Sample records for testing biological

  1. Testing of Biologically Inhibiting Surface

    DEFF Research Database (Denmark)

    Bill Madsen, Thomas; Larsen, Erup


    The main purpose of this course is to examine a newly developed biologically inhibiting material with regards to galvanic corrosion and electrochemical properties. More in detail, the concern was how the material would react when exposed to cleaning agents, here under CIP cleaning (Cleaning...

  2. Biomonitoring test procedures and biological criteria

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A. [Oak Ridge National Lab., TN (United States); Lipschultz, M.J. [City of Las Vegas, NV (United States); Foster, W.E. [Saint Mary`s Coll., Winona, MN (United States)


    The Water Environment Federation recently issued a special publication, Biomonitoring in the Water Environment. In this paper, the authors highlight the contents of the chapter 3, Biomonitoring Test Procedures, identify current trends in test procedures and introduce the concept of biological criteria (biocriteria). The book chapter (and this paper) focuses on freshwater and marine chronic and acute toxicity tests used in the National Pollutant Discharge Elimination System (NPDES) permits program to identify effluents and receiving waters containing toxic materials in acutely or chronically toxic concentrations. The two major categories of toxicity tests include acute tests and chronic tests. The USEPA chronic tests required in NPDEs permits have been shortened to 7 days by focusing on the most sensitive life-cycle stages; these tests are often referred to as short-term chronic tests. The type of test(s) required depend on NPDES permit requirements, objectives of the test, available resources, requirements of the test organisms, and effluent characteristics such as variability in flow or toxicity. The permit writer will determine the requirements for toxicity test(s) by considering such factors as dilution, effluent variability, and exposure variability. Whether the required test is acute or chronic, the objective of the test is to estimate the safe or no effect concentration which is defined as the concentration which will permit normal propagation of fish and other aquatic life in the receiving waters. In this paper, the authors review the types of toxicity tests, the commonly used test organisms, and the uses of toxicity test data. In addition, they briefly describe research on new methods and the use of biological criteria.

  3. Multidimensional Computerized Adaptive Testing for Indonesia Junior High School Biology (United States)

    Kuo, Bor-Chen; Daud, Muslem; Yang, Chih-Wei


    This paper describes a curriculum-based multidimensional computerized adaptive test that was developed for Indonesia junior high school Biology. In adherence to the Indonesian curriculum of different Biology dimensions, 300 items was constructed, and then tested to 2238 students. A multidimensional random coefficients multinomial logit model was…

  4. Biological assays for aquatic toxicity testing

    CSIR Research Space (South Africa)

    Slabbert, JL


    Full Text Available and management purposes of effluents. If receiving water is used for drinking water purposes, the Ames Salmonella mutagenicity and toad embryo teratogenicity tests should be included in the battery of tests. Some of the rapid microbiotests, the petrozoan oxygen...

  5. Using synthetic biology to make cells tomorrow's test tubes. (United States)

    Garcia, Hernan G; Brewster, Robert C; Phillips, Rob


    The main tenet of physical biology is that biological phenomena can be subject to the same quantitative and predictive understanding that physics has afforded in the context of inanimate matter. However, the inherent complexity of many of these biological processes often leads to the derivation of complex theoretical descriptions containing a plethora of unknown parameters. Such complex descriptions pose a conceptual challenge to the establishment of a solid basis for predictive biology. In this article, we present various exciting examples of how synthetic biology can be used to simplify biological systems and distill these phenomena down to their essential features as a means to enable their theoretical description. Here, synthetic biology goes beyond previous efforts to engineer nature and becomes a tool to bend nature to understand it. We discuss various recent and classic experiments featuring applications of this synthetic approach to the elucidation of problems ranging from bacteriophage infection, to transcriptional regulation in bacteria and in developing embryos, to evolution. In all of these examples, synthetic biology provides the opportunity to turn cells into the equivalent of a test tube, where biological phenomena can be reconstituted and our theoretical understanding put to test with the same ease that these same phenomena can be studied in the in vitro setting.

  6. Testing of Synthetic Biological Membranes for Forward Osmosis Applications (United States)

    Parodi, Jurek; Mangado, Jaione Romero; Stefanson, Ofir; Flynn, Michael; Mancinelli, Rocco; Kawashima, Brian; Trieu, Serena; Brozell, Adrian; Rosenberg, Kevan


    Commercially available forward osmosis membranes have been extensively tested for human space flight wastewater treatment. Despite the improvements achieved in the last decades, there is still a challenge to produce reliable membranes with anti-fouling properties, chemical resistance, and high flux and selectivity. Synthetic biological membranes that mimic the ones present in nature, which underwent millions of years of evolution, represent a potential solution for further development and progress in membrane technology. Biomimetic forward osmosis membranes based on a polymeric support filter and coated with surfactant multilayers have been engineered to investigate how different manufacturing processes impact the performance and structure of the membrane. However, initial results of the first generation prototype membranes tests reveal a high scatter in the data, due to the current testing apparatus set up. The testing apparatus has been upgraded to improve data collection, reduce errors, and to allow higher control of the testing process.

  7. Nondestructive mechanical characterization of developing biological tissues using inflation testing. (United States)

    Oomen, P J A; van Kelle, M A J; Oomens, C W J; Bouten, C V C; Loerakker, S


    One of the hallmarks of biological soft tissues is their capacity to grow and remodel in response to changes in their environment. Although it is well-accepted that these processes occur at least partly to maintain a mechanical homeostasis, it remains unclear which mechanical constituent(s) determine(s) mechanical homeostasis. In the current study a nondestructive mechanical test and a two-step inverse analysis method were developed and validated to nondestructively estimate the mechanical properties of biological tissue during tissue culture. Nondestructive mechanical testing was achieved by performing an inflation test on tissues that were cultured inside a bioreactor, while the tissue displacement and thickness were nondestructively measured using ultrasound. The material parameters were estimated by an inverse finite element scheme, which was preceded by an analytical estimation step to rapidly obtain an initial estimate that already approximated the final solution. The efficiency and accuracy of the two-step inverse method was demonstrated on virtual experiments of several material types with known parameters. PDMS samples were used to demonstrate the method's feasibility, where it was shown that the proposed method yielded similar results to tensile testing. Finally, the method was applied to estimate the material properties of tissue-engineered constructs. Via this method, the evolution of mechanical properties during tissue growth and remodeling can now be monitored in a well-controlled system. The outcomes can be used to determine various mechanical constituents and to assess their contribution to mechanical homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.


    Directory of Open Access Journals (Sweden)

    V. N. Vasilets


    Full Text Available The new gel-sublimation technique for preparation porus biodegradable scaffolds (hydroxybutyrate-co-hydro- xyvalerate is presented. The scaffolds with multi-mode internal structure have the of porus sizes varied from ~100 microns up to ~100 nanometers and the porosity in a range of 80–90%. A few techniques for modification of 3D scaffolds by gas discharge plasma are developed and optimized: the microsecond dielectric barrier dischar- ge, the semi-self-maintained discharge supported by an electron beam; the nanosecond dielectric barrier dischar- ge. Biological tests including red blood cell hemolysis and cytotoxicity analysis have shown the possibilities of scaffolds applications for cell-based technologies. 

  9. Membrane characteristics for biological blast overpressure testing using blast simulators. (United States)

    Alphonse, Vanessa D; Siva Sai Sujith Sajja, Venkata; Kemper, Andrew R; Rizel, Dave V; Duma, Stefan M; VandeVord, Pamela J


    Blast simulators often use passive-rupture membranes to generate shock waves similar to free-field blasts. The purpose of this study was to compare rupture patterns and pressure traces of three distinct membrane materials for biological and biomechanical blast studies. An Advanced Blast Simulator (ABS) located at the Center for Injury Biomechanics at Virginia Tech was used to test membrane characteristics. Acetate, Mylar, and aluminum sheets with different thicknesses were used to obtain pressures between 70–210 kPa. Static pressure was measured inside the tube at the test section using piezoelectric pressure sensors. Peak overpressure, positive duration, and positive impulse were calculated for each test. Rupture patterns and characteristic pressure traces were unique to each membrane type and thickness. Shock wave speed ranged between 1.2-1.8 Mach for static overpressures of 70–210 kPa. Acetate membranes fragmented sending pieces down the tube, but produced ideal (Friedlander) pressure traces. Mylar membranes bulged without fragmenting, but produced less-than-ideal pressure traces. Aluminum membranes did not fragment and produced ideal pressure traces. However, the cost of manufacturing and characterizing aluminum membranes should be considered during membrane selection. This study illustrates the advantages and disadvantages of using Mylar, acetate, and aluminum for passive rupture membranes for blast simulators.

  10. 40 CFR 230.61 - Chemical, biological, and physical evaluation and testing. (United States)


    ... FILL MATERIAL Evaluation and Testing § 230.61 Chemical, biological, and physical evaluation and testing...-biological interactive effects. Dredged or fill material may be excluded from the evaluation procedures... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Chemical, biological, and physical...

  11. Reductive Anaerobic Biological In Situ Treatment Technology Treatability Testing

    National Research Council Canada - National Science Library

    Alleman, Bruce


    Enhanced biological reductive dechlorination (EBRD) shows a great deal of promise for efficiently treating groundwater contaminated with chlorinated solvents, but demonstration sites around the country were reporting mixed results...

  12. Dormancy and Recovery Testing for Biological Wastewater Processors (United States)

    Hummerick, Mary F.; Coutts, Janelle L.; Lunn, Griffin M.; Spencer, LaShelle; Khodadad, Christina L.; Birmele, Michele N.; Frances, Someliz; Wheeler, Raymond


    Resource recovery and recycling waste streams to usable water via biological water processors is a plausible component of an integrated water purification system. Biological processing as a pretreatment can reduce the load of organic carbon and nitrogen compounds entering physiochemical systems downstream. Aerated hollow fiber membrane bioreactors, have been proposed and studied for a number of years as an approach for treating wastewater streams for space exploration.

  13. Video and HTML: Testing Online Tutorial Formats with Biology Students (United States)

    Craig, Cindy L.; Friehs, Curt G.


    This study compared two common types of online information literacy tutorials: a streaming media tutorial using animation and narration and a text-based tutorial with static images. Nine sections of an undergraduate biology lab class (234 students total) were instructed by a librarian on how to use the BIOSIS Previews database. Three sections…

  14. LASER BIOLOGY: Optomechanical tests of hydrated biological tissues subjected to laser shaping (United States)

    Omel'chenko, A. I.; Sobol', E. N.


    The mechanical properties of a matrix are studied upon changing the size and shape of biological tissues during dehydration caused by weak laser-induced heating. The cartilage deformation, dehydration dynamics, and hydraulic conductivity are measured upon laser heating. The hydrated state and the shape of samples of separated fascias and cartilaginous tissues were controlled by using computer-aided processing of tissue images in polarised light.

  15. Reaction times to weak test lights. [psychophysics biological model (United States)

    Wandell, B. A.; Ahumada, P.; Welsh, D.


    Maloney and Wandell (1984) describe a model of the response of a single visual channel to weak test lights. The initial channel response is a linearly filtered version of the stimulus. The filter output is randomly sampled over time. Each time a sample occurs there is some probability increasing with the magnitude of the sampled response - that a discrete detection event is generated. Maloney and Wandell derive the statistics of the detection events. In this paper a test is conducted of the hypothesis that the reaction time responses to the presence of a weak test light are initiated at the first detection event. This makes it possible to extend the application of the model to lights that are slightly above threshold, but still within the linear operating range of the visual system. A parameter-free prediction of the model proposed by Maloney and Wandell for lights detected by this statistic is tested. The data are in agreement with the prediction.

  16. Biological Gender Differences in Students' Errors on Mathematics Achievement Tests (United States)

    Stewart, Christie; Root, Melissa M.; Koriakin, Taylor; Choi, Dowon; Luria, Sarah R.; Bray, Melissa A.; Sassu, Kari; Maykel, Cheryl; O'Rourke, Patricia; Courville, Troy


    This study investigated developmental gender differences in mathematics achievement, using the child and adolescent portion (ages 6-19 years) of the Kaufman Test of Educational Achievement-Third Edition (KTEA-3). Participants were divided into two age categories: 6 to 11 and 12 to 19. Error categories within the Math Concepts & Applications…

  17. Cosmo Cassette: A Microfluidic Microgravity Microbial System For Synthetic Biology Unit Tests and Satellite Missions (United States)

    Berliner, Aaron J.


    Although methods in the design-build-test life cycle of the synthetic biology field have grown rapidly, the expansion has been non-uniform. The design and build stages in development have seen innovations in the form of biological CAD and more efficient means for building DNA, RNA, and other biological constructs. The testing phase of the cycle remains in need of innovation. Presented will be both a theoretical abstraction of biological measurement and a practical demonstration of a microfluidics-based platform for characterizing synthetic biological phenomena. Such a platform demonstrates a design of additive manufacturing (3D printing) for construction of a microbial fuel cell (MFC) to be used in experiments carried out in space. First, the biocompatibility of the polypropylene chassis will be demonstrated. The novel MFCs will be cheaper, and faster to make and iterate through designs. The novel design will contain a manifold switchingdistribution system and an integrated in-chip set of reagent reservoirs fabricated via 3D printing. The automated nature of the 3D printing yields itself to higher resolution switching valves and leads to smaller sized payloads, lower cost, reduced power and a standardized platform for synthetic biology unit tests on Earth and in space. It will be demonstrated that the application of unit testing in synthetic biology will lead to the automatic construction and validation of desired constructs. Unit testing methodologies offer benefits of preemptive problem identification, change of facility, simplicity of integration, ease of documentation, and separation of interface from implementation, and automated design.

  18. Modeling the Drug Discovery Process: The Isolation and Biological Testing of Eugenol from Clove Oil (United States)

    Miles, William H.; Smiley, Patricia M.


    This experiment describes the isolation and biological testing of eugenol and neutral compounds from commercially available clove oil. By coupling the chemical separation of the components of clove oil (an experiment described in many introductory organic laboratory textbooks) with a simple antibiotic test, the students "discover" the biologically active compound in clove oil. This experiment models one of the primary methods used in the discovery of new pharmaceutical agents.

  19. A Computer-Aided Self-Testing System for Biological Psychology. (United States)

    Leiblum, M. D.; And Others


    Describes the production of a computer-aided, self-testing system for university students enrolled in a first-year course in biological psychology. Project aspects described include selection, acquisition and description of software; question banks and test structures; modes of use (computer or printed version); evaluation; and future plans. (11…

  20. Test on the structure of biological sequences via Chaos Game Representation. (United States)

    Cénac, Peggy


    In this paper biological sequences are modelled by stationary ergodic sequences. A new family of statistical tests to characterize the randomness of the inputs is proposed and analyzed. Tests for independence and for the determination of the appropriate order of a Markov chain are constructed with the Chaos Game Representation (CGR), and applied to several genomes.

  1. Testing with Feedback Yields Potent, but Piecewise, Learning of History and Biology Facts (United States)

    Pan, Steven C.; Gopal, Arpita; Rickard, Timothy C.


    Does correctly answering a test question about a multiterm fact enhance memory for the entire fact? We explored that issue in 4 experiments. Subjects first studied Advanced Placement History or Biology facts. Half of those facts were then restudied, whereas the remainder were tested using "5 W" (i.e., "who, what, when, where",…

  2. Association between Students Performance In Diagnostic And Readiness Tests in Secondary School Biology


    Casmir N. Ebuoh,


    The purpose of the study was to find out the association between the students performance in readiness and diagnostic test scores in secondary school Biology. The design of the study was correlation and the population was all the 2256 students’ secondary school II students in biology in the 2014/2015 academic session. Simple random sampling (battling without replacement) was used to sample 420 students from 14 secondary schools in Udi Local Government area of Enugu State. The instruments for ...

  3. Semantically enabled and statistically supported biological hypothesis testing with tissue microarray databases (United States)


    Background Although many biological databases are applying semantic web technologies, meaningful biological hypothesis testing cannot be easily achieved. Database-driven high throughput genomic hypothesis testing requires both of the capabilities of obtaining semantically relevant experimental data and of performing relevant statistical testing for the retrieved data. Tissue Microarray (TMA) data are semantically rich and contains many biologically important hypotheses waiting for high throughput conclusions. Methods An application-specific ontology was developed for managing TMA and DNA microarray databases by semantic web technologies. Data were represented as Resource Description Framework (RDF) according to the framework of the ontology. Applications for hypothesis testing (Xperanto-RDF) for TMA data were designed and implemented by (1) formulating the syntactic and semantic structures of the hypotheses derived from TMA experiments, (2) formulating SPARQLs to reflect the semantic structures of the hypotheses, and (3) performing statistical test with the result sets returned by the SPARQLs. Results When a user designs a hypothesis in Xperanto-RDF and submits it, the hypothesis can be tested against TMA experimental data stored in Xperanto-RDF. When we evaluated four previously validated hypotheses as an illustration, all the hypotheses were supported by Xperanto-RDF. Conclusions We demonstrated the utility of high throughput biological hypothesis testing. We believe that preliminary investigation before performing highly controlled experiment can be benefited. PMID:21342584

  4. An Overall Comparison of Small Molecules and Large Biologics in ADME Testing

    Directory of Open Access Journals (Sweden)

    Hong Wan


    Full Text Available Biologics mainly monoclonal antibodies (mAbs and antibody-drug conjugates (ADCs as new therapeutics are becoming increasingly important biotherapeutics. This review is intended to provide an overall comparison between small molecules (SMs and biologics or large molecules (LMs concerning drug metabolism and pharmacokinetic (DMPK or associated with absorption, distribution, metabolism and elimination (ADME testing from pharmaceutical industry drug discovery and development points of view, which will help design and conduct relevant ADME testing for biologics such as mAbs and ADCs. Recent advancements in the ADME for testing biologics and related bioanalytical methods are discussed with an emphasis on ADC drug development as an example to understand its complexity and challenges from extensive in vitro characterization to in vivo animal PK studies. General non-clinical safety evaluations of biologics in particular for ADC drugs are outlined including drug-drug interaction (DDI and metabolite/catabolite assessments. Regulatory guidance on the ADME testing and safety evaluations including immunogenicity as well as bioanalytical considerations are addressed for LMs. In addition, the preclinical and human PK data of two marked ADC drugs (ADCETRIS, SGN-35 and KADCYLA, T-DM1 as examples are briefly discussed with regard to PK considerations and PK/PD perspectives.

  5. A Knowledge Base for Teaching Biology Situated in the Context of Genetic Testing (United States)

    van der Zande, Paul; Waarlo, Arend Jan; Brekelmans, Mieke; Akkerman, Sanne F.; Vermunt, Jan D.


    Recent developments in the field of genomics will impact the daily practice of biology teachers who teach genetics in secondary education. This study reports on the first results of a research project aimed at enhancing biology teacher knowledge for teaching genetics in the context of genetic testing. The increasing body of scientific knowledge concerning genetic testing and the related consequences for decision-making indicate the societal relevance of such a situated learning approach. What content knowledge do biology teachers need for teaching genetics in the personal health context of genetic testing? This study describes the required content knowledge by exploring the educational practice and clinical genetic practices. Nine experienced teachers and 12 respondents representing the clinical genetic practices (clients, medical professionals, and medical ethicists) were interviewed about the biological concepts and ethical, legal, and social aspects (ELSA) of testing they considered relevant to empowering students as future health care clients. The ELSA suggested by the respondents were complemented by suggestions found in the literature on genetic counselling. The findings revealed that the required teacher knowledge consists of multiple layers that are embedded in specific genetic test situations: on the one hand, the knowledge of concepts represented by the curricular framework and some additional concepts (e.g. multifactorial and polygenic disorder) and, on the other hand, more knowledge of ELSA and generic characteristics of genetic test practice (uncertainty, complexity, probability, and morality). Suggestions regarding how to translate these characteristics, concepts, and ELSA into context-based genetics education are discussed.

  6. An investigation on impacts of scheduling configurations on Mississippi biology subject area testing (United States)

    Marchette, Frances Lenora

    The purpose of this mixed modal study was to compare the results of Biology Subject Area mean scores of students on a 4 x 4 block schedule, A/B block schedule, and traditional year-long schedule for 1A to 5A size schools. This study also reviewed the data to determine if minority or gender issues might influence the test results. Interviews with administrators and teachers were conducted about the type of schedule configuration they use and the influence that the schedule has on student academic performance on the Biology Subject Area Test. Additionally, this research further explored whether schedule configurations allow sufficient time for students to construct knowledge. This study is important to schools, teachers, and administrators because it can assist them in considering the impacts that different types of class schedules have on student performance and if ethnic or gender issues are influencing testing results. This study used the causal-comparative method for the quantitative portion of the study and constant comparative method for the qualitative portion to explore the relationship of school schedules on student academic achievement on the Mississippi Biology Subject Area Test. The aggregate means of selected student scores indicate that the Mississippi Biology Subject Area Test as a measure of student performance reveals no significant difference on student achievement for the three school schedule configurations. The data were adjusted for initial differences of gender, minority, and school size on the three schedule configurations. The results suggest that schools may employ various schedule configurations and expect student performance on the Mississippi Biology Subject Area Test to be unaffected. However, many areas of concern were identified in the interviews that might impact on school learning environments. These concerns relate to effective classroom management, the active involvement of students in learning, the adequacy of teacher education

  7. Bioinformatics for the synthetic biology of natural products: integrating across the Design–Build–Test cycle (United States)

    Currin, Andrew; Jervis, Adrian J.; Rattray, Nicholas J. W.; Swainston, Neil; Yan, Cunyu; Breitling, Rainer


    Covering: 2000 to 2016 Progress in synthetic biology is enabled by powerful bioinformatics tools allowing the integration of the design, build and test stages of the biological engineering cycle. In this review we illustrate how this integration can be achieved, with a particular focus on natural products discovery and production. Bioinformatics tools for the DESIGN and BUILD stages include tools for the selection, synthesis, assembly and optimization of parts (enzymes and regulatory elements), devices (pathways) and systems (chassis). TEST tools include those for screening, identification and quantification of metabolites for rapid prototyping. The main advantages and limitations of these tools as well as their interoperability capabilities are highlighted. PMID:27185383

  8. Biology

    Indian Academy of Sciences (India)

    I am particularly happy that the Academy is bringing out this document by Professor M S. Valiathan on Ayurvedic Biology. It is an effort to place before the scientific community, especially that of India, the unique scientific opportunities that arise out of viewing Ayurveda from the perspective of contemporary science, its tools ...

  9. Biological test method: Acute test for sediment toxicity using marine or estuarine amphipods

    National Research Council Canada - National Science Library

    McLeay, D. J; Sprague, John B


    Methods recommended by Environment Canada for performing 10-day tests for sediment toxicity, using one or more of the following species of marine or estuarine sediment-burrowing amphipods, are described in this report...

  10. Tests of biological activity of metabolites from Penicillium expansum (Link Thom various isolates

    Directory of Open Access Journals (Sweden)

    Halina Borecka


    Full Text Available Aqrobacterium tumefaciens and cucumber, mustard and linseeds were compared as test organisms for evaluation of the biological activity of patulin. It was found that the reaction of cucumber seeds and linseed to the patulin concentrations was more pronounced than that of mustard and Aqrobacterium tumefaciens. The activity of metabolites produced by Penicillium expansum was investigated with the use of cucumber seeds. As measure of activity served the percentage of radicule growth inhibition was compared with the growth in control seeds. The biological activity of the metabolites was specific for the isolates, those from apples being more active. Thirty two isolates from pears and 34 from apples were examined.

  11. Biological false reactive VDRL test among the HIV-infected patients: A note on its prevalence

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit


    Full Text Available Presently, the screening of syphilis is dependent mainly on serological tests. In the sexually transmitted disease clinic, syphilis serology is a basic screening test. The results VDRL test among of 150 HIV (82 males, 68 females infected, regardless to immune status (CD4+ count, were studied. It was found that in 2 cases, the VDRL was biologically false reactive (VDRL positive, TPHA negative, who had CD4+ count >200 /mL, giving the incidence rate equal to 1.3 % (1.2 % for male and 1.5 % for female.

  12. Expertise for Teaching Biology Situated in the Context of Genetic Testing (United States)

    Van der Zande, Paul; Akkerman, Sanne F.; Brekelmans, Mieke; Waarlo, Arend Jan; Vermunt, Jan D.


    Contemporary genomics research will impact the daily practice of biology teachers who want to teach up-to-date genetics in secondary education. This article reports on a research project aimed at enhancing biology teachers' expertise for teaching genetics situated in the context of genetic testing. The increasing body of scientific knowledge concerning genetic testing and the related consequences for decision-making indicate the societal relevance of an educational approach based on situated learning. What expertise do biology teachers need for teaching genetics in the personal health context of genetic testing? This article describes the required expertise by exploring the educational practice. Nine experienced teachers were interviewed about the pedagogical content, moral and interpersonal expertise areas concerning how to teach genetics in the personal health context of genetic testing, and the lessons of five of them were observed. The findings showed that the required teacher expertise encompasses specific pedagogical content expertise, interpersonal expertise and a preference for teacher roles and teaching approaches for the moral aspects of teaching in this context. A need for further development of teaching and learning activities for (reflection on) moral reasoning came to the fore. Suggestions regarding how to apply this expertise into context-based genetics education are discussed.

  13. Development and testing of hyperbaric atomic force microscopy (AFM) and fluorescence microscopy for biological applications. (United States)

    D'Agostino, D P; McNally, H A; Dean, J B


    A commercially available atomic force microscopy and fluorescence microscope were installed and tested inside a custom-designed hyperbaric chamber to provide the capability to study the effects of hyperbaric gases on biological preparations, including cellular mechanism of oxidative stress. In this report, we list details of installing and testing atomic force microscopy and fluorescence microscopy inside a hyperbaric chamber. The pressure vessel was designed to accommodate a variety of imaging equipment and ensures full functionality at ambient and hyperbaric conditions (≤85 psi). Electrical, gas and fluid lines were installed to enable remote operation of instrumentation under hyperbaric conditions, and to maintain viable biological samples with gas-equilibrated superfusate and/or drugs. Systems were installed for vibration isolation and temperature regulation to maintain atomic force microscopy performance during compression and decompression. Results of atomic force microscopy testing demonstrate sub-nanometre resolution at hyperbaric pressure in dry scans and fluid scans, in both contact mode and tapping mode. Noise levels were less when measurements were taken under hyperbaric pressure with air, helium (He) and nitrogen (N(2) ). Atomic force microscopy and fluorescence microscopy measurements were made on a variety of living cell cultures exposed to hyperbaric gases (He, N(2) , O(2) , air). In summary, atomic force microscopy and fluorescence microscopy were installed and tested for use at hyperbaric pressures and enables the study of cellular and molecular effects of hyperbaric gases and pressure per se in biological preparations. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.

  14. Covariance Association Test (CVAT) Identifies Genetic Markers Associated with Schizophrenia in Functionally Associated Biological Processes

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Demontis, Ditte; Castro Dias Cuyabano, Beatriz


    Schizophrenia is a psychiatric disorder with large personal and social costs, and understanding the genetic etiology is important. Such knowledge can be obtained by testing the association between a disease phenotype and individual genetic markers; however, such single-marker methods have limited...... power to detect genetic markers with small effects. Instead, aggregating genetic markers based on biological information might increase the power to identify sets of genetic markers of etiological significance. Several set test methods have been proposed: Here we propose a new set test derived from...... genomic best linear unbiased prediction (GBLUP), the covariance association test (CVAT). We compared the performance of CVAT to other commonly used set tests. The comparison was conducted using a simulated study population having the same genetic parameters as for schizophrenia. We found that CVAT...

  15. Biological shielding test of hot cells with high active source 60Co (300 TBq) (United States)

    Švrčula, P.; Zoul, D.; Zimina, M.; Petříčková, A.; Adamíková, T.; Schulc, M.; Srba, O.


    This article describes a method for testing of the efficiency of the biological shielding of the hot cell facility, which were constructed as a part of the project SUSEN. Ten hot cells and one semi-hot cell are present in the facility Radiochemistry II. The shielding is made from steel plates. In order to demonstrate sufficient efficiency of the biological shielding of the hot cells and a correspondence between measured and contractual values at selected points. The test was done using sealed high activity 60Co sources. The results are also used as a proof of the optimization of radiation protection for the workplace of this type. The results confirm significant optimization of radiation protection at the workplace. The dose received by a staff do not exceed one tens of annual limit during active service. Obtained results fulfill general requirements of radiation protection and will be used for further active service of hot cells facility.

  16. Bioglass and bioceramic composites processed by Spark Plasma Sintering (SPS: biological evaluation Versus SBF test

    Directory of Open Access Journals (Sweden)

    Bellucci Devis


    Full Text Available The biocompatibility of hydroxyapatite (HA, a lab-made bioglass (BGCaMIX with high crystallization temperature and different HA/BGCaMIX composites, produced by Spark Plasma Sintering (SPS, was tested with respect to murine osteocytes both by direct and indirect tests, in order to also investigate possible cytotoxic effects of the samples’ extracts. Previous investigations demonstrated that the samples’ bioactivity, evaluated in a simulated body fluid solution (SBF, increased with the increasing amount of BGCaMIX in the sample itself. Although none of the samples were cytotoxic, the findings of the biological evaluation did not confirm those arising from the SBF assay. In particular, the results of direct tests did not show an enhanced “biological performance” of materials with higher glass content. This finding may be due to the high release of ions and particulate from the glass phase. On the contrary, the performance of the BGCaMIX alone is better for the indirect tests, based on filtered samples’ extracts. This work further demonstrates that, when considering bioglasses and HA/bioglass composites, the results of the SBF assays should be interpreted with great care, making sure that the results arising from direct contact tests are integrated with those arising fromthe indirect ones.

  17. Unit testing, model validation, and biological simulation [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Gopal P. Sarma


    Full Text Available The growth of the software industry has gone hand in hand with the development of tools and cultural practices for ensuring the reliability of complex pieces of software. These tools and practices are now acknowledged to be essential to the management of modern software. As computational models and methods have become increasingly common in the biological sciences, it is important to examine how these practices can accelerate biological software development and improve research quality. In this article, we give a focused case study of our experience with the practices of unit testing and test-driven development in OpenWorm, an open-science project aimed at modeling Caenorhabditis elegans. We identify and discuss the challenges of incorporating test-driven development into a heterogeneous, data-driven project, as well as the role of model validation tests, a category of tests unique to software which expresses scientific models.

  18. Insects as test systems for assessing the potential role of microgravity in biological development and evolution (United States)

    Vernós, I.; Carratalá, M.; González-Jurado, J.; Valverde, J. R.; Calleja, M.; Domingo, A.; Vinós, J.; Cervera, M.; Marco, R.

    Gravity and radiation are undoubtedly the two major environmental factors altered in space. Gravity is a weak force, which creates a permanent potential field acting on the mass of biological systems and their cellular components, strongly reduced in space flights. Developmental systems, particularly at very early stages, provide the larger cellular compartments known, where the effects of alterations in the size of the gravity vector on living organisms can be more effectively tested. The insects, one of the more highly evolved classes of animals in which early development occurs in a syncytial embryo, are systems particularly well suited to test these effects and the specific developmental mechanisms affected. Furthermore, they share some basic features such as small size, short life cycles, relatively high radio-resistance, etc. and show a diversity of developmental strategies and tempos advantageous in experiments of this type in space. Drosophila melanogaster, the current biological paradigm to study development, with so much genetic and evolutionary background available, is clearly the reference organism for these studies. The current evidence on the effects of the physical parameters altered in space flights on insect development indicate a surprising correlation between effects seen on the fast developing and relatively small Drosophila embryo and the more slowly developing and large Carausius morosus system. In relation to the issue of the importance of developmental and environmental constraints in biological evolution, still the missing link in current evolutionary thinking, insects and space facilities for long-term experiments could provide useful experimental settings where to critically assess how development and evolution may be interconnected. Finally, it has to be pointed out that since there are experimental data indicating a possible synergism between microgravity and space radiation, possible effects of space radiation should be taken into

  19. Biological durability of wood in relation to end-use - Part 1. Towards a European standard for laboratory testing of the biological durability of wood

    NARCIS (Netherlands)

    Acker, Van J.; Stevens, M.; Carey, J.; Sierra-Alvarez, R.; Militz, H.; Bayon, Le I.; Kleist, G.; Peek, R.D.


    The determination of biological durability of wood is an issue requiring sufficient reliability regarding end-use related prediction of performance. Five test institutes joined efforts to check standard test methods and to improve methodology and data interpretation for assessment of natural

  20. Biological variability of the sweat chloride in diagnostic sweat tests: A retrospective analysis. (United States)

    Vermeulen, F; Lebecque, P; De Boeck, K; Leal, T


    The sweat test is the current gold standard for the diagnosis of cystic fibrosis (CF). CF is unlikely when sweat chloride (Cl sw ) is lower than 30mmol/L, Cl sw >60 is suggestive of CF, with intermediate values between 30 and 60mmol/L. To correctly interpret a sweat chloride value, the biological variability of the sweat chloride has to be known. Sweat tests performed in two centers using the classic Gibson and Cooke method were retrospectively reviewed (n=5904). Within test variability of Cl sw was measured by comparing results from right and left arm collected on the same day. Between test variability was calculated from subjects with sweat tests performed on more than one occasion. Within test variability of Cl sw calculated in 1022 subjects was low with differences between -3.2 (p5) and +3.6mmol/L (p95). Results from left and right arm were classified differently in only 3 subjects. Between test variability of Cl sw in 197 subjects was larger, with differences between -18.2mmol/L (p5) and +14.1mmol/L (p95) between repeat tests. Changes in diagnostic conclusion were seen in 55/197 subjects, the most frequent being changing from indeterminate to 'CF unlikely' range (48/102). Variability of sweat chloride is substantial, with frequent changes in diagnostic conclusion, especially in the intermediate range. Copyright © 2016 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  1. Inquiry-based laboratory investigations and student performance on standardized tests in biological science (United States)

    Patke, Usha

    Achievement data from the 3rd International Mathematics and Sciences Study and Program for International Student Assessment in science have indicated that Black students from economically disadvantaged families underachieve at alarming rates in comparison to White and economically advantaged peer groups. The study site was a predominately Black, urban school district experiencing underachievement. The purpose of this correlational study was to examine the relationship between students' use of inquiry-based laboratory investigations and their performance on the Biology End of Course Test, as well as to examine the relationship while partialling out the effects of student gender. Constructivist theory formed the theoretical foundation of the study. Students' perceived levels of experience with inquiry-based laboratory investigations were measured using the Laboratory Program Variable Inventory (LPVI) survey. LPVI scores of 256 students were correlated with test scores and were examined by student gender. The Pearson correlation coefficient revealed a small direct correlation between students' experience in inquiry-based laboratory investigation classes and standardized test scores on the Biology EOCT. A partial correlational analysis indicated that the correlation remained after controlling for gender. This study may prompt a change from teacher-centered to student-centered pedagogy at the local site in order to increase academic achievement for all students. The results of this study may also influence administrators and policy makers to initiate local, state, or nationwide curricular development. A change in curriculum may promote social change as students become more competent, and more able, to succeed in life beyond secondary school.

  2. On the possibility of using biological toxicity tests to monitor the work of wastewater treatment plants

    Directory of Open Access Journals (Sweden)

    Zorić Jelena


    Full Text Available The aim of this study was to ascertain the possibility of using biological toxicity tests to monitor influent and effluent wastewaters of wastewater treatment plants. The information obtained through these tests is used to prevent toxic pollutants from entering wastewater treatment plants and discharge of toxic pollutants into the recipient. Samples of wastewaters from the wastewater treatment plants of Kragujevac and Gornji Milanovac, as well as from the Lepenica and Despotovica Rivers immediately before and after the influx of wastewaters from the plants, were collected between October 2004 and June 2005. Used as the test organism in these tests was the zebrafish Brachydanio rerio Hamilton - Buchanon (Cyprinidae. The acute toxicity test of 96/h duration showed that the tested samples had a slight acutely toxic effect on B. rerio, except for the sample of influent wastewater into the Cvetojevac wastewater treatment plant, which had moderately acute toxicity, indicating that such water should be prevented from entering the system in order to eliminate its detrimental effect on the purification process.

  3. Chemical analysis and biological testing of materials from the EDS coal liquefaction process: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.; Pelroy, R.A.; Wilson, B.W.


    Representative process materials were obtained from the EDS pilot plant for chemical and biological analyses. These materials were characterized for biological activity and chemical composition using a microbial mutagenicity assay and chromatographic and mass spectrometric analytical techniques. The two highest boiling distillation cuts, as well as process solvent (PS) obtained from the bottoms recycle mode operation, were tested for initiation of mouse skin tumorigenicity. All three materials were active; the crude 800/sup 0 +/F cut was substantially more potent than the crude bottoms recycle PS or 750 to 800/sup 0/F distillate cut. Results from chemical analyses showed the EDS materials, in general, to be more highly alkylated and have higher hydroaromatic content than analogous SRC II process materials (no in-line process hydrogenation) used for comparison. In the microbial mutagenicity assays the N-PAC fractions showed greater activity than did the aliphatic hydrocarbon, hydroxy-PAH, or PAH fractions, although mutagenicity was detected in certain PAH fractions by a modified version of the standard microbial mutagenicity assay. Mutagenic activities for the EDS materials were lower, overall, than those for the corresponding materials from the SRC II process. The EDS materials produced under different operational modes had distinguishable differences in both their chemical constituency and biological activity. The primary differences between the EDS materials studied here and their SRC II counterparts used for comparison are most likely attributable to the incorporation of catalytic hydrogenation in the EDS process. 27 references, 28 figures, 27 tables.

  4. Evaporation as an ageing procedure prior to wood preservative biological testing: when standardization needs metrology

    Directory of Open Access Journals (Sweden)

    Martin L.


    Full Text Available The wood preservation laboratory of Cirad is accredited by COFRAC (French accreditation committee – accreditation No. 1-1686 for tests on (1 durability of wood and wood-based products; (2 protective efficacy of wood preservatives; (3 efficacy of termite control products. In order to test the efficacy of wood preservatives, non-durable wood blocks are treated using different product doses and exposed to the attack of xylophageous organisms (fungi, insects. To reproduce the ageing of treated wood blocks, some laboratory procedures are available. Amongst them, there is an evaporation procedure, reproducing the action of a warm air flow onto treated wood. This ageing step is very discriminant, as only the formulations fixing effectively the active ingredients will pass the biological test afterwards. This ageing by evaporation is described in the EN73 standard. Nevertheless, many points remain difficult to overcome. The tunnels used for the evaporation are all prototypes; as such equipment is not available currently on the market. So each laboratory has got its own tunnel device. Moreover the way to measure the temperature and speed of the air flow is very difficult to achieve considering the prescriptions of the EN73 standard. The EN73 standard is being revised by the European standardization group (CEN TC38 and despite the metrological aspects were crucial and inadequate in former version, they were not considered as they should. The wood preservation laboratory has forwarded remarks in order to supersede some points of the revision document in order to consider the metrological aspects. This is of main importance as the ageing procedure is commonly used prior to most of the biological test, and such tested products are put on the market based on the efficacy results.

  5. Proposed test for detection of nonlinear responses in biological preparations exposed to RF energy. (United States)

    Balzano, Quirino


    Demodulation of amplitude modulated radio frequency (RF) energy has been proposed as a mechanism for the biological responses to these fields. The experiment proposed here tests whether the electric and magnetic structures of biological cells exhibit the nonlinear responses necessary for demodulation. A high Q cavity and very low noise amplification can be used to detect ultraweak nonlinear responses that appear as a second harmonic of a RF field incident on the sample. Nonlinear fields scattered from metabolically active biological cells grown in monolayer or suspended in medium can be distinguished from nonlinearities of the apparatus. Estimates for the theoretical signal sensitivity and analysis of system noise indicate the possibility of detecting a microwave signal at 1.8 GHz (2nd harmonic of 900 MHz) as weak as one microwave photon per cell per second. The practical limit, set by degradation of the cavity Q, is extremely low compared to the much brighter thermal background, which has its peak in the infrared at a wavelength of about 17 microm and radiates 10(10) infrared photons per second per cell in the narrow frequency band within 0.5% of the peak. The system can be calibrated by introduction of known quantities of nonlinear material, e.g., a Schottky diode. For an input power of 160 microW at 900 MHz incident on such biological material, the apparatus is estimated to produce a robust output signal of 0.10 mV at 1.8 GHz if detected with a spectrum analyzer and a 30-dB gain low noise amplifier. The experimental threshold for detection of nonlinear interaction phenomena is 10(10) below the signal produced by a Schottky diode, giving an unprecedented sensitivity to the measurement of nonlinear energy conversion processes in living tissue. Copyright 2002 Wiley-Liss, Inc.

  6. Chaste: A test-driven approach to software development for biological modelling

    KAUST Repository

    Pitt-Francis, Joe


    Chaste (\\'Cancer, heart and soft-tissue environment\\') is a software library and a set of test suites for computational simulations in the domain of biology. Current functionality has arisen from modelling in the fields of cancer, cardiac physiology and soft-tissue mechanics. It is released under the LGPL 2.1 licence. Chaste has been developed using agile programming methods. The project began in 2005 when it was reasoned that the modelling of a variety of physiological phenomena required both a generic mathematical modelling framework, and a generic computational/simulation framework. The Chaste project evolved from the Integrative Biology (IB) e-Science Project, an inter-institutional project aimed at developing a suitable IT infrastructure to support physiome-level computational modelling, with a primary focus on cardiac and cancer modelling. Program summary: Program title: Chaste. Catalogue identifier: AEFD_v1_0. Program summary URL: Program obtainable from: CPC Program Library, Queen\\'s University, Belfast, N. Ireland. Licensing provisions: LGPL 2.1. No. of lines in distributed program, including test data, etc.: 5 407 321. No. of bytes in distributed program, including test data, etc.: 42 004 554. Distribution format: tar.gz. Programming language: C++. Operating system: Unix. Has the code been vectorised or parallelized?: Yes. Parallelized using MPI. RAM:< 90   Megabytes for two of the scenarios described in Section 6 of the manuscript (Monodomain re-entry on a slab or Cylindrical crypt simulation). Up to 16 Gigabytes (distributed across processors) for full resolution bidomain cardiac simulation. Classification: 3. External routines: Boost, CodeSynthesis XSD, CxxTest, HDF5, METIS, MPI, PETSc, Triangle, Xerces. Nature of problem: Chaste may be used for solving coupled ODE and PDE systems arising from modelling biological systems. Use of Chaste in two application areas are described in this paper: cardiac

  7. Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. (United States)

    Marx, Uwe; Andersson, Tommy B; Bahinski, Anthony; Beilmann, Mario; Beken, Sonja; Cassee, Flemming R; Cirit, Murat; Daneshian, Mardas; Fitzpatrick, Susan; Frey, Olivier; Gaertner, Claudia; Giese, Christoph; Griffith, Linda; Hartung, Thomas; Heringa, Minne B; Hoeng, Julia; de Jong, Wim H; Kojima, Hajime; Kuehnl, Jochen; Leist, Marcel; Luch, Andreas; Maschmeyer, Ilka; Sakharov, Dmitry; Sips, Adrienne J A M; Steger-Hartmann, Thomas; Tagle, Danilo A; Tonevitsky, Alexander; Tralau, Tewes; Tsyb, Sergej; van de Stolpe, Anja; Vandebriel, Rob; Vulto, Paul; Wang, Jufeng; Wiest, Joachim; Rodenburg, Marleen; Roth, Adrian


    The recent advent of microphysiological systems - microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro - is envisaged to enable a global paradigm shift in drug development. An extraordinary US governmental initiative and various dedicated research programs in Europe and Asia have led recently to the first cutting-edge achievements of human single-organ and multi-organ engineering based on microphysiological systems. The expectation is that test systems established on this basis would model various disease stages, and predict toxicity, immunogenicity, ADME profiles and treatment efficacy prior to clinical testing. Consequently, this technology could significantly affect the way drug substances are developed in the future. Furthermore, microphysiological system-based assays may revolutionize our current global programs of prioritization of hazard characterization for any new substances to be used, for example, in agriculture, food, ecosystems or cosmetics, thus, replacing laboratory animal models used currently. Thirty-six experts from academia, industry and regulatory bodies present here the results of an intensive workshop (held in June 2015, Berlin, Germany). They review the status quo of microphysiological systems available today against industry needs, and assess the broad variety of approaches with fit-for-purpose potential in the drug development cycle. Feasible technical solutions to reach the next levels of human biology in vitro are proposed. Furthermore, key organ-on-a-chip case studies, as well as various national and international programs are highlighted. Finally, a roadmap into the future is outlined, to allow for more predictive and regulatory-accepted substance testing on a global scale.

  8. Biology-inspired Microphysiological System Approaches to Solve the Prediction Dilemma of Substance Testing (United States)

    Marx, Uwe; Andersson, Tommy B.; Bahinski, Anthony; Beilmann, Mario; Beken, Sonja; Cassee, Flemming R.; Cirit, Murat; Daneshian, Mardas; Fitzpatrick, Susan; Frey, Olivier; Gaertner, Claudia; Giese, Christoph; Griffith, Linda; Hartung, Thomas; Heringa, Minne B.; Hoeng, Julia; de Jong, Wim H.; Kojima, Hajime; Kuehnl, Jochen; Luch, Andreas; Maschmeyer, Ilka; Sakharov, Dmitry; Sips, Adrienne J. A. M.; Steger-Hartmann, Thomas; Tagle, Danilo A.; Tonevitsky, Alexander; Tralau, Tewes; Tsyb, Sergej; van de Stolpe, Anja; Vandebriel, Rob; Vulto, Paul; Wang, Jufeng; Wiest, Joachim; Rodenburg, Marleen; Roth, Adrian


    Summary The recent advent of microphysiological systems – microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro – is envisaged to enable a global paradigm shift in drug development. An extraordinary US governmental initiative and various dedicated research programs in Europe and Asia have led recently to the first cutting-edge achievements of human single-organ and multi-organ engineering based on microphysiological systems. The expectation is that test systems established on this basis would model various disease stages, and predict toxicity, immunogenicity, ADME profiles and treatment efficacy prior to clinical testing. Consequently, this technology could significantly affect the way drug substances are developed in the future. Furthermore, microphysiological system-based assays may revolutionize our current global programs of prioritization of hazard characterization for any new substances to be used, for example, in agriculture, food, ecosystems or cosmetics, thus, replacing laboratory animal models used currently. Thirty-five experts from academia, industry and regulatory bodies present here the results of an intensive workshop (held in June 2015, Berlin, Germany). They review the status quo of microphysiological systems available today against industry needs, and assess the broad variety of approaches with fit-for-purpose potential in the drug development cycle. Feasible technical solutions to reach the next levels of human biology in vitro are proposed. Furthermore, key organ-on-a-chip case studies, as well as various national and international programs are highlighted. Finally, a roadmap into the future is outlined, to allow for more predictive and regulatory-accepted substance testing on a global scale. PMID:27180100

  9. Cryopreservation: Extending the viability of biological material from sea urchin (Echinometra lucunter) in ecotoxicity tests. (United States)

    Ribeiro, Raphaela Cantarino; da Silva Veronez, Alexandra Caroline; Tovar, Thaís Tristão; Adams, Serean; Bartolomeu, Dayse Aline; Peronico, Clayton; Furley, Tatiana Heid


    The sea urchin, Echinometra lucunter, is widely used in embryo-larval tests for ecotoxicological studies in Brazil and other countries. For each test, sea urchins are collected from the wild and this can cause impact on wild populations and it is limited by the weather and season which in turn limits the ability to carry out the tests. Cryopreservation is a method of live biological material storage at low temperature and can be used for long periods with little decline in viability, reducing the number of animals taken from the wild and enabling testing to be carried out on demand, irrespective of spawning season or location. In this study, 15 combinations of cryoprotective agents (CPAs) were evaluated on spermatozoa, subjected to a rapid cooling curve followed by immersion in liquid nitrogen. Twenty-four CPA combinations were evaluated on eggs subjected to a more gradual cooling curve in nitrogen vapor down to -35 °C and then plunging in liquid nitrogen. Fertilization tests using cryopreserved spermatozoa gave high pluteus larvae yields (≈80%) when concentrations of 10.5% or 13.65% ME2SO or 13.65% ME2SO+15.75% sucrose were used. The higher concentrations of ME2SO plus sucrose were more effective at maintaining the fertilization capacity of spermatozoa post-thawing. Egg cryopreservation was not successful with 0% fertilization observed post-thawing. The results suggest that it is feasible to implement spermatozoa cryopreservation as technological innovation to create a sperm bank for E. lucunter, which can be used in ecotoxicological tests, bringing benefits for researches and contributing to the conservation of the species. Copyright © 2017. Published by Elsevier Inc.

  10. Porcine ear skin as a biological substrate for in vitro testing of sunscreen performance. (United States)

    Sohn, Myriam; Korn, Verena; Imanidis, Georgios


    The purpose of the study was to examine the use of skin from porcine ears as a biological substrate for in vitro testing of sunscreens in order to overcome the shortcomings of the presently used polymethylmethacrylate (PMMA) plates that generally fail to yield a satisfactory correlation between sun protection factors (SPF) in vitro and in vivo. Trypsin-separated stratum corneum and heat-separated epidermis provided UV-transparent substrates that were laid on quartz or on PMMA plates. These were used to determine surface roughness by chromatic confocal imaging and to measure SPF in vitro of 2 sunscreens by diffuse transmission spectroscopy. The recovered skin layers showed a lower roughness than full-thickness skin but yielded SPF in vitro values that more accurately reflected the SPF determined in vivo by a validated procedure than PMMA plates, although the latter had in part roughness values identical to those of intact skin. Combination of skin tissue with a high roughness PMMA plate also provided accurate SPF in vitro. Besides roughness, the improved affinity of the sunscreen to the skin substrate compared to PMMA plates may explain the better in vitro prediction of SPF achieved with the use of a biological substrate. © 2014 S. Karger AG, Basel.

  11. Developing a press for static and dynamic testing of orthopedic devices and biological tissue

    Directory of Open Access Journals (Sweden)

    Arlex Leyton Virgen


    Full Text Available This paper describes designing and constructing a test machine having a 1,800 N capacity and maximum 3 Hz frequency which will be used in static and dynamic testing of biological tissues and orthopedic devices such as external fixers. It consists of an oc-tagonal base with 500 mm distance between faces and a crosshead which slides between two columns (useful 350 mm opening thus allowing changing the height (maximum 600 mm according to the size of the specimen to be tested. A ball screw actuator is mounted over the crosshead which transforms a servomotor’s rotating movement into a lineal movement (maximum 150 mm stroke. First validations indicated that the machine performed within the design parameters. This project shows that the techno-logy required for supporting research is possible in developing countries thereby avoiding dependence on foreign companies for supporting, maintaining and updating equipment. Some conditions were also produced for the evolution of mechanical engi-neering in Colombia.

  12. In vitro testing of biological control agents on A1 and A2 isolates of Phytophthora ramorum (United States)

    Marianne Elliott; Simon Shamoun


    Biological control products were tested in vitro with six isolates of Phytophthora ramorum. These isolates were geographically diverse and were selected based on their pathogenicity to detached Rhododendron leaves. In addition to five commercially available biocontrol products, nine species of Trichoderma were tested. The in vitro...

  13. Future Food Production System Development Pulling From Space Biology Crop Growth Testing in Veggie (United States)

    Massa, Gioia; Romeyn, Matt; Fritsche, Ralph


    lessons, as we learn about growing at different scales and move toward developing systems that require less launch mass. Veggie will be used as a test bed for novel food production technologies. Veggie is a relatively simple precursor food production system but the knowledge gained from space biology validation tests in Veggie will have far reaching repercussions on future exploration food production. This work is supported by NASA.

  14. Future Food Production System Development Pulling from Space Biology Crop Growth Testing in Veggie (United States)

    Massa, G. D.; Romeyn, M. W.; Fritsche, R. F.


    lessons, as we learn about growing at different scales and move toward developing systems that require less launch mass. Veggie will be used as a test bed for novel food production technologies. Veggie is a relatively simple precursor food production system but the knowledge gained from space biology validation tests in Veggie will have far reaching repercussions on future exploration food production.

  15. Design and testing of a synthetic biology framework for genetic engineering of Corynebacterium glutamicum (United States)


    Background Synthetic biology approaches can make a significant contribution to the advance of metabolic engineering by reducing the development time of recombinant organisms. However, most of synthetic biology tools have been developed for Escherichia coli. Here we provide a platform for rapid engineering of C. glutamicum, a microorganism of great industrial interest. This bacteria, used for decades for the fermentative production of amino acids, has recently been developed as a host for the production of several economically important compounds including metabolites and recombinant proteins because of its higher capacity of secretion compared to traditional bacterial hosts like E. coli. Thus, the development of modern molecular platforms may significantly contribute to establish C. glutamicum as a robust and versatile microbial factory. Results A plasmid based platform named pTGR was created where all the genetic components are flanked by unique restriction sites to both facilitate the evaluation of regulatory sequences and the assembly of constructs for the expression of multiple genes. The approach was validated by using reporter genes to test promoters, ribosome binding sites, and for the assembly of dual gene operons and gene clusters containing two transcriptional units. Combinatorial assembly of promoter (tac, cspB and sod) and RBS (lacZ, cspB and sod) elements with different strengths conferred clear differential gene expression of two reporter genes, eGFP and mCherry, thus allowing transcriptional “fine-tuning”of multiple genes. In addition, the platform allowed the rapid assembly of operons and genes clusters for co-expression of heterologous genes, a feature that may assist metabolic pathway engineering. Conclusions We anticipate that the pTGR platform will contribute to explore the potential of novel parts to regulate gene expression, and to facilitate the assembly of genetic circuits for metabolic engineering of C. glutamicum. The standardization

  16. Design and testing of a synthetic biology framework for genetic engineering of Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Ravasi Pablo


    Full Text Available Abstract Background Synthetic biology approaches can make a significant contribution to the advance of metabolic engineering by reducing the development time of recombinant organisms. However, most of synthetic biology tools have been developed for Escherichia coli. Here we provide a platform for rapid engineering of C. glutamicum, a microorganism of great industrial interest. This bacteria, used for decades for the fermentative production of amino acids, has recently been developed as a host for the production of several economically important compounds including metabolites and recombinant proteins because of its higher capacity of secretion compared to traditional bacterial hosts like E. coli. Thus, the development of modern molecular platforms may significantly contribute to establish C. glutamicum as a robust and versatile microbial factory. Results A plasmid based platform named pTGR was created where all the genetic components are flanked by unique restriction sites to both facilitate the evaluation of regulatory sequences and the assembly of constructs for the expression of multiple genes. The approach was validated by using reporter genes to test promoters, ribosome binding sites, and for the assembly of dual gene operons and gene clusters containing two transcriptional units. Combinatorial assembly of promoter (tac, cspB and sod and RBS (lacZ, cspB and sod elements with different strengths conferred clear differential gene expression of two reporter genes, eGFP and mCherry, thus allowing transcriptional “fine-tuning”of multiple genes. In addition, the platform allowed the rapid assembly of operons and genes clusters for co-expression of heterologous genes, a feature that may assist metabolic pathway engineering. Conclusions We anticipate that the pTGR platform will contribute to explore the potential of novel parts to regulate gene expression, and to facilitate the assembly of genetic circuits for metabolic engineering of C

  17. Systems Biology-Driven Hypotheses Tested In Vivo: The Need to Advancing Molecular Imaging Tools. (United States)

    Verma, Garima; Palombo, Alessandro; Grigioni, Mauro; La Monaca, Morena; D'Avenio, Giuseppe


    Processing and interpretation of biological images may provide invaluable insights on complex, living systems because images capture the overall dynamics as a "whole." Therefore, "extraction" of key, quantitative morphological parameters could be, at least in principle, helpful in building a reliable systems biology approach in understanding living objects. Molecular imaging tools for system biology models have attained widespread usage in modern experimental laboratories. Here, we provide an overview on advances in the computational technology and different instrumentations focused on molecular image processing and analysis. Quantitative data analysis through various open source software and algorithmic protocols will provide a novel approach for modeling the experimental research program. Besides this, we also highlight the predictable future trends regarding methods for automatically analyzing biological data. Such tools will be very useful to understand the detailed biological and mathematical expressions under in-silico system biology processes with modeling properties.

  18. Hearing Tests Based on Biologically Calibrated Mobile Devices: Comparison With Pure-Tone Audiometry. (United States)

    Masalski, Marcin; Grysiński, Tomasz; Kręcicki, Tomasz


    Hearing screening tests based on pure-tone audiometry may be conducted on mobile devices, provided that the devices are specially calibrated for the purpose. Calibration consists of determining the reference sound level and can be performed in relation to the hearing threshold of normal-hearing persons. In the case of devices provided by the manufacturer, together with bundled headphones, the reference sound level can be calculated once for all devices of the same model. This study aimed to compare the hearing threshold measured by a mobile device that was calibrated using a model-specific, biologically determined reference sound level with the hearing threshold obtained in pure-tone audiometry. Trial participants were recruited offline using face-to-face prompting from among Otolaryngology Clinic patients, who own Android-based mobile devices with bundled headphones. The hearing threshold was obtained on a mobile device by means of an open access app, Hearing Test, with incorporated model-specific reference sound levels. These reference sound levels were previously determined in uncontrolled conditions in relation to the hearing threshold of normal-hearing persons. An audiologist-assisted self-measurement was conducted by the participants in a sound booth, and it involved determining the lowest audible sound generated by the device within the frequency range of 250 Hz to 8 kHz. The results were compared with pure-tone audiometry. A total of 70 subjects, 34 men and 36 women, aged 18-71 years (mean 36, standard deviation [SD] 11) participated in the trial. The hearing threshold obtained on mobile devices was significantly different from the one determined by pure-tone audiometry with a mean difference of 2.6 dB (95% CI 2.0-3.1) and SD of 8.3 dB (95% CI 7.9-8.7). The number of differences not greater than 10 dB reached 89% (95% CI 88-91), whereas the mean absolute difference was obtained at 6.5 dB (95% CI 6.2-6.9). Sensitivity and specificity for a mobile

  19. Examples of testing global identifiability of biological and biomedical models with the DAISY software. (United States)

    Saccomani, Maria Pia; Audoly, Stefania; Bellu, Giuseppina; D'Angiò, Leontina


    DAISY (Differential Algebra for Identifiability of SYstems) is a recently developed computer algebra software tool which can be used to automatically check global identifiability of (linear and) nonlinear dynamic models described by differential equations involving polynomial or rational functions. Global identifiability is a fundamental prerequisite for model identification which is important not only for biological or medical systems but also for many physical and engineering systems derived from first principles. Lack of identifiability implies that the parameter estimation techniques may not fail but any obtained numerical estimates will be meaningless. The software does not require understanding of the underlying mathematical principles and can be used by researchers in applied fields with a minimum of mathematical background. We illustrate the DAISY software by checking the a priori global identifiability of two benchmark nonlinear models taken from the literature. The analysis of these two examples includes comparison with other methods and demonstrates how identifiability analysis is simplified by this tool. Thus we illustrate the identifiability analysis of other two examples, by including discussion of some specific aspects related to the role of observability and knowledge of initial conditions in testing identifiability and to the computational complexity of the software. The main focus of this paper is not on the description of the mathematical background of the algorithm, which has been presented elsewhere, but on illustrating its use and on some of its more interesting features. DAISY is available on the web site approximately pia/. 2010 Elsevier Ltd. All rights reserved.

  20. Evaluation of Immunoassays and General Biological Indicator Tests for Field Screening of Bacillus anthracis and Ricin

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, Rachel A.; Ozanich, Richard M.; Arce, Jennifer S.; Engelmann, Heather E.; Heredia-Langner, Alejandro; Hofstad, Beth A.; Hutchison, Janine R.; Jarman, Kristin; Melville, Angela M.; Victry, Kristin D.; Bruckner-Lea, Cynthia J.


    The goal of this testing was to evaluate the ability of currently available commercial off-the-shelf (COTS) biological indicator tests and immunoassays to detect Bacillus anthracis (Ba) spores and ricin. In general, immunoassays provide more specific identification of biological threats as compared to indicator tests [3]. Many of these detection products are widely used by first responders and other end users. In most cases, performance data for these instruments are supplied directly from the manufacturer, but have not been verified by an external, independent assessment [1]. Our test plan modules included assessments of inclusivity (ability to generate true positive results), commonly encountered hoax powders (which can cause potential interferences or false positives), and estimation of limit of detection (LOD) (sensitivity) testing.

  1. Space experiment "Cellular Responses to Radiation in Space (CELLRAD)": Hardware and biological system tests (United States)

    Hellweg, Christine E.; Dilruba, Shahana; Adrian, Astrid; Feles, Sebastian; Schmitz, Claudia; Berger, Thomas; Przybyla, Bartos; Briganti, Luca; Franz, Markus; Segerer, Jürgen; Spitta, Luis F.; Henschenmacher, Bernd; Konda, Bikash; Diegeler, Sebastian; Baumstark-Khan, Christa; Panitz, Corinna; Reitz, Günther


    One factor contributing to the high uncertainty in radiation risk assessment for long-term space missions is the insufficient knowledge about possible interactions of radiation with other spaceflight environmental factors. Such factors, e.g. microgravity, have to be considered as possibly additive or even synergistic factors in cancerogenesis. Regarding the effects of microgravity on signal transduction, it cannot be excluded that microgravity alters the cellular response to cosmic radiation, which comprises a complex network of signaling pathways. The purpose of the experiment ;Cellular Responses to Radiation in Space; (CELLRAD, formerly CERASP) is to study the effects of combined exposure to microgravity, radiation and general space flight conditions on mammalian cells, in particular Human Embryonic Kidney (HEK) cells that are stably transfected with different plasmids allowing monitoring of proliferation and the Nuclear Factor κB (NF-κB) pathway by means of fluorescent proteins. The cells will be seeded on ground in multiwell plate units (MPUs), transported to the ISS, and irradiated by an artificial radiation source after an adaptation period at 0 × g and 1 × g. After different incubation periods, the cells will be fixed by pumping a formaldehyde solution into the MPUs. Ground control samples will be treated in the same way. For implementation of CELLRAD in the Biolab on the International Space Station (ISS), tests of the hardware and the biological systems were performed. The sequence of different steps in MPU fabrication (cutting, drilling, cleaning, growth surface coating, and sterilization) was optimized in order to reach full biocompatibility. Different coatings of the foil used as growth surface revealed that coating with 0.1 mg/ml poly-D-lysine supports cell attachment better than collagen type I. The tests of prototype hardware (Science Model) proved its full functionality for automated medium change, irradiation and fixation of cells. Exposure of

  2. A Test of the Relationship between Reading Ability & Standardized Biology Assessment Scores (United States)

    Allen, Denise A.


    Little empirical evidence suggested that independent reading abilities of students enrolled in biology predicted their performance on the Biology I Graduation End-of-Course Assessment (ECA). An archival study was conducted at one Indiana urban public high school in Indianapolis, Indiana, by examining existing educational assessment data to test…

  3. A knowledge base for teaching biology situated in the context of genetic testing

    NARCIS (Netherlands)

    van der Zande, P.A.M.|info:eu-repo/dai/nl/304827363; Waarlo, A.J.|info:eu-repo/dai/nl/074372246; Brekelmans, M.|info:eu-repo/dai/nl/074625411; Akkerman, S.F.|info:eu-repo/dai/nl/217379788; Vermunt, J. D.|info:eu-repo/dai/nl/072262214


    Recent developments in the field of genomics will impact the daily practice of biology teachers who teach genetics in secondary education. This study reports on the first results of a research project aimed at enhancing biology teacher knowledge for teaching genetics in the context of genetic

  4. Sterilization monitoring by biological indicators and conventional swab test of different sterilization processes used in orthodontics: A comparative study

    Directory of Open Access Journals (Sweden)

    Shantanu Khattri


    Full Text Available Introduction: The need of effective sterilization method and their monitoring is necessary. Biological indicators are specific microorganisms with high resistance toward particular sterilization methods. Their processes include steam autoclave, dry heat sterilizer, ethylene oxide sterilizer. This article has considered various methods to monitor the effectiveness of different sterilization methods used in orthodontics. Materials and Methods: The parameters for comparison were the control and experimental instruments utilized in orthodontic treatment. The efficacy of sterilization was evaluated by comparison of bacterial growth obtained in monitoring by biological indicators and swab test method. Results: No spore growth was found when sterilization process was evaluated by biological indicators in comparison to swab test where spore growth was present. Instruments dipped in Bioclenz-G solution for 10 min showed spore growth, but no spore growth was seen in 10 h cycle. Discussion: The result of the study verifies the established effectiveness of biological indicators over conventional swab test method in monitoring various sterilization processes used in orthodontics. Bioclenz-G solution can be used as an effective cold sterilization method for sterilization. Conclusion: For evaluating the effectiveness of sterilization, biological indicators preclude the drawbacks of incomplete verification of destruction of all vegetation and inordinate delay in procurement of results as is the case with chemical indicators and lab culture, respectively.


    Directory of Open Access Journals (Sweden)

    Ruxandra Cretu


    Full Text Available . Some flavonoid compounds- based products were tested in order to evaluate the possible phytotoxic and cytogenetic effects. The tests were done on Triticum aestivum L. (Dropia cultivar. We have analized the following parameters: the germination percent, root and stem growth, fresh and dry weight of root and stem and fresh/dried mass ratio respectively, ana- telophasis frequency from root meristem with chromosomal aberrations. These products includ vegetal extracts of Medicago herba, Glycine semen and Trifolii rubri flos and other vegetal powders.

  6. Biological test methods for the ecotoxicological characterization of wastes. Final report; Biologische Testerverfahren zur oekotoxikologischen Charakterisierung von Abfaellen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Roland [Bundesanstalt fuer Materialforschung, Berlin (Germany); Donnevert, Gerhild [Fachhochschule Giessen-Friedberg (Germany). FB MNI; Roembke, Joerg [ECT Oekotoxikologie GmbH, Floersheim am Main (Germany)


    The ecotoxicological characterization of waste is part of their assessment as hazardous or non-hazardous according to the European Waste List. Despite its transfer into national law in the waste list ordnance 2001 no methodological recommendations have been provided to cover the hazard criterion (H14 ''ecotoxicity'') which was taken over from the legislation on dangerous substances. Based on the recommendations of CEN guideline 14735 (2005), an international ring test was organised by BAM, FH Giessen-Friedberg and ECT GmbH. In total, 67 laboratories from 15 countries participated in the ring test. It was performed with three representative waste types: an ash from an incineration plant mainly contaminated with heavy metals, a soil containing high concentrations of organic contaminants (PAHs) and a preserved wood waste contaminated with copper and other heavy metals. Samples were prepared by BAM (e.g. inter alia dried, sieved and homogenised) and distributed. Parallel to the biological testing the eluates and solid samples were chemically characterized. The basic test battery used in the ring test consisted of three aquatic (Algae test, Daphnia acute test and Microtox test) and three terrestrial (earthworm acute and plant test with two species (oat, rape)) tests. In addition, data were submitted for ten additional tests (five aquatic (including a genotoxicity test) and five terrestrial ones). Almost all tests were performed according to ISO guidelines, providing EC50 values as measurement of toxicity. Data evaluation was done following recent recommendations made by ISO (2002) and Environment Canada (2005). Besides a high number of reference test data, 634 data sets were produced in the basic test battery and 204 data sets in the additional tests. Only few data sets were not acceptable (e.g. due to lack of reference data) and even less results were identified as statistical or biological outliers. For example, in the case of the basic test

  7. Biological monitoring of isocyanates and related amines. III. Test chamber exposure of humans to toluene diisocyanate. (United States)

    Skarping, G; Brorson, T; Sangö, C


    Five men were exposed to toluene diisocyanate (TDI) atmospheres for 7.5 h. The TDI atmospheres were generated by a gas-phase permeation method, and the exposures were performed in an 8-m3 stainless-steel test chamber. The mean air concentration of TDI was ca. 40 micrograms/m3, which corresponds to the threshold limit value (TLV) of Sweden. The inhaled doses of 2,4- and 2,6-TDI were ca. 120 micrograms. TDI in the test chamber air was determined by an HPLC method using the 9-(N-methylaminomethyl)-anthracene reagent and by a continuous-monitoring filter-tape instrument. After hydrolysis of plasma and urine, the related amines, 2,4- and 2,6-toluenediamine 2,4-, and 2,6-TDA), were determined as pentafluoropropionic anhydride (PFPA) derivatives by capillary gas-chromatography using selected ion monitoring (SIM) in the electron-impact mode. The urinary elimination of the TDAs showed a possible biphasic pattern, with rapid first phases for 2,4-TDA (mean t1/2 for the concentration in urine, 1.9 h) and for 2,6-TDA (mean t1/2 for the concentration in urine, 1.6 h). The cumulative amount of 2,4-TDA excreted in urine within 28 h ranged from 8% to 14% of the estimated dose of 2,4-TDI, and the cumulative amount of 2,6-TDA in urine ranged from 14% to 18% of the 2,6-TDI dose. The average urinary level of 2,4-TDA was 5 micrograms/l in the 6 to 8-h sample (range 2.8-9.6 micrograms/l), and the corresponding value for 2,6-TDA was 8.6 micrograms/l (range, 5.6-16.6 micrograms/l). Biological monitoring of exposure to 2,4- and 2,6-TDI by analysis of 2,4- and 2,6-TDA in urine is feasible.

  8. 77 FR 22282 - Draft Guidelines on Biologics Quality Monitoring: Testing for the Detection of Mycoplasma... (United States)


    ... Australia and New Zealand participate in an observer capacity. The World Federation of the Animal Health... interested parties. Mycoplasma contaminants may be introduced into cell culture and in ovo origin biological...

  9. Species detection and abundance using a biosensor - Development and Testing of in-situ Biological Sensors (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Environmental Sample Processor (ESP),, is an autonomous biological sensing system that conducts in situ collection and molecular...

  10. Critique of Test Methodologies for Biological Agent Detection and Identification Systems for Military and First Responders (United States)


    Bacillus cereus and Bacillus thuringiensis (BT). This is of critical importance as these are very common in the soil and the BT is common used to, salt, sugars, detergents, talc, phosphates, cross-reacting organisms ( Bacillus spp), non-toxic material of biological origin (cereal), as...selective detection of biological materials, as illustrated in FIG. 2A and 2B. These are the Sandwich Assay (bacteria/ toxin /virus) and the Charged Complex

  11. The Quality Analysis of Final Examination Test in Biology Education Major

    Directory of Open Access Journals (Sweden)

    Kurnia Ningsih


    Full Text Available The goal to be achieved in this study is to analyze the quality of the exam questions even semester 2015/2016 school year in Biology Education program. This research uses descriptive method. With the object of research about the exam semester even the academic year 2015/2016 in Biology Education program. Exam analyzed amounted to 14 subjects consisting of 81 questions. The instrument used is the documentation of the exam of the semester of the academic year 2015/2016. The data obtained were analyzed by descriptive analysis including data reduction, systematic data presentation, and conclusion drawing. The result of the research shows that the quality of the final exam of the semester of the academic year 2015/2016 in the Biology Education study program is obtained by the low level knowledge aspect of 81.48%, and the high knowledge aspect of 18.52%.

  12. Critical tests for determination of microbiological quality and biological activity in commercial vermicompost samples of different origins. (United States)

    Grantina-Ievina, Lelde; Andersone, Una; Berkolde-Pīre, Dace; Nikolajeva, Vizma; Ievinsh, Gederts


    The aim of the present paper was to show that differences in biological activity among commercially produced vermicompost samples can be found by using a relatively simple test system consisting of microorganism tests on six microbiological media and soilless seedling growth tests with four vegetable crop species. Significant differences in biological properties among analyzed samples were evident both at the level of microbial load as well as plant growth-affecting activity. These differences were mostly manufacturer- and feedstock-associated, but also resulted from storage conditions of vermicompost samples. A mature vermicompost sample that was produced from sewage sludge still contained considerable number of Escherichia coli. Samples from all producers contained several potentially pathogenic fungal species such as Aspergillus fumigatus, Pseudallescheria boidii, Pseudallescheria fimeti, Pseudallescheria minutispora, Scedosporium apiospermum, Scedosporium prolificans, Scopulariopsis brevicaulis, Stachybotrys chartarum, Geotrichum spp., Aphanoascus terreus, and Doratomyces columnaris. In addition, samples from all producers contained plant growth-promoting fungi from the genera Trichoderma and Mortierella. The described system can be useful both for functional studies aiming at understanding of factors affecting quality characteristics of vermicompost preparations and for routine testing of microbiological quality and biological activity of organic waste-derived composts and vermicomposts.

  13. Measuring the Outcome of At-Risk Students on Biology Standardized Tests When Using Different Instructional Strategies (United States)

    Burns, Dana

    Over the last two decades, online education has become a popular concept in universities as well as K-12 education. This generation of students has grown up using technology and has shown interest in incorporating technology into their learning. The idea of using technology in the classroom to enhance student learning and create higher achievement has become necessary for administrators, teachers, and policymakers. Although online education is a popular topic, there has been minimal research on the effectiveness of online and blended learning strategies compared to the student learning in a traditional K-12 classroom setting. The purpose of this study was to investigate differences in standardized test scores from the Biology End of Course exam when at-risk students completed the course using three different educational models: online format, blended learning, and traditional face-to-face learning. Data was collected from over 1,000 students over a five year time period. Correlation analyzed data from standardized tests scores of eighth grade students was used to define students as "at-risk" for failing high school courses. The results indicated a high correlation between eighth grade standardized test scores and Biology End of Course exam scores. These students were deemed "at-risk" for failing high school courses. Standardized test scores were measured for the at-risk students when those students completed Biology in the different models of learning. Results indicated significant differences existed among the learning models. Students had the highest test scores when completing Biology in the traditional face-to-face model. Further evaluation of subgroup populations indicated statistical differences in learning models for African-American populations, female students, and for male students.

  14. Irregular designs and Darwinism in biology: Genomes as the test case

    Indian Academy of Sciences (India)

    B J Rao

    Designs and functions are highly interlinked, perhaps much more so in living rather than in non-living systems. Interestingly, designs are largely non-Euclidian and irregular across several length scales in the biological world. It is intriguing to fathom how irregular shapes, bestowed with high dynamic properties, end up ...

  15. Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing

    NARCIS (Netherlands)

    Marx, Uwe; Andersson, Tommy B; Bahinski, Anthony; Beilmann, Mario; Beken, Sonja; Cassee, Flemming R|info:eu-repo/dai/nl/143038990; Cirit, Murat; Daneshian, Mardas; Fitzpatrick, Susan; Frey, Olivier; Gaertner, Claudia; Giese, Christoph; Griffith, Linda; Hartung, Thomas; Heringa, Minne B; Hoeng, Julia; de Jong, Wim H; Kojima, Hajime; Kuehnl, Jochen; Leist, Marcel; Luch, Andreas; Maschmeyer, Ilka; Sakharov, Dmitry; Sips, Adrienne J A M; Steger-Hartmann, Thomas; Tagle, Danilo A; Tonevitsky, Alexander; Tralau, Tewes; Tsyb, Sergej; van de Stolpe, Anja; Vandebriel, Rob; Vulto, Paul; Wang, Jufeng; Wiest, Joachim; Rodenburg, Marleen; Roth, Adrian


    The recent advent of microphysiological systems - microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro - is envisaged to enable a global paradigm shift in drug development. An extraordinary US governmental initiative and various

  16. The Silicon Trypanosome : A Test Case of Iterative Model Extension in Systems Biology

    NARCIS (Netherlands)

    Achcar, Fiona; Fadda, Abeer; Haanstra, Jurgen R.; Kerkhoven, Eduard J.; Kim, Dong-Hyun; Leroux, Alejandro E.; Papamarkou, Theodore; Rojas, Federico; Bakker, Barbara M.; Barrett, Michael P.; Clayton, Christine; Girolami, Mark; Krauth-Siegel, R. Luise; Matthews, Keith R.; Breitling, Rainer; Poole, RK


    The African trypanosome, Ttypanosoma brucei, is a unicellular parasite causing African Trypanosomiasis (sleeping sickness in humans and nagana in animals). Due to some of its unique properties, it has emerged as a popular model organism in systems biology. A predictive quantitative model of

  17. Study of the genotoxicity of organic extracts from wastewater-irrigated vegetables using in vitro and in vivo biological tests. (United States)

    Gao, Hongxia; Cao, Yanhua; Liu, Yingli; Liu, Nan; Guan, Weijun


    The purpose of this study was to explore genotoxicity due to organic pollutants in wastewater-irrigated vegetables using biological and chemical analyses. Chinese cabbages from wastewater-irrigated farmland were taken as the research object. For the in vitro test, DNA damage was characterized in rat hepatocytes exposed to organic extracts from the cabbages using the comet assay. For the in vivo tests, mice were exposed to organic extracts from the cabbages. DNA damage was assessed in mouse peripheral blood lymphocytes (PBLs), and chromosome damage was assessed in bone marrow cells using the comet assay and micronucleus test, respectively. For the chemical analysis, gas chromatography-mass spectrometry (GC/MS) was used to analyze the organic compounds in the organic vegetable extracts. The in vitro test results showed that the comet tail lengths of the DNA in rat hepatocytes were significantly increased in the group dosed with 0.36 g/ml (P organic content in the organic vegetable extracts from the wastewater-irrigated area (1.355 mg/kg) was significantly higher than the content in the cabbage samples from the clean-water-irrigated area (0.089 mg/kg). This finding indicated that wastewater irrigation can cause organic pollution with genetic toxicity in vegetables. This study also showed that in vivo and in vitro biological tests can reflect the joint toxicity of organic pollutants, and the test results were in accordance with the chemical analysis of the organic pollutant compositions.

  18. Tracer tests and image analysis of biological clogging in a two-dimentsional sandbox experiment

    DEFF Research Database (Denmark)

    Kildsgaard, J.; Engesgaard, Peter Knudegaard


    A two-dimensional flow experiment on biological clogging was carried out by biostimulating a sandbox packed with sand inoculated with bacteria. Biostimulation. consisted of continuously injecting nutrients (acetate and nitrate). Clogging was visualized by frequently carrying out colored tracer...... the main clogged area. Fingers were asymmetric and their dominant direction changed over time. Although the flow field was complex around the main clogged area, the effect on the bulk hydraulic conductivity at the scale of the sandbox was very small....

  19. [Sensitivity and specificity of the RAST (radioallergosorbent test) in biological diagnosis of the hydatidosis (author's transl)]. (United States)

    Sorice, F; Delia, S; Vullo, V; Aceti, A; Ferone, U


    The radioallergosorbent test (RAST) for specific IgE antibodies to Echinococcus granulosus was compared with other immunological methods in regard to sensitivity, specificity and its use as a diagnostic aid for hydatid disease. Sera used were from patients with active hydatidosis proved surgically, from persons operated for hydatidosis during the previous 2-10 years and from patients with other parasitic diseases or healthy subjects. Results with enzyme-immuno assay (ELISA), indirect haemagglutination (IHA), counter-immunoelectrophoresis (CIEP) and skin test were compared with those with RAST. The percentage of positive RAST reactions (81.2%) among the patients with active hydatidosis was slightly lower than the percentage of positive ELISA (90.6%), IHA (90.6%) and skin test (87.5%) and was superior to CIEP (75%). Among the patients with previous hydatidosis, the RAST was negative in 90% of case, whereas other serological tests were positive in a considerable proportion of cases (ELISA test, 80%; IHA test, 40%; CIEP test, 40%; skin test, 60%). A high percentage (50%) of false positive RAST reactions have been observed in sera from patients infested with other parasites. Results indicated that the RAST for IgE antibodies not be used as the only method for diagnosis of hydatidosis, but it may be employed, if serological data obtained before surgery are available for comparison, for evaluate the results of surgery and to clarify the prognosis.

  20. Experimental Work in Biology: Book 1, Food Tests; Book 2, Enzymes; Book 3, Soil. (United States)

    Mackean, D. G.

    Laboratory experiments are presented in these first three manuals of a six-volume series for use at the 12- to 16-year-old, or British CSE, level. On the subject of food tests, 17 exercises are prepared in connection with Biuret reactions, starch and emulsion tests, Millon's and Benedict's reagents, reagent sensitivity, and calorific values and…

  1. Biological testing of sediment for the Olympia Harbor Navigation Improvement Project, 1988: Geoduck, amphipod, and echinoderm bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J.A.; Word, J.Q.; Antrim, L.D.


    The Olympia Harbor Navigation Improvement Project requires the dredging of approximately 330,000 cubic yards (cy) of sediment from the harbor entrance channel and 205,185 cy from the turning basin. Puget Sound Dredged Disposal Analysis (PSDDA) partial characterization studies were used to plan a full sediment characterization in which chemical analyses and biological testing of sediments evaluated the suitability of the dredged material for unconfined, open-water disposal. The US Army Corps of Engineers (COE), Seattle District, contracted with NOAA/NMFS, Environmental Conservation Division, to perform the chemical analysis and Microtox bioassay tests, and with the Battelle/Marine Sciences Laboratory (MSL) in Sequim to perform flow-through solid-phase bioassays utilizing juvenile (8 to 10 mm) geoduck clams, Panopea generosa, and static solid phase bioassays using the phoxocephalid amphipod, Rhepoxynius abronius, developing embryos and gametes of the purple sea urchin, Strongylocentrotus purpuratus, and the larvae of the Pacific oyster Crassostrea gigas. When the results of the biological tests were evaluated under PSDDA guidelines, it was found that all the tested sediment treatments from Olympia Harbor are suitable for unconfined open-water disposal. 14 refs., 12 figs., 3 tabs.

  2. Evaluation of different biological test systems to assess the toxicity of metabolites from fungal biocontrol agents. (United States)

    Skrobek, Anke; Boss, Désirée; Défago, Geneviève; Butt, Tariq M; Maurhofer, Monika


    The development of fungal biocontrol agents (BCAs) as alternatives to chemical pesticides is of increasing public interest. Tools to assess the toxicity of the secondary metabolites that these BCAs produce are often not available or existing methods have not yet been evaluated for these compounds. This study compares five different test systems, which include a representative bacterium, protozoan, arthropod and insect and human cell lines, as regards their sensitivity. It also compares the cost in time and resources for conducting the tests. Pure metabolites and crude extracts from two fungal BCAs as well as two chemical pesticides (hoestar and chlorpyrifos) and the mycotoxin patulin were employed as test compounds. All tests systems proved to be suitable for toxicity studies of metabolites from fungal BCAs and showed different grades of sensitivity to the different substances. The possibility of employing an array of test systems to determine ecotoxicological properties is discussed.

  3. A test of Ockham's razor: implications of conjugated linoleic acid in bone biology. (United States)

    Watkins, Bruce A; Li, Yong; Lippman, Hugh E; Reinwald, Susan; Seifert, Mark F


    The philosopher William of Ockham is recognized for the maxim that an assumption introduced to explain a phenomenon must not be multiplied beyond necessity, or that the simplest explanation is probably the correct explanation. The general truth is that conjugated linoleic acids (CLAs) are nutrients. However, the demonstration that these isomers of octadecadienoic acid protect against cancers in rodents stimulated curiosity that directed significant resources to characterize the biological functions of these fatty acids in cell and animal models. The benefits to human subjects given supplements of CLA were at best modest. The disappointing results in humans should be taken as an opportunity to critically evaluate all findings of CLA use and to consolidate the common actions of this nutrient so that future investigations focus on specific isomers and the most reasonable mechanisms. As such, the principal and consistently reported benefits of CLA have been in improving cancer outcomes, reducing body fat in growing animals, and modulating cell functions. Recognizing where related actions of CLA converge in specific disease conditions and physiologic states is how research efforts should be directed to minimize the pursuit of superfluous theories. Here, we briefly review the current biological effects of CLA and attempt to integrate their potential effect on the physiology and health of the skeletal system. Thus, the purpose of this review is to advance the science of CLA and to identify areas of research in which these nutrients affect bone metabolism and skeletal health.

  4. Dispersed oil toxicity tests with biological species indigenous to the Gulf of Mexico. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fucik, K.W.; Carr, K.A.; Balcom, B.J.


    Static and flowthrough aquatic acute toxicity testing protocols were utilized on eggs and larvae of seven commercially important invertebrates and fishes from the Gulf of Mexico. Test organisms were exposed to Central and Western Gulf oils, dispersed oil, and Corexit 9527. Species included brown shrimp (Penaeus aztecus), white shrimp (Penaeus setiferus), blue crab (Callinectes sapidus), eastern oyster (Crassostrea virginica), red drum (Sciaenops ocellatus), inland silverside (Menidia berylina), and spot (Leiosomus xanthurus). Atlantic menhaden (Brevoortia tyrannus) was also tested because gulf menhaden were not available. Mysids (Mysidopsis bahia) were evaluated as part of a chronic toxicity assessment.

  5. Preparation and antibacterial performance testing of Ag nanoparticles embedded biological materials (United States)

    Li, Xiaoyun; Gao, Guanhui; Sun, Chengjun; Zhu, Yaoyao; Qu, Lingyun; Jiang, Fenghua; Ding, Haibing


    In this study, we developed an environmentally friendly chemistry strategy to synthesize Ag nanoparticles (Ag-NPs) embedded biological material, powdered mussel shell (PMS). With the PMS as scaffolds and surfactant, Ag nanoparticles of controllable size dispersed uniformly on it via liquid chemical reduction approach. Morphologies and characteristics of synthesized Ag-NPs/PMS hybrids were analyzed with TEM, SEM and XPS. Antibacterial properties were investigated with Gram-positive bacteria (Arthrobacter sulfureus (A. sulfureus) YACS14, Staphylococcus aureus (S. aureus)) and Gram-negative bacteria (Vibrio anguillarum (V. anguillarum) MVM425, Escherichia coli (E. coli)). The antimicrobial results illustrated that Ag-NPs/PMS composites have antibacterial effect on both sea water and fresh water bacteria with a better effect on sea water bacteria. The degree of antibacterial effect is directly related to the amount of Ag released from Ag-NPs/PMS.

  6. Biological and analytical variations of 16 parameters related to coagulation screening tests and the activity of coagulation factors. (United States)

    Chen, Qian; Shou, Weiling; Wu, Wei; Guo, Ye; Zhang, Yujuan; Huang, Chunmei; Cui, Wei


    To accurately estimate longitudinal changes in individuals, it is important to take into consideration the biological variability of the measurement. The few studies available on the biological variations of coagulation parameters are mostly outdated. We confirmed the published results using modern, fully automated methods. Furthermore, we added data for additional coagulation parameters. At 8:00 am, 12:00 pm, and 4:00 pm on days 1, 3, and 5, venous blood was collected from 31 healthy volunteers. A total of 16 parameters related to coagulation screening tests as well as the activity of coagulation factors were analyzed; these included prothrombin time, fibrinogen (Fbg), activated partial thromboplastin time, thrombin time, international normalized ratio, prothrombin time activity, activated partial thromboplastin time ratio, fibrin(-ogen) degradation products, as well as the activity of factor II, factor V, factor VII, factor VIII, factor IX, and factor X. All intraindividual coefficients of variation (CVI) values for the parameters of the screening tests (except Fbg) were less than 5%. Conversely, the CVI values for the activity of coagulation factors were all greater than 5%. In addition, we calculated the reference change value to determine whether a significant difference exists between two test results from the same individual. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  7. Development and testing of new biologically-based polymers as advanced biocompatible contact lenses

    Energy Technology Data Exchange (ETDEWEB)

    Bertozzi, Carolyn R.


    Nature has evolved complex and elegant materials well suited to fulfill a myriad of functions. Lubricants, structural scaffolds and protective sheaths can all be found in nature, and these provide a rich source of inspiration for the rational design of materials for biomedical applications. Many biological materials are based in some fashion on hydrogels, the crosslinked polymers that absorb and hold water. Biological hydrogels contribute to processes as diverse as mineral nucleation during bone growth and protection and hydration of the cell surface. The carbohydrate layer that coats all living cells, often referred to as the glycocalyx, has hydrogel-like properties that keep cell surfaces well hydrated, segregated from neighboring cells, and resistant to non-specific protein deposition. With the molecular details of cell surface carbohydrates now in hand, adaptation of these structural motifs to synthetic materials is an appealing strategy for improving biocompatibility. The goal of this collaborative project between Prof. Bertozzi's research group, the Center for Advanced Materials at Lawrence Berkeley National Laboratory and Sunsoft Corporation was the design, synthesis and characterization of novel hydrogel polymers for improved soft contact lens materials. Our efforts were motivated by the urgent need for improved materials that allow extended wear, and essential feature for those whose occupation requires the use of contact lenses rather than traditional spectacles. Our strategy was to transplant the chemical features of cell surface molecules into contact lens materials so that they more closely resemble the tissue in which they reside. Specifically, we integrated carbohydrate molecules similar to those found on cell surfaces, and sulfoxide materials inspired by the properties of the carbohydrates, into hydrogels composed of biocompatible and manufacturable substrates. The new materials were characterized with respect to surface and bulk hydrophilicity

  8. An illusion of hormesis in the Ames test: statistical significance is not equivalent to biological significance. (United States)

    Zeiger, Errol; Hoffmann, George R


    A recent report (Calabrese et al., Mutat. Res. 726 (2011) 91-97) concluded that an analysis of Ames test mutagenicity data provides evidence of hormesis in mutagenicity dose-response relationships. An examination of the data used in this study and the conclusions regarding hormesis reveal a number of concerns regarding the analyses and possible misinterpretations of the Salmonella data. The claim of hormesis is based on test data from the National Toxicology Program using Salmonella strain TA100. Approximately half of the chemicals regarded as hormetic, and the majority of the specific dose-responses identified as hormetic, were actually nonmutagenic. We conclude that the data provide no evidence of hormetic effects. The Ames test is an excellent measure of bacterial mutagenicity, but the numbers of revertant (mutant) colonies on the plate are the result of a complex interaction between mutagenicity and toxicity, which renders the test inappropriate for demonstrating hormesis in bacterial mutagenicity experiments. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. 77 FR 26162 - Amendments to Sterility Test Requirements for Biological Products (United States)


    ... manufacturing process (e.g., intermediate, API, bulk drug substance) instead of the final container material... growth promotion and the strains and number of organisms to be used. The other comment supported the... microorganisms that grow at differing rates so that manufacturers can establish that the test media are capable...

  10. 76 FR 36019 - Amendments to Sterility Test Requirements for Biological Products (United States)


    ...., intermediate, API, bulk drug substance) instead of the final container material, because the final container... test organisms, strains, characteristics, identity, and verification to be used. We propose to... organisms and include microorganisms that grow at differing rates so that manufacturers can establish that...

  11. Chemical and Biological Contamination Survivability (CBCS), Large Item Exteriors. Test Operations Procedure (United States)


    test hypochlorite (HTH, a STB substitute); household bleach solutions (usually a ratio of one part bleach to ten parts water); alcohol - wetted cloth...solid sorbent tubes (SSTs), or equivalent. Gas chromatograph (GC), high-performance liquid chromatography (HPLC), liquid chromatography (LC...Microscopes, swabs or wipes placed in growth medium, automatic colony counters, or equivalent. Microscopes, swabs or wipes placed

  12. Contributions of biological tests and the 4 Ts score in the diagnosis ...

    African Journals Online (AJOL)

    Introduction: Heparin-induced thrombocytopenia (HIT) is an adverse drug reaction caused by antibodies to the heparin/platelet factor 4 (PF4) complexes. HIT diagnosis is challenging and depends on clinical presentation and laboratory tests. We investigated the interest of the combined use of 4 Ts score and the functional ...

  13. The Acid Test for Biological Science: STAP Cells, Trust, and Replication. (United States)

    Lancaster, Cheryl


    In January 2014, a letter and original research article were published in Nature describing a process whereby somatic mouse cells could be converted into stem cells by subjecting them to stress. These "stimulus-triggered acquisition of pluripotency" (STAP) cells were shown to be capable of contributing to all cell types of a developing embryo, and extra-embryonic tissues. The lead author of the publications, Haruko Obokata, became an overnight celebrity in Japan, where she was dubbed the new face of Japanese science. However, in the weeks that followed publication of the research, issues arose. Other laboratories and researchers (including authors on the original papers) found that they were unable to replicate Obokata et al.'s work. Closer scrutiny of the papers by the scientific community also suggested that there was manipulation of images that had been published, and Obokata was accused of misconduct. Those who should have been supervising her work (also her co-authors on the publications) were also heavily criticised. The STAP cell saga of 2014 is used as an example to highlight the importance of trust and replication in twenty-first century biological science. The role of trust in the scientific community is highlighted, and the effects on interactions between science and the public examined. Similarly, this essay aims to highlight the importance of replication, and how this is understood by researchers, the media, and the public. The expected behaviour of scientists in the twenty-first century is now more closely scrutinised.

  14. 1994 Baseline biological studies for the Device Assembly Facility at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, Y.E. [ed.; Woodward, B.D.; Hunter, R.B.; Greger, P.D.; Saethre, M.B.


    This report describes environmental work performed at the Device Assembly Facility (DAF) in 1994 by the Basic Environmental Monitoring and Compliance Program (BECAMP). The DAF is located near the Mojave-Great Basin desert transition zone 27 km north of Mercury. The area immediately around the DAF building complex is a gentle slope cut by 1 to 3 m deep arroyos, and occupied by transitional vegetation. In 1994, construction activities were largely limited to work inside the perimeter fence. The DAF was still in a preoperational mode in 1994, and no nuclear materials were present. The DAF facilities were being occupied so there was water in the sewage settling pond, and the roads and lights were in use. Sampling activities in 1994 represent the first year in the proposed monitoring scheme. The proposed biological monitoring plan gives detailed experimental protocols. Plant, lizard, tortoise, small mammal, and bird surveys were performed in 1994. The authors briefly outline procedures employed in 1994. Studies performed on each taxon are reviewed separately then summarized in a concluding section.

  15. Synthesis and Biological Testing of Novel Glucosylated Epigallocatechin Gallate (EGCG Derivatives

    Directory of Open Access Journals (Sweden)

    Xin Zhang


    Full Text Available Epigallocatechin gallate (EGCG is the most abundant component of green tea catechins and has strong physiological activities. In this study, two novel EGCG glycosides (EGCG-G1 and EGCG-G2 were chemoselectively synthesized by a chemical modification strategy. Each of these EGCG glycosides underwent structure identification, and the structures were assigned as follows: epigallocatechin gallate-4′′-O-β-d-glucopyranoside (EGCG-G1, 2 and epigallocatechin gallate-4′,4′′-O-β-d-gluco-pyranoside (EGCG-G2, 3. The EGCG glycosides were evaluated for their anticancer activity in vitro against two human breast cell lines (MCF-7 and MDA-MB-231 using MTT assays. The inhibition rate of EGCG glycosides (EGCG-G1 and EGCG-G2 is not obvious. The EGCG glycosides are more stable than EGCG in aqueous solutions, but exhibited decreasing antioxidant activity in the DPPH radical-scavenging assay (EGCG > EGCG-G2 > EGCG-G1. Additionally, the EGCG glycosides exhibited increased water solubility: EGCG-G2 and EGCG-G1 were 15 and 31 times as soluble EGCG, respectively. The EGCG glycosides appear to be useful, and further studies regarding their biological activity are in progress.

  16. Hardy-Weinberg equilibrium testing of biological ascertainment for Mendelian randomization studies. (United States)

    Rodriguez, Santiago; Gaunt, Tom R; Day, Ian N M


    Mendelian randomization (MR) permits causal inference between exposures and a disease. It can be compared with randomized controlled trials. Whereas in a randomized controlled trial the randomization occurs at entry into the trial, in MR the randomization occurs during gamete formation and conception. Several factors, including time since conception and sampling variation, are relevant to the interpretation of an MR test. Particularly important is consideration of the "missingness" of genotypes that can be originated by chance, genotyping errors, or clinical ascertainment. Testing for Hardy-Weinberg equilibrium (HWE) is a genetic approach that permits evaluation of missingness. In this paper, the authors demonstrate evidence of nonconformity with HWE in real data. They also perform simulations to characterize the sensitivity of HWE tests to missingness. Unresolved missingness could lead to a false rejection of causality in an MR investigation of trait-disease association. These results indicate that large-scale studies, very high quality genotyping data, and detailed knowledge of the life-course genetics of the alleles/genotypes studied will largely mitigate this risk. The authors also present a Web program ( for estimating possible missingness and an approach to evaluating missingness under different genetic models.

  17. Embracing Biological and Methodological Variance in a New Approach to Pre-Clinical Stroke Testing. (United States)

    Kent, Thomas A; Mandava, Pitchaiah


    High-profile failures in stroke clinical trials have discouraged clinical translation of neuroprotectants. While there are several plausible explanations for these failures, we believe that the fundamental problem is the way clinical and pre-clinical studies are designed and analyzed for heterogeneous disorders such as stroke due to innate biological and methodological variability that current methods cannot capture. Recent efforts to address pre-clinical rigor and design, while important, are unable to account for variability present even in genetically homogenous rodents. Indeed, efforts to minimize variability may lessen the clinical relevance of pre-clinical models. We propose a new approach that recognizes the important role of baseline stroke severity and other factors in influencing outcome. Analogous to clinical trials, we propose reporting baseline factors that influence outcome and then adapting for the pre-clinical setting a method developed for clinical trial analysis where the influence of baseline factors is mathematically modeled and the variance quantified. A new therapy's effectiveness is then evaluated relative to the pooled outcome variance at its own baseline conditions. In this way, an objective threshold for robustness can be established that must be overcome to suggest its effectiveness when expanded to broader populations outside of the controlled environment of the PI's laboratory. The method is model neutral and subsumes sources of variance as reflected in baseline factors such as initial stroke severity. We propose that this new approach deserves consideration for providing an objective method to select agents worthy of the commitment of time and resources in translation to clinical trials.

  18. Trait-based representation of biological nitrification: Model development, testing, and predicted community composition

    Directory of Open Access Journals (Sweden)

    Nick eBouskill


    Full Text Available Trait-based microbial models show clear promise as tools to represent the diversity and activity of microorganisms across ecosystem gradients. These models parameterize specific traits that determine the relative fitness of an ‘organism’ in a given environment, and represent the complexity of biological systems across temporal and spatial scales. In this study we introduce a microbial community trait-based modeling framework (MicroTrait focused on nitrification (MicroTrait-N that represents the ammonia-oxidizing bacteria (AOB and ammonia-oxidizing archaea (AOA and nitrite oxidizing bacteria (NOB using traits related to enzyme kinetics and physiological properties. We used this model to predict nitrifier diversity, ammonia (NH3 oxidation rates and nitrous oxide (N2O production across pH, temperature and substrate gradients. Predicted nitrifier diversity was predominantly determined by temperature and substrate availability, the latter was strongly influenced by pH. The model predicted that transient N2O production rates are maximized by a decoupling of the AOB and NOB communities, resulting in an accumulation and detoxification of nitrite to N2O by AOB. However, cumulative N2O production (over six month simulations is maximized in a system where the relationship between AOB and NOB is maintained. When the reactions uncouple, the AOB become unstable and biomass declines rapidly, resulting in decreased NH3 oxidation and N2O production. We evaluated this model against site level chemical datasets from the interior of Alaska and accurately simulated NH3 oxidation rates and the relative ratio of AOA:AOB biomass. The predicted community structure and activity indicate (a parameterization of a small number of traits may be sufficient to broadly characterize nitrifying community structure and (b changing decadal trends in climate and edaphic conditions could impact nitrification rates in ways that are not captured by extant biogeochemical models.

  19. Effects of activated carbon amended sediment on biological responses in Chironomus riparius multi-generation testing

    Energy Technology Data Exchange (ETDEWEB)

    Nybom, Inna, E-mail:; Abel, Sebastian; Mäenpää, Kimmo; Akkanen, Jarkko


    Highlights: • AC induced secondary effects were dependent on the occurrence of ingestible AC particles. • Morphological changes were seen in TEM figures in Chironomus riparius larvae gut wall. • Retarded growth and development of the Chironomus riparius larvae was observed. • With the smallest particle size AC degreased survival was seen (dosages ≥1% sediment dw). - Abstract: The biological effects of activated carbon (AC) amendments in sediments were studied with the midge Chironomus riparius. The effects on larvae growth were studied using three different AC particles sizes (PAC: 90% <63 μm, MAC: ø 63–200 μm and GAC: ø 420–1700 μm). The long- term effects of MAC were studied in an emergence experiment over two generations (P, F1), together with larvae growth experiment over three generations (P, F1, F2). Retarded growth and development of the larvae were observed in the two smallest particle sizes (PAC and MAC), as well as morphological changes in the gut wall microvilli layer studied from transmission electron micrographs. In addition, at high AC treatments the larvae reaching fourth instar stage were of a smaller size compared to the controls. With PAC treatment AC amendment dosages higher than 1% of sediment dry weight induced mortality. In the emergence experiment there was an indication of a delay in F1 generation emergence. Male dry weight (dw) in P generation was significantly reduced in the 2.5% MAC treatment. The effects of AC amendments were more obvious in the C. riparius larvae compared to the effects seen in emerging adults exposed to AC-amended sediment during the larval stage.

  20. Translating Measures of Biological Aging to Test Effectiveness of Geroprotective Interventions: What Can We Learn from Research on Telomeres?

    Directory of Open Access Journals (Sweden)

    Waylon J. Hastings


    Full Text Available Intervention studies in animals suggest molecular changes underlying age-related disease and disability can be slowed or reversed. To speed translation of these so-called “geroprotective” therapies to prevent age-related disease and disability in humans, biomarkers are needed that can track changes in the rate of human aging over the course of intervention trials. Algorithm methods that measure biological processes of aging from combinations of DNA methylation marks or clinical biomarkers show promise. To identify next steps for establishing utility of these algorithm-based measures of biological aging for geroprotector trials, we considered the history a candidate biomarker of aging that has received substantial research attention, telomere length. Although telomere length possesses compelling biology to recommend it as a biomarker of aging, mixed research findings have impeded clinical and epidemiologic translation. Strengths of telomeres that should be established for algorithm biomarkers of aging are correlation with chronological age across the lifespan, prediction of disease, disability, and early death, and responsiveness to risk and protective exposures. Key challenges in telomere research that algorithm biomarkers of aging must address are measurement precision and reliability, establishing links between longitudinal rates of change across repeated measurements and aging outcomes, and clarity over whether the biomarker is a causal mechanism of aging. These strengths and challenges suggest a research agenda to advance translation of algorithm-based aging biomarkers: establish validity in young-adult and midlife individuals; test responsiveness to exposures that shorten or extend healthy lifespan; and conduct repeated-measures longitudinal studies to test differential rates of change.

  1. Successful lichen translocation on disturbed gypsum areas: A test with adhesives to promote the recovery of biological soil crusts (United States)

    Ballesteros, M.; Ayerbe, J.; Casares, M.; Cañadas, E. M.; Lorite, J.


    The loss of biological soil crusts represents a challenge for the restoration of disturbed environments, specifically in particular substrates hosting unique lichen communities. However, the recovery of lichen species affected by mining is rarely addressed in restoration projects. Here, we evaluate the translocation of Diploschistes diacapsis, a representative species of gypsum lichen communities affected by quarrying. We tested how a selection of adhesives could improve thallus attachment to the substrate and affect lichen vitality (as CO2 exchange and fluorescence) in rainfall-simulation and field experiments. Treatments included: white glue, water, hydroseeding stabiliser, gum arabic, synthetic resin, and a control with no adhesive. Attachment differed only in the field, where white glue and water performed best. Adhesives altered CO2 exchange and fluorescence yield. Notably, wet spoils allowed thalli to bind to the substrate after drying, revealing as the most suitable option for translocation. The satisfactory results applying water on gypsum spoils are encouraging to test this methodology with other lichen species. Implementing these measures in restoration projects would be relatively easy and cost-effective. It would help not only to recover lichen species in the disturbed areas but also to take advantage of an extremely valuable biological material that otherwise would be lost.

  2. Biologic surveys for the Sandia National Laboratories, Coyote Canyon Test Complex, Kirtland Air Force Base, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.M. [4115 Allen Dr., Kingsville, TX (United States); Knight, P.J. [Marron and Associates, Inc., Corrales, NM (United States)


    This report provides results of a comprehensive biologic survey performed in Coyote Canyon Test Complex (CCTC), Sandia National Laboratories (SNL), Bernalillo County, New Mexico, which was conducted during the spring and summer of 1992 and 1993. CCTC is sited on land owned by the Department of Energy (DOE) and Kirtland Air Force Base and managed by SNL. The survey covered 3,760 acres of land, most of which is rarely disturbed by CCTC operations. Absence of grazing by livestock and possibly native ungulates, and relative to the general condition of private range lands throughout New Mexico, and relative to other grazing lands in central New Mexico. Widely dispersed, low intensity use by SNL as well as prohibition of grazing has probably contributed to abundance of special status species such as grama grass cactus within the CCTC area. This report evaluates threatened and endangered species found in the area, as well as comprehensive assessment of biologic habitats. Included are analyses of potential impacts and mitigative measures designed to reduce or eliminate potential impacts. Included is a summary of CCTC program and testing activities.

  3. Developmental Testing of Liquid and Gaseous/Vaporous Decontamination on Bacterial Spores and Other Biological Warfare Agents on Military Relevant Surfaces (United States)


    Vaporous Decontamination on Bacterial Spores and Other Biological Warfare Agents on Military-Relevant Surfaces 5a. CONTRACT NUMBER 5b. GRANT...biological decontamination protocol to analyze the efficacy of liquid and gaseous/vaporous decontaminants on military-relevant surfaces. The...acquisition program, and are not intended for operational testing. 15. SUBJECT TERMS Decontaminant ; spore-forming; vegetative; virus

  4. Determining Biology Student Teachers' Cognitive Structure on the Concept of "Diffusion" through the Free Word-Association Test and the Drawing-Writing Technique (United States)

    Kurt, Hakan; Ekici, Gülay; Aktas, Murat; Aksu, Özlem


    The aim of the current study is to investigate student biology teachers' cognitive structures related to "diffusion" through the free word-association test and the drawing-writing technique. As the research design of the study, the qualitative research method was applied. The data were collected from 44 student biology teachers. The free…

  5. Diagnosis of tetanus immunization status: multicenter assessment of a rapid biological test. (United States)

    Colombet, Isabelle; Saguez, Colette; Sanson-Le Pors, Marie-José; Coudert, Benoît; Chatellier, Gilles; Espinoza, Pierre


    Diagnosis of tetanus immunization status by medical interview of patients with wounds is poor. Many protected patients receive unnecessary vaccine or immunoglobulin, and unprotected patients may receive nothing. The aim of this study is to evaluate the feasibility and accuracy of the Tetanos Quick Stick (TQS) rapid finger prick stick test in the emergency department for determining immunization status. We designed a prospective multicenter study for blinded comparison of TQS with an enzyme-linked immunosorbent assay (ELISA). Adults referred for open wounds in 37 French hospital emergency departments had the TQS after receiving standard care (emergency-TQS). TQS was also performed in the hospital laboratory on total blood (blood/lab-TQS) and serum (serum/lab-TQS). ELISA was performed with the same blood sample at a central laboratory. We assessed concordance between emergency-TQS and blood/lab-TQS by the kappa test and the diagnostic accuracy (likelihood ratios) of medical interview, emergency-TQS, and lab-TQS. ELISA was positive in 94.6% of the 988 patients included. Concordance between blood/emergency-TQS and blood/lab-TQS results was moderate (kappa=0.6), with a high proportion of inconclusive blood/emergency-TQS tests (9.8%). Likelihood ratios for immunization were 3.0 (95% confidence interval [CI], 1.8 to 5.1), 36.6 (95% CI, 5.3 to 255.3), 89.1 (95% CI, 5.6 to 1,405.0), and 92.7 (95% CI, 5.9 to 1,462.0) for medical interview, blood/emergency-TQS, blood/lab-TQS, and serum/lab-TQS, respectively. The sensitivity of the blood/emergency-TQS was 76.7%, and the specificity was 98% by reference to the ELISA. TQS use in the emergency room could make tetanus prevention more accurate if its technical feasibility were improved, and our assessment will be supplemented by a cost effectiveness study.

  6. Biological induced corrosion of materials II: New test methods and experiences from mir station (United States)

    Klintworth, R.; Reher, H. J.; Viktorov, A. N.; Bohle, D.


    During previous long-term manned missions, more than 100 species of microorganisms have been identified on surfaces of materials (bacteria and fungi). Among them were potentially pathogenic ones (saprophytes) which are capable of active growth on artificial substrates, as well as technophilic bacteria and fungi causing damages (destruction and degradation) to various materials (metals and polymers), resulting in failures and disruptions in the functioning of equipment and hardware. Aboard a space vehicle some microclimatic parameters are optimal for microorganism growth: the atmospheric fluid condensate with its specific composition, chemical and/or antropogenic contaminants (human metobolic products, etc.) all are stimulating factors for the development of bacteria and mould fungi on materials of the interior and equipment of an orbital station during its operational phase(s). Especially Russian long-term missions (SALJUT, MIR) have demonstrated that uncontrolled interactions of microorganisms with materials will ultimately lead to the appearence of technological and medical risks, significantly influencing safety and reliability characteristics of individual as well as whole systems and/ or subsystems. For a first conclusion, it could be summarized, that countermeasures and anti-strategies focussing on Microbial Contamination Management (MCM) for the International Space Station (ISS, next long-term manned mission) at least require a new materials test approach. Our respective concept includes a combined age-ing/biocorrosion test sequence. It is represented here, as well as current status of MCM program, e.g. continuous monitoring (microbiological analyses), long-term disinfection, frequent cleaning methods, mathematical modeling of ISS, etc.

  7. Designing and testing a classroom curriculum to teach preschoolers about the biology of physical activity: The respiration system as an underlying biological causal mechanism (United States)

    Ewing, Tracy S.

    The present study examined young children's understanding of respiration and oxygen as a source of vital energy underlying physical activity. Specifically, the purpose of the study was to explore whether a coherent biological theory, characterized by an understanding that bodily parts (heart and lungs) and processes (oxygen in respiration) as part of a biological system, can be taught as a foundational concept to reason about physical activity. The effects of a biology-based intervention curriculum designed to teach preschool children about bodily functions as a part of the respiratory system, the role of oxygen as a vital substance and how physical activity acts an energy source were examined. Participants were recruited from three private preschool classrooms (two treatment; 1 control) in Southern California and included a total of 48 four-year-old children (30 treatment; 18 control). Findings from this study suggested that young children could be taught relevant biological concepts about the role of oxygen in respiratory processes. Children who received biology-based intervention curriculum made significant gains in their understanding of the biology of respiration, identification of physical and sedentary activities. In addition these children demonstrated that coherence of conceptual knowledge was correlated with improved accuracy at activity identification and reasoning about the inner workings of the body contributing to endurance. Findings from this study provided evidence to support the benefits of providing age appropriate but complex coherent biological instruction to children in early childhood settings.

  8. Biocompatible and bioactive nanostructured glass coatings synthesized by pulsed laser deposition: In vitro biological tests

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, A.C.; Sima, F.; Duta, L.; Popescu, C.; Mihailescu, I.N. [National Institute for Lasers, Plasma, and Radiation Physics, PO Box MG-54, RO-77125, Bucharest-Magurele (Romania); Capitanu, D. [S.C. Medical SRL, Nasta Hospital, Bucharest (Romania); Mustata, R.; Sima, L.E.; Petrescu, S.M. [Institute of Biochemistry, Romanian Academy, Splaiul Independentei 296, Bucharest (Romania); Janackovic, D. [Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade (Serbia)


    We report on the synthesis by pulsed laser deposition with a KrF* excimer laser source ({lambda} = 248 nm, {tau} = 25 ns) of bioglass thin films of 6P57 and 6P61 types. Physiology, viability, and proliferation of human osteoblast cells were determined by quantitative in vitro tests performed by flow cytometry on primary osteoblasts cultured on pulsed laser deposited bioglasses. Both types of glass films proved to be appropriate mediums for cell survival and proliferation. In a parallel investigation, cell morphology and adhesion to the surface was studied by fluorescence microscopy and scanning electron microscopy. Strong bonds between the materials and cells were found in both cases, as osteoblast pseudopodes penetrated deep into the material. According to our observations, the 6P57 glass films were superior with respect to viability and proliferation performances.

  9. Operating tests analysis of liquid biologically degradable waste processing by anaerobic fermentation

    Directory of Open Access Journals (Sweden)

    Jiří Fryč


    Full Text Available This study concerns the analysis of operating anaerobic fermentation systems of agricultural biogas station and implementing a suitable system enabling the use of liquid biowaste. Based on the comparison of the technological solutions and operating parameters of specific equipment a system enabling the utilisation of biowaste has been designed. The tests made use of liquid substrates commercially offered to biogas station operators. The study evaluates practical measurements at an agricultural biogas station in order to evaluate the biogas production from these substrates and the efficiency of transforming input material to usable energy. The use of such treated substrates for the anaerobic fermentation technology may have a substantial influence on the volume of dosed energy crops. The mixture of input substrates consisting of liquid cattle excrements, silage corn, liquid food-processing waste, animal waste and glycerine water was experimentally validated. This mixture was compared with the operation using liquid cattle excrements and silage corn. It was concluded that the proposed composition of input raw materials makes it possible to increase the production of biogas and el. power. On the other hand, it was identified that the energy content of the input raw materials is not optimally transformed into usable energy. Therefore, the proposed mixture of input materials with biowaste is not recommended for use.

  10. Determination of MBT-waste reactivity - An infrared spectroscopic and multivariate statistical approach to identify and avoid failures of biological tests. (United States)

    Böhm, K; Smidt, E; Binner, E; Schwanninger, M; Tintner, J; Lechner, P


    The Austrian Landfill Ordinance provides limit values regarding the reactivity for the disposal of mechanically biologically treated (MBT) waste before landfilling. The potential reactivity determined by biological tests according to the Austrian Standards (OENORM S 2027 1-2) can be underestimated if the microbial community is affected by environmental conditions. New analytical tools have been developed as an alternative to error-prone and time-consuming biological tests. Fourier Transform Infrared (FT-IR) spectroscopy in association with Partial Least Squares Regression (PLS-R) was used to predict the reactivity parameters respiration activity (RA(4)) and gas generation sum (GS(21)) as well as to detect errors resulting from inhibiting effects on biological tests. For this purpose 250 MBT-waste samples from different Austrian MBT-plants were investigated using FT-IR spectroscopy in the mid (MIR) and near infrared (NIR) area and biological tests. Spectroscopic results were compared with those from biological tests. Arising problems caused by interferences of RA(4) and GS(21) are discussed. It is shown that FT-IR spectroscopy predicts RA(4) and GS(21) reliably to assess stability of MBT-waste materials and to detect errors. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. The Effects of Individual versus Cooperative Testing in a Flipped Classroom on the Academic Achievement, Motivation toward Science, and Study Time for 9th Grade Biology Students (United States)

    McCall, Megan O'Neill


    This study examined the effects of cooperative testing versus traditional or individual testing and the impacts on academic achievement, motivation toward science, and study time for 9th grade biology students. Research questions centered on weekly quizzes given in a flipped classroom format for a period of 13 weeks. The study used a mixed methods…

  12. Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Paulo Autran Leite; Resende, Cristiane Xavier [Departamento de Ciências de Materiais, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n. Jardim Rosa Elze, São Cristóvão, Sergipe CEP 49000-100 (Brazil); Dulce de Almeida Soares, Glória [Departamento de Ciências de Materiais, Universidade Federal do Rio de Janeiro, Av. Brigadeiro Trompowisk, s/n. Ilha do Fundão, Rio de Janeiro, Rio de Janeiro CEP 21900-000 (Brazil); Anselme, Karine [Institut de Science des Matériaux de Mulhouse (IS2M), CNRS LRC7228, 15, Jean Starcky Street, BP 2488, 68054 Mulhouse cedex (France); Almeida, Luís Eduardo, E-mail: [Departamento de Ciências de Materiais, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n. Jardim Rosa Elze, São Cristóvão, Sergipe CEP 49000-100 (Brazil)


    This work describes the preparation and characterization of porous 3D-scaffolds based on chitosan (CHI), chitosan/silk fibroin (CHI/SF) and chitosan/silk fibroin/hydroxyapatite (CHI/SF/HA) by freeze drying. The biomaterials were characterized by X-ray diffraction, attenuated total reflection Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy and energy dispersive spectroscopy. In addition, studies of porosity, pore size, contact angle and biological response of SaOs-2osteoblastic cells were performed. The CHI scaffolds have a porosity of 94.2 ± 0.9%, which is statistically higher than the one presented by CHI/SF/HA scaffolds, 89.7 ± 2.6%. Although all scaffolds were able to promote adhesion, growth and maintenance of osteogenic differentiation of SaOs-2 cells, the new 3D-scaffold based on CHI/SF/HA showed a significantly higher cell growth at 7 days and 21 days and the level of alkaline phosphatase at 14 and 21 days was statistically superior compared to other tested materials. - Highlights: • Preparation of 3D-scaffolds based on CHI, with or without addition of SF and HA. • Scaffolds exhibited interconnected porous structure (pore size superior to 50 μm). • The tripolyphosphate did not induce any significant cytotoxic response. • The CHI/SF/HA composite showed a higher cell growth and ALP activity.

  13. Physics Characterization of TLD-600 and TLD-700 and Acceptance Testing of New XRAD 160 Biological X-Ray Irradiator (United States)

    Cao, Yanan

    2: Acceptance testing of new X-RAD 160 Biological X-Ray Irradiator. Purpose: An X-RAD 160 Biological X-Ray Irradiator was recently installed at Duke University to serve as a key device for cellular radiobiology research. The purpose of this study is to perform acceptance testing on the new irradiator for operator radiation safety and irradiation specifications. Methods: The acceptance testing included tests of the following components: (1) Leakage radiation survey, (2) Half-value layer (beam quality), (3) Uniformity, (4) KVp accuracy, (5) Exposure at varying mA (linearity of mA), (6) Exposure at varying kVp, (7) Inverse square measurements, (8) Field size measurement, (9) Exposure constancy. The irradiation parameters for each components of first round of acceptance testing performed on September 21, 2012 were: Leakage radiation survey (none, 160 kVp, 18 mA, 200s), Beam quality (40cm, 50-140 kVp in 10 kVp incensement, 1 mA, 10s, none), Uniformity (40cm, 160 kVp, 18 mA, 15s, F1), KVp accuracy (40cm, 50-150 kVp in 10 kVp incensement, 10 mA, 15s, none), Linearity of mA (40cm, 160 kVp, 2-18 mA, 15s, none), Inverse square measurements (20-63cm, 160 kVp, 1mA, 30s, none), Field size measurement (40cm, 160 kVp, 10 mA, 15s, none), Exposure constancy (40cm, 160 kVp, 18 mA, 20s, none). The irradiation parameters for each components for each components of second round of acceptance testing performed on November 18, 2012 were: Beam quality (40cm, 35-150 kVp, 1 mA, 10s, F1), KVp accuracy (40cm, 35-150 kVp, 1 mA, 10s, F1), Variation of kVp (40cm, 160 kVp, 18 mA, 30s, F1), Linearity of mA (40cm, 160 kVp, 1-18 mA, 30s, F1), Uniformity (40cm, 160 kVp, 18 mA, 30s, F1), Inverse square measurements (20-63cm, 160 kVp, 18 mA, 30s, F1). Results: The first round of acceptance testing performed on September 21, 2012 failed due to the fact that the measured exposure along the X-axis was significantly non-uniform; the exposure greatly decreases going in the left direction, which is a clear

  14. Factors in seventh grade academics associated with performance levels on the tenth grade biology end of course test in selected middle and high schools in northwest Georgia (United States)

    Ward, Jennifer Henry

    This study attempted to identify factors in seventh grade academics that are associated with overall success in tenth grade biology. The study addressed the following research questions: Are there significant differences in performance levels in seventh grade Criterion Referenced Competency Test (CRCT) scores in science, math, reading, and language arts associated with performance categories in tenth grade biology End of Course Test (EOCT) and the following demographic variables : gender, ethnicity, socioeconomic status, disability category, and English language proficiency level? Is there a relationship among the categorical variables on the tenth grade biology EOCT and the same five demographic variables? Retrospective causal comparative research was used on a representative sample from the middle schools in three North Georgia counties who took the four CRCTs in the 2006-2007 school year, and took the biology EOCT in the 2009-2010 school year. Chi square was used to determine the relationships of the various demographic variables on three biology EOCT performance categories. Twoway ANOVA determined relationships between the seventh grade CRCT scores of students in the various demographic groups and their performance levels on the biology EOCT. Students' performance levels on the biology EOCT matched their performance levels on the seventh grade CRCTs consistently. Females performed better than males on all seventh grade CRCTs. Black and Hispanic students did worse than White and Asian/Asian Indian students on the math CRCT. Students living in poverty did worse on reading and language arts CRCTs than students who were better off. Special education students did worse on science, reading, and language arts CRCTs than students not receiving special education services. English language learners did worse than native English speakers on all seventh grade CRCTs. These findings suggest that remedial measures may be taken in the seventh grade that could impact

  15. Thermovision registration of defecation and urination in the evaluation of emotional state of experimental biological objects in the open arenas of behavioral tests

    Directory of Open Access Journals (Sweden)

    Datsenko A.V.


    Full Text Available Purpose: to provide a method for detection of boluses defecation and urination spots in the study of the behavior of experimental biological objects in open arenas ethological tests with thermal registration. Material and methods. For identifying and quantifying defecation and urination biological objects using the compact thermal imaging camera FLIR SC 660 (FLIR Systems with a wide-angle lens. Object of study is the laboratory rat. Morphometric parameters determined using image analysis software. Results. When used as a video recording device thermal imaging camera to get an objective, quantitative data on the level of defecation and urination in the study of behavior and emotional state of the experimental evaluation of warm-blooded biological objects in open arenas ethological tests. Recorded boluses defecation and urination spots in the study of the emotional component of the behavior of laboratory rats in the test apparatus «Open field», «Elevated plus maze», «Radial 8-Arm Maze» and «T-maze». Conclusion. Thermal video registration allows visualizing products vegetative urinary and fecal excretion in the dynamics of experimental studies in the evaluation of the psycho-emotional state of biological objects in various open arenas behavioral tests, carried out their detailed morphometric analysis and identify indicators of spatial distribution.

  16. Development and Application of a Two-Tier Diagnostic Test Measuring College Biology Students' Understanding of Diffusion and Osmosis after a Course of Instruction. (United States)

    Odom, Arthur Louis; Barrow, Lloyd H.


    Presents a diagnostic test for measuring college biology students' understanding of diffusion. Three general steps were used: (1) defining the content boundaries; (2) collecting information on students' misconceptions; and (3) instrument development. The split half reliability was 0.74, difficulty indices ranged from 0.23 to 0.95, and the…

  17. Lawrence Livermore National Laboratory Experimental Test Site, Site 300, Biological Review, January 1, 2009 through December 31, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Paterson, Lisa E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, Jim S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The Lawrence Livermore National Laboratory’s (LLNL’s) Environmental Restoration Department (ERD) is required to conduct an ecological review at least every five years to ensure that biological and contaminant conditions in areas undergoing remediation have not changed such that existing conditions pose an ecological hazard (Dibley et al. 2009a). This biological review is being prepared by the Natural Resources Team within LLNL’s Environmental Functional Area (EFA) to support the 2013 five-year ecological review.

  18. Current status and recommendations for the future of research, teaching, and testing in the biological sciences of radiation oncology: report of the American Society for Radiation Oncology Cancer Biology/Radiation Biology Task Force, executive summary. (United States)

    Wallner, Paul E; Anscher, Mitchell S; Barker, Christopher A; Bassetti, Michael; Bristow, Robert G; Cha, Yong I; Dicker, Adam P; Formenti, Silvia C; Graves, Edward E; Hahn, Stephen M; Hei, Tom K; Kimmelman, Alec C; Kirsch, David G; Kozak, Kevin R; Lawrence, Theodore S; Marples, Brian; McBride, William H; Mikkelsen, Ross B; Park, Catherine C; Weidhaas, Joanne B; Zietman, Anthony L; Steinberg, Michael


    In early 2011, a dialogue was initiated within the Board of Directors (BOD) of the American Society for Radiation Oncology (ASTRO) regarding the future of the basic sciences of the specialty, primarily focused on the current state and potential future direction of basic research within radiation oncology. After consideration of the complexity of the issues involved and the precise nature of the undertaking, in August 2011, the BOD empanelled a Cancer Biology/Radiation Biology Task Force (TF). The TF was charged with developing an accurate snapshot of the current state of basic (preclinical) research in radiation oncology from the perspective of relevance to the modern clinical practice of radiation oncology as well as the education of our trainees and attending physicians in the biological sciences. The TF was further charged with making suggestions as to critical areas of biological basic research investigation that might be most likely to maintain and build further the scientific foundation and vitality of radiation oncology as an independent and vibrant medical specialty. It was not within the scope of service of the TF to consider the quality of ongoing research efforts within the broader radiation oncology space, to presume to consider their future potential, or to discourage in any way the investigators committed to areas of interest other than those targeted. The TF charge specifically precluded consideration of research issues related to technology, physics, or clinical investigations. This document represents an Executive Summary of the Task Force report. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Sterilization monitoring by biological indicators and conventional swab test of different sterilization processes used in orthodontics: A comparative study


    Shantanu Khattri; Madhvi Bhardwaj; Sunita Shrivastava


    Introduction: The need of effective sterilization method and their monitoring is necessary. Biological indicators are specific microorganisms with high resistance toward particular sterilization methods. Their processes include steam autoclave, dry heat sterilizer, ethylene oxide sterilizer. This article has considered various methods to monitor the effectiveness of different sterilization methods used in orthodontics. Materials and Methods: The parameters for comparison were the control and ...

  20. Testing Models: A Key Aspect to Promote Teaching Activities Related to Models and Modelling in Biology Lessons? (United States)

    Krell, Moritz; Krüger, Dirk


    This study investigated biology teachers' (N = 148) understanding of models and modelling (MoMo), their model-related teaching activities and relations between the two. A framework which distinguishes five aspects of MoMo in science ("nature of models," "multiple models," "purpose of models," "testing…

  1. A Test of Biological and Behavioral Explanations for Gender Differences in Telomere Length: The Multi-Ethnic Study of Atherosclerosis (United States)



    The purpose of this study was to examine biological and behavioral explanations for gender differences in leukocyte telomere length (LTL), a biomarker of cell aging that has been hypothesized to contribute to women’s greater longevity. Data are from a subsample (n = 851) of the Multi-Ethnic Study of Atherosclerosis, a population-based study of women and men aged 45 to 84. Mediation models were used to examine study hypotheses. We found that women had longer LTL than men, but the gender difference was smaller at older ages. Gender differences in smoking and processed meat consumption partially mediated gender differences in telomere length, whereas gender differences in estradiol, total testosterone, oxidative stress, and body mass index did not. Neither behavioral nor biological factors explained why the gender difference in LTL was smaller at older ages. Longitudinal studies are needed to assess gender differences in the rate of change in LTL over time; to identify the biological, behavioral, and psychosocial factors that contribute to these differences throughout the life course; and to determine whether gender differences in LTL explain the gender gap in longevity. PMID:25343364

  2. A test of biological and behavioral explanations for gender differences in telomere length: the multi-ethnic study of atherosclerosis. (United States)

    Needham, Belinda L; Diez Roux, Ana V; Bird, Chloe E; Bradley, Ryan; Fitzpatrick, Annette L; Jacobs, David R; Ouyang, Pamela; Seeman, Teresa E; Thurston, Rebecca C; Vaidya, Dhananjay; Wang, Steven


    The purpose of this study was to examine biological and behavioral explanations for gender differences in leukocyte telomere length (LTL), a biomarker of cell aging that has been hypothesized to contribute to women's greater longevity. Data are from a subsample (n = 851) of the Multi-Ethnic Study of Atherosclerosis, a population-based study of women and men aged 45 to 84. Mediation models were used to examine study hypotheses. We found that women had longer LTL than men, but the gender difference was smaller at older ages. Gender differences in smoking and processed meat consumption partially mediated gender differences in telomere length, whereas gender differences in estradiol, total testosterone, oxidative stress, and body mass index did not. Neither behavioral nor biological factors explained why the gender difference in LTL was smaller at older ages. Longitudinal studies are needed to assess gender differences in the rate of change in LTL over time; to identify the biological, behavioral, and psychosocial factors that contribute to these differences throughout the life course; and to determine whether gender differences in LTL explain the gender gap in longevity.

  3. Two-stage coal liquefaction process materials from the Wilsonville Facility operated in the nonintegrated and integrated modes: chemical analyses and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.


    This document reports the results from chemical analyses and biological testing of process materials sampled during operation of the Wilsonville Advanced Coal Liquefaction Research and Development Facility (Wilsonville, Alabama) in both the noncoupled or nonintegrated (NTSL Run 241) and coupled or integrated (ITSL Run 242) two-stage liquefaction operating modes. Mutagenicity and carcinogenicity assays were conducted in conjunction with chromatographic and mass spectrometric analyses to provide detailed, comparative chemical and biological assessments of several NTSL and ITSL process materials. In general, the NTSL process materials were biologically more active and chemically more refractory than analogous ITSL process materials. To provide perspective, the NTSL and ITSL results are compared with those from similar testing and analyses of other direct coal liquefaction materials from the solvent refined coal (SRC) I, SRC II and EDS processes. Comparisons are also made between two-stage coal liquefaction materials from the Wilsonville pilot plant and the C.E. Lummus PDU-ITSL Facility in an effort to assess scale-up effects in these two similar processes. 36 references, 26 figures, 37 tables.

  4. The use of mathematical modeling and pilot plant testing to develop a new biological phosphorus and nitrogen removal process

    Energy Technology Data Exchange (ETDEWEB)

    Nolasco, D.A.; Daigger, G.T.; Stafford, D.R.; Kaupp, D.M.; Stephenson, J.P.


    A mechanistic mathematical model for carbon oxidation, nitrogen removal, and enhanced biological phosphorus removal was used to develop the Step Bio-P process, a new biological phosphorus and nitrogen removal process with a step-feed configuration. A 9,000-L pilot plant with diurnally varying influent process loading rates was operated to verify the model results and to optimize the Step Bio-P process for application at the lethbridge, Alberta, Canada, wastewater treatment plant. The pilot plant was operated for 10 months. An automatic on-line data acquisition system with multiple sampling and metering points for dissolved oxygen, mixed liquor suspended solids, ammonia-nitrogen, nitrate-nitrogen, ortho-phosphate, and flow rates was used. A sampling program to obtain off-line data was carried out to verify the information from the on-line system and monitor additional parameters. The on-line and off-line data were used to recalibrate the model, which was used as an experimental design and process optimization tool.

  5. Biological false-positive venereal disease research laboratory test in cerebrospinal fluid in the diagnosis of neurosyphilis - a case-control study. (United States)

    Zheng, S; Lin, R J; Chan, Y H; Ngan, C C L


    There is no clear consensus on the diagnosis of neurosyphilis. The Venereal Disease Research Laboratory (VDRL) test from cerebrospinal fluid (CSF) has traditionally been considered the gold standard for diagnosing neurosyphilis but is widely known to be insensitive. In this study, we compared the clinical and laboratory characteristics of true-positive VDRL-CSF cases with biological false-positive VDRL-CSF cases. We retrospectively identified cases of true and false-positive VDRL-CSF across a 3-year period received by the Immunology and Serology Laboratory, Singapore General Hospital. A biological false-positive VDRL-CSF is defined as a reactive VDRL-CSF with a non-reactive Treponema pallidum particle agglutination (TPPA)-CSF and/or negative Line Immuno Assay (LIA)-CSF IgG. A true-positive VDRL-CSF is a reactive VDRL-CSF with a concordant reactive TPPA-CSF and/or positive LIA-CSF IgG. During the study period, a total of 1254 specimens underwent VDRL-CSF examination. Amongst these, 60 specimens from 53 patients tested positive for VDRL-CSF. Of the 53 patients, 42 (79.2%) were true-positive cases and 11 (20.8%) were false-positive cases. In our setting, a positive non-treponemal serology has 97.6% sensitivity, 100% specificity, 100% positive predictive value and 91.7% negative predictive value for a true-positive VDRL-CSF based on our laboratory definition. HIV seropositivity was an independent predictor of a true-positive VDRL-CSF. Biological false-positive VDRL-CSF is common in a setting where patients are tested without first establishing a serological diagnosis of syphilis. Serological testing should be performed prior to CSF evaluation for neurosyphilis. © 2017 European Academy of Dermatology and Venereology.

  6. Biological terrorism. (United States)

    Moran, Gregory J; Talan, David A; Abrahamian, Fredrick M


    A biological terrorism event could have a large impact on the general population and health care system. The impact of an infectious disaster will most likely be great to emergency departments, and the collaboration between emergency and infectious disease specialists will be critical in developing an effective response. A bioterrorism event is a disaster that requires specific preparations beyond the usual medical disaster planning. An effective response would include attention to infection control issues and plans for large-scale vaccination or antimicrobial prophylaxis. This article addresses some general issues related to preparing an effective response to a biological terrorism event. It will also review organisms and toxins that could be used in biological terrorism, including clinical features, management, diagnostic testing, and infection control.

  7. [Possibilities of testing the biological acceptability of composite filling materials, with special reference to the microscopic test for pulp vitality. Review of the literature]. (United States)

    Nyárasdy, I


    The main problem of microscopically observing the living pulpa consists in that it lies embedded into hard tissue. The haemodynamics of the pulpa may be defined by studying the physical parameters by examining the characteristics of blood flow and by the factors determining them. By comparison with other tissues little work is dealing with regulating the blood flow. The vital microscopic model of the rat incisor pulpa was first employed by Gängler to testing dental filling materials. The results thereof well complete the findings of standardized tests. On basis of the foregoing the sublining in case of clinical employment of composite filling materials is unconditionally suggested.

  8. Biological safety of water-soluble fullerenes evaluated using tests for genotoxicity, phototoxicity, and pro-oxidant activity. (United States)

    Aoshima, Hisae; Yamana, Shuichi; Nakamura, Shigeo; Mashino, Tadahiko


    We evaluated the safety of water-soluble polymer-enwrapped fullerenes (PVP/fullerenes) as antioxidants in cosmetic and pharmaceutical preparations by studying the genotoxicity, phototoxicity, and pro-oxidant effects of these fullerenes. These materials were not mutagenic to any of the tested bacterial strains and did not induce chromosomal aberrations in cultured mammalian cells. The PVP/fullerenes did not exhibit cytotoxicity under ultraviolet or sham irradiation in the alternative phototoxicity test. Moreover, they did not show any pro-oxidant effect in the presence of Fe(2+) or Cu(2+). Thus, we concluded that PVP/fullerenes are safe for use in cosmetic and pharmaceutical applications. This is the first study in which toxicity tests were performed on PVP/fullerenes.

  9. Test

    DEFF Research Database (Denmark)

    Bendixen, Carsten


    Bidrag med en kortfattet, introducerende, perspektiverende og begrebsafklarende fremstilling af begrebet test i det pædagogiske univers.......Bidrag med en kortfattet, introducerende, perspektiverende og begrebsafklarende fremstilling af begrebet test i det pædagogiske univers....

  10. Geochemical and biological impacts on trace and minor element incorporation in foraminiferal test carbonate. Geologica Ultraiectina (320)

    NARCIS (Netherlands)

    Dueñas Bohórquez, A.D.B.


    Since the beginning of the industrial revolution, massive release of CO2 has affected both global climate and ocean chemistry. To predict future impacts, mankind relies on numerical modeling of the Earth system. To test whether such models reliably describe climate and ocean change as a function of

  11. Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. (United States)

    Moreau, Corrie S; Bell, Charles D


    Ants are one of the most ecologically and numerically dominant group of terrestrial organisms with most species diversity currently found in tropical climates. Several explanations for the disparity of biological diversity in the tropics compared to temperate regions have been proposed including that the tropics may act as a "museum" where older lineages persist through evolutionary time or as a "cradle" where new species continue to be generated. We infer the molecular phylogenetic relationships of 295 ant specimens including members of all 21 extant subfamilies to explore the evolutionary diversification and biogeography of the ants. By constraining the topology and age of the root node while using 45 fossils as minimum constraints, we converge on an age of 139-158 Mya for the modern ants. Further diversification analyses identified 10 periods with a significant change in the tempo of diversification of the ants, although these shifts did not appear to correspond to ancestral biogeographic range shifts. Likelihood-based historical biogeographic reconstructions suggest that the Neotropics were important in early ant diversification (e.g., Cretaceous). This finding coupled with the extremely high-current species diversity suggests that the Neotropics have acted as both a museum and cradle for ant diversity. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  12. Characteristics of Twenty-Nine Aerosol Samplers Tested at U.S. Army Edgewood Chemical Biological Center (2000-2006) (United States)


    polycarbonate membrane type collection filter. The filter where particles are collected is contained on a reel, which automatically advances to the...wetted wall cyclone (or a contactor ) for aerosol collection. The sampler is packaged in a suitcase with a handle for easy carrying. This test was started...wall cyclone ( contactor ). Air enters the contactor through two narrow slits. The unit retains the water in the contactor and does not produce a

  13. Development of Mouse Models of Ovarian Cancer for Studying Tumor Biology and Testing Novel Molecularly Targeted Therapeutic Strategies (United States)


    Fonseca BD, Sonenberg N. Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim Biophys Acta 2010;1804:433–9. 22. Chen XG, Liu F, Song XF...FROM THE RESEARCH EFFORT: Kathleen R. Cho (Initiating PI) Yali Zhai (Research Investigator, Cho Laboratory) Rong Wu (Research Assistant Professor...Clin Cancer Res Rong Wu, Tom C. Hu, Alnawaz Rehemtulla, et al. Mouse Model of Ovarian Endometrioid Adenocarcinoma Preclinical Testing of PI3K/AKT

  14. Insecticidal and biological effects of three plant extracts tested against the dengue vector, Stegomyia agyptii (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    R. Kokila


    Full Text Available Development of resistant in vectors especially vector mosquitoes are becoming a challenge for the scientific community for management and control mosquito population. Vector mosquitoes are likely to withstand toxicity and develop resistant mechanism to single active compound hence, combining medicinal plants with rich active compounds stops resistant development and proliferation of mosquitoes. In this study we put effort to evaluate the effect of methanol extract of Tagetes patula, Clerodentron phillomedis, and Catharanthus roseus in individual and in combination against the dengue vector, Stegomyia agyptii. Lethal concentrations (LC50 and LC90 were calculated to find out the effect of the test plants in individual and in combination. T. patula extract showed vaguely higher mortality rate when compared to C. phillomedis, and C. roseus but there was no significant variation among the three test plants. The median LC of combined treatment showed a significant difference between the combined (2.25 µg/mL/3rd instar and individual treatment (6.41 µg/mL/3rd instar for T. patula, 6.85 µg/mL/3rd instar for C. phillomedis and 6.59 µg/mL/3rd instar for C. roseus. The combined efficacy of three test plants was also effective in controlling vector mosquitoes at fields with different agro-climatic conditions. The study proves that the combination of T. patula, C. phillomedis, and C. roseus is effective in different field conditions at lower concentrations.

  15. The Effects of Individual Versus Cooperative Testing in a Flipped Classroom on the Academic Achievement, Motivation Toward Science, and Study Time for 9th Grade Biology Students (United States)

    McCall, Megan O'Neill

    This study examined the effects of cooperative testing versus traditional or individual testing and the impacts on academic achievement, motivation toward science, and study time for 9th grade biology students. Research questions centered on weekly quizzes given in a flipped classroom format for a period of 13 weeks. The study used a mixed methods research design, which combined quantitative and qualitative data collection techniques. The study examined 66 students enrolled in three sections of a 9 th grade biology course at a private K-12 school. Students were randomly assigned to groups of three or four students. Weekly quizzes on regularly assigned curriculum material were provided from the flipped classroom videos. Six quizzes were randomly selected for each class to be in the cooperative testing format and six quizzes were randomly selected to be given individually or traditional-style testing format. Week 7 was reserved for administration of the mid-study questionnaire and no quiz was administered. Quantitative data collected included student grades on the 12 weekly quizzes. Qualitative data were also collected from pre-study, mid-study, and post-study questionnaires as well as semi-structured individual interviews and one focus group. Cooperative testing groups scored higher on the quizzes than when students took quizzes as individuals for five of the nine quizzes analyzed. Students did not score significantly higher than the best scorer in groups taking quizzes individually. For one quiz, the best scorer did better than the cooperative groups. Overall, cooperatively tested groups in some cases scored higher than the average of groups taking the quizzes individually, but the impact was not consistent across all quiz weeks. Difficulty level of the material, contextual factors, and ceiling effects are among potential explanations of the inconsistent outcomes. Across the study, motivation toward science stayed the same or increased depending on the aspect of

  16. The 1993 baseline biological studies and proposed monitoring plan for the Device Assembly Facility at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, B.D.; Hunter, R.B.; Greger, P.D.; Saethre, M.B.


    This report contains baseline data and recommendations for future monitoring of plants and animals near the new Device Assembly Facility (DAF) on the Nevada Test Site (NTS). The facility is a large structure designed for safely assembling nuclear weapons. Baseline data was collected in 1993, prior to the scheduled beginning of DAF operations in early 1995. Studies were not performed prior to construction and part of the task of monitoring operational effects will be to distinguish those effects from the extensive disturbance effects resulting from construction. Baseline information on species abundances and distributions was collected on ephemeral and perennial plants, mammals, reptiles, and birds in the desert ecosystems within three kilometers (km) of the DAF. Particular attention was paid to effects of selected disturbances, such as the paved road, sewage pond, and the flood-control dike, associated with the facility. Radiological monitoring of areas surrounding the DAF is not included in this report.

  17. Testing biological hypotheses with embodied robots: adaptations, accidents, and by-products in the evolution of vertebrates

    Directory of Open Access Journals (Sweden)

    Sonia F Roberts


    Full Text Available Evolutionary robotics allows biologists to test hypotheses about extinct animals. We modeled some of the first vertebrates, jawless fishes, in order to study the evolution of the trait after which vertebrates are named: vertebrae. We tested the hypothesis that vertebrae are an adaptation for enhanced feeding and fleeing performance. We created a population of autonomous embodied robots, Preyro, in which the number of vertebrae, N, were free to evolve. In addition, two other traits, the span of the caudal fin, b, and the predator detection threshold, ζ, a proxy for the lateral line sensory system, were also allowed to evolve. These three traits were chosen because they evolved early in vertebrates, are all potentially important in feeding and fleeing, and vary in form among species. Preyro took on individual identities in a given generation as defined by the population’s six diploid genotypes, Gi. Each Gi was a 3-tuple, with each element an integer specifying N, b, and, ζ. The small size of the population allowed for genetic drift to operate in concert with random mutation and mating; the presence of these mechanisms of chance provided an opportunity for N to evolve by accident. The presence of three evolvable traits provided an opportunity for direct selection on b and/or ζ to evolve N as a by-product linked trait correlation. In selection trials, different Gi embodied in Preyro attempted to feed at a light source and then flee to avoid a predator robot in pursuit. The fitness of each Gi was calculated from five different types of performance: speed, acceleration, distance to the light, distance to the predator, and the number of predator escapes initiated. In each generation, we measured the selection differential, the selection gradient, the strength of chance, and the indirect correlation selection gradient. These metrics allowed us to understand the relative contributions of the three mechanisms: direct selection, chance, and indirect

  18. Biological Variation of Chloride and Sodium in Sweat Obtained by Pilocarpine Iontophoresis in Adults: How Sure are You About Sweat Test Results? (United States)

    Willems, Philippe; Weekx, Steven; Meskal, Anissa; Schouwers, Sofie


    The measurement of chloride and sodium concentrations in sweat is an important test for the diagnosis of cystic fibrosis (CF). The aim of this study was to assess the analytical variation (CV A ) and within-subject (CV I ) and between-subject (CV G ) biological variation of chloride and sodium concentrations in sweat, collected by pilocarpine iontophoresis and to determine their effect on the clinical interpretation of sweat test results. Twelve Caucasian adults (six male and six female) without symptoms suggestive for CF and with a mean age of 41 years (range 28-59) were included in the study. At least eight samples of sweat were collected from each individual by pilocarpine iontophoresis. Chloride and sodium concentrations were measured in duplicate for each sample using ion selective electrodes. After the removal of outliers, the CV A , CV I , and CV G of chloride and sodium were determined, and their impact on measurement uncertainty and reference change value were calculated. The CV A , CV I , and CV G of chloride in sweat samples were 6.5, 17.7, and 47.2%, respectively. The CV A , CV I , and CV G of sodium sweat samples were 6.0, 17.5, and 42.6%, respectively. Our study indicates that sweat chloride and sodium concentration results must be interpreted with great care. Different components of variation, particularly the biological variations, have a considerable impact on the interpretation of these results. If no pre-analytical, analytical, or post-analytical errors are suspected, repeated sweat testing to confirm first-measurement results might not be desirable.

  19. Analysis of production tests in processing the mixture of solid and liquid biologically degradable wastes by anaerobic fermentation

    Directory of Open Access Journals (Sweden)

    Jiří Fryč


    Full Text Available This study concerns the analysis of operating anaerobic fermentation systems of agricultural biogas station and implementing a suitable system enabling the use of a mixture of solid and liquid biowaste. The tests made use of liquid substrates commercially offered to biogas station operators. The study evaluates practical measurements at an agricultural biogas station in order to evaluate the biogas production from these substrates and the efficiency of transforming input material to usable energy. The use of such treated substrates for the anaerobic fermentation technology may have a substantial influence on the volume of dosed energy crops. The mixture of input substrates consisting of liquid cattle excrements, silage corn, solid and liquid waste from food processing, animal waste and glycerine water was experimentally validated. This mixture was compared with the operation using liquid cattle excrements and silage corn. It was concluded that the proposed composition of input raw materials makes it possible to increase the production of biogas and el. power. On the other hand, it was identified that the energy content of the input raw materials is not optimally transformed into usable energy. This is why the proposed mixture of input materials with biowaste is not recommended for use at the used proportion.

  20. Does morality have a biological basis? An empirical test of the factors governing moral sentiments relating to incest. (United States)

    Lieberman, Debra; Tooby, John; Cosmides, Leda


    Kin-recognition systems have been hypothesized to exist in humans, and adaptively to regulate altruism and incest avoidance among close genetic kin. This latter function allows the architecture of the kin recognition system to be mapped by quantitatively matching individual variation in opposition to incest to individual variation in developmental parameters, such as family structure and co-residence patterns. Methodological difficulties that appear when subjects are asked to disclose incestuous inclinations can be circumvented by measuring their opposition to incest in third parties, i.e. morality. This method allows a direct test of Westermarck's original hypothesis that childhood co-residence with an opposite-sex individual predicts the strength of moral sentiments regarding third-party sibling incest. Results support Westermarck's hypothesis and the model of kin recognition that it implies. Co-residence duration objectively predicts genetic relatedness, making it a reliable cue to kinship. Co-residence duration predicts the strength of opposition to incest, even after controlling for relatedness and even when co-residing individuals are genetically unrelated. This undercuts kin-recognition models requiring matching to self (through, for example, major histocompatibility complex or phenotypic markers). Subjects' beliefs about relatedness had no effect after controlling for co-residence, indicating that systems regulating kin-relevant behaviours are non-conscious, and calibrated by co-residence, not belief.

  1. Effects of Activated Carbon on PCB Bioaccumulation and Biological Responses of Chironomus riparius in Full Life Cycle Test. (United States)

    Nybom, Inna; Abel, Sebastian; Waissi, Greta; Väänänen, Kristiina; Mäenpää, Kimmo; Leppänen, Matti T; Kukkonen, Jussi V K; Akkanen, Jarkko


    The nonbiting midge Chironomus riparius was used to study the remediation potential and secondary effects of activated carbon (AC, ø 63-200 μm) in PCB contaminated sediments. AC amendments efficiently reduced PCB bioavailability determined by Chironomus riparius bioaccumulation tests and passive samplers. PCBs were shown to transfer from larvae to adults. Lower PCB concentrations were observed in adult midges emerging from AC amended compared to unamended sediments. Increased reproduction, survival, larval growth and gut wall microvilli length were observed with low AC dose (0.5% sediment dw) compared to unamended sediment, indicating an improved success of larvae in the sediment with low organic carbon content. On the other hand, higher AC doses (2.5% sediment dw) caused adverse effects on emergence and larval development. In addition, morphological changes in the gut wall microvilli layer were observed. This study showed that the secondary effects of AC amendments are dependent on the dose and the sediment characteristics. Metamorphic species, such as C. riparius, may act as a vector for organic pollutants from aquatic to terrestrial ecosystems and according to this study the AC amendments may reduce this transport.

  2. DNA damage-induced transcriptional program in CLL: biological and diagnostic implications for functional p53 testing. (United States)

    Mohr, Julia; Helfrich, Hanne; Fuge, Maxi; Eldering, Eric; Bühler, Andreas; Winkler, Dirk; Volden, Matthias; Kater, Arnon P; Mertens, Daniel; Te Raa, Doreen; Döhner, Hartmut; Stilgenbauer, Stephan; Zenz, Thorsten


    The DNA damage pathway plays a central role in chemoresistance in chronic lymphocytic leukemia (CLL), as indicated by the prognostic impact of TP53 and ATM loss/mutations. We investigated the function of the p53 axis in primary CLL samples by studying p53 and p21 responses to irradiation by FACS and RT-PCR. We observed a distinct response pattern for most cases with a 17p deletion (n = 16) or a sole TP53 mutation (n = 8), but not all cases with a p53 aberration were detected based on a number of different assays used. Samples with a small clone with a TP53 mutation remained undetected in all assays. Only 1 of 123 cases showed high expression of p53, which is suggestive of p53 aberration without proof of mutation of TP53. Samples with an 11q deletion showed a heterogeneous response, with only 13 of 30 showing an abnormal response based on cutoff. Nevertheless, the overall induction of p53 and p21 was impaired, suggesting a gene-dosage effect for ATM in the 11q-deleted samples. The detectability of p53 defects is influenced by clonal heterogeneity and sample purity. Functional assays of p53 defects will detect a small number of cases not detectable by FISH or TP53 mutational analysis. The clinical utility of functional p53 testing will need to be derived from clinical trials.

  3. Effects of degraded sensory input on memory for speech: Behavioral data and a test of biologically constrained computational models (United States)

    Piquado, Tepring; Cousins, Katheryn A.Q.; Wingfield, Arthur; Miller, Paul


    Poor hearing acuity reduces memory for spoken words, even when the words are presented with enough clarity for correct recognition. An "effortful hypothesis" suggests that the perceptual effort needed for recognition draws from resources that would otherwise be available for encoding the word in memory. To assess this hypothesis, we conducted a behavioral task requiring immediate free recall of word-lists, some of which contained an acoustically masked word that was just above perceptual threshold. Results show that masking a word reduces the recall of that word and words prior to it, as well as weakening the linking associations between the masked and prior words. In contrast, recall probabilities of words following the masked word are not affected. To account for this effect we conducted computational simulations testing two classes of models: associative linking models and short-term memory buffer models. Only a model that integrated both contextual linking and buffer components matched all of the effects of masking observed in our behavioral data. In this Linking-Buffer model, the masked word disrupts a short-term memory buffer, causing associative links of words in the buffer to be weakened, affecting memory for the masked word and the word prior to it, while allowing links of words following the masked word to be spared. We suggest that these data account for the so-called "effortful hypothesis", where distorted input has a detrimental impact on prior information stored in short-term memory. PMID:20875801

  4. Testing of conductivity/calcium and rubidium/strontium ratios as indicators of the chemical stability of a river: comparison with a biological indicator. (United States)

    Nirel, P M V; Lazzarotto, J


    It is customary to detect pollution in a water flow by monitoring the increase of sensitive elements concentrations (NH4+, PO4(3-), NO3-...). However, concentrations are dependent on the flow rate and these compounds are not conservative, implying a concentration decrease downstream leading to false negative diagnosis of pollution impact. The use of elemental ratios of conservative compounds should diminish these pitfalls. We then thought of the chi/Ca (conductivity/calcium) and Rb/Sr (rubidium/strontium) ratios as water chemical stability indicators to clearly identify and discriminate point from diffuse pollutions. This hypothesis has been tested on 12 brooks located in the basin of Lake Geneva, during 2 hydrological years. The results were compared to the observed land use of the watershed and a biological indicator: the Pollution Sensitivity Index (PSI). The PSI is calculated from diatom taxonomy and evaluates biological quality with a grade ranging from 0 to 20 (bad to excellent). The main results of the research can be summarized as follows. The pollution signal is observable far downstream of the pollution site. Both chi/Ca and Rb/Sr ratios are water quality indicators expressing the stability of water chemistry. They can both be used to detect diffuse and point pollution impact. These indicators provide complementary information: chi/Ca variations increase in case of point pollution; Rb/Sr variations increase when diffuse pollutions occur. The results obtained with the indicators chi/Ca and Rb/Sr agree with biological indicator and observation of the land use. chi/Ca and Rb/Sr ratios represent important tools to identify and discriminate point source pollution from diffuse pollution.

  5. Assessing the cytotoxic and mutagenic effects of secondary metabolites produced by several fungal biological control agents with the Ames assay and the VITOTOX(®) test. (United States)

    Kouvelis, Vassili N; Wang, Chengshu; Skrobek, Anke; Pappas, Katherine M; Typas, Milton A; Butt, Tariq M


    The potential genotoxic effects of several pure secondary metabolites produced by fungi used as biological control agents (BCAs) were studied with the Ames Salmonella/microsome mutagenicity assay and the Vitotox test, with and without metabolic activation. A complete set of Salmonella tester strains was used to avoid false negative results. To detect possible mutagenic and/or cytotoxic effects of fungal secondary metabolites due to synergistic action, crude extracts and fungal cell extracts of the BCAs were also examined. Although the sensitivity of the methods varied depending on the metabolite used, clearly no genotoxicity was observed in all cases. The results of the two assays are discussed in the light of being used in a complementary fashion for a convincing risk-assessment evaluation of fungal BCAs and their secondary metabolites. 2011 Elsevier B.V. All rights reserved.

  6. Human procollagen type I surface-modified PHB-based non-woven textile scaffolds for cell growth: preparation and short-term biological tests. (United States)

    Kawalec, Michał; Sitkowska, Anna; Sobota, Michał; Sieroń, Aleksander L; Komar, Patrycja; Kurcok, Piotr


    3D fine porous structures obtained by electrospinning a poly[(R,S)-3-hydroxybutyrate] (aPHB)/ poly[(R)-3-hydroxybutyrate] (PHB) (85/15 w/w) blend were successfully modified with human procollagen type I by simple immersion of the polyester scaffold in an aqueous solution of the protein. Effective modification of the scaffold with human procollagen I was confirmed by an immunodetection test, which revealed the presence of the procollagen type I as an outer layer even on inner structures of the porous matrixes. Biological tests of 3D fabrics made of the PHB blend provide support for the adhesion and proliferation of human fibroblasts, while their modification with procollagen type I increased the biocompatibility of the final scaffolds significantly, as shown by the notable increase in the number of attached cells during the early hours of their incubation. Based on these findings, human procollagen type I surface-modified aPHB/PHB scaffolds should be considered a promising material in regenerative medicine.

  7. Using biological and physico-chemical test methods to assess the role of concrete mixture design in resistance to microbially induced corrosion (United States)

    House, Mitchell Wayne

    Concrete is the most widely used material for construction of wastewater collection, storage, and treatment infrastructure. The chemical and physical characteristics of hydrated portland cement make it susceptible to degradation under highly acidic conditions. As a result, some concrete wastewater infrastructure may be susceptible to a multi-stage degradation process known as microbially induced corrosion, or MIC. MIC begins with the production of aqueous hydrogen sulfide (H2S(aq)) by anaerobic sulfate reducing bacteria present below the waterline. H2S(aq) partitions to the gas phase where it is oxidized to sulfuric acid by the aerobic sulfur oxidizing bacteria Thiobacillus that resides on concrete surfaces above the waterline. Sulfuric acid then attacks the cement paste portion of the concrete matrix through decalcification of calcium hydroxide and calcium silica hydrate coupled with the formation of expansive corrosion products. The attack proceeds inward resulting in reduced service life and potential failure of the concrete structure. There are several challenges associated with assessing a concrete's susceptibility to MIC. First, no standard laboratory tests exist to assess concrete resistance to MIC. Straightforward reproduction of MIC in the laboratory is complicated by the use of microorganisms and hydrogen sulfide gas. Physico-chemical tests simulating MIC by immersing concrete specimens in sulfuric acid offer a convenient alternative, but do not accurately capture the damage mechanisms associated with biological corrosion. Comparison of results between research studies is difficult due to discrepancies that can arise in experimental methods even if current ASTM standards are followed. This thesis presents two experimental methods to evaluate concrete resistance to MIC: one biological and one physico-chemical. Efforts are made to address the critical aspects of each testing method currently absent in the literature. The first method presented is a new test

  8. Screening biological stains with qPCR versus lateral flow immunochromatographic test strips: a quantitative comparison using analytical figures of merit. (United States)

    Oechsle, Crystal Simson; Haddad, Sandra; Sgueglia, Joanne B; Grgicak, Catherine M


    Biological fluid identification is an important facet of evidence examination in forensic laboratories worldwide. While identifying bodily fluids may provide insight into which downstream DNA methods to employ, these screening techniques consume a vital portion of the available evidence, are usually qualitative, and rely on visual interpretation. In contrast, qPCR yields information regarding the amount and proportion of amplifiable genetic material. In this study, dilution series of either semen or male saliva were prepared in either buffer or female blood. The samples were subjected to both lateral flow immunochromatographic test strips and qPCR analysis. Analytical figures of merit-including sensitivity, minimum distinguishable signal (MDS) and limit of detection (LOD)-were calculated and compared between methods. By applying the theory of the propagation of random errors, LODs were determined to be 0.05 μL of saliva for the RSID™ Saliva cards, 0.03 μL of saliva for Quantifiler(®) Duo, and 0.001 μL of semen for Quantifiler(®) Duo. In conclusion, quantitative PCR was deemed a viable and effective screening method for subsequent DNA profiling due to its stability in different matrices, sensitivity, and low limits of detection. © 2013 American Academy of Forensic Sciences.

  9. Multilevel correlations in the biological phosphorus removal process: From bacterial enrichment to conductivity-based metabolic batch tests and polyphosphatase assays. (United States)

    Weissbrodt, David G; Maillard, Julien; Brovelli, Alessandro; Chabrelie, Alexandre; May, Jonathan; Holliger, Christof


    Enhanced biological phosphorus removal (EBPR) from wastewater relies on the preferential selection of active polyphosphate-accumulating organisms (PAO) in the underlying bacterial community continuum. Efficient management of the bacterial resource requires understanding of population dynamics as well as availability of bioanalytical methods for rapid and regular assessment of relative abundances of active PAOs and their glycogen-accumulating competitors (GAO). A systems approach was adopted here toward the investigation of multilevel correlations from the EBPR bioprocess to the bacterial community, metabolic, and enzymatic levels. Two anaerobic-aerobic sequencing-batch reactors were operated to enrich activated sludge in PAOs and GAOs affiliating with "Candidati Accumulibacter and Competibacter phosphates", respectively. Bacterial selection was optimized by dynamic control of the organic loading rate and the anaerobic contact time. The distinct core bacteriomes mainly comprised populations related to the classes Betaproteobacteria, Cytophagia, and Chloroflexi in the PAO enrichment and of Gammaproteobacteria, Alphaproteobacteria, Acidobacteria, and Sphingobacteria in the GAO enrichment. An anaerobic metabolic batch test based on electrical conductivity evolution and a polyphosphatase enzymatic assay were developed for rapid and low-cost assessment of the active PAO fraction and dephosphatation potential of activated sludge. Linear correlations were obtained between the PAO fraction, biomass specific rate of conductivity increase under anaerobic conditions, and polyphosphate-hydrolyzing activity of PAO/GAO mixtures. The correlations between PAO/GAO ratios, metabolic activities, and conductivity profiles were confirmed by simulations with a mathematical model developed in the aqueous geochemistry software PHREEQC. © 2014 Wiley Periodicals, Inc.

  10. A bioreactor test system to mimic the biological and mechanical environment of oral soft tissues and to evaluate substitutes for connective tissue grafts. (United States)

    Mathes, Stephanie H; Wohlwend, Lorenz; Uebersax, Lorenz; von Mentlen, Roger; Thoma, Daniel S; Jung, Ronald E; Görlach, Christoph; Graf-Hausner, Ursula


    Gingival cells of the oral connective tissue are exposed to complex mechanical forces during mastication, speech, tooth movement and orthodontic treatments. Especially during wound healing following surgical procedures, internal and external forces may occur, creating pressure upon the newly formed tissue. This clinical situation has to be considered when developing biomaterials to augment soft tissue in the oral cavity. In order to pre-evaluate a collagen sponge intended to serve as a substitute for autogenous connective tissue grafts (CTGs), a dynamic bioreactor system was developed. Pressure and shear forces can be applied in this bioreactor in addition to a constant medium perfusion to cell-material constructs. Three-dimensional volume changes and stiffness of the matrices were analyzed. In addition, cell responses such as cell vitality and extracellular matrix (ECM) production were investigated. The number of metabolic active cells constantly increased under fully dynamic culture conditions. The sponges remained elastic even after mechanical forces were applied for 14 days. Analysis of collagen type I and fibronectin revealed a statistically significant accumulation of these ECM molecules (P tissue remodeling processes, was observed under dynamic conditions only. The results indicate that the tested in vitro cell culture system was able to mimic both the biological and mechanical environments of the clinical situation in a healing wound. © 2010 Wiley Periodicals, Inc.

  11. Biological biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Jorge-Herrero, E. [Servicio de Cirugia Experimental. Clinica Puerta de Hierro, Madrid (Spain)


    There are a number of situations in which substances of biological origin are employed as biomaterials. Most of them are macromolecules derived from isolated connective tissue or the connective tissue itself in membrane form, in both cases, the tissue can be used in its natural form or be chemically treated. In other cases, certain blood vessels can be chemically pretreated and used as vascular prostheses. Proteins such as albumin, collagen and fibrinogen are employed to coat vascular prostheses. Certain polysaccharides have also been tested for use in controlled drug release systems. Likewise, a number of tissues, such as dura mater, bovine pericardium, procine valves and human valves, are used in the preparation of cardiac prostheses. We also use veins from animals or humans in arterial replacement. In none of these cases are the tissues employed dissimilar to the native tissues as they have been chemically modified, becoming a new bio material with different physical and biochemical properties. In short, we find that natural products are being utilized as biomaterials and must be considered as such; thus, it is necessary to study both their chemicobiological and physicomechanical properties. In the present report, we review the current applications, problems and future prospects of some of these biological biomaterials. (Author) 84 refs.

  12. Biological computation

    CERN Document Server

    Lamm, Ehud


    Introduction and Biological BackgroundBiological ComputationThe Influence of Biology on Mathematics-Historical ExamplesBiological IntroductionModels and Simulations Cellular Automata Biological BackgroundThe Game of Life General Definition of Cellular Automata One-Dimensional AutomataExamples of Cellular AutomataComparison with a Continuous Mathematical Model Computational UniversalitySelf-Replication Pseudo Code Evolutionary ComputationEvolutionary Biology and Evolutionary ComputationGenetic AlgorithmsExample ApplicationsAnalysis of the Behavior of Genetic AlgorithmsLamarckian Evolution Genet

  13. Exposure Assessment, Biological Monitoring, and Liver Function Tests of Operating Room Personnel Exposed to Halothane in Hamedan Hospitals, West of Iran. (United States)

    Bakhshaei, Mohammad Hossien; Bahrami, Abdorrahman; Mirzakhani, Amin; Mahjub, Hossien; Assari, Mohammad Javad


    Occupational exposure to halogenated hydrocarbons has been associated with halothane hepatitis, an increase of liver enzymes, and congenital malformations. The objectives of this study were to investigate whether bromide, a urinary metabolite of halothane, could be used as a biological marker of exposure to this anesthetic gas and assessment of associated exposure to halothane with any significant changes in conventional parameters of liver function (serum aminotransferase activities). A cross-sectional study. Seventy-five anesthesiologists, anesthesia nurses, operating room nurses, and surgeons (exposed group) and 75 matched unexposed individuals (reference group) were selected randomly from two public hospitals in Hamadan City, western Iran.  Atmospheric concentrations of halothane in the breathing zone of the exposed subjects and urinary bromide levels were measured by headspace gas chromatography. Similarly, serum activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured by the enzymatic method using an automatic Prestige instrument. Mean atmospheric concentrations of halothane and urinary bromide levels for exposed subjects were 1.49 ±1.36 ppm and 0.83 ±0.29 mM, respectively. A relatively good correlation was found between exposure to halothane and urinary bromide levels (r=0.38). The chi-squared test results showed that the proportions of the subjects with abnormal ALT and AST among the women exposed were significantly higher than those of reference individuals (P<0.05). Urinary bromide can be used as a potential biomarker of exposure to halothane, although additional studies are necessary to further validate these initial findings.

  14. Biological drugs


    Bertrán Suárez, Marc


    Póster Biological drugs include a wide range of medicinal products created by biological instead of chemical processes. Biological drugs can consist of proteins, nucleic acids or complex combinations of substances, or may be living entities such as cells and tissues. They are isolated from natural sources or are produced by biotechnology methods.

  15. Fluorescent biological aerosol particles measured with the Waveband Integrated Bioaerosol Sensor WIBS-4: laboratory tests combined with a one year field study

    Directory of Open Access Journals (Sweden)

    E. Toprak


    Full Text Available In this paper bioaerosol measurements conducted with the Waveband Integrated Bioaerosol Sensor mark 4 (WIBS-4 are presented. The measurements comprise aerosol chamber characterization experiments and a one-year ambient measurement period at a semi-rural site in South Western Germany. This study aims to investigate the sensitivity of WIBS-4 to biological and non-biological aerosols and detection of biological particles in the ambient aerosol. Several types of biological and non-biological aerosol samples, including fungal spores, bacteria, mineral dust, ammonium sulphate, combustion soot, and fluorescent polystyrene spheres, were analyzed by WIBS-4 in the laboratory. The results confirm the sensitivity of the ultraviolet light-induced fluorescence (UV-LIF method to biological fluorophores and show the good discrimination capabilities of the two excitation wavelengths/detection wavebands method applied in WIBS-4. However, a weak cross-sensitivity to non-biological fluorescent interferers remains and is discussed in this paper.

    All the laboratory studies have been undertaken in order to prepare WIBS-4 for ambient aerosol measurements. According to the one-year ambient aerosol study, number concentration of fluorescent biological aerosol particles (FBAP show strong seasonal and diurnal variability. The highest number concentration of FBAP was measured during the summer term and decreased towards the winter period when colder and drier conditions prevail. Diurnal FBAP concentrations start to increase after sunset and reach maximum values during the late night and early morning hours. On the other hand, the total aerosol number concentration was almost always higher during daytime than during nighttime and a sharp decrease after sunset was observed. There was no correlation observed between the FBAP concentration and the meteorological parameters temperature, precipitation, wind direction and wind speed. However, a clear correlation was

  16. Mathematical biology

    CERN Document Server

    Murray, James D


    The book is a textbook (with many exercises) giving an in-depth account of the practical use of mathematical modelling in the biomedical sciences. The mathematical level required is generally not high and the emphasis is on what is required to solve the real biological problem. The subject matter is drawn, e.g. from population biology, reaction kinetics, biological oscillators and switches, Belousov-Zhabotinskii reaction, reaction-diffusion theory, biological wave phenomena, central pattern generators, neural models, spread of epidemics, mechanochemical theory of biological pattern formation and importance in evolution. Most of the models are based on real biological problems and the predictions and explanations offered as a direct result of mathematical analysis of the models are important aspects of the book. The aim is to provide a thorough training in practical mathematical biology and to show how exciting and novel mathematical challenges arise from a genuine interdisciplinary involvement with the biosci...

  17. Biological post


    Kumar, B. Suresh; Kumar, Senthil; N S Mohan Kumar; Karunakaran, J. V.


    Anterior tooth fracture as a result of traumatic injuries, is frequently encountered in endodontic practice. Proper reconstruction of extensively damaged teeth can be achieved through the fragment reattachment procedure known as ?biological restoration.? This case report refers to the esthetics and functional recovery of extensively damaged maxillary central incisor through the preparation and adhesive cementation of ?biological post? in a young patient. Biological post obtained through extra...

  18. Biological therapeutics

    National Research Council Canada - National Science Library

    Greenstein, Ben; Brook, Daniel A


    This introductory textbook covers all the main categories of biological medicines, including vaccines, hormonal preparations, drugs for rheumatoid arthritis and other connective tissue diseases, drugs...

  19. A comprehensive assessment protocol including patient reported outcomes, physical tests, and biological sampling in newly diagnosed patients with head and neck cancer: is it feasible?

    NARCIS (Netherlands)

    van Nieuwenhuizen, A.J.; Buffart, L.M.; Smit, J.H.; Brakenhoff, R.H.; Braakhuis, B.J.; de Bree, R.; Leemans, C.; Verdonck-de Leeuw, I.M.


    Purpose Large cohort studies are needed taking into account cancer-related, personal, biological, psychobehavioral, and lifestyle-related factors, to guide future research to improve treatment and supportive care. We aimed to evaluate the feasibility of a comprehensive baseline assessment of a

  20. Laboratory host range testing of Neomusotima conspurcatalis (Lepidoptera: Crambidae) - a potential biological control agent of the invasive weed, Old World climbing fern, Lygodium microphyllum (Lygodiaceae) (United States)

    Old World climbing fern, Lygodium microphyllum, is a serious invasive weed in south Florida. Development of biological control is vital for sustainable management of L. microphyllum. Neomusotima conspurcatalis was discovered in Hong Kong in 1997 and was subsequently found causing feeding damage on L...

  1. "What if We Were in a Test Tube?" Students' Gendered Meaning Making during a Biology Lesson about the Basic Facts of the Human Genitals (United States)

    Orlander, Auli Arvola


    This paper explores what happens in the encounters between presentations of "basic facts" about the human genitals and 15-year-old students during a biology lesson in a Swedish secondary school. In this paper, meaning making was approached as relational, context-dependent and continually transacted. For this reason the analysis was…

  2. Environmental Biology

    Indian Academy of Sciences (India)

    BOOK I REVIEW. Environmental Biology. Man and his Environment. M D Subhash Chandran ... logy and Field Biology (Harper Collins, 1990):. "The fragmentation of ecology into specialised subdisciplines with their ... momentous events of the decade like the Earth. Summit of 1992! Despite the need to revise and update.

  3. Mesoscopic biology

    Indian Academy of Sciences (India)

    In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. Novel biomolecular machines, governed by coded information at the level of DNA and proteins, operate at these length scales in biological ...

  4. Computational biology

    DEFF Research Database (Denmark)

    Hartmann, Lars Røeboe; Jones, Neil; Simonsen, Jakob Grue


    Computation via biological devices has been the subject of close scrutiny since von Neumann’s early work some 60 years ago. In spite of the many relevant works in this field, the notion of programming biological devices seems to be, at best, ill-defined. While many devices are claimed or proved t...

  5. Mesoscopic biology

    Indian Academy of Sciences (India)

    National Center for Biological Sciences, Tata Institute of Fundamental Research,. UAS-GKVK Campus ... In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the ... study of some of the design principles of these machines; in particular at the level of an individual molecule.

  6. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi


    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  7. Acid test of joint technical and biological measures in slope stabilisation - Impact analysis of the heavy rainstorm event in August 2005 (United States)

    Graf, F.; Böll, A.


    The persisting and heavy rainstorms from 20th to 22nd August in 2005 resulted in loss of human lives and tremendous damage on infrastructure all over Switzerland. Many of the measures taken hitherto to protect against such natural hazards were stressed to their limits or even beyond due to water saturation of the soils and extreme discharges of the torrents. This particular configuration offered the possibility to investigate the reliability of technical and biological measures taken within the scope of slope stabilisation, torrent and gully control. In the context of a joint project the ancient sliding area "Schwandrübi" in Dallenwil (Switzerland) providing joint technical and biological measures was chosen to address aspects concerning the reliability of technical supporting structures, the development of biological measures in the course of time and their performance under the extreme impact as well as the effects of biological measures on the stability of slopes. During 1981 and 1982 joint technical and biological measures had been taken on a large scale with minor follow-ups shortly after to stabilise the "Schwandrübi". The underlying strategy was based on several pilot surveys as thorough soil analysis, e.g. grain size distribution and determination of the angle of internal friction (Φ') related to the porosity (n) and the dry unit weight (γ), respectively. Basically, the spatial arrangement of the gabions was in accordance with the theoretical guidelines. However, based on the angle of internal friction (Φ') determined on the loose moraine soil material, it was not possible to meet the soil mechanical criterion of inclination between the constructions in all cases. Regardless of the extreme impact during the rainstorm (~100-year event), no serious damage occurred neither on the roughly 25-year old gabions nor on the torrent control structures. The recalculated peak discharge in the outlet channel was ~60 m3s-1 superimposed by high bed load

  8. Radiolabeling of antibody for epitope of human carbonic anhydrase IX (IgG M75) by 61Cu and 64Cu and its biological testing

    Czech Academy of Sciences Publication Activity Database

    Čepa, Adam; Ráliš, Jan; Pavelka, A.; Marešová, L.; Kleinová, M.; Seifert, Daniel; Sieglová, Irena; Král, Vlastimil; Polášek, Miroslav; Lebeda, Ondřej; Paúrová, M.; Lázníček, M.


    Roč. 42, S (2015), s. 465-466 ISSN 1619-7070. [28th Annual congress of the European-Association-of-Nuclear-Medicine (EANM). 10.10.2015-14.10.2015, Hamburg] R&D Projects: GA TA ČR TA02010797; GA MŠk(CZ) LM2011019 Institutional support: RVO:61389005 ; RVO:68378050 Keywords : antibodies * Cu-61 * Cu-64 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; EB - Genetics ; Molecular Biology (UMG-J)

  9. Determinação da segurança biológica do xampu de cetoconazol: teste de irritação ocular e avaliação do potencial de citotoxicidade in vitro Determination of the biological reactivity of ketoconazole in shampoo: draize eye test and cytotoxity test

    Directory of Open Access Journals (Sweden)

    Inara Staub


    Full Text Available Cetoconazol é um agente antifúngico, que pode ser incorporado em diferentes formas farmacêuticas, como, por exemplo, xampus e cremes. O objetivo do trabalho foi avaliar a segurança biológica in vivo (teste de irritação ocular e in vitro (teste de citotoxicidade do xampu de cetoconazol degradado sob ação da luz. Para tanto, a formulação foi exposta à radiação UV-C (254 nm e foram empregados dois métodos para a determinação quantitativa do cetoconazol: CLAE e ensaio microbiológico. Os resultados demonstraram alteração do cetoconazol em presença da luz - presença de picos secundários no cromatograma e diminuição da atividade antifúngica - entretanto, não demonstraram alteração na segurança biológica entre xampu de cetoconazol e xampu de cetoconazol contendo produtos de degradação.Ketoconazole is an antifungal agent and can be incorporated into several dosage forms, as an example it could be mentioned shampoos and creams. The aim of this work was to assess the biological reactivity in vivo (Draize eye test and in vitro (cytotoxity test of ketoconazole in shampoo degradeted under action of light. The formulation was exposed to UV-C (254 nm radiation and two methods were used for the quantitative determination of ketoconazole: HPLC and microbiological assay. The results showed alteration in ketoconazole in presence of light - secondary peaks in chromatogram and decrease in antifungal activity - however, no alteration on the biological reactivity between ketoconazole shampoo and ketoconazole shampoo containing degradation products was observed.

  10. Biological Technicians (United States)

    ... the direction of biologists or other scientists. Work Schedules Most biological technicians work full time and keep ... more efficient ways than are currently used. New applications of biotechnology may be the subject of research ...

  11. Building biological foundries for next-generation synthetic biology. (United States)

    Chao, Ran; Yuan, YongBo; Zhao, HuiMin


    Synthetic biology is an interdisciplinary field that takes top-down approaches to understand and engineer biological systems through design-build-test cycles. A number of advances in this relatively young field have greatly accelerated such engineering cycles. Specifically, various innovative tools were developed for in silico biosystems design, DNA de novo synthesis and assembly, construct verification, as well as metabolite analysis, which have laid a solid foundation for building biological foundries for rapid prototyping of improved or novel biosystems. This review summarizes the state-of-the-art technologies for synthetic biology and discusses the challenges to establish such biological foundries.

  12. Biological indicators and biological indication

    Energy Technology Data Exchange (ETDEWEB)

    Haseloff, H.P.


    Pollutants in the environment cause more and more situations of burden for living beings. In certain organisms, i.e. in biological indicators, there is a correlation between the extent of the damage and the degree of the burden. That is why environmental burdens can be recognized and, in part, be quantitatively recorded. Depending of the choice of materials and the damage parameters the respective differentiated statements can be made. Compared to technical measuring stations biological indicators facilitate the assessment of situations of burden with the help of biological-ecological parameters.

  13. Stereo-specific glucose consumption may be used to distinguish between chemical and biological reactivity on Mars: a preliminary test on Earth. (United States)

    Sun, Henry J; Saccomanno, Vienna; Hedlund, Brian; McKay, Christopher P


    Two alternative hypotheses explain the degradation of organics in the Viking Labeled Release experiment on Mars. Either martian soil contains live indigenous microorganisms or it is sterile but chemically reactive. These two possibilities could be distinguished by the use of pure preparations of glucose isomers. In the laboratory, selected eukaryotes, bacteria, and archaea consumed only D-glucose, not L-glucose, while permanganate oxidized both isomers. On Mars, selective consumption of either D- or L-glucose would constitute evidence for biological activity.

  14. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume VII : Evaluation of the Compliance Testing Framework for RPA Improvement as Stated in the 2000 Federal Columbia River Power System (FCRPS) Biological Opinion.

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, John R.; Ngouenet, Roger F.


    Using the pre-2000 reach survival probabilities reported in the 2000 FCRPS Biological Opinion (BO) for three selected stocks: yearling and sub-yearling chinook and steelhead, power curves were constructed for each of the two statistical hypothesis tests suggested in the BO. These power calculation results were interpreted in terms of the ability of the statistical tests to correctly identify the true states of recovery (i.e., fail or succeed in fulfilling RPA expectations). The proposed one-sided tests have a moderate to low probability of correctly assessing the true status of the recovery by the years 2005 and 2008. The relatively poor odds of making the correct decision with the BO proposed Tests 1 and 2 suggest alternative decision rules need to be investigated and developed for assessing RPA compliance. Therefore, we propose to immediately examine alternative decision rules that might maximize the likelihood of correct decisions while minimizing the prospect of incorrect decisions. The Bayesian analysis will incorporate scientific/biological knowledge/expertise.

  15. Biological preconcentrator (United States)

    Manginell, Ronald P [Albuquerque, NM; Bunker, Bruce C [Albuquerque, NM; Huber, Dale L [Albuquerque, NM


    A biological preconcentrator comprises a stimulus-responsive active film on a stimulus-producing microfabricated platform. The active film can comprise a thermally switchable polymer film that can be used to selectively absorb and desorb proteins from a protein mixture. The biological microfabricated platform can comprise a thin membrane suspended on a substrate with an integral resistive heater and/or thermoelectric cooler for thermal switching of the active polymer film disposed on the membrane. The active polymer film can comprise hydrogel-like polymers, such as poly(ethylene oxide) or poly(n-isopropylacrylamide), that are tethered to the membrane. The biological preconcentrator can be fabricated with semiconductor materials and technologies.

  16. Biological Oceanography (United States)

    Abbott, M. R.


    Within the framework of global biogeochemical cycles and ocean productivity, there are two areas that will be of particular interest to biological oceanography in the 1990s. The first is the mapping in space time of the biomass and productivity of phytoplankton in the world ocean. The second area is the coupling of biological and physical processes as it affects the distribution and growth rate of phytoplankton biomass. Certainly other areas will be of interest to biological oceanographers, but these two areas are amenable to observations from satellites. Temporal and spatial variability is a regular feature of marine ecosystems. The temporal and spatial variability of phytoplankton biomass and productivity which is ubiquitous at all time and space scales in the ocean must be characterized. Remote sensing from satellites addresses these problems with global observations of mesocale (2 to 20 days, 10 to 200 km) features over a long period of time.

  17. Biological rhythms (United States)

    Halberg, F.


    An overview is given of basic features of biological rhythms. The classification of periodic behavior of physical and psychological characteristics as circadian, circannual, diurnal, and ultradian is discussed, and the notion of relativistic time as it applies in biology is examined. Special attention is given to circadian rhythms which are dependent on the adrenocortical cycle. The need for adequate understanding of circadian variations in the basic physiological indicators of an individual (heart rate, body temperature, systolic and diastolic blood pressure, etc.) to ensure the effectiveness of prophylactic and therapeutic measures is stressed.

  18. Validación del método de valoración biológica de gonadotrofina coriónica humana Validation of the biological potency test for human chorionic gonadotropin

    Directory of Open Access Journals (Sweden)

    Alicia Lagarto Parra


    Full Text Available Introducción: en el Centro de Investigación y Desarrollo de Medicamentos se cuenta con una serie de ensayos biológicos para el control de calidad que deben ser sujetos a validación, entre ellos se encuentra la valoración biológica de gonadotrofina coriónica humana. Objetivo: evaluar el desempeño del método de valoración biológica de gonadotrofina coriónica humana. Métodos: se evaluaron la exactitud, la precisión y la especificidad como parámetros de validación siguiendo la metodología descrita en la Regulación 41-2007 del Centro para el Control Estatal de la Calidad de los Medicamentos (CECMED para la Validación de métodos de análisis. Resultados: en el estudio de exactitud no se observaron diferencias significativas entre los valores de peso del útero obtenidos al ensayar la muestra y el material de referencia a las tres dosis administradas. En el estudio de la repetibilidad se alcanzaron coeficientes de variación menor del 50 %. No se observaron diferencias significativas entre las precisiones alcanzadas por dos analistas diferentes en días diferentes. El estudio de especificidad mostró que los excipientes o sustancias auxiliares de la formulación no interfieren en la valoración biológica del producto. Conclusiones: el método biológico validado resultó ser específico, exacto y preciso en el rango de concentraciones estudiadas, lo que corrobora su calidad, teniendo un valor agregado.Introduction: a number of biological tests for quality control used in the Center for Drug Research and Development should be validated. Biological potency test of human chorionic gonadotropin is one of them. Objective: to evaluate the performance of the human chorionic gonadotropin biological potency test. Methods: the accuracy, precision and specificity were evaluated as validation parameters according to the 41-2007 Regulation of the Center for the State Control of Drug Quality (CEDMED for analysis method validation. Results: in

  19. The use of serial outpatient complete blood count (CBC) results to derive biologic variation: a new tool to gauge the acceptability of hematology testing. (United States)

    Cembrowski, G; Topping, K; Versluys, K; Tran, D; Malick, M; Holmes, D; Clarke, G


    Most estimates of biologic variation (sb ) are based on periodically acquiring and storing specimens from reference subjects, followed by analysis within a tightly controlled analytic run. We demonstrate that reliable estimates of sb can be derived for virtually all constituents of the CBC from previously obtained paired patient results and summary QC data. A laboratory data repository provided all of the outpatient CBC results measured over 20.5 months at a large Canadian referral laboratory. These CBC measurements were taken on one of four Beckman Coulter LH analyzers. A total of 1852 different patients had CBCs repeated at least twice within 84 h. We tabulated the pairs of intrapatient constituents that were separated by 0-6, 6-12, 12-18,… 72-78, and 78-84 h. The standard deviations of duplicates (SDD) of the paired data were then regressed against time. The y-intercept represents the sum of sb and short-term analytic variation (sa ): y0 =(s(2) a +s(2) b )(1/2) . The short-term imprecision was determined from normal range Coulter quality control specimens. Patient sb for hematocrit, MCH, absolute monocytes, and absolute neutrophils are extremely close to those determined by biologic variation experiments using healthy volunteers. Most of the other estimates of sb tended to be slightly lower than literature estimates. We describe a novel approach to deriving sb . The ratio of the sb to sa (a measure of sigma) indicates that the Beckman Coulter LH is extremely suitable for CBC monitoring of outpatients as well as for inpatients, whose sb is generally higher. © 2015 John Wiley & Sons Ltd.

  20. Characterization of L-cysteine capped CdTe quantum dots and application to test Cu(II) deficiency in biological samples from critically ill patients

    Energy Technology Data Exchange (ETDEWEB)

    Sáez, Laura; Molina, Jorge; Florea, Daniela I.; Planells, Elena M. [Institute of Nutrition and Food Technology and Department of Physiology, Faculty of Pharmacy, Campus Cartuja, University of Granada, E-18071 Granada (Spain); Cabeza, M. Carmen [Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, E-18071 Granada (Spain); Quintero, Bartolomé, E-mail: [Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, E-18071 Granada (Spain)


    Graphical abstract: -- Highlights: •We examinate stability of L-cysteine capped CdTe QD. •Factors influence QD fluorescence response are controlled. •Application in copper deficiency analysis is made. •We report comparison with other techniques. -- Abstract: The catalytic activity of copper ion gives, from the physiological point of view, a central role in many biological processes. Variations in the composition and location of cellular copper have been addressed given their physiological and pathological consequences. In this paper L-cysteine capped CdTe quantum dots is used for the fluorimetric determination of Cu(II) in biological samples from healthy individuals and patients admitted to the Intensive Care Units (ICU). An acceptable homogeneity in the CdTe QDs size has been obtained with an average value of 3 nm. No significant alterations in the spectral properties were observed for 2 months when stored in vacutainers at 6 °C and a concentration of approximately 2 μM. Data from oxidative stress markers such superoxide dismutase, total antioxidant capacity and DNA damage can be correlated with a Cu(II) deficiency for the ICU patients as measured by flame-atomic absorption spectroscopy (FAAS) and inductively coupled plasma source mass spectrometry (ICP-MS). Aqueous solutions 0.3 μM of L-cysteine capped CdTe QDs in MOPS buffer (6 mM, pH 7.4) used at 21 °C in the range 15–60 min after preparation of the sample for the measurements of fluorescence gives contents in Cu(II) for erythrocytes in good agreement with those obtained in FAAS and ICP-MS but the comparative ease of use makes the fluorimetric technique more suitable than the other two techniques for routine analysis.

  1. Biology Notes. (United States)

    School Science Review, 1983


    Describes laboratory procedures, demonstrations, and classroom activities/materials, including water relation exercise on auxin-treated artichoke tuber tissue; aerobic respiration in yeast; an improved potometer; use of mobiles in biological classification, and experiments on powdery mildews and banana polyphenol oxidase. Includes reading lists…

  2. Scaffolded biology. (United States)

    Minelli, Alessandro


    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  3. Marine Biology (United States)

    Dewees, Christopher M.; Hooper, Jon K.


    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  4. Environmental Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 5. Environmental Biology - Man and his Environment. M D Subhash Chandran. Book Review Volume ... Author Affiliations. M D Subhash Chandran1. Department of Botany, Dr Baliga College of Arts and Science, Kumta 581343, Karnataka, India.

  5. Biological timekeeping

    DEFF Research Database (Denmark)

    Lloyd, David


    , the networks that connect differenttime domains and the oscillations, rhythms and biological clocks that coordinate andsynchronise the complexity of the living state.“It is the pattern maintained by this homeostasis, which is the touchstone ofour personal identity. Our tissues change as we live: the food we...

  6. (Biological dosimetry)

    Energy Technology Data Exchange (ETDEWEB)

    Preston, R.J.


    The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

  7. Mathematical modeling of biological processes

    CERN Document Server

    Friedman, Avner


    This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.

  8. ``What if we were in a test tube?'' Students' gendered meaning making during a biology lesson about the basic facts of the human genitals (United States)

    Orlander, Auli Arvola


    This paper explores what happens in the encounters between presentations of "basic facts" about the human genitals and 15-year-old students during a biology lesson in a Swedish secondary school. In this paper, meaning making was approached as relational, context-dependent and continually transacted. For this reason the analysis was conducted through a series of close readings of situations where students interacted with each other and the teacher in opening up gaps about alternative ways of discussing gender. Drawing on Foucault's theories about the inclusion and exclusion of knowledge and the subsequent work of Butler and other feminist researchers, the paper illuminates what gendered relations remain tacit in the conversation. It then illustrates possible ways in which these tacit gendered meanings could be made overt and discussed with the students when making meaning about the human genitals. The paper also shows how the ways in which human genitals are transacted in the science classroom have importance for what kind of learning is made available to the students.

  9. Testing the coherence between occupational exposure limits for inhalation and their biological limit values with a generalized PBPK-model: the case of 2-propanol and acetone. (United States)

    Huizer, Daan; Huijbregts, Mark A J; van Rooij, Joost G M; Ragas, Ad M J


    The coherence between occupational exposure limits (OELs) and their corresponding biological limit values (BLVs) was evaluated for 2-propanol and acetone. A generic human PBPK model was used to predict internal concentrations after inhalation exposure at the level of the OEL. The fraction of workers with predicted internal concentrations lower than the BLV, i.e. the 'false negatives', was taken as a measure for incoherence. The impact of variability and uncertainty in input parameters was separated by means of nested Monte Carlo simulation. Depending on the exposure scenario considered, the median fraction of the population for which the limit values were incoherent ranged from 2% to 45%. Parameter importance analysis showed that body weight was the main factor contributing to interindividual variability in blood and urine concentrations and that the metabolic parameters Vmax and Km were the most important sources of uncertainty. This study demonstrates that the OELs and BLVs for 2-propanol and acetone are not fully coherent, i.e. enforcement of BLVs may result in OELs being violated. In order to assess the acceptability of this "incoherence", a maximum population fraction at risk of exceeding the OEL should be specified as well as a minimum level of certainty in predicting this fraction. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Ovarian reserve test: an impartial means to resolve the mismatch between chronological and biological age in the assessment of female reproductive chances. (United States)

    Gizzo, Salvatore; Andrisani, Alessandra; Esposito, Federica; Oliva, Alessandra; Zicchina, Cecilia; Capuzzo, Denise; Gangemi, Michele; Nardelli, Giovanni Battista


    Nowadays, the ovarian reserve (OR) is considered more important than chronological age to estimate female reproductive capability. We conducted a retrospective, observational, and cohort study in order to detect the best predictor marker of OR, ovarian response, chances to obtain high-quality embryos, and pregnancy after in vitro fertilization (IVF) cycle in elderly women. For all eligible patients (aged between 40 and 50 and admitted to their first IVF cycle for primary infertility), we investigated the biochemical parameters and ultrasound aspects of ovaries and how they affected IVF outcomes. Age, basal follicle-stimulating hormone, basal luteinizing hormone, and basal-17β-estradiol are better related to the dose of gonadotropin used during a controlled ovarian stimulation cycle. Basal anti-Müllerian hormone (AMH), antral follicular count (AFC), and maximum serum level of 17β-estradiol before pickup resulted the best predictors of chances to retrieve at least 6 oocytes (at least 3 in metaphase II) and to have at least 1 to 3 embryos. The basal AMH, AFC and maximum serum level of 17β-estradiol before pickup continue to show higher correlation to pregnancy rate. The maximum endometrial thickness at pickup resulted important to predict the pregnancy rate and the chances to detect ongoing pregnancy. It seems mandatory to well define the ovarian biological age rather than the chronological one in women older than 40 years of age in order to give the best counseling and to choose the most appropriate IVF protocols.

  11. Foldit Biology (United States)


    the goal of revolutionizing the way biology curriculum is presented for K12 student worldwide. APPROACH To achieve this objective, we...will inform the iterative design of Foldit, and other educational games and activities, so that they provide students/players with optimal learning...Foldit’s use in education and for education research at the Center for Game Science generally. Another exciting development for the future is the

  12. Biological cages


    Janssen, M. E.; NGUYEN, C; Beckham, R.; Larson, A.


    Restoring a stable anterior column is essential to achieve normal spinal biomechanics. A variety of mechanical spacers have been developed and advocated for both anterior and posterior approaches. The ability to radiographically assess the “biology” of bone incorporation in these mechanical (metal) spacers is an inherent limitation. The femoral ring allograft (FRA) and posterior lumbar interbody fusion (PLIF) spacers have been developed as biological cages that permit restoration of the anter...

  13. Crusts: biological (United States)

    Belnap, Jayne; Elias, Scott A.


    Biological soil crusts, a community of cyanobacteria, lichens, mosses, and fungi, are an essential part of dryland ecosystems. They are critical in the stabilization of soils, protecting them from wind and water erosion. Similarly, these soil surface communities also stabilized soils on early Earth, allowing vascular plants to establish. They contribute nitrogen and carbon to otherwise relatively infertile dryland soils, and have a strong influence on hydrologic cycles. Their presence can also influence vascular plant establishment and nutrition.

  14. An evaluation of the suitability of the onion test for studying the biological activity of potential antitumor drugs on the example of ledakrin


    Danuta Antosiewicz


    The onion test was employed in this study. The effect of ledakrin on the synthesis of DNA and protein in meristematic cells of onion adventitious roots was examined. Comparison of the results revealed their similarity to data on animals and bacteria. It was found that inhibition of DNA synthesis is high and seems to precede the inhibition of protein synthesis (which is very low). Also, the difference between the lowest active concentration and lethal dose is, similarly as in mammals, slight (...

  15. Research in drug development against viral diseases of military importance (biological testing). Volume 2. Final report, 15 November 1985-31 January 1991

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, W.M.; Arnett, G.; Brazier, A.D.; Hollingshead, M.G.; Kirsi, J.J.


    The purpose of this program is to evaluate the efficacy of candidate antiviral compounds against a spectrum of viruses of military importance. This program involves (a) primary testing of chemical compounds and natural products for antiviral efficacy in vitro using standard CPE-inhibition assays, (b) primary testing of compounds for antiviral efficacy in vivo in animal model systems, and (c) secondary evaluation of the active candidate antiviral compounds. The target viruses for in vitro testing are Vaccinia Virus (VV), Adenovirus (AD2), Vesicular Stomatitis Virus (VSV), Punta Toro Virus (PT), Sandfly fever Virus (SF), Yellow Fever Virus (YF), Venezuelan Equine Encephalomyelitis Virus (VE), Japanese Encephalitis Virus, Pichinde Virus (PIC), Hantaan Virus (HTN), and Human Immunodeficiency Virus (HIV). The in vivo systems are Pichinde Virus infection of hamsters, Venezuelan Equine Encephalomyelitis Virus, Japanese Encephalitis Virus and Vaccinia virus infections of mice. Approximately 10,000 compounds have been received for in vitro evaluation and over 66,000 assays have been performed on this contract. Compounds have been identified in nearly all virus systems that have confirmed antiviral activity equal or exceeding that of the various positive control compounds (ribavirin, selenazofurin, carbocyclic-3-aza-adenosine, adenosine dialdehyde, Ara-A, ddC and AZT). Many of these compounds represent potent and selective new antiviral agents.

  16. Research in drug development against viral diseases of military importance (biological testing). Volume 1. Final report, 15 November 1985-31 January 1991

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, W.M.; Arnett, G.; Brazier, A.D.; Hollingshead, M.G.; Kirsi, J.J.


    The purpose of this program is to evaluate the efficacy of candidate antiviral compounds against a spectrum of viruses of military importance. This program involves (a) primary testing of chemical compounds and natural products for antiviral efficacy in vitro using standard CPE-inhibition assays, (b) primary testing of compounds for antiviral efficacy in vivo in animal model systems, and (c) secondary evaluation of the active candidate antiviral compounds. The target viruses for in vitro testing are Vaccinia Virus (VV), Adenovirus (AD2), Vesicular Stomatitis Virus (VSV), Punta Toro Virus (PT), Sandfly Fever Virus (SF), Yellow Fever Virus (YF), Venezuelan Equine Encephalomyelitis Virus (VE), Japanese Encephalitis Virus and Vaccinia Virus infections of mice. Approximately 10,000 compounds have been received for in vitro evaluation and over 66,000 assays have been performed on this contract. Compounds have been identified in nearly all virus systems that have confirmed antiviral activity equal or exceeding that of the various positive control compounds (Ribavirin, Selenazofurin, Carbocyclic-3-deaza-adenosine, Adenosine dialdehyde, Ara-A, ddC and AZT). Many of these compounds represent potent and selective new antiviral agents.

  17. Linearly chirped fiber Bragg grating response to thermal gradient: from bench tests to the real-time assessment during in vivo laser ablations of biological tissue (United States)

    Saccomandi, Paola; Varalda, Ambra; Gassino, Riccardo; Tosi, Daniele; Massaroni, Carlo; Caponero, Michele A.; Pop, Raoul; Korganbayev, Sanzhar; Perrone, Guido; Diana, Michele; Vallan, Alberto; Costamagna, Guido; Marescaux, Jacques; Schena, Emiliano


    The response of a fiber optic sensor [linearly chirped fiber Bragg grating (LCFBG)] to a linear thermal gradient applied on its sensing length (i.e., 1.5 cm) has been investigated. After these bench tests, we assessed their feasibility for temperature monitoring during thermal tumor treatment. In particular, we performed experiments during ex vivo laser ablation (LA) in pig liver and in vivo thermal ablation in animal models (pigs). We investigated the following: (i) the relationship between the full width at half maximum of the LCFBG spectrum and the temperature difference among the extremities of the LCFBG and (ii) the relationship between the mean spectrum wavelength and the mean temperature acting on the LCFBG sensing area. These relationships showed a linear trend during both bench tests and LA in animal models. Thermal sensitivity was significant although different values were found with regards to bench tests and animal experiments. The linear trend and significant sensitivity allow hypothesizing a future use of this kind of sensor to monitor both temperature gradient and mean temperature within a tissue undergoing thermal treatment.

  18. Laboratory testing in the emergency department: an Italian Society of Clinical Biochemistry and Clinical Molecular Biology (SIBioC) and Academy of Emergency Medicine and Care (AcEMC) consensus report. (United States)

    Lippi, Giuseppe; Panteghini, Mauro; Bernardini, Sergio; Bonfanti, Laura; Carraro, Paolo; Casagranda, Ivo; Cavazza, Mario; Ceriotti, Ferruccio; Ciaccio, Marcello; Coen, Daniele; Giavarina, Davide; Giostra, Fabrizio; Paolillo, Ciro; Plebani, Mario; Ricci, Giorgio; Cervellin, Gianfranco


    The mainstay of patient-oriented laboratory testing in emergency settings entails selecting a number and the type of tests according to valid criteria of appropriateness. Since the pattern of urgent tests requesting is variable across different institutions, we designed a joined survey between the Academy of Emergency Medicine and Care (AcEMC) and the Italian Society of Clinical Biochemistry and Clinical Molecular Biology (SIBioC) for reaching tentative consensus about the most informative diagnostic tests in emergency settings. A survey, containing the most commonly ordered urgent laboratory tests and the relative clinical indications, was disseminated to eight relevant members of AcEMC and eight relevant members of SIBioC. All contributors were asked to provide numerical scores for the different laboratory parameters, where 1 indicated "strongly recommended", 2 "recommended in specific circumstances", and 3 "strongly discouraged". The mean results of the survey were presented as the mean of responders' values, and the parameters were finally classified as "strongly recommended" (mean value, 1.00-1.49), "weakly recommended" (mean value, 1.50-1.99), "discouraged" (mean value, 2.00-2.49) and "strongly discouraged" (mean value, 2.50-3.00). The results of the survey allowed defining a hierarchy of priority, wherein 24 tests were "strongly recommended". The use of five common tests was instead "strongly discouraged". For 16 additional parameters in the list, the consensus ranged between "weakly recommended" and "discouraged". We hope that results presented in this joint AcEMC-SIBioC consensus document may help harmonizing panel of tests and requesting patterns in emergency setting, at least at a national level.

  19. Laboratory testing in the emergency department: an Italian Society of Clinical Biochemistry and Clinical Molecular Biology (SIBioC and Academy of Emergency Medicine and Care (AcEMC consensus report

    Directory of Open Access Journals (Sweden)

    Giuseppe Lippi


    Full Text Available The mainstay of patient-oriented laboratory testing in emergency settings entails selecting number and type of tests according to valid criteria of appropriateness. Since the pattern of urgent tests requesting is variable across different institutions, we designed a joined survey between the Academy of Emergency Medicine and Care (AcEMC and the Italian Society of Clinical Biochemistry and Clinical Molecular Biology (SIBioC for reaching tentative consensus about the most informative diagnostic tests in emergency settings. A survey, containing the most commonly performed urgent laboratory tests and the relative clinical indications, was disseminated to eight relevant members of AcEMC and eight relevant members of SIBioC. All contributors were asked to provide numerical scores for the different laboratory parameters, where 1 indicated strongly recommended, 2 recommended in specific circumstances, and 3 strongly discouraged. The mean results of the survey were presented as the mean of responders’ values, and the parameters were finally classified as strongly recommended (mean value, 1.0-1.5, somehow recommended (mean value, 1.5-2.0, discouraged (mean value, 2.0-2.5 and strongly discouraged (mean value, 2.5-3.0. The results of the survey allowed defining a hierarchy of priority, wherein 24 tests were strongly recommended. The use of 5 common tests was instead strongly discouraged. For 16 additional parameters in the list, the consensus ranged between somehow recommended and discouraged. We hope that results presented in this joint AcEMC-SIBioC consensus document may help harmonizing panel of tests and requesting patters in emergency setting, at least at a national level.

  20. [Biologics and mycobacterial diseases]. (United States)

    Tsuyuguchi, Kazunari; Matsumoto, Tomoshige


    Various biologics such as TNF-alpha inhibitor or IL-6 inhibitor are now widely used for treatment of rheumatoid arthritis. Many reports suggested that one of the major issues is high risk of developing tuberculosis (TB) associated with using these agents, which is especially important in Japan where tuberculosis still remains endemic. Another concern is the risk of development of nontuberculous mycobacterial (NTM) diseases and we have only scanty information about it. The purpose of this symposium is to elucidate the role of biologics in the development of mycobacterial diseases and to establish the strategy to control them. First, Dr. Tohma showed the epidemiologic data of TB risks associated with using biologics calculated from the clinical database on National Database of Rheumatic Diseases by iR-net in Japan. He estimated TB risks in rheumatoid arthritis (RA) patients to be about four times higher compared with general populations and to become even higher by using biologics. He also pointed out a low rate of implementation of QuantiFERON test (QFT) as screening test for TB infection. Next, Dr. Tokuda discussed the issue of NTM disease associated with using biologics. He suggested the airway disease in RA patients might play some role in the development of NTM disease, which may conversely lead to overdiagnosis of NTM disease in RA patients. He suggested that NTM disease should not be uniformly considered a contraindication to treatment with biologics, considering from the results of recent multicenter study showing relatively favorable outcome of NTM patients receiving biologics. Patients with latent tuberculosis infection (LTBI) should receive LTBI treatment before starting biologics. Dr. Kato, a chairperson of the Prevention Committee of the Japanese Society for Tuberculosis, proposed a new LTBI guideline including active implementation of LTBI treatment, introducing interferon gamma release assay, and appropriate selection of persons at high risk for

  1. Pilot test of biological removal of 1,4-dioxane from a chemical factory wastewater by gel carrier entrapping Afipia sp. strain D1

    Energy Technology Data Exchange (ETDEWEB)

    Isaka, Kazuichi, E-mail: [Matsudo Research Center, Infrastructure System Company, Hitachi, Ltd., 537 Kami-hongo, Matsudo, Chiba 271-0064 (Japan); Udagawa, Makiko [Matsudo Research Center, Infrastructure System Company, Hitachi, Ltd., 537 Kami-hongo, Matsudo, Chiba 271-0064 (Japan); Sei, Kazunari, E-mail: [Division of Sustainable Energy and Environmental Engineering, Osaka University, Yamadaoka, 2-1, Suita, Osaka 565-0871 (Japan); Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa 252-0373 (Japan); Ike, Michihiko, E-mail: [Division of Sustainable Energy and Environmental Engineering, Osaka University, Yamadaoka, 2-1, Suita, Osaka 565-0871 (Japan)


    Highlights: • Two pilot-scale biological 1,4-dioxane (1,4-D) treatment systems were operated. • Gel cubes entrapping Afipia sp. strain D1 were used for real wastewater treatment. • The maximum 1,4-dioxane removal rates of 0.72 kg m{sup −3} day{sup −1} was observed. • Monod model describes 1,4-D degradation, showing half saturation constant is 28 mg L{sup −1}. - Abstract: A pilot-scale (120 L) bioreactor system using a gel carrier-entrapped pure bacterial strain, Afipia sp. strain D1, capable of degrading 1,4-dioxane as a sole carbon and energy source was constructed and applied to treat real industrial wastewater containing 1,4-dioxane from a chemical factory. Although the wastewater not only contained high concentrations of 1,4-dioxane but also considerable amounts of other organic compounds (73 mg-TOC L{sup −1} on average), the bioreactor could efficiently remove 1,4-dioxane without significant inhibitory effects. The reactor startup could be completed within approximately 1 month by increasing the 1,4-dioxane loading rate (0.09–0.47 kg-dioxane m{sup −3} d{sup −1}) in a stepwise manner. Effective 1,4-dioxane removal was stably maintained for 3 months with an influent 1,4-dioxane of 570–730 mg L{sup −1}, giving an average effluent concentration and removal rate of 3.4 mg L{sup −1} and 0.46 kg-dioxane m{sup −3} d{sup −1}, respectively. A 1,4-dioxane loading fluctuation between 0.14 and 0.72 kg-dioxane m{sup −3} d{sup −1} did not significantly affect its removal, and more than 99% removal efficiency was constantly maintained. The Monod model could well describe the relationship between the effluent 1,4-dioxane concentration and 1,4-dioxane removal rates of the bioreactors, showing that the half-saturation constant (Ks) was 28 mg L{sup −1}.

  2. Herbicides synthesis and biological tests to determine its activity on the weeds; Sintesis de herbicidas y pruebas biologicas para determinar su actividad sobre la maleza

    Energy Technology Data Exchange (ETDEWEB)

    Romero M, Artemisa [Universidad Autonoma Metropolitana-Xochimilco, Mexico, D. F. (Mexico); James M, Guillermo [Universidad Autonoma Metropolitana-Xochimilco, Mexico, D. F. (Mexico); Miramontes F, Benjamin [Universidad Autonoma Metropolitana-Xochimilco, Mexico, D. F. (Mexico); Haro C, Jorge [Universidad Autonoma Metropolitana-Iztapalapa, Mexico, D.F. (Mexico)


    Four derivatives of Dicamba (2-methoxy-3, 6-dichlorobenzoic acid) were obtained: 2-methoxy-3, 6-dichlorobenzyl alcohol, 2-methoxy-3, 6-dichlorobenzaldehyde, 2-methoxy-3, 6-dichlorobenzaldoxime, tested on weed, and 2-methoxy-3, 6-dichlorobenzylamine. The weeds were Taraxacum officinale Weber, Amaranthus silvester and Sonchus oleraceus L. The oxime did not show activity on Amaranthus silvester, all the substances were active on the other two weeds. [Spanish] Se sintetizaron cuatro derivados del herbicida Dicamba (acido 2-metoxi-3, 6-diclorobenzoico), y se hicieron pruebas de la actividad de tres de ellos sobre maleza de Xochimilco. Se probaron el alcohol 2-metoxi-3, 6-diclorobencilico, 2-metoxi-3, 6-diclorobenzaldehido, 2-metoxi-3, 6-diclorobenzaldoxima. La maleza fue Taraxacum officinale Weber (Diente de leon), Amaranthus silvester (Amaranto silvestre) y Sonchus oleraceus L. (Sonchus). En amaranto, la oxima fue el unico que no presento actividad. En diente de leon y Sonchus, todas las sustancias probadas presentaron actividad.

  3. [Cell biology and cosmetology]. (United States)

    Traniello, S; Cavalletti, T


    Cellular biology can become the natural support of research in the field of cosmetics because it is able to provide alternative experimental models which can partially replace the massive use of laboratory animals. Cultures of human skin cells could be used in tests investigating irritation of the skin. We have developed an "in vitro" experimental model that allows to evaluate the damage caused by the free radicals to the fibroblasts in culture and to test the protective action of the lipoaminoacids. Experimenting on human cell cultures presents the advantage of eliminating the extrapolation between the different species, of allowing a determination of the biological action of a substance and of evaluating its dose/response effect. This does not mean that "in vitro" experimenting could completely replace experimenting on living animals, but the "in vitro" model can be introduced in the realisation of preliminary screenings.

  4. An evaluation of the suitability of the onion test for studying the biological activity of potential antitumor drugs on the example of ledakrin

    Directory of Open Access Journals (Sweden)

    Danuta Antosiewicz


    Full Text Available The onion test was employed in this study. The effect of ledakrin on the synthesis of DNA and protein in meristematic cells of onion adventitious roots was examined. Comparison of the results revealed their similarity to data on animals and bacteria. It was found that inhibition of DNA synthesis is high and seems to precede the inhibition of protein synthesis (which is very low. Also, the difference between the lowest active concentration and lethal dose is, similarly as in mammals, slight (low therapeutic index. It was found that ledakrin is quickly taken up from the incubation medium by the roots; during the first six hours of incubation, a major part of the supplied compound enters into them. During postincubation, the compound is excreted into the medium by the roots; during the first day of postincubation, 10%, during the following days, 0.2-2.0% of the amount taken up by the roots is excreted. During the first hour of incubation, the drug enters all of the root meristematic - tissues, while after 7 days of postincubation, this compound, or its metabolites, is still present in small amounts in the meristem.

  5. Reference gene selection for quantitative gene expression studies during biological invasions: A test on multiple genes and tissues in a model ascidian Ciona savignyi. (United States)

    Huang, Xuena; Gao, Yangchun; Jiang, Bei; Zhou, Zunchun; Zhan, Aibin


    As invasive species have successfully colonized a wide range of dramatically different local environments, they offer a good opportunity to study interactions between species and rapidly changing environments. Gene expression represents one of the primary and crucial mechanisms for rapid adaptation to local environments. Here, we aim to select reference genes for quantitative gene expression analysis based on quantitative Real-Time PCR (qRT-PCR) for a model invasive ascidian, Ciona savignyi. We analyzed the stability of ten candidate reference genes in three tissues (siphon, pharynx and intestine) under two key environmental stresses (temperature and salinity) in the marine realm based on three programs (geNorm, NormFinder and delta Ct method). Our results demonstrated only minor difference for stability rankings among the three methods. The use of different single reference gene might influence the data interpretation, while multiple reference genes could minimize possible errors. Therefore, reference gene combinations were recommended for different tissues - the optimal reference gene combination for siphon was RPS15 and RPL17 under temperature stress, and RPL17, UBQ and TubA under salinity treatment; for pharynx, TubB, TubA and RPL17 were the most stable genes under temperature stress, while TubB, TubA and UBQ were the best under salinity stress; for intestine, UBQ, RPS15 and RPL17 were the most reliable reference genes under both treatments. Our results suggest that the necessity of selection and test of reference genes for different tissues under varying environmental stresses. The results obtained here are expected to reveal mechanisms of gene expression-mediated invasion success using C. savignyi as a model species. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Preliminary study of the behavioral and biological effects of high intensity 60 Hz electric fields. Quarterly technical progress report, No. 1. [Development and testing of experimental protocols and apparatus

    Energy Technology Data Exchange (ETDEWEB)


    The major objective of this preliminary study is to develop and thoroughly test the experimental protocols and apparatus, which are planned for a major study of the behavioral and biological effects of high intensity 60 Hz electric fields. The behavior of baboons will be observed before, during, and after exposure to 60 Hz electric fields at a maximum intensity of 60 kV/m. Both individual performance (operant conditioning) and social behavior will be examined. The preliminary study will differ from the planned major study as follows: subjects will be used as their own controls; a smaller number of subjects will be run; field intensity will not be varied; the electric field should be non-uniform; the preliminary study exposure facility will be basically an outdoor facility; to avoid deterioration of plastic materials, the high intensity fields will not be turned on during or just after rainfall; and in the preliminary study the biological work will be restricted to the clinical determination of the health of subjects before and after exposure. The present report is the first of three quarterly technical progress reports. It covers approximately the first two and one-half months of activity and, therefore, consists primarily of plans. The report addresses four major areas: the high intensity field exposure facility; the field measurement instrumentation; the operation conditioning equipment; and experimental methods including experimental design and data analysis.

  7. The Relationships Between Epistemic Beliefs in Biology and Approaches to Learning Biology Among Biology-Major University Students in Taiwan (United States)

    Lin, Yi-Chun; Liang, Jyh-Chong; Tsai, Chin-Chung


    The aim of this study was to investigate the relationships between students' epistemic beliefs in biology and their approaches to learning biology. To this end, two instruments, the epistemic beliefs in biology and the approaches to learning biology surveys, were developed and administered to 520 university biology students, respectively. By and large, it was found that the students reflected "mixed" motives in biology learning, while those who had more sophisticated epistemic beliefs tended to employ deep strategies. In addition, the results of paired t tests revealed that the female students were more likely to possess beliefs about biological knowledge residing in external authorities, to believe in a right answer, and to utilize rote learning as a learning strategy. Moreover, compared to juniors and seniors, freshmen and sophomores tended to hold less mature views on all factors of epistemic beliefs regarding biology. Another comparison indicated that theoretical biology students (e.g. students majoring in the Department of Biology) tended to have more mature beliefs in learning biology and more advanced strategies for biology learning than those students studying applied biology (e.g. in the Department of Biotechnology). Stepwise regression analysis, in general, indicated that students who valued the role of experiments and justify epistemic assumptions and knowledge claims based on evidence were more oriented towards having mixed motives and utilizing deep strategies to learn biology. In contrast, students who believed in the certainty of biological knowledge were more likely to adopt rote learning strategies and to aim to qualify in biology.

  8. Creating biological nanomaterials using synthetic biology. (United States)

    Rice, MaryJoe K; Ruder, Warren C


    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  9. Biological compatibility test on films of added SEO [poly(dimethyl siloxane)-co-poly(ethylene oxide)] PVP; Teste de biocompatibilidade de filmes de PVP com adicao de SEO [poli (dimetilsiloxano)-co-poli(oxido de etileno)

    Energy Technology Data Exchange (ETDEWEB)

    Rogero, Sizue O.; Souza-Bazzi, Aurea de; Higa, Olga Z. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Supervisao de Radiobiologia


    Membranes composed by polyvinylpyrrolidone (PVP), agar and water crosslinked by ionizing radiation, can have the mechanical properties improved by the addition of copolymers. Due to the hydrophilic property also by the medical grade as it is supplied, the copolymer poly(dimethyl siloxane)-co-poly(ethylene oxide) (SEO) was added to the PVP membranes. Varied concentrations of SEO were used in the preparation of PVP membranes by electron beam irradiation at dose rate of 25 kGy. For testing the bicompatibility of the SEO composed membrane the in vitro assay of cytotoxicity, with Chinese Hamster Ovary cells (CHO), was carried out. However, the membranes showed a cytotoxic characteristic in cell culture, which was stronger as the amount of SEO increased in the composition. (author) 5 refs., 1 fig., 1 tab.

  10. Bayes in biological anthropology. (United States)

    Konigsberg, Lyle W; Frankenberg, Susan R


    In this article, we both contend and illustrate that biological anthropologists, particularly in the Americas, often think like Bayesians but act like frequentists when it comes to analyzing a wide variety of data. In other words, while our research goals and perspectives are rooted in probabilistic thinking and rest on prior knowledge, we often proceed to use statistical hypothesis tests and confidence interval methods unrelated (or tenuously related) to the research questions of interest. We advocate for applying Bayesian analyses to a number of different bioanthropological questions, especially since many of the programming and computational challenges to doing so have been overcome in the past two decades. To facilitate such applications, this article explains Bayesian principles and concepts, and provides concrete examples of Bayesian computer simulations and statistics that address questions relevant to biological anthropology, focusing particularly on bioarchaeology and forensic anthropology. It also simultaneously reviews the use of Bayesian methods and inference within the discipline to date. This article is intended to act as primer to Bayesian methods and inference in biological anthropology, explaining the relationships of various methods to likelihoods or probabilities and to classical statistical models. Our contention is not that traditional frequentist statistics should be rejected outright, but that there are many situations where biological anthropology is better served by taking a Bayesian approach. To this end it is hoped that the examples provided in this article will assist researchers in choosing from among the broad array of statistical methods currently available. Copyright © 2013 Wiley Periodicals, Inc.

  11. [The role of Hühner's direct post-coital test in the evaluation of conjugal sterility in the African environment in Senegal. (Apropos of 2593 post-coital tests performed by the clinical cytology, cytogenetic and reproduction biology laboratory at the University Hospital Center in Dakar, Senegal) 1983-1993]. (United States)

    Afoutou, J M; Diallo, A S; d'Almeida, C; Faye, O; Diallo, D; Silou, J; Bah-Diawo, M; Diadhiou, F; Mensah, A; Correa, P


    About 2593 post-coïtal tests (PCT) or Hühner direct tests were realised in the laboratory of clinical cytology, cytogenetics and reproductive biology of the University medical Centre of Dakar, Senegal from 1983 to 1993. Analysing the results, the authors showed the importance of the infectious factor in women and also the role of male deficiency in conjugal sterility in black African environment. These realities have been confirmed cytospermiologic test deficient results. These sperm exams have shown among other things, the prevailing number of azoospermia (25%) and of oligo-asthénotératozoospermia (44%) in husbands of sterile women in the black African environment of Senegal. Pap's Tests have been jointly realised at the same time as 1902 PCT. The results have enabled us to track down 120 cervix with precancerous and cancerous cell alterations; 81 condylomas (HPV), 25 CIN1, 11 CIN2 and 3 CIN3 (CIN: cervical intra-epithelial Neoplasia). These facts suggest a cautious technics, and a prudent interpretation of the results and taking into account the competence and the subjectivity of the practitioner. We have learnt from the study that we must give as much as possible to biologists of Reproduction in southern countries, where conjugal sterility and cervix precancerous and cancerous cell alterations are high, a polyvalent training so that they can practise jointly the post-coïtal or Hühner direct test (PCT) and the Papanicolaou Colpocytologic Test (TP), provided that one owes a microscope.

  12. Undergraduate Students' Mental Model of Cell Biology


    S. Saptono; W. Isnaeni; S. Sukaesih


    A descriptive study of future teacher students' mental models of essential concepts in Cell Biology was carried out through explanatory mixed-methods. Some students (n=40) of Biology Education Universitas Negeri Semarang were involved as the research subject. We used a diagnostic test, structured interview guides, and field notes to describe students' mental model. In the early stage, we prepare a diagnostic test performed essential concepts of Cell Biology. Secondly, we define students' ment...

  13. The effect of a county's public high school summer remediation program on student gains on end-of-course standard of learning tests in Algebra I, Biology, Chemistry, Geometry and World History and Geography II (United States)

    Aiken, Brenda L.

    The Commonwealth of Virginia requires high school students to receive a passing grade in core courses and a passing score on End-of-Course Standards of Learning (EOC SOL) tests to receive verified credits that lead to a Virginia high school diploma. These tests are believed to accurately reflect what students should know and be able to do in order to experience success in their endeavors beyond high school. For some students remediation is required to experience success on EOC SOL tests. This study sought to determine the effect of a County's public high school summer remediation program on student gains on EOC SOL tests in Algebra I, Biology, Chemistry, Geometry, and World History and Geography II. Specifically, the purpose of the study sought to determine the following: (a) If significant gains were made by students who attended the summer remediation program; (b) If significant gains were made by students who did not attend the summer remediation program; (c) If there were differences in gain scores of students who attended and those who did not attend the summer remediation program; and (d) If there were differences in gain scores among students who attended the summer remediation program related to school site, gender, ethnicity, learning ability group, socioeconomic status, and level of English proficiency. The results of the study indicate that students who attended and those who did not attend the summer remediation program made significant gains. However, the gains for students who attended the summer remediation program were significantly greater than the gains made by students who did not attend. The study also found that there were no significant differences in gain scores among students who attended the summer remediation program related to gender, ethnicity, learning ability group, socioeconomic status, and level of English proficiency. There were significant differences in Algebra I gain scores related to school site. Recommendations for

  14. Quantitative biology: where modern biology meets physical sciences. (United States)

    Shekhar, Shashank; Zhu, Lian; Mazutis, Linas; Sgro, Allyson E; Fai, Thomas G; Podolski, Marija


    Quantitative methods and approaches have been playing an increasingly important role in cell biology in recent years. They involve making accurate measurements to test a predefined hypothesis in order to compare experimental data with predictions generated by theoretical models, an approach that has benefited physicists for decades. Building quantitative models in experimental biology not only has led to discoveries of counterintuitive phenomena but has also opened up novel research directions. To make the biological sciences more quantitative, we believe a two-pronged approach needs to be taken. First, graduate training needs to be revamped to ensure biology students are adequately trained in physical and mathematical sciences and vice versa. Second, students of both the biological and the physical sciences need to be provided adequate opportunities for hands-on engagement with the methods and approaches necessary to be able to work at the intersection of the biological and physical sciences. We present the annual Physiology Course organized at the Marine Biological Laboratory (Woods Hole, MA) as a case study for a hands-on training program that gives young scientists the opportunity not only to acquire the tools of quantitative biology but also to develop the necessary thought processes that will enable them to bridge the gap between these disciplines. © 2014 Shekhar, Zhu, Mazutis, Sgro, Fai, and Podolski. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (

  15. Biological anti-TNF drugs

    DEFF Research Database (Denmark)

    Prado, Mônica Simon; Bendtzen, Klaus; Andrade, Luis Eduardo Coelho


    is frequently caused by antibodies against immune-biologicals, known as anti-drug antibodies (ADA). ADA that neutralize circulating immune-biologicals and/or promote their clearance can reduce treatment efficacy. Furthermore, ADA can induce adverse events by diverse immunological mechanisms. This review...... provides a comprehensive overview of ADA in rheumatoid arthritis patients treated with anti-TNF immune-biologicals, and explores the concept of therapeutic drug monitoring (TDM) as an effective strategy to improve therapeutic management. Expert opinion: Monitoring circulating ADA and therapeutic immune......-biological drugs is helpful when evaluating patients with secondary failure. However, immunological tests for ADA vary considerably regarding their ability to detect different types of ADA. Several assays are not designed to determine ADA-induced drug neutralizing capacity, and they may report clinically non...

  16. Tested Studies for Laboratory Teaching. Proceedings of the Workshop/Conference of the Association for Biology Laboratory Education (ABLE) (5th, Clemson, South Carolina, June 13-17, 1983). (United States)

    Goldman, Corey A., Ed.; And Others

    The focus of the Association for Biology Laboratory Education (ABLE) is to improve the undergraduate biology laboratory experience by promoting the development and dissemination of interesting, innovative, and reliable laboratory exercises. This proceedings volume contains eight papers: "Bacterial Transformation" (M. J. Ernest & N. J. Rosenbaum);…

  17. Intuitive biological thought: Developmental changes and effects of biology education in late adolescence. (United States)

    Coley, John D; Arenson, Melanie; Xu, Yian; Tanner, Kimberly D


    A large body of cognitive research has shown that people intuitively and effortlessly reason about the biological world in complex and systematic ways. We addressed two questions about the nature of intuitive biological reasoning: How does intuitive biological thinking change during adolescence and early adulthood? How does increasing biology education influence intuitive biological thinking? To do so, we developed a battery of measures to systematically test three components of intuitive biological thought: anthropocentric thinking, teleological thinking and essentialist thinking, and tested 8th graders and university students (both biology majors, and non-biology majors). Results reveal clear evidence of persistent intuitive reasoning among all populations studied, consistent but surprisingly small differences between 8th graders and college students on measures of intuitive biological thought, and consistent but again surprisingly small influence of increasing biology education on intuitive biological reasoning. Results speak to the persistence of intuitive reasoning, the importance of taking intuitive knowledge into account in science classrooms, and the necessity of interdisciplinary research to advance biology education. Further studies are necessary to investigate how cultural context and continued acquisition of expertise impact intuitive biology thinking. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Dyneins: structure, biology and disease

    National Research Council Canada - National Science Library

    King, Stephen M


    .... From bench to bedside, Dynein: Structure, Biology and Disease offers research on fundamental cellular processes to researchers and clinicians across developmental biology, cell biology, molecular biology, biophysics, biomedicine...

  19. Biological conversion system (United States)

    Scott, C.D.

    A system for bioconversion of organic material comprises a primary bioreactor column wherein a biological active agent (zymomonas mobilis) converts the organic material (sugar) to a product (alcohol), a rejuvenator column wherein the biological activity of said biological active agent is enhanced, and means for circulating said biological active agent between said primary bioreactor column and said rejuvenator column.

  20. Translational environmental biology: cell biology informing conservation. (United States)

    Traylor-Knowles, Nikki; Palumbi, Stephen R


    Typically, findings from cell biology have been beneficial for preventing human disease. However, translational applications from cell biology can also be applied to conservation efforts, such as protecting coral reefs. Recent efforts to understand the cell biological mechanisms maintaining coral health such as innate immunity and acclimatization have prompted new developments in conservation. Similar to biomedicine, we urge that future efforts should focus on better frameworks for biomarker development to protect coral reefs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Synthetic biology: insights into biological computation. (United States)

    Manzoni, Romilde; Urrios, Arturo; Velazquez-Garcia, Silvia; de Nadal, Eulàlia; Posas, Francesc


    Organisms have evolved a broad array of complex signaling mechanisms that allow them to survive in a wide range of environmental conditions. They are able to sense external inputs and produce an output response by computing the information. Synthetic biology attempts to rationally engineer biological systems in order to perform desired functions. Our increasing understanding of biological systems guides this rational design, while the huge background in electronics for building circuits defines the methodology. In this context, biocomputation is the branch of synthetic biology aimed at implementing artificial computational devices using engineered biological motifs as building blocks. Biocomputational devices are defined as biological systems that are able to integrate inputs and return outputs following pre-determined rules. Over the last decade the number of available synthetic engineered devices has increased exponentially; simple and complex circuits have been built in bacteria, yeast and mammalian cells. These devices can manage and store information, take decisions based on past and present inputs, and even convert a transient signal into a sustained response. The field is experiencing a fast growth and every day it is easier to implement more complex biological functions. This is mainly due to advances in in vitro DNA synthesis, new genome editing tools, novel molecular cloning techniques, continuously growing part libraries as well as other technological advances. This allows that digital computation can now be engineered and implemented in biological systems. Simple logic gates can be implemented and connected to perform novel desired functions or to better understand and redesign biological processes. Synthetic biological digital circuits could lead to new therapeutic approaches, as well as new and efficient ways to produce complex molecules such as antibiotics, bioplastics or biofuels. Biological computation not only provides possible biomedical and

  2. Synthetic Biology-The Synthesis of Biology. (United States)

    Ausländer, Simon; Ausländer, David; Fussenegger, Martin


    Synthetic biology concerns the engineering of man-made living biomachines from standardized components that can perform predefined functions in a (self-)controlled manner. Different research strategies and interdisciplinary efforts are pursued to implement engineering principles to biology. The "top-down" strategy exploits nature's incredible diversity of existing, natural parts to construct synthetic compositions of genetic, metabolic, or signaling networks with predictable and controllable properties. This mainly application-driven approach results in living factories that produce drugs, biofuels, biomaterials, and fine chemicals, and results in living pills that are based on engineered cells with the capacity to autonomously detect and treat disease states in vivo. In contrast, the "bottom-up" strategy seeks to be independent of existing living systems by designing biological systems from scratch and synthesizing artificial biological entities not found in nature. This more knowledge-driven approach investigates the reconstruction of minimal biological systems that are capable of performing basic biological phenomena, such as self-organization, self-replication, and self-sustainability. Moreover, the syntheses of artificial biological units, such as synthetic nucleotides or amino acids, and their implementation into polymers inside living cells currently set the boundaries between natural and artificial biological systems. In particular, the in vitro design, synthesis, and transfer of complete genomes into host cells point to the future of synthetic biology: the creation of designer cells with tailored desirable properties for biomedicine and biotechnology. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Models for synthetic biology

    Directory of Open Access Journals (Sweden)

    Kaznessis Yiannis N


    Full Text Available Abstract Synthetic biological engineering is emerging from biology as a distinct discipline based on quantification. The technologies propelling synthetic biology are not new, nor is the concept of designing novel biological molecules. What is new is the emphasis on system behavior. The objective is the design and construction of new biological devices and systems to deliver useful applications. Numerous synthetic gene circuits have been created in the past decade, including bistable switches, oscillators, and logic gates, and possible applications abound, including biofuels, detectors for biochemical and chemical weapons, disease diagnosis, and gene therapies. More than fifty years after the discovery of the molecular structure of DNA, molecular biology is mature enough for real quantification that is useful for biological engineering applications, similar to the revolution in modeling in chemistry in the 1950s. With the excitement that synthetic biology is generating, the engineering and biological science communities appear remarkably willing to cross disciplinary boundaries toward a common goal.

  4. Supporting read-across using biological data

    NARCIS (Netherlands)

    Zhu, H.; Bouhifd, M.; Donley, E.; Egnash, L.; Kleinstreuer, N.; Kroese, E.D.; Liu, Z.; Luechtefeld, T.; Palmer, J.; Pamies, D.; Shen, J.; Strauss, V.; Wu, S.; Hartung, T.


    Read-across, i.e., filling toxicological data gaps by relating to similar chemicals for which test data are available, is usually done based on chemical similarity. Besides structure and physico-chemical properties, biological similarity based on biological data adds extra strength to this process.

  5. Radiometry in medicine and biology (United States)

    Nahm, Kie-Bong; Choi, Eui Y.


    Diagnostics in medicine plays a critical role in helping medical professionals deliver proper diagnostic decisions. Most samples in this trade are of the human origin and a great portion of methodologies practiced in biology labs is shared in clinical diagnostic laboratories as well. Most clinical tests are quantitative in nature and recent increase in interests in preventive medicine requires the determination of minimal concentration of target analyte: they exist in small quantities at the early stage of various diseases. Radiometry or the use of optical radiation is the most trusted and reliable means of converting biologic concentrations into quantitative physical quantities. Since optical energy is readily available in varying energies (or wavelengths), the appropriate combination of light and the sample absorption properties provides reliable information about the sample concentration through Beer-Lambert law to a decent precision. In this article, the commonly practiced techniques in clinical and biology labs are reviewed from the standpoint of radiometry.

  6. Biological basis of detoxication

    National Research Council Canada - National Science Library

    Caldwell, John; Jakoby, William B


    This volume considers that premise that most of the major patterns of biological conversion of foreign compounds are known and may have predictive value in assessing the biological course for novel compounds...

  7. Biology of Blood (United States)

    ... switch to the Professional version Home Blood Disorders Biology of Blood Overview of Blood Resources In This ... Version. DOCTORS: Click here for the Professional Version Biology of Blood Overview of Blood Components of Blood ...

  8. Marine mammals: evolutionary biology

    National Research Council Canada - National Science Library

    Berta, Annalisa; Sumich, James L; Kovacs, Kit M


    The third edition of Marine Mammals: Evolutionary Biology provides a comprehensive and current assessment of the diversity, evolution, and biology of marine mammals, while highlighting the latest tools and techniques for their study...

  9. Energia total de ruptura: um teste biomecânico para avaliação de material biológico com propriedade viscoelástica não linear Total energy of rupture: a biomechanical test to evaluate non-linear viscoelastic biological material

    Directory of Open Access Journals (Sweden)

    Feng Chung Wu


    also possible to generate descriptive and statistics reports and graphics through the data acquisition and analysis automatization and management. Conclusion: Based on physic-mechanical, computational and biomechanical concepts, the Total Energy of Rupture test provides mathematical analysis of the rat’s left colon segment behaviour during the experiments, demonstrating to be a possible method to measure the intrinsic resistance of this biological material presenting non-linear viscoelastic property.



  11. Biology Myth-Killers (United States)

    Lampert, Evan


    "Biology Myth-Killers" is an activity designed to identify and correct common misconceptions for high school and college introductory biology courses. Students identify common myths, which double as biology misconceptions, and use appropriate sources to share the "truth" about the myths. This learner-centered activity is a fun…

  12. Synthetic biology: putting synthesis into biology. (United States)

    Liang, Jing; Luo, Yunzi; Zhao, Huimin


    The ability to manipulate living organisms is at the heart of a range of emerging technologies that serve to address important and current problems in environment, energy, and health. However, with all its complexity and interconnectivity, biology has for many years been recalcitrant to engineering manipulations. The recent advances in synthesis, analysis, and modeling methods have finally provided the tools necessary to manipulate living systems in meaningful ways and have led to the coining of a field named synthetic biology. The scope of synthetic biology is as complicated as life itself--encompassing many branches of science and across many scales of application. New DNA synthesis and assembly techniques have made routine customization of very large DNA molecules. This in turn has allowed the incorporation of multiple genes and pathways. By coupling these with techniques that allow for the modeling and design of protein functions, scientists have now gained the tools to create completely novel biological machineries. Even the ultimate biological machinery--a self-replicating organism--is being pursued at this moment. The aim of this article is to dissect and organize these various components of synthetic biology into a coherent picture.

  13. Dismantling the Mantel tests

    DEFF Research Database (Denmark)

    Guillot, Gilles

    The simple and partial Mantel tests are routinely used in many areas of evolutionary biology to assess the significance of the association between two or more matrices of distances relative to the same pairs of individuals or demes. Partial Mantel tests rather than simple Mantel tests are widely ...... as supporting material....

  14. Generation and characterization of biological aerosols for laser measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yung-Sung; Barr, E.B.


    Concerns for proliferation of biological weapons including bacteria, fungi, and viruses have prompted research and development on methods for the rapid detection of biological aerosols in the field. Real-time instruments that can distinguish biological aerosols from background dust would be especially useful. Sandia National Laboratories (SNL) is developing a laser-based, real-time instrument for rapid detection of biological aerosols, and ITRI is working with SNL scientists and engineers to evaluate this technology for a wide range of biological aerosols. This paper describes methods being used to generate the characterize the biological aerosols for these tests. In summary, a biosafe system has been developed for generating and characterizing biological aerosols and using those aerosols to test the SNL laser-based real-time instrument. Such tests are essential in studying methods for rapid detection of airborne biological materials.

  15. Biological evolution: Some genetic considerations

    Directory of Open Access Journals (Sweden)

    Mohammad Saad Zaghloul Salem


    Conclusion: Natural selection might be observed in nature but not in life. The concept of biological evolution is an illogic and insensible hypothesis since it stands in direct contradiction with our current knowledge regarding the behavior as well as the structural and functional characteristics of the human genome and human proteome. Additionally, almost all basic postulations of this concept can neither be tested nor imitated for experimentation, which is a prerequisite for acceptance and validation of any scientific hypotheses.

  16. Computational systems chemical biology. (United States)

    Oprea, Tudor I; May, Elebeoba E; Leitão, Andrei; Tropsha, Alexander


    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology (SCB) (Nat Chem Biol 3: 447-450, 2007).The overarching goal of computational SCB is to develop tools for integrated chemical-biological data acquisition, filtering and processing, by taking into account relevant information related to interactions between proteins and small molecules, possible metabolic transformations of small molecules, as well as associated information related to genes, networks, small molecules, and, where applicable, mutants and variants of those proteins. There is yet an unmet need to develop an integrated in silico pharmacology/systems biology continuum that embeds drug-target-clinical outcome (DTCO) triplets, a capability that is vital to the future of chemical biology, pharmacology, and systems biology. Through the development of the SCB approach, scientists will be able to start addressing, in an integrated simulation environment, questions that make the best use of our ever-growing chemical and biological data repositories at the system-wide level. This chapter reviews some of the major research concepts and describes key components that constitute the emerging area of computational systems chemical biology.

  17. Quantum biological information theory

    CERN Document Server

    Djordjevic, Ivan B


    This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...

  18. Standard biological parts knowledgebase. (United States)

    Galdzicki, Michal; Rodriguez, Cesar; Chandran, Deepak; Sauro, Herbert M; Gennari, John H


    We have created the Knowledgebase of Standard Biological Parts (SBPkb) as a publically accessible Semantic Web resource for synthetic biology ( The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts ( SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL), a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.

  19. Standard biological parts knowledgebase.

    Directory of Open Access Journals (Sweden)

    Michal Galdzicki


    Full Text Available We have created the Knowledgebase of Standard Biological Parts (SBPkb as a publically accessible Semantic Web resource for synthetic biology ( The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts ( SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL, a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.

  20. Biological Dialogues: How to Teach Your Students to Learn Fluency in Biology (United States)

    May, S. Randolph; Cook, David L.; May, Marilyn K.


    Biology courses have thousands of words to learn in order to intelligently discuss the subject and take tests over the material. Biological fluency is an important goal for students, and practical methods based on constructivist pedagogies can be employed to promote it. We present a method in which pairs of students write dialogues from…

  1. Biological tracer method (United States)

    Strong-Gunderson, Janet M.; Palumbo, Anthony V.


    The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer.

  2. Plant synthetic biology. (United States)

    Liu, Wusheng; Stewart, C Neal


    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Branching processes in biology

    CERN Document Server

    Kimmel, Marek


    This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second ex...

  4. Bridging Physics and Biology Using Resistance and Axons (United States)

    Dyer, Joshua M.


    When teaching physics, it is often difficult to get biology-oriented students to see the relevance of physics. A complaint often heard is that biology students are required to take physics for the Medical College Admission Test (MCAT) as part of a "weeding out" process, but that they don't feel like they need physics for biology. Despite…

  5. IQ Predicts Biological Motion Perception in Autism Spectrum Disorders (United States)

    Rutherford, M. D.; Troje, Nikolaus F.


    Biological motion is easily perceived by neurotypical observers when encoded in point-light displays. Some but not all relevant research shows significant deficits in biological motion perception among those with ASD, especially with respect to emotional displays. We tested adults with and without ASD on the perception of masked biological motion…

  6. Biological detector and method (United States)

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F


    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  7. Systems Biology of Metabolism. (United States)

    Nielsen, Jens


    Metabolism is highly complex and involves thousands of different connected reactions; it is therefore necessary to use mathematical models for holistic studies. The use of mathematical models in biology is referred to as systems biology. In this review, the principles of systems biology are described, and two different types of mathematical models used for studying metabolism are discussed: kinetic models and genome-scale metabolic models. The use of different omics technologies, including transcriptomics, proteomics, metabolomics, and fluxomics, for studying metabolism is presented. Finally, the application of systems biology for analyzing global regulatory structures, engineering the metabolism of cell factories, and analyzing human diseases is discussed.

  8. Biological Water Quality Criteria (United States)

    Page contains links to Technical Documents pertaining to Biological Water Quality Criteria, including, technical assistance documents for states, tribes and territories, program overviews, and case studies.

  9. Separating biological cells (United States)

    Brooks, D. E.


    Technique utilizing electric field to promote biological cell separation from suspending medium in zero gravity increases speed, reduces sedimentation, and improves efficiency of separation in normal gravity.

  10. Developments in the Tools and Methodologies of Synthetic Biology (United States)

    Kelwick, Richard; MacDonald, James T.; Webb, Alexander J.; Freemont, Paul


    Synthetic biology is principally concerned with the rational design and engineering of biologically based parts, devices, or systems. However, biological systems are generally complex and unpredictable, and are therefore, intrinsically difficult to engineer. In order to address these fundamental challenges, synthetic biology is aiming to unify a “body of knowledge” from several foundational scientific fields, within the context of a set of engineering principles. This shift in perspective is enabling synthetic biologists to address complexity, such that robust biological systems can be designed, assembled, and tested as part of a biological design cycle. The design cycle takes a forward-design approach in which a biological system is specified, modeled, analyzed, assembled, and its functionality tested. At each stage of the design cycle, an expanding repertoire of tools is being developed. In this review, we highlight several of these tools in terms of their applications and benefits to the synthetic biology community. PMID:25505788

  11. Synthetic biology through biomolecular design and engineering. (United States)

    Channon, Kevin; Bromley, Elizabeth H C; Woolfson, Derek N


    Synthetic biology is a rapidly growing field that has emerged in a global, multidisciplinary effort among biologists, chemists, engineers, physicists, and mathematicians. Broadly, the field has two complementary goals: To improve understanding of biological systems through mimicry and to produce bio-orthogonal systems with new functions. Here we review the area specifically with reference to the concept of synthetic biology space, that is, a hierarchy of components for, and approaches to generating new synthetic and functional systems to test, advance, and apply our understanding of biological systems. In keeping with this issue of Current Opinion in Structural Biology, we focus largely on the design and engineering of biomolecule-based components and systems.

  12. Space Biology in Russia Today (United States)

    Grigoriev, Anatoly; Sychev, Vladimir; Ilyin, Eugene

    At present space biology research in Russia is making significant progress in several areas of high priority. Gravitational biology. In April-May 2013, a successful 30-day flight of the biological satellite (biosatellite) Bion-M1 was conducted, which carried rodents (mice and gerbils), geckos, fish, mollusks, crustaceans, microorganisms, insects, lower and higher plants, seeds, etc. The investigations were performed by Russian scientists as well as by researchers from NASA, CNES, DLR and South Korea. Foton-M4 carrying various biological specimens is scheduled to launch in 2014. Work has begun to develop science research programs to be implemented onboard Bion-M2 and Bion-M3 as well as on high apogee recoverable spacecraft. Study of the effects of microgravity on the growth and development of higher plants cultivated over several generations on the International Space Station (ISS) has been recently completed. Space radiobiology. Regular experiments aimed at investigating the effects of high-energy galactic cosmic rays on the animal central nervous system and behavior are being carried out using the Particle Accelerator in the town of Dubna. Biological (environmental) life support systems. In recent years, experiments have been performed on the ISS to upgrade technologies of plant cultivation in microgravity. Advanced greenhouse mockups have been built and are currentlyundergoing bioengineering tests. Technologies of waste utilization in space are being developed. Astrobiology experiments in orbital missions. In 2010, the Biorisk experiment on bacterial and fungal spores, seeds and dormant forms of organisms was completed. The payload containing the specimens was installed on the exterior wall of the ISS and was exposed to outer space for 31 months. In addition, Bion-M1 also carried seeds, bacterial spores and microbes that were exposed to outer space effects. The survival rate of bacterial spores incorporated into man-made meteorites, that were attached to the

  13. Experimenting with Mathematical Biology (United States)

    Sanft, Rebecca; Walter, Anne


    St. Olaf College recently added a Mathematical Biology concentration to its curriculum. The core course, Mathematics of Biology, was redesigned to include a wet laboratory. The lab classes required students to collect data and implement the essential modeling techniques of formulation, implementation, validation, and analysis. The four labs…

  14. Evolutionary Biology Today

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 11. Evolutionary Biology Today - The Domain of Evolutionary Biology. Amitabh Joshi. Series Article Volume 7 Issue 11 November 2002 pp 8-17. Fulltext. Click here to view fulltext PDF. Permanent link:

  15. Biological Clocks & Circadian Rhythms (United States)

    Robertson, Laura; Jones, M. Gail


    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…


    African Journals Online (AJOL)

    Preferred Customer

    KEY WORDS: Aroylhydrazones, Metal complexes, Biological activity, TGA, Electrical conductivity. INTRODUCTION. Hydrazones constitute an important class of compounds with a wide spectrum of pharmacological properties. They are known to possess a wide range of biological applications. The acid hydrazides have ...

  17. Biologics and biosimilars. (United States)

    Patel, Palak K; King, Caleb R; Feldman, Steven R


    Biological drugs are large, complex glycoprotein molecules produced in living organisms. Revolutionary treatments for many conditions, biologics used in dermatology will face patent expiration, opening opportunities for competitive versions. Biologic drugs are so complex such that it is impossible to reproduce them exactly. Biosimilars are designed to be highly similar, though not identical, to the innovator product. Because biosimilars are not exact replicates of innovator biologics, guidelines have suggested that biosimilars should be considered as unique therapeutic interventions, requiring unique names and physician notification prior to substitution. However, because biologics can never be replicated exactly, even innovator biologics have inherent batch-to-batch variability; when the second batch of innovator products were released, physicians began prescribing non-identical variants of biologics to their patients, accepting the possibility of variation in clinical effects. Unlike the variants in innovator products, biosimilars will provide clinical trial data demonstrating similar clinical effects, though there will always be some degree of uncertainty in how much clinical impact will be result from the variation in both innovator and biosimilar products. How biosimilars are approved and how we use biosimilars will need to balance considerations of cost and development time with the possibility of variation in biological response.

  18. Tropical Freshwater Biology

    African Journals Online (AJOL)

    Tropical Freshwater Biology promotes the publication of scientific contributions in the field of freshwater biology in the tropical and subtropical regions of the world. One issue is published annually but this number may be increased. Original research papers and short communications on any aspect of tropical freshwater ...

  19. Biological dose estimation

    African Journals Online (AJOL)

    to this effect was found in at least 3 cases using biological dosimetric criteria, proving the ... The classification system described by Savage3 was used to determine the ... TABLE I. DISTANCE FROM RADIATION SOURCE, DETAILS OF CYTOGENETIC ANALYSIS AND BIOLOGICAL AND PHYSICAL. DOSE ESTIMATIONS.

  20. Biological sample collector (United States)

    Murphy, Gloria A [French Camp, CA


    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  1. Mechanical Biological Treatment

    DEFF Research Database (Denmark)

    Bilitewski, B-; Oros, Christiane; Christensen, Thomas Højlund


    The basic processes and technologies of composting and anaerobic digestion, as described in the previous chapters, are usually used for specific or source-separated organic waste flows. However, in the 1990s mechanical biological waste treatment technologies (MBT) were developed for unsorted...... technologies (screens, sieves, magnets, etc.) with biological technologies (composting, anaerobic digestion). Two main technologies are available: Mechanical biological pretreatment (MBP), which first removes an RDF fraction and then biologically treats the remaining waste before most of it is landfilled......, and mechanical biological stabilization (MBS), which first composts the waste for drying prior to extraction of a large RDF fraction. Only a small fraction is landfilled. The latter technology is also referred to as biodrying. Within each of the two main technologies, a range of variations is available depending...

  2. Frontiers in mathematical biology

    CERN Document Server


    Volume 100, which is the final volume of the LNBM series serves to commemorate the acievements in two decades of this influential collection of books in mathematical biology. The contributions, by the leading mathematical biologists, survey the state of the art in the subject, and offer speculative, philosophical and critical analyses of the key issues confronting the field. The papers address fundamental issues in cell and molecular biology, organismal biology, evolutionary biology, population ecology, community and ecosystem ecology, and applied biology, plus the explicit and implicit mathematical challenges. Cross-cuttting issues involve the problem of variation among units in nonlinear systems, and the related problems of the interactions among phenomena across scales of space, time and organizational complexity.

  3. Space biology research development (United States)

    Bonting, Sjoerd L.


    The purpose of the Search for Extraterrestrial Intelligence (SETI) Institute is to conduct and promote research related activities regarding the search for extraterrestrial life, particularly intelligent life. Such research encompasses the broad discipline of 'Life in the Universe', including all scientific and technological aspects of astronomy and the planetary sciences, chemical evolution, the origin of life, biological evolution, and cultural evolution. The primary purpose was to provide funding for the Principal Investigator to collaborate with the personnel of the SETI Institute and the NASA-Ames Research center in order to plan and develop space biology research on and in connection with Space Station Freedom; to promote cooperation with the international partners in the space station; to conduct a study on the use of biosensors in space biology research and life support system operation; and to promote space biology research through the initiation of an annual publication 'Advances in Space Biology and Medicine'.

  4. Thirty years of Biology & Philosophy: philosophy of which biology?


    Pradeu, Thomas


    International audience; Which domains of biology do philosophers of biology primarily study? The fact that philosophy of biology has been dominated by an interest for evolutionary biology is widely admitted, but it has not been strictly demonstrated. Here I analyse the topics of all the papers published in Biology & Philosophy, just as the journal celebrates its thirtieth anniversary. I then compare the distribution of biological topics in Biology & Philosophy with that of the scientific jour...

  5. Perception of biological motion in visual agnosia

    Directory of Open Access Journals (Sweden)

    Elisabeth eHuberle


    Full Text Available Over the past twenty-five years, visual processing has been discussed in the context of the dual stream hypothesis consisting of a ventral (‘what' and a dorsal ('where' visual information processing pathway. Patients with brain damage of the ventral pathway typically present with signs of visual agnosia, the inability to identify and discriminate objects by visual exploration, but show normal perception of motion perception. A dissociation between the perception of biological motion and non-biological motion has been suggested: Perception of biological motion might be impaired when 'non-biological' motion perception is intact and vice versa. The impact of object recognition on the perception of biological motion remains unclear. We thus investigated this question in a patient with severe visual agnosia, who showed normal perception of non-biological motion. The data suggested that the patient's perception of biological motion remained largely intact. However, when tested with objects constructed of coherently moving dots (‘Shape-from-Motion’, recognition was severely impaired. The results are discussed in the context of possible mechanisms of biological motion perception.

  6. Mammalian Synthetic Biology: Engineering Biological Systems. (United States)

    Black, Joshua B; Perez-Pinera, Pablo; Gersbach, Charles A


    The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.

  7. Chemistry and biological activity of ramalina lichenized fungi

    National Research Council Canada - National Science Library

    Moreira, Antônio Sérgio Nascimento; Braz-Filho, Raimundo; Mussi-Dias, Vicente; Vieira, Ivo José Curcino


    ... or isolated compounds were cited. From the 153 mentioned compounds, only 27 passed were tested for biological activity, being usnic acid the most studied compound and the one showing the best results in almost all in vitro tests...

  8. Managing biological diversity (United States)

    Samson, Fred B.; Knopf, Fritz L.


    Biological diversity is the variety of life and accompanying ecological processes (Off. Technol. Assess. 1987, Wilcove and Samson 1987, Keystone 1991). Conservation of biological diversity is a major environmental issue (Wilson 1988, Counc. Environ. Quality 1991). The health and future of the earth's ecological systems (Lubchenco et al. 1991), global climate change (Botkin 1990), and an ever-increasing rate in loss of species, communities, and ecological systems (Myers 1990) are among issues drawing biological diversity to the mainstream of conservation worldwide (Int. Union Conserv. Nat. and Nat. Resour. [IUCN] et al. 1991). The legal mandate for conserving biological diversity is now in place (Carlson 1988, Doremus 1991). More than 19 federal laws govern the use of biological resources in the United States (Rein 1991). The proposed National Biological Diversity Conservation and Environmental Research Act (H.R. 585 and S.58) notes the need for a national biological diversity policy, would create a national center for biological diversity research, and recommends a federal interagency strategy for ecosystem conservation. There are, however, hard choices ahead for the conservation of biological diversity, and biologists are grappling with how to set priorities in research and management (Roberts 1988). We sense disillusion among field biologists and managers relative to how to operationally approach the seemingly overwhelming charge of conserving biological diversity. Biologists also need to respond to critics like Hunt (1991) who suggest a tree farm has more biological diversity than an equal area of old-growth forest. At present, science has played only a minor role in the conservation of biological diversity (Weston 1992) with no unified approach available to evaluate strategies and programs that address the quality and quantity of biological diversity (Murphy 1990, Erwin 1992). Although actions to conserve biological diversity need to be clearly defined by

  9. Systems biology in animal sciences


    Woelders, H.; Pas, te, M.F.W.; Bannink, A.; Veerkamp, R. F.; Smits, M A


    Systems biology is a rapidly expanding field of research and is applied in a number of biological disciplines. In animal sciences, omics approaches are increasingly used, yielding vast amounts of data, but systems biology approaches to extract understanding from these data of biological processes and animal traits are not yet frequently used. This paper aims to explain what systems biology is and which areas of animal sciences could benefit from systems biology approaches. Systems biology aim...

  10. Biological and Chemical Security

    Energy Technology Data Exchange (ETDEWEB)

    Fitch, P J


    The LLNL Chemical & Biological National Security Program (CBNP) provides science, technology and integrated systems for chemical and biological security. Our approach is to develop and field advanced strategies that dramatically improve the nation's capabilities to prevent, prepare for, detect, and respond to terrorist use of chemical or biological weapons. Recent events show the importance of civilian defense against terrorism. The 1995 nerve gas attack in Tokyo's subway served to catalyze and focus the early LLNL program on civilian counter terrorism. In the same year, LLNL began CBNP using Laboratory-Directed R&D investments and a focus on biodetection. The Nunn-Lugar-Domenici Defense Against Weapons of Mass Destruction Act, passed in 1996, initiated a number of U.S. nonproliferation and counter-terrorism programs including the DOE (now NNSA) Chemical and Biological Nonproliferation Program (also known as CBNP). In 2002, the Department of Homeland Security was formed. The NNSA CBNP and many of the LLNL CBNP activities are being transferred as the new Department becomes operational. LLNL has a long history in national security including nonproliferation of weapons of mass destruction. In biology, LLNL had a key role in starting and implementing the Human Genome Project and, more recently, the Microbial Genome Program. LLNL has over 1,000 scientists and engineers with relevant expertise in biology, chemistry, decontamination, instrumentation, microtechnologies, atmospheric modeling, and field experimentation. Over 150 LLNL scientists and engineers work full time on chemical and biological national security projects.

  11. Physics in Molecular Biology (United States)

    Sneppen, Kim; Zocchi, Giovanni


    Tools developed by statistical physicists are of increasing importance in the analysis of complex biological systems. Physics in Molecular Biology discusses how physics can be used in modeling life. It begins by summarizing important biological concepts, emphasizing how they differ from the systems normally studied in physics. A variety of topics, ranging from the properties of single molecules to the dynamics of macro-evolution, are studied in terms of simple mathematical models. The main focus of the book is on genes and proteins and how they build systems that compute and respond. The discussion develops from simple to complex systems, and from small-scale to large-scale phenomena. This book will inspire advanced undergraduates and graduate students in physics to approach biological subjects from a physicist's point of view. It is self-contained, requiring no background knowledge of biology, and only familiarity with basic concepts from physics, such as forces, energy, and entropy. Introduces important biological concepts from a physicist's point of view - no background knowledge of biology is required A wide range of subjects are studied using simple mathematical models; exercises are included Discussion develops from simple to complex phenomena and from small scale to large scale interactions

  12. Noise in biological circuits. (United States)

    Simpson, Michael L; Cox, Chris D; Allen, Michael S; McCollum, James M; Dar, Roy D; Karig, David K; Cooke, John F


    Noise biology focuses on the sources, processing, and biological consequences of the inherent stochastic fluctuations in molecular transitions or interactions that control cellular behavior. These fluctuations are especially pronounced in small systems where the magnitudes of the fluctuations approach or exceed the mean value of the molecular population. Noise biology is an essential component of nanomedicine where the communication of information is across a boundary that separates small synthetic and biological systems that are bound by their size to reside in environments of large fluctuations. Here we review the fundamentals of the computational, analytical, and experimental approaches to noise biology. We review results that show that the competition between the benefits of low noise and those of low population has resulted in the evolution of genetic system architectures that produce an uneven distribution of stochasticity across the molecular components of cells and, in some cases, use noise to drive biological function. We review the exact and approximate approaches to gene circuit noise analysis and simulation, and review many of the key experimental results obtained using flow cytometry and time-lapse fluorescent microscopy. In addition, we consider the probative value of noise with a discussion of using measured noise properties to elucidate the structure and function of the underlying gene circuit. We conclude with a discussion of the frontiers of and significant future challenges for noise biology. (c) 2009 John Wiley & Sons, Inc.

  13. On the Concept "Microscope": Biology Student Teachers' Cognitive Structure (United States)

    Kurt, Hakan; Ekici, Gulay; Aktas, Murat; Aksu, Ozlem


    The purpose of the current study is to determine biology student teachers' cognitive structures on the concept of microscope. Qualitative research methodology has been applied in the study. The data were collected from biology student teachers. Free word association test and drawing-writing test were used to collect data. The data collected were…

  14. Secondary & College Biology Students' Misconceptions About Diffusion & Osmosis. (United States)

    Odom, Arthur Louis


    Tests on diffusion and osmosis given to (n=116) secondary biology students, (n=123) nonbiology majors, and (n=117) biology majors found that, even after instruction, students continue to have misconceptions about these ideas. Appendix includes diffusion and osmosis test. (MKR)

  15. Neutron in biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment


    Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10{sup 2} to 10{sup 3} times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)

  16. Laboratory of Biological Modeling (United States)

    Federal Laboratory Consortium — The Laboratory of Biological Modeling is defined by both its methodologies and its areas of application. We use mathematical modeling in many forms and apply it to a...

  17. Hammond Bay Biological Station (United States)

    Federal Laboratory Consortium — Hammond Bay Biological Station (HBBS), located near Millersburg, Michigan, is a field station of the USGS Great Lakes Science Center (GLSC). HBBS was established by...

  18. Biological and Pharmacological properties

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Biological and Pharmacological properties. NOEA inhibits Ceramidase. Anandamide inhibits gap junction conductance and reduces sperm fertilizing capacity. Endogenous ligands for Cannabinoid receptors (anandamide and NPEA). Antibacterial and antiviral ...

  19. Fishery Biology Database (AGDBS) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Basic biological data are the foundation on which all assessments of fisheries resources are built. These include parameters such as the size and age composition of...

  20. Biological Monitoring Team (United States)

    US Fish and Wildlife Service, Department of the Interior — The Biological Monitoring Team (BMT) was a pilot project focused on addressing NWRS inventory and monitoring needs in Regions 3 and 5. The BMT was a precursor to the...

  1. Biology of spiders

    National Research Council Canada - National Science Library

    Foelix, Rainer F


    "One of the only books to treat the whole spider, from its behavior and physiology to its neurobiology and reproductive characteristics, Biology of Spiders is considered a classic in spider literature...

  2. Nutritional Systems Biology

    DEFF Research Database (Denmark)

    Jensen, Kasper

    and network biology has the potential to increase our understanding of how small molecules affect metabolic pathways and homeostasis, how this perturbation changes at the disease state, and to what extent individual genotypes contribute to this. A fruitful strategy in approaching and exploring the field...... biology research. The paper also shows as a proof-of-concept that a systems biology approach to diet is meaningful and demonstrates some basic principles on how to work with diet systematic. The second chapter of this thesis we developed the resource NutriChem v1.0. A foodchemical database linking...... sites of diet on the disease pathway. We propose a framework for interrogating the critical targets in colon cancer process and identifying plant-based dietary interventions as important modifiers using a systems chemical biology approach. The fifth chapter of the thesis is on discovering of novel anti...

  3. Large Pelagics Biological Survey (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Large Pelagics Biological Survey (LPBS) collects additional length and weight information and body parts such as otoliths, caudal vertebrae, dorsal spines, and...

  4. ERLN Biological Focus Area (United States)

    The Environmental Response Laboratory Network supports the goal to increase national capacity for biological analysis of environmental samples. This includes methods development and verification, technology transfer, and collaboration with USDA, FERN, CDC.

  5. Multiscale Biological Materials

    DEFF Research Database (Denmark)

    Frølich, Simon

    Materials formed by organisms, also known as biological materials, exhibit outstanding structural properties. The range of materials formed in nature is remarkable and their functions include support, protection, motion, sensing, storage, and maintenance of physiological homeostasis. These complex...... materials are characterized by their hierarchical and composite design, where features with sizes ranging from nanometers to centimeters provide the basis for the functionality of the material. Understanding of biological materials is, while very interesting from a basic research perspective, also valuable...... as inspiration for the development of new materials for medical and technological applications. In order to successfully mimic biological materials we must first have a thorough understanding of their design. As such, the purpose of the characterization of biological materials can be defined as the establishment...

  6. Teaching evolutionary biology

    Directory of Open Access Journals (Sweden)

    Rosana Tidon


    Full Text Available Evolutionary Biology integrates several disciplines of Biology in a complex and interactive manner, where a deep understanding of the subject demands knowledge in diverse areas. Since this knowledge is often inaccessible to the majority of specialized professionals, including the teachers, we present some reflections in order to stimulate discussions aimed at the improvement of the conditions of education in this area. We examine the profile of evolutionary teaching in Brazil, based on questionnaires distributed to teachers in Secondary Education in the Federal District, on data provided by the "National Institute for Educational Studies and Research", and on information collected from teachers working in various regions of this country. Issues related to biological misconceptions, curriculum and didactic material are discussed, and some proposals are presented with the objective of aiding discussions aimed at the improvement of the teaching of evolutionary biology.

  7. EDITORIAL: Physical Biology (United States)

    Roscoe, Jane


    Physical Biology is a new peer-reviewed publication from Institute of Physics Publishing. Launched in 2004, the journal will foster the integration of biology with the traditionally more quantitative fields of physics, chemistry, computer science and other math-based disciplines. Its primary aim is to further the understanding of biological systems at all levels of complexity, ranging from the role of structure and dynamics of a single molecule to cellular networks and organisms. The journal encourages the development of a new biology-driven physics based on the extraordinary and increasingly rich data arising in biology, and provides research directions for those involved in the creation of novel bio-engineered systems. Physical Biology will publish a stimulating combination of full length research articles, communications, perspectives, reviews and tutorials from a wide range of disciplines covering topics such as: Single-molecule studies and nanobiotechnology Molecular interactions and protein folding Charge transfer and photobiology Ion channels; structure, function and ion regulation Molecular motors and force generation Subcellular processes Biological networks and neural systems Modeling aspects of molecular and cell biology Cell-cell signaling and interaction Biological patterns and development Evolutionary processes Novel tools and methods in physical biology Experts in the areas encompassed by the journal's scope have been appointed to the Editorial Scientific Committee and the composition of the Committee will be updated regularly to reflect the developments in this new and exciting field. Physical Biology is free online to everyone in 2004; you are invited to take advantage of this offer by visiting the journal homepage at This special print edition of Physical Biology is a combination of issues 1 and 2 of this electronic-only journal and it brings together an impressive range of articles in the fields covered, including a popular

  8. Enhanced Biological Sampling Data (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a database of a variety of biological, reproductive, and energetic data collected from fish on the continental shelf in the northwest Atlantic Ocean. Species...

  9. Human papillomavirus molecular biology. (United States)

    Harden, Mallory E; Munger, Karl

    Human papillomaviruses are small DNA viruses with a tropism for squamous epithelia. A unique aspect of human papillomavirus molecular biology involves dependence on the differentiation status of the host epithelial cell to complete the viral lifecycle. A small group of these viruses are the etiologic agents of several types of human cancers, including oral and anogenital tract carcinomas. This review focuses on the basic molecular biology of human papillomaviruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Complex systems biology


    Ma'ayan, Avi


    Complex systems theory is concerned with identifying and characterizing common design elements that are observed across diverse natural, technological and social complex systems. Systems biology, a more holistic approach to study molecules and cells in biology, has advanced rapidly in the past two decades. However, not much appreciation has been granted to the realization that the human cell is an exemplary complex system. Here, I outline general design principles identified in many complex s...

  11. Graphs in molecular biology

    Directory of Open Access Journals (Sweden)

    Falcon Seth


    Full Text Available Abstract Graph theoretical concepts are useful for the description and analysis of interactions and relationships in biological systems. We give a brief introduction into some of the concepts and their areas of application in molecular biology. We discuss software that is available through the Bioconductor project and present a simple example application to the integration of a protein-protein interaction and a co-expression network.

  12. Ratiometric biological nanosensors. (United States)

    Fisher, Kate M; Campbell, Colin J


    The measurement of intracellular analytes has been key in understanding cellular processes and function, and the use of biological nanosensors has revealed the spatial and temporal variation in their concentrations. In particular, ratiometric nanosensors allow quantitative measurements of analyte concentrations. The present review focuses on the recent advances in ratiometric intracellular biological nanosensors, with an emphasis on their utility in measuring analytes that are important in cell function.

  13. Bench-scale treatability testing of biological, UV oxidation, distillation, and ion-exchange treatment of trench water from a low-level radioactive waste disposal area at West Valley, New York

    Energy Technology Data Exchange (ETDEWEB)

    Sundquist, J.A.; Gillings, J.C. [Ecology and Environment, Inc. (United States); Sonntag, T.L. [New York State Energy Research and Development Authority (United States); Denault, R.P. [Pacific Nuclear, Inc. (United States)


    Ecology and Environment, Inc. (E and E), under subcontract to Pacific Nuclear Services (PNS), conducted for the New York State Energy Research and Development Authority (NYSERDA) treatability tests to support the selection and design of a treatment system for leachate from Trench 14 of the West Valley State-Licensed, Low-Level Radioactive Waste Disposal Area (SDA). In this paper E and E presents and discusses the treatability test results and provides recommendations for the design of the full-scale treatment system.

  14. Developmental biology, the stem cell of biological disciplines. (United States)

    Gilbert, Scott F


    Developmental biology (including embryology) is proposed as "the stem cell of biological disciplines." Genetics, cell biology, oncology, immunology, evolutionary mechanisms, neurobiology, and systems biology each has its ancestry in developmental biology. Moreover, developmental biology continues to roll on, budding off more disciplines, while retaining its own identity. While its descendant disciplines differentiate into sciences with a restricted set of paradigms, examples, and techniques, developmental biology remains vigorous, pluripotent, and relatively undifferentiated. In many disciplines, especially in evolutionary biology and oncology, the developmental perspective is being reasserted as an important research program.

  15. Evaluation and validation of a single-dilution potency assay based upon serology of vaccines containing diphtheria toxoid: analysis for consistency in production and testing at the laboratory of the Control of Biological Products of the RIVM

    NARCIS (Netherlands)

    Akkermans AM; Hendriksen CFM; Marsman FR; de Jong WH; van de Donk HJM


    A single-dilution assay can be a valid procedure to demonstrate that a product exceeds the minimal requirement given for potency provided that consistency in production and testing has been proven. Information is presented justifying the use of a single dilution assay based upon quantitative

  16. FDA 101: Regulating Biological Products (United States)

    ... Products For Consumers Home For Consumers Consumer Updates FDA 101: Regulating Biological Products Share Tweet Linkedin Pin ... and highly important field. What biological products does FDA regulate? The Center for Biologics Evaluation and Research ( ...

  17. Adverse Reactions to Biologic Therapy. (United States)

    Patel, Sheenal V; Khan, David A


    Biologic therapies are emerging as a significant therapeutic option for many with debilitating inflammatory and autoimmune conditions. As expansion in the number of FDA-approved agents continue to be seen, more unanticipated adverse reactions are likely to occur. Currently, the diagnostic tools, including skin testing and in vitro testing, to evaluate for immediate hypersensitivity reactions are insufficient. In this review, management strategies for common acute infusion reactions, injection site reactions, and immediate reactions suggestive of IgE-mediated mechanisms are discussed. Desensitization can be considered for reactions suggestive of IgE-mediated mechanisms, but allergists/immunologists should be involved in managing these patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Design Automation in Synthetic Biology. (United States)

    Appleton, Evan; Madsen, Curtis; Roehner, Nicholas; Densmore, Douglas


    Design automation refers to a category of software tools for designing systems that work together in a workflow for designing, building, testing, and analyzing systems with a target behavior. In synthetic biology, these tools are called bio-design automation (BDA) tools. In this review, we discuss the BDA tools areas-specify, design, build, test, and learn-and introduce the existing software tools designed to solve problems in these areas. We then detail the functionality of some of these tools and show how they can be used together to create the desired behavior of two types of modern synthetic genetic regulatory networks. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  19. Evolutionary biology of harvestmen (Arachnida, Opiliones). (United States)

    Giribet, Gonzalo; Sharma, Prashant P


    Opiliones are one of the largest arachnid orders, with more than 6,500 species in 50 families. Many of these families have been erected or reorganized in the last few years since the publication of The Biology of Opiliones. Recent years have also seen an explosion in phylogenetic work on Opiliones, as well as in studies using Opiliones as test cases to address biogeographic and evolutionary questions more broadly. Accelerated activity in the study of Opiliones evolution has been facilitated by the discovery of several key fossils, including the oldest known Opiliones fossil, which represents a new, extinct suborder. Study of the group's biology has also benefited from rapid accrual of genomic resources, particularly with respect to transcriptomes and functional genetic tools. The rapid emergence and utility of Phalangium opilio as a model for evolutionary developmental biology of arthropods serve as demonstrative evidence of a new area of study in Opiliones biology, made possible through transcriptomic data.

  20. Biologics safety preclinical, clinical and regulatory. (United States)

    Hennig, Renald


    Biologicals offer particular challenges for all concerned, whether they be scientific researchers, profit-oriented companies (including not yet profit-producing start-ups), public health-focused regulators, physicians, or, most importantly, patients. One of the most important of these challenges is safety. Hence, this conference was organised by Vision in Business (the trading name of Analysis and Networking Ltd) to provide practical solutions and advice for comprehensive, effective safety testing. It provided a wide spectrum of presentations, ranging from the usefulness of animal models for biologicals safety predictions, to an FDA perspective on implications of its recent restructuring, to a real-life case study on erythropoietin and pure red cell anaemia. For anyone seriously interested in the safety of biologicals, this was a very good opportunity to gain an overview of all major aspects of biologicals safety, broaden existing expertise and to network with those concerned with these issues.

  1. Biological process linkage networks.

    Directory of Open Access Journals (Sweden)

    Dikla Dotan-Cohen

    Full Text Available The traditional approach to studying complex biological networks is based on the identification of interactions between internal components of signaling or metabolic pathways. By comparison, little is known about interactions between higher order biological systems, such as biological pathways and processes. We propose a methodology for gleaning patterns of interactions between biological processes by analyzing protein-protein interactions, transcriptional co-expression and genetic interactions. At the heart of the methodology are the concept of Linked Processes and the resultant network of biological processes, the Process Linkage Network (PLN.We construct, catalogue, and analyze different types of PLNs derived from different data sources and different species. When applied to the Gene Ontology, many of the resulting links connect processes that are distant from each other in the hierarchy, even though the connection makes eminent sense biologically. Some others, however, carry an element of surprise and may reflect mechanisms that are unique to the organism under investigation. In this aspect our method complements the link structure between processes inherent in the Gene Ontology, which by its very nature is species-independent. As a practical application of the linkage of processes we demonstrate that it can be effectively used in protein function prediction, having the power to increase both the coverage and the accuracy of predictions, when carefully integrated into prediction methods.Our approach constitutes a promising new direction towards understanding the higher levels of organization of the cell as a system which should help current efforts to re-engineer ontologies and improve our ability to predict which proteins are involved in specific biological processes.

  2. Biological Effects of Ionizing Radiation (United States)

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.


    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  3. Rapid classification of biological components

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Vicki S. (Idaho Falls, ID); Barrett, Karen B. (Meridian, ID); Key, Diane E. (Idaho Falls, ID)


    A method is disclosed for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an illustrative embodiment of the invention, the analyte is a drug, such as marijuana, cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method involves attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein the locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to antigens in the array, thereby forming immune complexes; washing away antibodies that do not form immune complexes; and detecting the immune complexes, thereby forming an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to a subject's identity.

  4. Rapid classification of biological components

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Vicki S.; Barrett, Karen B.; Key, Diane E.


    A method is disclosed for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an illustrative embodiment of the invention, the analyte is a drug, such as marijuana, cocaine, methamphetamine, methyltestosterone, or mesterolone. The method involves attaching antigens to the surface of a solid support in a preselected pattern to form an array wherein the locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to antigens in the array, thereby forming immune complexes; washing away antibodies that do form immune complexes; and detecting the immune complexes, thereby forming an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to the subject's identity.

  5. Rapid classification of biological components

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Vicki S. (Idaho Falls, ID); Barrett, Karen B. (Meridian, ID); Key, Diane E. (Idaho Falls, ID)


    A method is disclosed for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an illustrative embodiment of the invention, the analyte is a drug, such as marijuana, Cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method involves attaching antigens of the surface of a solid support in a preselected pattern to form an array wherein the locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to antigens in the array, thereby forming immune complexes; washing away antibodies that do not form immune complexes; and detecting the immune complexes, thereby forming an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to a subject's identity.

  6. Rapid classification of biological components

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Vicki S.; Barrett, Karen B.; Key, Diane E.


    A method is disclosed for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an illustrative embodiment of the invention, the analyte is a drug, such as marijuana, cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method involves attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein the locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to antigens in the array, thereby forming immune complexes; washing away antibodies that do not form immune complexes; and detecting the immune complexes, thereby forming an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to a subject's identity.

  7. Biological monitoring of isocyanates and related amines. IV. 2,4- and 2,6-toluenediamine in hydrolysed plasma and urine after test-chamber exposure of humans to 2,4- and 2,6-toluene diisocyanate. (United States)

    Brorson, T; Skarping, G; Sangö, C


    Two men were exposed to toluene diisocyanate (TDI) atmospheres at three different air concentrations (ca. 25, 50 and 70 micrograms/m3). The TDI atmospheres were generated by a gas-phase permeation method, and the exposures were performed in an 8-m3 stainless-steel test chamber. The effective exposure period was 4 h. The isomeric composition of the air in the test chamber was 30% 2,4-TDI and 70% 2,6-TDI. The concentration of TDI in air of the test chamber was determined by an HPLC method using the 9-(N-methyl-amino-methyl)-anthracene reagent and by a continuous-monitoring filter-tape instrument. Following the hydrolysis of plasma and urine, the related amines, 2,4-toluenediamine (2,4-TDA) and 2,6-toluenediamine (2,6-TDA), were determined as pentafluoropropionic anhydride (PFPA) derivatives by capillary gas chromatography using selected ion monitoring (SIM) in the electron-impact mode. In plasma, 2,4- and 2,6-TDA showed a rapid-phase elimination half-time of ca. 2-5 h, and that for the slow phase was greater than 6 days. A connection was observed between concentrations of 2,4- and 2,6-TDI in air and the levels of 2,4- and 2,6-TDA in plasma. The cumulated amount of 2,4-TDA excreted in the urine over 24 h was ca. 15%-19% of the estimated inhaled dose of 2,4-TDI, and that of 2,6-TDA was ca. 17%-23% of the inhaled dose of 2,6-TDI. A connection was found between the cumulated (24-h) urinary excretion of 2,4- and 2,6-TDA and the air concentration of 2,4- and 2,6-TDI in the test chamber.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Stochastic Methods in Biology

    CERN Document Server

    Kallianpur, Gopinath; Hida, Takeyuki


    The use of probabilistic methods in the biological sciences has been so well established by now that mathematical biology is regarded by many as a distinct dis­ cipline with its own repertoire of techniques. The purpose of the Workshop on sto­ chastic methods in biology held at Nagoya University during the week of July 8-12, 1985, was to enable biologists and probabilists from Japan and the U. S. to discuss the latest developments in their respective fields and to exchange ideas on the ap­ plicability of the more recent developments in stochastic process theory to problems in biology. Eighteen papers were presented at the Workshop and have been grouped under the following headings: I. Population genetics (five papers) II. Measure valued diffusion processes related to population genetics (three papers) III. Neurophysiology (two papers) IV. Fluctuation in living cells (two papers) V. Mathematical methods related to other problems in biology, epidemiology, population dynamics, etc. (six papers) An important f...

  9. Biological warfare agents

    Directory of Open Access Journals (Sweden)

    Duraipandian Thavaselvam


    Full Text Available The recent bioterrorist attacks using anthrax spores have emphasized the need to detect and decontaminate critical facilities in the shortest possible time. There has been a remarkable progress in the detection, protection and decontamination of biological warfare agents as many instrumentation platforms and detection methodologies are developed and commissioned. Even then the threat of biological warfare agents and their use in bioterrorist attacks still remain a leading cause of global concern. Furthermore in the past decade there have been threats due to the emerging new diseases and also the re-emergence of old diseases and development of antimicrobial resistance and spread to new geographical regions. The preparedness against these agents need complete knowledge about the disease, better research and training facilities, diagnostic facilities and improved public health system. This review on the biological warfare agents will provide information on the biological warfare agents, their mode of transmission and spread and also the detection systems available to detect them. In addition the current information on the availability of commercially available and developing technologies against biological warfare agents has also been discussed. The risk that arise due to the use of these agents in warfare or bioterrorism related scenario can be mitigated with the availability of improved detection technologies.

  10. Information Complexity and Biology (United States)

    Bagnoli, Franco; Bignone, Franco A.; Cecconi, Fabio; Politi, Antonio

    Kolmogorov contributed directly to Biology in essentially three problems: the analysis of population dynamics (Lotka-Volterra equations), the reaction-diffusion formulation of gene spreading (FKPP equation), and some discussions about Mendel's laws. However, the widely recognized importance of his contribution arises from his work on algorithmic complexity. In fact, the limited direct intervention in Biology reflects the generally slow growth of interest of mathematicians towards biological issues. From the early work of Vito Volterra on species competition, to the slow growth of dynamical systems theory, contributions to the study of matter and the physiology of the nervous system, the first 50-60 years have witnessed important contributions, but as scattered pieces apparently uncorrelated, and in branches often far away from Biology. Up to the 40' it is hard to see the initial loose build up of a convergence, for those theories that will become mainstream research by the end of the century, and connected by the study of biological systems per-se.

  11. Contra biology: a polemic. (United States)

    Dawson, P J


    The philosophical basis of the prevalent biological model of psychiatry is examined critically, with particular reference to the reductionism inherent in such an approach. The pharmacological response initiated by the biological approach is then considered, and the perfidious nature of the complicity between psychiatry and the pharmacological/industrial nexus drawn out. Biological psychiatry is then situated within the prevailing political and economic ideology of the 1990s, and the move towards more community-based psychiatry examined from this perspective. Finally, the stresses necessitated by the incompatibility of many nursing models with the biological paradigm are addressed. This is, as the title suggests, a deliberately polemical and provocative paper, which is offered to stimulate debate both on the future of psychiatric/mental health nursing as a soundly theory-based speciality, and also on the uncritical acceptance of the biological paradigm. Wholesale adoption of this paradigm is considered to be inimical to many of the values notionally espoused by nursing, as well as posing dangers in the larger social field, in terms of the culturally acceptable notions of how we define ourselves, and how such definitions affect our conceptions of freedom, free will and agency.

  12. Relations between Intuitive Biological Thinking and Biological Misconceptions in Biology Majors and Nonmajors (United States)

    Coley, John D.; Tanner, Kimberly


    Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed "misconceptions," among biology students across biological domains. In parallel, cognitive and developmental psychologists…

  13. Biological therapy of psoriasis

    Directory of Open Access Journals (Sweden)

    Sivamani Raja


    Full Text Available The treatment of psoriasis has undergone a revolution with the advent of biologic therapies, including infliximab, etanercept, adalimumab, efalizumab, and alefacept. These medications are designed to target specific components of the immune system and are a major technological advancement over traditional immunosuppressive medications. These usually being well tolerated are being found useful in a growing number of immune-mediated diseases, psoriasis being just one example. The newest biologic, ustekinumab, is directed against the p40 subunit of the IL-12 and IL-23 cytokines. It has provided a new avenue of therapy for an array of T-cell-mediated diseases. Biologics are generally safe; however, there has been concern over the risk of lymphoma with use of these agents. All anti-TNF-α agents have been associated with a variety of serious and "routine" opportunistic infections.

  14. Biological Soft Robotics. (United States)

    Feinberg, Adam W


    In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed.

  15. Epigenetics: Biology's Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Richard A Jorgensen


    Full Text Available The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920's and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider.

  16. Topics in mathematical biology

    CERN Document Server

    Hadeler, Karl Peter


    This book analyzes the impact of quiescent phases on biological models. Quiescence arises, for example, when moving individuals stop moving, hunting predators take a rest, infected individuals are isolated, or cells enter the quiescent compartment of the cell cycle. In the first chapter of Topics in Mathematical Biology general principles about coupled and quiescent systems are derived, including results on shrinking periodic orbits and stabilization of oscillations via quiescence. In subsequent chapters classical biological models are presented in detail and challenged by the introduction of quiescence. These models include delay equations, demographic models, age structured models, Lotka-Volterra systems, replicator systems, genetic models, game theory, Nash equilibria, evolutionary stable strategies, ecological models, epidemiological models, random walks and reaction-diffusion models. In each case we find new and interesting results such as stability of fixed points and/or periodic orbits, excitability...

  17. Traceability of biologicals

    DEFF Research Database (Denmark)

    Vermeer, Niels S; Spierings, Irina; Mantel-Teeuwisse, Aukje K


    INTRODUCTION: Traceability is important in the postmarketing surveillance of biologicals, since changes in the manufacturing process may give rise to product- or batch-specific risks. With the expected expansion of the biosimilar market, there have been concerns about the ability to trace...... individual products within pharmacovigilance databases. AREAS COVERED: The authors discuss the present challenges in the traceability of biologicals in relation to pharmacovigilance, by exploring the processes involved in ensuring traceability. They explore both the existing systems that are in place...... for the recording of exposure information in clinical practice, as well as the critical steps involved in the transfer of exposure data to various pharmacovigilance databases. EXPERT OPINION: The existing systems ensure the traceability of biologicals down to the manufacturer within pharmacy records, but do...

  18. Wireless Biological Electronic Sensors. (United States)

    Cui, Yue


    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.

  19. Informing biological design by integration of systems and synthetic biology. (United States)

    Smolke, Christina D; Silver, Pamela A


    Synthetic biology aims to make the engineering of biology faster and more predictable. In contrast, systems biology focuses on the interaction of myriad components and how these give rise to the dynamic and complex behavior of biological systems. Here, we examine the synergies between these two fields. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Test Architecture, Test Retrofit (United States)

    Fulcher, Glenn; Davidson, Fred


    Just like buildings, tests are designed and built for specific purposes, people, and uses. However, both buildings and tests grow and change over time as the needs of their users change. Sometimes, they are also both used for purposes other than those intended in the original designs. This paper explores architecture as a metaphor for language…

  1. 9 CFR 113.51 - Requirements for primary cells used for production of biologics. (United States)


    ... production of biologics. Primary cells used to prepare biological products shall be derived from normal... of Production, each batch of primary cells used to prepare a biological product shall be tested as... used. A serial of biological product shall not be released if produced from primary cells that are...

  2. Neutron structural biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment


    Neutron structural biology will be one of the most important fields in the life sciences which will interest human beings in the 21st century because neutrons can provide not only the position of hydrogen atoms in biological macromolecules but also the dynamic molecular motion of hydrogen atoms and water molecules. However, there are only a few examples experimentally determined at present because of the lack of neutron source intensity. Next generation neutron source scheduled in JAERI (Performance of which is 100 times better than that of JRR-3M) opens the life science of the 21st century. (author)

  3. The Biological Universe (United States)

    Dick, Steven J.


    Introduction; 1. From the physical world to the biological universe: Democritus to Lowell; 2. Plurality of worlds and the decline of anthropocentrism; 3. The solar system: the limits of observation; 4. Solar systems beyond: the limits of theory; 5. Extraterrestrials in literature and the arts: the role of imagination; 6. The UFO controversy: on perception and deception; 7. The origin and evolution of life in the extraterrestrial context; 8. SETI: the Search for Extraterrestrial Intelligence; 9. The convergence of disciplines: birth of a new science; 10. The meaning of life; Summary and conclusion: the biological universe and the limits of science.

  4. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Galitski, Timothy P.


    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  5. The nucleic acid revolution continues - will forensic biology become forensic molecular biology? (United States)

    Gunn, Peter; Walsh, Simon; Roux, Claude


    Molecular biology has evolved far beyond that which could have been predicted at the time DNA identity testing was established. Indeed we should now perhaps be referring to "forensic molecular biology." Aside from DNA's established role in identifying the "who" in crime investigations, other developments in medical and developmental molecular biology are now ripe for application to forensic challenges. The impact of DNA methylation and other post-fertilization DNA modifications, plus the emerging role of small RNAs in the control of gene expression, is re-writing our understanding of human biology. It is apparent that these emerging technologies will expand forensic molecular biology to allow for inferences about "when" a crime took place and "what" took place. However, just as the introduction of DNA identity testing engendered many challenges, so the expansion of molecular biology into these domains will raise again the issues of scientific validity, interpretation, probative value, and infringement of personal liberties. This Commentary ponders some of these emerging issues, and presents some ideas on how they will affect the conduct of forensic molecular biology in the foreseeable future.

  6. The nucleic acid revolution continues – will forensic biology become forensic molecular biology? (United States)

    Gunn, Peter; Walsh, Simon; Roux, Claude


    Molecular biology has evolved far beyond that which could have been predicted at the time DNA identity testing was established. Indeed we should now perhaps be referring to “forensic molecular biology.” Aside from DNA’s established role in identifying the “who” in crime investigations, other developments in medical and developmental molecular biology are now ripe for application to forensic challenges. The impact of DNA methylation and other post-fertilization DNA modifications, plus the emerging role of small RNAs in the control of gene expression, is re-writing our understanding of human biology. It is apparent that these emerging technologies will expand forensic molecular biology to allow for inferences about “when” a crime took place and “what” took place. However, just as the introduction of DNA identity testing engendered many challenges, so the expansion of molecular biology into these domains will raise again the issues of scientific validity, interpretation, probative value, and infringement of personal liberties. This Commentary ponders some of these emerging issues, and presents some ideas on how they will affect the conduct of forensic molecular biology in the foreseeable future. PMID:24634675

  7. Biological evolution: Some genetic considerations | Salem ...

    African Journals Online (AJOL)

    Additionally, almost all basic postulations of this concept can neither be tested nor imitated for experimentation, which is a prerequisite for acceptance and validation of any scientific hypotheses. Keywords: Evolution; Creation; Natural selection; Creative selection; Biological adaptation; Evolutionary diversity; Biomolecules; ...

  8. Pagan Biology at the Halloween Hop (United States)

    Lock, Roger


    Send your pupils into the autumn term half-term holiday with a task that requires them to explore more about the biology associated with Halloween. This article offers a fun approach, with a pub quiz format based on bats, skeletons, pumpkins and witches, that is suitable for lessons following the end-of-topic test, for STEM clubs or for PTA…

  9. Current Trends in Biology Education. (United States)

    Wivagg, Daniel E.; Moore, Randy


    This newsletter reports on the status of biology education in the United States. It states that biology has entered its "golden age" because of the emergence of biotechnology, ecology, agricultural productivity, and human biology as major societal issues. This report discusses the status of the informal national curriculum of biology, involving…

  10. Systems biology in animal sciences

    NARCIS (Netherlands)

    Woelders, H.; Pas, te M.F.W.; Bannink, A.; Veerkamp, R.F.; Smits, M.A.


    Systems biology is a rapidly expanding field of research and is applied in a number of biological disciplines. In animal sciences, omics approaches are increasingly used, yielding vast amounts of data, but systems biology approaches to extract understanding from these data of biological processes

  11. Biological science in conservation (United States)

    David M. Johns


    Large-scale wildlands reserve systems offer one of the best hopes for slowing, if not reversing, the loss of biodiversity and wilderness. Establishing such reserves requires both sound biology and effective advocacy. Attempts by The Wildlands Project and its cooperators to meld science and advocacy in the service of conservation is working, but is not without some...

  12. Evolution, Entropy, & Biological Information (United States)

    Peterson, Jacob


    A logical question to be expected from students: "How could life develop, that is, change, evolve from simple, primitive organisms into the complex forms existing today, while at the same time there is a generally observed decline and disorganization--the second law of thermodynamics?" The explanations in biology textbooks relied upon by…

  13. Biological system interactions. (United States)

    Adomian, G; Adomian, G E; Bellman, R E


    Mathematical modeling of cellular population growth, interconnected subsystems of the body, blood flow, and numerous other complex biological systems problems involves nonlinearities and generally randomness as well. Such problems have been dealt with by mathematical methods often changing the actual model to make it tractable. The method presented in this paper (and referenced works) allows much more physically realistic solutions.

  14. Biological response modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.E.


    Much of what used to be called immunotherapy is now included in the term biological response modifiers. Biological response modifiers (BRMs) are defined as those agents or approaches that modify the relationship between the tumor and host by modifying the host's biological response to tumor cells with resultant therapeutic effects.'' Most of the early work with BRMs centered around observations of spontaneous tumor regression and the association of tumor regression with concurrent bacterial infections. The BRM can modify the host response in the following ways: Increase the host's antitumor responses through augmentation and/or restoration of effector mechanisms or mediators of the host's defense or decrease the deleterious component by the host's reaction; Increase the host's defenses by the administration of natural biologics (or the synthetic derivatives thereof) as effectors or mediators of an antitumor response; Augment the host's response to modified tumor cells or vaccines, which might stimulate a greater response by the host or increase tumor-cell sensitivity to an existing response; Decrease the transformation and/or increase differentiation (maturation) of tumor cells; or Increase the ability of the host to tolerate damage by cytotoxic modalities of cancer treatment.

  15. Systems biology and medicine

    Indian Academy of Sciences (India)

    Immunology Group, International Centre for Genetic Engineering and Biotechnology,. Aruna Asaf ... simple laws. As a result, the most obvious strat- egy for understanding complex natural systems in general was to reduce the system into smaller, sim- pler, and .... networked organization of biological system would emerge ...

  16. Entropy in Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 9. Entropy in Biology. Jayant B Udgaonkar. General Article Volume 6 Issue 9 September 2001 pp 61-66. Fulltext. Click here to view fulltext PDF. Permanent link: Author Affiliations.

  17. Tree biology and dendrochemistry (United States)

    Kevin T. Smith; Walter C. Shortle


    Dendrochemistry, the interpretation of elemental analysis of dated tree rings, can provide a temporal record of environmental change. Using the dendrochemical record requires an understanding of tree biology. In this review, we pose four questions concerning assumptions that underlie recent dendrochemical research: 1) Does the chemical composition of the wood directly...

  18. Cryptochromes and Biological Clocks

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 9. Cryptochromes and Biological Clocks. V R Bhagwat. General Article Volume 7 Issue 9 September 2002 pp 36-48. Fulltext. Click here to view fulltext PDF. Permanent link: Keywords.

  19. Evolutionary Biology Today

    Indian Academy of Sciences (India)

    Amitabh Joshi studies and teaches evolutionary ' genetics and population ecology at the Jawaharlal. Nehru Centre for Advanced. Scientific Research,. Bangalore. His current research interests are in life- history, evolution, the evolutionary genetics of biological clocks, the evolution of ecological specialization dynamics. He.

  20. Antiprotons get biological

    CERN Multimedia


    After its final run in September, the first results of the Antiproton Cell Experiment (ACE) look very promising. It was the first experiment to take data on the biological effects of antiproton beams to evaluate the potential of antiprotons in radiation therapy.

  1. Biologically inspired intelligent robots (United States)

    Bar-Cohen, Yoseph; Breazeal, Cynthia


    Humans throughout history have always sought to mimic the appearance, mobility, functionality, intelligent operation, and thinking process of biological creatures. This field of biologically inspired technology, having the moniker biomimetics, has evolved from making static copies of human and animals in the form of statues to the emergence of robots that operate with realistic behavior. Imagine a person walking towards you where suddenly you notice something weird about him--he is not real but rather he is a robot. Your reaction would probably be "I can't believe it but this robot looks very real" just as you would react to an artificial flower that is a good imitation. You may even proceed and touch the robot to check if your assessment is correct but, as oppose to the flower case, the robot may be programmed to respond physical and verbally. This science fiction scenario could become a reality as the current trend continues in developing biologically inspired technologies. Technology evolution led to such fields as artificial muscles, artificial intelligence, and artificial vision as well as biomimetic capabilities in materials science, mechanics, electronics, computing science, information technology and many others. This paper will review the state of the art and challenges to biologically-inspired technologies and the role that EAP is expected to play as the technology evolves.

  2. The Biology of Food (United States)

    Bonner, J. Jose


    In this article, the author discusses "The Biology of Food" course. This course--a large lecture course with no laboratory section--is a mixture of kitchen chemistry, post-eating food metabolism, origins of different foods (from crop breeding to evolution), and ecological and environmental impacts of farming and harvesting practices. Nearly every…

  3. Evolutionary Biology Today

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 2. Evolutionary Biology Today - What do Evolutionary Biologists do? Amitabh Joshi. Series Article Volume 8 Issue 2 February 2003 pp 6-18. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. Biophysics and systems biology. (United States)

    Noble, Denis


    Biophysics at the systems level, as distinct from molecular biophysics, acquired its most famous paradigm in the work of Hodgkin and Huxley, who integrated their equations for the nerve impulse in 1952. Their approach has since been extended to other organs of the body, notably including the heart. The modern field of computational biology has expanded rapidly during the first decade of the twenty-first century and, through its contribution to what is now called systems biology, it is set to revise many of the fundamental principles of biology, including the relations between genotypes and phenotypes. Evolutionary theory, in particular, will require re-assessment. To succeed in this, computational and systems biology will need to develop the theoretical framework required to deal with multilevel interactions. While computational power is necessary, and is forthcoming, it is not sufficient. We will also require mathematical insight, perhaps of a nature we have not yet identified. This article is therefore also a challenge to mathematicians to develop such insights.

  5. Systems biology at work

    NARCIS (Netherlands)

    Martins Dos Santos, V.A.P.; Damborsky, J.


    In his editorial overview for the 2008 Special Issue on this topic, the late Jaroslav Stark pointedly noted that systems biology is no longer a niche pursuit, but a recognized discipline in its own right “noisily” coming of age [1]. Whilst general underlying principles and basic techniques are now

  6. Biological scaling and physics

    Indian Academy of Sciences (India)


    Kleiber scaling in the previous paragraph has the growth in Q kept smaller in spite of the high power dependence on R in eq. (1). 4. Conclusions. The arguments that have been advanced so far by pre- vious authors swing to extremes at either end. Thus, the rich variety and diversity in biology, including of scaling exponents ...

  7. Coordination Compounds in Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 6. Coordination Compounds in Biology - The Chemistry of Vitamin B12 and Model Compounds. K Hussian Reddy. General Article Volume 4 Issue 6 June 1999 pp 67-77 ...

  8. Next-generation biology

    DEFF Research Database (Denmark)

    Rodrigues da Fonseca, Rute Andreia; Albrechtsen, Anders; Themudo, Goncalo Espregueira Cruz


    we present an overview of the current sequencing technologies and the methods used in typical high-throughput data analysis pipelines. Subsequently, we contextualize high-throughput DNA sequencing technologies within their applications in non-model organism biology. We include tips regarding managing...

  9. Situeret interesse i biologi

    DEFF Research Database (Denmark)

    Dohn, Niels Bonderup


    Interesse hævdes at spille en vigtig rolle i læring. Med udgangspunkt i interesseteori og situeret læring har jeg foretaget et studium i en gymnasieklasse med biologi på højt niveau, med henblik på at identificere hvilke forhold der har betydning for hvad der fanger elevers interesse. Jeg har...

  10. Doublethink in Biological Education (United States)

    Cox, Donald D.


    Presents the material given in a talk at the 1974 convention of the National Science Teachers Association in which the author compares practices in biology education to George Orwell's concept of "doublethink," i.e., the ability to hold two contradictory beliefs in one's mind simultaneously and to accept both of them. Developments in curriculum…

  11. Plant Systems Biology (editorial) (United States)

    In June 2003, Plant Physiology published an Arabidopsis special issue devoted to plant systems biology. The intention of Natasha Raikhel and Gloria Coruzzi, the two editors of this first-of-its-kind issue, was ‘‘to help nucleate this new effort within the plant community’’ as they considered that ‘‘...

  12. Biological trade and markets. (United States)

    Hammerstein, Peter; Noë, Ronald


    Cooperation between organisms can often be understood, like trade between merchants, as a mutually beneficial exchange of services, resources or other 'commodities'. Mutual benefits alone, however, are not sufficient to explain the evolution of trade-based cooperation. First, organisms may reject a particular trade if another partner offers a better deal. Second, while human trade often entails binding contracts, non-human trade requires unwritten 'terms of contract' that 'self-stabilize' trade and prevent cheating even if all traders strive to maximize fitness. Whenever trading partners can be chosen, market-like situations arise in nature that biologists studying cooperation need to account for. The mere possibility of exerting partner choice stabilizes many forms of otherwise cheatable trade, induces competition, facilitates the evolution of specialization and often leads to intricate forms of cooperation. We discuss selected examples to illustrate these general points and review basic conceptual approaches that are important in the theory of biological trade and markets. Comparing these approaches with theory in economics, it turns out that conventional models-often called 'Walrasian' markets-are of limited relevance to biology. In contrast, early approaches to trade and markets, as found in the works of Ricardo and Cournot, contain elements of thought that have inspired useful models in biology. For example, the concept of comparative advantage has biological applications in trade, signalling and ecological competition. We also see convergence between post-Walrasian economics and biological markets. For example, both economists and biologists are studying 'principal-agent' problems with principals offering jobs to agents without being sure that the agents will do a proper job. Finally, we show that mating markets have many peculiarities not shared with conventional economic markets. Ideas from economics are useful for biologists studying cooperation but need


    Directory of Open Access Journals (Sweden)

    M. K. Guseynov


    Full Text Available Aim. We present the data on the biological resources of the Caspian Sea, based on the analysis of numerous scientific sources published between years of 1965 and 2011. Due to changes in various biotic and abiotic factors we find it important to discuss the state of the major groups of aquatic biocenosis including algae, crayfish, shrimp, pontogammarus, fish and Caspian seal. Methods. Long-term data has been analyzed on the biology and ecology of the main commercial fish stocks and their projected catches for qualitative and quantitative composition, abundance and biomass of aquatic organisms that make up the food base for fish. Results and discussion. It has been found that the widespread commercial invertebrates in the Caspian Sea are still poorly studied; their stocks are not identified and not used commercially. There is a great concern about the current state of the main commercial fish stocks of the Caspian Sea. A critical challenge is to preserve the pool of biological resources and the restoration of commercial stocks of Caspian fish. For more information about the state of the marine ecosystem in modern conditions, expedition on Caspian Sea should be carried out to study the hydrochemical regime and fish stocks, assessment of sturgeon stocks, as well as the need to conduct sonar survey for sprat stocks. Conclusions. The main condition for preserving the ecosystem of the Caspian Sea and its unique biological resources is to develop and apply environmentally-friendly methods of oil, issuing concerted common fisheries rules in various regions of theCaspian Sea, strengthening of control for sturgeon by all Caspian littoral states. The basic principle of the protection of biological resources is their rational use, based on the preservation of optimal conditions of their natural or artificial reproduction. 

  14. A framework for evolutionary systems biology. (United States)

    Loewe, Laurence


    Many difficult problems in evolutionary genomics are related to mutations that have weak effects on fitness, as the consequences of mutations with large effects are often simple to predict. Current systems biology has accumulated much data on mutations with large effects and can predict the properties of knockout mutants in some systems. However experimental methods are too insensitive to observe small effects. Here I propose a novel framework that brings together evolutionary theory and current systems biology approaches in order to quantify small effects of mutations and their epistatic interactions in silico. Central to this approach is the definition of fitness correlates that can be computed in some current systems biology models employing the rigorous algorithms that are at the core of much work in computational systems biology. The framework exploits synergies between the realism of such models and the need to understand real systems in evolutionary theory. This framework can address many longstanding topics in evolutionary biology by defining various 'levels' of the adaptive landscape. Addressed topics include the distribution of mutational effects on fitness, as well as the nature of advantageous mutations, epistasis and robustness. Combining corresponding parameter estimates with population genetics models raises the possibility of testing evolutionary hypotheses at a new level of realism. EvoSysBio is expected to lead to a more detailed understanding of the fundamental principles of life by combining knowledge about well-known biological systems from several disciplines. This will benefit both evolutionary theory and current systems biology. Understanding robustness by analysing distributions of mutational effects and epistasis is pivotal for drug design, cancer research, responsible genetic engineering in synthetic biology and many other practical applications.

  15. A framework for evolutionary systems biology

    Directory of Open Access Journals (Sweden)

    Loewe Laurence


    Full Text Available Abstract Background Many difficult problems in evolutionary genomics are related to mutations that have weak effects on fitness, as the consequences of mutations with large effects are often simple to predict. Current systems biology has accumulated much data on mutations with large effects and can predict the properties of knockout mutants in some systems. However experimental methods are too insensitive to observe small effects. Results Here I propose a novel framework that brings together evolutionary theory and current systems biology approaches in order to quantify small effects of mutations and their epistatic interactions in silico. Central to this approach is the definition of fitness correlates that can be computed in some current systems biology models employing the rigorous algorithms that are at the core of much work in computational systems biology. The framework exploits synergies between the realism of such models and the need to understand real systems in evolutionary theory. This framework can address many longstanding topics in evolutionary biology by defining various 'levels' of the adaptive landscape. Addressed topics include the distribution of mutational effects on fitness, as well as the nature of advantageous mutations, epistasis and robustness. Combining corresponding parameter estimates with population genetics models raises the possibility of testing evolutionary hypotheses at a new level of realism. Conclusion EvoSysBio is expected to lead to a more detailed understanding of the fundamental principles of life by combining knowledge about well-known biological systems from several disciplines. This will benefit both evolutionary theory and current systems biology. Understanding robustness by analysing distributions of mutational effects and epistasis is pivotal for drug design, cancer research, responsible genetic engineering in synthetic biology and many other practical applications.

  16. Fundamental Space Biology 2010-2020 (United States)

    Tomko, David; Souza, Kenneth; Quincy, Charles; Sun, Sidney

    The goal of NASA's Fundamental Space Biology (FSB) is to strive for U.S. excellence in the whole range of Space Biology -Cell and Molecular, Microbiology, Plant and Animal Biology, Developmental Biology. NASA plans to solicit and conduct research that will contribute to our basic knowledge of the effect of space on living systems. NASA will issue recurring FSB NASA Research Announcements (NRAs) to more fully engage the space biology community. In doing so, FSB research will optimize ISS utilization, develop and demonstrate technology and hard-ware that will enable new science, and contribute to the base of knowledge that will facilitate human countermeasure development. New research capabilities for whole animal and plant bi-ology will be added, and will be optimized by providing state-of-the-art automated technology and analytic techniques wherever possible to maximize scientific return and optimize animal use. Ground-based research to develop and test hypotheses for flight experiments, including hy-pergravity and hypogravity simulations will be an integral FSB activity. Flight experiments will use the most appropriate platform to achieve science results -e.g., ISS, free flyers, sub-orbital flights, and NASA will work with its international partners and other U.S. agencies to achieve these objectives. FSB's highest priority for the near future is the development of mammalian fundamental research capabilities. Another high priority is the development of hardware for studying multiple generations of large plants. Current research in cell and molecular biology will be expanded to include new analytical capabilities. By taking these steps, NASA hopes to energize the Space Biology user community and advance our knowledge of the effect of gravity on living systems.

  17. Towards developing algal synthetic biology. (United States)

    Scaife, Mark Aden; Smith, Alison Gail


    The genetic, physiological and metabolic diversity of microalgae has driven fundamental research into photosynthesis, flagella structure and function, and eukaryotic evolution. Within the last 10 years these organisms have also been investigated as potential biotechnology platforms, for example to produce high value compounds such as long chain polyunsaturated fatty acids, pigments and antioxidants, and for biodiesel precursors, in particular triacylglycerols (TAGs). Transformation protocols, molecular tools and genome sequences are available for a number of model species including the green alga Chlamydomonas reinhardtii and the diatom Phaeodactylum tricornutum, although for both species there are bottlenecks to be overcome to allow rapid and predictable genetic manipulation. One approach to do this would be to apply the principles of synthetic biology to microalgae, namely the cycle of Design-Build-Test, which requires more robust, predictable and high throughput methods. In this mini-review we highlight recent progress in the areas of improving transgene expression, genome editing, identification and design of standard genetic elements (parts), and the use of microfluidics to increase throughput. We suggest that combining these approaches will provide the means to establish algal synthetic biology, and that application of standard parts and workflows will avoid parallel development and capitalize on lessons learned from other systems. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  18. Systems biology in animal sciences. (United States)

    Woelders, H; Te Pas, M F W; Bannink, A; Veerkamp, R F; Smits, M A


    Systems biology is a rapidly expanding field of research and is applied in a number of biological disciplines. In animal sciences, omics approaches are increasingly used, yielding vast amounts of data, but systems biology approaches to extract understanding from these data of biological processes and animal traits are not yet frequently used. This paper aims to explain what systems biology is and which areas of animal sciences could benefit from systems biology approaches. Systems biology aims to understand whole biological systems working as a unit, rather than investigating their individual components. Therefore, systems biology can be considered a holistic approach, as opposed to reductionism. The recently developed 'omics' technologies enable biological sciences to characterize the molecular components of life with ever increasing speed, yielding vast amounts of data. However, biological functions do not follow from the simple addition of the properties of system components, but rather arise from the dynamic interactions of these components. Systems biology combines statistics, bioinformatics and mathematical modeling to integrate and analyze large amounts of data in order to extract a better understanding of the biology from these huge data sets and to predict the behavior of biological systems. A 'system' approach and mathematical modeling in biological sciences are not new in itself, as they were used in biochemistry, physiology and genetics long before the name systems biology was coined. However, the present combination of mass biological data and of computational and modeling tools is unprecedented and truly represents a major paradigm shift in biology. Significant advances have been made using systems biology approaches, especially in the field of bacterial and eukaryotic cells and in human medicine. Similarly, progress is being made with 'system approaches' in animal sciences, providing exciting opportunities to predict and modulate animal traits.

  19. Biological experiments - The Viking Mars Lander. (United States)

    Klein, H. P.; Lederberg, J.; Rich, A.


    From the biological point of view, the Viking 1975 mission might be regarded as a test of the Oparin-Haldane hypothesis concerning the chemical evolution of living systems. Mars is a planet whose early history was probably similar to that of the earth and whose present environmental conditions may be compatible with the maintenance of living organisms. Thus, the biological experiments aboard the Viking I spacecraft are primarily concerned with the question of whether chemical evolution on Mars took place, and, if so, whether the process reached a level of complexity characteristic of replicating systems.

  20. [Principles of management in biological infections]. (United States)

    Płusa, Tadeusz


    The effectiveness of the management in respiratory infection is depending on the nature of the biological pathogen and the immune status of the patient. For this reason, providing assistance to victims the organ function support, similarly as defining the pathogen and targeted antibiotic therapy should be applied. Available diagnostic tests provide rapid ability to identify the pathogen and antibiotics are able to control infection. Lack of efficacy of treatment may indicate the diversity of the pathogen than previously known and raises suspicion of biological warfare pathogen.

  1. Computational design tools for synthetic biology. (United States)

    Marchisio, Mario A; Stelling, Jörg


    Computer-aided design, pervasive in other engineering disciplines, is currently developing in synthetic biology. Concepts for standardization and hierarchies of parts, devices and systems provide a basis for efficient engineering in biology. Recently developed computational tools, for instance, enable rational (and graphical) composition of genetic circuits from standard parts, and subsequent simulation for testing the predicted functions in silico. The computational design of DNA and proteins with predetermined quantitative functions has made similar advances. The biggest challenge, however, is the integration of tools and methods into powerful and intuitively usable workflows-and the field is only starting to address it.

  2. Partitioning of genomic variance using biological pathways

    DEFF Research Database (Denmark)

    Edwards, Stefan McKinnon; Janss, Luc; Madsen, Per

    -data and trait phenotypes and can account for a much larger fraction of the heritable component. A disadvantage is that this “black-box” modelling approach conceals the biological mechanisms underlying the trait. We propose to open the “black-box” by building SNP-set genomic models that evaluate the collective...... action of multiple SNPs in genes, biological pathways or other external findings on the trait phenotype. As proof of concept we have tested the modelling framework on several traits in dairy cattle....

  3. Question answering for biology. (United States)

    Neves, Mariana; Leser, Ulf


    Biologists often pose queries to search engines and biological databases to obtain answers related to ongoing experiments. This is known to be a time consuming, and sometimes frustrating, task in which more than one query is posed and many databases are consulted to come to possible answers for a single fact. Question answering comes as an alternative to this process by allowing queries to be posed as questions, by integrating various resources of different nature and by returning an exact answer to the user. We have surveyed the current solutions on question answering for Biology, present an overview on the methods which are usually employed and give insights on how to boost performance of systems in this domain. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Quantum physics meets biology. (United States)

    Arndt, Markus; Juffmann, Thomas; Vedral, Vlatko


    Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world-view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity. The present perspective article shall serve as a "pedestrian guide" to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future "quantum biology," its current status, recent experimental progress, and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.

  5. Topology in Molecular Biology

    CERN Document Server

    Monastyrsky, Michail Ilych


    The book presents a class of new results in molecular biology for which topological methods and ideas are important. These include: the large-scale conformation properties of DNA; computational methods (Monte Carlo) allowing the simulation of large-scale properties of DNA; the tangle model of DNA recombination and other applications of Knot theory; dynamics of supercoiled DNA and biocatalitic properties of DNA; the structure of proteins; and other very recent problems in molecular biology. The text also provides a short course of modern topology intended for the broad audience of biologists and physicists. The authors are renowned specialists in their fields and some of the new results presented here are documented for the first time in monographic form.

  6. Melanins are Biological Diamonds

    Directory of Open Access Journals (Sweden)

    L. Venger


    Full Text Available In the article the physical, chemical, biological properties, the significance and the role in Nature of melanin pigments are considered. Very long time these pigments were considered as metabolism garbage in the living organisms. The comparison of the only same results and facts from the huge masses of the science information with main principles of the new science paradigm – the Theory of Torsion Fields and the Theory of Physical Vacuum – allow to change the view on the true invention, the biological role and the functions of Melanins in Nature. Many theoretical and experimental facts specify on the active participation of melanins in the energyand-informative processes and their first degree role on the all evolution stages of living organisms: from the chemical evolution to the brain and consciousness functions. In the sense Melanins are the most precious substance for the living organisms, true their Diamonds.

  7. Influence of Cognitive Styles on Students' Achievements in Biology ...

    African Journals Online (AJOL)

    The study investigated the influence of Cognitive styles on students' achievements in biology in senior secondary schools in Anambra State. One research question and one null hypothesis tested at 0.05 level of significance guided the study. A causal comparative design and a population of 10,206 (SSII) biology students in ...

  8. The biological treatment of petroleum tank draw waters

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Jose L. [Envirosystems Supply, Inc., Hollywood, FL (United States); Stephens, Greg [Plantation Pipeline, Atlanta, GA (United States)


    This work reviews and summarizes the performance of a biological process (followed by the state-of-the-art) for the removal of organic compounds in petroleum tank draw waters. Trickling filter and the extended aeration modification of activated sludge were selected as the biological processes tested in pilot units. 4 refs., 2 figs., 3 tabs.

  9. Freshman Biology Majors' Misconceptions about Diffusion and Osmosis. (United States)

    Odom, A. Louis; Barrow, Lloyd H.

    The data for this study were obtained from a sample of 117 biology majors enrolled in an introductory biology course. The Diffusion and Osmosis Diagnostic Test, composed of 12 two-tier items, was administered to the students. Among the major findings are: (1) there was no significant difference in scores of male and female students; (2) math…

  10. Biological significance of selenium

    Energy Technology Data Exchange (ETDEWEB)

    Duerre, P.; Andreesen, J.R.


    Until a few years ago, selenium was exclusively thought of as a toxic substance which was applied mainly in the optical and electrical industries. By now, many biological reactions have been detected which cannot take place without the catalytic effect of selenium. The majority of these processes was found and clarified in microorganisms; however, the anticarcinogenic properties of this trace element may well have some significance for man in future.

  11. Dominating biological networks.

    Directory of Open Access Journals (Sweden)

    Tijana Milenković

    Full Text Available Proteins are essential macromolecules of life that carry out most cellular processes. Since proteins aggregate to perform function, and since protein-protein interaction (PPI networks model these aggregations, one would expect to uncover new biology from PPI network topology. Hence, using PPI networks to predict protein function and role of protein pathways in disease has received attention. A debate remains open about whether network properties of "biologically central (BC" genes (i.e., their protein products, such as those involved in aging, cancer, infectious diseases, or signaling and drug-targeted pathways, exhibit some topological centrality compared to the rest of the proteins in the human PPI network.To help resolve this debate, we design new network-based approaches and apply them to get new insight into biological function and disease. We hypothesize that BC genes have a topologically central (TC role in the human PPI network. We propose two different concepts of topological centrality. We design a new centrality measure to capture complex wirings of proteins in the network that identifies as TC those proteins that reside in dense extended network neighborhoods. Also, we use the notion of domination and find dominating sets (DSs in the PPI network, i.e., sets of proteins such that every protein is either in the DS or is a neighbor of the DS. Clearly, a DS has a TC role, as it enables efficient communication between different network parts. We find statistically significant enrichment in BC genes of TC nodes and outperform the existing methods indicating that genes involved in key biological processes occupy topologically complex and dense regions of the network and correspond to its "spine" that connects all other network parts and can thus pass cellular signals efficiently throughout the network. To our knowledge, this is the first study that explores domination in the context of PPI networks.

  12. Plankton Production Biology (United States)


    had largely completed our analysis of the historic O2 data, we learned of the introduction to the field of the STOX sensor (Switchable Trace amount...population dynamics (growth rate, production, mortality) of copepod nauplii in the field or captured water columns (mesocosms). Since biology...Methods, 7, 371-381, 2009. 4 Sazhina, L.I. Keys to the Nauplii of 86 Common Marine Pelagic Copepods [new English title] Kiev: Naukova Dumka, 238

  13. Types of biological variables. (United States)

    Mayya, Shreemathi S; Monteiro, Ashma D; Ganapathy, Sachit


    Identification and description of variables used in any study is a necessary component in biomedical research. Statistical analyses rely on the type of variables that are involved in the study. In this short article, we introduce the different types of biological variables. A researcher has to be familiar with the type of variable he/she is dealing with in his/her research to decide about appropriate graphs/diagrams, summary measures and statistical analysis.

  14. Menstrual Cycle: Basic Biology


    Hawkins, Shannon M.; Matzuk, Martin M.


    The basic biology of the menstrual cycle is a complex, coordinated sequence of events involving the hypothalamus, anterior pituitary, ovary, and endometrium. The menstrual cycle with all its complexities can be easily perturbed by environmental factors such as stress, extreme exercise, eating disorders, and obesity. Furthermore, genetic influences such as fragile X premutations (Chapter X), X chromosome abnormalities (Chapter X), and galactose-1-phosphate uridyltransferase (GALT) point mutati...

  15. Biological Correlates of Empathy

    Directory of Open Access Journals (Sweden)

    E. Timucin Oral


    Full Text Available Empathy can be defined as the capacity to know emotionally what another is experiencing from within the frame of reference of that other person and the capacity to sample the feelings of another or it can be metaphorized as to put oneself in another’s shoes. Although the concept of empathy was firstly described in psychological theories, researches studying the biological correlates of psychological theories have been increasing recently. Not suprisingly, dinamically oriented psychotherapists Freud, Kohut, Basch and Fenichel had suggested theories about the biological correlates of empathy concept and established the basis of this modality decades ago. Some other theorists emphasized the importance of empathy in the early years of lifetime regarding mother-child attachment in terms of developmental psychology and investigated its role in explanation of psychopathology. The data coming from some of the recent brain imaging and animal model studies also seem to support these theories. Although increased activity in different brain regions was shown in many of the brain imaging studies, the role of cingulate cortex for understanding mother-child relationship was constantly emphasized in nearly all of the studies. In addition to these studies, a group of Italian scientists has defined a group of neurons as “mirror neurons” in their studies observing rhesus macaque monkeys. Later, they also defined mirror neurons in human studies, and suggested them as “empathy neurons”. After the discovery of mirror neurons, the hopes of finding the missing part of the puzzle for understanding the biological correlates of empathy raised again. Although the roles of different biological parameters such as skin conductance and pupil diameter for defining empathy have not been certain yet, they are going to give us the opportunity to revise the inconsistent basis of structural validity in psychiatry and to stabilize descriptive validity. In this review, the

  16. Neutron structural biology

    Energy Technology Data Exchange (ETDEWEB)

    Schoenborn, B.


    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). We investigated design concepts of neutron scattering capabilities for structural biology at spallation sources. This included the analysis of design parameters for protein crystallography as well as membrane diffraction instruments. These instruments are designed to be general user facilities and will be used by scientists from industry, universities, and other national laboratories.

  17. The Value of Biologics



    American Health & Drug Benefits™ has reached out to a health and drug benefit decision maker to open a dialogue on the benefits coverage implications surrounding the high cost of biologic drugs. We asked Dr. Gary Owens to discuss with us how payors are turning data points, demographic trends, and pharmacologic discoveries into formularies and benefit designs that balance the demands of cost, quality, and access to care. With a decade of experience chairing the Pharmacy & Therapeutics Committe...

  18. Gravity and Biology (United States)

    Morey-Holton, Emily R.


    Gravity has been the most constant environmental factor throughout the evolution of biological species on Earth. Organisms are rarely exposed to other gravity levels, either increased or decreased, for prolonged periods. Thus, evolution in a constant 1G field has historically prevented us from appreciating the potential biological consequences of a multi-G universe. To answer the question 'Can terrestrial life be sustained and thrive beyond our planet?' we need to understand the importance of gravity on living systems, and we need to develop a multi-G, rather than a 1G, mentality. The science of gravitational biology took a giant step with the advent of the space program, which provided the first opportunity to examine living organisms in gravity environments lower than could be sustained on Earth. Previously, virtually nothing was known about the effects of extremely low gravity on living organisms, and most of the initial expectations were proven wrong. All species that have flown in space survive in microgravity, although no higher organism has ever completed a life cycle in space. It has been found, however, that many systems change, transiently or permanently, as a result of prolonged exposure to microgravity.

  19. Biologics for tendon repair☆ (United States)

    Docheva, Denitsa; Müller, Sebastian A.; Majewski, Martin; Evans, Christopher H.


    Tendon injuries are common and present a clinical challenge to orthopedic surgery mainly because these injuries often respond poorly to treatment and require prolonged rehabilitation. Therapeutic options used to repair ruptured tendons have consisted of suture, autografts, allografts, and synthetic prostheses. To date, none of these alternatives has provided a successful long-term solution, and often the restored tendons do not recover their complete strength and functionality. Unfortunately, our understanding of tendon biology lags far behind that of other musculoskeletal tissues, thus impeding the development of new treatment options for tendon conditions. Hence, in this review, after introducing the clinical significance of tendon diseases and the present understanding of tendon biology, we describe and critically assess the current strategies for enhancing tendon repair by biological means. These consist mainly of applying growth factors, stem cells, natural biomaterials and genes, alone or in combination, to the site of tendon damage. A deeper understanding of how tendon tissue and cells operate, combined with practical applications of modern molecular and cellular tools could provide the long awaited breakthrough in designing effective tendon-specific therapeutics and overall improvement of tendon disease management. PMID:25446135

  20. Interface Biology of Implants (United States)

    Nebe, Barbara


    Implants are widely used in various clinical disciplines to replace or stabilize organs. The challenge for the future is to apply implant materials to specifically control the biology of the surrounding tissue for repair and regeneration. This field of research is highly interdisciplinary and combines scientists from technical and life sciences disciplines. To successfully apply materials for regenerative processes in the body, the understanding of the mechanisms at the interface between cells or tissues and the artificial material is of critical importance. The research focuses on stem cells, design of material surfaces, and mechanisms of cell adhesion. For the third time around 200 scientists met in Rostock, Germany for the international symposium “Interface Biology of Implants.” The aim of the symposium is to promote the interdisciplinary dialogue between the scientists from the different disciplines to develop smart implants for medical use. In addition, researchers from basic sciences, notably cell biology presented new findings concerning mechanisms of cell adhesion to stimulate research in the applied field of implant technology. PMID:19690468

  1. Evolutionary biology redux. (United States)

    Torday, John S


    This article offers a novel, enlightened concept for determining the mechanism of evolution. It is based on homeostasis, which distinguishes life from non-life and as such is the universal mechanism for the evolution of all living organisms. This view of evolution is logical, mechanistic, non-scalar, predictive, testable, and falsifiable, and it illuminates the epistemological relationships between physics and biology, ontogeny and phylogeny, development and aging, ultimate and proximate causation, health and disease. In addition to validating Haeckel's biogenetic law and Lamarckian epigenetics, reflecting the enabling value of the cellular approach, this perspective also expresses the evolutionary process at the cell-molecular level, since the mechanism of cell communication itself is universal in biology, in keeping with a Kuhnian paradigm shift. This approach may even elucidate the nature and evolution of consciousness as a manifestation of the cellular continuum from unicellular to multicellular life. We need such a functional genomic mechanism for the process of evolution if we are to make progress in biology and medicine. Like Copernican heliocentrism, a cellular approach to evolution may fundamentally change humankind's perceptions about our place in the universe.

  2. Testing "Compatibility Testing." (United States)

    Robins, Elliot; Huston, Ted L.

    Most models of marital choice are attempts to explain choices within the field of available eligibles. The essence of compatibility testing is that people select their mates by evaluating the match between psychological characteristics after sorting the available field on the basis of social characteristics. A compatibility model seems to require…

  3. Biological surface science (United States)

    Kasemo, Bengt


    Biological surface science (BioSS), as defined here is the broad interdisciplinary area where properties and processes at interfaces between synthetic materials and biological environments are investigated and biofunctional surfaces are fabricated. Six examples are used to introduce and discuss the subject: Medical implants in the human body, biosensors and biochips for diagnostics, tissue engineering, bioelectronics, artificial photosynthesis, and biomimetic materials. They are areas of varying maturity, together constituting a strong driving force for the current rapid development of BioSS. The second driving force is the purely scientific challenges and opportunities to explore the mutual interaction between biological components and surfaces. Model systems range from the unique water structures at solid surfaces and water shells around proteins and biomembranes, via amino and nucleic acids, proteins, DNA, phospholipid membranes, to cells and living tissue at surfaces. At one end of the spectrum the scientific challenge is to map out the structures, bonding, dynamics and kinetics of biomolecules at surfaces in a similar way as has been done for simple molecules during the past three decades in surface science. At the other end of the complexity spectrum one addresses how biofunctional surfaces participate in and can be designed to constructively participate in the total communication system of cells and tissue. Biofunctional surfaces call for advanced design and preparation in order to match the sophisticated (bio) recognition ability of biological systems. Specifically this requires combined topographic, chemical and visco-elastic patterns on surfaces to match proteins at the nm scale and cells at the micrometer scale. Essentially all methods of surface science are useful. High-resolution (e.g. scanning probe) microscopies, spatially resolved and high sensitivity, non-invasive optical spectroscopies, self-organizing monolayers, and nano- and microfabrication

  4. Test plan :

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Stephen F.


    This test plan is a document that provides a systematic approach to the planned testing of rooftop structures to determine their actual load carrying capacity. This document identifies typical tests to be performed, the responsible parties for testing, the general feature of the tests, the testing approach, test deliverables, testing schedule, monitoring requirements, and environmental and safety compliance.

  5. Assessment of knowledge of participants on basic molecular biology techniques after 5-day intensive molecular biology training workshops in Nigeria. (United States)

    Yisau, J I; Adagbada, A O; Bamidele, T; Fowora, M; Brai, B I C; Adebesin, O; Bamidele, M; Fesobi, T; Nwaokorie, F O; Ajayi, A; Smith, S I


    The deployment of molecular biology techniques for diagnosis and research in Nigeria is faced with a number of challenges, including the cost of equipment and reagents coupled with the dearth of personnel skilled in the procedures and handling of equipment. Short molecular biology training workshops were conducted at the Nigerian Institute of Medical Research (NIMR), to improve the knowledge and skills of laboratory personnel and academics in health, research, and educational facilities. Five-day molecular biology workshops were conducted annually between 2011 and 2014, with participants drawn from health, research facilities, and the academia. The courses consisted of theoretical and practical sessions. The impact of the workshops on knowledge and skill acquisition was evaluated by pre- and post-tests which consisted of 25 multiple choice and other questions. Sixty-five participants took part in the workshops. The mean knowledge of molecular biology as evaluated by the pre- and post-test assessments were 8.4 (95% CI 7.6-9.1) and 13.0 (95 CI 11.9-14.1), respectively. The mean post-test score was significantly greater than the mean pre-test score (p biology workshop significantly increased the knowledge and skills of participants in molecular biology techniques. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):313-317, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  6. Applicability of Computational Systems Biology in Toxicology

    DEFF Research Database (Denmark)

    Kongsbak, Kristine Grønning; Hadrup, Niels; Audouze, Karine Marie Laure


    and databases are used to model and predict effects of chemicals on, for instance, human health. In toxicology, computational systems biology enables identification of important pathways and molecules from large data sets; tasks that can be extremely laborious when performed by a classical literature search....... However, computational systems biology offers more advantages than providing a high-throughput literature search; it may form the basis for establishment of hypotheses on potential links between environmental chemicals and human diseases, which would be very difficult to establish experimentally...... be used to establish hypotheses on links between the chemical and human diseases. Such information can also be applied for designing more intelligent animal/cell experiments that can test the established hypotheses. Here, we describe how and why to apply an integrative systems biology method...

  7. Immunochemical and biological quantification of peanut extract

    DEFF Research Database (Denmark)

    Poulsen, Lars K.; Pedersen, Mona H; Platzer, Michael


    Biological standardization of allergen extracts is one of the steps in the characterization of an extract. The gold standard for determination of biological potency is the skin prick test, but histamine release (HR) has been used as a convenient ex vivo method for analyzing a large number...... of samples. We describe the use of rabbit basophils as a tool in biological standardization. Using peanut as a model allergen, it is described how rabbits immunized for production of antiserum may become sensitized and their basophils used for histamine release experiments. It is also possible to use rabbit...... antiserum to passively sensitize basophils derived from naive rabbits, but the sensitivity of this method is so far 100-1000 times lower than the direct histamine release. The rabbit histamine release results are compared to an ELISA developed by means of the same antisera and by passive sensitization...

  8. Practical approaches to biological inorganic chemistry

    CERN Document Server

    Louro, Ricardo O


    The book reviews the use of spectroscopic and related methods to investigate the complex structures and mechanisms of biological inorganic systems that contain metals. Each chapter presents an overview of the technique including relevant theory, clearly explains what it is and how it works and then presents how the technique is actually used to evaluate biological structures. Practical examples and problems are included to illustrate each technique and to aid understanding. Designed for students and researchers who want to learn both the basics, and more advanced aspects of bioinorganic chemistry. It includes many colour illustrations enable easier visualization of molecular mechanisms and structures. It provides worked examples and problems that are included to illustrate and test the reader's understanding of each technique. It is written by a multi-author team who use and teach the most important techniques used today to analyse complex biological structures.

  9. Trichoderma saturnisporum, a new biological control agent. (United States)

    Diánez Martínez, Fernando; Santos, Mila; Carretero, Francisco; Marín, Francisco


    Biocontrol agents (BCAs) could be a viable alternative to chemicals in the management of fungal crop diseases. Screening for potential biocontrol and plant growth promoter isolates from a soil in Cádiz (Spain) was conducted. Several isolates showed antagonism in in vitro tests to several plant pathogens. Two isolates of Trichoderma saturnisporum (Ascomycetes, Hypocreales) were identified by sequencing of the rDNA region. One isolate was selected for further in vivo plant growth promotion and biological control assays. Results indicate that substrate application of T. saturnisporum improved plant quality and showed biological control activity against Phytophthora capsici and Phytophthora parasitica (Peronosporales, Peronosporaceae). There are a few references to T. saturnisporum isolated from different media but not its ability to promote plant growth or biocontrol. This is the first report of T. saturnisporum as a seedling growth promoter and as biological control agent. © 2015 Society of Chemical Industry.

  10. Zirconia nanocrystals as submicron level biological label (United States)

    Smits, K.; Liepins, J.; Gavare, M.; Patmalnieks, A.; Gruduls, A.; Jankovica, D.


    Inorganic nanocrystals are of increasing interest for their usage in biology and pharmacology research. Our interest was to justify ZrO2 nanocrystal usage as submicron level biological label in baker's yeast Saccharomyces cerevisia culture. For the first time (to our knowledge) images with sub micro up-conversion luminescent particles in biologic media were made. A set of undoped as well as Er and Yb doped ZrO2 samples at different concentrations were prepared by sol-gel method. The up-conversion luminescence for free standing and for nanocrystals with baker's yeast cells was studied and the differences in up-conversion luminescence spectra were analyzed. In vivo toxic effects of ZrO2 nanocrystals were tested by co-cultivation with baker's yeast.

  11. Pinworm test (United States)

    Oxyuriasis test; Enterobiasis test; Tape test ... diagnose this infection is to do a tape test. The best time to do this is in ... lay their eggs at night. Steps for the test are: Firmly press the sticky side of a ...

  12. Predictive Testing (United States)

    ... you want to learn. Search form Search Predictive testing You are here Home Testing & Services Testing for ... you make the decision. What Is Predictive Genetic Testing Predictive genetic testing searches for genetic changes, or ...

  13. Pharmacogenomic Testing (United States)

    ... you want to learn. Search form Search Pharmacogenomic testing You are here Home Testing & Services Testing for ... to fit your genetic makeup What Is Pharmacogenomic Testing? Pharmacogenomic testing is done before your healthcare provider ...

  14. Mono Test (United States)

    ... Heterophile Test Heterophile Antibody Test Monospot Formal Name Infectious Mononucleosis Rapid Test This article was last reviewed on ... Why Get Tested? To detect and help diagnose infectious mononucleosis (mono) When To Get Tested? When a person, ...

  15. Neglect of Biological Rhythms in High School Biology Texts. (United States)

    Ahlgren, Andrew; Nelson, Julie Ann


    This article developed from a survey of the five most popular biology texts which promote the theory of invariant homeostasis rather than biological rhythms. The popular fad of "birthdate biorhythms" is discussed in relation to providing education on biological rhythms and its legitimacy to the public. (SA)

  16. Iron diminishes the in vitro biological effect of vanadium. (United States)

    Mechanistic pathways underlying inflammatory injury following exposures to vanadium-containing compounds are not defined. We tested the postulate that the in vitro biological effect of vanadium results from its impact on iron homeostasis. Human bronchial epithelial (HBE) cells ex...

  17. [Fundamental biological model for trials of wound ballistics]. (United States)

    Krajsa, J; Hirt, M


    The aim of our experiment was the testing of effects of common ammunition on usable and slightly accessible biological tissue thereby to create fundamental simple biological model for trials of wounded ballistic. Like objective tissue was elected biological material - pork and beef hind-limbs, pork head, pork bodily cavity. It was discovered that objective tissue is able to react to singles types of shots in all spectrum results namely simple smooth penetration wound as well as splintery fracture in dependence on kind of using ammunition. Pork hind-limb was evaluated like the most suitable biological material for given object.

  18. Is Our Biology to Blame? (United States)

    Schneider, Scott


    Brief analyses of three recent examples of biological determinism: sex roles, overpopulation, and sociobiology, are presented in this article. Also a brief discussion of biological determinism and education is presented. (MR)

  19. Wetland plants: biology and ecology

    National Research Council Canada - National Science Library

    Cronk, Julie K; Fennessy, M. Siobhan


    Providing a detailed account of the biology and ecology of wetland plants as well as applications of wetland plant science, this book presents a synthesis of studies and reviews from biology, plant...

  20. Logical analysis of biological systems

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian


    R. Mardare, Logical analysis of biological systems. Fundamenta Informaticae, N 64:271-285, 2005.......R. Mardare, Logical analysis of biological systems. Fundamenta Informaticae, N 64:271-285, 2005....

  1. News from the Biological Stain Commission, No. 17

    DEFF Research Database (Denmark)

    Lyon, H O


    In the 17(th) issue of News from the Biological Stain Commission (BSC) under the heading of Regulatory affairs, the Biological Stain Commission's International Affairs Committee presents information from the 20(th) meeting of ISO/TC 212 Clinical laboratory testing and in vitro diagnostic test...... systems held on October 15 - 17, 2014 in Toronto, Canada, and from the 29(th) meeting of CEN/TC 140 In vitro diagnostic medical devices held on February 3, 2015 in Berlin, Germany....

  2. News from the Biological Stain Commission no. 15

    DEFF Research Database (Denmark)

    Lyon, H O; Horobin, R W


    In the 15(th) issue of News from the Biological Stain Commission (BSC), under the heading of Regulatory affairs, the Biological Stain Commission's International Affairs Committee presents information from the plenary meetings of the International Standards Organization ISO/TC 212 Clinical laborat...... laboratory testing and in vitro diagnostic test systems held on August 22-24, 2012 in Berlin, Germany. An additional discussion of the use of food dyes in India also is included....

  3. DeviceEditor visual biological CAD canvas

    Directory of Open Access Journals (Sweden)

    Chen Joanna


    Full Text Available Abstract Background Biological Computer Aided Design (bioCAD assists the de novo design and selection of existing genetic components to achieve a desired biological activity, as part of an integrated design-build-test cycle. To meet the emerging needs of Synthetic Biology, bioCAD tools must address the increasing prevalence of combinatorial library design, design rule specification, and scar-less multi-part DNA assembly. Results We report the development and deployment of web-based bioCAD software, DeviceEditor, which provides a graphical design environment that mimics the intuitive visual whiteboard design process practiced in biological laboratories. The key innovations of DeviceEditor include visual combinatorial library design, direct integration with scar-less multi-part DNA assembly design automation, and a graphical user interface for the creation and modification of design specification rules. We demonstrate how biological designs are rendered on the DeviceEditor canvas, and we present effective visualizations of genetic component ordering and combinatorial variations within complex designs. Conclusions DeviceEditor liberates researchers from DNA base-pair manipulation, and enables users to create successful prototypes using standardized, functional, and visual abstractions. Open and documented software interfaces support further integration of DeviceEditor with other bioCAD tools and software platforms. DeviceEditor saves researcher time and institutional resources through correct-by-construction design, the automation of tedious tasks, design reuse, and the minimization of DNA assembly costs.

  4. Data warehousing in molecular biology. (United States)

    Schönbach, C; Kowalski-Saunders, P; Brusic, V


    In the business and healthcare sectors data warehousing has provided effective solutions for information usage and knowledge discovery from databases. However, data warehousing applications in the biological research and development (R&D) sector are lagging far behind. The fuzziness and complexity of biological data represent a major challenge in data warehousing for molecular biology. By combining experiences in other domains with our findings from building a model database, we have defined the requirements for data warehousing in molecular biology.

  5. NASA Biological Specimen Repository (United States)

    McMonigal, K. A.; Pietrzyk, R. A.; Sams, C. F.; Johnson, M. A.


    The NASA Biological Specimen Repository (NBSR) was established in 2006 to collect, process, preserve and distribute spaceflight-related biological specimens from long duration ISS astronauts. This repository provides unique opportunities to study longitudinal changes in human physiology spanning may missions. The NBSR collects blood and urine samples from all participating ISS crewmembers who have provided informed consent. These biological samples are collected once before flight, during flight scheduled on flight days 15, 30, 60, 120 and within 2 weeks of landing. Postflight sessions are conducted 3 and 30 days after landing. The number of in-flight sessions is dependent on the duration of the mission. Specimens are maintained under optimal storage conditions in a manner that will maximize their integrity and viability for future research The repository operates under the authority of the NASA/JSC Committee for the Protection of Human Subjects to support scientific discovery that contributes to our fundamental knowledge in the area of human physiological changes and adaptation to a microgravity environment. The NBSR will institute guidelines for the solicitation, review and sample distribution process through establishment of the NBSR Advisory Board. The Advisory Board will be composed of representatives of all participating space agencies to evaluate each request from investigators for use of the samples. This process will be consistent with ethical principles, protection of crewmember confidentiality, prevailing laws and regulations, intellectual property policies, and consent form language. Operations supporting the NBSR are scheduled to continue until the end of U.S. presence on the ISS. Sample distribution is proposed to begin with selections on investigations beginning in 2017. The availability of the NBSR will contribute to the body of knowledge about the diverse factors of spaceflight on human physiology.

  6. Biology at Berkeley


    Trow, Martin A


    This paper is concerned with the reorganization of biology at Berkeley, begun in the late 1970s and early 1980s, and now well along. Key to the initiation of change was the appointment of a Chancellor and Vice-chancellor who were committed to the changes, and the enlistment of outstanding biologists already at Berkeley to design the reform and carry it through. The paper raises the following questions: what led to the momentous changes in this leading research university; what actually happen...

  7. Introduction to Biological Models (United States)


    dZ ∂P ∂t = gPZ − µNP − dPP (5) ∂Z ∂t = αgPZ − dZZ (6) This model (the Lotka- Volterra equations ) gives a solution with cycles that have a con...P which can be viewed as the integral over some range (s1− > s2) of species and over weight. We then presume that transfers into and out of the...resulting black-boxes can be represented as functions just of the integrated values and attempt to parameterize those. 2 Basic biological models

  8. Space Synthetic Biology Project (United States)

    Howard, David; Roman, Monsi; Mansell, James (Matt)


    Synthetic biology is an effort to make genetic engineering more useful by standardizing sections of genetic code. By standardizing genetic components, biological engineering will become much more similar to traditional fields of engineering, in which well-defined components and subsystems are readily available in markets. Specifications of the behavior of those components and subsystems can be used to model a system which incorporates them. Then, the behavior of the novel system can be simulated and optimized. Finally, the components and subsystems can be purchased and assembled to create the optimized system, which most often will exhibit behavior similar to that indicated by the model. The Space Synthetic Biology project began in 2012 as a multi-Center effort. The purpose of this project was to harness Synthetic Biology principals to enable NASA's missions. A central target for application was to Environmental Control & Life Support (ECLS). Engineers from NASA Marshall Space Flight Center's (MSFC's) ECLS Systems Development Branch (ES62) were brought into the project to contribute expertise in operational ECLS systems. Project lead scientists chose to pursue the development of bioelectrochemical technologies to spacecraft life support. Therefore, the ECLS element of the project became essentially an effort to develop a bioelectrochemical ECLS subsystem. Bioelectrochemical systems exploit the ability of many microorganisms to drive their metabolisms by direct or indirect utilization of electrical potential gradients. Whereas many microorganisms are capable of deriving the energy required for the processes of interest (such as carbon dioxide (CO2) fixation) from sunlight, it is believed that subsystems utilizing electrotrophs will exhibit smaller mass, volume, and power requirements than those that derive their energy from sunlight. In the first 2 years of the project, MSFC personnel conducted modeling, simulation, and conceptual design efforts to assist the

  9. Biological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Univ. of California, Berkeley, CA (United States)


    Biological hydrogen production can be accomplished by either thermochemical (gasification) conversion of woody biomass and agricultural residues or by microbiological processes that yield hydrogen gas from organic wastes or water. Biomass gasification is a well established technology; however, the synthesis gas produced, a mixture of CO and H{sub 2}, requires a shift reaction to convert the CO to H{sub 2}. Microbiological processes can carry out this reaction more efficiently than conventional catalysts, and may be more appropriate for the relatively small-scale of biomass gasification processes. Development of a microbial shift reaction may be a near-term practical application of microbial hydrogen production.

  10. Biological Petri Nets

    CERN Document Server

    Wingender, E


    It was suggested some years ago that Petri nets might be well suited to modeling metabolic networks, overcoming some of the limitations encountered by the use of systems employing ODEs (ordinary differential equations). Much work has been done since then which confirms this and demonstrates the usefulness of this concept for systems biology. Petri net technology is not only intuitively understood by scientists trained in the life sciences, it also has a robust mathematical foundation and provides the required degree of flexibility. As a result it appears to be a very promising approach to mode

  11. Elements in biological AMS

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J.S.; McAninch, J.; Freeman, S.


    AMS (Accelerator Mass Spectrometry) provides high detection sensitivity for isotopes whose half-lives are between 10 years and 100 million years. {sup 14}C is the most developed of such isotopes and is used in tracing natural and anthropogenic organic compounds in the Earth`s biosphere. Thirty-three elements in the main periodic table and 17 lanthanides or actinides have long lived isotopes, providing potential tracers for research in elemental biochemistry. Overlap of biologically interesting heavy elements and possible AMS tracers is discussed.

  12. [The biologization of ethics]. (United States)

    Moreno Lax, Alejandro


    Three ethics exist as a condition of possibility of any possible ethics, following a material and biological foundation. This content argument (not logical-formal) supposes a refutation of the naturalistic fallacy that the analytical philosophy attributes to Hume, in three areas of the ethical human experience: body, society and nature. These are: the ethics of the species [J. Habermas], the ethics of liberation [E. Dussel] and the ethics of the responsibility [H. Jonas]. This material argument is a philosophical foundation to considering for three types of applied ethics: medical bioethics, development ethics and environmental ethics.

  13. Illuminating Cell Biology (United States)


    NASA's Ames Research Center awarded Ciencia, Inc., a Small Business Innovation Research contract to develop the Cell Fluorescence Analysis System (CFAS) to address the size, mass, and power constraints of using fluorescence spectroscopy in the International Space Station's Life Science Research Facility. The system will play an important role in studying biological specimen's long-term adaptation to microgravity. Commercial applications for the technology include diverse markets such as food safety, in situ environmental monitoring, online process analysis, genomics and DNA chips, and non-invasive diagnostics. Ciencia has already sold the system to the private sector for biosensor applications.

  14. Photonic structures in biology (United States)

    Vukusic, Pete; Sambles, J. Roy


    Millions of years before we began to manipulate the flow of light using synthetic structures, biological systems were using nanometre-scale architectures to produce striking optical effects. An astonishing variety of natural photonic structures exists: a species of Brittlestar uses photonic elements composed of calcite to collect light, Morpho butterflies use multiple layers of cuticle and air to produce their striking blue colour and some insects use arrays of elements, known as nipple arrays, to reduce reflectivity in their compound eyes. Natural photonic structures are providing inspiration for technological applications.

  15. Validation and application of biological, chemical and mathematical tests and biomarker studies for the assessment of small stream pollution. Phase 2. Subproject 1: coordination, limnochemistry, ultrastructure in vivo. Final report; Validierung und Einsatz biologischer, chemischer und mathematischer Tests und Biomarkerstudien zur Bewertung der Belastung kleiner Fliessgewaesser mit Umweltchemikalien. Phase 2. Teilprojekt: 1: Koordination, Limnochemie, Ultrastruktur in vivo. Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    Triebskorn, R.; Adam, S.; Gernhoefer, M.; Mueller, E.; Pawert, M.; Schramm, M.; Casper, H.; Gockel, K.; Heyd, A.; Huelsmann, T.; Luckenbach, T.; Moritz, T.; Schermutzki, F.; Woitschella, A.; Wollny, B.


    Valimar, a concerted project in which eleven scientific groups were involved, was coordinated at the University of Tuebingen, Animal Physiological Ecology group. Exposure of test organisms and samplings as well as data collection and distribution were all centrally organized. Twice to three times a year, round tables were organized and a final symposium open for the public was held in March 2000. In addition, in the test streams, limnological parameters were analyzed monthly/continously throughout the test period. Data logger installed at the field sites were regularly tended and data were centrally collected and analyzed. It could be shown that the two tests stream show significant differences with respect to most of the analyzed parameters. In addition, we investigated ultrastructural biomarkers in liver, gills and kidney of brown trout and stone loach which were (1) exposed under semi-field conditions at the three test scenarios, (2) captured by electro-fishing directly at the field sites, or (3) exposed under laboratory conditions to mixtures of pollutants. It could clearly been shown that ultrastructural markers, especially reactions of the gills, are useful tools to indicate the chemical differences of the respective field sites and the health status of fish. Variability of responses was lower in trout than in loach and the discriminatory capacity of biomarkers was higher in trout than in loach. (orig.)

  16. Dismantling the Mantel tests

    DEFF Research Database (Denmark)

    Guillot, Gilles; Rousset, François


    1. The simple and partialMantel tests are routinely used in many areas of evolutionary biology to assess the significance of the association between two ormorematrices of distances relative to the same pairs of individuals or demes. Partial Mantel tests rather than simple Mantel tests are widely...... used to assess the relationship between two variables displaying some form of structure. 2. We show that contrary to a widely shared belief, partialMantel tests are not valid in this case, and their bias remains close to that of the simpleMantel test. 3. We confirm that strong biases are expected under...... a sampling design and spatial correlation parameter drawn from an actual study. 4. TheMantel tests should not be used in case autocorrelation is suspected in both variables compared under the null hypothesis.We outline alternative strategies. The R code used for our computer simulations is distributed...

  17. Learning Biology with Plant Pathology. (United States)

    Carroll, Juliet E.

    This monograph contains 10 plant pathology experiments that were written to correspond to portions of a biology curriculum. Each experiment is suitable to a biology topic and designed to encourage exploration of those biological concepts being taught. Experiments include: (1) The Symptoms and Signs of Disease; (2) Koch's Postulates; (3)…

  18. Functions in Biological Kind Classification (United States)

    Lombrozo, Tania; Rehder, Bob


    Biological traits that serve functions, such as a zebra's coloration (for camouflage) or a kangaroo's tail (for balance), seem to have a special role in conceptual representations for biological kinds. In five experiments, we investigate whether and why functional features are privileged in biological kind classification. Experiment 1…

  19. Opportunities in Biological Sciences Careers. (United States)

    Winter, Charles A.

    This book offers a panoramic view of the diversity of careers which the future may offer to those trained in the biological sciences. It discusses the scope and organization of the biological sciences, focusing on the various specialties such as microbiology, genetics, entomology, ecology, wildlife biology, and the biomedical sciences such as…

  20. Biological warfare, bioterrorism, and biocrime

    NARCIS (Netherlands)

    Jansen, H. J.; Breeveld, F. J.; Stijnis, C.; Grobusch, M. P.


    Biological weapons achieve their intended target effects through the infectivity of disease-causing infectious agents. The ability to use biological agents in warfare is prohibited by the Biological and Toxin Weapon Convention. Bioterrorism is defined as the deliberate release of viruses, bacteria

  1. Cameroon Journal of Experimental Biology

    African Journals Online (AJOL)

    The Cameroon Journal of Experimental Biology is the official journal of the Cameroon Forum for Biological Sciences (CAFOBIOS). It is an interdisciplinary journal for the publication of original research papers, short communications and review articles in all fields of experimental biology including biochemistry, physiology, ...

  2. 9 CFR 101.5 - Testing terminology. (United States)


    ... VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.5 Testing terminology. Terms used when evaluating biological products shall mean: (a) Standard Requirement. Test methods, procedures, and criteria established by Animal and Plant Health Inspection Service for evaluating biological...

  3. Marine molecular biology: an emerging field of biological sciences. (United States)

    Thakur, Narsinh L; Jain, Roopesh; Natalio, Filipe; Hamer, Bojan; Thakur, Archana N; Müller, Werner E G


    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. However, the value of molecular techniques for addressing problems in marine biology has only recently begun to be cherished. It has been proven that the exploitation of molecular biological techniques will allow difficult research questions about marine organisms and ocean processes to be addressed. Marine molecular biology is a discipline, which strives to define and solve the problems regarding the sustainable exploration of marine life for human health and welfare, through the cooperation between scientists working in marine biology, molecular biology, microbiology and chemistry disciplines. Several success stories of the applications of molecular techniques in the field of marine biology are guiding further research in this area. In this review different molecular techniques are discussed, which have application in marine microbiology, marine invertebrate biology, marine ecology, marine natural products, material sciences, fisheries, conservation and bio-invasion etc. In summary, if marine biologists and molecular biologists continue to work towards strong partnership during the next decade and recognize intellectual and technological advantages and benefits of such partnership, an exciting new frontier of marine molecular biology will emerge in the future.

  4. The Promises of Biology and the Biology of Promises

    DEFF Research Database (Denmark)

    Lee, Jieun


    commitments with differently imagined futures. I argue that promises are constitutive of the stem cell biology, rather than being derivative of it. Since the biological concept of stem cells is predicated on the future that they promise, the biological life of stem cells is inextricably intertwined...... patients’ bodies in anticipation of materializing the promises of stem cell biology, they are produced as a new form of biovaluable. The promises of biology move beyond the closed circuit of scientific knowledge production, and proliferate in the speculative marketplaces of promises. Part II looks at how...... of technologized biology and biological time can appear promising with the backdrop of the imagined intransigence of social, political, and economic order in the Korean society....

  5. Metrology in an ISO 15189 accredited medical biology laboratory

    Directory of Open Access Journals (Sweden)

    Guichet C.


    Full Text Available All French medical biology laboratories must be accredited according to ISO 15189 for all tests conducted. Metrology is therefore critical and covers a wide variety of areas. This presentation will focus on the metrology manager’s role which is tailored to the medical biology laboratory: human resources in place, methods used, parameters followed, equipment used and strategies implemented when using equipment which is not connected to the International System of Units. It will be illustrated by examples of in vitro and in vivo clinical biochemistry, biological haematology, human toxicology and radiotoxicology. The presentation will cover the exploitation of results of internal controls and interlaboratory comparisons in order to calculate uncertainties and provide doctors with a result along with an interpretation or opinion to ensure optimum patient care. The conclusion will present the steps carried out at the Laboratoire National d’Essai (French National Testing Laboratory to provide medical biology laboratories with certified clinical biology standards.

  6. News from the Biological Stain Commission No. 11

    DEFF Research Database (Denmark)

    Lyon, H O; Horobin, R W


    of Regulatory Affairs, the Biological Stain Commission's International Affairs Committee presents information from the opening session of the meeting of the International Standards Organization ISO/TC 212 Clinical laboratory testing and in vitro diagnostic test systems held on 2-4 June 2010 in Seoul, Republic......The 11th issue of News from the Biological Stain Commission (BSC) provides our first impressions of the REACH and ECHA programs. We intend to give a more thorough account of what these important programs actually mean in later editions of News from the Biological Stain Commission. Under the heading...

  7. Oscillations in Mathematical Biology

    CERN Document Server


    The papers in this volume are based on talks given at a one day conference held on the campus of Adelphi University in April 1982. The conference was organized with the title "Oscillations in Mathematical Biology;" however the speakers were allowed considerable latitutde in their choice of topics. In the event, the talks all concerned the dynamics of non-linear systems arising in biology so that the conference achieved a good measure of cohesion. Some of the speakers cho~e not to submit a manuscript for these proceedings, feeling that their material was too conjectural to be committed to print. Also the paper of Rinzel and Troy is a distillation of the two separate talks that the authors gave. Otherwise the material reproduces the conference proceedings. The conference was made possible by the generous support of the Office of the Dean of the College of Arts and Sciences at Adelphi. The bulk of the organization of the conference was carried out by Dr. Ronald Grisell whose energy was in large measure responsib...

  8. [The Biology of Learning]. (United States)

    Campo-Cabal, Gerardo


    The effort to relate mental and biological functioning has fluctuated between two doctrines: 1) an attempt to explain mental functioning as a collective property of the brain and 2) as one relatied to other mental processes associated with specific regions of the brain. The article reviews the main theories developed over the last 200 years: phrenology, the psuedo study of the brain, mass action, cellular connectionism and distributed processing among others. In addition, approaches have emerged in recent years that allows for an understanding of the biological determinants and individual differences in complex mental processes through what is called cognitive neuroscience. Knowing the definition of neuroscience, the learning of memory, the ways in which learning occurs, the principles of the neural basis of memory and learning and its effects on brain function, among other things, allows us the basic understanding of the processes of memory and learning and is an important requirement to address the best manner to commit to the of training future specialists in Psychiatry. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  9. Chemoradiotherapy and molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Masatoshi; Mitsuhashi, Norio; Niibe, Hideo [Gunma Univ., Maebashi (Japan). School of Medicine


    The current status of chemoradiotherapy was reviewed from the standpoint of molecular biology. Chemoradiotherapy was conducted to achieve systemic tumor control, to intensify the response to irradiation, and to reduce adverse reactions. The mechanisms of the efficacy of chemoradiotherapy were: modification of dose-response relationships, inhibition of tumor cell recovery from sublethal damage or potential lethal damage, effects on cell dynamics and the cell cycle, improvement of blood flow or reoxygenation, recruitment, improvement of drug uptake, increased cell damage. Cell death (necrosis and apoptosis) and cancer-related genes were described, as the essential points, because they are involved in the response to chemoradiotherapy. Cisplatin (platinum compound), 5-fluorouracil, etoposide, and taxoid (paclitaxel, docetaxel) were the principal anticancer agents used for chemoradiotherapy, and they enhanced the effects of irradiation. However, even when good responses or synergism between anticancer drug and radiotherapy was observed in in vitro studies, there was little therapeutic advantage clinically. Data from in vitro and in vivo studies should be collected and systemized, and ''molecular biology in chemotherapy'' that can be applied clinically may become established. (K.H.)

  10. Neutron instrumentation for biology

    Energy Technology Data Exchange (ETDEWEB)

    Mason, S.A. [Institut Laue-Langevin, Grenoble (France)


    In the October 1994 round of proposals at the ILL, the external biology review sub- committee was asked to allocate neutron beam time to a wide range of experiments, on almost half the total number of scheduled neutron instruments: on 3 diffractometers, on 3 small angle scattering instruments, and on some 6 inelastic scattering spectrometers. In the 3.5 years since the temporary reactor shutdown, the ILL`s management structure has been optimized, budgets and staff have been trimmed, the ILL reactor has been re-built, and many of the instruments up-graded, many powerful (mainly Unix) workstations have been introduced, and the neighboring European Synchrotron Radiation Facility has established itself as the leading synchrotron radiation source and has started its official user program. The ILL reactor remains the world`s most intense dedicated neutron source. In this challenging context, it is of interest to review briefly the park of ILL instruments used to study the structure and energetics of small and large biological systems. A brief summary will be made of each class of experiments actually proposed in the latest ILL proposal round.

  11. Biological hydrogen photoproduction

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Y. [Univ. of Miami, FL (United States)


    Following are the major accomplishments of the 6th year`s study of biological hydrogen photoproduction which were supported by DOE/NREL. (1) We have been characterizing a biological hydrogen production system using synchronously growing aerobically nitrogen-fixing unicellular cyanobacterium, Synechococcus sp. Miami BG 043511. So far it was necessary to irradiate the cells to produce hydrogen. Under darkness they did not produce hydrogen. However, we found that, if the cells are incubated with oxygen, they produce hydrogen under the dark. Under 80% argon + 20% oxygen condition, the hydrogen production activity under the dark was about one third of that under the light + argon condition. (2) Also it was necessary so far to incubate the cells under argon atmosphere to produce hydrogen in this system. Argon treatment is very expensive and should be avoided in an actual hydrogen production system. We found that, if the cells are incubated at a high cell density and in a container with minimum headspace, it is not necessary to use argon for the hydrogen production. (3) Calcium ion was found to play an important role in the mechanisms of protection of nitrogenase from external oxygen. This will be a clue to understand the reason why the hydrogen production is so resistant to oxygen in this strain. (4) In this strain, sulfide can be used as electron donor for the hydrogen production. This result shows that waste water can be used for the hydrogen production system using this strain.

  12. Opportunities in plant synthetic biology. (United States)

    Cook, Charis; Martin, Lisa; Bastow, Ruth


    Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology.

  13. Reply to Veresoglou: Overdependence on "significance" testing in biology

    Czech Academy of Sciences Publication Activity Database

    Crowther, T. W.; Thomas, S.M.; Maynard, D.S.; Baldrian, Petr; Covey, K.; Frey, S. D.; van Diepen, L. T. A.; Bradford, M.A.


    Roč. 112, č. 37 (2015), "E5114"-"E5114" ISSN 0027-8424 Institutional support: RVO:61388971 Keywords : climate change * soil carbon Subject RIV: EE - Microbiology, Virology Impact factor: 9.423, year: 2015

  14. Biological hardening and genetic fidelity testing of micro-cloned ...

    African Journals Online (AJOL)



    Apr 17, 2008 ... micro-propagating Chlorophytum plants via vegetative buds or somatic embryogenesis, suffered from ... potato-dextrose agar medium and incubated at 30 ±1°C. After 48 h the cultures were scraped separately under ... multiplication rate of 1: 25 per culture per in vitro cycle. The rooted plants registered an ...

  15. Biological hardening and genetic fidelity testing of micro-cloned ...

    African Journals Online (AJOL)

    % establishment in soil following treatment with various bio-inoculants namely; Glomus aggregatum, Trichoderma harazianum and Piriformospora indica whereas Azospirullum sp. (CIM-azo) and Actinomycetes sp. (CIM-actin) showed only up ...

  16. Chemical, Biological, and Radiological Contamination Survivability: Material Effects Testing (United States)


    the background contamination level and residual substances (decontaminant) that could interfere with sample assay. c. The air inside the chamber...brushing, vacuum cleaning, or washing with soapy water and a sponge . Surface condition, surface cleanliness, corrosion, materials of construction

  17. Academic Preparation in Biology and Advocacy for Teaching Evolution: Biology versus Non-Biology Teachers (United States)

    Nehm, Ross H.; Kim, Sun Young; Sheppard, Keith


    Despite considerable focus on evolution knowledge-belief relationships, little research has targeted populations with strong content backgrounds, such as undergraduate degrees in biology. This study (1) measured precertified biology and non-biology teachers' (n = 167) knowledge of evolution and the nature of science; (2) quantified teacher…

  18. Machine Learning for Biological Trajectory Classification Applications (United States)

    Sbalzarini, Ivo F.; Theriot, Julie; Koumoutsakos, Petros


    Machine-learning techniques, including clustering algorithms, support vector machines and hidden Markov models, are applied to the task of classifying trajectories of moving keratocyte cells. The different algorithms axe compared to each other as well as to expert and non-expert test persons, using concepts from signal-detection theory. The algorithms performed very well as compared to humans, suggesting a robust tool for trajectory classification in biological applications.

  19. Synthesis and biological activity of dialkylphosphocholines. (United States)

    Lukác, Milos; Mrva, Martin; Fischer-Fodor, Eva; Lacko, Ivan; Bukovský, Marián; Miklásová, Natalia; Ondriska, Frantisek; Devínsky, Ferdinand


    A series of dialkylphosphocholines were prepared and evaluated for their biological activity. The antiprotozoal activity was determined against Acanthamoeba lugdunensis. Compound 15 exhibited excellent trophocidal activity. None of the tested dialkylphosphocholines exhibited better fungicidal activity against Candida albicans than miltefosine. The antineoplastic activity was determined against HeLa. The most cytotoxic was compound 10, which was more active against tumor cells as against normal cells.

  20. Ham test (United States)

    Acid hemolysin test; Paroxysmal nocturnal hemoglobinuria - Ham test; PNH - Ham test ... BJ. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . 6th ed. Philadelphia, PA: Elsevier ...

  1. Coombs test (United States)

    Direct antiglobulin test; Indirect antiglobulin test; Anemia - hemolytic ... No special preparation is necessary for this test. ... There are 2 types of the Coombs test: Direct Indirect The direct ... that are stuck to the surface of red blood cells. Many diseases ...

  2. Trichomonas Testing (United States)

    ... Genetic Tests for Targeted Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy ... With some NAATs, samples collected for testing of gonorrhea and chlamydial infections can also be used to ...

  3. Urodynamic Testing (United States)

    ... Urinary Tract Imaging Urodynamic Testing Virtual Colonoscopy Urodynamic Testing What is the urinary tract? The urinary tract ... view of the urinary tract What is urodynamic testing? Urodynamic testing is any procedure that looks at ...

  4. Mono Test (United States)

    ... Links Patient Resources For Health Professionals Subscribe Search Mononucleosis (Mono) Test Send Us Your Feedback Choose Topic ... Questions Related Content View Sources Also Known As Mononucleosis Spot Test Mononuclear Heterophile Test Heterophile Antibody Test ...

  5. Microgravity Fluids for Biology, Workshop (United States)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.


    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  6. The potential of standards-based agriculture biology as an alternative to traditional biology in California (United States)

    Sellu, George Sahr

    schools. Thoron & Meyer (2011) suggested that research into the contribution of integrated science courses toward higher test scores yielded mixed results. This finding may have been due in part to the fact that integrated science courses only incorporate select topics into agriculture education courses. In California, however, agriculture educators have developed standards-based courses such as Agriculture Biology (AgBio) that cover the same content standards as core traditional courses such as traditional biology. Students in both AgBio and traditional biology take the same standardized biology test. This is the first time there has been an opportunity for a fair comparison and a uniform metric for an agriscience course such as AgBio to be directly compared to traditional biology. This study will examine whether there are differences between AgBio and traditional biology with regard to standardized test scores in biology. Furthermore, the study examines differences in perception between teachers and students regarding teaching and learning activities associated with higher achievement in science. The findings of the study could provide a basis for presenting AgBio as a potential alternative to traditional biology. The findings of this study suggest that there are no differences between AgBio and traditional biology students with regard to standardized biology test scores. Additionally, the findings indicate that co-curricular activities in AgBio could contribute higher student achievement in biology. However, further research is required to identify specific activities in AgBio that contribute to higher achievement in science.

  7. Homocysteine Test (United States)

    ... for Homocysteine Research, Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH. (Fellow, American Heart Association; American Association for Clinical Chemistry member). Pagana, K. D. & Pagana, T. J. (© 2007). ...

  8. Hormesis and plant biology

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, Edward J. [Department of Public Health, Environmental Health Sciences Division, Pleasant Street, Morrill I, N344, University of Massachusetts, Amherst, MA 01003 (United States)], E-mail:; Blain, Robyn B. [Department of Public Health, Environmental Health Sciences Division, Pleasant Street, Morrill I, N344, University of Massachusetts, Amherst, MA 01003 (United States)


    A database has been developed that demonstrates experimental evidence of hormesis. It includes information from a broad range of biological models, including plants, and information on study design, dose-response features, and physical/chemical properties of the agents. An assessment of plant hormetic dose responses is presented based on greater than 3000 plant endpoints. Plant hormetic dose responses were observed for numerous endpoints including disease incidence, reproductive indices, mutagenic endpoints, various metabolic parameters, developmental processes, and a range of growth indicators. Quantitative features of these dose responses typically display a maximum stimulatory response less than two-fold greater than controls and a width of the stimulatory response usually less than 10-fold in dose range. The database establishes that hormetic dose responses commonly occur in plants, are broadly generalizable, and have quantitative features similar to hormetic dose responses found for animals. - Hormesis commonly occurs within plant species.

  9. Human biology of taste. (United States)

    Gravina, Stephen A; Yep, Gregory L; Khan, Mehmood


    Taste or gustation is one of the 5 traditional senses including hearing, sight, touch, and smell. The sense of taste has classically been limited to the 5 basic taste qualities: sweet, salty, sour, bitter, and umami or savory. Advances from the Human Genome Project and others have allowed the identification and determination of many of the genes and molecular mechanisms involved in taste biology. The ubiquitous G protein-coupled receptors (GPCRs) make up the sweet, umami, and bitter receptors. Although less clear in humans, transient receptor potential ion channels are thought to mediate salty and sour taste; however, other targets have been identified. Furthermore, taste receptors have been located throughout the body and appear to be involved in many regulatory processes. An emerging interplay is revealed between chemical sensing in the periphery, cortical processing, performance, and physiology and likely the pathophysiology of diseases such as diabetes.

  10. Plant Vascular Biology 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Biao


    This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

  11. Neutron structural biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment


    Neutron diffraction provides an experimental method of directly locating hydrogen atoms in protein which play important roles in physiological functions. However, there are relatively few examples of neutron crystallography in biology since it takes a lot of time to collect a sufficient number of Bragg reflections due to the low flux of neutrons illuminating the sample. In order to overcome the flux problem, we have successfully developed the neutron IP, where the neutron converter, {sup 6}Li or Gd, was mixed with a photostimulated luminescence material on flexible plastic support. Neutron Laue diffraction 2A data from tetragonal lysozyme were collected for 10 days with neutron imaging plates, and 960 hydrogen atoms in the molecule and 157 bound water molecules were identified. These results explain the proposed hydrolysis mechanism of the sugar by the lysozyme molecule and that lysozyme is less active at pH7.0. (author)

  12. The biology of strigolactones

    KAUST Repository

    Ruyter-Spira, Carolien P.


    The strigolactones are rhizosphere signaling molecules as well as a new class of plant hormones with a still increasing number of biological functions being uncovered. Here, we review a recent major breakthrough in our understanding of strigolactone biosynthesis, which has revealed the unexpected simplicity of the originally postulated complex pathway. Moreover, the discovery and localization of a strigolactone exporter sheds new light on putative strigolactone fluxes to the rhizosphere as well as within the plant. The combination of these data with information on the expression and regulation of strigolactone biosynthetic and downstream signaling genes provides new insights into how strigolactones control the many different aspects of plant development and how their rhizosphere signaling role may have evolved. © 2012 Elsevier Ltd.

  13. [Fullerenes in biology]. (United States)

    Krokosz, Anita


    Fullerenes are chemical structures made of carbon atoms. The stable form is molecule composed of 60 carbon atoms arranged in a soccer ball-shaped structure. With respect to its electron donor and acceptor capability and photochemical behavior fullerenes can be effective antioxidants and radical scavengers or prooxidants and photosensitizers. These properties of fullerenes have paid attention on their possible biological applications. Results of previous studies point to the great dependance of fullerenes activity upon quality, quantity and geometry of substituents in fullerene derivatives. Some of fullerene derivatives show antiviral and antimicrobial activity, including anti-HIV properties. C60 and its derivatives are able to exhibit cytotoxic and enzyme-inhibiting abilities as well as radical-quenching and antioxidative abilities. Generation of reactive oxygen species under influence of visible light is another ability of fullerene derivetives desired in photodynamic therapy.

  14. Advances in Norovirus Biology (United States)

    Karst, Stephanie M.; Wobus, Christiane E.; Goodfellow, Ian G.; Green, Kim Y.


    Human noroviruses are a major cause of epidemic and sporadic gastroenteritis worldwide, and can chronically infect immunocompromised patients. Efforts to develop effective vaccines and antivirals have been hindered by the uncultivable nature and extreme genetic diversity of human noroviruses. Although they remain a particularly challenging pathogen to study, recent advances in norovirus animal models and in vitro cultivation systems have led to an increased understanding of norovirus molecular biology and replication, pathogenesis, cell tropism, and innate and adaptive immunity. Furthermore, clinical trials of vaccines consisting of nonreplicating virus-like particles have shown promise. In this review, we summarize these recent advances and discuss controversies in the field, which is rapidly progressing towards generation of antiviral agents and increasingly effective vaccines. PMID:24922570

  15. Evolutionary synthetic biology. (United States)

    Peisajovich, Sergio G


    Signaling networks process vast amounts of environmental information to generate specific cellular responses. As cellular environments change, signaling networks adapt accordingly. Here, I will discuss how the integration of synthetic biology and directed evolution approaches is shedding light on the molecular mechanisms that guide the evolution of signaling networks. In particular, I will review studies that demonstrate how different types of mutations, from the replacement of individual amino acids to the shuffling of modular domains, lead to markedly different evolutionary trajectories and consequently to diverse network rewiring. Moreover, I will argue that intrinsic evolutionary properties of signaling proteins, such as the robustness of wild type functions, the promiscuous nature of evolutionary intermediates, and the modular decoupling between binding and catalysis, play important roles in the evolution of signaling networks. Finally, I will argue that rapid advances in our ability to synthesize DNA will radically alter how we study signaling network evolution at the genome-wide level.

  16. Biology of Sexual Dysfunction

    Directory of Open Access Journals (Sweden)

    Anil Kumar Mysore Nagaraj


    Full Text Available Sexual activity is a multifaceted activity, involving complex interactions between the nervous system, the endocrine system, the vascular system and a variety of structures that are instrumental in sexual excitement, intercourse and satisfaction. Sexual function has three components i.e., desire, arousal and orgasm. Many sexual dysfunctions can be categorized according to the phase of sexual response that is affected. In actual clinical practice however, sexual desire, arousal and orgasmic difficulties more often than not coexist, suggesting an integration of phases. Sexual dysfunction can result from a wide variety of psychological and physiological causes including derangements in the levels of sex hormones and neurotrensmitters. This review deals with the biology of different phases of sexual function as well as implications of hormones and neurotransmitters in sexual dysfunction

  17. Evolution of Biological Complexity (United States)

    Goldstein, Raymond E.

    It is a general rule of nature that larger organisms are more complex, at least as measured by the number of distinct types of cells present. This reflects the fitness advantage conferred by a division of labor among specialized cells over homogeneous totipotency. Yet, increasing size has both costs and benefits, and the search for understanding the driving forces behind the evolution of multicellularity is becoming a very active area of research. This article presents an overview of recent experimental and theoretical work aimed at understanding this biological problem from the perspective of physics. For a class of model organisms, the Volvocine green algae, an emerging hypothesis connects the transition from organisms with totipotent cells to those with terminal germ-soma differentiation to the competition between diffusion and fluid advection created by beating flagella. A number of challenging problems in fluid dynamics, nonlinear dynamics, and control theory emerge when one probes the workings of the simplest multicellular organisms.

  18. Integrative Radiation Biology

    Energy Technology Data Exchange (ETDEWEB)

    Barcellos-Hoff, Mary Helen [New York University School of Medicine, NY (United States)


    We plan to study tissue-level mechanisms important to human breast radiation carcinogenesis. We propose that the cell biology of irradiated tissues reveals a coordinated multicellular damage response program in which individual cell contributions are primarily directed towards suppression of carcinogenesis and reestablishment of homeostasis. We identified transforming growth factor β1 (TGFβ) as a pivotal signal. Notably, we have discovered that TGFβ suppresses genomic instability by controlling the intrinsic DNA damage response and centrosome integrity. However, TGFβ also mediates disruption of microenvironment interactions, which drive epithelial to mesenchymal transition in irradiated human mammary epithelial cells. This apparent paradox of positive and negative controls by TGFβ is the topic of the present proposal. First, we postulate that these phenotypes manifest differentially following fractionated or chronic exposures; second, that the interactions of multiple cell types in tissues modify the responses evident in this single cell type culture models. The goals are to: 1) study the effect of low dose rate and fractionated radiation exposure in combination with TGFβ on the irradiated phenotype and genomic instability of non-malignant human epithelial cells; and 2) determine whether stromal-epithelial interactions suppress the irradiated phenotype in cell culture and the humanized mammary mouse model. These data will be used to 3) develop a systems biology model that integrates radiation effects across multiple levels of tissue organization and time. Modeling multicellular radiation responses coordinated via extracellular signaling could have a significant impact on the extrapolation of human health risks from high dose to low dose/rate radiation exposure.

  19. Biology of Schwann cells. (United States)

    Kidd, Grahame J; Ohno, Nobuhiko; Trapp, Bruce D


    The fundamental roles of Schwann cells during peripheral nerve formation and regeneration have been recognized for more than 100 years, but the cellular and molecular mechanisms that integrate Schwann cell and axonal functions continue to be elucidated. Derived from the embryonic neural crest, Schwann cells differentiate into myelinating cells or bundle multiple unmyelinated axons into Remak fibers. Axons dictate which differentiation path Schwann cells follow, and recent studies have established that axonal neuregulin1 signaling via ErbB2/B3 receptors on Schwann cells is essential for Schwann cell myelination. Extracellular matrix production and interactions mediated by specific integrin and dystroglycan complexes are also critical requisites for Schwann cell-axon interactions. Myelination entails expansion and specialization of the Schwann cell plasma membrane over millimeter distances. Many of the myelin-specific proteins have been identified, and transgenic manipulation of myelin genes have provided novel insights into myelin protein function, including maintenance of axonal integrity and survival. Cellular events that facilitate myelination, including microtubule-based protein and mRNA targeting, and actin based locomotion, have also begun to be understood. Arguably, the most remarkable facet of Schwann cell biology, however, is their vigorous response to axonal damage. Degradation of myelin, dedifferentiation, division, production of axonotrophic factors, and remyelination all underpin the substantial regenerative capacity of the Schwann cells and peripheral nerves. Many of these properties are not shared by CNS fibers, which are myelinated by oligodendrocytes. Dissecting the molecular mechanisms responsible for the complex biology of Schwann cells continues to have practical benefits in identifying novel therapeutic targets not only for Schwann cell-specific diseases but other disorders in which axons degenerate. Copyright © 2013 Elsevier B.V. All rights



  1. Medical Chemical and Biological Defense Research

    National Research Council Canada - National Science Library

    Linden, Carol D


    Partial contents; Medical Chemical/Biological Defense Research, Chemical/Biological Defense Rationale for Rationale for Investment,Medical Chemical and Biological Defense Research Program Mission, Medical Chemical...

  2. Predicting genetics achievement in nonmajors college biology (United States)

    Mitchell, Angela; Lawson, Anton E.

    Students enrolled in a non-majors college biology course were pretested to determine their level of intellectual development, degree of field independence, mental capacity, amount of prior genetics knowledge, and amount of fluid intelligence. They were then taught a unit on Mendelian genetics. The only student variables found to not account for a significant amount of variance on a test of reading comprehension and/or a test of genetics achievement was amount of prior genetics knowledge. Developmental level was found to be the most consistent predictor of performance, suggesting that a lack of general hypothetico-deductive reasoning ability is a major factor limiting achievement among these students.

  3. From biologically-inspired physics to physics-inspired biology From biologically-inspired physics to physics-inspired biology (United States)

    Kornyshev, Alexei A.


    conference were elegant, but most importantly closely related to experimental findings. On the first day of the meeting we were able to celebrate Adrian Parsegian's 70th birthday. A worldwide renowned figure in modern biological physics, its distinguished veteran, a former President of the Biophysical Society and an author of many seminal, pioneering papers, Adrian has worked at the NIH for four decades and over the last two has led a vibrant Structural and Physical Biology Laboratory, created by him. Adrian has done a lot for physicists and biologists coming closer together. That summer, full of his ever young energy—an example for many young scientists—he is moving to build a new research team as a Professor at the University of Massachusetts at Amherst. My feeling is that something is beginning to move in the difficult interactions between the physical and biological communities, the progress noticeable at least at the scale of 130 people present in Trieste. A few years ago, Paul Selvin, a biophysicist at the University of Illinois who has made crucial contributions to the visualization and characterization of biomolecular motility, suggested that if Rutherford was alive today, he would have possibly conclude that 'All science is either....biology or tool-making for biology... or not fundable'. Generally, 'pride and prejudice' today is no longer on the side of physicists. But in order to overcome the barrier of skepticism we, physicists, not only should not be shy about what we were able to demonstrate in the test tube, but also have to think how we could show that our 'beautiful physical effects' work equally inside the cell! This is much more difficult. Many of us will not be able to do it alone without finding a biologist match. Crick was not only a great mind, he was also lucky to meet his biologist. But Crick himself was very serious about real biology rather than just 'biologically-inspired physics'. And this is what Adrian advised all of us to do in his 1997

  4. The Physics behind Systems Biology

    Directory of Open Access Journals (Sweden)

    Radde Nicole E.


    Full Text Available Systems Biology is a young and rapidly evolving research field, which combines experimental techniques and mathematical modeling in order to achieve a mechanistic understanding of processes underlying the regulation and evolution of living systems. Systems Biology is often associated with an Engineering approach: The purpose is to formulate a data-rich, detailed simulation model that allows to perform numerical (‘in silico’ experiments and then draw conclusions about the biological system. While methods from Engineering may be an appropriate approach to extending the scope of biological investigations to experimentally inaccessible realms and to supporting data-rich experimental work, it may not be the best strategy in a search for design principles of biological systems and the fundamental laws underlying Biology. Physics has a long tradition of characterizing and understanding emergent collective behaviors in systems of interacting units and searching for universal laws. Therefore, it is natural that many concepts used in Systems Biology have their roots in Physics. With an emphasis on Theoretical Physics, we will here review the ‘Physics core’ of Systems Biology, show how some success stories in Systems Biology can be traced back to concepts developed in Physics, and discuss how Systems Biology can further benefit from its Theoretical Physics foundation.

  5. Synthetic biology and occupational risk. (United States)

    Howard, John; Murashov, Vladimir; Schulte, Paul


    Synthetic biology is an emerging interdisciplinary field of biotechnology that involves applying the principles of engineering and chemical design to biological systems. Biosafety professionals have done an excellent job in addressing research laboratory safety as synthetic biology and gene editing have emerged from the larger field of biotechnology. Despite these efforts, risks posed by synthetic biology are of increasing concern as research procedures scale up to industrial processes in the larger bioeconomy. A greater number and variety of workers will be exposed to commercial synthetic biology risks in the future, including risks to a variety of workers from the use of lentiviral vectors as gene transfer devices. There is a need to review and enhance current protection measures in the field of synthetic biology, whether in experimental laboratories where new advances are being researched, in health care settings where treatments using viral vectors as gene delivery systems are increasingly being used, or in the industrial bioeconomy. Enhanced worker protection measures should include increased injury and illness surveillance of the synthetic biology workforce; proactive risk assessment and management of synthetic biology products; research on the relative effectiveness of extrinsic and intrinsic biocontainment methods; specific safety guidance for synthetic biology industrial processes; determination of appropriate medical mitigation measures for lentiviral vector exposure incidents; and greater awareness and involvement in synthetic biology safety by the general occupational safety and health community as well as by government occupational safety and health research and regulatory agencies.

  6. Biological characterization of experimental carbon samples. (United States)

    Delfosse, C; Monchau, F; Lefevre, A; Maquin, D; Lafforgue, P; Hildebrand, H F


    The use of carbon is widespread in fields as wide as aeronautics, cars, electricity or electronics. The biomedical applications of carbon are also numerous. The purpose of our work is to test four experimental carbon fibers (A, B, C and D; B being the negative control) to determine the best clinical application. Four tests of cytocompatibility are carried out (cell viability, inflammatory test, cell proliferation and cell morphology). Two different cell lines are used: the L132 cell line (epithelial embryonic pulmonary human cell) and the HaCaT line (human normal spontaneously immortalized skin keratinocytes). The results of the biological tests are compared with those of a carbon fiber sample already marketed as a bandage in the treatment of infected wounds: Actisorb "Plus (J2). The various tests show us that only two experimental samples are slightly cytotoxic (A, D). On the other hand, no sample supports cell adherence. A, B, C and D do not have an inflammatory effect. J2 appears at the same time cytotoxic and inflammatory. Consequently, being given the physical presentation and the biological properties of experimental samples (A, C and D), we intend them for an application in the field of wound healing, as a bandage. Also further experimentation is needed.

  7. Exams disadvantage women in introductory biology.

    Directory of Open Access Journals (Sweden)

    Cissy J Ballen

    Full Text Available The gender gap in STEM fields has prompted a great deal of discussion, but what factors underlie performance deficits remain poorly understood. We show that female students underperformed on exams compared to their male counterparts across ten large introductory biology course sections in fall 2016 (N > 1500 students. Females also reported higher levels of test anxiety and course-relevant science interest. Results from mediation analyses revealed an intriguing pattern: for female students only, and regardless of their academic standing, test anxiety negatively impacted exam performance, while interest in the course-specific science topics increased exam performance. Thus, instructors seeking equitable classrooms can aim to decrease test anxiety and increase student interest in science course content. We provide strategies for mitigating test anxiety and suggestions for alignment of course content with student interest, with the hope of successfully reimagining the STEM pathway as one that is equally accessible to all.

  8. Exams disadvantage women in introductory biology (United States)

    Cotner, Sehoya


    The gender gap in STEM fields has prompted a great deal of discussion, but what factors underlie performance deficits remain poorly understood. We show that female students underperformed on exams compared to their male counterparts across ten large introductory biology course sections in fall 2016 (N > 1500 students). Females also reported higher levels of test anxiety and course-relevant science interest. Results from mediation analyses revealed an intriguing pattern: for female students only, and regardless of their academic standing, test anxiety negatively impacted exam performance, while interest in the course-specific science topics increased exam performance. Thus, instructors seeking equitable classrooms can aim to decrease test anxiety and increase student interest in science course content. We provide strategies for mitigating test anxiety and suggestions for alignment of course content with student interest, with the hope of successfully reimagining the STEM pathway as one that is equally accessible to all. PMID:29049334

  9. Exams disadvantage women in introductory biology. (United States)

    Ballen, Cissy J; Salehi, Shima; Cotner, Sehoya


    The gender gap in STEM fields has prompted a great deal of discussion, but what factors underlie performance deficits remain poorly understood. We show that female students underperformed on exams compared to their male counterparts across ten large introductory biology course sections in fall 2016 (N > 1500 students). Females also reported higher levels of test anxiety and course-relevant science interest. Results from mediation analyses revealed an intriguing pattern: for female students only, and regardless of their academic standing, test anxiety negatively impacted exam performance, while interest in the course-specific science topics increased exam performance. Thus, instructors seeking equitable classrooms can aim to decrease test anxiety and increase student interest in science course content. We provide strategies for mitigating test anxiety and suggestions for alignment of course content with student interest, with the hope of successfully reimagining the STEM pathway as one that is equally accessible to all.

  10. Quantum Mechanics predicts evolutionary biology. (United States)

    Torday, J S


    Nowhere are the shortcomings of conventional descriptive biology more evident than in the literature on Quantum Biology. In the on-going effort to apply Quantum Mechanics to evolutionary biology, merging Quantum Mechanics with the fundamentals of evolution as the First Principles of Physiology-namely negentropy, chemiosmosis and homeostasis-offers an authentic opportunity to understand how and why physics constitutes the basic principles of biology. Negentropy and chemiosmosis confer determinism on the unicell, whereas homeostasis constitutes Free Will because it offers a probabilistic range of physiologic set points. Similarly, on this basis several principles of Quantum Mechanics also apply directly to biology. The Pauli Exclusion Principle is both deterministic and probabilistic, whereas non-localization and the Heisenberg Uncertainty Principle are both probabilistic, providing the long-sought after ontologic and causal continuum from physics to biology and evolution as the holistic integration recognized as consciousness for the first time. Copyright © 2018. Published by Elsevier Ltd.

  11. Synthetic biology advancing clinical applications. (United States)

    Folcher, Marc; Fussenegger, Martin


    The 'omics' era, with its identification of genetic and protein components, has combined with systems biology, which provided insights into network structures, to set the stage for synthetic biology, an emerging interdisciplinary life science that uses engineering principles. By capitalizing on an iterative design cycle that involves molecular and computational biology tools to assemble functional designer devices from a comprehensive catalogue of standardized biological components with predictable functions, synthetic biology has significantly advanced our understanding of complex control dynamics that program living systems. Such insights, collected over the past decade, are priming a variety of synthetic biology-inspired biomedical applications that have the potential to revolutionize drug discovery and production technologies, as well as treatment strategies for infectious diseases and metabolic disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Microfluidic Technologies for Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Sung Kuk Lee


    Full Text Available Microfluidic technologies have shown powerful abilities for reducing cost, time, and labor, and at the same time, for increasing accuracy, throughput, and performance in the analysis of biological and biochemical samples compared with the conventional, macroscale instruments. Synthetic biology is an emerging field of biology and has drawn much attraction due to its potential to create novel, functional biological parts and systems for special purposes. Since it is believed that the development of synthetic biology can be accelerated through the use of microfluidic technology, in this review work we focus our discussion on the latest microfluidic technologies that can provide unprecedented means in synthetic biology for dynamic profiling of gene expression/regulation with high resolution, highly sensitive on-chip and off-chip detection of metabolites, and whole-cell analysis.

  13. Quantum Effects in Biological Systems

    CERN Document Server


    Since the last decade the study of quantum mechanical phenomena in biological systems has become a vibrant field of research. Initially sparked by evidence of quantum effects in energy transport that is instrumental for photosynthesis, quantum biology asks the question of how methods and models from quantum theory can help us to understand fundamental mechanisms in living organisms. This approach entails a paradigm change challenging the related disciplines: The successful framework of quantum theory is taken out of its low-temperature, microscopic regimes and applied to hot and dense macroscopic environments, thereby extending the toolbox of biology and biochemistry at the same time. The Quantum Effects in Biological Systems conference is a platform for researchers from biology, chemistry and physics to present and discuss the latest developments in the field of quantum biology. After meetings in Lisbon (2009), Harvard (2010), Ulm (2011), Berkeley (2012), Vienna (2013), Singapore (2014) and Florence (2015),...

  14. DRDC Ottawa working standard for biological dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Segura, T.M.; Prud' homme-Lalonde, L. [Defence Research and Development Canada, Ottawa, Ontario (Canada); Thorleifson, E. [Health Canada, Gatineau, Quebec (Canada); Lachapelle, S.; Mullins, D. [JERA Consulting (Canada); Qutob, S. [Health Canada, Gatineau, Quebec (Canada); Wilkinson, D.


    This Standard provides quality assurance, quality control, and evaluation of the performance criteria for the purpose of accreditation of the Radiation Biology laboratory at Defence Research and Development Canada - Ottawa (DRDC Ottawa) using biological dosimetry to predict radiation exposure doses. The International Standard (ISO 19238) and the International Atomic Energy Association (IAEA) Technical Report Series No. 405 are used as guiding documents in preparation of this working document specific to the DRDC Ottawa Radiation Biology Laboratory. This Standard addresses: 1. The confidentiality of personal information, for the customer and the service laboratory; 2. The laboratory safety requirements; 3. The calibration sources and calibration dose ranges useful for establishing the reference dose-effect curves allowing the dose estimation from chromosome aberration frequency, and the minimum detection levels; 4. Transportation criteria for shipping of test samples to the laboratory; 5. Preparation of samples for analysis; 6. The scoring procedure for unstable chromosome aberrations used for biological dosimetry; 7. The criteria for converting a measured aberration frequency into an estimate of absorbed dose; 8. The reporting of results; 9. The quality assurance and quality control plan for the laboratory; and 10. Informative annexes containing examples of a questionnaire, instructions for customers, a data sheet for recording aberrations, a sample report and other supportive documents. (author)

  15. Toward Contactless Biology: Acoustophoretic DNA Transfection (United States)

    Vasileiou, Thomas; Foresti, Daniele; Bayram, Adem; Poulikakos, Dimos; Ferrari, Aldo


    Acoustophoresis revolutionized the field of container-less manipulation of liquids and solids by enabling mixing procedures which avoid contamination and loss of reagents due to the contact with the support. While its applications to chemistry and engineering are straightforward, additional developments are needed to obtain reliable biological protocols in a contactless environment. Here, we provide a first, fundamental step towards biological reactions in air by demonstrating the acoustophoretic DNA transfection of mammalian cells. We developed an original acoustophoretic design capable of levitating, moving and mixing biological suspensions of living mammalians cells and of DNA plasmids. The precise and sequential delivery of the mixed solutions into tissue culture plates is actuated by a novel mechanism based on the controlled actuation of the acoustophoretic force. The viability of the contactless procedure is tested using a cellular model sensitive to small perturbation of neuronal differentiation pathways. Additionally, the efficiency of the transfection procedure is compared to standard, container-based methods for both single and double DNA transfection and for different cell types including adherent growing HeLa cancer cells, and low adhesion neuron-like PC12 cells. In all, this work provides a proof of principle which paves the way to the development of high-throughput acoustophoretic biological reactors. PMID:26828312

  16. Biology-Inspired Autonomous Control (United States)


    AFRL-RW-EG-TR-2011-021 BIOLOGY -INSPIRED AUTONOMOUS CONTROL Multiple Authors – See Table of Contents Appendices Multiple...From - To) (Oct,1,2007)-(May 31,2011) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER N/A Biology -Inspired Autonomous Control 5b. GRANT NUMBER N...limitations of conventional approaches by applying principles derived from studying the biology of flying organisms. The research was focused on

  17. Biological potential of Stillingia oppositifolia

    Directory of Open Access Journals (Sweden)

    Betania Barros Cota


    Full Text Available Organic extracts from leaves and stems of Stillingia oppositifolia Baill. ex Müll. Arg., Euphorbiaceae, were screened for antifungal and cytotoxic properties. The extracts presented Minimum Inhibitory Concentration values around 250 µg.mL-1 against Candida krusei and Candida tropicalis, and around 63 µg.mL-1 for Paracoccidioides brasiliensis. They were tested on three human cell lines (UACC-62, MCF-7, and TK-10, disclosing GI50 values, (concentration able to inhibit 50% of the cell growth ranging from 50 to 100 µg.mL-1. Organic extract from stems furnished hexanic, dichloromethanic and aqueous phases after partition. Chromatographic fractionation of the hexanic soluble phase of the stems yielded aleuritolic acid 3-acetate, β-sitosterol, 3-epi-β-amyrin, β-amyrone and palmitic acid. These compounds showed antifungal and cytotoxic activities in the same range as the organic crude extract and low toxic effect against mononuclear cells obtained from human peripheral blood. This is the first report on chemical and biological potential of S. oppositifolia.

  18. An investigation of the possibility to replace the rabbit pyrogen test by an in vitro test

    NARCIS (Netherlands)

    Gommer AM; Donders LAM; LGM


    The classical test for the detection of pyrogenic contaminations in pharmaceuticals is the rabbit pyrogen test. The most frequently occuring and most important pyrogenic contamination in biological and biotechnological pharmaceutical preparations are bacterial endotoxins, originating from the

  19. Relations between Intuitive Biological Thinking and Biological Misconceptions in Biology Majors and Nonmajors (United States)

    Coley, John D.; Tanner, Kimberly


    Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed misconceptions, among biology students across biological domains. In parallel, cognitive and developmental psychologists have described intuitive conceptual systems—teleological, essentialist, and anthropocentric thinking—that humans use to reason about biology. We hypothesize that seemingly unrelated biological misconceptions may have common origins in these intuitive ways of knowing, termed cognitive construals. We presented 137 undergraduate biology majors and nonmajors with six biological misconceptions. They indicated their agreement with each statement, and explained their rationale for their response. Results indicate frequent agreement with misconceptions, and frequent use of construal-based reasoning among both biology majors and nonmajors in their written explanations. Moreover, results also show associations between specific construals and the misconceptions hypothesized to arise from those construals. Strikingly, such associations were stronger among biology majors than nonmajors. These results demonstrate important linkages between intuitive ways of thinking and misconceptions in discipline-based reasoning, and raise questions about the origins, persistence, and generality of relations between intuitive reasoning and biological misconceptions. PMID:25713093

  20. Systems Biology and Health Systems Complexity in;

    NARCIS (Netherlands)

    Donald Combs, C.; Barham, S.R.; Sloot, P.M.A.


    Systems biology addresses interactions in biological systems at different scales of biological organization, from the molecular to the cellular, organ, organism, societal, and ecosystem levels. This chapter expands on the concept of systems biology, explores its implications for individual patients

  1. Synthetic biology for therapeutic applications. (United States)

    Abil, Zhanar; Xiong, Xiong; Zhao, Huimin


    Synthetic biology is a relatively new field with the key aim of designing and constructing biological systems with novel functionalities. Today, synthetic biology devices are making their first steps in contributing new solutions to a number of biomedical challenges, such as emerging bacterial antibiotic resistance and cancer therapy. This review discusses some synthetic biology approaches and applications that were recently used in disease mechanism investigation and disease modeling, drug discovery and production, as well as vaccine development and treatment of infectious diseases, cancer, and metabolic disorders.


    Directory of Open Access Journals (Sweden)

    Ritia Rahmawati


    Matakuliah Biologi Sel merupakan salah satu matakuliah wajib yang ditempuh oleh mahasiswa tingkat S1 Pendidikan Biologi Universitas Negeri Malang Referensi yang digunakan dalam pembelajaran matakuliah Biologi Sel belum ada referensi yang berbasis penelitian virtual screening dengan bahasa Indonesia sebagai bahasa pengantar. Tujuan penelitian ini yaitu pengembangan buku ajar biologi sel berbasis penelitian bioinformatika. Metode penelitian yang digunakan adalah metode pengembangan Dick and Carey (2009. Hasil penelitian ini yaitu produk berupa buku ajar yang berbasis penelitian virtual screening yang telah dilakukan validasi ahli (ahli materi dan ahli media pembelajaran dengan nilai 80% dan pengguna buku dengan nilai 89%.

  3. Biological and medical sensor technologies

    CERN Document Server

    Iniewski, Krzysztof


    Biological and Medical Sensor Technologies presents contributions from top experts who explore the development and implementation of sensors for various applications used in medicine and biology. Edited by a pioneer in the area of advanced semiconductor materials, the book is divided into two sections. The first part covers sensors for biological applications. Topics include: Advanced sensing and communication in the biological world DNA-derivative architectures for long-wavelength bio-sensing Label-free silicon photonics Quartz crystal microbalance-based biosensors Lab-on-chip technologies fo

  4. Electromagnetic fields in biological systems

    National Research Council Canada - National Science Library

    Lin, James C


    "Focusing on exposure, induced fields, and absorbed energy, this volume covers the interaction of electromagnetic fields and waves with biological systems, spanning static fields to terahertz waves...

  5. Chemical genomics in plant biology. (United States)

    Sadhukhan, Ayan; Sahoo, Lingaraj; Panda, Sanjib Kumar


    Chemical genomics is a newly emerged and rapidly progressing field in biology, where small chemical molecules bind specifically and reversibly to protein(s) to modulate their function(s), leading to the delineation and subsequent unravelling of biological processes. This approach overcomes problems like lethality and redundancy of classical genetics. Armed with the powerful techniques of combinatorial synthesis, high-throughput screening and target discovery chemical genomics expands its scope to diverse areas in biology. The well-established genetic system of Arabidopsis model allows chemical genomics to enter into the realm of plant biology exploring signaling pathways of growth regulators, endomembrane signaling cascades, plant defense mechanisms and many more events.

  6. Finding Hope in Synthetic Biology. (United States)

    Takala, Tuija


    For some, synthetic biology represents great hope in offering possible solutions to many of the world's biggest problems, from hunger to sustainable development. Others remain fearful of the harmful uses, such as bioweapons, that synthetic biology can lend itself to, and most hold that issues of biosafety are of utmost importance. In this article, I will evaluate these points of view and conclude that although the biggest promises of synthetic biology are unlikely to become reality, and the probability of accidents is fairly substantial, synthetic biology could still be seen to benefit humanity by enhancing our ethical understanding and by offering a boost to world economy.

  7. The ontology of biological sequences

    Directory of Open Access Journals (Sweden)

    Kelso Janet


    Full Text Available Abstract Background Biological sequences play a major role in molecular and computational biology. They are studied as information-bearing entities that make up DNA, RNA or proteins. The Sequence Ontology, which is part of the OBO Foundry, contains descriptions and definitions of sequences and their properties. Yet the most basic question about sequences remains unanswered: what kind of entity is a biological sequence? An answer to this question benefits formal ontologies that use the notion of biological sequences and analyses in computational biology alike. Results We provide both an ontological analysis of biological sequences and a formal representation that can be used in knowledge-based applications and other ontologies. We distinguish three distinct kinds of entities that can be referred to as "biological sequence": chains of molecules, syntactic representations such as those in biological databases, and the abstract information-bearing entities. For use in knowledge-based applications and inclusion in biomedical ontologies, we implemented the developed axiom system for use in automated theorem proving. Conclusion Axioms are necessary to achieve the main goal of ontologies: to formally specify the meaning of terms used within a domain. The axiom system for the ontology of biological sequences is the first elaborate axiom system for an OBO Foundry ontology and can serve as starting point for the development of more formal ontologies and ultimately of knowledge-based applications.

  8. Telemetry System of Biological Parameters

    Directory of Open Access Journals (Sweden)

    Jan Spisak


    Full Text Available The mobile telemetry system of biological parameters serves for reading and wireless data transfer of measured values of selected biological parameters to an outlying computer. It concerns basically long time monitoring of vital function of car pilot.The goal of this projects is to propose mobile telemetry system for reading, wireless transfer and processing of biological parameters of car pilot during physical and psychical stress. It has to be made with respect to minimal consumption, weight and maximal device mobility. This system has to eliminate signal noise, which is created by biological artifacts and disturbances during the data transfer.

  9. Molecular biology of potyviruses. (United States)

    Revers, Frédéric; García, Juan Antonio


    Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses. © 2015 Elsevier Inc. All rights reserved.

  10. Consciousness and biological evolution. (United States)

    Lindahl, B I


    It has been suggested that if the preservation and development of consciousness in the biological evolution is a result of natural selection, it is plausible that consciousness not only has been influenced by neural processes, but has had a survival value itself; and it could only have had this, if it had also been efficacious. This argument for mind-brain interaction is examined, both as the argument has been developed by William James and Karl Popper and as it has been discussed by C.D. Broad. The problem of identifying mental phenomena with certain neural phenomena is also addressed. The main conclusion of the analysis is that an explanation of the evolution of consciousness in Darwinian terms of natural selection does not rule out that consciousness may have evolved as a mere causally inert effect of the evolution of the nervous system, or that mental phenomena are identical with certain neural phenomena. However, the interactionistic theory still seems, more plausible and more fruitful for other reasons brought up in the discussion.

  11. New World Arenavirus Biology. (United States)

    Sarute, Nicolás; Ross, Susan R


    Hemorrhagic fevers caused by viruses were identified in the late 1950s in South America. These viruses have existed in their hosts, the New World rodents, for millions of years. Their emergence as infectious agents in humans coincided with changes in the environment and farming practices that caused explosions in their host rodent populations. Zoonosis into humans likely occurs because the pathogenic New World arenaviruses use human transferrin receptor 1 to enter cells. The mortality rate after infection with these viruses is high, but the mechanism by which disease is induced is still not clear. Possibilities include direct effects of cellular infection or the induction of high levels of cytokines by infected sentinel cells of the immune system, leading to endothelia and thrombocyte dysfunction and neurological disease. Here we provide a review of the ecology and molecular and cellular biology of New World arenaviruses, as well as a discussion of the current animal models of infection. The development of animal models, coupled with an improved understanding of the infection pathway and host response, should lead to the discovery of new drugs for treating infections.

  12. Eosinophils in glioblastoma biology

    Directory of Open Access Journals (Sweden)

    Curran Colleen S


    Full Text Available Abstract Glioblastoma multiforme (GBM is the most common primary brain tumor in adults. The development of this malignant glial lesion involves a multi-faceted process that results in a loss of genetic or epigenetic gene control, un-regulated cell growth, and immune tolerance. Of interest, atopic diseases are characterized by a lack of immune tolerance and are inversely associated with glioma risk. One cell type that is an established effector cell in the pathobiology of atopic disease is the eosinophil. In response to various stimuli, the eosinophil is able to produce cytotoxic granules, neuromediators, and pro-inflammatory cytokines as well as pro-fibrotic and angiogenic factors involved in pathogen clearance and tissue remodeling and repair. These various biological properties reveal that the eosinophil is a key immunoregulatory cell capable of influencing the activity of both innate and adaptive immune responses. Of central importance to this report is the observation that eosinophil migration to the brain occurs in response to traumatic brain injury and following certain immunotherapeutic treatments for GBM. Although eosinophils have been identified in various central nervous system pathologies, and are known to operate in wound/repair and tumorstatic models, the potential roles of eosinophils in GBM development and the tumor immunological response are only beginning to be recognized and are therefore the subject of the present review.

  13. Mesangial cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Hanna E., E-mail:


    Mesangial cells originate from the metanephric mesenchyme and maintain structural integrity of the glomerular microvascular bed and mesangial matrix homeostasis. In response to metabolic, immunologic or hemodynamic injury, these cells undergo apoptosis or acquire an activated phenotype and undergo hypertrophy, proliferation with excessive production of matrix proteins, growth factors, chemokines and cytokines. These soluble factors exert autocrine and paracrine effects on the cells or on other glomerular cells, respectively. MCs are primary targets of immune-mediated glomerular diseases such as IGA nephropathy or metabolic diseases such as diabetes. MCs may also respond to injury that primarily involves podocytes and endothelial cells or to structural and genetic abnormalities of the glomerular basement membrane. Signal transduction and oxidant stress pathways are activated in MCs and likely represent integrated input from multiple mediators. Such responses are convenient targets for therapeutic intervention. Studies in cultured MCs should be supplemented with in vivo studies as well as examination of freshly isolated cells from normal and diseases glomeruli. In addition to ex vivo morphologic studies in kidney cortex, cells should be studied in their natural environment, isolated glomeruli or even tissue slices. Identification of a specific marker of MCs should help genetic manipulation as well as selective therapeutic targeting of these cells. Identification of biological responses of MCs that are not mediated by the renin–angiotensin system should help development of novel and effective therapeutic strategies to treat diseases characterized by MC pathology.

  14. Bomb pulse biology

    Energy Technology Data Exchange (ETDEWEB)

    Falso, Miranda J. Sarachine [Center for Accelerator Mass Spectrometry, Mail Stop L-397, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States); Buchholz, Bruce A., E-mail: [Center for Accelerator Mass Spectrometry, Mail Stop L-397, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States)


    The past decade has seen an explosion in use of the {sup 14}C bomb pulse to do fundamental cell biology. Studies in the 1960s used decay counting to measure tissue turnover when the atmospheric {sup 14}C/C concentration was changing rapidly. Today bulk tissue measurements are of marginal interest since most of the carbon in the tissue resides in proteins, lipids and carbohydrates that turn over rapidly. Specific cell types with specialized functions are the focus of cell turnover investigations. Tissue samples need to be fresh or frozen. Fixed or preserved samples contain petroleum-derived carbon that has not been successfully removed. Cell or nuclear surface markers are used to sort specific cell types, typically by fluorescence-activated cell sorting (FACS). Specific biomolecules need to be isolated with high purity and accelerator mass spectrometry (AMS) measurements must accommodate samples that generally contain less than 40 {mu}g of carbon. Furthermore, all separations must not add carbon to the sample. Independent means such as UV absorbance must be used to confirm molecule purity. Approaches for separating specific proteins and DNA and combating contamination of undesired molecules are described.

  15. Biological rhythms and preeclampsia

    Directory of Open Access Journals (Sweden)

    Agnès eDitisheim


    Full Text Available The impact of impaired circadian rhythm on health has been widely studied in shift workers and trans-meridian travelers. A part from its correlation with sleep and mood disorders, biological rhythm impairment is a recognized risk factor for cardiovascular diseases and breast cancer.Preeclampsia is a major public health issue, associated with a significant maternal and fetal morbidity and mortality worldwide. While the risks factors for this condition such as obesity, diabetes, pre-existing hypertension have been identified, the underlying mechanism of this multi-factorial disease is yet not fully understood.The disruption of the light/dark cycle in pregnancy has been associated with adverse outcomes. Slightly increased risk for small for gestational age babies, low birth weight babies and preterm deliveries has been reported in shift working women. Whether altered circadian cycle represents a risk factor for preeclampsia or preeclampsia is itself linked with an abnormal circadian cycle is less clear. There are only few reports available, showing conflicting results. In this review, we will discuss recent observations concerning circadian pattern of blood pressure in normotensive and hypertensive pregnancies. We explore the hypothesis that circadian misalignments may represent a risk factor for preeclampsia. Unraveling potential link between circadian clock gene and preeclampsia could offer a novel approach to our understanding of this multi-system disease specific to pregnancy.

  16. Catfish Biology and Farming. (United States)

    Dunham, Rex A; Elaswad, Ahmed


    This article summarizes the biology and culture of ictalurid catfish, an important commercial, aquaculture, and sport fish family in the United States. The history of the propagation as well as spawning of common catfish species in this family is reviewed, with special emphasis on channel catfish and its hybridization with blue catfish. The importance of the channel catfish female × blue catfish male hybrid, including current and future methods of hybrid catfish production, and the potential role it plays in the recovery of the US catfish industry are discussed. Recent advances in catfish culture elements, including environment, management, nutrition, feeding, disease control, culture systems, genetic improvement programs, transgenics, and the application of genome-based approaches in catfish production and welfare, are reviewed. The current status, needs, and future projections are discussed, as well as genetically modified organism developments that are changing the futur Expected final online publication date for the Annual Review of Animal Biosciences Volume 6 is February 15, 2018. Please see for revised estimates.

  17. Fungal Tests (United States)

    ... Prep Fungal Smear, Culture, Antigen and Antibody Tests Mycology Tests Fungal Molecular Tests Potassium Hydroxide Preparation Calcofluor ... February 7, Modified). Calcofluor White with 10% KOH. Mycology Online [On-line information]. Available online at http:// ...

  18. Laboratory Tests (United States)

    ... age and race What you eat and drink Medicines you take How well you followed pre-test instructions Your doctor may also compare your results to results from previous tests. Laboratory tests are often part of a routine checkup ...

  19. Malnutrition Tests (United States)

    ... LDL-P) Lead Legionella Testing Leptin Levetiracetam Lipase Lipid Profile Lipoprotein (a) Lithium Liver Panel Lp-PLA2 Lupus ... Site Tests: Albumin , CBC , CMP , Electrolytes , Iron Tests , Lipid Profile , Urinalysis , Prealbumin , Vitamin D , Vitamin B12 and Folate , ...

  20. Genetic Testing (United States)

    ... is responding to gluten. Unlike antibody testing, the HLA gene testing for celiac disease measures the presence or ... found on the surface of some cells. The HLA gene test for celiac disease can be performed at ...