improved testing of general relativity, the precise description of compact binary dynamics, not only in the final coalescence phase but also earlier, when precessional effects dominate, are required. We report on the derivation of the full secular dynamics for compact binaries, valid over the precessional time-scale, in the form of an autonomous closed system of differential equations for the set of spin angles and periastron. The system can be applied for mapping the parameter space for the occurrence of the spin flip-flop effect and for more accurately analyzing the spin-flip effect, which could explain the formation of X-shaped radio galaxies.

  7. Parity violating electron scattering

    International Nuclear Information System (INIS)

    McKeown, R.D.

    1990-01-01

    Previous measurements of parity violation in electron scattering are reviewed with particular emphasis on experimental techniques. Significant progress in the attainment of higher precision is evident in these efforts. These pioneering experiments provide a basis for consideration of a future program of such measurements. In this paper some future plans and possibilities in this field are discussed

  8. Towards grid parity in insular energy systems: The case of photovoltaics (PV) in Cyprus

    International Nuclear Information System (INIS)

    Fokaides, Paris A.; Kylili, Angeliki

    2014-01-01

    Grid parity is defined as the threshold at which a grid-connected renewable energy sources (RES) system supplies electricity to the end user at the same price as grid-supplied electricity. Predictions from the 2006 time-frame expected retail grid parity for solar in the 2016 to 2020 era, but due to rapid downward pricing changes, more recent calculations have forced dramatic reductions in time scale, and the suggestion that solar has already reached grid parity in a wide variety of locations. This study presents aspects of achieving grid parity in insular energy systems, based on a case study applied in Cyprus. The analysis presents the variation of the manufacturing cost, the selling price of the produced energy, and the performance of the solar panels to examine the conditions of accomplishing grid parity event. It is also concluded that grid parity may be easier achieved in insular energy systems due to the higher cost of primary energy. - Highlights: • This study presents aspects of achieving grid parity in insular energy systems, based on a case study applied in Cyprus. • The impact of the manufacturing cost and the feed in tariff on accomplishing grid parity event is analysed. • A sensitivity analysis is conducted to define the parameters that strongly affect the goal of grid parity. • It is concluded that grid parity may be easier achieved in insular energy systems due to the higher cost of primary energy

  9. Parity violation in nuclei: studies of the weak nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Mcdonald, A.B.

    1980-03-01

    The Weinberg-Salam Unified Model of weak and electromagnetic interactions has been very successful in explaining parity violation and neutral current effects in neutrino-nucleon, electron-nucleon and neutrino-electron interactions. A wide variety of nuclear physics parity violation experiments are in progress to measure effects of the weak nucleon-nucleon interaction in few nucleon systems and certain heavier nuclei where enhancements are expected. The current status of these experiments will be reviewed, including details of an experiment at Chalk River to search for parity violation in the photodisintegration of deuterium and an extension of our previous measurements of parity mixing in 21 Ne. The interpretation of results in terms of basic models of the weak interaction will be discussed. (Auth)

  10. Gravitation

    CERN Document Server

    Misner, Charles W; Wheeler, John Archibald

    2017-01-01

    First published in 1973, Gravitation is a landmark graduate-level textbook that presents Einstein’s general theory of relativity and offers a rigorous, full-year course on the physics of gravitation. Upon publication, Science called it “a pedagogic masterpiece,” and it has since become a classic, considered essential reading for every serious student and researcher in the field of relativity. This authoritative text has shaped the research of generations of physicists and astronomers, and the book continues to influence the way experts think about the subject. With an emphasis on geometric interpretation, this masterful and comprehensive book introduces the theory of relativity; describes physical applications, from stars to black holes and gravitational waves; and portrays the field’s frontiers. The book also offers a unique, alternating, two-track pathway through the subject. Material focusing on basic physical ideas is designated as Track 1 and formulates an appropriate one-semester graduate-level...

  11. Gravitational Wave Polarizations in f (R Gravity and Scalar-Tensor Theory

    Directory of Open Access Journals (Sweden)

    Gong Yungui

    2018-01-01

    Full Text Available The detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory opens a new era to use gravitational waves to test alternative theories of gravity. We investigate the polarizations of gravitational waves in f (R gravity and Horndeski theory, both containing scalar modes. These theories predict that in addition to the familiar + and × polarizations, there are transverse breathing and longitudinal polarizations excited by the massive scalar mode and the new polarization is a single mixed state. It would be very difficult to detect the longitudinal polarization by interferometers, while pulsar timing array may be the better tool to detect the longitudinal polarization.

  12. Swift pointing and gravitational-wave bursts from gamma-ray burst events

    International Nuclear Information System (INIS)

    Sutton, Patrick J; Finn, Lee Samuel; Krishnan, Badri

    2003-01-01

    The currently accepted model for gamma-ray burst phenomena involves the violent formation of a rapidly rotating solar-mass black hole. Gravitational waves should be associated with the black-hole formation, and their detection would permit this model to be tested. Even upper limits on the gravitational-wave strength associated with gamma-ray bursts could constrain the gamma-ray burst model. This requires joint observations of gamma-ray burst events with gravitational and gamma-ray detectors. Here we examine how the quality of an upper limit on the gravitational-wave strength associated with gamma-ray bursts depends on the relative orientation of the gamma-ray-burst and gravitational-wave detectors, and apply our results to the particular case of the Swift Burst-Alert Telescope (BAT) and the LIGO gravitational-wave detectors. A result of this investigation is a science-based 'figure of merit' that can be used, together with other mission constraints, to optimize the pointing of the Swift telescope for the detection of gravitational waves associated with gamma-ray bursts

  13. Gravitational wave astronomy

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    In the past year, the LIGO-Virgo Collaboration announced the first secure detection of gravitational waves. This discovery heralds the beginning of gravitational wave astronomy: the use of gravitational waves as a tool for studying the dense and dynamical universe. In this talk, I will describe the full spectrum of gravitational waves, from Hubble-scale modes, through waves with periods of years, hours and milliseconds. I will describe the different techniques one uses to measure the waves in these bands, current and planned facilities for implementing these techniques, and the broad range of sources which produce the radiation. I will discuss what we might expect to learn as more events and sources are measured, and as this field matures into a standard part of the astronomical milieu.

  14. Is there a rule of thumb for absolute purchasing power parity to hold?

    OpenAIRE

    Zhang, Zhibai

    2014-01-01

    We find an example where real exchange rate (RER) is stationary and the nominal exchange rate and the price levels are cointegrated but purchasing power parity (PPP) does not hold, which reveals a fault of the unit root and cointegration tests in this use. We argue that the distribution of an RER misalignment can be used in testing absolute PPP. Then we apply this new test and the coefficient restriction test to study the validity of absolute PPP in 40 main countries and areas (versus the US)...

  15. Probing a gravitational cat state

    International Nuclear Information System (INIS)

    Anastopoulos, C; Hu, B L

    2015-01-01

    We investigate the nature of a gravitational two-state system (G2S) in the simplest setup in Newtonian gravity. In a quantum description of matter a single motionless massive particle can in principle be in a superposition state of two spatially separated locations. This superposition state in gravity, or gravitational cat state, would lead to fluctuations in the Newtonian force exerted on a nearby test particle. The central quantity of importance for this inquiry is the energy density correlation. This corresponds to the noise kernel in stochastic gravity theory, evaluated in the weak field nonrelativistic limit. In this limit quantum fluctuations of the stress–energy tensor manifest as the fluctuations of the Newtonian force. We describe the properties of such a G2S system and present two ways of measuring the cat state for the Newtonian force, one by way of a classical probe, the other a quantum harmonic oscillator. Our findings include: (i) mass density fluctuations persist even in single particle systems, and they are of the same order of magnitude as the mean; (ii) a classical probe generically records a non-Markovian fluctuating force; (iii) a quantum probe interacting with the G2S system may undergo Rabi oscillations in a strong coupling regime. This simple prototypical gravitational quantum system could provide a robust testing ground to compare predictions from alternative quantum theories, since the results reported here are based on standard quantum mechanics and classical gravity. (paper)

  16. Gravitational Wave Astronomy

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.

  17. Polarized protons and parity violating asymmetries

    International Nuclear Information System (INIS)

    Trueman, T.L.

    1984-01-01

    The potential for utilizing parity violating effects, associated with polarized protons, to study the standard model, proton structure, and new physics at the SPS Collider is summarized. 24 references

  18. Underdevelopment’s gravitation

    Directory of Open Access Journals (Sweden)

    Marin Dinu

    2013-09-01

    Full Text Available The energy necessary to escape the gravitational pull of underdevelopment and to enter an evolutional trajectory dependent on the gravitational pull of development is unintelligible in economic terms.

  19. Experimental search for parity nonconservation in atomic thallium

    International Nuclear Information System (INIS)

    Commins, E.D.

    1978-01-01

    In the lecture an experimental search for parity nonconservation in the 6 2 P/sub 1/2/--7 2 P/sub 1/2/ transition in atomic thallium is described. The reason for the choice of this particular transition, a description of the method, the results to data, and a brief description of the future plans are given. The very preliminary results suggest that the Weinberg--Salam model correctly describes parity nonconservation effects in atoms. 5 references

  20. The young Sakharov and his isotopic parity

    International Nuclear Information System (INIS)

    Dalitz, R.H.

    1992-01-01

    In this paper an account is given of A.D. Sakharov's 1947 discovery, while a post-graduate student at F.I.A.N. (Moscow), of his quantum number isotopic parity as a consequence of the charge symmetry of nuclear forces, a property generally accepted as early as 1936. His applications of it are discussed and it is demonstrated from the data today that his tentative suggestion that the small partial width (∼35 eV) for α-decay from 20 Ne (13.649 MeV) to 16 O was due to isotopic parity violation was correct

  1. On the static Casimir effect with parity-breaking mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Fosco, C.D. [Comision Nacional de Energia Atomica, Centro Atomico Bariloche and Instituto Balseiro, Bariloche (Argentina); Remaggi, M.L. [Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Mendoza (Argentina)

    2017-03-15

    We study the Casimir interaction energy due to the vacuum fluctuations of the electromagnetic (EM) field in the presence of two mirrors, described by 2+1-dimensional, generally nonlocal actions, which may contain both parity-conserving and parity-breaking terms. We compare the results with the ones corresponding to Chern-Simons boundary conditions and evaluate the interaction energy for several particular situations. (orig.)

  2. Newton's Path to Universal Gravitation: The Role of the Pendulum

    Science.gov (United States)

    Boulos, Pierre J.

    2006-01-01

    Much attention has been given to Newton's argument for Universal Gravitation in Book III of the "Principia". Newton brings an impressive array of phenomena, along with the three laws of motion, and his rules for reasoning to deduce Universal Gravitation. At the centre of this argument is the famous "moon test". Here it is the empirical evidence…

  3. Astronomy and astrophysics with gravitational waves in the advanced detector era

    International Nuclear Information System (INIS)

    Weinstein, Alan J

    2012-01-01

    With the advanced gravitational wave detectors coming on line in the next 5 years, we expect to make the first detections of gravitational waves from astrophysical sources, and study the properties of the waves themselves as tests of general relativity. In addition, these gravitational waves will be powerful tools for the study of their astrophysical sources and source populations. They carry information that is quite complementary to what can be learned from electromagnetic or neutrino observations, probing the central gravitational engines that power the electromagnetic emissions at the outer layers of the source. Preparations are being made to enable near-simultaneous observations of both gravitational wave and electromagnetic observations of transient sources, using low-latency search pipelines and rapid sky localization. We will review the many opportunities for multi-messenger astronomy and astrophysics with gravitational waves enabled by the advanced detectors, and the preparations that are being made to quickly and fully exploit them. (paper)

  4. Analysis tools for discovering strong parity violation at hadron colliders

    Science.gov (United States)

    Backović, Mihailo; Ralston, John P.

    2011-07-01

    Several arguments suggest parity violation may be observable in high energy strong interactions. We introduce new analysis tools to describe the azimuthal dependence of multiparticle distributions, or “azimuthal flow.” Analysis uses the representations of the orthogonal group O(2) and dihedral groups DN necessary to define parity completely in two dimensions. Classification finds that collective angles used in event-by-event statistics represent inequivalent tensor observables that cannot generally be represented by a single “reaction plane.” Many new parity-violating observables exist that have never been measured, while many parity-conserving observables formerly lumped together are now distinguished. We use the concept of “event-shape sorting” to suggest separating right- and left-handed events, and we discuss the effects of transverse and longitudinal spin. The analysis tools are statistically robust, and can be applied equally to low or high multiplicity events at the Tevatron, RHIC or RHIC Spin, and the LHC.

  5. Analysis tools for discovering strong parity violation at hadron colliders

    International Nuclear Information System (INIS)

    Backovic, Mihailo; Ralston, John P.

    2011-01-01

    Several arguments suggest parity violation may be observable in high energy strong interactions. We introduce new analysis tools to describe the azimuthal dependence of multiparticle distributions, or 'azimuthal flow'. Analysis uses the representations of the orthogonal group O(2) and dihedral groups D N necessary to define parity completely in two dimensions. Classification finds that collective angles used in event-by-event statistics represent inequivalent tensor observables that cannot generally be represented by a single 'reaction plane'. Many new parity-violating observables exist that have never been measured, while many parity-conserving observables formerly lumped together are now distinguished. We use the concept of 'event-shape sorting' to suggest separating right- and left-handed events, and we discuss the effects of transverse and longitudinal spin. The analysis tools are statistically robust, and can be applied equally to low or high multiplicity events at the Tevatron, RHIC or RHIC Spin, and the LHC.

  6. Parity nonconservation in two-nucleon systems

    International Nuclear Information System (INIS)

    Nagle, D.E.

    1975-01-01

    The observation of a violation of the parity symmetry in two-nucleon systems implies the presence of a weak hadronic force. The positive effect reported by Lobashov et al. in the reaction np → dγ, for the circular polarization of the gamma ray, would imply a large value for the parity nonconserving (PNC) amplitude. A transmission experiment has been undertaken for 15-MeV longitudinally polarized protons on hydrogen. A transmission experiment for 6-GeV polarized protons on Be and on H 2 O is in progress at the ZGS at Argonne National Laboratory. The current results of the latter two experiments are summarized, and the relation to theoretical calculations is discussed. (2 figures, 1 table) (U.S.)

  7. Parity violation in the compound nucleus

    International Nuclear Information System (INIS)

    Bowman, J.D.; Frankle, C.M.; Green, A.A.

    1994-01-01

    The status of parity violation in the compound nucleus is reviewed. The results of previous experimental results obtained by scattering polarized epithermal neutrons from heavy nuclei in the 3-p and 4-p p-wave strength function peaks are presented. Experimental techniques are presented. The extraction of the mean squared matrix element of the parity-violating interaction, M 2 , between compound-nuclear levels and the relationship of M 2 to the coupling strengths in the meson exchange weak nucleon-nucleon potential are discussed. The tendency of measured asymmetries to have a common sign and theoretical implications are discussed. New experimental results are presented that show that the common sign phenomenon is not universal, as theoretical models developed up to now would predict

  8. Parity for mental health and substance abuse care under managed care.

    Science.gov (United States)

    Frank, Richard G.; McGuire, Thomas G.

    1998-12-01

    BACKGROUND: Parity in insurance coverage for mental health and substance abuse has been a key goal of mental health and substance abuse care advocates in the United States during most of the past 20 years. The push for parity began during the era of indemnity insurance and fee for service payment when benefit design was the main rationing device in health care. The central economic argument for enacting legislation aimed at regulating the insurance benefit was to address market failure stemming from adverse selection. The case against parity was based on inefficiency related to moral hazard. Empirical analyses provided evidence that ambulatory mental health services were considerably more responsive to the terms of insurance than were ambulatory medical services. AIMS: Our goal in this research is to reexamine the economics of parity in the light of recent changes in the delivery of health care in the United States. Specifically managed care has fundamentally altered the way in which health services are rationed. Benefit design is now only one mechanism among many that are used to allocate health care resources and control costs. We examine the implication of these changes for policies aimed at achieving parity in insurance coverage. METHOD: We develop a theoretical approach to characterizing rationing under managed care. We then analyze the traditional efficiency concerns in insurance, adverse selection and moral hazard in the context of policy aimed at regulating health and mental health benefits under private insurance. RESULTS: We show that since managed care controls costs and utilization in new ways parity in benefit design no longer implies equal access to and quality of mental health and substance abuse care. Because costs are controlled by management under managed care and not primarily by out of pocket prices paid by consumers, demand response recedes as an efficiency argument against parity. At the same time parity in benefit design may accomplish less

  9. ARRIVAL TIME DIFFERENCES BETWEEN GRAVITATIONAL WAVES AND ELECTROMAGNETIC SIGNALS DUE TO GRAVITATIONAL LENSING

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryuichi [Faculty of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561 (Japan)

    2017-01-20

    In this study we demonstrate that general relativity predicts arrival time differences between gravitational wave (GW) and electromagnetic (EM) signals caused by the wave effects in gravitational lensing. The GW signals can arrive earlier than the EM signals in some cases if the GW/EM signals have passed through a lens, even if both signals were emitted simultaneously by a source. GW wavelengths are much larger than EM wavelengths; therefore, the propagation of the GWs does not follow the laws of geometrical optics, including the Shapiro time delay, if the lens mass is less than approximately 10{sup 5} M {sub ⊙}( f /Hz){sup −1}, where f is the GW frequency. The arrival time difference can reach ∼0.1 s ( f /Hz){sup −1} if the signals have passed by a lens of mass ∼8000 M {sub ⊙}( f /Hz){sup −1} with the impact parameter smaller than the Einstein radius; therefore, it is more prominent for lower GW frequencies. For example, when a distant supermassive black hole binary (SMBHB) in a galactic center is lensed by an intervening galaxy, the time lag becomes of the order of 10 days. Future pulsar timing arrays including the Square Kilometre Array and X-ray detectors may detect several time lags by measuring the orbital phase differences between the GW/EM signals in the SMBHBs. Gravitational lensing imprints a characteristic modulation on a chirp waveform; therefore, we can deduce whether a measured arrival time lag arises from intrinsic source properties or gravitational lensing. Determination of arrival time differences would be extremely useful in multimessenger observations and tests of general relativity.

  10. Photovoltaic: time for network parity

    International Nuclear Information System (INIS)

    Boulanger, V.

    2013-01-01

    Since 2012 the purchase tariff of photovoltaic power in Germany has been below the price of electricity for households which means that network parity has been reached. New economical schemes combining self-consumption and direct access to the power grid are now possible. (A.C.)

  11. Nuclear isospin mixing and elastic parity-violating electron scattering

    International Nuclear Information System (INIS)

    Moreno, O.; Sarriguren, P.; Moya de Guerra, E.; Udias, J.M.; Donnelly, T.W.; Sick, I.

    2009-01-01

    The influence of nuclear isospin mixing on parity-violating elastic electron scattering is studied for the even-even, N=Z nuclei 12 C, 24 Mg, 28 Si, and 32 S. Their ground-state wave functions have been obtained using a self-consistent axially-symmetric mean-field approximation with density-dependent effective two-body Skyrme interactions. Some differences from previous shell-model calculations appear for the isovector Coulomb form factors which play a role in determining the parity-violating asymmetry. To gain an understanding of how these differences arise, the results have been expanded in a spherical harmonic oscillator basis. Results are obtained not only within the plane-wave Born approximation, but also using the distorted-wave Born approximation for comparison with potential future experimental studies of parity-violating electron scattering. To this end, for each nucleus the focus is placed on kinematic ranges where the signal (isospin-mixing effects on the parity-violating asymmetry) and the experimental figure-of-merit are maximized. Strangeness contributions to the asymmetry are also briefly discussed, since they and the isospin mixing contributions may play comparable roles for the nuclei being studied at the low momentum transfers of interest in the present work.

  12. On the gravitational radiation formula

    International Nuclear Information System (INIS)

    Schaefer, G.; Dehnen, H.

    1980-01-01

    For electromagnetically as well as gravitationally bound quantum mechanical many-body systems the coefficients of absorption and induced emission of gravitational radiation are calculated in the first-order approximation. The results are extended subsequently to systems with arbitrary non-Coulomb-like two-particle interaction potentials;it is shown explicitly that in all cases the perturbation of the binding potentials of the bound systems by the incident gravitational wave field itself must be taken into account. With the help of the thermodynamic equilibrium of gravitational radiation and quantised matter, the coefficients for spontaneous emission of gravitational radiation are derived and the gravitational radiation formula for emission of gravitational quadrupole radiation by bound quantum mechanical many-body systems is given. According to the correspondence principle the present result is completely identical with the well known classical radiation formula, by which recent criticism against this formula is refuted. Finally the quantum mechanical absorption cross section for gravitational quadrupole radiation is deduced and compared with the corresponding classical expressions. As a special example the vibrating two-mass quadrupole is treated explicitly. (author)

  13. Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project

    International Nuclear Information System (INIS)

    Aylott, Benjamin; Baker, John G; Camp, Jordan; Centrella, Joan; Boggs, William D; Buonanno, Alessandra; Boyle, Michael; Buchman, Luisa T; Chu, Tony; Brady, Patrick R; Brown, Duncan A; Bruegmann, Bernd; Cadonati, Laura; Campanelli, Manuela; Faber, Joshua; Chatterji, Shourov; Christensen, Nelson; Diener, Peter; Dorband, Nils; Etienne, Zachariah B

    2009-01-01

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.

  14. Validity test of purchasing power parity doctrine: An Indonesian case study

    Directory of Open Access Journals (Sweden)

    Sahabudin Sidiq

    2016-10-01

    Full Text Available The goal of this study is to analyze the doctrine purchasing power parity (PPP in Indonesia with the case study of the rupiah exchange rate to U.S. dollar. The autoregressive is used to estimate the relationship between the change of exchange rate and the difference Indonesia–USA inflation rate. The data used in this study are quarterly data obtained from the International Financial Statistics (IFS and Bank Indonesia (BI with the period 1997Q4-2013Q4. The exchange rate that used in this study is using the rate on rupiah to U S dollar. The price data used consumer price index in Indonesia and the United States with a base year of 2000. The results of this study show, that rupiah to the U.S. dollar is undervalued during the free floating exchange rate system and, the PPP doctrine to the case of the rupiah to the U.S. dollar is not valid in the period of this study.

  15. Impact of biological and economic variables on optimal parity for replacement in swine breed-to-wean herds.

    Science.gov (United States)

    Rodriguez-Zas, S L; Davis, C B; Ellinger, P N; Schnitkey, G D; Romine, N M; Connor, J F; Knox, R V; Southey, B R

    2006-09-01

    Voluntary and involuntary culling practices determine the average parity when sows are replaced in a herd. Underlying these practices is the economic effect of replacing a sow at different parities. A dynamic programming model was used to find the optimal parity and net present value in breed-to-wean swine herds. The model included income and costs per parity weighted by the discount rate and sow removal rate. Three scenarios that reflect a wide range of cases were considered: low removal rates per parity with no salvage value (LRNS), high removal rates per parity with no salvage value (HRNS), and high removal rates per parity with a percentage of the sows having a salvage value (HRYS). The optimal parity of replacement for the base biological and economic conditions was 4 and 5 parities in the high and low removal scenarios, respectively. Sensitivity analyses identified the variables influencing the optimal replacement parity. Optimal parity of replacement ranged from 3 to 7 parities in the low replacement scenario, compared with 1 to 5 parities in the high replacement scenarios. Sow replacement cost and salvage value had the greatest impact on optimal parity of replacement followed by revenues per piglet weaned. The discount rate and number of parities per year generally had little influence on optimal parity. For situations with high sow costs, low salvage values, and low revenues per piglet, the optimal parity at removal was as high as 6 to 10 parities, and for situations with low sow cost, high salvage values, and high revenues per piglet, the optimal parity at removal was as low as 1 to 2 parities depending on removal rates. The modified internal rate of return suggested that, for most LRNS and HRYS scenarios considered, investment in a swine breed-to-wean enterprise was favored over other investments involving a similar risk profile. Our results indicate that in US breeding herds, sows are culled on average near the optimal parity of 4. However, the

  16. Space gravitational wave detector DECIGO/pre-DECIGO

    Science.gov (United States)

    Musha, Mitsuru

    2017-09-01

    The gravitational wave (GW) is ripples in gravitational fields caused by the motion of mass such as inspiral and merger of blackhole binaries or explosion of super novae, which was predicted by A.Einstein in his general theory of relativity. In Japan, besides the ground-base GW detector, KAGRA, the space gravitational wave detector, DECIGO, is also promoted for detecting GW at lower frequency range. DECIGO (DECi-heltz Gravitational-wave Observatory) consists of 3 satellites, forming a 1000-km triangle-shaped Fabry-Perot laser interferometer whose designed strain sensitivity is ?l/l planned a milestone mission for DECIGO named Pre-DECIGO, which has almost the same configuration as DECIGO with shorter arm length of 100 km. Pre-DECIGO is aimed for detecting GW from merger of blackhole binaries with less sensitivity as DECIGO, and also for feasibility test of key technologies for realizing DECIGO. Pre-DECIGO is now under designing and developing for launching in late 2020s, with the financial support of JAXA and JSPS. In our presentation, we will review DECIGO project, and show the design and current status of Pre-DECIGO.

  17. Tests for the existence of black holes through gravitational wave echoes

    Science.gov (United States)

    Cardoso, Vitor; Pani, Paolo

    2017-09-01

    The existence of black holes and spacetime singularities is a fundamental issue in science. Despite this, observations supporting their existence are scarce, and their interpretation is unclear. In this Perspective we outline the case for black holes that has been made over the past few decades, and provide an overview of how well observations adjust to this paradigm. Unsurprisingly, we conclude that observational proof for black holes is, by definition, impossible to obtain. However, just like Popper's black swan, alternatives can be ruled out or confirmed to exist with a single observation. These observations are within reach. In the coming years and decades, we will enter an era of precision gravitational-wave physics with more sensitive detectors. Just as accelerators have required larger and larger energies to probe smaller and smaller scales, more sensitive gravitational-wave detectors will probe regions closer and closer to the horizon, potentially reaching Planck scales and beyond. What may be there, lurking?

  18. Parity nonconservation in polarized electron scattering at high energies

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1979-10-01

    Recent observations of parity violation in inelastic scattering of electrons at high energy is discussed with reference to the process e(polarized) + D(unpolarized) → e + X. The kinetics of this process, the idealized case of scattering from free quark targets, experimental techniques and results, and relations to atomic physics of parity violation in bismuth and thallium atoms with a model independent analysis. 17 references

  19. Parity- and time-reversal-violating moments of light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Jordy de, E-mail: devries@kvi.nl [KVI, theory group (Netherlands)

    2013-03-15

    I present the calculation of parity- and time-reversal-violating moments of the nucleon and light nuclei, originating from the QCD {theta}-bar term and effective dimension-six operators. By applying chiral effective field theory these calculations are performed in a unified framework. I argue that measurements of a few light-nuclear electric dipole moments would shed light on the mechanism of parity and time-reversal violation.

  20. Modular Gravitational Reference Sensor (MGRS) For Astrophysics and Astronomy

    Science.gov (United States)

    Sun, Ke-Xun; Buchman, S.; Byer, R. L.; DeBra, D.; Goebel, J.; Allen, G.; Conklin, J.; Gerardi, D.; Higuchi, S.; Leindecker, N.; Lu, P.; Swank, A.; Torres, E.; Trillter, M.; Zoellner, A.

    2009-01-01

    The study of space-time for gravitational wave detection and cosmology beyond Einstein will be an important theme for astrophysics and astronomy in decades to come. Laser Interferometric Space Antenna (LISA) is designed for detecting gravitational wave in space. The Modular Gravitational Reference Sensor (MGRS) is developed as the next generation core instrument for space-time research, including gravitational wave detection beyond LISA, and an array of precision experiments in space. The MGRS provide a stable gravitational cardinal point in space-time by using a test sphere, which eliminates the need for orientation control, minimizing disturbances. The MGRS measures the space-time variation via a two step process: measurement between test mass and housing, and between housings of two spacecraft. Our Stanford group is conducting systematic research and development on the MGRS. Our initial objectives are to gain a system perspective of the MGRS, to develop component technologies, and to establish test platforms. We will review our recent progress in system technologies, optical displacement and angle sensing, diffractive optics, proof mass characterization, UV LED charge management system and space qualification, thermal control and sensor development. Some highlights of our recent results are: Demonstration of the extreme radiation hardness of UV LED which sustained 2 trillion protons per square centimeter; measurement of mass center offset down to 300 nm, and measurement of small angle 0.2 nrad per root hertz using a compact grating angular sensor. The Stanford MGRS program has made exceptional contribution to education of next generation scientists and engineers. We have undergraduate and graduate students in aeronautical and astronautic engineering, applied physics, cybernetics, electrical engineering, mechanical engineering, and physics. We have also housed a number of high school students in our labs for education and public outreach.

  1. Gravitation in Material Media

    Science.gov (United States)

    Ridgely, Charles T.

    2011-01-01

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium…

  2. Detection of gravitational radiation

    Energy Technology Data Exchange (ETDEWEB)

    Holten, J.W. van [ed.

    1994-12-31

    In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI).

  3. Detection of gravitational radiation

    International Nuclear Information System (INIS)

    Holten, J.W. van

    1994-01-01

    In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI)

  4. Einstein's equations of motion in the gravitational field of an oblate ...

    African Journals Online (AJOL)

    In an earlier paper we derived Einstein's geometrical gravitational field equations for the metric tensor due to an oblate spheroidal massive body. In this paper we derive the corresponding Einstein's equations of motion for a test particle of nonzero rest mass in the gravitational field exterior to a homogeneous oblate ...

  5. Dynamical matter-parity breaking and gravitino dark matter

    International Nuclear Information System (INIS)

    Schmidt, Jonas; Weniger, Christoph; Yanagida, Tsutomu T.; Tokyo Univ.

    2010-10-01

    Scenarios where gravitinos with GeV masses make up dark matter are known to be in tension with high reheating temperatures, as required by e.g. thermal leptogenesis. This tension comes from the longevity of the NLSPs, which can destroy the successful predictions of the standard primordial nucleosynthesis. However, a small violation of matter parity can open new decay channels for the NLSP, avoiding the BBN problems, while being compatible with experimental cosmic-ray constraints. In this paper, we propose a model where matter parity, which we assume to be embedded in the U(1) B-L gauge symmetry, is broken dynamically in a hidden sector at low scales. This can naturally explain the smallness of the matter parity breaking in the visible sector. We discuss the dynamics of the corresponding pseudo Nambu-Goldstone modes of B-L breaking in the hidden sector, and we comment on typical cosmic-ray and collider signatures in our model. (orig.)

  6. Dynamical matter-parity breaking and gravitino dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Jonas; Weniger, Christoph [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Tokyo Univ. (JP). Inst. for the Physics and Mathematics of the Universe (IPMU); Yanagida, Tsutomu T. [Tokyo Univ. (JP). Inst. for the Physics and Mathematics of the Universe (IPMU); Tokyo Univ. (Japan). Dept. of Physics

    2010-10-15

    Scenarios where gravitinos with GeV masses make up dark matter are known to be in tension with high reheating temperatures, as required by e.g. thermal leptogenesis. This tension comes from the longevity of the NLSPs, which can destroy the successful predictions of the standard primordial nucleosynthesis. However, a small violation of matter parity can open new decay channels for the NLSP, avoiding the BBN problems, while being compatible with experimental cosmic-ray constraints. In this paper, we propose a model where matter parity, which we assume to be embedded in the U(1){sub B-L} gauge symmetry, is broken dynamically in a hidden sector at low scales. This can naturally explain the smallness of the matter parity breaking in the visible sector. We discuss the dynamics of the corresponding pseudo Nambu-Goldstone modes of B-L breaking in the hidden sector, and we comment on typical cosmic-ray and collider signatures in our model. (orig.)

  7. Parity and the Risk of Type 2 Diabetes

    DEFF Research Database (Denmark)

    Ovesen, Per; Ipsen, Sidsel; Lundbye-Christensen, Søren

    year 2004 and information on type, date, interval from birth to diagnosis of diabetes was recorded. A total of 1717 cases were diagnosed with diabetes in the follow-up period of 23 yearswhich ich correspond to 1,7%. The women in the study were between 13 and 50 years old at the time of delivery. We...... grouped the study population in age groups: the young (age 13-22 years) comprising 19% of the total births, middle group (23-29 years) comprising 55% of the births and old group (30-50 years) comprising 26% of the births. In all groups there was a significant effect of parity on the development......  The relationship between parity and diabetes has been discussed for many years and the subject is still controversial.  Some investigations show that parity, particularly five or more births, might be associated with higher incidence of diabetes, whereas others found no association. We performed...

  8. R-parity violation and the cosmological gravitino problem

    International Nuclear Information System (INIS)

    Moreau, G.; Chemtob, M.

    2002-01-01

    Based on the R-parity violation option of the minimal supersymmetric standard model, we examine the scenario where the massive gravitino, a relic from the hot big-bang, is the lightest supersymmetric particle and can decay through one or several of the trilinear R-parity violating interactions. We calculate the rates of the gravitino decay via the various three-body decay channels with final states involving three quarks and/or leptons. By taking into account the present constraints on the trilinear R-parity violating coupling constants and assuming the gravitino and scalar superpartner masses do not exceed ∼80 TeV, it turns out that the gravitinos could easily have decayed before the present epoch but not earlier than the big-bang nucleosynthesis one. Therefore, the considered scenario would upset the standard big-bang nucleosynthesis scenario and we conclude that it does not seem to constitute a natural solution for the cosmological gravitino problem

  9. R-parity violating right-handed neutrino in gravitino dark matter scenario

    International Nuclear Information System (INIS)

    Endo, Motoi

    2009-06-01

    A decay of the gravitino dark matter is an attractive candidate to explain the current excesses of the PAMELA/ATIC cosmic-ray data. However, R-parity violations are required to be very tiny in low-energy scale. We suggest a R-parity violation in the right-handed neutrino sector. The violation is suppressed by a see-saw mechanism. Although a reheating temperature is constrained from above, the thermal leptogenesis is found to work successfully with a help of the R-parity violating right-handed neutrino. (orig.)

  10. R-parity violating right-handed neutrino in gravitino dark matter scenario

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Motoi [CERN, Geneva (Switzerland). Theory Div., PH Dept.; Shindou, Tetsuo [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-06-15

    A decay of the gravitino dark matter is an attractive candidate to explain the current excesses of the PAMELA/ATIC cosmic-ray data. However, R-parity violations are required to be very tiny in low-energy scale. We suggest a R-parity violation in the right-handed neutrino sector. The violation is suppressed by a see-saw mechanism. Although a reheating temperature is constrained from above, the thermal leptogenesis is found to work successfully with a help of the R-parity violating right-handed neutrino. (orig.)

  11. Aperture Mask for Unambiguous Parity Determination in Long Wavelength Imagers

    Science.gov (United States)

    Bos, Brent

    2011-01-01

    A document discusses a new parity pupil mask design that allows users to unambiguously determine the image space coordinate system of all the James Webb Space Telescope (JWST) science instruments by using two out-of-focus images. This is an improvement over existing mask designs that could not completely eliminate the coordinate system parity ambiguity at a wavelength of 5.6 microns. To mitigate the problem of how the presence of diffraction artifacts can obscure the pupil mask detail, this innovation has been created with specifically designed edge features so that the image space coordinate system parity can be determined in the presence of diffraction, even at long wavelengths.

  12. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter

  13. Nonlinear and Asymmetric Adjustment to Purchasing Power Parity in East-Asian Countries

    OpenAIRE

    Wen-Chi Liu

    2014-01-01

    This study applies a simple and powerful nonlinear unit root test to test the validity of long-run purchasing power parity (PPP) in a sample of 10 East-Asian countries (i.e., China, Hong Kong, Indonesia, Japan, Korea, Malaysia, Philippines, Singapore, Taiwan and Thailand) over the period of March 1985 to September 2008. The empirical results indicate that PPP holds true for half of these 10 East-Asian countries under study, and the adjustment toward PPP is found to be nonlinear and in ...

  14. Gravbox - The First Augmented Reality Sandbox for Gravitational Dynamics

    Science.gov (United States)

    Isbell, Jacob; Deam, Sophie; Reed, Mason; Bettis, Wyatt; Lu, Jianbo; Luppen, Zachary; Maier, Erin; McCurdy, Ross; Moore, Sadie; Fu, Hai

    2018-01-01

    Gravitational effects are an overarching theme in astronomy education, yet existing classroom demonstrations are insufficient in elucidating complex gravitational interactions. Inspired by the augmented reality (AR) sandbox developed by geologists, we have developed Gravbox, the first AR sandbox to demonstrate gravitational dynamics. The arbitrary topography of the sand surface represents the mass distribution of a two-dimensional universe. The computer reads the topography with a Kinect camera, calculates the orbit of a test particle with user-defined position and velocity, and projects the topography contour map and orbit animation with an overhead projector, all within a duty cycle of one second. This creates an interactive and intuitive tool to help students at all levels understand gravitational effects. In this contribution, we will describe the development of the Gravbox prototype and show its current capabilities. The Gravbox software will be publicly available along with a building tutorial.

  15. Gravitational torque frequency analysis for the Einstein elevator experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ashenberg, Joshua [Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, MA (United States); Lorenzini, Enrico C [University of Padova, Padua (Italy)

    2007-09-07

    Testing the principle of equivalence with a differential acceleration detector that spins while free falling requires a reliable extraction of a very small violation signal from the noise in the output signal frequency spectrum. The experiment is designed such that the violation signal is modulated by the spin of the test bodies. The possible violation signal is mixed with the intrinsic white noise of the detector and the colored noise associated with the modulation of gravitational perturbations, through the spin, and inertial-motion-related noise. In order to avoid false alarms the frequencies of the gravitational disturbances and the violation signal must be separate. This paper presents a model for the perturbative gravitational torque that affects the measurement. The torque is expanded in an asymptotic series to the fourth order and then expressed as a frequency spectrum. A spectral analysis shows the design conditions for frequency separation between the perturbing torque and the violation signal.

  16. Purchasing power parity theory in three East Asian economies: New evidence

    OpenAIRE

    Ahmad, Mahyudin; Marwan, Nur Fakhzan

    2012-01-01

    To an otherwise extensive literature with yet mixed findings on the long run Purchasing Power Parity (PPP) theory, this paper extends the evidence against the PPP hypothesis in three East Asian economies namely Indonesia, Malaysia, and Thailand based on quarterly data spanning forty years (1968:Q1-2008:Q1). The testing of PPP hypothesis in this study employs two methods namely Engle-Granger procedure and Johansen multivariate cointegration method.

  17. Source modelling at the dawn of gravitational-wave astronomy

    Science.gov (United States)

    Gerosa, Davide

    2016-09-01

    The age of gravitational-wave astronomy has begun. Gravitational waves are propagating spacetime perturbations ("ripples in the fabric of space-time") predicted by Einstein's theory of General Relativity. These signals propagate at the speed of light and are generated by powerful astrophysical events, such as the merger of two black holes and supernova explosions. The first detection of gravitational waves was performed in 2015 with the LIGO interferometers. This constitutes a tremendous breakthrough in fundamental physics and astronomy: it is not only the first direct detection of such elusive signals, but also the first irrefutable observation of a black-hole binary system. The future of gravitational-wave astronomy is bright and loud: the LIGO experiments will soon be joined by a network of ground-based interferometers; the space mission eLISA has now been fully approved by the European Space Agency with a proof-of-concept mission called LISA Pathfinder launched in 2015. Gravitational-wave observations will provide unprecedented tests of gravity as well as a qualitatively new window on the Universe. Careful theoretical modelling of the astrophysical sources of gravitational-waves is crucial to maximize the scientific outcome of the detectors. In this Thesis, we present several advances on gravitational-wave source modelling, studying in particular: (i) the precessional dynamics of spinning black-hole binaries; (ii) the astrophysical consequences of black-hole recoils; and (iii) the formation of compact objects in the framework of scalar-tensor theories of gravity. All these phenomena are deeply characterized by a continuous interplay between General Relativity and astrophysics: despite being a truly relativistic messenger, gravitational waves encode details of the astrophysical formation and evolution processes of their sources. We work out signatures and predictions to extract such information from current and future observations. At the dawn of a revolutionary

  18. Gravitational wave background from reheating after hybrid inflation

    International Nuclear Information System (INIS)

    Garcia-Bellido, Juan; Figueroa, Daniel G.; Sastre, Alfonso

    2008-01-01

    The reheating of the Universe after hybrid inflation proceeds through the nucleation and subsequent collision of large concentrations of energy density in the form of bubblelike structures moving at relativistic speeds. This generates a significant fraction of energy in the form of a stochastic background of gravitational waves, whose time evolution is determined by the successive stages of reheating: First, tachyonic preheating makes the amplitude of gravity waves grow exponentially fast. Second, bubble collisions add a new burst of gravitational radiation. Third, turbulent motions finally sets the end of gravitational waves production. From then on, these waves propagate unimpeded to us. We find that the fraction of energy density today in these primordial gravitational waves could be significant for grand unified theory (GUT)-scale models of inflation, although well beyond the frequency range sensitivity of gravitational wave observatories like LIGO, LISA, or BBO. However, low-scale models could still produce a detectable signal at frequencies accessible to BBO or DECIGO. For comparison, we have also computed the analogous gravitational wave background from some chaotic inflation models and obtained results similar to those found by other groups. The discovery of such a background would open a new observational window into the very early universe, where the details of the process of reheating, i.e. the big bang, could be explored. Moreover, it could also serve in the future as a new experimental tool for testing the inflationary paradigm

  19. Isolation of gravitational waves from displacement noise and utility of a time-delay device

    Energy Technology Data Exchange (ETDEWEB)

    Somiya, Kentaro [Max-Planck Institut fuer Gravitationsphysik, Am Muehlenberg 1, 14476 Potsdam (Germany); Goda, Keisuke [LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Chen, Yanbei [Max-Planck Institut fuer Gravitationsphysik, Am Muehlenberg 1, 14476 Potsdam (Germany); Mikhailov, Eugeniy E [Department of Physics, College of William and Mary, Williamsburg, VA 23187 (United States)

    2007-05-15

    Interferometers with kilometer-scale arms have been built for gravitational-wave detections on the ground; ones with much longer arms are being planned for space-based detection. One fundamental motivation for long baseline interferometry is from displacement noise. In general, the longer the arm length L, the larger the motion the gravitational-wave induces on the test masses, until L becomes comparable to the gravitational wavelength. Recently, schemes have been invented, in which displacement noise can be evaded by employing differences between the influence of test-mass motions and that of gravitational waves on light propagation. However, in these schemes, such differences only becomes significant when Lapproaches the gravitational wavelength. In this paper, we explore a use of artificial time delay in displacement-noise-free interferometers, which will shift the frequency band of the effect being significant and may improve their shot-noise-limited sensitivity at low frequencies.

  20. Isolation of gravitational waves from displacement noise and utility of a time-delay device

    International Nuclear Information System (INIS)

    Somiya, Kentaro; Goda, Keisuke; Chen, Yanbei; Mikhailov, Eugeniy E

    2007-01-01

    Interferometers with kilometer-scale arms have been built for gravitational-wave detections on the ground; ones with much longer arms are being planned for space-based detection. One fundamental motivation for long baseline interferometry is from displacement noise. In general, the longer the arm length L, the larger the motion the gravitational-wave induces on the test masses, until L becomes comparable to the gravitational wavelength. Recently, schemes have been invented, in which displacement noise can be evaded by employing differences between the influence of test-mass motions and that of gravitational waves on light propagation. However, in these schemes, such differences only becomes significant when Lapproaches the gravitational wavelength. In this paper, we explore a use of artificial time delay in displacement-noise-free interferometers, which will shift the frequency band of the effect being significant and may improve their shot-noise-limited sensitivity at low frequencies

  1. LIGO: the Laser Interferometer Gravitational-Wave Observatory

    International Nuclear Information System (INIS)

    Abbott, B P; Abbott, R; Adhikari, R; Anderson, S B; Araya, M; Armandula, H; Aso, Y; Ballmer, S; Ajith, P; Allen, B; Aulbert, C; Allen, G; Amin, R S; Anderson, W G; Armor, P; Arain, M A; Aston, S; Aufmuth, P; Babak, S; Baker, P

    2009-01-01

    The goal of the Laser Interferometric Gravitational-Wave Observatory (LIGO) is to detect and study gravitational waves (GWs) of astrophysical origin. Direct detection of GWs holds the promise of testing general relativity in the strong-field regime, of providing a new probe of exotic objects such as black holes and neutron stars and of uncovering unanticipated new astrophysics. LIGO, a joint Caltech-MIT project supported by the National Science Foundation, operates three multi-kilometer interferometers at two widely separated sites in the United States. These detectors are the result of decades of worldwide technology development, design, construction and commissioning. They are now operating at their design sensitivity, and are sensitive to gravitational wave strains smaller than one part in 10 21 . With this unprecedented sensitivity, the data are being analyzed to detect or place limits on GWs from a variety of potential astrophysical sources.

  2. Gauge symmetry, chirality and parity effects in four-particle systems: Coulomb's law as a universal function for diatomic molecules.

    Science.gov (United States)

    Van Hooydonk, G

    2000-11-01

    Following recent work in search for a universal function (Van Hooydonk, Eur. J. Inorg. Chem., (1999), 1617), we test four symmetric +/- a(n)Rn potentials for reproducing molecular potential energy curves (PECs). Classical gauge symmetry for 1/R-potentials results in generic left right asymmetric PECs. A pair of symmetric perturbed Coulomb potentials is quantitatively in accordance with observed PECs. For a bond, a four-particle system, charge inversion (a parity effect, atom chirality) is the key to explain this shape generically. A parity adapted Hamiltonian reduces from ten to two terms and to a soluble Bohr-like formula, a Kratzer (1 - Re/R)2 potential. The result is similar to the combined action of spin and wave function symmetry upon the Hamiltonian in Heitler-London theory. Analytical perturbed Coulomb functions varying with (1 - Re/R) scale attractive and repulsive branches of PECs for 13 bonds H2, HF, LiH, KH, AuH, Li2, LiF, KLi, NaCs, Rb2, RbCs, Cs2 and I2 in a single straight line. The 400 turning points for 13 bonds are reproduced with a deviation of 0.007 A at both branches. For 230 points at the repulsive side, the deviation is 0.003 A. The perturbed electrostatic Coulomb law is a universal molecular function. Ab initio zero molecular parameter functions give PECs of acceptable quality, just using atomic ionisation energies. The function can be used as a model potential for inverting levels and gives a first principle's comparison of short- and long-range interactions, important for the study of cold atoms. Wave-packet dynamics, femto-chemistry applied to the crossing of covalent and ionic curves, can provide evidence for this theory. We anticipate this scale/shape invariant scheme applies to smaller scales in nuclear and high-energy particle physics. For larger gravitational scales (Newton 1/R potentials), problems with super-unification are discussed. Reactions between hydrogen and antihydrogen, feasible in the near future, will probably produce

  3. Gravitation in material media

    International Nuclear Information System (INIS)

    Ridgely, Charles T

    2011-01-01

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium is herein derived on the basis of classical, Newtonian gravitational theory and by a general relativistic use of Archimedes' principle. It is envisioned that the techniques presented herein will be most useful to graduate students and those undergraduate students having prior experience with vector analysis and potential theory.

  4. Gravitational radiation reaction

    International Nuclear Information System (INIS)

    Tanaka, Takahiro

    2006-01-01

    We give a short personally-biased review on the recent progress in our understanding of gravitational radiation reaction acting on a point particle orbiting a black hole. The main motivation of this study is to obtain sufficiently precise gravitational waveforms from inspiraling binary compact starts with a large mass ratio. For this purpose, various new concepts and techniques have been developed to compute the orbital evolution taking into account the gravitational self-force. Combining these ideas with a few supplementary new ideas, we try to outline a path to our goal here. (author)

  5. Parity nonconservation in 19 Ne atomic nucleus

    International Nuclear Information System (INIS)

    Popescu, Sorina; Dumitrescu, Ovidiu

    1997-01-01

    The possibility to extract from the experiment the necessary information concerning the charged and neutral current contributions to the structure of the weak interactions that violate the parity conservation law is investigated. The parity nonconservation (PNC) induced by weak hadron-hadron interactions, investigated via 'pairs' of low energy nuclear physics processes, is proposed. The low energy physics processes considered here are emission of polarized gamma rays from oriented and unoriented nuclei. Some comments on PNC nucleon-nucleon (PNC-NN) interaction are presented. Explicit expressions for some gamma asymmetry PNC observables are retrieved. Applications to A=19 atomic nuclei are done. A new experiment is proposed. (authors)

  6. A gravitational entropy proposal

    International Nuclear Information System (INIS)

    Clifton, Timothy; Tavakol, Reza; Ellis, George F R

    2013-01-01

    We propose a thermodynamically motivated measure of gravitational entropy based on the Bel–Robinson tensor, which has a natural interpretation as the effective super-energy–momentum tensor of free gravitational fields. The specific form of this measure differs depending on whether the gravitational field is Coulomb-like or wave-like, and reduces to the Bekenstein–Hawking value when integrated over the interior of a Schwarzschild black hole. For scalar perturbations of a Robertson–Walker geometry we find that the entropy goes like the Hubble weighted anisotropy of the gravitational field, and therefore increases as structure formation occurs. This is in keeping with our expectations for the behaviour of gravitational entropy in cosmology, and provides a thermodynamically motivated arrow of time for cosmological solutions of Einstein’s field equations. It is also in keeping with Penrose’s Weyl curvature hypothesis. (paper)

  7. Effect of parity on endometrial glands in gravid rabbits | Pulei ...

    African Journals Online (AJOL)

    Effect of parity on endometrial glands in gravid rabbits. ... Anatomy Journal of Africa ... Image J. Endometrial gland density was noted to decrease with a rise in parity such that the percentage proportion in the primigravid rabbit was 45% compared to that of 34% and 37.5% in the biparous and multiparous groups respectively.

  8. Prospects for parity-nonconservation experiments with highly charged heavy ions

    OpenAIRE

    Maul, Martin; Schäfer, Andreas; Greiner, Walter; Indelicato, Paul

    2006-01-01

    We discuss the prospects for parity-nonconservation experiments with highly charged heavy ions. Energy levels and parity mixing for heavy ions with 2–5 electrons are calculated. We investigate two-photon transitions and the possibility of observing interference effects between weak-matrix elements and Stark matrix elements for periodic electric field configurations.

  9. Coupled oscillators with parity-time symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Tsoy, Eduard N., E-mail: etsoy@uzsci.net

    2017-02-05

    Different models of coupled oscillators with parity-time (PT) symmetry are studied. Hamiltonian functions for two and three linear oscillators coupled via coordinates and accelerations are derived. Regions of stable dynamics for two coupled oscillators are obtained. It is found that in some cases, an increase of the gain-loss parameter can stabilize the system. A family of Hamiltonians for two coupled nonlinear oscillators with PT-symmetry is obtained. An extension to high-dimensional PT-symmetric systems is discussed. - Highlights: • A generalization of a Hamiltonian system of linear coupled oscillators with the parity-time (PT) symmetry is suggested. • It is found that an increase of the gain-loss parameter can stabilize the system. • A family of Hamiltonian functions for two coupled nonlinear oscillators with PT-symmetry is obtained.

  10. Vector-tensor interaction of gravitation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuan-zhong; Guo han-ying

    1982-11-01

    In the paper, by using the equation of motion a particle, we show that the antigravity exist in the vector-tensor model of gravitation. Thus the motion of a particle deviates from the geodesic equation. In Newtonian approximation and weak gravitational field, acceleration of a particle in a spherically symmetric and astatic gravitation field is zero. The result is obviously not in agreement with gravitational phenomena.

  11. Exchange rates, market efficiency and purchasing power parity: Long-run tests for the Latin American currencies

    OpenAIRE

    Edgar Ortiz; Alejandra Cabello; Raúl de Jesús; Robert Johnson

    2005-01-01

    In efficient markets current prices reflect all available information. Past prices do not contain any useful information for predicting future prices or for realizing extraordinary gains. This principle, known as the weak hypothesis of informational market efficiency, has been incorporated into Purchasing Power Parity (PPP) theory to overcome its limitations in the intertemporal analysis of exchange rate adjustments to inflationary trends. Overall, recent studies dealing with exchange rates f...

  12. Noise in gravitational-wave detectors and other classical-force measurements is not influenced by test-mass quantization

    International Nuclear Information System (INIS)

    Braginsky, Vladimir B.; Gorodetsky, Mikhail L.; Khalili, Farid Ya.; Vyatchanin, Sergey P.; Matsko, Andrey B.; Thorne, Kip S.

    2003-01-01

    It is shown that photon shot noise and radiation-pressure back-action noise are the sole forms of quantum noise in interferometric gravitational wave detectors that operate near or below the standard quantum limit, if one filters the interferometer output appropriately. No additional noise arises from the test masses' initial quantum state or from reduction of the test-mass state due to measurement of the interferometer output or from the uncertainty principle associated with the test-mass state. Two features of interferometers are central to these conclusions: (i) The interferometer output [the photon number flux N(t) entering the final photodetector] commutes with itself at different times in the Heisenberg picture, [N(t),N(t ' )]=0 and thus can be regarded as classical. (ii) This number flux is linear to high accuracy in the test-mass initial position and momentum operators x o and p o , and those operators influence the measured photon flux N(t) in manners that can easily be removed by filtering. For example, in most interferometers x o and p o appear in N(t) only at the test masses' ∼1 Hz pendular swinging frequency and their influence is removed when the output data are high-pass filtered to get rid of noise below ∼10 Hz. The test-mass operators x o and p o contained in the unfiltered output N(t) make a nonzero contribution to the commutator [N(t),N(t ' )]. That contribution is precisely canceled by a nonzero commutation of the photon shot noise and radiation-pressure noise, which also are contained in N(t). This cancellation of commutators is responsible for the fact that it is possible to derive an interferometer's standard quantum limit from test-mass considerations, and independently from photon-noise considerations, and get identically the same result. These conclusions are all true for a far wider class of measurements than just gravitational-wave interferometers. To elucidate them, this paper presents a series of idealized thought experiments that

  13. Projective relativity, cosmology and gravitation

    International Nuclear Information System (INIS)

    Arcidiacono, G.

    1986-01-01

    This book describes the latest applications of projective geometry to cosmology and gravitation. The contents of the book are; the Poincare group and Special Relativity, the thermodynamics and electromagnetism, general relativity, gravitation and cosmology, group theory and models of universe, the special projective relativity, the Fantappie group and Big-Bang cosmology, a new cosmological projective mechanics, the plasma physics and cosmology, the projective magnetohydrodynamics field, projective relativity and waves propagation, the generalizations of the gravitational field, the general projective relativity, the projective gravitational field, the De Sitter Universe and quantum physics, the conformal relativity and Newton gravitation

  14. The Schenberg gravitational wave detector: status report

    International Nuclear Information System (INIS)

    Aguiar, O.D.; Barroso, J.J; Bessada, D.F.A.; Carvalho, N.C; Castro, P.J.; Montana, C.E. Cedeno; Costa, C.F. da Silva; Araujo, J.C.N de; Evangelista, E.F.D.; Furtado, S.R; Miranda, O.D.; Moraes, P.H.R.S.; Pereira, Eduardo S.; Silveira, P.R.; Stellati, C.; Weber, J.

    2011-01-01

    Full text: The quest for gravitational wave detection has been one of the toughest technological challenges ever faced by experimental physicists and engineers. Despite all difficulties, after four decades of research, the community involved in this area is continuously growing. One of the main reasons for this is because the first gravitational wave detection and the regular observation of gravitational waves are among the most important scientific goals for the beginning of this millennium. They will test one of the foundations of physics, Einstein's theory of general relativity, and will open a new window for the observation of the universe, which certainly will cause a revolution in our knowledge of physics and astrophysics. In this talk we present the status report of the Brazilian Schenberg gravitational wave detector, which started commissioning runs in September 2006 under the full support of FAPESP. We have been upgrading the detector since 2008, installing a dilution refrigerator, a new complete set of transducers, and a new suspension and vibration isolation system for the cabling and microstrip antennas, in order to restart operation with a higher sensitivity. We also have been studying an innovative approach, which could transform Schenberg into a broadband gravitational wave detector by the use of an ultra-high sensitivity non-resonant nanogap transducer, constructed by the application of recent achievements of nanotechnology. A spherical antenna, such as Schenberg or Mini-Grail, could add to this quality the advantage of wave position and polarity determination. (author)

  15. 7 CFR 5.1 - Parity index and index of prices received by farmers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Parity index and index of prices received by farmers... § 5.1 Parity index and index of prices received by farmers. (a) The parity index and related indices... farmers, interest, taxes, and farm wage rates, as revised May 1976 and published in the May 28, 1976, and...

  16. Speed of Gravitational Waves from Strongly Lensed Gravitational Waves and Electromagnetic Signals.

    Science.gov (United States)

    Fan, Xi-Long; Liao, Kai; Biesiada, Marek; Piórkowska-Kurpas, Aleksandra; Zhu, Zong-Hong

    2017-03-03

    We propose a new model-independent measurement strategy for the propagation speed of gravitational waves (GWs) based on strongly lensed GWs and their electromagnetic (EM) counterparts. This can be done in two ways: by comparing arrival times of GWs and their EM counterparts and by comparing the time delays between images seen in GWs and their EM counterparts. The lensed GW-EM event is perhaps the best way to identify an EM counterpart. Conceptually, this method does not rely on any specific theory of massive gravitons or modified gravity. Its differential setting (i.e., measuring the difference between time delays in GW and EM domains) makes it robust against lens modeling details (photons and GWs travel in the same lensing potential) and against internal time delays between GW and EM emission acts. It requires, however, that the theory of gravity is metric and predicts gravitational lensing similar to general relativity. We expect that such a test will become possible in the era of third-generation gravitational-wave detectors, when about 10 lensed GW events would be observed each year. The power of this method is mainly limited by the timing accuracy of the EM counterpart, which for kilonovae is around 10^{4}  s. This uncertainty can be suppressed by a factor of ∼10^{10}, if strongly lensed transients of much shorter duration associated with the GW event can be identified. Candidates for such short transients include short γ-ray bursts and fast radio bursts.

  17. Gravitational microlensing in Verlinde's emergent gravity

    NARCIS (Netherlands)

    Liu, Leihua; Prokopec, Tom

    2017-01-01

    We propose gravitational microlensing as a way of testing the emergent gravity theory recently proposed by Eric Verlinde [1]. We consider two limiting cases: the dark mass of maximally anisotropic pressures (Case I) and of isotropic pressures (Case II). Our analysis of perihelion advancement of a

  18. Potentials for calculating both parity states in p-shell nuclei

    International Nuclear Information System (INIS)

    Resler, D.A.

    1989-01-01

    A Hamiltonian employing a ''physical'' central two-body potential has been used for simultaneous calculation of both normal and non-normal parity states of p-shell nuclei. Normal parity states have been calculated in a full 0/h bar/ω space and non-normal parity states in a full 1/h bar/ω space with the effects of spurious center-of-mass states completely removed. No explicit core is used in any of the shell model calculations. Results are compared with experimental data and previous shell model calculations for the following nuclei: 4 He, /sup 5,6,7,8/Li, 8 Be, /sup 13,14/C, and 13 N. 34 refs., 9 figs., 3 tabs

  19. Propagation of gravitational waves in the generalized tensor-vector-scalar theory

    International Nuclear Information System (INIS)

    Sagi, Eva

    2010-01-01

    Efforts are underway to improve the design and sensitivity of gravitational wave detectors, with the hope that the next generation of these detectors will observe a gravitational wave signal. Such a signal will not only provide information on dynamics in the strong gravity regime that characterizes potential sources of gravitational waves, but will also serve as a decisive test for alternative theories of gravitation that are consistent with all other current experimental observations. We study the linearized theory of the tensor-vector-scalar theory of gravity with generalized vector action, an alternative theory of gravitation designed to explain the apparent deficit of visible matter in galaxies and clusters of galaxies without postulating yet-undetected dark matter. We find the polarization states and propagation speeds for gravitational waves in vacuum, and show that in addition to the usual transverse-traceless propagation modes, there are two more mixed longitudinal-transverse modes and two trace modes, of which at least one has longitudinal polarization. Additionally, the propagation speeds are different from the speed of light.

  20. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  1. R-parity from the heterotic string

    International Nuclear Information System (INIS)

    Gaillard, Mary K.

    2004-01-01

    In T-duality invariant effective supergravity with gaugino condensation as the mechanism for supersymmetry breaking, there is a residual discrete symmetry that could play the role of R-parity in supersymmetric extensions of the Standard Model

  2. Parity violation and superconductivity in doped Mott insulators

    International Nuclear Information System (INIS)

    Khveshchenko, D.V.; Kogan, Ya.I.

    1989-12-01

    We study parity violating states of strongly correlated two-dimensional electronic systems. On the basis of mean field theory for the SU(2N)-symmetric generalization of the system involved we give the arguments supporting the existence of these states at a filling number different from one-half. We derive an effective Lagrangian describing the long wavelength dynamics of magnetic excitations and their interaction with charged spinless holes. We establish that the ground state of a doped system is superconducting and discuss the phenomenological manifestations of the parity violation. (author). 48 refs, 3 figs

  3. Parity violation and superconductivity in doped Mott insulators

    International Nuclear Information System (INIS)

    Khveshchenko, D.Y.; Kogan, Y.I.

    1990-01-01

    The authors study parity violating states of strongly correlated two-dimensional electronic systems. On the basis of mean field theory for the SU(2N)-symmetric generalization of the system involved the authors give the arguments supporting the existence of these states at a filling number different from one-half. The authors derive an effective Lagrangian describing the long wavelength dynamics of magnetic excitations and their interaction with charged spinless holes. This paper establishes the ground state of a doped system is superconducting and discuss the phenomenological manifestations of the parity violation

  4. Parity violation in electron scattering; Violation de parite en diffusion d'electrons

    Energy Technology Data Exchange (ETDEWEB)

    Lhuillier, D

    2007-09-15

    The elaboration of the electroweak standard model from the discovery of parity violation to the weak neutral current is described in the first chapter. In the second chapter the author discusses the 2 experimental approaches of the parity violation experiments. In the first approach the weak neutral current can be assumed to be well known and can be used as a probe for the hadronic matter. The second approach consists in measuring the weak neutral current between 2 particles with known internal structure in order to test the predictions of the standard model in the low energy range. The chapters 3 and 4 are an illustration of the first approach through the HAPPEx series of experiments that took place in the Jefferson Laboratory from 1998 to 2005. The HAPPEx experiments aimed at measuring the contribution of strange quarks in the electromagnetic form factors of the nucleon through the violation of parity in the elastic scattering at forward angles. The last chapter is dedicated to the E158 experiment that was performed at the Slac (California) between 2000 and 2003. The weak neutral current was measured between 2 electrons and the high accuracy obtained allowed the physics beyond the standard model to be indirectly constraint up to a few TeV. (A.C.)

  5. On the spin and parity of a single-produced resonance at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bolognesi, Sara; Gao, Yanyan; Gritsan, Andrei V.; Melnikov, Kirill; Schulze, Markus; Tran, Nhan V.; Whitbeck, Andrew

    2012-11-01

    The experimental determination of the properties of the newly discovered boson at the Large Hadron Collider is currently the most crucial task in high energy physics. We show how information about the spin, parity, and, more generally, the tensor structure of the boson couplings can be obtained by studying angular and mass distributions of events in which the resonance decays to pairs of gauge bosons, $ZZ, WW$, and $\\gamma \\gamma$. A complete Monte Carlo simulation of the process $pp \\to X \\to VV \\to 4f$ is performed and verified by comparing it to an analytic calculation of the decay amplitudes $X \\to VV \\to 4f$. Our studies account for all spin correlations and include general couplings of a spin $J=0,1,2$ resonance to Standard Model particles. We also discuss how to use angular and mass distributions of the resonance decay products for optimal background rejection. It is shown that by the end of the 8 TeV run of the LHC, it might be possible to separate extreme hypotheses of the spin and parity of the new boson with a confidence level of 99% or better for a wide range of models. We briefly discuss the feasibility of testing scenarios where the resonances is not a parity eigenstate.

  6. Parity violation in proton-proton scattering at 230 MEV

    International Nuclear Information System (INIS)

    Birchall, J.; Bowman, J.D.; Davis, C.A.

    1988-01-01

    Below /similar to/300 MeV six meson-nucleon coupling strengths are required to describe the weak interaction of nucleons. Many experiments have found parity-violating effects in nuclear systems, but only four significant, independent constraints exist. A new measurement is proposed where measurable effects are predicted with minimal dependence on nuclear interaction models, yielding information complementary to previous results. This is a measurement of the parity-violating analyzing power. A/sub z/ in p-p scattering at 230 MeV, which is shown to be sensitive to the weak rho-nucleon coupling. This measurement, at a precision of +- 2 x 10/sup -8/, together with a proposed measurement by the University of Washington group at I.L.L. of the parity-violating neutron spin rotation, will provide the fifth and sixth independent constraints needed to determine the weak meson-nucleon coupling constants

  7. Spin and parity measurement of the Λ(1405) baryon

    Science.gov (United States)

    Moriya, K.; Schumacher, R. A.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bellis, M.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Collins, P.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Dey, B.; Djalali, C.; Dugger, M.; Dupré, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Guidal, M.; Griffioen, K. A.; Hafidi, K.; Hakobyan, H.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, W.; Koirala, S.; Kubarovsky, V.; Kuleshov, S. V.; Lenisa, P.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; McCracken, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Pasyuk, E.; Peng, P.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Seder, E.; Senderovich, I.; Smith, E. S.; Sokhan, D.; Smith, G. D.; Stepanyan, S.; Strauch, S.; Tang, W.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weinstein, L. B.; Williams, M.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Ziegler, V.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2014-02-01

    A determination of the spin and parity of the Λ(1405) is presented using photoproduction data from the CLAS detector at Jefferson Lab. The reaction γ+p→K++Λ(1405) is analyzed in the decay channel Λ(1405)→Σ ++π-, where the decay distribution to Σ+π- and the variation of the Σ+ polarization with respect to the Λ(1405) polarization direction determines the parity. The Λ(1405) is produced, in the energy range 2.55parity JP=1/2-, as expected by most theories.

  8. Neutron resonances in the compound nucleus: Parity nonconservation to dynamic temperature measurements

    International Nuclear Information System (INIS)

    Yuan, V.W.

    1997-08-01

    Experiments using epithermal neutrons that interact to form compound-nuclear resonances serve a wide range of scientific applications. Changes in transmission which are correlated to polarization reversal in incident neutrons have been used to study parity nonconservation in the compound nucleus for a wide range of targets. The ensemble of measured parity asymmetries provides statistical information for the extraction of the rms parity-violating mean-square matrix element as a function of mass. Parity nonconservation in neutron resonances can also be used to determine the polarization of neutron beams. Finally the motion of target atoms results in an observed temperature-dependent Doppler broadening of resonance line widths. This broadening can be used to determine temperatures on a fast time scale of one microsecond or less

  9. Presenting Newtonian gravitation

    International Nuclear Information System (INIS)

    Counihan, Martin

    2007-01-01

    The basic principles of the Newtonian theory of gravitation are presented in a way which students may find more logically coherent, mathematically accessible and physically interesting than other approaches. After giving relatively simple derivations of the circular hodograph and the elliptical orbit from the inverse-square law, the concept of gravitational energy is developed from vector calculus. It is argued that the energy density of a gravitational field may reasonably be regarded as -g 2 /8πG, and that the inverse-square law may be replaced by a Schwarzschild-like force law without the need to invoke non-Euclidean geometry

  10. Nuclear Parity with China?

    Science.gov (United States)

    2012-01-01

    nuclear force structure. It even is conceivable that a slow but steady expansion could have been accomplished without triggering a reaction by...Russia’s reactions , which would likely not be benign. • Achieving nuclear parity is not a matter of honor for China. Chinese leaders never have...analyzes that information, defines its interests, and decides how to act. China and the United States are exact opposites in this typography : China

  11. Mutual learning in a tree parity machine and its application to cryptography

    International Nuclear Information System (INIS)

    Rosen-Zvi, Michal; Klein, Einat; Kanter, Ido; Kinzel, Wolfgang

    2002-01-01

    Mutual learning of a pair of tree parity machines with continuous and discrete weight vectors is studied analytically. The analysis is based on a mapping procedure that maps the mutual learning in tree parity machines onto mutual learning in noisy perceptrons. The stationary solution of the mutual learning in the case of continuous tree parity machines depends on the learning rate where a phase transition from partial to full synchronization is observed. In the discrete case the learning process is based on a finite increment and a full synchronized state is achieved in a finite number of steps. The synchronization of discrete parity machines is introduced in order to construct an ephemeral key-exchange protocol. The dynamic learning of a third tree parity machine (an attacker) that tries to imitate one of the two machines while the two still update their weight vectors is also analyzed. In particular, the synchronization times of the naive attacker and the flipping attacker recently introduced in Ref. 9 are analyzed. All analytical results are found to be in good agreement with simulation results

  12. Parity games and propositional proofs

    Czech Academy of Sciences Publication Activity Database

    Beckmann, A.; Pudlák, Pavel; Thapen, Neil

    2014-01-01

    Roč. 15, č. 2 (2014), s. 17 ISSN 1529-3785 R&D Projects: GA AV ČR IAA100190902 Institutional support: RVO:67985840 Keywords : bounded arithmetic * mean payoff games * parity games Subject RIV: BA - General Mathematics Impact factor: 0.618, year: 2014 http://dl.acm.org/ citation .cfm?doid=2616911.2579822

  13. Parity games and propositional proofs

    Czech Academy of Sciences Publication Activity Database

    Beckmann, A.; Pudlák, Pavel; Thapen, Neil

    2014-01-01

    Roč. 15, č. 2 (2014), s. 17 ISSN 1529-3785 R&D Projects: GA AV ČR IAA100190902 Institutional support: RVO:67985840 Keywords : bounded arithmetic * mean payoff games * parity games Subject RIV: BA - General Mathematics Impact factor: 0.618, year: 2014 http://dl.acm.org/citation.cfm?doid=2616911.2579822

  14. Localized tachyon condensation and G-parity conservation

    International Nuclear Information System (INIS)

    Lee, Sunggeun; Sin, Sang-Jin

    2004-01-01

    We study the condensation of localized tachyon in non-supersymmetric orbifold. We first show that the G-parity of chiral primaries are preserved under the condensation of localized tachyon (CLT). Using this, we finalize the proof of the conjecture that the lowest-tachyon-mass-squared increases under CLT at the level of type II string with full consideration of GSO projection. We also show the equivalence between the G-parity given by G [jk 1 /n]+[jk 2 /n] coming from partition function and that given by G={jk 1 /n}+k 2 -{jk 2 -/n}k 1 coming from the monomial construction for the chiral primaries in the dual Mirror picture. (author)

  15. Tests of the universality of free fall for strongly self-gravitating bodies with radio pulsars

    International Nuclear Information System (INIS)

    Freire, Paulo C C; Kramer, Michael; Wex, Norbert

    2012-01-01

    In this paper, we review tests of the strong equivalence principle (SEP) derived from pulsar–white dwarf binary data. The extreme difference in the binding energy between both components and the precise measurement of the orbital motion provided by pulsar timing allow the only current precision SEP tests for strongly self-gravitating bodies. We start by highlighting why such tests are conceptually important. We then review previous work where limits on SEP violation are obtained with an ensemble of wide binary systems with small eccentricity orbits. Then, we propose a new SEP violation test based on the measurement of the variation of the orbital eccentricity (ė). This new method has the following advantages: (a) unlike previous methods it is not based on probabilistic considerations, (b) it can make a direct detection of SEP violation and (c) the measurement of ė is not contaminated by any known external effects, which implies that this SEP test is only restricted by the measurement precision of ė. In the final part of the review, we conceptually compare the SEP test with the test for dipolar radiation damping, a phenomenon closely related to SEP violation, and speculate on future prospects by new types of tests in globular clusters and future triple systems. (paper)

  16. Gravitation and source theory

    International Nuclear Information System (INIS)

    Yilmaz, H.

    1975-01-01

    Schwinger's source theory is applied to the problem of gravitation and its quantization. It is shown that within the framework of a flat-space the source theory implementation leads to a violation of probability. To avoid the difficulty one must introduce a curved space-time hence the source concept may be said to necessitate the transition to a curved-space theory of gravitation. It is further shown that the curved-space theory of gravitation implied by the source theory is not equivalent to the conventional Einstein theory. The source concept leads to a different theory where the gravitational field has a stress-energy tensor t/sup nu//sub mu/ which contributes to geometric curvatures

  17. Nuclear Quantum Gravitation - The Correct Theory

    Science.gov (United States)

    Kotas, Ronald

    2016-03-01

    Nuclear Quantum Gravitation provides a clear, definitive Scientific explanation of Gravity and Gravitation. It is harmonious with Newtonian and Quantum Mechanics, and with distinct Scientific Logic. Nuclear Quantum Gravitation has 10 certain, Scientific proofs and 21 more good indications. With this theory the Physical Forces are obviously Unified. See: OBSCURANTISM ON EINSTEIN GRAVITATION? http://www.santilli- Foundation.org/inconsistencies-gravitation.php and Einstein's Theory of Relativity versus Classical Mechanics http://www.newtonphysics.on.ca/einstein/

  18. The Theory of Vortical Gravitational Fields

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2007-04-01

    Full Text Available This paper treats of vortical gravitational fields, a tensor of which is the rotor of the general covariant gravitational inertial force. The field equations for a vortical gravitational field (the Lorentz condition, the Maxwell-like equations, and the continuity equation are deduced in an analogous fashion to electrodynamics. From the equations it is concluded that the main kind of vortical gravitational fields is “electric”, determined by the non-stationarity of the acting gravitational inertial force. Such a field is a medium for traveling waves of the force (they are different to the weak deformation waves of the space metric considered in the theory of gravitational waves. Standing waves of the gravitational inertial force and their medium, a vortical gravitational field of the “magnetic” kind, are exotic, since a non-stationary rotation of a space body (the source of such a field is a very rare phenomenon in the Universe.

  19. A search for R-parity violating single sneutrino production at LEPII

    International Nuclear Information System (INIS)

    Coles, J.

    2000-01-01

    Supersymmetry has become one of the most accepted and theoretically interesting extensions to the Standard Model of particle physics, yet it has so far eluded discovery. For this reason there is a large amount of interest in direct particle searches looking for evidence of either R-parity conserving or R-parity violating signatures at high-energy colliders such as LEP. This work sets out to describe one such search, that for the R-parity violating process of resonant single sneutrino production. The R-parity violating searches are performed on ALEPH data taken at centre-of-mass energies 130 to 189 GeV. As no evidence for a signal is found, limits are set within the framework of a minimal supergravity model. The best upper limits obtained for the LLE-bar couplings λ 121 and λ 131 are shown to be better than 5 x 10 -4 at 95% C.L. These results provide a substantial improvement over existing low energy bounds. (author)

  20. Parity violation in proton-proton scattering at 221 MeV

    International Nuclear Information System (INIS)

    Berdoz, A.R.; Birchall, J.; Bland, J.B.; Campbell, J.R.; Green, A.A.; Hamian, A.A.; Lee, L.; Page, S.A.; Ramsay, W.D.; Reitzner, S.D.; Sekulovich, A.M.; Sum, V.; Oers, W.T.H. van; Woo, R.J.; Bowman, J.D.; Mischke, R.E.; Coombes, G.H.; Helmer, R.; Kadantsev, S.; Levy, C.D.P.

    2003-01-01

    TRIUMF experiment 497 has measured the parity-violating longitudinal analyzing power A z in p(vector sign)p elastic scattering at 221.3 MeV incident proton energy. This comprehensive paper includes details of the corrections, some of magnitude comparable to A z itself, required to arrive at the final result. The largest correction was for the effects of first moments of transverse polarization. The addition of the result, A z =[0.84±0.29 (stat.)±0.17 (syst.)]x10 -7 , to the p(vector sign)p parity-violation experimental data base greatly improves the experimental constraints on the weak meson-nucleon coupling constants h ρ pp and h ω pp , and also has implications for the interpretation of electron parity-violation experiments

  1. Analysis of parity violating nuclear effects at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Desplanques, B; Missimer, J [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Physics

    1978-05-15

    The authors present an analysis of parity-violating nuclear effects at low energy which attempts to circumvent the uncertainties due to the weak and strong nucleon-nucleon interactions at short distances. Extending Danilov's parametrization of the parity-violating nucleon-nucleon scattering amplitude, they introduce six parameters: one for the long-range contribution due to the pion exchange and five for the shorter-range contributions. This choice gives an accurate representation of parity-violating effects in the nucleon-nucleon system up to a lab energy of 75 MeV. For calculations in nuclei, an effective two-body potential is derived in terms of the parameters. The analysis of presently measured effects shows that they are consistent, and, in particular, that the circular polarization of photons in n + p ..-->.. d + ..gamma.. is not incompatible with the other measurements. It does not imply a dominant isotensor component.

  2. Measurement of the Parity-Violating Asymmetry in Deep Inelastic Scattering at JLab 6 GeV

    International Nuclear Information System (INIS)

    Wang, Diancheng

    2013-01-01

    The parity-violating asymmetry in deep inelastic scattering (PVDIS) offers us a useful tool to study the weak neutral couplings and the hadronic structure of the nucleon, and provides high precision tests on the Standard Model. During the 6 GeV PVDIS experiment at the Thomas Jefferson National Accelerator Facility, the parity-violating asymmetries A PV of a polarized electron beam scattering off an unpolarized deuteron target in the deep inelastic scattering region were precisely measured at two Q 2 values of 1.1 and 1.9 (GeV/c) 2 . The asymmetry at Q 2 =1.9 (GeV/c) 2 can be used to extract the weak coupling combination 2C 2u - C 2d , assuming the higher twist effect is small. The extracted result from this measurement is in good agreement with the Standard Model prediction, and improves the precision by a factor of five over previous data. In addition, combining the asymmetries at both Q 2 values provides us extra knowledge on the higher twist effects. The parity violation asymmetries in the resonance region were also measured during this experiment. These results are the first A PV data in the resonance region beyond the Δ(1232). They provide evidence that the quark hadron duality works for A PV at the (10-15)% level, and set constraints on nucleon resonance models that are commonly used for background calculations to other parity-violating electron scattering measurements

  3. Relation of the Number of Parity to Left Ventricular Diastolic Function in Pregnancy.

    Science.gov (United States)

    Keskin, Muhammed; Avşar, Şahin; Hayıroğlu, Mert İlker; Keskin, Taha; Börklü, Edibe Betül; Kaya, Adnan; Uzun, Ahmet Okan; Akyol, Burcu; Güvenç, Tolga Sinan; Kozan, Ömer

    2017-07-01

    Left ventricular diastolic dysfunction (LVDD) has been relatively less studied than other cardiac changes during pregnancy. Previous studies revealed a mild diastolic deterioration during pregnancy. However, these studies did not evaluate the long-term effect of parity on left ventricular diastolic function. A comprehensive study evaluating the long-term effect of parity on diastolic function is required. A total of 710 women with various number of parity were evaluated through echocardiography to reveal the status of diastolic function. Echocardiographic parameters were compared among the women by parity number and categorized accordingly: none, 0 to 4 and 4 4 parity and that had 21 and 5.8 times higher than nulliparous group, respectively. In conclusion, according to the present study, grand multiparity but not multiparity, severely deteriorates left ventricular diastolic function. Further studies are warranted to evaluate the risk of gradual diastolic dysfunction after each pregnancy. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Gravitational lensing

    CERN Document Server

    Dodelson, Scott

    2017-01-01

    Gravitational lensing is a consequence of general relativity, where the gravitational force due to a massive object bends the paths of light originating from distant objects lying behind it. Using very little general relativity and no higher level mathematics, this text presents the basics of gravitational lensing, focusing on the equations needed to understand the phenomena. It then applies them to a diverse set of topics, including multiply imaged objects, time delays, extrasolar planets, microlensing, cluster masses, galaxy shape measurements, cosmic shear, and lensing of the cosmic microwave background. This approach allows undergraduate students and others to get quickly up to speed on the basics and the important issues. The text will be especially relevant as large surveys such as LSST and Euclid begin to dominate the astronomical landscape. Designed for a one semester course, it is accessible to anyone with two years of undergraduate physics background.

  5. Deviation from Purchasing Power Parity: Evidence from Malaysia, 1973–1997

    OpenAIRE

    Goh, Soo Khoon; Mithani, Dawood

    2000-01-01

    This paper presents an empirical test of Purchasing Power Parity (PPP) applied to the Malaysia ringgit for the period from 1973 (CPI) and 1984 (WPI) to 1997. Consistent with other research findings, it is detected that real exchange rate follows a random walk. Using multivariate cointegration methodology for the long-run relationship between real exchange rate and certain macro-economic variables, the study provides evidence supporting a long-run relationship between the real exchange rate an...

  6. What do children know and understand about universal gravitation? Structural and developmental aspects

    NARCIS (Netherlands)

    Frappart, S.; Raijmakers, M.; Frède, V.

    2014-01-01

    Children's understanding of universal gravitation starts at an early age but changes until adulthood, which makes it an interesting topic for studying the development and structure of knowledge. Children's understanding of gravitation was tested for a variety of contexts and across a wide age range

  7. Detection of gravitational waves: a hundred year journey

    Science.gov (United States)

    Mavalvala, Nergis

    2016-05-01

    In February 2016, scientists announced the first ever detection of gravitational waves from colliding black holes, launching a new era of gravitational wave astronomy and unprecedented tests of Einstein's theory of general relativity. I will describe the science and technology, and also the human story, behind the long quest that led to this discovery. Bio: Nergis Mavalvala is Professor of Physics at the Massachusetts Institute of Technology (MIT). Her research links the world of quantum mechanics, usually apparent only at the atomic scale, with gravitational waves, arising from some of the most powerful, yet elusive, forces in the cosmos. In 2016, she was part of the team that announced the first detection of gravitational waves from colliding black holes. She received a B.A. from Wellesley College in 1990 and a Ph.D. from MIT in 1997. She was a postdoctoral fellow and research scientist at the California Institute of Technology between 1997 and 2002. Since 2002, she has been on the Physics faculty at MIT, and was named a MacArthur Fellow in 2010. She is a Fellow of the American Physical Society and the Optical Society of America.

  8. Supersymmetric models without R parity

    International Nuclear Information System (INIS)

    Ross, G.G.; Valle, J.W.F.

    1985-01-01

    We show that many supersymmetric models may spontaneously break R parity through scalar neutrinos acquiring a vacuum expectation value (vev). These models allow supersymmetric particles to be produced singly and to decay to nonsupersymmetric states. This leads to a new pattern of supersymmetric phenomenology. We discuss the lepton number violation to be expected in this class of models. (orig.)

  9. Quantum phenomena in gravitational field

    Science.gov (United States)

    Bourdel, Th.; Doser, M.; Ernest, A. D.; Voronin, A. Yu.; Voronin, V. V.

    2011-10-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold antihydrogen above a material surface and measuring a gravitational interaction of antihydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eötvös-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology.

  10. Quantum phenomena in gravitational field

    International Nuclear Information System (INIS)

    Bourdel, Th.; Doser, M.; Ernest, A.D.; Voronin, A.Y.; Voronin, V.V.

    2010-01-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold anti-hydrogen above a material surface and measuring a gravitational interaction of anti-hydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eoetvoes-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology. (authors)

  11. Parity violation in neutron induced reactions

    International Nuclear Information System (INIS)

    Gudkov, V.P.

    1991-06-01

    The theory of parity violation in neutron induced reactions is discussed. Special attention is paid to the energy dependence and enhancement factors for the various types of nuclear reactions and the information which might be obtained from P-violating effects in nuclei. (author)

  12. Lande gJ factors for even-parity electronic levels in the holmium atom

    Science.gov (United States)

    Stefanska, D.; Werbowy, S.; Krzykowski, A.; Furmann, B.

    2018-05-01

    In this work the hyperfine structure of the Zeeman splitting for 18 even-parity levels in the holmium atom was investigated. The experimental method applied was laser induced fluorescence in a hollow cathode discharge lamp. 20 spectral lines were investigated involving odd-parity levels from the ground multiplet, for which Lande gJ factors are known with high precision, as the lower levels; this greatly facilitated the evaluation of gJ factors for the upper levels. The gJ values for the even-parity levels considered are reported for the first time. They proved to compare fairly well with the values obtained recently in a semi-empirical analysis for the even-parity level system of Ho I.

  13. Reconstructing the gravitational field of the local Universe

    Science.gov (United States)

    Desmond, Harry; Ferreira, Pedro G.; Lavaux, Guilhem; Jasche, Jens

    2018-03-01

    Tests of gravity at the galaxy scale are in their infancy. As a first step to systematically uncovering the gravitational significance of galaxies, we map three fundamental gravitational variables - the Newtonian potential, acceleration and curvature - over the galaxy environments of the local Universe to a distance of approximately 200 Mpc. Our method combines the contributions from galaxies in an all-sky redshift survey, haloes from an N-body simulation hosting low-luminosity objects, and linear and quasi-linear modes of the density field. We use the ranges of these variables to determine the extent to which galaxies expand the scope of generic tests of gravity and are capable of constraining specific classes of model for which they have special significance. Finally, we investigate the improvements afforded by upcoming galaxy surveys.

  14. Parity nonconserving optical rotation in atomic lead

    International Nuclear Information System (INIS)

    Emmons, T.P. Jr.

    1984-01-01

    A measurement of parity nonconserving optical rotation has been performed on the 1.28 μm atomic lead magnetic dipole transition. Although the technique used in this measurement was similar to that used in earlier measurements done on the 0.876 μm line in atomic bismuth, important differences exist. These are discussed in detail. Since the accuracy of this measurement is limited by systematic errors, a complete analysis of the data is included with a lengthy discussion of systematic effects. The final value obtained for the optical rotation is given. This agrees with atomic calculations based on the Weinberg-Salam-Galshow model for weak interactions. A discussion of the limits on weak interaction theories placed by all the atomic parity nonconservation experiments appears in the conclusion

  15. Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy

    Science.gov (United States)

    Gabbard, Hunter; Williams, Michael; Hayes, Fergus; Messenger, Chris

    2018-04-01

    We report on the construction of a deep convolutional neural network that can reproduce the sensitivity of a matched-filtering search for binary black hole gravitational-wave signals. The standard method for the detection of well-modeled transient gravitational-wave signals is matched filtering. We use only whitened time series of measured gravitational-wave strain as an input, and we train and test on simulated binary black hole signals in synthetic Gaussian noise representative of Advanced LIGO sensitivity. We show that our network can classify signal from noise with a performance that emulates that of match filtering applied to the same data sets when considering the sensitivity defined by receiver-operator characteristics.

  16. Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy.

    Science.gov (United States)

    Gabbard, Hunter; Williams, Michael; Hayes, Fergus; Messenger, Chris

    2018-04-06

    We report on the construction of a deep convolutional neural network that can reproduce the sensitivity of a matched-filtering search for binary black hole gravitational-wave signals. The standard method for the detection of well-modeled transient gravitational-wave signals is matched filtering. We use only whitened time series of measured gravitational-wave strain as an input, and we train and test on simulated binary black hole signals in synthetic Gaussian noise representative of Advanced LIGO sensitivity. We show that our network can classify signal from noise with a performance that emulates that of match filtering applied to the same data sets when considering the sensitivity defined by receiver-operator characteristics.

  17. Towards improved measurements of parity violation in atomic ytterbium

    Energy Technology Data Exchange (ETDEWEB)

    Antypas, D., E-mail: dantypas@uni-mainz.de [Helmholtz-Institut Mainz (Germany); Fabricant, A.; Bougas, L. [Johannes Gutenberg-Universität Mainz, Institut für Physik (Germany); Tsigutkin, K. [ASML (Netherlands); Budker, D. [Helmholtz-Institut Mainz (Germany)

    2017-11-15

    We report on progress towards performing precision measurements of parity violation in Yb, in which the theoretical prediction for a strong weak-interaction-induced effect in the 6s{sup 2} {sup 1}S{sub 0}→ 5d6s{sup 3}D{sub 1} optical transition at 408 nm has already been confirmed, with a measurement of the effect at the ≈10 % level of accuracy. With a new atomic-beam apparatus offering enhanced sensitivity, we are aiming at precisely determining the parity violation observable in Yb, which will allow us to probe the distributions of neutrons in different isotopes, investigate physics beyond the Standard Model, as well as to study intra-nucleus weak interactions, through an observation of the anapole moment of Yb nuclei with nonzero spin. We present the experimental principle employed to probe atomic parity violation, describe our new apparatus, and discuss the attained experimental sensitivity as well as the methods for characterizing systematics in these measurements.

  18. Controlled parity switch of persistent currents in quantum ladders

    Science.gov (United States)

    Filippone, Michele; Bardyn, Charles-Edouard; Giamarchi, Thierry

    2018-05-01

    We investigate the behavior of persistent currents for a fixed number of noninteracting fermions in a periodic quantum ladder threaded by Aharonov-Bohm and transverse magnetic fluxes Φ and χ . We show that the coupling between ladder legs provides a way to effectively change the ground-state fermion-number parity, by varying χ . Specifically, we demonstrate that varying χ by 2 π (one flux quantum) leads to an apparent fermion-number parity switch. We find that persistent currents exhibit a robust 4 π periodicity as a function of χ , despite the fact that χ →χ +2 π leads to modifications of order 1 /N of the energy spectrum, where N is the number of sites in each ladder leg. We show that these parity-switch and 4 π periodicity effects are robust with respect to temperature and disorder, and outline potential physical realizations using cold atomic gases and photonic lattices, for bosonic analogs of the effects.

  19. Gravitational capture

    International Nuclear Information System (INIS)

    Bondi, H.

    1979-01-01

    In spite of the strength of gravitational focres between celestial bodies, gravitational capture is not a simple concept. The principles of conservation of linear momentum and of conservation of angular momentum, always impose severe constraints, while conservation of energy and the vital distinction between dissipative and non-dissipative systems allows one to rule out capture in a wide variety of cases. In complex systems especially those without dissipation, long dwell time is a more significant concept than permanent capture. (author)

  20. Black Hole Mergers, Gravitational Waves, and Multi-Messenger Astronomy

    Science.gov (United States)

    Centrella, Joan M.

    2010-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as the space-based LISA. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. Although numerical codes designed to simulate black hole mergers were plagued for many years by a host of instabilities, recent breakthroughs have conquered these problems and opened up this field dramatically. This talk will focus on the resulting gold rush of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, astrophysics, and testing general relativity.

  1. Impact of comprehensive insurance parity on follow-up care after psychiatric inpatient treatment in Oregon.

    Science.gov (United States)

    Wallace, Neal T; McConnell, K John

    2013-10-01

    This study assessed the impact of Oregon's 2007 parity law, which required behavioral health insurance parity, on rates of follow-up care provided within 30 days of psychiatric inpatient care. Data sources were claims (2005-2008) for 737 individuals with inpatient stays for a mental disorder who were continuously enrolled in insurance plans affected by the parity law (intervention group) or in commercial, self-insured plans that were not affected by the law (control group). A difference-in-difference analysis was used to compare rates of follow-up care before and after the parity law between discharges of individuals in the intervention group and the control group and between discharges of individuals in the intervention group who had or had not met preparity quantitative coverage limits during a coverage year. Estimates of the marginal effects of the parity law were adjusted for gender, discharge diagnosis, relationship to policy holder, and calendar quarter of discharge. The study included 353 discharges in the intervention group and 535 discharges in the control group. After the parity law, follow-up rates increased by 11% (p=.042) overall and by 20% for discharges of individuals who had met coverage limits (p=.028). The Oregon parity law was associated with a large increase in the rate of follow-up care, predominantly for discharges of individuals who had met preparity quantitative coverage limits. Given similarities between the law and the 2008 Mental Health Parity and Addiction Equity Act, the results may portend a national effect of more comprehensive parity laws.

  2. The gravitational wave spectrum from cosmological B-L breaking

    International Nuclear Information System (INIS)

    Buchmueller, W.; Domcke, V.; Kamada, K.; Schmitz, K.

    2013-05-01

    Cosmological B-L breaking is a natural and testable mechanism to generate the initial conditions of the hot early universe. If B-L is broken at the grand unification scale, the false vacuum phase drives hybrid inflation, ending in tachyonic preheating. The decays of heavy B-L Higgs bosons and heavy neutrinos generate entropy, baryon asymmetry and dark matter and also control the reheating temperature. The different phases in the transition from inflation to the radiation dominated phase produce a characteristic spectrum of gravitational waves. We calculate the complete gravitational wave spectrum due to inflation, preheating and cosmic strings, which turns out to have several features. The production of gravitational waves from cosmic strings has large uncertainties, with lower and upper bounds provided by Abelian Higgs strings and Nambu-Goto strings, implying Ω GW h 2 ∝10 -13 -10 -8 , much larger than the spectral amplitude predicted by inflation. Forthcoming gravitational wave detectors such as eLISA, advanced LIGO and BBO/DECIGO will reach the sensitivity needed to test the predictions from cosmological B-L breaking.

  3. The gravitational wave spectrum from cosmological B-L breaking

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W.; Domcke, V.; Kamada, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Schmitz, K. [Tokyo Univ., Kashiwa (Japan). Kavli IPMU (WPI)

    2013-05-15

    Cosmological B-L breaking is a natural and testable mechanism to generate the initial conditions of the hot early universe. If B-L is broken at the grand unification scale, the false vacuum phase drives hybrid inflation, ending in tachyonic preheating. The decays of heavy B-L Higgs bosons and heavy neutrinos generate entropy, baryon asymmetry and dark matter and also control the reheating temperature. The different phases in the transition from inflation to the radiation dominated phase produce a characteristic spectrum of gravitational waves. We calculate the complete gravitational wave spectrum due to inflation, preheating and cosmic strings, which turns out to have several features. The production of gravitational waves from cosmic strings has large uncertainties, with lower and upper bounds provided by Abelian Higgs strings and Nambu-Goto strings, implying {Omega}{sub GW}h{sup 2}{proportional_to}10{sup -13}-10{sup -8}, much larger than the spectral amplitude predicted by inflation. Forthcoming gravitational wave detectors such as eLISA, advanced LIGO and BBO/DECIGO will reach the sensitivity needed to test the predictions from cosmological B-L breaking.

  4. Interaction of gravitational waves with superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Inan, N.A.; Thompson, J.J. [University of California, Schools of Natural Sciences, Merced, CA (United States); Chiao, R.Y. [University of California, Schools of Natural Sciences and Engineering, Merced, CA (United States)

    2017-06-15

    Applying the Helmholtz Decomposition theorem to linearized General Relativity leads to a gauge-invariant formulation where the transverse-traceless part of the metric perturbation describes gravitational waves in matter. Gravitational waves incident on a superconductor can be described by a linear London-like constituent equation characterized by a ''gravitational shear modulus'' and a corresponding plasma frequency and penetration depth. Electric-like and magnetic-like gravitational tensor fields are defined in terms of the strain field of a gravitational wave. It is shown that in the DC limit, the magnetic-like tensor field is expelled from the superconductor in a gravitational Meissner-like effect. The Cooper pair density is described by the Ginzburg-Landau theory embedded in curved space-time. The ionic lattice is modeled by quantum harmonic oscillators coupled to gravitational waves and characterized by quasi-energy eigenvalues for the phonon modes. The formulation predicts the possibility of a dynamical Casimir effect since the zero-point energy of the ionic lattice phonons is found to be modulated by the gravitational wave, in a quantum analog of a ''Weber-bar effect.'' Applying periodic thermodynamics and the Debye model in the low-temperature limit leads to a free energy density for the ionic lattice. Lastly, we relate the gravitational strain of space to the strain of matter to show that the response to a gravitational wave is far less for the Cooper pair density than for the ionic lattice. This predicts a charge separation effect in the superconductor as a result of the gravitational wave. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. A Breast Tissue Protein Expression Profile Contributing to Early Parity-Induced Protection Against Breast Cancer

    Directory of Open Access Journals (Sweden)

    Christina Marie Gutierrez

    2015-11-01

    Full Text Available Background/Aims: Early parity reduces breast cancer risk, whereas, late parity and nulliparity increase breast cancer risk. Despite substantial efforts to understand the protective effects of early parity, the precise molecular circuitry responsible for these changes is not yet fully defined. Methods: Here, we have conducted the first study assessing protein expression profiles in normal breast tissue of healthy early parous, late parous, and nulliparous women. Breast tissue biopsies were obtained from 132 healthy parous and nulliparous volunteers. These samples were subjected to global protein expression profiling and immunohistochemistry. GeneSpring and MetaCore bioinformatics analysis software were used to identify protein expression profiles associated with early parity (low risk versus late/nulliparity (high risk. Results: Early parity reduces expression of key proteins involved in mitogenic signaling pathways in breast tissue through down regulation of EGFR1/3, ESR1, AKT1, ATF, Fos, and SRC. Early parity is also characterized by greater genomic stability and reduced tissue inflammation based on differential expression of aurora kinases, p53, RAD52, BRCA1, MAPKAPK-2, ATF-1, ICAM1, and NF-kappaB compared to late and nulli parity. Conclusions: Early parity reduces basal cell proliferation in breast tissue, which translates to enhanced genomic stability, reduced cellular stress/inflammation, and thus reduced breast cancer risk.

  6. Are the gravitational waves quantised?

    International Nuclear Information System (INIS)

    Lovas, Istvan

    1997-01-01

    If the gravitational waves are classical objects then the value of their correlation function is 1. If they are quantised, then there exist two possibilities: the gravitational waves are either completely coherent, then their correlation function is again 1, or they are only partially coherent, then their correlation function is expected to deviate from 1. Unfortunately such a deviation is not a sufficient proof for the quantised character of the gravitational waves. If the gravitational waves are quantised and generated by the change of the background metrical then they can be in a squeezed state. In a squeezed state there is a chance for the correlation between the phase of the wave and the quantum fluctuations. The observation of such a correlation would be a genuine proof of the quantised character of the gravitational wave

  7. Natural R parity conservation with horizontal symmetries: A four generation model

    International Nuclear Information System (INIS)

    Berezhiani, Z.; Nardi, E.

    1995-01-01

    In most supersymmetric models the stability of the proton is ensured by invoking R parity. A necessary ingredient to enforce R parity is the possibility of distinguishing the lepton superfields from the Higgs ones. This is generally achieved either by assuming different charges under some matter parity, or by assigning the superfields to different representations of a unified gauge group. We want to put forward the idea that the replica of the fermion generations, which constitute an intrinsic difference between the fermions and the Higgs superfields, can give a clue to understanding R parity as an accidental symmetry. More ambitiously, we suggest a possible relation between proton stability and the actual number of fermion generations. We carry out our investigation in the framework of non-Abelian horizontal gauge symmetries. We identify SU(4) H as the only acceptable horizontal gauge group which can naturally ensure the absence of R-parity-violating operators, without conflicting with other theoretical and phenomenological constraints. We analyze a version of the supersymmetric standard model equipped with a gauged horizontal SU(4) H , in which R parity is accidental. The model predicts four families of fermions, it allows for the dynamical generation of a realistic hierarchy of fermion masses without any ad hoc choice of small Yukawa couplings; it ensures in a natural way the heaviness of all the fourth family fermions (including the neutrino), and it predicts a lower limit for the τ-neutrino mass of a few eV. The scale of the breaking of the horizontal symmetry can be constrained rather precisely in a narrow window around ∼10 11 GeV. Some interesting astrophysical and cosmological implications of the model are addressed as well

  8. Prospects for Parity Non-conservation Experiments with Highly Charged Heavy Ions

    OpenAIRE

    Maul, M.; Schäfer, A.; Greiner, W.; Indelicato, P.

    1996-01-01

    We discuss the prospects for parity non-conservation experiments with highly charged heavy ions. Energy levels and parity mixing for heavy ions with two to five electrons are calculated. We investigate two-photon-transitions and the possibility to observe interference effects between weak-matrix elements and Stark matrix elements for periodic electric field configurations.

  9. Limits on the speed of gravitational waves from pulsar timing

    International Nuclear Information System (INIS)

    Baskaran, D.; Polnarev, A. G.; Pshirkov, M. S.; Postnov, K. A.

    2008-01-01

    In this work, analyzing the propagation of electromagnetic waves in the field of gravitational waves, we show the presence and significance of the so-called surfing effect for pulsar timing measurements. It is shown that, due to the transverse nature of gravitational waves, the surfing effect leads to enormous pulsar timing residuals if the speed of gravitational waves is smaller than the speed of light. This fact allows one to place significant constraints on parameter ε, which characterizes the relative deviation of the speed of gravitational waves from the speed of light. We show that the existing constraints from pulsar timing measurements already place stringent limits on ε and consequently on the mass of the graviton m g . The limits on m g -24 are 2 orders of magnitude stronger than the current constraints from Solar System tests. The current constraints also allow one to rule out massive gravitons as possible candidates for cold dark matter in the galactic halo. In the near future, the gravitational wave background from extragalactic super massive black hole binaries, along with the expected submicrosecond pulsar timing accuracy, will allow one to achieve constraints of ε < or approx. 0.4% and possibly stronger.

  10. Multi-qubit parity measurement in circuit quantum electrodynamics

    International Nuclear Information System (INIS)

    DiVincenzo, David P; Solgun, Firat

    2013-01-01

    We present a concept for performing direct parity measurements on three or more qubits in microwave structures with superconducting resonators coupled to Josephson-junction qubits. We write the quantum-eraser conditions that must be fulfilled for the parity measurements as requirements for the scattering phase shift of our microwave structure. We show that these conditions can be fulfilled with present-day devices. We present one particular scheme, implemented with two-dimensional cavity techniques, in which each qubit should be coupled equally to two different microwave cavities. The magnitudes of the couplings that are needed are in the range that has been achieved in current experiments. A quantum calculation indicates that the measurement is optimal if the scattering signal can be measured with near single-photon sensitivity. A comparison with an extension of a related proposal from cavity optics is presented. We present a second scheme, for which a scalable implementation of the four-qubit parities of the surface quantum error correction code can be envisioned. It uses three-dimensional cavity structures, using cavity symmetries to achieve the necessary multiple resonant modes within a single resonant structure. (paper)

  11. A model for quasi parity-doublet spectra with strong coriolis mixing

    International Nuclear Information System (INIS)

    Minkov, N.; Drenska, S.; Strecker, M.

    2013-01-01

    The model of coherent quadrupole and octupole motion (CQOM) is combined with the reflection-asymmetric deformed shell model (DSM) in a way allowing fully microscopic description of the Coriolis decoupling and K-mixing effects in the quasi parity-doublet spectra of odd-mass nuclei. In this approach the even-even core is considered within the CQOM model, while the odd nucleon is described within DSM with pairing interaction. The Coriolis decoupling/mixing factors are calculated through a parity-projection of the single-particle wave function. Expressions for the Coriolis mixed quasi parity-doublet levels are obtained in the second order of perturbation theory, while the K-mixed core plus particle wave function is obtained in the first order. Expressions for the B(E1), B(E2) and B(E3) reduced probabilities for transitions within and between different quasi-doublets are obtained by using the total K-mixed wave function. The model scheme is elaborated in a form capable of describing the yrast and non-yrast quasi parity-doublet spectra in odd-mass nuclei. (author)

  12. Blandford's argument: The strongest continuous gravitational wave signal

    International Nuclear Information System (INIS)

    Knispel, Benjamin; Allen, Bruce

    2008-01-01

    For a uniform population of neutron stars whose spin-down is dominated by the emission of gravitational radiation, an old argument of Blandford states that the expected gravitational-wave amplitude of the nearest source is independent of the deformation and rotation frequency of the objects. Recent work has improved and extended this argument to set upper limits on the expected amplitude from neutron stars that also emit electromagnetic radiation. We restate these arguments in a more general framework, and simulate the evolution of such a population of stars in the gravitational potential of our galaxy. The simulations allow us to test the assumptions of Blandford's argument on a realistic model of our galaxy. We show that the two key assumptions of the argument (two dimensionality of the spatial distribution and a steady-state frequency distribution) are in general not fulfilled. The effective scaling dimension D of the spatial distribution of neutron stars is significantly larger than two, and for frequencies detectable by terrestrial instruments the frequency distribution is not in a steady state unless the ellipticity is unrealistically large. Thus, in the cases of most interest, the maximum expected gravitational-wave amplitude does have a strong dependence on the deformation and rotation frequency of the population. The results strengthen the previous upper limits on the expected gravitational-wave amplitude from neutron stars by a factor of 6 for realistic values of ellipticity.

  13. Search for resonant sneutrino production in R-parity violating SUSY scenarios with CMS

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Henning; Erdweg, Soeren; Gueth, Andreas; Hebbeker, Thomas; Meyer, Arnd; Mukherjee, Swagata [III. Physikalisches Institut A, RWTH Aachen (Germany)

    2016-07-01

    Supersymmetric models are among the most promising extensions of the standard model. In many models R-parity is said to be conserved. However, allowing R-parity violation can permit interesting final states and signatures that are not covered by SUSY scenarios with R-parity conservation. The decay of a resonant sneutrino to two standard model leptons of different flavour is analyzed. The focus lies on the electron-muon final state investigating the R-parity violating couplings and the mass of the resonantly produced sneutrino. The analysis is based on the 2015 data of proton-proton collisions corresponding to an integrated luminosity of 2.5 fb{sup -1} at a centre-of-mass energy of 13 TeV recorded with the CMS detector at the LHC.

  14. Some simple criteria for gauged R-parity

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S.P.

    1992-07-01

    Some simple conditions which are sufficient to guarantee that R- parity survives as an unbroken gauged discrete subgroup of the continuous gauge symmetry in certain supersymmetric extensions of the standard model are presented.

  15. Gravitational Physics

    OpenAIRE

    Schäfer, G.; Schutz, B.

    1996-01-01

    Gravity is truly universal. It is the force that pulls us to the Earth, that keeps the planets and moons in their orbits, and that causes the tides on the Earth to ebb and flow. It even keeps the Sun shining. Yet on a laboratory scale gravity is extremely weak. The Coulomb force between two protons is 1039 times stronger than the gravitational force between them. Moreover, Newton's gravitational constant is the least accurately known of the fundamental constants: it has been measured to 1 par...

  16. Influence of udder stimulation, stage of lactation and parity on milk ...

    African Journals Online (AJOL)

    Influence of udder stimulation, stage of lactation and parity on milk yield in West African Dwarf goats. ... Left teat of the does produced significantly (P<0.05) more milk than the right teat. Therefore, it is recommended that goats udder in higher parity be stimulated prior to milking at early stage of lactation for higher milk ...

  17. Exchange rate uncertainty and deviations from Purchasing\\ud Power Parity: evidence from the G7 area

    OpenAIRE

    Arghyrou, Michael; Gregoriou, Andros; Pourpourides, Panayiotis; Cardiff University

    2009-01-01

    Arghyrou, Gregoriou and Pourpourides (2009) argue that exchange rate uncertainty causes deviations from the law of one price. We test this hypothesis on aggregate data from the G7-area. We find that exchange rate uncertainty explains to a significant degree deviations from Purchasing Power Parity.

  18. Κ-meson decays and parity violation

    International Nuclear Information System (INIS)

    Dalitz, R.H.

    1989-01-01

    Between 1948 and 1954 many Κ-meson decay modes were observed, including the tau, pion and xi positives, in emulsion experiments all with masses around 500 MeV. An attempt was made to rationalize the various names for the new particles being discovered. A period of experimental consolidation followed. An attempt was then made to determine the spin parity of the three-pion system from tau plus decay using matrix calculations. New stripped emulsion techniques now permitted a secondary-particle track to be followed to its endpoint. Stacked emulsions were flown in balloons to study Κ mesons and hyperons using cosmic radiation. Later similar work used the new particle accelerators, the Cosmotron and the Bevatron as sources. The author showed that the tau plus and theta plus were competing decay modes of the same Κ + meson, but this meant that parity conservation was violated. Later theoreticians T D Lee and C N Yang provided evidence for this surprising idea from their work on semileptonic weak interactions. (UK)

  19. Parity simulation for nuclear plant analysis

    International Nuclear Information System (INIS)

    Hansen, K.F.; Depiente, E.

    1986-01-01

    The analysis of the transient performance of nuclear plants is sufficiently complex that simulation tools are needed for design and safety studies. The simulation tools are needed for design and safety studies. The simulation tools are normally digital because of the speed, flexibility, generality, and repeatability of digital computers. However, communication with digital computers is an awkward matter, requiring special skill or training. The designer wishing to gain insight into system behavior must expend considerable effort in learning to use computer codes, or else have an intermediary communicate with the machine. There has been a recent development in analog simulation that simplifies the user interface with the simulator, while at the same time improving the performance of analog computers. This development is termed parity simulation and is now in routine use in analyzing power electronic network transients. The authors describe the concept of parity simulation and present some results of using the approach to simulate neutron kinetics problems

  20. Measurement of gravitational acceleration of antimatter

    International Nuclear Information System (INIS)

    Rouhani, S.

    1989-12-01

    The minute yet effective impact of gravitational potential in the central region of a long tube magnetic container of non-neutral plasmas can be utilized for the measurement of the gravitational acceleration of antimatter particles. The slight change in distribution of plasma particles along the gravitational field affects the internal electric field of the plasma, which in turn affects the frequency of the magnetron motion of its particles. Thus, a rather straightforward relation is established between the gravitational acceleration of the particles and their magnetron frequencies, which is measurable directly, determining the value of the gravitational acceleration. (author). 7 refs, 3 figs

  1. Workshop on gravitational waves and relativistic astrophysics

    Indian Academy of Sciences (India)

    runs of LIGO, so crucial for detection of 'chirp' signals from compact binaries, have ... Active galactic nuclei (AGNs) like quasars and radio-galaxies require ... Shrirang Deshingkar described a new scheme for extracting gravitational ... and was applied to certain test problems, second-order convergence of the News to.

  2. Measurement of the Parity-Violating Asymmetry in Deep Inelastic Scattering at JLab 6 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Diancheng [Univ. of Virginia, Charlottesville, VA (United States)

    2013-12-01

    The parity-violating asymmetry in deep inelastic scattering (PVDIS) offers us a useful tool to study the weak neutral couplings and the hadronic structure of the nucleon, and provides high precision tests on the Standard Model. During the 6 GeV PVDIS experiment at the Thomas Jefferson National Accelerator Facility, the parity-violating asymmetries A{sub PV} of a polarized electron beam scattering off an unpolarized deuteron target in the deep inelastic scattering region were precisely measured at two Q2 values of 1.1 and 1.9 (GeV/c)2. The asymmetry at Q2=1.9 (GeV/c)2 can be used to extract the weak coupling combination 2C2u - C2d, assuming the higher twist effect is small. The extracted result from this measurement is in good agreement with the Standard Model prediction, and improves the precision by a factor of five over previous data. In addition, combining the asymmetries at both Q2 values provides us extra knowledge on the higher twist effects. The parity violation asymmetries in the resonance region were also measured during this experiment. These results are the first APV data in the resonance region beyond the Δ (1232). They provide evidence that the quark hadron duality works for APV at the (10-15)% level, and set constraints on nucleon resonance models that are commonly used for background calculations to other parity-violating electron scattering measurements.

  3. Prevention of gravitational collapse

    International Nuclear Information System (INIS)

    Moffat, J.W.; Taylor, J.G.

    1981-01-01

    We apply a new theory of gravitation to the question of gravitational collapse to show that collapse is prevented in this theory under very reasonable conditions. This result also extends to prevent ultimate collapse of the Universe. (orig.)

  4. Weight, gravitation, inertia, and tides

    Science.gov (United States)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-11-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix.

  5. Weight, gravitation, inertia, and tides

    International Nuclear Information System (INIS)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-01-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix. (paper)

  6. Gravitational Grating

    Science.gov (United States)

    Rahvar, Sohrab

    2018-05-01

    In this work, we study the interaction of the electromagnetic wave (EW) from a distant quasar with the gravitational wave (GW) sourced by the binary stars. While in the regime of geometric optics, the light bending due to this interaction is negligible, we show that the phase shifting on the wavefront of an EW can produce the diffraction pattern on the observer plane. The diffraction of the light (with the wavelength of λe) by the gravitational wave playing the role of gravitational grating (with the wavelength of λg) has the diffraction angle of Δβ ˜ λe/λg. The relative motion of the observer, the source of gravitational wave and the quasar results in a relative motion of the observer through the interference pattern on the observer plane. The consequence of this fringe crossing is the modulation in the light curve of a quasar with the period of few hours in the microwave wavelength. The optical depth for the observation of this phenomenon for a Quasar with the multiple images strongly lensed by a galaxy where the light trajectory of some of the images crosses the lensing galaxy is τ ≃ 0.2. By shifting the time-delay of the light curves of the multiple images in a strong lensed quasar and removing the intrinsic variations of a quasar, our desired signals, as a new method for detection of GWs can be detected.

  7. Determination of the gravitational constant with a beam balance

    International Nuclear Information System (INIS)

    Schlamminger, St.; Holzschuh, E.; Kuendig, W.

    2002-01-01

    The Newtonian gravitational constant G was determined by means of a novel beam-balance experiment with an accuracy comparable to that of the most precise torsion-balance experiments. The gravitational force of two stainless steel tanks filled with 13 521 kg mercury on 1.1 kg test masses was measured using a commercial mass comparator. A careful analysis of the data and the experimental error yields G=6.674 07(22)x10 -11 m 3 kg -1 s -2 . This value is in excellent agreement with most values previously obtained with different methods

  8. Measurement of the gravitational constant in an orbiting laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Farinella, P [Osservatorio Astronomico di Merate, Milan (Italy); Milani, A [Pisa Univ. (Italy). Ist. di Matematica; Nobili, A M [Pisa Univ. (Italy). Ist. di Scienze dell' Informazione

    1980-12-01

    We propose to measure the gravitational constant G by putting in an orbiting laboratory a known mass of very high density and by tracking the motion of a small test mass under the gravitational influence of the primary mass. We analyze the different sources of perturbation: the consideration of the Earth's gravity gradient leads us to conclude that, if the laboratory is in a low Earth orbit, we cannot get stable satellite-like orbits of the test mass, but we must study only a process of gravitational scattering. In order to maximize the time of interaction it is proposed to use the practical stability of a collinear equilibrium point of the system Earth-primary mass, by putting the test mass as close as possible to the stable manifold of an equilibrium point. This method will allow the determination of the value of G withing a few parts over 10/sup 5/ as shown by some computer simulations of the experiment taking into account also some unknown perturbation and random noise. Two main problems are involved in this experiment: (a) refined numerical methods are needed to take into account all significant perturbations and to extract the result about G from the experimental data; (b) during the motion of the test mass, the primary mass must always be free-falling inside the laboratory, so that this experiment needs a drag-free satellite technique of the same type which is necessary for high-precision gravimetric measurement.

  9. Relationship between high-energy absorption cross section and strong gravitational lensing for black hole

    International Nuclear Information System (INIS)

    Wei Shaowen; Liu Yuxiao; Guo Heng

    2011-01-01

    In this paper, we obtain a relation between the high-energy absorption cross section and the strong gravitational lensing for a static and spherically symmetric black hole. It provides us a possible way to measure the high-energy absorption cross section for a black hole from strong gravitational lensing through astronomical observation. More importantly, it allows us to compute the total energy emission rate for high-energy particles emitted from the black hole acting as a gravitational lens. It could tell us the range of the frequency, among which the black hole emits the most of its energy and the gravitational waves are most likely to be observed. We also apply it to the Janis-Newman-Winicour solution. The results suggest that we can test the cosmic censorship hypothesis through the observation of gravitational lensing by the weakly naked singularities acting as gravitational lenses.

  10. Parity and the spin{statistics connection

    Indian Academy of Sciences (India)

    A simple demonstration of the spin-statistics connection for general causal fields is obtained by using the parity operation to exchange spatial coordinates in the scalar product of a locally commuting field operator, evaluated at position x, with the same field operator evaluated at -x, at equal times.

  11. Is Gender Parity Imminent in the Professoriate? Lessons from One Canadian University

    Science.gov (United States)

    Wilson, Marnie; Gadbois, Shannon; Nichol, Kathleen

    2008-01-01

    This article examined issues and implications associated with gender parity in the professoriate. The findings, based on the results from one Canadian institution's most recent women's committee report, emphasize the importance of monitoring progress toward gender parity by examining potential indicators of gender imbalances such as gender…

  12. Gravitational radiation quadrupole formula is valid for gravitationally interacting systems

    International Nuclear Information System (INIS)

    Walker, M.; Will, C.M.

    1980-01-01

    An argument is presented for the validity of the quadrupole formula for gravitational radiation energy loss in the far field of nearly Newtonian (e.g., binary stellar) systems. This argument differs from earlier ones in that it determines beforehand the formal accuracy of approximation required to describe gravitationally self-interacting systems, uses the corresponding approximate equation of motion explicitly, and evaluate the appropriate asymptotic quantities by matching along the correct space-time light cones

  13. Medium effects and parity doubling of hyperons across the deconfinement phase transition*

    Directory of Open Access Journals (Sweden)

    Aarts Gert

    2018-01-01

    Full Text Available We analyse the behaviour of hyperons with strangeness S = –1,–2,–3 in the hadronic and quark gluon plasma phases, with particular interest in parity doubling and its emergence as the temperature grows. This study uses our FASTSUM anisotropic Nf = 2+1 ensembles, with four temperatures below and four above the deconfinement transition temperature, Tc. The positive-parity groundstate masses are found to be largely temperature independent below Tc, whereas the negative-parity ones decrease considerably as the temperature increases. Close to the transition, the masses are almost degenerate, in line with the expectation from chiral symmetry restoration. This may be of interest for heavy-ion phenomenology. In particular we show an application of this effect to the Hadron Resonance Gas model. A clear signal of parity doubling is found above Tc in all hyperon channels, with the strength of the effect depending on the number of s-quarks in the baryons.

  14. Influence of parity, type of delivery, and physical activity level on pelvic floor muscles in postmenopausal women.

    Science.gov (United States)

    Varella, Larissa Ramalho Dantas; Torres, Vanessa Braga; Angelo, Priscylla Helouyse Melo; Eugênia de Oliveira, Maria Clara; Matias de Barros, Alef Cavalcanti; Viana, Elizabel de Souza Ramalho; Micussi, Maria Thereza de Albuquerque Barbosa Cabral

    2016-03-01

    [Purpose] The aim of the present study was to assess the influence of parity, type of delivery, and physical activity level on pelvic floor muscles in postmenopausal women. [Subjects and Methods] This was an observational analytic cross-sectional study with a sample of 100 postmenopausal women, aged between 45 and 65 years, divided into three groups according to menopausal stage: hysterectomized and early and late postmenopause. Patients were assessed for sociodemographic and gyneco-obstetric factors and subjected to a muscle strength test and perineometry. Descriptive statistics, ANOVA, Kruskal-Wallis and multiple regression were applied. [Results] The results showed homogeneity in sociodemographic and anthropometric characteristics. There was no difference in pelvic floor muscle function among the three groups. Type of delivery, parity and physical activity level showed no influence on muscle function. [Conclusion] The findings demonstrate that parity, type of delivery, and physical activity level had no influence on pelvic floor muscle pressure in postmenopausal women. One hypothesis to explain these results is the fact that the decline in muscle function in postmenopausal women is related to the female aging process.

  15. Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking

    Directory of Open Access Journals (Sweden)

    Armstrong J. W.

    2006-01-01

    Full Text Available This paper discusses spacecraft Doppler tracking, the current-generation detector technology used in the low-frequency (~millihertz gravitational wave band. In the Doppler method the earth and a distant spacecraft act as free test masses with a ground-based precision Doppler tracking system continuously monitoring the earth-spacecraft relative dimensionless velocity $2 Delta v/c = Delta u/ u_0$, where $Delta u$ is the Doppler shift and $ u_0$ is the radio link carrier frequency. A gravitational wave having strain amplitude $h$ incident on the earth-spacecraft system causes perturbations of order $h$ in the time series of $Delta u/ u_0$. Unlike other detectors, the ~1-10 AU earth-spacecraft separation makes the detector large compared with millihertz-band gravitational wavelengths, and thus times-of-flight of signals and radio waves through the apparatus are important. A burst signal, for example, is time-resolved into a characteristic signature: three discrete events in the Doppler time series. I discuss here the principles of operation of this detector (emphasizing transfer functions of gravitational wave signals and the principal noises to the Doppler time series, some data analysis techniques, experiments to date, and illustrations of sensitivity and current detector performance. I conclude with a discussion of how gravitational wave sensitivity can be improved in the low-frequency band.

  16. Reevaluation of the role of nuclear uncertainties in experiments on atomic parity violation with isotopic chains

    International Nuclear Information System (INIS)

    Derevianko, Andrei; Porsev, Sergey G.

    2002-01-01

    In light of new data on neutron distributions from experiments with antiprotonic atoms [Trzcinska et al., Phys. Rev. Lett. 87, 082501 (2001)], we reexamine the role of nuclear-structure uncertainties in the interpretation of measurements of parity violation in atoms using chains of isotopes of the same element. With these new nuclear data, we find an improvement in the sensitivity of isotopic chain measurements to 'new physics' beyond the standard model. We compare possible constraints on 'new physics' with the most accurate to date single-isotope probe of parity violation in the Cs atom. We conclude that presently isotopic chain experiments employing atoms with nuclear charges Z < or approx. 50 may result in more accurate tests of the weak interaction

  17. Negative parity non-strange baryons

    International Nuclear Information System (INIS)

    Stancu, F.; Stassart, P.

    1991-01-01

    Our previous study is extended to negative parity baryon resonances up to J=(9/2) - . The framework is a semi-relativistic constituent quark model. The quark-quark interaction contains a Coulomb plus linear confinement terms and a short distance spin-spin and tensor terms. It is emphasized that a linear confinement potential gives too large a mass to the D 35 (1930) resonance. (orig.)

  18. Infinite order quantum-gravitational correlations

    Science.gov (United States)

    Knorr, Benjamin

    2018-06-01

    A new approximation scheme for nonperturbative renormalisation group equations for quantum gravity is introduced. Correlation functions of arbitrarily high order can be studied by resolving the full dependence of the renormalisation group equations on the fluctuation field (graviton). This is reminiscent of a local potential approximation in O(N)-symmetric field theories. As a first proof of principle, we derive the flow equation for the ‘graviton potential’ induced by a conformal fluctuation and corrections induced by a gravitational wave fluctuation. Indications are found that quantum gravity might be in a non-metric phase in the deep ultraviolet. The present setup significantly improves the quality of previous fluctuation vertex studies by including infinitely many couplings, thereby testing the reliability of schemes to identify different couplings to close the equations, and represents an important step towards the resolution of the Nielsen identity. The setup further allows one, in principle, to address the question of putative gravitational condensates.

  19. Atomic parity nonconservation: Electroweak parameters and nuclear structure

    International Nuclear Information System (INIS)

    Pollock, S.J.; Fortson, E.N.; Wilets, L.

    1992-01-01

    There have been suggestions to measure atomic parity nonconservation (PNC) along an isotopic chain, by taking ratios of observables in order to cancel complicated atomic-structure effects. Precise atomic PNC measurements could make a significant contribution to tests of the standard model at the level of one-loop radiative corrections. However, the results also depend upon certain features of nuclear structure, such as the spatial distribution of neutrons in the nucleus. To examine the sensitivity to nuclear structure, we consider the case of Pb isotopes using various recent relativistic and nonrelativistic nuclear model calculations. Contributions from nucleon internal weak structure are included, but found to be fairly negligible. The spread among present models in predicted sizes of nuclear-structure effects may preclude using Pb isotope ratios to test the standard model at better than a 1% level, unless there are adequate independent tests of the nuclear models by various alternative strong and electroweak nuclear probes. On the other hand, sufficiently accurate atomic PNC experiments would provide a unique method to measure neutron distributions in heavy nuclei

  20. A parity checker circuit based on microelectromechanical resonator logic elements

    Energy Technology Data Exchange (ETDEWEB)

    Hafiz, Md Abdullah Al, E-mail: abdullah.hafiz@kaust.edu.sa [CEMSE Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia); Li, Ren [CEMSE Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia); Younis, Mohammad I. [PSE Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia); Fariborzi, Hossein [CEMSE Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2017-03-03

    Micro/nano-electromechanical resonator based logic computation has attracted significant attention in recent years due to its dynamic mode of operation, ultra-low power consumption, and potential for reprogrammable and reversible computing. Here we demonstrate a 4-bit parity checker circuit by utilizing recently developed logic gates based on MEMS resonators. Toward this, resonance frequencies of shallow arch shaped micro-resonators are electrothermally tuned by the logic inputs to constitute the required logic gates for the proposed parity checker circuit. This study demonstrates that by utilizing MEMS resonator based logic elements, complex digital circuits can be realized. - Highlights: • A 4-bit parity checker circuit is proposed and demonstrated based on MEMS resonator based logic elements. • Multiple copies of MEMS resonator based XOR logic gates are used to construct a complex logic circuit. • Functionality and feasibility of micro-resonator based logic platform is demonstrated.

  1. Neutrino signals from gravitino dark matter with broken R-parity

    Energy Technology Data Exchange (ETDEWEB)

    Grefe, M.

    2008-12-15

    The gravitino is a promising supersymmetric dark matter candidate, even without strict R-parity conservation. In fact, with some small R-parity violation, gravitinos are sufficiently long-lived to constitute the dark matter of the universe, while the resulting cosmological scenario is consistent with primordial nucleosynthesis and the high reheating temperature needed for thermal leptogenesis. Furthermore, in this scenario the gravitino is unstable and might thus be accessible by indirect detection via its decay products. We compute in this thesis the partial decay widths for the gravitino in models with bilinear R-parity breaking. In addition, we determine the neutrino signal from astrophysical gravitino dark matter decays. Finally, we discuss the feasibility of detecting these neutrino signals in present and future neutrino experiments, and conclude that it will be a challenging task. Albeit, if detected, this distinctive signal might bring considerable support to the scenario of decaying gravitino dark matter. (orig.)

  2. Non-Hermitian photonics based on parity-time symmetry

    Science.gov (United States)

    Feng, Liang; El-Ganainy, Ramy; Ge, Li

    2017-12-01

    Nearly one century after the birth of quantum mechanics, parity-time symmetry is revolutionizing and extending quantum theories to include a unique family of non-Hermitian Hamiltonians. While conceptually striking, experimental demonstration of parity-time symmetry remains unexplored in quantum electronic systems. The flexibility of photonics allows for creating and superposing non-Hermitian eigenstates with ease using optical gain and loss, which makes it an ideal platform to explore various non-Hermitian quantum symmetry paradigms for novel device functionalities. Such explorations that employ classical photonic platforms not only deepen our understanding of fundamental quantum physics but also facilitate technological breakthroughs for photonic applications. Research into non-Hermitian photonics therefore advances and benefits both fields simultaneously.

  3. A direct gravitational lensing test for 10 exp 6 solar masses black holes in halos of galaxies

    Science.gov (United States)

    Wambsganss, Joachim; Paczynski, Bohdan

    1992-01-01

    We propose a method that will be able to detect or exclude the existence of 10 exp 6 solar masses black holes in the halos of galaxies. VLBA radio maps of two milliarcsecond jets of a gravitationally lensed quasar will show the signature of these black holes - if they exist. If there are no compact objects in this mass range along the line of sight, the two jets should be linear mappings of each other. If they are not, there must be compact objects of about 10 exp 6 solar masses in the halo of the galaxy that deform the images by gravitational deflection. We present numerical simulations for the two jets A and B of the double quasar 0957 + 561, but the method is valid for any gravitationally lensed quasar with structure on milliarcsecond scales. As a by-product from high-quality VLBA maps of jets A and B, one will be able to tell which features in the maps are intrinsic in the original jet and which are only an optical illusion, i.e., gravitational distortions by black holes along the line of sight.

  4. R-parity Conservation via the Stueckelberg Mechanism: LHC and Dark Matter Signals

    CERN Document Server

    Feldman, Daniel; Nath, Pran

    2012-01-01

    We investigate the connection between the conservation of R-parity in supersymmetry and the Stueckelberg mechanism for the mass generation of the B-L vector gauge boson. It is shown that with universal boundary conditions for soft terms of sfermions in each family at the high scale and with the Stueckelberg mechanism for generating mass for the B-L gauge boson present in the theory, electric charge conservation guarantees the conservation of R-parity in the minimal B-L extended supersymmetric standard model. We also discuss non-minimal extensions. This includes extensions where the gauge symmetries arise with an additional U(1)_{B-L} x U(1)_X, where U(1)_X is a hidden sector gauge group. In this case the presence of the additional U(1)_X allows for a Z' gauge boson mass with B-L interactions to lie in the sub-TeV region overcoming the multi-TeV LEP constraints. The possible tests of the models at colliders and in dark matter experiments are analyzed including signals of a low mass Z' resonance and the product...

  5. Gravitational wave reception by a sphere

    International Nuclear Information System (INIS)

    Ashby, N.; Dreitlein, J.

    1975-01-01

    The reception of gravitational waves by an elastic self-gravitating spherical detector is studied in detail. The equations of motion of a detector driven by a gravitational wave are presented in the intuitively convenient coordinate system of Fermi. An exact analytic solution is given for the homogeneous isotropic sphere. Nonlinear effects of a massive self-gravitating system are computed for a body of mass equal to that of the earth, and are shown to be numerically important

  6. Contraceptive Use: Implication for Completed Fertility, Parity ...

    African Journals Online (AJOL)

    Erah

    NDHS, 2008 dataset on married women aged 45-49 was used. Chi-square ... About 26.0% of the women ever used contraception, while 9.0% of the women were underweight. Parity ..... Working Paper, Labour and Population, 2004. 2.

  7. Gravitational mass of relativistic matter and antimatter

    Directory of Open Access Journals (Sweden)

    Tigran Kalaydzhyan

    2015-12-01

    Full Text Available The universality of free fall, the weak equivalence principle (WEP, is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, mg, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear – current direct observations of trapped antihydrogen suggest the limits −65gravitational mass of relativistic electrons and positrons coming from the absence of the vacuum Cherenkov radiation at the Large Electron–Positron Collider (LEP and stability of photons at the Tevatron collider in presence of the annual variations of the solar gravitational potential. Our result clearly rules out the speculated antigravity. By considering the absolute potential of the Local Supercluster (LS, we also predict the bounds 1−4×10−7tests at the future International Linear Collider (ILC and Compact Linear Collider (CLIC.

  8. Parity violation effects in the Josephson junction of a p-wave superconductor

    International Nuclear Information System (INIS)

    Belov, Nikolay A.; Harman, Zoltán

    2016-01-01

    The phenomenon of the parity violation due to weak interaction may be studied with superconducting systems. Previous research considered the case of conventional superconductors. We here theoretically investigate the parity violation effect in an unconventional p-wave ferromagnetic superconductor, and find that its magnitude can be increased by three orders of magnitude, as compared to results of earlier studies. For potential experimental observations, the superconductor UGe_2 is suggested, together with the description of a possible experimental scheme allowing one to effectively measure and control the phenomenon. Furthermore, we put forward a setup for a further significant enhancement of the signature of parity violation in the system considered.

  9. The top-transmon: a hybrid superconducting qubit for parity-protected quantum computation

    International Nuclear Information System (INIS)

    Hassler, F; Akhmerov, A R; Beenakker, C W J

    2011-01-01

    Qubits constructed from uncoupled Majorana fermions are protected from decoherence, but to perform a quantum computation this topological protection needs to be broken. Parity-protected quantum computation breaks the protection in a minimally invasive way, by coupling directly to the fermion parity of the system-irrespective of any quasiparticle excitations. Here, we propose to use a superconducting charge qubit in a transmission line resonator (the so-called transmon) to perform parity-protected rotations and read-out of a topological (top) qubit. The advantage over an earlier proposal using a flux qubit is that the coupling can be switched on and off with exponential accuracy, promising a reduced sensitivity to charge noise.

  10. Tumbleweeds and airborne gravitational noise sources for LIGO

    International Nuclear Information System (INIS)

    Creighton, Teviet

    2008-01-01

    The relative positions of the test masses in gravitational-wave detectors will be influenced not only by astrophysical gravitational waves, but also by the fluctuating Newtonian gravitational forces of moving masses in the ground and air around the detector. These effects are often referred to as gravity gradient noise. This paper considers the effects of gravity gradients from density perturbations in the atmosphere, and from massive airborne objects near the detector. These have been discussed previously by Saulson (1984 Phys. Rev. D 30 732), who considered the effects of background acoustic pressure waves and of massive objects moving smoothly past the interferometer; the gravity gradients he predicted would be too small to be of serious concern even for advanced interferometric gravitational-wave detectors. In this paper, I revisit these phenomena, considering transient atmospheric shocks, and estimating the effects of sound waves or objects colliding with the ground or buildings around the test masses. I also consider another source of atmospheric density fluctuations: temperature perturbations that are advected past the detector by the wind. I find that background acoustic noise and temperature fluctuations still produce gravity gradient noise that is below the noise floor even of advanced interferometric detectors, although temperature perturbations carried along non-laminar streamlines could produce noise that is within an order of magnitude of the projected noise floor at 10 Hz. A definitive study of this effect may require better models of the wind flow past a given instrument. I also find that transient shockwaves in the atmosphere could potentially produce large spurious signals, with signal-to-noise ratios in the hundreds in an advanced interferometric detector. These signals could be vetoed by means of acoustic sensors outside of the buildings. Massive wind-borne objects such as tumbleweeds could also produce gravity gradient signals with signal

  11. Scalable multi-grid preconditioning techniques for the even-parity S_N solver in UNIC

    International Nuclear Information System (INIS)

    Mahadevan, Vijay S.; Smith, Michael A.

    2011-01-01

    The Even-parity neutron transport equation with FE-S_N discretization is solved traditionally using SOR preconditioned CG method at the lowest level of iterations in order to compute the criticality in reactor analysis problems. The use of high order isoparametric finite elements prohibits the formation of the discrete operator explicitly due to memory constraints in peta scale architectures. Hence, a h-p multi-grid preconditioner based on linear tessellation of the higher order mesh is introduced here for the space-angle system and compared against SOR and Algebraic MG black-box solvers. The performance and scalability of the multi-grid scheme was determined for two test problems and found to be competitive in terms of both computational time and memory requirements. The implementation of this preconditioner in an even-parity solver like UNIC from ANL can further enable high fidelity calculations in a scalable manner on peta flop machines. (author)

  12. Gravitationally Induced Entanglement between Two Massive Particles is Sufficient Evidence of Quantum Effects in Gravity.

    Science.gov (United States)

    Marletto, C; Vedral, V

    2017-12-15

    All existing quantum-gravity proposals are extremely hard to test in practice. Quantum effects in the gravitational field are exceptionally small, unlike those in the electromagnetic field. The fundamental reason is that the gravitational coupling constant is about 43 orders of magnitude smaller than the fine structure constant, which governs light-matter interactions. For example, detecting gravitons-the hypothetical quanta of the gravitational field predicted by certain quantum-gravity proposals-is deemed to be practically impossible. Here we adopt a radically different, quantum-information-theoretic approach to testing quantum gravity. We propose witnessing quantumlike features in the gravitational field, by probing it with two masses each in a superposition of two locations. First, we prove that any system (e.g., a field) mediating entanglement between two quantum systems must be quantum. This argument is general and does not rely on any specific dynamics. Then, we propose an experiment to detect the entanglement generated between two masses via gravitational interaction. By our argument, the degree of entanglement between the masses is a witness of the field quantization. This experiment does not require any quantum control over gravity. It is also closer to realization than detecting gravitons or detecting quantum gravitational vacuum fluctuations.

  13. Are the gravitational waves quantised?

    International Nuclear Information System (INIS)

    Lovas, I.

    1998-01-01

    The question whether gravitational waves are quantised or not can be investigated by the help of correlation measurements. If the gravitational waves are classical objects then the value of their correlation function is 1. However, if they are quantised, then there exist two possibilities: the gravitational waves are either completely coherent, then the correlation function is again 1, or they are partially coherent, then the correlation function is expected to deviate from 1. If the gravitational waves are generated by the change of the background metrics then they can be in a squeezed state. In a squeezed state there is a chance for the correlation between the phase of the wave and the quantum fluctuations. (author)

  14. Parity nonconservation in Zeeman atomic transitions

    International Nuclear Information System (INIS)

    Kraftmakher, A.Ya.

    1990-01-01

    The abilities to observe the parity violation at the radiofrequency transitions between the hyperfine and Zeeman terms of the atomic levels are considered. The E-1 amplitudes fo the Zeeman transitions of heavy atoms in weak magnetic fields are larger, than for the light atoms hyperfine transitions at the same wavelength. 9 refs

  15. New even and odd parity levels of neutral praseodymium

    International Nuclear Information System (INIS)

    Syed, T I; Siddiqui, I; Shamim, K; Uddin, Z; Guthöhrlein, G H; Windholz, L

    2011-01-01

    The hyperfine (hf) structure of some spectral lines of the praseodymium atom has been investigated by the laser-induced fluorescence method in a hollow cathode discharge lamp. We report the discovery of 18 new energy levels of even parity and 22 new energy levels of odd parity and their magnetic dipole hf interaction constants A. Using these newly discovered levels, 268 lines were classified by means of laser spectroscopy, 97 of them by laser excitation and 171 via laser-induced fluorescence. In addition, 23 lines, observed in a Fourier transform spectrum, were classified by means of their wavenumbers and their hf patterns.

  16. Transient multimessenger astronomy with gravitational waves

    International Nuclear Information System (INIS)

    Marka, S

    2011-01-01

    Comprehensive multimessenger astronomy with gravitational waves is a pioneering field bringing us interesting results and presenting us with exciting challenges for the future. During the era of the operation of advanced interferometric gravitational wave detectors, we will have the opportunity to investigate sources of gravitational waves that are also expected to be observable through other messengers, such as gamma rays, x-rays, optical, radio, and/or neutrino emission. Multimessenger searches for gravitational waves with the LIGO-GEO600-Virgo interferometer network have already produced insights on cosmic events and it is expected that the simultaneous observation of electromagnetic or neutrino emission could be a crucial aspect for the first direct detection of gravitational waves in the future. Trigger time, direction and expected frequency range enhances our ability to search for gravitational wave signatures with amplitudes closer to the noise floor of the detector. Furthermore, multimessenger observations will enable the extraction of otherwise unaccessible scientific insight. We summarize the status of transient multimessenger detection efforts as well as mention some of the open questions that might be resolved by advanced or third generation gravitational wave detector networks.

  17. Gravitational lensing of quasars

    CERN Document Server

    Eigenbrod, Alexander

    2013-01-01

    The universe, in all its richness, diversity and complexity, is populated by a myriad of intriguing celestial objects. Among the most exotic of them are gravitationally lensed quasars. A quasar is an extremely bright nucleus of a galaxy, and when such an object is gravitationally lensed, multiple images of the quasar are produced – this phenomenon of cosmic mirage can provide invaluable insights on burning questions, such as the nature of dark matter and dark energy. After presenting the basics of modern cosmology, the book describes active galactic nuclei, the theory of gravitational lensing, and presents a particular numerical technique to improve the resolution of astronomical data. The book then enters the heart of the subject with the description of important applications of gravitational lensing of quasars, such as the measurement of the famous Hubble constant, the determination of the dark matter distribution in galaxies, and the observation of the mysterious inner parts of quasars with much higher r...

  18. The 5D Fully-Covariant Theory of Gravitation and Its Astrophysical Applications

    Directory of Open Access Journals (Sweden)

    Tianxi Zhang

    2014-12-01

    Full Text Available In this paper, we comprehensively review the five-dimensional (5D fully-covariant theory of gravitation developed by Zhang two decades ago and its recent applications in astrophysics and cosmology. This 5D gravity describes not only the fields, but also the matter and its motion in a 5D spacetime. The greatest advantage of this theory is that there does not exist any unknown parameter, so that we can apply it to explain astrophysical and cosmological issues by quantitatively comparing the results obtained from it with observations and to predict new effects that could not be derived from any other gravitational theories. First, the 5D covariant description of matter and its motion enabled Zhang to analytically derive the fifteenth component of the 5D energy-momentum tensor of matter ( T - 44 , which significantly distinguishes this 5D gravity from other 5D gravitational theories that usually assumed a T - 44 with an unknown parameter, called the scalar charge s, and, thus, to split the 5D covariant field equation into (4 + 1 splitting form as the gravitational, electromagnetic, and scalar field equations. The gravitational field equation turns into the 4D Einstein’s field equation of general relativity if the scalar field is equal to unity. Then, Zhang solved the field equations and obtained an exact static spherically-symmetric external solution of the gravitational, electromagnetic and scalar fields, in which all integral constants were completely determined with a perfect set of simple numbers and parameters that only depend on the mass and electric charge of the matter, by comparing with the obtained weak internal solution of the fields at a large radial distance. In the Einstein frame, the exact field solution obtained from the 5D fully-covariant theory of gravitation reduces to the Schwarzschild solution when the matter is electrically neutral and the fields are weak in strength. This guarantees that the four fundamental tests (light

  19. Detecting Lorentz Violations with Gravitational Waves From Black Hole Binaries

    Science.gov (United States)

    Sotiriou, Thomas P.

    2018-01-01

    Gravitational wave observations have been used to test Lorentz symmetry by looking for dispersive effects that are caused by higher order corrections to the dispersion relation. In this Letter I argue on general grounds that, when such corrections are present, there will also be a scalar excitation. Hence, a smoking-gun observation of Lorentz symmetry breaking would be the direct detection of scalar waves that travel at a speed other than the speed of the standard gravitational wave polarizations or the speed of light. Interestingly, in known Lorentz-breaking gravity theories the difference between the speeds of scalar and tensor waves is virtually unconstrained, whereas the difference between the latter and the speed of light is already severely constrained by the coincident detection of gravitational waves and gamma rays from a binary neutron star merger.

  20. Low-Frequency Gravitational-Wave Science with eLISA/ NGO

    Science.gov (United States)

    Amaro-Seoane, Pau; Aoudia, Sofiane; Babak, Stanislav; Binetruy, Pierre; Berti, Emanuele; Bohe, Alejandro; Caprini, Chiara; Colpi, Monica; Cornish, Neil J.; Danzmann, Karsten; hide

    2011-01-01

    We review the expected science performance of the New Gravitational-Wave Observatory (NGO, a.k.a. eLISA), a mission under study by the European Space Agency for launch in the early 2020s. eLISA will survey the low-frequency gravitational-wave sky (from 0.1 mHz to 1 Hz), detecting and characterizing a broad variety of systems and events throughout the Universe, including the coalescences of massive black holes brought together by galaxy mergers; the inspirals of stellar-mass black holes and compact stars into central galactic black holes; several millions of ultracompact binaries, both detached and mass transferring, in the Galaxy; and possibly unforeseen sources such as the relic gravitational-wave radiation from the early Universe. eLISA's high signal-to-noise measurements will provide new insight into the structure and history of the Universe, and they will test general relativity in its strong-field dynamical regime.

  1. Search for stop production in R-parity-violating supersymmetry at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2006-11-01

    A search for stop production in R-parity-violating supersymmetry has been performed in e + p interactions with the ZEUS detector at HERA, using an integrated luminosity of 65 pb -1 . At HERA, the R-parity-violating coupling λ' allows resonant squark production, e + d→q. Since the lowest-mass squark state in most supersymmetry models is the light stop, t, this search concentrated on production of t, followed either by a direct R-parity-violating decay, or by the gauge decay to b χ 1 + . No evidence for stop production was found and limits were set on λ 131 ' as a function of the stop mass in the framework of the Minimal Supersymmetric Standard Model. The results have also been interpreted in terms of constraints on the parameters of the minimal Supergravity model. (orig.)

  2. 7 CFR 989.61 - Above parity situations.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Above parity situations. 989.61 Section 989.61 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing...) of the act. [42 FR 37202, July 20, 1977] Trade Practices ...

  3. Gravitation and spacetime

    CERN Document Server

    Ohanian, Hans C

    2013-01-01

    The third edition of this classic textbook is a quantitative introduction for advanced undergraduates and graduate students. It gently guides students from Newton's gravitational theory to special relativity, and then to the relativistic theory of gravitation. General relativity is approached from several perspectives: as a theory constructed by analogy with Maxwell's electrodynamics, as a relativistic generalization of Newton's theory, and as a theory of curved spacetime. The authors provide a concise overview of the important concepts and formulas, coupled with the experimental results underpinning the latest research in the field. Numerous exercises in Newtonian gravitational theory and Maxwell's equations help students master essential concepts for advanced work in general relativity, while detailed spacetime diagrams encourage them to think in terms of four-dimensional geometry. Featuring comprehensive reviews of recent experimental and observational data, the text concludes with chapters on cosmology an...

  4. Medium effects and parity doubling of hyperons across the deconfinement phase transition

    Science.gov (United States)

    Aarts, Gert; Allton, Chris; Boni, Davide De; Hands, Simon; Jäger, Benjamin; Praki, Chrisanthi; Skullerud, Jon-Ivar

    2018-03-01

    We analyse the behaviour of hyperons with strangeness S = -1,-2,-3 in the hadronic and quark gluon plasma phases, with particular interest in parity doubling and its emergence as the temperature grows. This study uses our FASTSUM anisotropic Nf = 2+1 ensembles, with four temperatures below and four above the deconfinement transition temperature, Tc. The positive-parity groundstate masses are found to be largely temperature independent below Tc, whereas the negative-parity ones decrease considerably as the temperature increases. Close to the transition, the masses are almost degenerate, in line with the expectation from chiral symmetry restoration. This may be of interest for heavy-ion phenomenology. In particular we show an application of this effect to the Hadron Resonance Gas model. A clear signal of parity doubling is found above Tc in all hyperon channels, with the strength of the effect depending on the number of s-quarks in the baryons. Presented at 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain

  5. Gravitation and vacuum field

    International Nuclear Information System (INIS)

    Tevikyan, R.V.

    1986-01-01

    This paper presents equations that describe particles with spins s = 0, 1/2, 1 completely and which also describe 2s + 2 limiting fields as E → ∞. It is shown that the ordinary Hilbert-Einstein action for the gravitation field must be augmented by the action for the Bose vacuum field. This means that one must introduce in the gravitational equations a cosmological term proportional to the square of the strength of the Bose vacuum field. It is shown that the theory of gravitation describes three realities: matter, field, and vacuum field. A new form of matter--the vacuum field--is introduced into field theory

  6. Infrared laser induced population transfer and parity selection in (14)NH3: A proof of principle experiment towards detecting parity violation in chiral molecules.

    Science.gov (United States)

    Dietiker, P; Miloglyadov, E; Quack, M; Schneider, A; Seyfang, G

    2015-12-28

    We have set up an experiment for the efficient population transfer by a sequential two photon-absorption and stimulated emission-process in a molecular beam to prepare quantum states of well defined parity and their subsequent sensitive detection. This provides a proof of principle for an experiment which would allow for parity selection and measurement of the time evolution of parity in chiral molecules, resulting in a measurement of the parity violating energy difference ΔpvE between enantiomers of chiral molecules. Here, we present first results on a simple achiral molecule demonstrating efficient population transfer (about 80% on the average for each step) and unperturbed persistence of a selected excited parity level over flight times of about 1.3 ms in the beam. In agreement with model calculations with and without including nuclear hyperfine structure, efficient population transfer can be achieved by a rather simple implementation of the rapid adiabatic passage method of Reuss and coworkers and considering also the stimulated Raman adiabatic passage technique of Bergmann and coworkers as an alternative. The preparation step uses two powerful single mode continuous wave optical parametric oscillators of high frequency stability and accuracy. The detection uses a sensitive resonantly enhanced multiphoton ionization method after free flight lengths of up to 0.8 m in the molecular beam. Using this technique, we were able to also resolve the nuclear hyperfine structure in the rovibrational levels of the ν1 and ν3 fundamentals as well as the 2ν4 overtone of (14)NH3, for which no previous data with hyperfine resolution were available. We present our new results on the quadrupole coupling constants for the ν1, ν3, and 2ν4 levels in the context of previously known data for ν2 and its overtone, as well as ν4, and the ground state. Thus, now, (14)N quadrupole coupling constants for all fundamentals and some overtones of (14)NH3 are known and can be used for

  7. Those Elusive Gravitational Waves

    Science.gov (United States)

    MOSAIC, 1976

    1976-01-01

    The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)

  8. Equations of motion derived from a generalization of Einstein's equation for the gravitational field

    International Nuclear Information System (INIS)

    Mociutchi, C.

    1980-01-01

    The extended Einstein's equation, combined with a vectorial theory of maxwellian type of the gravitational field, leads to: a) the equation of motion; b) the equation of the trajectory for the static case of spherical symmetry, the test particle having a rest mass other than zero, and c) the propagation of light on null geodesics. All the basic tests of the theory given by Einstein's extended equation. Thus, the new theory of gravitation suggested by us is competitive. (author)

  9. Weight-4 Parity Checks on a Surface Code Sublattice with Superconducting Qubits

    Science.gov (United States)

    Takita, Maika; Corcoles, Antonio; Magesan, Easwar; Bronn, Nicholas; Hertzberg, Jared; Gambetta, Jay; Steffen, Matthias; Chow, Jerry

    We present a superconducting qubit quantum processor design amenable to the surface code architecture. In such architecture, parity checks on the data qubits, performed by measuring their X- and Z- syndrome qubits, constitute a critical aspect. Here we show fidelities and outcomes of X- and Z-parity measurements done on a syndrome qubit in a full plaquette consisting of one syndrome qubit coupled via bus resonators to four code qubits. Parities are measured after four code qubits are prepared into sixteen initial states in each basis. Results show strong dependence on ZZ between qubits on the same bus resonators. This work is supported by IARPA under Contract W911NF-10-1-0324.

  10. Non-linear adjustment to purchasing power parity: an analysis using Fourier approximations

    OpenAIRE

    Juan-Ángel Jiménez-Martín; M. Dolores Robles Fernández

    2005-01-01

    This paper estimates the dynamics of adjustment to long run purchasing power parity (PPP) using data for 18 mayor bilateral US dollar exchange rates, over the post-Bretton Woods period, in a non-linear framework. We use new unit root and cointegration tests that do not assume a specific non-linear adjustment process. Using a first-order Fourier approximation, we find evidence of non-linear mean reversion in deviations from both absolute and relative PPP. This first-order Fourier approximation...

  11. A measurement of the eta' spin parity

    International Nuclear Information System (INIS)

    Cerrada, M.; Wagner, F.; Chaloupka, V.; Hemingway, R.J.; Holmgren, S.O.; Losty, M.J.; Loverre, P.F.; Marzano, F.; Blokzijl, R.; Jongejans, B.; Massaro, G.G.G.; Schotanus, D.J.; Tiecke, H.G.; Timmermans, J.J.M.; Foster, B.; McDowell, W.L.

    1977-01-01

    The spin parity of the eta'(958) is studied in the reaction K - p→eta'Λ at 4.2 GeV/c, using bubble chamber data with a statistical sensitivity of 128 events/μb. The data unambiguously prefer the 0 - assignment. (Auth.)

  12. Probing Positron Gravitation at HERA

    International Nuclear Information System (INIS)

    Gharibyan, Vahagn

    2015-07-01

    An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Here I develop a method based on high energy Compton scattering to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a positron's 1.3(0.2)% weaker coupling to the gravitational field relative to an electron.

  13. Quantum Emulation of Gravitational Waves.

    Science.gov (United States)

    Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel

    2015-07-14

    Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.

  14. Probing Positron Gravitation at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Gharibyan, Vahagn

    2015-07-15

    An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Here I develop a method based on high energy Compton scattering to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a positron's 1.3(0.2)% weaker coupling to the gravitational field relative to an electron.

  15. The energy-momentum problem and gravitation theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Folomeshkin, V.N.

    1977-01-01

    General properties of geometrized gravitation theories are considered. A covariant formulation of conservation laws in an arbitrary Riemann space-time is presented. In the Einstein theory both symmetric and canonical energy-momentum tensors of the matter and gravitational field system and, in particular, energy-momentum of free gravitational waves prove to be equal to zero. Since gravitational waves carry the curvature and, consequently, affect the detector, this bears witness to an intrinsic contradiction of the Einstein theory. To realize the sources of difficulties concerning energy-momentum in the Einstein theory the gravitational field is treated in the same way as all the other physical fields, i.e. in terms of usual Lorentz-invariant field theory. Unification of this approach with the Einstein idea of geometrization enables to construct the geometrized theory, which is free from contradictions, has clearly defined the notions of gravitation field energy-momentum and satisfactorily describes all known experimental facts. To construct a logically consistent theory one should geometrize only the density of the matter Lagrangian. The gravitation field equations are formulated in terms of the Euclidean space-time with a metric tensor γsub(ik), while the matter motion may be completely described in terms of the non-Euclidean space-time with a metric tensor gsub(ik). For strong gravitational fields the predictions of the quasi-linear theory under consideration appriciably differ from those of the Einstein formulation of the gravitation theory. No black holes are present in the theory. The results of the calculation for the energy flow of gravitational waves are rigorously unambiguous and show that gravitational waves carry positively definite energy

  16. Negative-Parity Baryon Masses Using O(a)-improved Fermion Action

    Energy Technology Data Exchange (ETDEWEB)

    M. Gockeler; R. Horsley; D. Pleiter; P.E.L. Rakow; G. Schierholz; C.M. Maynard; D.G. Richards

    2001-06-01

    We present a calculation of the mass of the lowest-lying negative-parity J=1/2{sup {minus}} state in quenched QCD. Results are obtained using a non-perturbatively {Omicron}(a)-improved clover fermion action, and a splitting found between the masses of the nucleon, and its parity partner. The calculation is performed on two lattice volumes, and at three lattice spacings, enabling a study of both finite-volume and finite lattice-spacing uncertainties. A comparison is made with results obtained using the unimproved Wilson fermion action.

  17. Relic gravitational waves and cosmology

    International Nuclear Information System (INIS)

    Grishchuk, Leonid P

    2005-01-01

    The paper begins with a brief recollection of interactions of the author with Ya B Zeldovich in the context of the study of relic gravitational waves. The principles and early results on the quantum-mechanical generation of cosmological perturbations are then summarized. The expected amplitudes of relic gravitational waves differ in various frequency windows, and therefore the techniques and prospects of their detection are distinct. One section of the paper describes the present state of efforts in direct detection of relic gravitational waves. Another section is devoted to indirect detection via the anisotropy and polarization measurements of the cosmic microwave background (CMB) radiation. It is emphasized throughout the paper that the inference about the existence and expected amount of relic gravitational waves is based on a solid theoretical foundation and the best available cosmological observations. It is also explained in great detail what went wrong with the so-called 'inflationary gravitational waves', whose amount is predicted by inflationary theorists to be negligibly small, thus depriving them of any observational significance. (reviews of topical problems)

  18. Modified entropic gravitation in superconductors

    International Nuclear Information System (INIS)

    Matos, Clovis Jacinto de

    2012-01-01

    Verlinde recently developed a theoretical account of gravitation in terms of an entropic force. The central element in Verlinde’s derivation is information and its relation with entropy through the holographic principle. The application of this approach to the case of superconductors requires to take into account that information associated with superconductor’s quantum vacuum energy is not stored on Planck size surface elements, but in four volume cells with Planck-Einstein size. This has profound consequences on the type of gravitational force generated by the quantum vacuum condensate in superconductors, which is closely related with the cosmological repulsive acceleration responsible for the accelerated expansion of the Universe. Remarkably this new gravitational type force depends on the level of breaking of the weak equivalence principle for cooper pairs in a given superconducting material, which was previously derived by the author starting from similar principles. It is also shown that this new gravitational force can be interpreted as a surface force. The experimental detection of this new repulsive gravitational-type force appears to be challenging.

  19. Gravitational waves from a spinning particle scattered by a relativistic star: Axial mode case

    International Nuclear Information System (INIS)

    Tominaga, Kazuhiro; Saijo, Motoyuki; Maeda, Kei-ichi

    2001-01-01

    We use a perturbation method to study gravitational waves from a spinning test particle scattered by a relativistic star. The present analysis is restricted to axial modes. By calculating the energy spectrum, the wave forms, and the total energy and angular momentum of gravitational waves, we analyze the dependence of the emitted gravitational waves on particle spin. For a normal neutron star, the energy spectrum has one broad peak whose characteristic frequency corresponds to the angular velocity at the turning point (a periastron). Since the turning point is determined by the orbital parameter, there exists a dependence of the gravitational wave on particle spin. We find that the total energy of l=2 gravitational waves gets larger as the spin increases in the antiparallel direction to the orbital angular momentum. For an ultracompact star, in addition to such an orbital contribution, we find the quasinormal modes excited by a scattered particle, whose excitation rate to gravitational waves depends on the particle spin. We also discuss the ratio of the total angular momentum to the total energy of gravitational waves and explain its spin dependence

  20. Higher-order geodesic deviation for charged particles and resonance induced by gravitational waves

    Science.gov (United States)

    Heydari-Fard, M.; Hasani, S. N.

    We generalize the higher-order geodesic deviation for the structure-less test particles to the higher-order geodesic deviation equations of the charged particles [R. Kerner, J. W. van Holten and R. Colistete Jr., Class. Quantum Grav. 18 (2001) 4725]. By solving these equations for charged particles moving in a constant magnetic field in the spacetime of a gravitational wave, we show for both cases when the gravitational wave is parallel and perpendicular to the constant magnetic field, a magnetic resonance appears at wg = Ω. This feature might be useful to detect the gravitational wave with high frequencies.

  1. Leverage Aversion and Risk Parity

    DEFF Research Database (Denmark)

    Asness, Clifford; Frazzini, Andrea; Heje Pedersen, Lasse

    2012-01-01

    The authors show that leverage aversion changes the predictions of modern portfolio theory: Safer assets must offer higher risk-adjusted returns than riskier assets. Consuming the high risk-adjusted returns of safer assets requires leverage, creating an opportunity for investors with the ability...... to apply leverage. Risk parity portfolios exploit this opportunity by equalizing the risk allocation across asset classes, thus overweighting safer assets relative to their weight in the market portfolio....

  2. Can the New Neutrino Telescopes Reveal the Gravitational Properties of Antimatter?

    Directory of Open Access Journals (Sweden)

    Dragan Slavkov Hajdukovic

    2011-01-01

    Full Text Available We argue that the hypothesis of the gravitational repulsion between matter and antimatter can be tested at the Ice Cube, a neutrino telescope, recently constructed at the South Pole. If there is such a gravitational repulsion, the gravitational field, deep inside the horizon of a black hole, might create neutrino-antineutrino pairs from the quantum vacuum. While neutrinos must stay confined inside the horizon, the antineutrinos should be violently ejected. Hence, a black hole (made from matter should behave as a point-like source of antineutrinos. Our simplified calculations suggest that the antineutrinos emitted by supermassive black holes in the centre of the Milky Way and Andromeda Galaxy could be detected by the new generation of neutrino telescopes.

  3. Sensitivity of a combined gravitational antenna

    International Nuclear Information System (INIS)

    Kulagin, V.V.; Rudenko, V.N.

    1986-01-01

    A modification of a combined optico-acoustic gravitational antenna: a long-base laser interferometer, where free masses are changed by Weber resonators, is suggested. The combined gravitational antenna can possess sensitivity h min ∼ 10 -18 without deep cooling of Weber resonators and h min ∼ 10 -19 at helium temperaure of the resonators. This antenna has the following new quantities: presence of three independent responses, that permits to a considerable extent to exclude non-gravitational effects; presence of responses of two separated Weber resonators, that permits to register the wave character of gravitational perturbation by measuring phase shift between relaxation ''tails''. It means that one may with certainty register the wave structure of gravitational radiation for perturbation of metrics h, exceeding the threshold sensitivity of the known detectors by an order

  4. Linear astrophysical dynamos in rotating spheres: Differential rotation, anisotropic turbulent magnetic diffusivity, and solar-stellar cycle magnetic parity

    International Nuclear Information System (INIS)

    Yoshimura, H.; Wang, Z.; Wu, F.

    1984-01-01

    Differential rotation dependence of the selection mechanism for magnetic parity of solar and stellar cycles is studied by assuming various differential rotation profiles inn the dynamo equation. The parity selection depends on propagation direction of oscillating magnetic fields in the form of dynamo waves which propagate along isorotation surfaces. When there is any radial gradient in the differential rotation, dynamo waves propagate either equatorward or poleward. In the former case, field systems of the two hemispheres approach each other and collide at the equator. Then, odd parity is selected. In the latter case, field systems of the two hemispheres recede from each other and do not collide at the equator, an even parity is selected. Thus the equatorial migration of wings of the butterfly iagram of the solar cycle and its odd parity are intrinsically related. In the case of purely latitudibnal differential rotation, dynamo waves propagate purely radially and growth rates of odd and even modes are nearly the same even when dynamo strength is weak when the parity selection mechanism should work most efficiently. In this case, anisotropy of turbulent diffusivity is a decisive factor to separate odd and even modes. Unlike in the case of radial-gradient-dominated differential rotation in which any difference between diffusivities for poloidal and toroidal fields enhancess the parity selection without changing the parity, the parity selection in the case of latitudinal-gradient-dominated differential rotation depends on the difference of diffusivities for poloidal and toroidal fields. When diffusivity for poloidal fields iss larger than that for toroidal fields, odd parity is selected; and when diffusivity for toroidal fields is larger, even parity is selected

  5. Gravitational waves from self-ordering scalar fields

    CERN Document Server

    Fenu, Elisa; Durrer, Ruth; Garcia-Bellido, Juan

    2009-01-01

    Gravitational waves were copiously produced in the early Universe whenever the processes taking place were sufficiently violent. The spectra of several of these gravitational wave backgrounds on subhorizon scales have been extensively studied in the literature. In this paper we analyze the shape and amplitude of the gravitational wave spectrum on scales which are superhorizon at the time of production. Such gravitational waves are expected from the self ordering of randomly oriented scalar fields which can be present during a thermal phase transition or during preheating after hybrid inflation. We find that, if the gravitational wave source acts only during a small fraction of the Hubble time, the gravitational wave spectrum at frequencies lower than the expansion rate at the time of production behaves as $\\Omega_{\\rm GW}(f) \\propto f^3$ with an amplitude much too small to be observable by gravitational wave observatories like LIGO, LISA or BBO. On the other hand, if the source is active for a much longer tim...

  6. Poisson equation for weak gravitational lensing

    International Nuclear Information System (INIS)

    Kling, Thomas P.; Campbell, Bryan

    2008-01-01

    Using the Newman and Penrose [E. T. Newman and R. Penrose, J. Math. Phys. (N.Y.) 3, 566 (1962).] spin-coefficient formalism, we examine the full Bianchi identities of general relativity in the context of gravitational lensing, where the matter and space-time curvature are projected into a lens plane perpendicular to the line of sight. From one component of the Bianchi identity, we provide a rigorous, new derivation of a Poisson equation for the projected matter density where the source term involves second derivatives of the observed weak gravitational lensing shear. We also show that the other components of the Bianchi identity reveal no new results. Numerical integration of the Poisson equation in test cases shows an accurate mass map can be constructed from the combination of a ground-based, wide-field image and a Hubble Space Telescope image of the same system

  7. Gravitational Waves: The Evidence Mounts

    Science.gov (United States)

    Wick, Gerald L.

    1970-01-01

    Reviews the work of Weber and his colleagues in their attempts at detecting extraterrestial gravitational waves. Coincidence events recorded by special detectors provide the evidence for the existence of gravitational waves. Bibliography. (LC)

  8. Collider signals of gravitino dark matter in bilinearly broken R-parity

    International Nuclear Information System (INIS)

    Hirsch, M.; Porod, W.; Restrepo, D.

    2005-01-01

    In models with gauge mediated supersymmetry breaking the gravitino is the lightest supersymmetric particle. If R-parity is violated the gravitino decays, but with a half-live far exceeding the age of the universe and thus is, in principle, a candidate for the dark matter. We consider the decays of the next-to-lightest supersymmetric particle, assumed to be the neutralino. We show that in models where the breaking of R-parity is bilinear, the condition that R-parity violation explains correctly the measured neutrino masses fixes the branching ratio of the decay neutralino to gravitino gamma in the range (0.001-0.01), if the gravitino mass is in the range required to solve the dark matter problem, i.e. of the order (few) 100 eV. This scenario is therefore directly testable at the next generation of colliders. (author)

  9. Minimal flavour violation and neutrino masses without R-parity

    DEFF Research Database (Denmark)

    Arcadi, G.; Di Luzio, L.; Nardecchia, M.

    2012-01-01

    symmetry breaking all the couplings of the superpotential including the R-parity violating ones. If R-parity violation is responsible for neutrino masses, our setup can be seen as an extension of MFV to the lepton sector. We analyze two patterns based on the non-abelian flavour symmetries SU(3)(4) circle...... times SU(4) and SU(3)(5). In the former case the total lepton number and the lepton flavour number are broken together, while in the latter the lepton number can be broken independently by an abelian spurion, so that visible effects and peculiar correlations can be envisaged in flavour changing charged...

  10. Gravitational Wave Speed: Undefined. Experiments Proposed

    Directory of Open Access Journals (Sweden)

    Daniel Russell

    2018-04-01

    Full Text Available Since changes in all 4 dimensions of spacetime are components of displacement for gravitational waves, a theoretical result is presented that their speed is undefined, and that the Theory of Relativity is not reliable to predict their speed. Astrophysical experiments are proposed with objectives to directly measure gravitational wave speed, and to verify these theoretical results. From the circumference of two merging black hole's final orbit, it is proposed to make an estimate of a total duration of the last ten orbits, before gravitational collapse, for comparison with durations of reported gravitational wave signals. It is proposed to open a new field of engineering of spacetime wave modulation with an objective of faster and better data transmission and communication through the Earth, the Sun, and deep space. If experiments verify that gravitational waves have infinite speed, it is concluded that a catastrophic gravitational collapse, such as a merger of quasars, today, would re-define the geometry and curvature of spacetime on Earth, instantly, without optical observations of this merger visible, until billions of years in the future.

  11. Gravitational vacuum and energy release in microworld

    International Nuclear Information System (INIS)

    Mel'nikov, V.N.; Nikolaev, Yu.M.; Stanyukovich, K.P.

    1981-01-01

    It is shown that gravitati.onal interaction can be connected with the processes of energy release in microworld. Suggested is a planckeon model within the frames of which gradual production of the observed substance of the Universe during the whole evolution is explained. Burst processes in nuclei of the Galaxy are explained. It is concluded that the theory of gravitational vacuum creates preconditions for developing the general theory of the field explaining the basic peculiarities of the micro- and macroworld, reveals significant applications in the physics of elementary particles and atomic nucleus. The process of 235 U fission is considered for testing the hypothesis that the coefficient of energy release depends on the nature of the reaction in different processes of energy release in the micro- and macroworld [ru

  12. Relativistic motion of spinning particles in a gravitational field

    International Nuclear Information System (INIS)

    Chicone, C.; Mashhoon, B.; Punsly, B.

    2005-01-01

    The relative motion of a classical relativistic spinning test particle is studied with respect to a nearby free test particle in the gravitational field of a rotating source. The effects of the spin-curvature coupling force are elucidated and the implications of the results for the motion of rotating plasma clumps in astrophysical jets are discussed

  13. Search for supersymmetric particles with R-parity violation

    International Nuclear Information System (INIS)

    Jacquet, M.

    1995-12-01

    Searches for new particles are presented under the assumption that the R-parity, taking the value +1 for all the ordinary particles and -1 for their supersymmetric partners, is not conserved. We suppose that the dominant R-parity violating couplings involve only leptonic fields and that the lifetime of the lightest supersymmetric particle can be neglected. Sleptons, squarks and neutralinos pairs searches have been performed in a data sample collected by the ALEPH detector, at the e + e - collider LEP, from 1989 to 1993. In this statistic, corresponding to almost two million hadronic Ζ decays, no signal was observed. As a result, supersymmetric particle masses and couplings are at least as well constrained as under the usual assumption of R-parity conservation. In a second part, the ALEPH Beam Monitor system (BOMs) is studied. The BOMs, located at 65 m from the ALEPH interaction region, allow the determination of the beam position at the interaction point. The comparison of the 1994 BOM measurements, with the beam position measured by the ALEPH vertex detector, shows sizeable systematic differences. A position monitoring system of the quadrupoles closet to the interaction point has been installed in 1995 and allows the agreement between the BOMs and ALEPH vertex detector data to be improved. Moreover, a new method for the calibration of the electronic ALEPH BOMs system is developed. (author). 54 refs., 75 figs. 15 tabs

  14. Resonant-bar gravitational radiation antennas

    International Nuclear Information System (INIS)

    Blair, D.G.

    1987-01-01

    This paper reviews the concept of gravitational radiation, and describes the worldwide research programme for the development of high-sensitivity resonant-bar antennas which are aimed at detecting gravitational radiation from astrophysical sources. (author)

  15. Problem of energy-momentum and theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Folomeshkin, V.N.

    1977-01-01

    General properties of geometrised theories of gravitation are considered. Covariant formulation of conservation laws in arbitrary riemannian space-time is given. In the Einstein theory the symmetric as well as canonical energy-momentum tensor of the system ''matter plus gravitational field'' and in particular, the energy-momentum of free gravitational waves, turns out to be equal to zero. To understand the origin of the problems and difficulties concerning the energy-momentum in the Einstein theory, the gravitational filed is considered in the usual framework of the Lorentz invariant field theory, just like any other physical field. Combination of the approach proposed with the Einstein's idea of geometrization makes it possible to formulate the geometrised gravitation theory, in which there are no inner contradictions, the energy-momentum of gravitational field is defined precisely and all the known experimental facts are described successfully. For strong gravitational fields the predictions of the quasilinear geometrised theory under consideration are different from those of the gravitational theory in the Einstein formulation. Black holes are absent in the theory. Evaluation of the energy-flux of gravitational waves leads to unambiguous results and shows that the gravitational waves transfer the positive-definite energy

  16. Gravitational theory in atomic scale units in Dirac cosmology

    International Nuclear Information System (INIS)

    Davidson, W.

    1984-01-01

    The implication of Dirac's large numbers hypothesis (LNH) that there are two cosmological space-time metrics, gravitational (E) and atomic (A), is used to formulate the gravitational laws for a general mass system in atomic scale units within such a cosmology. The gravitational laws are illustrated in application to the case of a single spherical mass immersed in the smoothed out expanding universe. The condition is determined for such a metric to apply approximately just outside a typical member of a cosmic distribution of such masses. Conversely, the condition is given when the influence of the universe as a whole can be neglected outside such a mass. In the latter situation, which applies in particular to stars, a Schwarzschild-type metric is derived which incorporates variable G in accordance with the LNH. The dynamics of freely moving particles and photons in such a metric are examined according to the theory and observational tests are formulated. (author)

  17. Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Afrough, M; Agarwal, B; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allen, G; Allocca, A; Altin, P A; Amato, A; Ananyeva, A; Anderson, S B; Anderson, W G; Angelova, S V; Antier, S; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Atallah, D V; Aufmuth, P; Aulbert, C; AultONeal, K; Austin, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Bae, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Banagiri, S; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barkett, K; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bawaj, M; Bayley, J C; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Bell, A S; Berger, B K; Bergmann, G; Bero, J J; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bode, N; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonilla, E; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bossie, K; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Canepa, M; Canizares, P; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Carney, M F; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerdá-Durán, P; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chase, E; Chassande-Mottin, E; Chatterjee, D; Cheeseboro, B D; Chen, H Y; Chen, X; Chen, Y; Cheng, H-P; Chia, H; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, A K W; Chung, S; Ciani, G; Ciolfi, R; Cirelli, C E; Cirone, A; Clara, F; Clark, J A; Clearwater, P; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Cohen, D; Colla, A; Collette, C G; Cominsky, L R; Constancio, M; Conti, L; Cooper, S J; Corban, P; Corbitt, T R; Cordero-Carrión, I; Corley, K R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, E; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Dálya, G; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davis, D; Daw, E J; Day, B; De, S; DeBra, D; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Demos, N; Denker, T; Dent, T; De Pietri, R; Dergachev, V; De Rosa, R; DeRosa, R T; De Rossi, C; DeSalvo, R; de Varona, O; Devenson, J; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Renzo, F; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Dreissigacker, C; Driggers, J C; Du, Z; Ducrot, M; Dupej, P; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Estevez, D; Etienne, Z B; Etzel, T; Evans, M; Evans, T M; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fee, C; Fehrmann, H; Feicht, J; Fejer, M M; Fernandez-Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finstad, D; Fiori, I; Fiorucci, D; Fishbach, M; Fisher, R P; Fitz-Axen, M; Flaminio, R; Fletcher, M; Fong, H; Font, J A; Forsyth, P W F; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Ganija, M R; Gaonkar, S G; Garcia-Quiros, C; Garufi, F; Gateley, B; Gaudio, S; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, D; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glover, L; Goetz, E; Goetz, R; Gomes, S; Goncharov, B; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Gretarsson, E M; Groot, P; Grote, H; Grunewald, S; Gruning, P; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Halim, O; Hall, B R; Hall, E D; Hamilton, E Z; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hannuksela, O A; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hinderer, T; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Horst, C; Hough, J; Houston, E A; Howell, E J; Hreibi, A; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Inta, R; Intini, G; Isa, H N; Isac, J-M; Isi, M; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kamai, B; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katolik, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kawabe, K; Kéfélian, F; Keitel, D; Kemball, A J; Kennedy, R; Kent, C; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, K; Kim, W; Kim, W S; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kinley-Hanlon, M; Kirchhoff, R; Kissel, J S; Kleybolte, L; Klimenko, S; Knowles, T D; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kumar, S; Kuo, L; Kutynia, A; Kwang, S; Lackey, B D; Lai, K H; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Linker, S D; Littenberg, T B; Liu, J; Lo, R K L; Lockerbie, N A; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lumaca, D; Lundgren, A P; Lynch, R; Ma, Y; Macas, R; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña Hernandez, I; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markakis, C; Markosyan, A S; Markowitz, A; Maros, E; Marquina, A; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Mason, K; Massera, E; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McCuller, L; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McNeill, L; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Mejuto-Villa, E; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, B B; Miller, J; Millhouse, M; Milovich-Goff, M C; Minazzoli, O; Minenkov, Y; Ming, J; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moffa, D; Moggi, A; Mogushi, K; Mohan, M; Mohapatra, S R P; Montani, M; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muñiz, E A; Muratore, M; Murray, P G; Napier, K; Nardecchia, I; Naticchioni, L; Nayak, R K; Neilson, J; Nelemans, G; Nelson, T J N; Nery, M; Neunzert, A; Nevin, L; Newport, J M; Newton, G; Ng, K K Y; Nguyen, T T; Nichols, D; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; North, C; Nuttall, L K; Oberling, J; O'Dea, G D; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Okada, M A; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; Ormiston, R; Ortega, L F; O'Shaughnessy, R; Ossokine, S; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Page, M A; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, Howard; Pan, Huang-Wei; Pang, B; Pang, P T H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Parida, A; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patil, M; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pirello, M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Porter, E K; Post, A; Powell, J; Prasad, J; Pratt, J W W; Pratten, G; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rajbhandari, B; Rakhmanov, M; Ramirez, K E; Ramos-Buades, A; Rapagnani, P; Raymond, V; Razzano, M; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Ren, W; Reyes, S D; Ricci, F; Ricker, P M; Rieger, S; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romel, C L; Romie, J H; Rosińska, D; Ross, M P; Rowan, S; Rüdiger, A; Ruggi, P; Rutins, G; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sanchez, L E; Sanchis-Gual, N; Sandberg, V; Sanders, J R; Sassolas, B; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheel, M; Scheuer, J; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schulte, B W; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Seidel, E; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shaffer, T J; Shah, A A; Shahriar, M S; Shaner, M B; Shao, L; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, L P; Singh, A; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Somala, S; Son, E J; Sonnenberg, J A; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staats, K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stevenson, S P; Stone, R; Stops, D J; Strain, K A; Stratta, G; Strigin, S E; Strunk, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Suresh, J; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Tait, S C; Talbot, C; Talukder, D; Tanner, D B; Tao, D; Tápai, M; Taracchini, A; Tasson, J D; Taylor, J A; Taylor, R; Tewari, S V; Theeg, T; Thies, F; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tonelli, M; Tornasi, Z; Torres-Forné, A; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trinastic, J; Tringali, M C; Trozzo, L; Tsang, K W; Tse, M; Tso, R; Tsukada, L; Tsuna, D; Tuyenbayev, D; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walet, R; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, J Z; Wang, W H; Wang, Y F; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessel, E K; Weßels, P; Westerweck, J; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Wilken, D; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Wofford, J; Wong, K W K; Worden, J; Wright, J L; Wu, D S; Wysocki, D M; Xiao, S; Yamamoto, H; Yancey, C C; Yang, L; Yap, M J; Yazback, M; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zanolin, M; Zelenova, T; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y-H; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J

    2018-05-18

    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω_{0}^{T}<5.58×10^{-8}, Ω_{0}^{V}<6.35×10^{-8}, and Ω_{0}^{S}<1.08×10^{-7} at a reference frequency f_{0}=25  Hz.

  18. Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, E.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tao, D.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2018-05-01

    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58 ×10-8 , Ω0V<6.35 ×10-8 , and Ω0S<1.08 ×10-7 at a reference frequency f0=25 Hz .

  19. Negative optical inertia for enhancing the sensitivity of future gravitational-wave detectors

    International Nuclear Information System (INIS)

    Khalili, Farid; Danilishin, Stefan; Mueller-Ebhardt, Helge; Miao Haixing; Zhao Chunnong; Chen Yanbei

    2011-01-01

    We consider enhancing the sensitivity of future gravitational-wave detectors by using double optical spring. When the power, detuning and bandwidth of the two carriers are chosen appropriately, the effect of the double optical spring can be described as a 'negative inertia', which cancels the positive inertia of the test masses and thus increases their response to gravitational waves. This allows us to surpass the free-mass standard quantum limit (SQL) over a broad frequency band, through signal amplification, rather than noise cancellation, which has been the case for all broadband SQL-beating schemes so far considered for gravitational-wave detectors. The merit of such signal amplification schemes lies in the fact that they are less susceptible to optical losses than noise-cancellation schemes. We show that it is feasible to demonstrate such an effect with the Gingin High Optical Power Test Facility, and it can eventually be implemented in future advanced GW detectors.

  20. Study of positive parity bands in 137Pr

    International Nuclear Information System (INIS)

    Agarwal, Priyanka; Kumar, Suresh; Jain, A.K.; Singh, Sukhjeet; Malik, S.S.; Sinha, Rishi Kumar; Dhal, Anukul; Chaturvedi, L.; Muralithar, S.; Singh, R.P.; Madhavan, N.; Kumar, Rakesh; Bhowmik, R.K.; Pancholi, S.C.; Jain, H.C.

    2006-01-01

    In this paper the analysis and interpretation of the positive parity states in 137 Pr have been reported. The detailed interpretation with configuration assignments and the calculations for the bands will be reported