WorldWideScience

Sample records for test vibration measurements

  1. Testing of Tools for Measurement Vibration in Car

    Directory of Open Access Journals (Sweden)

    Martin JURÁNEK

    2009-06-01

    Full Text Available This work is specialized on testing of several sensors for measurement vibration, that be applicable for measurement on vehicles also behind running. These sensors are connected to PC and universal mobile measuring system cRIO (National Instruments with analog I/O module for measurement vibration, that is described in diploma work: [JURÁNEK 2008]. This system has upped mechanical and heat imunity, small proportions and is therefore acceptable also measurement behind ride vehicles. It compose from two head parts. First is measuring part, composite from instruments cRIO. First part is controlled and monitored by PDA there is connected of wireless (second part hereof system. To system cRIO is possible connect sensors by four BNC connector or after small software change is possible add sensor to other analog modul cRIO. Here will be test several different types of accelerometers (USB sensor company Phidgets, MEMS sensor company Freescale, piezoresistiv and Delta Tron accelerometers company Brüel&Kjær. These sensors is attach to stiff board, board is attach to vibrator and excite by proper signal. Testing will realized with reference to using for measurement in cars. Results will be compared with professional signal analyser LabShop pulse from company Brüel&Kjær.

  2. A Procedure for Accurately Measuring the Shaker Overturning Moment During Random Vibration Tests

    Science.gov (United States)

    Nayeri, Reza D.

    2011-01-01

    Motivation: For large system level random vibration tests, there may be some concerns about the shaker's capability for the overturning moment. It is the test conductor's responsibility to predict and monitor the overturning moment during random vibration tests. If the predicted moment is close to the shaker's capability, test conductor must measure the instantaneous moment at low levels and extrapolate to higher levels. That data will be used to decide whether it is safe to proceed to the next test level. Challenge: Kistler analog formulation for computing the real-time moment is only applicable to very limited cases in which we have 3 or 4 load cells installed at shaker interface with hardware. Approach: To overcome that limitation, a simple procedure was developed for computing the overturning moment time histories using the measured time histories of the individual load cells.

  3. Measurement of Dynamic Viscoelasticity of Full-Size Wood Composite Panels Using a Vibration Testing Method

    Science.gov (United States)

    Cheng Guan; Houjiang Zhang; John F. Hunt; Lujing Zhou; Dan Feng

    2016-01-01

    The dynamic viscoelasticity of full-size wood composite panels (WCPs) under the free-free vibrational state were determined by a vibration testing method. Vibration detection tests were performed on 194 pieces of three types of full-size WCPs (particleboard, medium density fiberboard, and plywood (PW)). The dynamic viscoelasticity from smaller specimens cut from the...

  4. Improved orthogonality check for measured modes. [from ground vibration testing of structures

    Science.gov (United States)

    Berman, A.

    1980-01-01

    A method is proposed for performing an orthogonality check for normal modes derived from ground vibration testing. The method utilizes partitioned mass and stiffness matrices for a linear undamped representation of a structure. The normalization of the modes by the proposed method inherently includes the effects of significant displacements which were not measured; and the method may allow the use of fewer measurement points than would be necessary with the conventional method.

  5. Blade Vibration Measurement System

    Science.gov (United States)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  6. 49 CFR 178.819 - Vibration test.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.819 Section 178.819... Testing of IBCs § 178.819 Vibration test. (a) General. The vibration test must be conducted for the... vibration test. (b) Test method. (1) A sample IBC, selected at random, must be filled and closed as for...

  7. 14 CFR 33.83 - Vibration test.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.83 Section 33.83... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine must undergo vibration surveys to establish that the vibration characteristics of those components that...

  8. 14 CFR 33.43 - Vibration test.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.43 Section 33.43... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.43 Vibration test. (a) Each engine must undergo a vibration survey to establish the torsional and bending vibration characteristics...

  9. Sound insulation and vibration tests for lightweight steel framing floors

    OpenAIRE

    Shi, Wanqing; Edfast, Fredrik; Ågren, Anders

    2000-01-01

    An experimental study of sound insulation and vibrations of lightweight steel framing floors due to different floor construction set up were performed. Floors with 3m, 5m and 7.2m span were tested. The impact and airborne sound insulation for 3m span floor were measured based on ISO 140 in lab condition. Vibration tests were carried out on all three different spans. The vibration transmission loss of the structure was determined from the surface vibration measurements. The fundamental natural...

  10. 49 CFR 178.985 - Vibration test.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.985 Section 178.985... Testing of Large Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A...

  11. Mechanical Vibrations Modeling and Measurement

    CERN Document Server

    Schmitz, Tony L

    2012-01-01

    Mechanical Vibrations:Modeling and Measurement describes essential concepts in vibration analysis of mechanical systems. It incorporates the required mathematics, experimental techniques, fundamentals of modal analysis, and beam theory into a unified framework that is written to be accessible to undergraduate students,researchers, and practicing engineers. To unify the various concepts, a single experimental platform is used throughout the text to provide experimental data and evaluation. Engineering drawings for the platform are included in an appendix. Additionally, MATLAB programming solutions are integrated into the content throughout the text. This book also: Discusses model development using frequency response function measurements Presents a clear connection between continuous beam models and finite degree of freedom models Includes MATLAB code to support numerical examples that are integrated into the text narrative Uses mathematics to support vibrations theory and emphasizes the practical significanc...

  12. Bevel Gearbox Fault Diagnosis using Vibration Measurements

    Directory of Open Access Journals (Sweden)

    Hartono Dennis

    2016-01-01

    Full Text Available The use of vibration measurementanalysis has been proven to be effective for gearbox fault diagnosis. However, the complexity of vibration signals observed from a gearbox makes it difficult to accurately detectfaults in the gearbox. This work is based on a comparative studyof several time-frequency signal processing methods that can be used to extract information from transient vibration signals containing useful diagnostic information. Experiments were performed on a bevel gearbox test rig using vibration measurements obtained from accelerometers. Initially, thediscrete wavelet transform was implementedfor vibration signal analysis to extract the frequency content of signal from the relevant frequency region. Several time-frequency signal processing methods werethen incorporated to extract the fault features of vibration signals and their diagnostic performances were compared. It was shown thatthe Short Time Fourier Transform (STFT could not offer a good time resolution to detect the periodicity of the faulty gear tooth due the difficulty in choosing an appropriate window length to capture the impulse signal. The Continuous Wavelet Transform (CWT, on the other hand, was suitable to detection of vibration transients generated by localized fault from a gearbox due to its multi-scale property. However, both methods still require a thorough visual inspection. In contrast, it was shown from the experiments that the diagnostic method using the Cepstrumanalysis could provide a direct indication of the faulty tooth without the need of a thorough visual inspection as required by CWT and STFT.

  13. An Evaluation of Test and Physical Uncertainty of Measuring Vibration in Wooden Junctions

    DEFF Research Database (Denmark)

    Dickow, Kristoffer Ahrens; Kirkegaard, Poul Henning; Andersen, Lars Vabbersgaard

    2012-01-01

    In the present paper a study of test and material uncertainty in modal analysis of certain wooden junctions is presented. The main structure considered here is a T-junction made from a particleboard plate connected to a spruce beam of rectangular cross section. The size of the plate is 1.2 m by 0...

  14. 33 CFR 159.103 - Vibration test.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vibration test. 159.103 Section...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.103 Vibration test. The device... subjected to a sinusoidal vibration for a period of 12 hours, 4 hours in each of the x, y, and z planes, at...

  15. Ground Vibration Measurements at LHC Point 4

    Energy Technology Data Exchange (ETDEWEB)

    Bertsche, Kirk; /SLAC; Gaddi, Andrea; /CERN

    2012-09-17

    Ground vibration was measured at Large Hadron Collider (LHC) Point 4 during the winter shutdown in February 2012. This report contains the results, including power and coherence spectra. We plan to collect and analyze vibration data from representative collider halls to inform specifications for future linear colliders, such as ILC and CLIC. We are especially interested in vibration correlations between final focus lens locations.

  16. Camera vibration measurement using blinking light-emitting diode array.

    Science.gov (United States)

    Nishi, Kazuki; Matsuda, Yuichi

    2017-01-23

    We present a new method for measuring camera vibrations such as camera shake and shutter shock. This method successfully detects the vibration trajectory and transient waveforms from the camera image itself. We employ a time-varying pattern as the camera test chart over the conventional static pattern. This pattern is implemented using a specially developed blinking light-emitting-diode array. We describe the theoretical framework and pattern analysis of the camera image for measuring camera vibrations. Our verification experiments show that our method has a detection accuracy and sensitivity of 0.1 pixels, and is robust against image distortion. Measurement results of camera vibrations in commercial cameras are also demonstrated.

  17. Benefits of Spacecraft Level Vibration Testing

    Science.gov (United States)

    Gordon, Scott; Kern, Dennis L.

    2015-01-01

    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  18. Ambient Vibration Test on Reinforced Concrete Bridges

    Directory of Open Access Journals (Sweden)

    Idris Nurul Shazwin

    2016-01-01

    Full Text Available An investigation was carried out to determine dynamic characteristic of reinforced concrete (RC bridges by using ambient vibration test (AVT. The ambient vibration sources on bridges may come from traffic, wind, wave motion and seismic events. AVT describes the dynamic characteristics of the bridge and ground by measuring the natural frequencies using highly sensitive seismometer sensor. This test is beneficial due to light weight equipment and smaller number of operator required, cheap and easy to be handled. It is able to give a true picture of the bridge dynamic behavior without any artificial force excitation when vibration data is recorded. A three-span reinforced concrete bridge located in Sri Medan, Batu Pahat, Johor was measured by using microtremor equipment consist of three units of 1 Hz eigenfrequency passive sensors used in this test was performed in normal operating condition without excitation required from any active sources or short period noise perturbations. Ten measurements were conducted on the bridge deck and ten measurements on the ground surface in order to identify the natural frequencies of the bridge. Several peak frequencies were identified from three components of Fourier Amplitude Spectra (FAS in transverse (North-South, longitudinal (East-West and vertical (Up-Down direction as well as squared average Horizontal to Vertical Spectral Ratio (HVSR of ground response, computed by using Geopsy software. From the result, it was expected the bridge have five vibration modes frequencies in the range of 1.0 Hz and 7.0 Hz with the first two modes in the transverse and longitudinal direction having a frequency 1.0 Hz, the third mode is 2.2 Hz in transverse direction, fourth and fifth mode is 5.8 Hz and 7.0 Hz. For ground natural frequencies are in range 1.0 Hz to 1.3 Hz for North-South direction and 1.0 Hz to 1.6 Hz for East-West direction. Finally the results are compared with several empirical formulas for simple

  19. High force vibration testing with wide frequency range

    Science.gov (United States)

    Romero, Edward F.; Jepsen, Richard A.; Gregory, Danny Lynn

    2013-04-02

    A shaker assembly for vibration testing includes first and second shakers, where the first shaker includes a piezo-electric material for generating vibration. A support structure permits a test object to be supported for vibration of the test object by both shakers. An input permits an external vibration controller to control vibration of the shakers.

  20. Modeling Displacement Measurement using Vibration Transducers

    Directory of Open Access Journals (Sweden)

    AGOSTON Katalin

    2014-05-01

    Full Text Available This paper presents some aspects regarding to small displacement measurement using vibration transducers. Mechanical faults, usages, slackness’s, cause different noises and vibrations with different amplitude and frequency against the normal sound and movement of the equipment. The vibration transducers, accelerometers and microphone are used for noise and/or sound and vibration detection with fault detection purpose. The output signal of the vibration transducers or accelerometers is an acceleration signal and can be converted to either velocity or displacement, depending on the preferred measurement parameter. Displacement characteristics are used to indicate when the machine condition has changed. There are many problems using accelerometers to measure position or displacement. It is important to determine displacement over time. To determinate the movement from acceleration a double integration is needed. A transfer function and Simulink model was determinate for accelerometers with capacitive sensing element. Using these models the displacement was reproduced by low frequency input.

  1. Blade Vibration Measurement System for Unducted Fans

    Science.gov (United States)

    Marscher, William

    2014-01-01

    With propulsion research programs focused on new levels of efficiency and noise reduction, two avenues for advanced gas turbine technology are emerging: the geared turbofan and ultrahigh bypass ratio fan engines. Both of these candidates are being pursued as collaborative research projects between NASA and the engine manufacturers. The high bypass concept from GE Aviation is an unducted fan that features a bypass ratio of over 30 along with the accompanying benefits in fuel efficiency. This project improved the test and measurement capabilities of the unducted fan blade dynamic response. In the course of this project, Mechanical Solutions, Inc. (MSI) collaborated with GE Aviation to (1) define the requirements for fan blade measurements; (2) leverage MSI's radar-based system for compressor and turbine blade monitoring; and (3) develop, validate, and deliver a noncontacting blade vibration measurement system for unducted fans.

  2. Low cost subpixel method for vibration measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, Belen [Department of Civil Engineering, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain); Espinosa, Julian; Perez, Jorge; Acevedo, Pablo; Mas, David [Inst. of Physics Applied to the Sciences and Technologies, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain); Roig, Ana B. [Department of Optics, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain)

    2014-05-27

    Traditional vibration measurement methods are based on devices that acquire local data by direct contact (accelerometers, GPS) or by laser beams (Doppler vibrometers). Our proposal uses video processing to obtain the vibration frequency directly from the scene, without the need of auxiliary targets or devices. Our video-vibrometer can obtain the vibration frequency at any point in the scene and can be implemented with low-cost devices, such as commercial cameras. Here we present the underlying theory and some experiments that support our technique.

  3. Precision measurements and test of molecular theory in highly-excited vibrational states of H$_2$ $(v=11)$

    CERN Document Server

    Trivikram, T Madhu; Wcisło, P; Ubachs, W; Salumbides, E J

    2016-01-01

    Accurate $EF{}^1\\Sigma^+_g-X{}^1\\Sigma^+_g$ transition energies in molecular hydrogen were determined for transitions originating from levels with highly-excited vibrational quantum number, $v=11$, in the ground electronic state. Doppler-free two-photon spectroscopy was applied on vibrationally excited H$_2^*$, produced via the photodissociation of H$_2$S, yielding transition frequencies with accuracies of $45$ MHz or $0.0015$ cm$^{-1}$. An important improvement is the enhanced detection efficiency by resonant excitation to autoionizing $7p\\pi$ electronic Rydberg states, resulting in narrow transitions due to reduced ac-Stark effects. Using known $EF$ level energies, the level energies of $X(v=11, J=1,3-5)$ states are derived with accuracies of typically 0.002 cm$^{-1}$. These experimental values are in excellent agreement with, and are more accurate than the results obtained from the most advanced ab initio molecular theory calculations including relativistic and QED contributions.

  4. Transient full-field vibration measurement using spectroscopical stereo photogrammetry.

    Science.gov (United States)

    Yue, Kaiduan; Li, Zhongke; Zhang, Ming; Chen, Shan

    2010-12-20

    Contrasted with other vibration measurement methods, a novel spectroscopical photogrammetric approach is proposed. Two colored light filters and a CCD color camera are used to achieve the function of two traditional cameras. Then a new calibration method is presented. It focuses on the vibrating object rather than the camera and has the advantage of more accuracy than traditional camera calibration. The test results have shown an accuracy of 0.02 mm.

  5. Peri-prosthetic fracture vibration testing

    Energy Technology Data Exchange (ETDEWEB)

    Cruce, Jesse R [Los Alamos National Laboratory; Erwin, Jenny R [Los Alamos National Laboratory; Remick, Kevin R [Los Alamos National Laboratory; Cornwell, Phillip J [Los Alamos National Laboratory; Menegini, R. Michael [INDIANA UNIV.; Racanelli, Joe [STRYKER ORTHOPARDICS

    2010-11-08

    The purpose of this study was to establish a test setup and vibration analysis method to predict femoral stem seating and prevent bone fracture using accelerometer and force response data from an instrumented stem and impactor. This study builds upon earlier studies to identify a means to supplement a surgeon's tactile and auditory senses by using damage identification techniques normally used for civil and mechanical structures. Testing was conducted using foam cortical shell sawbones prepared for stems of different geometries. Each stem was instrumented with an accelerometer. Two impactor designs were compared: a monolithic impactor and a two-piece impactor, each with an integrated load cell and accelerometer. Acceleration and force measurements were taken in the direction of impaction. Comparisons between different methods of applying an impacting force were made, including a drop tower and a surgical hammer. The effect of varying compliance on the data was also investigated. The ultimate goal of this study was to assist in the design of an integrated portable data acquisition system capable of being used in future cadaveric testing. This paper will discuss the experimental setup and the subsequent results of the comparisons made between impactors, prosthetic geometries, compliances, and impact methods. The results of this study can be used for both future replicate testing as well as in a cadaveric environment.

  6. Random vibration test of Mars Exploration Rover spacecraft

    Science.gov (United States)

    Scharton, T.; Lee, D.

    2003-01-01

    The primary objective of the random vibration test was to identify any hardware problems, which might compromise the mission. The test objectives, configuration, and requirements are briefly described in this presentation, and a representative sample of the measured data is presented.

  7. Vibration Measurements on the Frejlev Mast

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Hansen, Lars Pilegaard

    The present report presents full-scale measurements on the Frejlev-mast which is a 200 meter hight guyed steel mast located 10 km. from Aalborg. The goal of the research was to investigate various techniques which could be used to estimate cable forces from vibration measurements. The cables...

  8. Vibration-based testing of bolted joints

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel; Sah, Si Mohamed; Fidlin, Alexander

    2017-01-01

    In recent pilot studies we have started investigating how to possibly use measured flexural (i.e. transverse/bending) vibrations, induced by bolt-tapping, to estimate bolt tightness. Some of the vibration features we investigated showed strong correlation with bolt tightness. For example, the low...... to bolt tension, but also to slenderness ratio. Thus, if only the natural frequency feature were to be used for estimating bolt tension, accuracy will drop off for the short and thick bolts that are often used in critical joints....

  9. Optical Measurement of Cable and String Vibration

    Directory of Open Access Journals (Sweden)

    Y. Achkire

    1998-01-01

    Full Text Available This paper describes a non contacting measurement technique for the transverse vibration of small cables and strings using an analog position sensing detector. On the one hand, the sensor is used to monitor the cable vibrations of a small scale mock-up of a cable structure in order to validate the nonlinear cable dynamics model. On the other hand, the optical sensor is used to evaluate the performance of an active tendon control algorithm with guaranteed stability properties. It is demonstrated experimentally, that a force feedback control law based on a collocated force sensor measuring the tension in the cable is feasible and provides active damping in the cable.

  10. Metrology of vibration measurements by laser techniques

    Science.gov (United States)

    von Martens, Hans-Jürgen

    2008-06-01

    Metrology as the art of careful measurement has been understood as uniform methodology for measurements in natural sciences, covering methods for the consistent assessment of experimental data and a corpus of rules regulating application in technology and in trade and industry. The knowledge, methods and tools available for precision measurements can be exploited for measurements at any level of uncertainty in any field of science and technology. A metrological approach to the preparation, execution and evaluation (including expression of uncertainty) of measurements of translational and rotational motion quantities using laser interferometer methods and techniques will be presented. The realization and dissemination of the SI units of motion quantities (vibration and shock) have been based on laser interferometer methods specified in international documentary standards. New and upgraded ISO standards are reviewed with respect to their suitability for ensuring traceable vibration measurements and calibrations in an extended frequency range of 0.4 Hz to higher than 100 kHz. Using adequate vibration exciters to generate sufficient displacement or velocity amplitudes, the upper frequency limits of the laser interferometer methods specified in ISO 16063-11 for frequencies <= 10 kHz can be expanded to 100 kHz and beyond. A comparison of different methods simultaneously used for vibration measurements at 100 kHz will be demonstrated. A statistical analysis of numerous experimental results proves the highest accuracy achievable currently in vibration measurements by specific laser methods, techniques and procedures (i.e. measurement uncertainty 0.05 % at frequencies <= 10 kHz, <= 1 % up to 100 kHz).

  11. Experimental Research on Vibration Fatigue of CFRP and Its Influence Factors Based on Vibration Testing

    OpenAIRE

    Fan, Zhengwei; Jiang, Yu; Zhang, Shufeng; Chen, Xun

    2017-01-01

    A new research method based on vibration testing for the vibration fatigue of FRP was proposed in this paper. Through the testing on a closed-loop controlled vibration fatigue test system, the vibration fatigue phenomenon of typical carbon-fiber-reinforced plastic (CFRP) cantilevered laminate specimens was carefully studied. Moreover, a method based on the frequency response function was proposed to monitor the fatigue damage accumulation of specimens. On the basis of that, the influence fact...

  12. Damage Detection by Laser Vibration Measurement

    Directory of Open Access Journals (Sweden)

    Elena Daniela Birdeanu

    2008-10-01

    Full Text Available The technique based on the vibration analysis by scanning laser Doppler vibrometer is one of the most promising, allowing to extract also small defect and to directly correlate it to local dynamic stiffness and structural integrity. In fact, the measurement capabilities of vibrometers, such as sensitivity, accuracy and reduced intrusively, allow having a very powerful instrument in diagnostic.

  13. Simple shearing interferometer suitable for vibration measurements

    Science.gov (United States)

    Mihaylova, Emilia M.; Whelan, Maurice P.; Toal, Vincent

    2004-06-01

    Recently there has been an increasing interest in the application of shearography for modal analysis of vibrating objects. New interferometric systems, which are simple and flexible are of interest for engineering and industrial applications. An electronic speckle pattern shearing interferometer (ESPSI) with a very simple shearing device is used for study of vibrations. The shearing device consists of two partially reflective glass plates. The reflection coefficients of the coatings are 0.3 and 0.7 respectively. The distance between the two glass plates controls the size of the shear. The versatility of this simple shearing interferometer is shown. It is demonstrated that the ESPSI system can be used for vibration measurements and phase-shifting implemented for fringe analysis. The results obtained are promising for future applications of the system for modal analysis.

  14. A Novel Vibration Mode Testing Method for Cylindrical Resonators Based on Microphones

    Directory of Open Access Journals (Sweden)

    Yongmeng Zhang

    2015-01-01

    Full Text Available Non-contact testing is an important method for the study of the vibrating characteristic of cylindrical resonators. For the vibratory cylinder gyroscope excited by piezo-electric electrodes, mode testing of the cylindrical resonator is difficult. In this paper, a novel vibration testing method for cylindrical resonators is proposed. This method uses a MEMS microphone, which has the characteristics of small size and accurate directivity, to measure the vibration of the cylindrical resonator. A testing system was established, then the system was used to measure the vibration mode of the resonator. The experimental results show that the orientation resolution of the node of the vibration mode is better than 0.1°. This method also has the advantages of low cost and easy operation. It can be used in vibration testing and provide accurate results, which is important for the study of the vibration mode and thermal stability of vibratory cylindrical gyroscopes.

  15. The Shock Vibration Bulletin. Part 3. Isolation and Damping, Vibration Test Criteria, and Vibration Analysis and Test

    Science.gov (United States)

    1987-01-01

    fatigae equivalent test time of 45-mimates. 1. BACKGROUND subjected to both vibration and loose cargo testing as well an the type and amount of...Environmental Test the track laying environment. Nethods, 10 March 1975. 8. FUTURE EFFORTS 11. Soci, Darrell F., Fatigae Life Estimation Techniques, Technical

  16. Measurement of rabbit eardrum vibration through stroboscopic digital holography

    Science.gov (United States)

    De Greef, Daniël; Dirckx, Joris J. J.

    2014-05-01

    on the quality. Results of a repeatability test will be presented as well. Since the method measures the membrane motion as a function of time in small time steps, we do not only measure vibration amplitude like in time-average holography, but we can also measure non-linear elastic and transient behaviour. In conclusion, the combination of good spatial, depth and time resolution with the fast data acquisition and very wide frequency range make our technique applicable in a number of fields, including biological tissue vibrations.

  17. Measurement of rabbit eardrum vibration through stroboscopic digital holography

    Energy Technology Data Exchange (ETDEWEB)

    De Greef, Daniël; Dirckx, Joris J. J. [University of Antwerp, Laboratory of BioMedical Physics, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2014-05-27

    compromising on the quality. Results of a repeatability test will be presented as well. Since the method measures the membrane motion as a function of time in small time steps, we do not only measure vibration amplitude like in time-average holography, but we can also measure non-linear elastic and transient behaviour. In conclusion, the combination of good spatial, depth and time resolution with the fast data acquisition and very wide frequency range make our technique applicable in a number of fields, including biological tissue vibrations.

  18. Hand vibration: non-contact measurement of local transmissibility.

    Science.gov (United States)

    Scalise, Lorenzo; Rossetti, Francesco; Paone, Nicola

    2007-10-01

    Grip and push forces required for the use of vibrating tools are considered important influencing inputs for the assessment of hand-vibration transmissibility (TR). At present TR measurements are usually referred to the palm of the hand The aims of the present paper are: to present an original measurement procedure for non-contact assessment of the transmissibility of fingers; to report TR data measured on six points of the hand of nine subjects; to correlate TR with: grip, push, hand volume and BMI. Tests have been carried out using a cylindrical handle mounted on an shaker. A laser Doppler vibrometer is used to measure the vibration velocity. Push force is measured using a force platform, whereas grip force is measured using a capacitive pressure sensor matrix wrapped around the handle. Tests have been conducted on nine healthy subjects. Proximal and distal regions of the second, fourth and fifth fingers have been investigated. Tests were carried out using a push force of: 25, 50 and 75 N. The excitation signal was a broadband random vibration in the band 16-400 Hz with un-weighted rms acceleration level of 6 m/s(2). Results show how in general TR values measured on distal points are higher respect to the proximal points. A resonance peak is present for all the measured points in the band 55-80 Hz. ANOVA analysis showed that TR is not significantly dependent on: BMI, hand volume and push force alone. While TR is significantly dependent on: grip force alone, measurement positions and grip and push force together. The proposed procedure shows the advantage to allow local vibration measurement directly on the fingers without the necessity to apply any contact sensor. Results demonstrate how the transmissibility is significantly different on the point where the acceleration is measured.

  19. Emitted vibration measurement device and method

    Science.gov (United States)

    Gisler, G. L.

    1986-10-01

    This invention is directed to a method and apparatus for measuring emitted vibrational forces produced by a reaction wheel assembly due to imbalances, misalignment, bearing defects and the like. The apparatus includes a low mass carriage supported on a large mass base. The carriage is in the form of an octagonal frame having an opening which is adapted for receiving the reaction wheel assembly supported thereon by means of a mounting ring. The carriage is supported on the base by means of air bearings which support the carriage in a generally frictionless manner when supplied with compressed air from a source. A plurality of carriage brackets and a plurality of base blocks provided for physical coupling of the base and carriage. The sensing axes of the load cells are arranged generally parallel to the base and connected between the base and carriage such that all of the vibrational forces emitted by the reaction wheel assembly are effectively transmitted through the sensing axes of the load cells. In this manner, a highly reliable and accurate measurment of the vibrational forces of the reaction wheel assembly can be had. The output signals from the load cells are subjected to a dynamical analyzer which analyzes and identifies the rotor and spin bearing components which are causing the vibrational forces.

  20. Novel Applications of Laser Doppler Vibration Measurements to Medical Imaging

    Science.gov (United States)

    Tabatabai, Habib; Oliver, David E.; Rohrbaugh, John W.; Papadopoulos, Christopher

    2013-06-01

    Laser Doppler Vibrometry (LDV) has been widely used in engineering applications involving non-contact vibration and sound measurements. This technique has also been used in some biomedical applications including hearing research. The detectable frequencies are in the range of near-DC to 1 GHz or higher. This paper reviews applications of LDV in biomedical engineering and proposes new medical imaging applications based on measuring surface vibrations of tissues and organs. Tests were conducted on human skin using single point and scanning laser vibrometers. These tests suggest that skin vibrations due to the forcing excitation from the heart can be used in imaging of blood flow. The results of these tests illustrate the potential of such vibration measurements in a variety of diagnostic medical imaging applications including blood flow/restrictions, real-time monitoring of blood pressure variations, wound healing, muscle movements, etc. The fact that the measurements can be conducted remotely (non-contact) is an important benefit that adds to the promise of this approach.

  1. 46 CFR 162.050-37 - Vibration test.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Vibration test. 162.050-37 Section 162.050-37 Shipping...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Pollution Prevention Equipment § 162.050-37 Vibration test. (a... and each control of a separator must be subjected to continuous sinusoidal vibration in each of the...

  2. Induced Current Measurement of Rod Vibrations

    Science.gov (United States)

    Sawicki, Charles A.

    2003-01-01

    The longitudinal normal modes of vibration of rods are similar to the modes seen in pipes open at both ends. A maximum of particle displacement exists at both ends and an integral number (n) of half wavelengths fit into the rod length. The frequencies fn of the normal modes is given by Eq. (1), where L is the rod length and V is the wave velocity: fn = nV/2L. Many methods have been used to measure the velocity of these waves. The Kundt's tube method commonly used in student labs will not be discussed here. A simpler related method has been described by Nicklin.2 Kluk3 measured velocities in a wide range of materials using a frequency counter and microphone to study sounds produced by impacts. Several earlier methods4,5 used phonograph cartridges complete with needles to detect vibrations in excited rods. A recent interesting experiment6 used wave-induced changes in magnetization produced in an iron rod by striking one end. The travel time, measured as the impulsive wave reflects back and forth, gave the wave velocity for the iron rod. In the method described here, a small magnet is attached to the rod with epoxy, and vibrations are detected using the current induced in a few loops of wire. The experiment is simple and yields very accurate velocity values.

  3. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    Science.gov (United States)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  4. An equipment test for grading lumber by transverse vibration technique

    Directory of Open Access Journals (Sweden)

    Marcelo Rodrigo Carreira

    2008-08-01

    Full Text Available Due to the great variability of its mechanical properties, the rational use of lumber for structural purposes is directly conditioned to its grading. There are several techniques available for grading structural lumber. The most relevant one is the transverse vibration technique which obtained reliable results in non-destructive evaluation of lumber. The purpose of this work is to present the bases for the mechanical grading of lumber and the results of the calibration test of the frst transverse vibration equipment developed in Brazil. In this research 30 beams of cupiúba (Goupia glabra with nominal dimensions of 5 cm X 10 cm X 300 cm, were used. The tests were accomplished at the Wood and Timber Structures Laboratory (LaMEM of the University of São Paulo (USP. The results showed a strong correlation between the elasticity modulus measured by the static bending test and the one obtained with the transverse vibration equipment, showing the high reliability of the vibration method for the grading of structural lumber. A determination coeffcient (R² of 0.896 was obtained with the Brazilian equipment, showing that it can be used in the grading of lumber.

  5. Virtual Shaker Testing: Simulation Technology Improves Vibration Test Performance

    Science.gov (United States)

    Ricci, Stefano; Peeters, Bart; Fetter, Rebecca; Boland, Doug; Debille, Jan

    2008-01-01

    In the field of vibration testing, the interaction between the structure being tested and the instrumentation hardware used to perform the test is a critical issue. This is particularly true when testing massive structures (e.g. satellites), because due to physical design and manufacturing limits, the dynamics of the testing facility often couples with the test specimen one in the frequency range of interest. A further issue in this field is the standard use of a closed loop real-time vibration control scheme, which could potentially shift poles and change damping of the aforementioned coupled system. Virtual shaker testing is a novel approach to deal with these issues. It means performing a simulation which closely represents the real vibration test on the specific facility by taking into account all parameters which might impact the dynamic behavior of the specimen. In this paper, such a virtual shaker testing approach is developed. It consists of the following components: (1) Either a physical-based or an equation-based coupled electro-mechanical lumped parameter shaker model is created. The model parameters are obtained from manufacturer's specifications or by carrying out some dedicated experiments; (2) Existing real-time vibration control algorithm are ported to the virtual simulation environment; and (3) A structural model of the test object is created and after defining proper interface conditions structural modes are computed by means of the well-established Craig-Bampton CMS technique. At this stage, a virtual shaker test has been run, by coupling the three described models (shaker, control loop, structure) in a co-simulation routine. Numerical results have eventually been correlated with experimental ones in order to assess the robustness of the proposed methodology.

  6. Vibration measurements on the Phalanx electro-optical stabilization system

    OpenAIRE

    Schmidt, James E.

    1996-01-01

    Approved for public release; distribution is unlimited The installation of the new PHALANX Surface Mode (PSUM) upgrade will enable the PHALANX to handle a wider range of threats, such as a small boat approaching the ship. The objective of the research described in this thesis was to measure the vibration of a prototype forward looking infrared (FLIR) camera stabilizer system during live-fire tests to evaluate its performance. Uniaxial, triaxial, and angular accelerometers were mounted at 1...

  7. Vibration measurements on timber frame floors

    NARCIS (Netherlands)

    Kuilen, J.W.G. van de; Oosterhout, G.P.C. van; Donkervoort, R.

    1998-01-01

    In the design of lightweight floors vibrational aspects become more and more important. With the foreseen introduction of Eurocode 5 the vibration of timber floors becomes a part of the design for serviceability. Design rules for the vibrational behaviour are given in Eurocode 5. The first rule is

  8. Online vibration-based crack detection during fatigue testing

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, B.; Vecchio, A.; Auweraer, H. van der [LMS International, Heverlee (Belgium); Mevel, L. [INRIA, Rennes (France); Vanlanduit, S.; Guillaume, P. [Dept. of Mechanical Engineering, VUB, Brussels (Belgium); Goursat, M. [Rocquencourt, INRIA, Le Chesnay (France)

    2003-07-01

    When performing fatigue tests, it is essential to monitor the degradation of the structure with an increasing number of fatigue cycles. In this article, a vibration-based damage detection method will be proposed. Such a method has the advantage that it operates online with the fatigue test. Especially for structures with very high fatigue strength, it is important that the test does not have to be interrupted. The damage detection method that will be used is based on a residual generated from a stochastic subspace identification method. The basic idea is that a model for the undamaged structure is identified and that, afterwards, vibration measurements from a possibly damaged structure are confronted with this model. A statistical local approach hypothesis testing is used to assess the deviation of the new data from the nominal model. After introducing the damage detection method, its performance will be illustrated on data from a fatigue experiment. The method will be compared to other linear and non-linear vibration-based damage detection methods. (orig.)

  9. The Influence of Acceleration on the Efficiency of Sand Compaction Tests Conducted on a Vibrating Table

    Science.gov (United States)

    Szajna, Waldemar St.

    2017-03-01

    The paper presents a standard vibrating table for fresh concrete testing adopted for determination of maximum dry density (ρdmax) of sand. Vibration is an efficient method for coarse soil compaction therefore vibrating tables are useful for ρdmax determination. Acceleration that the soil is subject to is one of the basic parameters of efficient compaction. A vibrating table with inertial excitation was supplemented by a frequency converter and subjected to dynamic tests. The results of measurements of dynamic parameters are included. The paper presents problems connected with this method and describes the relationship between efficiency of compaction and accelerations which the soil is subjected to.

  10. Modal vibration testing of the DVA-1 radio telescope

    Science.gov (United States)

    Byrnes, Peter W. G.; Lacy, Gordon

    2016-07-01

    The Dish Verification Antenna 1 (DVA-1) is a 15m aperture offset Gregorian radio telescope featuring a rim-supported single piece molded composite primary reflector on an altitude-azimuth pedestal mount. Vibration measurements of the DVA-1 telescope were conducted over three days in October 2014 by NSI Herzberg engineers. The purpose of these tests was to measure the first several natural frequencies of the DVA-1 telescope. This paper describes the experimental approach, in particular the step-release method, and summarizes some interesting results, including unexpectedly high damping of the first mode over a narrow range of zenith angles.

  11. Measuring Spatial Vibration Using Continuous Laser Scanning

    Directory of Open Access Journals (Sweden)

    Izhak Bucher

    2000-01-01

    Full Text Available This paper presents a method, which allows one to use a single point laser vibrometer as a continuous sensor measuring along a line or a 2D surface. The mathematical background of the curve-fitting procedure and the necessary signal processing allowing one to extract the amplitude of sinusoidal vibration are discussed. In the current work, use has been made with an ordinary laser interferometer equipped with glavanometer-based x, y mirros. This system is not designed for continuous scanning therefore some effort needs to be spent in order to overcome the dynamical characteristics of this system. The potential of such an instrument, as demonstrated in this work, may encourage the development of mechanically better scanning devices.

  12. Damping Estimation Using Free Decays and Ambient Vibration Tests

    DEFF Research Database (Denmark)

    Magalhães, Filipe; Brincker, Rune; Cunha, Álvaro

    2007-01-01

    The accurate identification of modal damping ratios of Civil Engineering structures is a subject of major importance, as the amplitude of structural vibrations in resonance is inversely proportional to these coefficients. Their experimental identification can be performed either from ambient...... vibration or from free vibration tests. In the last case, the structural response after application of an impulse or after the application of harmonic loads can be used. Ambient vibration tests have the strong advantage of being more practical and economical. However, recent applications of both approaches...

  13. High-speed optical measurement for the drumhead vibration

    Science.gov (United States)

    Zhang, Qican; Su, Xianyu

    2005-04-01

    In this paper, a high-speed optical measurement for the vibrating drumhead is presented and verified by experiment. A projected sinusoidal fringe pattern on the measured drumhead is dynamically deformed with the vibration of the membrane and grabbed by a high-speed camera. The shape deformation of the drumhead at each sampling instant can be recovered from this sequence of obtained fringe patterns. The vibration of the membrane of a Chinese drum has been measured with a high speed sampling rate (1,000 fps) and a standard deviation (0.075 mm). The restored vibration of the drumhead is also presented in an animation.

  14. Inspection for kissing bonds in composite materials using vibration measurements

    Science.gov (United States)

    Adams, Douglas E.; Sharp, Nathan D.; Myrent, Noah; Sterkenburg, Ronald

    2011-04-01

    Improper bonding of composite structures can result in close contact cracks under compressive stresses, called kissing bonds. These bond defects are very difficult to detect using conventional inspection techniques such as tap testing or local ultrasonic scanning and can lead to local propagation of damage if the structure is subjected to crack opening stresses. A method is investigated for identifying kissing bonds in composite material repairs based on vibration measurements. A damage feature of the kissing bond is extracted from the response of the input-output measurement that is a function of the structural path. This path exhibits local decoupling associated with the close contact cracks. Experimental vibration measurements from sandwich composite materials are presented along with the results of the damage detection algorithm for the healthy sections of the material and the kissing bond sections. A vibration based inspection technique could increase the ability to detect kissing bonds in composite material repairs while decreasing inspection time. Benefits of this method of identification over conventional techniques include its robust, objective damage detection methodology and the reduced requirement for specimen preparation and surface texture when compared to ultrasonic scanning.

  15. Customized DSP-based vibration measurement for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    LaWhite, N.E.; Cohn, K.E. [Second Wind Inc., Somerville, MA (United States)

    1996-12-31

    As part of its Advanced Distributed Monitoring System (ADMS) project funded by NREL, Second Wind Inc. is developing a new vibration measurement system for use with wind turbines. The system uses low-cost accelerometers originally designed for automobile airbag crash-detection coupled with new software executed on a Digital Signal Processor (DSP) device. The system is envisioned as a means to monitor the mechanical {open_quotes}health{close_quotes} of the wind turbine over its lifetime. In addition the system holds promise as a customized emergency vibration detector. The two goals are very different and it is expected that different software programs will be executed for each function. While a fast Fourier transform (FFT) signature under given operating conditions can yield much information regarding turbine condition, the sampling period and processing requirements make it inappropriate for emergency condition monitoring. This paper briefly reviews the development of prototype DSP and accelerometer hardware. More importantly, it reviews our work to design prototype vibration alarm filters. Two-axis accelerometer test data from the experimental FloWind vertical axis wind turbine is analyzed and used as a development guide. Two levels of signal processing are considered. The first uses narrow band pre-processing filters at key fundamental frequencies such as the 1P, 2P and 3P. The total vibration energy in each frequency band is calculated and evaluated as a possible alarm trigger. In the second level of signal processing, the total vibration energy in each frequency band is further decomposed using the two-axis directional information. Directional statistics are calculated to differentiate between linear translations and circular translations. After analyzing the acceleration statistics for normal and unusual operating conditions, the acceleration processing system described could be used in automatic early detection of fault conditions. 9 figs.

  16. Vibration transfers to measure the performance of vibration isolated platforms on site using background noise excitation

    NARCIS (Netherlands)

    Segerink, Franciscus B.; Korterik, Jeroen P.; Offerhaus, Herman L.

    2011-01-01

    This article demonstrates a quick and easy way of quantifying the performance of a vibration-isolated platform. We measure the vibration transfer from floor to table using background noise excitation from the floor. As no excitation device is needed, our setup only requires two identical sensors (in

  17. Test Operations Procedure (TOP) 01-2-603 Rotorcraft Laboratory Vibration Test Schedules

    Science.gov (United States)

    2017-06-12

    Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Test Operations Procedure (TOP) 01-2-603 Rotorcraft Laboratory Vibration Test Schedules...This TOP provides Laboratory Vibration Test Schedules (LVTS) for selected rotary wing aircraft. The LVTS presented in this TOP were developed from... vibration environment of a given rotary wing platform in a laboratory setting. 15. SUBJECT TERMS Laboratory Vibration Test Schedule (LVTS

  18. Topographic analysis of the skull vibration-induced nystagmus test with piezoelectric accelerometers and force sensors.

    Science.gov (United States)

    Dumas, Georges; Lion, Alexis; Perrin, Philippe; Ouedraogo, Evariste; Schmerber, Sébastien

    2016-03-23

    Vibration-induced nystagmus is elicited by skull or posterior cervical muscle stimulations in patients with vestibular diseases. Skull vibrations delivered by the skull vibration-induced nystagmus test are known to stimulate the inner ear structures directly. This study aimed to measure the vibration transfer at different cranium locations and posterior cervical regions to contribute toward stimulus topographic optimization (experiment 1) and to determine the force applied on the skull with a hand-held vibrator to study the test reproducibility and provide recommendations for good clinical practices (experiment 2). In experiment 1, a 100 Hz hand-held vibrator was applied on the skull (vertex, mastoids) and posterior cervical muscles in 11 healthy participants. Vibration transfer was measured by piezoelectric sensors. In experiment 2, the vibrator was applied 30 times by two experimenters with dominant and nondominant hands on a mannequin equipped to measure the force. Experiment 1 showed that after unilateral mastoid vibratory stimulation, the signal transfer was higher when recorded on the contralateral mastoid than on the vertex or posterior cervical muscles (Pvibration transfer was measured on vertex and posterior cervical muscles. Experiment 2 showed that the force applied to the mannequin varied according to the experimenters and the handedness, higher forces being observed with the most experienced experimenter and with the dominant hand (10.3 ± 1.0 and 7.8 ± 2.9 N, respectively). The variation ranged from 9.8 to 29.4% within the same experimenter. Bone transcranial vibration transfer is more efficient from one mastoid to the other mastoid than other anatomical sites. The mastoid is therefore the optimal site for skull vibration-induced nystagmus test in patients with unilateral vestibular lesions and enables a stronger stimulation of the healthy side. In clinical practice, the vibrator should be placed on the mastoid and should be held by the clinician

  19. Vibration-induced PM Noise in Oscillators and Measurements of Correlation with Vibration Sensors

    National Research Council Canada - National Science Library

    Howe, D. A; LanFranchi, J. L; Cutsinger, L; Hati, A; Nelson, C

    2005-01-01

    ...) and acceleration/vibration sensors. We describe the equipment setup and measurement procedure. Data are in the form of scatter plots, which we find to be highly informative compared to usual L(f...

  20. Vibration and noise measuring instruments built in the RSR

    Science.gov (United States)

    Georgescu, I.

    1974-01-01

    The demands placed upon vibration and noise measuring instruments are discussed. The instruments that are now being manufactured in the RSR are described, as well as those that are being made ready for manufacture, namely: the VP-3 portable vibrometer, the N2103 precision electronic vibrometer, the N2103 B sonometric preamplifier, as well as vibration transducers of the electrodynamic and piezoelectric types.

  1. The projected pattern correlation technique for vibration measurements

    Science.gov (United States)

    Konrath, R.; Klinge, F.; Schroeder, A.; Kompenhans, Juergen; Fuellekrug, U.

    2004-06-01

    The objective of this paper is the description of the Projected Pattern Correlation method for measuring surface velocities and to present results of a feasibility study. Similar to the Moire technique the local surface velocities of a large area are determined simultaneously, which replace a time consuming point wise scanning as it is necessary in e.g. Laser Doppler Vibrometry. Furthermore, the dynamics of non-periodic processes can be resolved temporally and spatially. In difference to the Moire or grid projection techniques the evaluation step is fast (real-time measurements are possible) more robust and provides a high spatial resolution. The measurement precision is assessed using a simple test arrangement. Vibration measurements are performed on a satellite model structure and a honeycomb sandwich plate.

  2. Mechanical Vibration Measurements on TTF Cryomodules

    CERN Document Server

    Bosotti, Angelo; Ferianis, Mario; Lange, Rolf; Pagani, Carlo; Paparella, Rocco; Pierini, Paolo; Sertore, Daniele

    2005-01-01

    Few of the TTF cryomodules have been equipped with Wire Position Monitors (WPM) for the on line monitoring of cold mass movements during cool-down, warm-up and operation. Each sensor can be used as a detector for mechanical vibrations of the cryostat. A Digital Receiver board is used to sample and analyze with high frequency resolution, the WPM picked up signals, looking to its amplitude modulation in the microphonic frequency range. Here we review and analyze the data and the vibration spectra taken during operation of the TTF cryomodules # 4 and #5.

  3. Nondestructive determination of fatigue crack damage in composites using vibration tests.

    Science.gov (United States)

    Dibenedetto, A. T.; Gauchel, J. V.; Thomas, R. L.; Barlow, J. W.

    1972-01-01

    The vibration response of glass reinforced epoxy and polyester laminates was investigated. The complex modulus and the damping capacity were measured as fatigue crack damage accumulated. Changes in the Young's modulus as well as the damping capacity correlated with the amount of crack damage. The damping was especially sensitive to debonding of the reinforcement from the resin matrix. Measurement of these vibration response changes shows promise as a means to nondestructively test the structural integrity of filament-reinforced composite structural members.

  4. Field measurements and analyses of environmental vibrations induced by high-speed Maglev.

    Science.gov (United States)

    Li, Guo-Qiang; Wang, Zhi-Lu; Chen, Suwen; Xu, You-Lin

    2016-10-15

    Maglev, offers competitive journey-times compared to the railway and subway systems in markets for which distance between the stations is 100-1600km owing to its high acceleration and speed; however, such systems may have excessive vibration. Field measurements of Maglev train-induced vibrations were therefore performed on the world's first commercial Maglev line in Shanghai, China. Seven test sections along the line were selected according to the operating conditions, covering speeds from 150 to 430km/h. Acceleration responses of bridge pier and nearby ground were measured in three directions and analyzed in both the time and frequency domain. The effects of Maglev train speed on vibrations of the bridge pier and ground were studied in terms of their peak accelerations. Attenuation of ground vibration was investigated up to 30m from the track centerline. Effects of guideway configuration were also analyzed based on the measurements through two different test sections with same train speed of 300km/h. The results showed that peak accelerations exhibited a strong correlation with both train speed and distance off the track. Guideway configuration had a significant effect on transverse vibration, but a weak impact on vertical and longitudinal vibrations of both bridge pier and ground. Statistics indicated that, contrary to the commonly accepted theory and experience, vertical vibration is not always dominant: transverse and longitudinal vibrations should also be considered, particularly near turns in the track. Moreover, measurements of ground vibration induced by traditional high-speed railway train were carried out with the same testing devices in Bengbu in the Anhui Province. Results showed that the Maglev train generates significantly different vibration signatures as compared to the traditional high-speed train. The results obtained from this paper can provide good insights on the impact of Maglev system on the urban environment and the quality of human life

  5. Vibration test report for in-chimney bracket and instrumented fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Yoon, D. B.; Cho, Y. G.; Ahn, G. H.; Lee, J. H.; Park, J.H

    2000-10-01

    The vibration levels of in-chimney bracket structure which is installed in reactor chimney and instrumented fuel assembly(Type-B Bundle) are investigated under the steady state normal operating condition of the reactor. For this purpose, 4 acceleration data on the guide tube of the instrumented fuel assembly and in-chimney bracket structures subjected to fluid induced vibration are measured. For the analysis of the vibration data, vibration analysis program which can perform basic time and frequency domain analysis, is prepared, and its reliability is verified by comparing the analysis results with those of commercial analysis program(I-DEAS). In time domain analysis, maximum amplitudes, and RMS values of accelerations and displacements from the measured vibration signal, are obtained. The frequency components of the vibration data are analyzed by using the frequency domain analysis. These analysis results show that the levels of the measured vibrations are within the allowable level, and the low frequency component near 10 Hz is dominant in the vibration signal. For the evaluation of the structural integrity on the in-chimney bracket and related structures including the instrumented fuel assembly, the static analysis for ANSYS finite element model is carried out. These analysis results show that the maximum stresses are within the allowable stresses of the ASME code, and the maximum displacement of the top of the flow tube is within the displacement limit. Therefore any damage on the structural integrity is not expected when the irradiation test is performed using the in-chimney bracket.

  6. Vibration transfers to measure the performance of vibration isolated platforms on site using background noise excitation

    Science.gov (United States)

    Segerink, F. B.; Korterik, J. P.; Offerhaus, H. L.

    2011-06-01

    This article demonstrates a quick and easy way of quantifying the performance of a vibration-isolated platform. We measure the vibration transfer from floor to table using background noise excitation from the floor. As no excitation device is needed, our setup only requires two identical sensors (in our case, low noise accelerometers), a data acquisition system, and processing software. Background noise excitation from the floor has the additional advantage that any non-linearity in the suspension system relevant to the actual vibration amplitudes will be taken into account. Measurement time is typically a few minutes, depending on the amount of background noise. The (coherent) transfer of the vibrations in the floor to the platform, as well as the (non-coherent) acoustical noise pick-up by the platform are measured. Since we use calibrated sensors, the absolute value of the vibration levels is established and can be expressed in vibration criterion curves. Transfer measurements are shown and discussed for two pneumatic isolated optical tables, a spring suspension system, and a simple foam suspension system.

  7. Study on measuring vibration displacement by shear interference based on sinusoidal phase modulation

    Science.gov (United States)

    He, Guotian; Tang, Feng; Song, Li; Jiang, Helun

    2009-05-01

    The semiconductor laser (LD) Taimangelin interferometer based on sinusoidal phase modulation is vulnerable to external vibration, temperature changes, vibration, and other air interference which causes great measurement error. This paper presents a new semiconductor laser sinusoidal phase modulation shear interference technology and anti-jamming wavelet transform algorithm which is not sensitive to environment interference. It changes the original optical technology in the plane mirror to three pyramid-shear, causing a certain amount of displacement of reference light and object light. and partial use of high resolution wavelet transform algorithm solves the problem in measuring the vibration displacement of measured object..Vibration shear interferometry expression is launched, and theoretically discusses the measurement principle. Using MATLAB before and after the improvement of the methods to simulate contrast obtains the impact of shear volume size on measurement accuracy with experimental test. Experimental results show that it effectively reduces the impact of outside interference on measurement accuracy.

  8. FIVPET Flow-Induced Vibration Test Report (1) - Candidate Spacer Grid Type I (Optimized H Type)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hee; Kang, Heung Seok; Yoon, Kyung Ho; Song, Kee Nam; Kim, Jae Yong

    2006-03-15

    The flow-induced vibration (FIV) test using a 5x5 partial fuel assembly was performed to evaluate mechanical/structural performance of the candidate spacer grid type I (Optimized H shape). From the measured vibration response of the test bundle and the flow parameters, design features of the spacer strap can be analyzed in the point of vibration and hydraulic aspect, and also compared with other spacer strap in simple comparative manner. Furthermore, the FIV test will contributes to understand behaviors of nuclear fuel in operating reactor. The FIV test results will be used to verify the theoretical model of fuel rod and assembly vibration. The aim of this report is to present the results of the FIV test of partial fuel assembly and to introduce the detailed test methodology and analysis procedure. In chapter 2, the overall configuration of test bundle and instrumented tube is remarked and chapter 3 will introduce the test facility (FIVPET) and test section. Chapter 4 deals with overall test condition and procedure, measurement and data acquisition devices, instrumentation equipment and calibration, and error analysis. Finally, test result of vibration and pressure fluctuation is presented and discussed in chapter 5.

  9. Measuring the Amount of Mechanical Vibration During Lathe Processing

    Directory of Open Access Journals (Sweden)

    Štefánia SALOKYOVÁ

    2015-06-01

    Full Text Available The article provides basic information regarding the measurement and evaluation of mechanical vibration during the processing of material by lathe work. The lathe processing can be characterized as removing material by precisely defined tools. The results of the experimental part are values of the vibration acceleration amplitude measured by the piezoelectric sensor on the bearing house of the lathe. A set of new knowledge and conclusions is formulated based on the analysis of the created graphical dependencies.

  10. Development of seismic technology and reliability based on vibration tests

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Youichi [Nuclear Power Engineering Corp., Tokyo (Japan)

    1997-03-01

    This paper deals with some of the vibration tests and investigations on the seismic safety of nuclear power plants (NPPs) in Japan. To ensure the reliability of the seismic safety of nuclear power plants, nuclear power plants in Japan have been designed according to the Technical Guidelines for Aseismic Design of Nuclear Power Plants. This guideline has been developed based on technical date base and findings which were obtained from many vibration tests and investigations. Besides the tests for the guideline, proving tests on seismic reliability of operating nuclear power plants equipment and systems have been carried out. In this paper some vibration tests and their evaluation results are presented. They have crucially contributed to develop the guideline. (J.P.N.)

  11. Assessment of Gear Damage Monitoring Techniques Using Vibration Measurements

    Science.gov (United States)

    Wang, Wilson Q.; Ismail, Fathy; Farid Golnaraghi, M.

    2001-09-01

    Each gear damage monitoring technique has its merits and limitations. This paper experimentally investigates the sensitivity and robustness of the currently well-accepted techniques: phase and amplitude demodulation, beta kurtosis and wavelet transform. Four gear test cases were used: healthy gears, cracked, filed and chipped gears. The vibration signal was measured on the gearbox housing and processed, online, under three filtering conditions: general signal average, overall residual and dominant meshing frequency residual. Test results show that beta kurtosis is a very reliable time-domain diagnostic technique. Phase modulation is very sensitive to gear imperfections, but other information should be used to confirm its diagnostic results. Continuous wavelet transform provides a good visual inspection especially when residual signals are used. The diagnosis based only on dominant meshing frequency residual, however, should not be used independently for gear health condition monitoring, it may give false alarms.

  12. Vibration Sensitivity of a Wide-Temperature Electronically Scanned Pressure Measurement (ESP) Module

    Science.gov (United States)

    Zuckerwar, Allan J.; Garza, Frederico R.

    2001-01-01

    A vibration sensitivity test was conducted on a Wide-Temperature ESP module. The test object was Module "M4," a 16-channel, 4 psi unit scheduled for installation in the Arc Sector of NTF. The module was installed on a vibration exciter and loaded to positive then negative full-scale pressures (+/-2.5 psid). Test variables were the following: Vibration frequencies: 20, 55, 75 Hz. Vibration level: 1 g. Vibration axes: X, Y, Z. The pressure response was measured on each channel, first without and then with the vibration turned on, and the difference analyzed by means of the statistical t-test. The results show that the vibration sensitivity does not exceed 0.01% Full Scale Output per g (with the exception of one channel on one axis) to a 95 percent confidence level. This specification, limited by the resolution of the pressure source, lies well below the total uncertainty specification of 0.1 percent Full Scale Output.

  13. Measuring unbalance-induced vibrations in rotating tools

    Directory of Open Access Journals (Sweden)

    Kimmelmann Martin

    2017-01-01

    Full Text Available Unbalances in a tool cause vibrations of the spindle and the machine itself and lead to a waviness of the machined workpiece surface. This paper presents an experimental and analytical procedure for optically measuring the unbalance-induced displacements of the tool centre point (TCP. Therefore, a new method is introduced to determine the dynamic vibrations of a tool by comparing the geometrical profile of the tool with the dynamical profile at a high rotational speed. The necessary steps for measuring the signals and calculating the underlying dynamic vibrations of the tool are presented here. Afterwards, the unbalance-induced vibrations of a milling tool are shown as well as their influence on the eccentricity of the rotation axis. With this newly introduced method it is possible to directly link the displacements of the tool under rotation to the waviness of the workpiece surface and the dynamic stiffness of machine tools.

  14. 49 CFR Appendix C to Part 173 - Procedure for Base-level Vibration Testing

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Procedure for Base-level Vibration Testing C... Base-level Vibration Testing Base-level vibration testing shall be conducted as follows: 1. Three... platform. 4. Immediately following the period of vibration, each package shall be removed from the platform...

  15. Measurement of ground and nearby building vibration and noise induced by trains in a metro depot.

    Science.gov (United States)

    Zou, Chao; Wang, Yimin; Wang, Peng; Guo, Jixing

    2015-12-01

    Metro depots are where subway trains are parked and where maintenance is carried out. They usually occupy the largest ground areas in metro projects. Due to land utilization problems, Chinese cities have begun to develop over-track buildings above metro depots for people's life and work. The frequently moving trains, when going into and out of metro depots, can cause excessive vibration and noise to over-track buildings and adversely affect the living quality of the building occupants. Considering the current need of reliable experimental data for the construction of metro depots, field measurements of vibration and noise on the ground and inside a nearby 3-story building subjected to moving subway trains were conducted in a metro depot at Guangzhou, China. The amplitudes and frequency contents of velocity levels were quantified and compared. The composite A-weighted equivalent sound levels and maximum sound levels were captured. The predicted models for vibration and noise of metro depot were proposed based on existing models and verified. It was found that the vertical vibrations were significantly greater than the horizontal vibrations on the ground and inside the building near the testing line. While at the throat area, the horizontal vibrations near the curved track were remarkably greater than the vertical vibrations. The attenuation of the vibrations with frequencies above 50 Hz was larger than the ones below 50 Hz, and the frequencies of vibration transmitting to adjacent buildings were mainly within 10-50 Hz. The largest equivalent sound level generated in the throat area was smaller than the testing line one, but the instantaneous maximum sound level induced by wheels squeal, contact between wheels and rail joints as well as turnout was close to or even greater than the testing line one. The predicted models gave a first estimation for design and assessment of newly built metro depots. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Vibration measurement with nonlinear converter in the presence of noise

    Science.gov (United States)

    Mozuras, Almantas

    2017-10-01

    Conventional vibration measurement methods use the linear properties of physical converters. These methods are strongly influenced by nonlinear distortions, because ideal linear converters are not available. Practically, any converter can be considered as a linear one, when an output signal is very small. However, the influence of noise increases significantly and signal-to-noise ratio decreases at lower signals. When the output signal is increasing, the nonlinear distortions are also augmenting. If the wide spectrum vibration is measured, conventional methods face a harmonic distortion as well as intermodulation effects. Purpose of this research is to develop a measurement method of wide spectrum vibration by using a converter described by a nonlinear function of type f(x), where x =x(t) denotes the dependence of coordinate x on time t due to the vibration. Parameter x(t) describing the vibration is expressed as Fourier series. The spectral components of the converter output f(x(t)) are determined by using Fourier transform. The obtained system of nonlinear equations is solved using the least squares technique that permits to find x(t) in the presence of noise. This method allows one to carry out the absolute or relative vibration measurements. High resistance to noise is typical for the absolute vibration measurement, but it is necessary to know the Taylor expansion coefficients of the function f(x). If the Taylor expansion is not known, the relative measurement of vibration parameters is also possible, but with lower resistance to noise. This method allows one to eliminate the influence of nonlinear distortions to the measurement results, and consequently to eliminate harmonic distortion and intermodulation effects. The use of nonlinear properties of the converter for measurement gives some advantages related to an increased frequency range of the output signal (consequently increasing the number of equations) that allows one to decrease the noise influence on

  17. On Modal Parameter Estimates from Ambient Vibration Tests

    DEFF Research Database (Denmark)

    Agneni, A.; Brincker, Rune; Coppotelli, B.

    2004-01-01

    Modal parameter estimates from ambient vibration testing are turning into the preferred technique when one is interested in systems under actual loadings and operational conditions. Moreover, with this approach, expensive devices to excite the structure are not needed, since it can be adequately...

  18. Wear Monitoring in Turning Operations Using Vibration and Strain Measurements

    Science.gov (United States)

    Scheffer, C.; Heyns, P. S.

    2001-11-01

    For the efficient and reliable operation of automated machining processes, the implementation of suitable tool condition monitoring (TCM) strategy is required. Various monitoring systems, utilising sophisticated signal processing techniques, have been widely researched for a number of different processes. Most monitoring systems developed up to date employ force, acoustic emission and vibration, or a combination of these and other techniques with a sensor integration strategy. With this work, the implementation of a monitoring system utilising simultaneous vibration and strain measurements on the tool tip, is investigated for the wear of synthetic diamond tools which are specifically used for the manufacturing of aluminium pistons. Contrary to many of the earlier investigations, this work was conducted in a manufacturing environment, with the associated constraints such as the impracticality of direct measurement of the wear. Data from the manufacturing process was recorded with two piezoelectric strain sensors and an accelerometer, each coupled to a DSPT Siglab analyser. A large number of features indicative of tool wear were automatically extracted from different parts of the original signals. These included features from the time and frequency domains, time-series model coefficients (as features) and features extracted from wavelet packet analysis. A correlation coefficient approach was used to automatically select the best features indicative of the progressive wear of the diamond tools. The self-organising map (SOM) was employed to identify the tool state. The SOM is a type of neural network based on unsupervised learning. A near 100% correct classification of the tool wear data was obtained by training the SOM with two independent data sets, and testing it with a third independent data set.

  19. A General Purpose Digital System for Field Vibration Testing

    DEFF Research Database (Denmark)

    Brincker, Rune; Larsen, Jesper Abildgaard; Ventura, Carlos

    2007-01-01

    This paper describes the development and concept implementation of a highly sensitive digital recording system for seismic applications and vibration measurements on large Civil Engineering structures. The system is based on highly sensitive motion transducers that have been used by seismologists...

  20. A Method Using Optical Contactless Displacement Sensors to Measure Vibration Stress of Small-Bore Piping.

    Science.gov (United States)

    Maekawa, Akira; Tsuji, Takashi; Takahashi, Tsuneo; Noda, Michiyasu

    2014-02-01

    In nuclear power plants, vibration stress of piping is frequently evaluated to prevent fatigue failure. A simple and fast measurement method is attractive to evaluate many piping systems efficiently. In this study, a method to measure the vibration stress using optical contactless displacement sensors was proposed, the prototype instrument was developed, and the instrument practicality for the method was verified. In the proposed method, light emitting diodes (LEDs) were used as measurement sensors and the vibration stress was estimated by measuring the deformation geometry of the piping caused by oscillation, which was measured as the piping curvature radius. The method provided fast and simple vibration estimates for small-bore piping. Its verification and practicality were confirmed by vibration tests using a test pipe and mock-up piping. The stress measured by both the proposed method and an accurate conventional method using strain gauges were in agreement, and it was concluded that the proposed method could be used for actual plant piping systems.

  1. Vibration Testing of NASA's Time Machine Near-Infrared Spectrograph

    Science.gov (United States)

    Jentsch, M.; Knecht, M.; Jollet, D.; Kommer, A.

    2014-06-01

    "NASA, ESA, and the Canadian Space Agency (CSA) are collaborating to develop JWST, a successor to the Hubble Space Telescope and enable observation and measurement of infrared wavelengths. JWST will be able to study every phase in the evolution of the Universe in great detail - from the first stars and galaxies to form after the Big Bang to the formation of planetary systems in our own Milky Way galaxy today. This will be made possible by JWST's huge primary mirror (which, with 18 hexagonal segments spanning a total of six and a half metres in diameter, will be the largest telescope in space) and its suite of four highly- sensitive scientific instruments, one of which is NIRSpec, able to detect the faintest radiation from the most distant galaxies.Mostly made from silicon carbide (SiC100), NIRSpec weighs only 200 kilograms and will operate at temperatures of -233°C as JWST orbits 1.5 million kilometres away from Earth. Once in space, the telescope and its instruments will remain in operation for up to 10 years." [4]The NIRSpec Optical Assembly consists of a ceramic optical bench supported by a set of hybrid kinematic mounts, several high performance optical subassemblies (e.g. the three mirror anastigmats (TMAs) also made of silicon carbide), mechanisms and a micro shutter assembly (MSA) which allows a detailed selection of at least 100 objects simultaneously at various spectral resolutions.Besides many other environmental testing the structural mechanics test campaign was divided into two parts. The qualification has been performed with the ETU (engineering test unit) consisting of the optical bench including the mounts and all ceramic parts in flight like configuration. A part of the subassemblies has been substituted by flight representative design models. Sine and random vibration qualification runs in three spatial axes have been performed to fulfil the requirements derived for the spacecraft configuration to cover Ariane 5 launch loads and the JWST program

  2. Modal confidence factor in vibration testing

    Science.gov (United States)

    Ibrahim, S. R.

    1978-01-01

    The modal confidence factor (MCF) is a number calculated for every identified mode for a structure under test. The MCF varies from 0.00 for a distorted nonlinear, or noise mode to 100.0 for a pure structural mode. The theory of the MCF is based on the correlation that exists between the modal deflection at a certain station and the modal deflection at the same station delayed in time. The theory and application of the MCF are illustrated by two experiments. The first experiment deals with simulated responses from a two-degree-of-freedom system with 20%, 40%, and 100% noise added. The second experiment was run on a generalized payload model. The free decay response from the payload model contained 22% noise.

  3. Vibrating Intrinsic reverberation Chambers for shielding effectiveness measurements

    NARCIS (Netherlands)

    van de Beek, G.S.; Vogt-Ardatjew, R.A.; Schipper, H.; Leferink, Frank Bernardus Johannes

    2012-01-01

    A new technique for shielding effectiveness measurements is the dual VIRC method. In this method two Vibrating Intrinsic Reverberation Chambers (VIRC) are combined together via a common wall with an aperture that forms the interface between them. This particular set-up makes it possible to achieve a

  4. Uncertainty Quantification for Monitoring of Civil Structures from Vibration Measurements

    Science.gov (United States)

    Döhler, Michael; Mevel, Laurent

    2014-05-01

    Health Monitoring of civil structures can be performed by detecting changes in the modal parameters of a structure, or more directly in the measured vibration signals. For a continuous monitoring the excitation of a structure is usually ambient, thus unknown and assumed to be noise. Hence, all estimates from the vibration measurements are realizations of random variables with inherent uncertainty due to (unknown) process and measurement noise and finite data length. In this talk, a strategy for quantifying the uncertainties of modal parameter estimates from a subspace-based system identification approach is presented and the importance of uncertainty quantification in monitoring approaches is shown. Furthermore, a damage detection method is presented, which is based on the direct comparison of the measured vibration signals without estimating modal parameters, while taking the statistical uncertainty in the signals correctly into account. The usefulness of both strategies is illustrated on data from a progressive damage action on a prestressed concrete bridge. References E. Carden and P. Fanning. Vibration based condition monitoring: a review. Structural Health Monitoring, 3(4):355-377, 2004. M. Döhler and L. Mevel. Efficient multi-order uncertainty computation for stochastic subspace identification. Mechanical Systems and Signal Processing, 38(2):346-366, 2013. M. Döhler, L. Mevel, and F. Hille. Subspace-based damage detection under changes in the ambient excitation statistics. Mechanical Systems and Signal Processing, 45(1):207-224, 2014.

  5. Optical measurements of long-range protein vibrations

    Science.gov (United States)

    Acbas, Gheorghe; Niessen, Katherine A.; Snell, Edward H.; Markelz, A. G.

    2014-01-01

    Protein biological function depends on structural flexibility and change. From cellular communication through membrane ion channels to oxygen uptake and delivery by haemoglobin, structural changes are critical. It has been suggested that vibrations that extend through the protein play a crucial role in controlling these structural changes. While nature may utilize such long-range vibrations for optimization of biological processes, bench-top characterization of these extended structural motions for engineered biochemistry has been elusive. Here we show the first optical observation of long-range protein vibrational modes. This is achieved by orientation-sensitive terahertz near-field microscopy measurements of chicken egg white lysozyme single crystals. Underdamped modes are found to exist for frequencies >10 cm-1. The existence of these persisting motions indicates that damping and intermode coupling are weaker than previously assumed. The methodology developed permits protein engineering based on dynamical network optimization.

  6. 30 CFR 27.39 - Tests to determine resistance to vibration.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests to determine resistance to vibration. 27... determine resistance to vibration. (a) Laboratory tests for reliability and durability. Components... two separate vibration tests, each of one-hour duration. The first test shall be conducted at a...

  7. Force Limited Random Vibration Test of TESS Camera Mass Model

    Science.gov (United States)

    Karlicek, Alexandra; Hwang, James Ho-Jin; Rey, Justin J.

    2015-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a spaceborne instrument consisting of four wide field-of-view-CCD cameras dedicated to the discovery of exoplanets around the brightest stars. As part of the environmental testing campaign, force limiting was used to simulate a realistic random vibration launch environment. While the force limit vibration test method is a standard approach used at multiple institutions including Jet Propulsion Laboratory (JPL), NASA Goddard Space Flight Center (GSFC), European Space Research and Technology Center (ESTEC), and Japan Aerospace Exploration Agency (JAXA), it is still difficult to find an actual implementation process in the literature. This paper describes the step-by-step process on how the force limit method was developed and applied on the TESS camera mass model. The process description includes the design of special fixtures to mount the test article for properly installing force transducers, development of the force spectral density using the semi-empirical method, estimation of the fuzzy factor (C2) based on the mass ratio between the supporting structure and the test article, subsequent validating of the C2 factor during the vibration test, and calculation of the C.G. accelerations using the Root Mean Square (RMS) reaction force in the spectral domain and the peak reaction force in the time domain.

  8. Lumped Parameter Modeling for Rapid Vibration Response Prototyping and Test Correlation for Electronic Units

    Science.gov (United States)

    Van Dyke, Michael B.

    2013-01-01

    Present preliminary work using lumped parameter models to approximate dynamic response of electronic units to random vibration; Derive a general N-DOF model for application to electronic units; Illustrate parametric influence of model parameters; Implication of coupled dynamics for unit/board design; Demonstrate use of model to infer printed wiring board (PWB) dynamics from external chassis test measurement.

  9. Sound Power Estimation by Laser Doppler Vibration Measurement Techniques

    Directory of Open Access Journals (Sweden)

    G.M. Revel

    1998-01-01

    Full Text Available The aim of this paper is to propose simple and quick methods for the determination of the sound power emitted by a vibrating surface, by using non-contact vibration measurement techniques. In order to calculate the acoustic power by vibration data processing, two different approaches are presented. The first is based on the method proposed in the Standard ISO/TR 7849, while the second is based on the superposition theorem. A laser-Doppler scanning vibrometer has been employed for vibration measurements. Laser techniques open up new possibilities in this field because of their high spatial resolution and their non-intrusivity. The technique has been applied here to estimate the acoustic power emitted by a loudspeaker diaphragm. Results have been compared with those from a commercial Boundary Element Method (BEM software and experimentally validated by acoustic intensity measurements. Predicted and experimental results seem to be in agreement (differences lower than 1 dB thus showing that the proposed techniques can be employed as rapid solutions for many practical and industrial applications. Uncertainty sources are addressed and their effect is discussed.

  10. New System for Measuring Impact Vibration on Floor Decking Sheets

    Directory of Open Access Journals (Sweden)

    Carlos Moron

    2014-12-01

    Full Text Available Currently, there is a narrow range of materials that are used as attenuators of impact noise and building vibrations. Materials used in construction, such as elastic materials, must meet the requirement of having very low elastic modulus values. For the determination of the material’s elastic modulus and the acoustic insulation of the same, costly and difficult to execute testing is required. The present paper exposes an alternative system that is simpler and more economic, consisting of a predefined striking device and a sensor able to determine, once the strike is produced, the energy absorbed by the plate. After the impact is produced, the plate undergoes a deformation, which absorbs part of the energy, the remaining part being transmitted to the slab and, at the same time, causing induced airborne noise in the adjoining room. The plate absorbs the power through its own deformation, which is measured with the help of a capacitive sensor. This way, it would be possible to properly define the geometry of the plates, after the execution of the test, and we will try to establish a relationship between the values proposed in this research and the acoustic behavior demanded by the Spanish standards.

  11. Correlation of finite element free vibration predictions using random vibration test data. M.S. Thesis - Cleveland State Univ.

    Science.gov (United States)

    Chambers, Jeffrey A.

    1994-01-01

    Finite element analysis is regularly used during the engineering cycle of mechanical systems to predict the response to static, thermal, and dynamic loads. The finite element model (FEM) used to represent the system is often correlated with physical test results to determine the validity of analytical results provided. Results from dynamic testing provide one means for performing this correlation. One of the most common methods of measuring accuracy is by classical modal testing, whereby vibratory mode shapes are compared to mode shapes provided by finite element analysis. The degree of correlation between the test and analytical mode shapes can be shown mathematically using the cross orthogonality check. A great deal of time and effort can be exhausted in generating the set of test acquired mode shapes needed for the cross orthogonality check. In most situations response data from vibration tests are digitally processed to generate the mode shapes from a combination of modal parameters, forcing functions, and recorded response data. An alternate method is proposed in which the same correlation of analytical and test acquired mode shapes can be achieved without conducting the modal survey. Instead a procedure is detailed in which a minimum of test information, specifically the acceleration response data from a random vibration test, is used to generate a set of equivalent local accelerations to be applied to the reduced analytical model at discrete points corresponding to the test measurement locations. The static solution of the analytical model then produces a set of deformations that once normalized can be used to represent the test acquired mode shapes in the cross orthogonality relation. The method proposed has been shown to provide accurate results for both a simple analytical model as well as a complex space flight structure.

  12. Adaptive and robust active vibration control methodology and tests

    CERN Document Server

    Landau, Ioan Doré; Castellanos-Silva, Abraham; Constantinescu, Aurelian

    2017-01-01

    This book approaches the design of active vibration control systems from the perspective of today’s ideas of computer control. It formulates the various design problems encountered in the active management of vibration as control problems and searches for the most appropriate tools to solve them. The experimental validation of the solutions proposed on relevant tests benches is also addressed. To promote the widespread acceptance of these techniques, the presentation eliminates unnecessary theoretical developments (which can be found elsewhere) and focuses on algorithms and their use. The solutions proposed cannot be fully understood and creatively exploited without a clear understanding of the basic concepts and methods, so these are considered in depth. The focus is on enhancing motivations, algorithm presentation and experimental evaluation. MATLAB®routines, Simulink® diagrams and bench-test data are available for download and encourage easy assimilation of the experimental and exemplary material. Thre...

  13. Sparse Representation Based Frequency Detection and Uncertainty Reduction in Blade Tip Timing Measurement for Multi-Mode Blade Vibration Monitoring

    Science.gov (United States)

    Pan, Minghao; Yang, Yongmin; Guan, Fengjiao; Hu, Haifeng; Xu, Hailong

    2017-01-01

    The accurate monitoring of blade vibration under operating conditions is essential in turbo-machinery testing. Blade tip timing (BTT) is a promising non-contact technique for the measurement of blade vibrations. However, the BTT sampling data are inherently under-sampled and contaminated with several measurement uncertainties. How to recover frequency spectra of blade vibrations though processing these under-sampled biased signals is a bottleneck problem. A novel method of BTT signal processing for alleviating measurement uncertainties in recovery of multi-mode blade vibration frequency spectrum is proposed in this paper. The method can be divided into four phases. First, a single measurement vector model is built by exploiting that the blade vibration signals are sparse in frequency spectra. Secondly, the uniqueness of the nonnegative sparse solution is studied to achieve the vibration frequency spectrum. Thirdly, typical sources of BTT measurement uncertainties are quantitatively analyzed. Finally, an improved vibration frequency spectra recovery method is proposed to get a guaranteed level of sparse solution when measurement results are biased. Simulations and experiments are performed to prove the feasibility of the proposed method. The most outstanding advantage is that this method can prevent the recovered multi-mode vibration spectra from being affected by BTT measurement uncertainties without increasing the probe number. PMID:28758952

  14. Ambient Vibration Testing for Story Stiffness Estimation of a Heritage Timber Building

    Directory of Open Access Journals (Sweden)

    Kyung-Won Min

    2013-01-01

    Full Text Available This paper investigates dynamic characteristics of a historic wooden structure by ambient vibration testing, presenting a novel estimation methodology of story stiffness for the purpose of vibration-based structural health monitoring. As for the ambient vibration testing, measured structural responses are analyzed by two output-only system identification methods (i.e., frequency domain decomposition and stochastic subspace identification to estimate modal parameters. The proposed methodology of story stiffness is estimation based on an eigenvalue problem derived from a vibratory rigid body model. Using the identified natural frequencies, the eigenvalue problem is efficiently solved and uniquely yields story stiffness. It is noteworthy that application of the proposed methodology is not necessarily confined to the wooden structure exampled in the paper.

  15. A procedure obtaining stiffnesses and masses of a structure from vibration modes and substructure static test data

    Science.gov (United States)

    Edighoffer, H. H.

    1979-01-01

    A component mode desynthesis procedure is developed for determining the unknown vibration characteristics of a structural component (i.e., a launch vehicle) given the vibration characteristics of a structural system composed of that component combined with a known one (i.e., a payload). At least one component static test has to be performed. These data are used in conjunction with the system measured frequencies and mode shapes to obtain the vibration characteristics of each component. The flight dynamics of an empty launch vehicle can be determined from measurements made on a vehicle/payload combination in conjunction with a static test on the payload.

  16. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    Science.gov (United States)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  17. An examination of an adapter method for measuring the vibration transmitted to the human arms.

    Science.gov (United States)

    Xu, Xueyan S; Dong, Ren G; Welcome, Daniel E; Warren, Christopher; McDowell, Thomas W

    2015-09-01

    The objective of this study is to evaluate an adapter method for measuring the vibration on the human arms. Four instrumented adapters with different weights were used to measure the vibration transmitted to the wrist, forearm, and upper arm of each subject. Each adapter was attached at each location on the subjects using an elastic cloth wrap. Two laser vibrometers were also used to measure the transmitted vibration at each location to evaluate the validity of the adapter method. The apparent mass at the palm of the hand along the forearm direction was also measured to enhance the evaluation. This study found that the adapter and laser-measured transmissibility spectra were comparable with some systematic differences. While increasing the adapter mass reduced the resonant frequency at the measurement location, increasing the tightness of the adapter attachment increased the resonant frequency. However, the use of lightweight (≤15 g) adapters under medium attachment tightness did not change the basic trends of the transmissibility spectrum. The resonant features observed in the transmissibility spectra were also correlated with those observed in the apparent mass spectra. Because the local coordinate systems of the adapters may be significantly misaligned relative to the global coordinates of the vibration test systems, large errors were observed for the adapter-measured transmissibility in some individual orthogonal directions. This study, however, also demonstrated that the misalignment issue can be resolved by either using the total vibration transmissibility or by measuring the misalignment angles to correct the errors. Therefore, the adapter method is acceptable for understanding the basic characteristics of the vibration transmission in the human arms, and the adapter-measured data are acceptable for approximately modeling the system.

  18. Human hand-transmitted vibration measurements on pedestrian controlled tractor operators by a laser scanning vibrometer.

    Science.gov (United States)

    Deboli, R; Miccoli, G; Rossi, G L

    1999-06-01

    A first application of a new measurement technique to detect vibration transmitted to the human body in working conditions is presented. The technique is based on the use of a laser scanning vibrometer. It was previously developed, analysed and tested using laboratory test benches with electrodynamical exciters, and comparisons with traditional measurement techniques based on accelerometers were made. First, results of tests performed using a real machine generating vibration are illustrated. The machine used is a pedestrian-controlled tractor working in a fixed position. Reference measurements by using the accelerometer have been simultaneously performed while scanning the hand surface by the laser-based measurement system. Results achieved by means of both measurement techniques have been processed, analysed, compared and used to calculate transmissibility maps of the hands of three subjects.

  19. A General Purpose Digital System for Field Vibration Testing

    OpenAIRE

    Brincker, Rune; Larsen, Jesper Abildgaard; Ventura, Carlos

    2007-01-01

    This paper describes the development and concept implementation of a highly sensitive digital recording system for seismic applications and vibration measurements on large Civil Engineering structures. The system is based on highly sensitive motion transducers that have been used by seismologists and geophysicists for decades. The conventional geophone's ratio of cost to performance, including noise, linearity and dynamic range is unmatched by advanced modern accelerometers. The unit comprise...

  20. Monitoring high-shear granulation using sound and vibration measurements.

    Science.gov (United States)

    Briens, L; Daniher, D; Tallevi, A

    2007-02-22

    Sound and vibration measurements were investigated as monitoring methods for high-shear granulation. Five microphones and one accelerometer were placed at different locations on a 10 and a 25 l granulator and compared to find the optimum location and the effect of scale. The granulation process could be monitored using the mean frequency and root mean square sound pressure levels from acoustic emissions measured using a microphone in the filtered air exhaust of the granulators. These acoustic monitoring methods were successful for both the 10 and the 25 l granulation scales. The granulation phases, however, were more clearly defined for the larger scale granulation. The root mean square acceleration level from vibration measurements was also able to monitor the granulation, but only for the larger 25 l granulator.

  1. Measurement of dynamic surface tension by mechanically vibrated sessile droplets.

    Science.gov (United States)

    Iwata, Shuichi; Yamauchi, Satoko; Yoshitake, Yumiko; Nagumo, Ryo; Mori, Hideki; Kajiya, Tadashi

    2016-04-01

    We developed a novel method for measuring the dynamic surface tension of liquids using mechanically vibrated sessile droplets. Under continuous mechanical vibration, the shape of the deformed droplet was fitted by numerical analysis, taking into account the force balance at the drop surface and the momentum equation. The surface tension was determined by optimizing four parameters: the surface tension, the droplet's height, the radius of the droplet-substrate contact area, and the horizontal symmetrical position of the droplet. The accuracy and repeatability of the proposed method were confirmed using drops of distilled water as well as viscous aqueous glycerol solutions. The vibration frequency had no influence on surface tension in the case of pure liquids. However, for water-soluble surfactant solutions, the dynamic surface tension gradually increased with vibration frequency, which was particularly notable for low surfactant concentrations slightly below the critical micelle concentration. This frequency dependence resulted from the competition of two mechanisms at the drop surface: local surface deformation and surfactant transport towards the newly generated surface.

  2. Random Vibration Testing of Advanced Wet Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2015-01-01

    Advanced wet tantalum capacitors allow for improved performance of power supply systems along with substantial reduction of size and weight of the systems that is especially beneficial for space electronics. Due to launch-related stresses, acceptance testing of all space systems includes random vibration test (RVT). However, many types of advanced wet tantalum capacitors cannot pass consistently RVT at conditions specified in MIL-PRF-39006, which impedes their use in space projects. This requires a closer look at the existing requirements, modes and mechanisms of failures, specifics of test conditions, and acceptance criteria. In this work, different lots of advanced wet tantalum capacitors from four manufacturers have been tested at step stress random vibration conditions while their currents were monitored before, during, and after the testing. It has been shown that the robustness of the parts and their reliability are mostly due to effective self-healing processes and limited current spiking or minor scintillations caused by RVT do not increase the risk of failures during operation. A simple model for scintillations events has been used to simulate current spiking during RVT and optimize test conditions. The significance of scintillations and possible effects of gas generation have been discussed and test acceptance criteria for limited current spiking have been suggested.

  3. [Measurement and analysis of hand-transmitted vibration of vibration tools in workplace for automobile casting and assembly].

    Science.gov (United States)

    Xie, X S; Qi, C; Du, X Y; Shi, W W; Zhang, M

    2016-02-20

    To investigate the features of hand-transmitted vibration of common vibration tools in the workplace for automobile casting and assembly. From September to October, 2014, measurement and spectral analysis were performed for 16 typical hand tools(including percussion drill, pneumatic wrench, grinding machine, internal grinder, and arc welding machine) in 6 workplaces for automobile casting and assembly according to ISO 5349-1-2001 Mechanical vibration-Measurement and evaluation of human exposure to hand-transmitted vibration-part 1: General requirements and ISO 5349-2-2001 Mechanical vibration-Measurement and evaluation of human exposure to hand-transmitted vibration-Part 2: Practical guidance for measurement in the workplace. The vibration acceleration waveforms of shearing machine, arc welding machine, and pneumatic wrench were mainly impact wave and random wave, while those of internal grinder, angle grinder, percussion drill, and grinding machine were mainly long-and short-period waves. The daily exposure duration to vibration of electric wrench, pneumatic wrench, shearing machine, percussion drill, and internal grinder was about 150 minutes, while that of plasma cutting machine, angle grinder, grinding machine, bench grinder, and arc welding machine was about 400 minutes. The range of vibration total value(ahv) was as follows: pneumatic wrench 0.30~11.04 m/s(2), grinding wheel 1.61~8.97 m/s(2), internal grinder 1.46~8.70 m/s(2), percussion drill 11.10~14.50 m/s(2), and arc welding machine 0.21~2.18 m/s(2). The workers engaged in cleaning had the longest daily exposure duration to vibration, and the effective value of 8-hour energy-equivalent frequency-weighted acceleration for them[A(8)] was 8.03 m/s(2), while this value for workers engaged in assembly was 4.78 m/s(2). The frequency spectrogram with an 1/3-time frequency interval showed that grinding machine, angle grinder, and percussion drill had a high vibration acceleration, and the vibration limit curve

  4. Vibration and Acoustic Test Facility (VATF): User Test Planning Guide

    Science.gov (United States)

    Fantasia, Peter M.

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the VATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  5. Review of sensors for low frequency seismic vibration measurement

    CERN Document Server

    Collette, C; Janssens, S; Artoos, K; Guinchard, M; Hauviller, C

    2011-01-01

    The objective of this report is to review the main different types of sensors used to measure seismic vibrations at low frequencies. After some basic background preliminaries, the main different types of relative measurements are first reviewed. Then, the following inertial sensors are treated: geophones, accelerometers and broadband seismometers. For each of these sensors, the basic working principle is explained, along with the main performances limitations. Each section ends with a tentative comparison of some commercial products, far from being exhaustive, but hopefully representative of the average characteristics of each family of sensors. The report finishes with a brief discussion on the modelling and measurement of the sensor noise

  6. NASA-DoD Lead-Free Electronics Project: Vibration Test

    Science.gov (United States)

    Woodrow, Thomas A.

    2010-01-01

    Vibration testing was conducted by Boeing Research and Technology (Seattle) for the NASA-DoD Lead-Free Electronics Solder Project. This project is a follow-on to the Joint Council on Aging Aircraft/Joint Group on Pollution Prevention (JCAA/JG-PP) Lead-Free Solder Project which was the first group to test the reliability of lead-free solder joints against the requirements of the aerospace/miLItary community. Twenty seven test vehicles were subjected to the vibration test conditions (in two batches). The random vibration Power Spectral Density (PSD) input was increased during the test every 60 minutes in an effort to fail as many components as possible within the time allotted for the test. The solder joints on the components were electrically monitored using event detectors and any solder joint failures were recorded on a Labview-based data collection system. The number of test minutes required to fail a given component attached with SnPb solder was then compared to the number of test minutes required to fail the same component attached with lead-free solder. A complete modal analysis was conducted on one test vehicle using a laser vibrometer system which measured velocities, accelerations, and displacements at one . hundred points. The laser vibrometer data was used to determine the frequencies of the major modes of the test vehicle and the shapes of the modes. In addition, laser vibrometer data collected during the vibration test was used to calculate the strains generated by the first mode (using custom software). After completion of the testing, all of the test vehicles were visually inspected and cross sections were made. Broken component leads and other unwanted failure modes were documented.

  7. Integrated Vehicle Ground Vibration Testing of Manned Spacecraft: Historical Precedent

    Science.gov (United States)

    Lemke, Paul R.; Tuma, Margaret L.; Askins, Bruce R.

    2008-01-01

    For the first time in nearly 30 years, NASA is developing a new manned space flight launch system. The Ares I will carry crew and cargo to not only the International Space Station, but onward for the future exploration of the Moon and Mars. The Ares I control system and structural designs use complex computer models for their development. An Integrated Vehicle Ground Vibration Test (IVGVT) will validate the efficacy of these computer models. The IVGVT will reduce the technical risk of unexpected conditions that could place the vehicle or crew in jeopardy. The Ares Project Office's Flight and Integrated Test Office commissioned a study to determine how historical programs, such as Saturn and Space Shuttle, validated the structural dynamics of an integrated flight vehicle. The study methodology was to examine the historical record and seek out members of the engineering community who recall the development of historic manned launch vehicles. These records and interviews provided insight into the best practices and lessons learned from these historic development programs. The information that was gathered allowed the creation of timelines of the historic development programs. The timelines trace the programs from the development of test articles through test preparation, test operations, and test data reduction efforts. These timelines also demonstrate how the historical tests fit within their overall vehicle development programs. Finally, the study was able to quantify approximate staffing levels during historic development programs. Using this study, the Flight and Integrated Test Office was able to evaluate the Ares I Integrated Vehicle Ground Vibration Test schedule and workforce budgets in light of the historical precedents to determine if the test had schedule or cost risks associated with it.

  8. Interferometer with bismuth silicon oxide crystal for vibration measurement

    Science.gov (United States)

    Zhang, Bin; Feng, Qibo; Liang, Yunfeng

    2016-09-01

    We present a small-amplitude, high-frequency vibration measurement system. This system is based on the reflective holographic grating in a crystal of bismuth silicon oxide without applying an external electric field. A quarter-wave plate is applied in the reference beam path, with a polarizer after the crystal, to fulfill the quadrature condition when no electric field is applied to the crystal. A reflection configuration is used to obtain a good overlapping of the interference beams, which increases the beam coupling. The factors that affect the diffraction efficiency, including the signal-to-reference-beam intensity ratio and the recording angle, has been investigated. The experimental results coincide with the theoretical results, and the optimal conditions are obtained. The results of comparisons of our system with the vibrometer TEMPO show that the nanometer vibrations of a piezoelectric transducer can be reliably detected.

  9. Used fuel rail shock and vibration testing options analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Steven B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Best, Ralph E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Klymyshyn, Nicholas A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jensen, Philip J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maheras, Steven J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-25

    The objective of the rail shock and vibration tests is to complete the framework needed to quantify loads of fuel assembly components that are necessary to guide materials research and establish a technical basis for review organizations such as the U.S. Nuclear Regulatory Commission (NRC). A significant body of experimental and numerical modeling data exists to quantify loads and failure limits applicable to normal conditions of transport (NCT) rail transport, but the data are based on assumptions that can only be verified through experimental testing. The test options presented in this report represent possible paths for acquiring the data that are needed to confirm the assumptions of previous work, validate modeling methods that will be needed for evaluating transported fuel on a case-by-case basis, and inform material test campaigns on the anticipated range of fuel loading. The ultimate goal of this testing is to close all of the existing knowledge gaps related to the loading of used fuel under NCT conditions and inform the experiments and analysis program on specific endpoints for their research. The options include tests that would use an actual railcar, surrogate assemblies, and real or simulated rail transportation casks. The railcar carrying the cradle, cask, and surrogate fuel assembly payload would be moved in a train operating over rail track modified or selected to impart shock and vibration forces that occur during normal rail transportation. Computer modeling would be used to help design surrogates that may be needed for a rail cask, a cask’s internal basket, and a transport cradle. The objective of the design of surrogate components would be to provide a test platform that effectively simulates responses to rail shock and vibration loads that would be exhibited by state-of-the-art rail cask, basket, and/or cradle structures. The computer models would also be used to help determine the placement of instrumentation (accelerometers and strain gauges

  10. Honeybee Colony Vibrational Measurements to Highlight the Brood Cycle.

    Directory of Open Access Journals (Sweden)

    Martin Bencsik

    Full Text Available Insect pollination is of great importance to crop production worldwide and honey bees are amongst its chief facilitators. Because of the decline of managed colonies, the use of sensor technology is growing in popularity and it is of interest to develop new methods which can more accurately and less invasively assess honey bee colony status. Our approach is to use accelerometers to measure vibrations in order to provide information on colony activity and development. The accelerometers provide amplitude and frequency information which is recorded every three minutes and analysed for night time only. Vibrational data were validated by comparison to visual inspection data, particularly the brood development. We show a strong correlation between vibrational amplitude data and the brood cycle in the vicinity of the sensor. We have further explored the minimum data that is required, when frequency information is also included, to accurately predict the current point in the brood cycle. Such a technique should enable beekeepers to reduce the frequency with which visual inspections are required, reducing the stress this places on the colony and saving the beekeeper time.

  11. Optical fiber sensors for measurement strain and vibration

    Science.gov (United States)

    Mikel, Bretislav; Helan, Radek; Buchta, Zdenek; Holík, Milan; Jelinek, Michal; Cip, Ondrej

    2015-01-01

    We present optical fiber sensors to measurement strain and vibration. The sensors are based on fiber Bragg gratings (FBG). We prepared construction of strain sensors with respect to its implementation on the outer surface of concrete structures and with compensation of potential temperature drifts. These sensors are projected with look forward to maximal elongation and strength which can be applied to the sensor. Each sensor contains two optical fibers with FBGs. One FBG is glued into the sensor in points of fixation which are in the line with mounting holes. This FBG is prestressed to half of measurement range, than the stretching and pressing can be measured simultaneously by one FBG. The second FBG is placed inside the sensor without fixation to measure temperature drifts. The sensor can be used to structure health monitoring. The sensors to measurement vibration are based on tilted fiber Bragg grating (TFBG) with fiber taper. The sensor uses the TFBG as a cladding modes reflector and fiber taper as a bend-sensitive recoupling member. The lower cladding modes (ghost), reflected from TFBG, is recoupled back into the fiber core via tapered fiber section. We focused on optimization of TFBG tilt angle to reach maximum reflection of the ghost and taper parameters. In this article we present complete set-up, optical and mechanical parameters of both types of sensors.

  12. Non-contact measurement of facial surface vibration patterns during singing by scanning laser Doppler vibrometer.

    Science.gov (United States)

    Kitamura, Tatsuya; Ohtani, Keisuke

    2015-01-01

    This paper presents a method of measuring the vibration patterns on facial surfaces by using a scanning laser Doppler vibrometer (LDV). The surfaces of the face, neck, and body vibrate during phonation and, according to Titze (2001), these vibrations occur when aerodynamic energy is efficiently converted into acoustic energy at the glottis. A vocalist's vibration velocity patterns may therefore indicate his or her phonatory status or singing skills. LDVs enable laser-based non-contact measurement of the vibration velocity and displacement of a certain point on a vibrating object, and scanning LDVs permit multipoint measurements. The benefits of scanning LDVs originate from the facts that they do not affect the vibrations of measured objects and that they can rapidly measure the vibration patterns across planes. A case study is presented herein to demonstrate the method of measuring vibration velocity patterns with a scanning LDV. The objective of the experiment was to measure the vibration velocity differences between the modal and falsetto registers while three professional soprano singers sang sustained vowels at four pitch frequencies. The results suggest that there is a possibility that pitch frequency are correlated with vibration velocity. However, further investigations are necessary to clarify the relationships between vibration velocity patterns and phonation status and singing skills.

  13. Experimental Design and Validation of an Accelerated Random Vibration Fatigue Testing Methodology

    OpenAIRE

    Yu Jiang(Center for Statistical and Theoretical Condensed Matter Physics, Zhejiang Normal University, Jinhua City, Zhejiang Province 321004, China); Gun Jin Yun; Li Zhao; Junyong Tao

    2015-01-01

    Novel accelerated random vibration fatigue test methodology and strategy are proposed, which can generate a design of the experimental test plan significantly reducing the test time and the sample size. Based on theoretical analysis and fatigue damage model, several groups of random vibration fatigue tests were designed and conducted with the aim of investigating effects of both Gaussian and non-Gaussian random excitation on the vibration fatigue. First, stress responses at a weak point of a ...

  14. ANALYSIS OF METHODS PROVIDING ACCURACY FOR TOOLS AND TECHNIQUES VIBRATION MEASUREMENT IN THE PROCESS OF MAINTAINING AIRWORTHINESS OF AIRCRAFT

    Directory of Open Access Journals (Sweden)

    Anatoliy Alexandrovich Bogoyavlenskiy

    2017-01-01

    Full Text Available On the basis of system approach the structure of the aviation activity areas on air transport related to monitoring and measurements of vibration parameters is presented.The technology analysis of laboratory tests of the onboard equipment control of vibration parameters is carried out. The issues related to ensuring the unity of measurements of vibration parameters are researched and summarized.While dealing with the works on metrological certification described in the article, the risks arising from aviation activity on air transport are taken into account. The certification methods of measuring channels of vibration parametersused on stands for testing GTE at the repairing of aircraft engines are developed. The methods are implemented when con- ducting initial and periodic certifications of test benches for twelve types of aircraft GTE in repair organizations. The reliability of the results of the conducted research due to the fact that they were carried out with the use of certified measure- ment equipment, included in the State register of measuring instruments. The research is conducted for a sufficiently high statistical confidence level with the boundaries 0.95. The studies have shown that running on air transport measurements of vibration parameters are metrologically se- cured, the unity of measurements and their traceability from the national primary reference to special measuring instru- ments, test equipment, and onboard controls of the aircraft is maintained.

  15. Preparation and measurement of TFBG based vibration sensor

    Science.gov (United States)

    Helan, Radek; Urban, Frantisek; Mikel, Bretislav; Urban, Frantisek

    2014-08-01

    We present vibration fiber sensor set up based on tilted fiber Bragg grating (TFBG) and fiber taper. The sensor uses the TFBG as a cladding modes reflector and fiber taper as a bend-sensitive recoupling member. The lower cladding modes (ghost), reflected from TFBG, is recoupled back into the fiber core via tapered fiber section. We focused on optimization of TFBG tilt angle to reach maximum reflection of the ghost and taper parameters. Comparative measurements were made using optical spectrum analyzer and superluminiscent diode as broadband light source. We present dependence between intensity of recoupled ghost mode and sensor deflection.

  16. First Experimental Results And Improvements On Profile Measurements With The Vibrating Wire Scanner

    CERN Document Server

    Arutunian, S G; Dobrovolski, N M; Mailian, M R; Soghoyan, H E; Vasiniuk, I E

    2003-01-01

    The paper presents the first experimental results of transverse profile scans using a wire scanner based on a vibrating wire (vibrating wire scanner - VWS). The measurements were performed at the injector electron beam (6 nA) of the Yerevan synchrotron. The beam profile information is obtained by measuring the wire natural oscillations that depend on the wire temperature. This first experiments on weak electron beam proved this new method as a very sensitive tool, even suitable for tail measurements. Additional, improvements were tested to overcome some problems connected with signal conditioning and signal transfer in the presence of electromagnetic noise. As a result the noises were neatly separated and reduced. A mathematical method for rejection of distorted data was developed. Experiments with the scanner at the PETRA accelerator at DESY are planned for measurements of beam tails.

  17. Single-camera high-speed stereo-digital image correlation for full-field vibration measurement

    Science.gov (United States)

    Yu, Liping; Pan, Bing

    2017-09-01

    A low-cost, easy-to-implement single-camera high-speed stereo-digital image correlation (SCHS stereo-DIC) method using a four-mirror adapter is proposed for full-field 3D vibration measurement. With the aid of the four-mirror adapter, surface images of calibration target and test objects can be separately imaged onto two halves of the camera sensor through two different optical paths. These images can be further processed to retrieve the vibration responses on the specimen surface. To validate the effectiveness and accuracy of the proposed approach, dynamic parameters including natural frequencies, damping ratios and mode shapes of a rectangular cantilever plate were extracted from the directly measured vibration responses using the established system. The results reveal that the SCHS stereo-DIC is a simple, practical and effective technique for vibration measurements and dynamic parameters identification.

  18. High Frequency Vibration Based Fatigue Testing of Developmental Alloys

    Science.gov (United States)

    Holycross, Casey M.; Srinivasan, Raghavan; George, Tommy J.; Tamirisakandala, Seshacharyulu; Russ, Stephan M.

    Many fatigue test methods have been previously developed to rapidly evaluate fatigue behavior. This increased test speed can come at some expense, since these methods may require non-standard specimen geometry or increased facility and equipment capability. One such method, developed by George et al, involves a base-excited plate specimen driven into a high frequency bending resonant mode. This resonant mode is of sufficient frequency (typically 1200 to 1700 Hertz) to accumulate 107 cycles in a few hours. One of the main limitations of this test method is that fatigue cracking is almost certainly guaranteed to be surface initiated at regions of high stress. This brings into question the validity of the fatigue test results, as compared to more traditional uniaxial, smooth-bar testing, since high stresses are subjecting only a small volume to fatigue damage. This limitation also brings into question the suitability of this method to screen developmental alloys, should their initiation life be governed by subsurface flaws. However, if applicable, the rapid generation of fatigue data using this method would facilitate faster design iterations, identifying more quickly, material and manufacturing process deficiencies. The developmental alloy used in this study was a powder metallurgy boron-modified Ti-6Al-4V, a new alloy currently being considered for gas turbine engine fan blades. Plate specimens were subjected to fully reversed bending fatigue. Results are compared with existing data from commercially available Ti-6Al-4V using both vibration based and more traditional fatigue test methods.

  19. Sensor Placement Optimization of Vibration Test on Medium-Speed Mill

    Directory of Open Access Journals (Sweden)

    Lihua Zhu

    2015-01-01

    Full Text Available Condition assessment and decision making are important tasks of vibration test on dynamic machines, and the accuracy of dynamic response can be achieved by the sensors placed on the structure reasonably. The common methods and evaluation criteria of optimal sensor placement (OSP were summarized. In order to test the vibration characteristic of medium-speed mill in the thermal power plants, the optimal placement of 12 candidate measuring points in X, Y, and Z directions on the mill was discussed for different targeted modal shapes, respectively. The OSP of medium-speed mill was conducted using the effective independence method (EfI and QR decomposition algorithm. The results showed that the order of modal shapes had an important influence on the optimization results. The difference of these two methods on the sensor placement optimization became smaller with the decrease of the number of target modes. The final scheme of OSP was determined based on the optimal results and the actual test requirements. The field test results were basically consistent with the finite element analysis results, which indicated the sensor placement optimization for vibration test on the medium-speed mill was feasible.

  20. Sensor design for outdoor racing bicycle field testing for human vibration comfort evaluation

    Science.gov (United States)

    Vanwalleghem, Joachim; De Baere, Ives; Loccufier, Mia; Van Paepegem, Wim

    2013-09-01

    This paper is concerned with the vibrational comfort evaluation of the cyclist when cycling a rough surface. Outdoor comfort tests have so far only been done through instrumenting the bicycle with accelerometers. This work instruments a racing bicycle with custom-made contact force sensors and velocity sensors to acquire human comfort through the absorbed power method. Comfort evaluation is assessed at the hand-arm and seat interface of the cyclist with the bicycle. By means of careful finite-element analysis for designing the force gauges at the handlebar and the seat combined with precise calibration of both force and velocity sensors, all sensors have proven to work properly. Initial field tests are focused on the proper functioning of the designed sensors and their suitability for vibration comfort measurements. Tests on a cobblestone road reveal that the outcome of the absorbed power values is within the same range as those from laboratory tests found in the literature. This sensor design approach for outdoor testing with racing bicycles may give a new interpretation on evaluating the cyclist's comfort since the vibrational load is not only quantified in terms of acceleration but also in terms of force and velocity at the bicycle-cyclist contact points.

  1. Thermal Testing Measurements Report

    Energy Technology Data Exchange (ETDEWEB)

    R. Wagner

    2002-09-26

    The purpose of the Thermal Testing Measurements Report (Scientific Analysis Report) is to document, in one report, the comprehensive set of measurements taken within the Yucca Mountain Project Thermal Testing Program since its inception in 1996. Currently, the testing performed and measurements collected are either scattered in many level 3 and level 4 milestone reports or, in the case of the ongoing Drift Scale Test, mostly documented in eight informal progress reports. Documentation in existing reports is uneven in level of detail and quality. Furthermore, while all the data collected within the Yucca Mountain Site Characterization Project (YMP) Thermal Testing Program have been submitted periodically to the Technical Data Management System (TDMS), the data structure--several incremental submittals, and documentation formats--are such that the data are often not user-friendly except to those who acquired and processed the data. The documentation in this report is intended to make data collected within the YMP Thermal Testing Program readily usable to end users, such as those representing the Performance Assessment Project, Repository Design Project, and Engineered Systems Sub-Project. Since either detailed level 3 and level 4 reports exist or the measurements are straightforward, only brief discussions are provided for each data set. These brief discussions for different data sets are intended to impart a clear sense of applicability of data, so that they will be used properly within the context of measurement uncertainty. This approach also keeps this report to a manageable size, an important consideration because the report encompasses nearly all measurements for three long-term thermal tests. As appropriate, thermal testing data currently residing in the TDMS have been reorganized and reformatted from cumbersome, user-unfriendly Input-Data Tracking Numbers (DTNs) into a new set of Output-DTNs. These Output-DTNs provide a readily usable data structure

  2. Design of a Maglev Vibration Test Platform for the Research of Maglev Vehicle-girder Coupled Vibration Problem

    Directory of Open Access Journals (Sweden)

    Zhou Danfeng

    2017-01-01

    Full Text Available The maglev vehicle-girder coupled vibration problem has been encountered in many maglev test or commercial lines, which significantly degrade the performance of the maglev train. In previous research on the principle of the coupled vibration problem, it has been discovered that the fundamental model of the maglev girder can be simplified as a series of mass-spring resonators of different but related resonance frequencies, and that the stability of the vehicle-girder coupled system can be investigated by separately examining the stability of each mass-spring resonator – electromagnet coupled system. Based on this conclusion, a maglev test platform, which includes a single electromagnetic suspension control system, is built for experimental study of the coupled vibration problem. The guideway of the test platform is supported by a number of springs so as to change its flexibility. The mass of the guideway can also be changed by adjusting extra weights attached to it. By changing the flexibility and mass of the guideway, the rules of the maglev vehicle-girder coupled vibration problem are to be examined through experiments, and related theory on the vehicle-girder self-excited vibration proposed in previous research is also testified.

  3. An Innovative Transponder-Based Interferometric Radar for Vibration Measurements

    Science.gov (United States)

    Coppi, F.; Cerutti, A.; Farina, P.; De Pasquale, G.; Novembrini, G.

    2010-05-01

    Ground-based radar interferometry has recently emerged as an innovative technology of remote sensing, able to accurately measure the static or dynamic displacement of several points of a structure. This technique in the last couple of years has been applied to different types of structures, such as bridges, towers and chimneys. This paper presents a prototype system developed by IDS, originally aimed at measuring the structural vibrations of helicopter rotor blades, based on an interferometric technique and constituted by combination of a radar sensor and a series of transponders installed on the target structure. The main advantages of this solution with respect to conventional interferometric radars, are related to the increased spatial resolution of the system, provided by the possibility to discriminate different transponders installed within the same resolution cell of the radar sensor, and to the reduction of the ambient noise (e.g. multi-path) on the radar measurement. The first feature allows the use of the microwave technology even on target areas with limited dimensions, such as industrial facilities, while the second aspect may extend the use of radar interferometric systems to complex scenarios, where multi-reflections are expected due to the presence of natural targets with high reflectivity to the radar signal. In the paper, the system and its major characteristics are first described; subsequently, application to the measurement of ambient vibration response of a lab set-up is summarized. Then the data acquired on a rotating mock-up are reported and analyzed to identify natural frequencies and mode shapes of the investigated structure.

  4. Accelerated Vibration Test of coolant channel components under simulated flow induced excitation

    Energy Technology Data Exchange (ETDEWEB)

    Meher, K.K., E-mail: kkmeher@barc.gov.in; Pandey, J.K., E-mail: jkpandey@barc.gov.in; RamaRao, A., E-mail: arr@barc.gov.in

    2016-04-15

    Highlights: • The present study deals with the issue of loosening of the nut in the Grayloc joint due to flow induced vibration and fret in the feeder pipes in contact due to differential creep in the neighbouring channels. • Accelerated test has been done on the Grayloc joint on simulated flow induced vibration to study the effect of loosening of the nut. • In the present accelerated test, the component has not been led to failure (loosening) and an estimation of its service life has been approached based on the severity of test. • The inverse square law approach based on PSD comparison for severity of test have been used to correlate the actual operational hours and the Laboratory test hours to verify the loosening of the Grayloc nut for the present study. • By inverse power law approach, the minimum number of reactor-hours equivalent to 80 h of testing is 46,080 h (5.26 full power years). - Abstract: The present study outlines the accelerated testing procedure of a Grayloc joint assembly for possible loosening of its nut due to flow induced vibration. The concern of the Grayloc nut getting loosened in the absence of a lock nut due to flow induced vibration and the resulting fretting in the feeder pipes in contact due to differential creep in the neighbouring channels has been addressed here. The severity of the test was decided based on actual site measurement under different operating flow conditions and comparison of power spectral density (PSD). The laboratory test results were extrapolated for estimation of life of the component under operating condition using inverse power law approach. The uniqueness of the accelerated test is that the component under test has not been led to failure for assessing its operating life unlike conventional accelerated testing. From the tests and analysis, it was deduced that 80 h of accelerated laboratory testing was equivalent to 5.26 full power years (46,080 h) of the reactor operating life. The test duration was

  5. Vibration measurement on large structures by microwave remote sensing

    Science.gov (United States)

    Gentile, Carmelo

    2012-06-01

    Recent advances in radar techniques and systems have led to the development of microwave interferometers, suitable for the non-contact vibration monitoring of large structures. In the first part of the paper, the main techniques adopted in microwave remote sensing are described, so that advantages and potential issues of these techniques are addressed and discussed. Subsequently, the results of past and recent tests of full-scale structures are presented, in order to demonstrate the reliability and accuracy of microwave remote sensing; furthermore, the simplicity of use of the radar technology is exemplified in practical cases, where the access with conventional techniques is uneasy or even hazardous, such as the stay cables of cable-stayed bridges.

  6. Vibration measurements of high-heat-load monochromators for DESY PETRA III extension

    Energy Technology Data Exchange (ETDEWEB)

    Kristiansen, Paw, E-mail: paw.kristiansen@fmb-oxford.com [FMB Oxford Ltd, Unit 1 Ferry Mills, Oxford OX2 0ES (United Kingdom); Horbach, Jan; Döhrmann, Ralph; Heuer, Joachim [DESY, Deutsches Elektronen-Synchrotron Hamburg, Notkestrasse 85, 22607 Hamburg (Germany)

    2015-05-09

    Vibration measurements of a cryocooled double-crystal monochromator are presented. The origins of the vibrations are identified. The minimum achieved vibration of the relative pitch between the two crystals is 48 nrad RMS and the minimum achieved absolute vibration of the second crystal is 82 nrad RMS. The requirement for vibrational stability of beamline optics continues to evolve rapidly to comply with the demands created by the improved brilliance of the third-generation low-emittance storage rings around the world. The challenge is to quantify the performance of the instrument before it is installed at the beamline. In this article, measurement techniques are presented that directly and accurately measure (i) the relative vibration between the two crystals of a double-crystal monochromator (DCM) and (ii) the absolute vibration of the second-crystal cage of a DCM. Excluding a synchrotron beam, the measurements are conducted under in situ conditions, connected to a liquid-nitrogen cryocooler. The investigated DCM utilizes a direct-drive (no gearing) goniometer for the Bragg rotation. The main causes of the DCM vibration are found to be the servoing of the direct-drive goniometer and the flexibility in the crystal cage motion stages. It is found that the investigated DCM can offer relative pitch vibration down to 48 nrad RMS (capacitive sensors, 0–5 kHz bandwidth) and absolute pitch vibration down to 82 nrad RMS (laser interferometer, 0–50 kHz bandwidth), with the Bragg axis brake engaged.

  7. Force limited vibration testing: an evaluation of the computation of C2 for real load and probabilistic source

    NARCIS (Netherlands)

    Wijker, Jacob J; de Boer, Andries; Ellenbroek, Marcellinus Hermannus Maria

    2015-01-01

    To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications. Besides the random vibration specification, the total mass and the turn-over frequency of the load (test item), is a

  8. Vibration Measurements of the Wire Scanner for the SwissFEL

    Science.gov (United States)

    Mohanmurthy, Prajwal; Orlandi, Gian Luca; Ischebeck, Rasmus

    2012-10-01

    The SwissFEL is an X-Ray (0.1nm-7nm) Free Electron Laser user facility which is being planned for the Paul Scherrer Institute in Switzerland. At the SwissFEL, view screens will be used to monitor the transverse profile of the electron beam. Wire scanners are also to be employed as the high beam densities of the electron beam will hamper the standard diagnostics. Wire scanners will be tested on the 250MeV SwissFEL Injector Test Facility with a 200pC electron beam whose transverse diameter is typically about 100 μm. The portion of the electron beam that is unscattered from the wire will be measured to determine the beam loss. The wire scanner is driven by a stepper motor and the wire position is obtained using a digital encoder. The wire scanner may be susceptible to vibrations which may lead to erroneous encoder positions. The variation in position of the wire, with the motor being driven at a number of different speeds, was studied using a concentrator back-light and a 1MPixel high speed camera. The camera was triggered using the 10Hz SwissFEL Injector Test Facility timing signal. A typical vibration with an amplitude of about 0.5μm was observed. Dependence of vibration of the wire on the motor driving speed and ways of optimizing the operational parameters.

  9. AVM branch vibration test equipment; Moyens d`essais vibratoires au sein du departement AMV

    Energy Technology Data Exchange (ETDEWEB)

    Anne, J.P.

    1995-12-31

    An inventory of the test equipment of the AVM Branch ``Acoustic and Vibratory Mechanics Analysis Methods`` group has been undertaken. The purpose of this inventory is to enable better acquaintance with the technical characteristics of the equipment, providing an accurate definition of their functionalities, ad to inform potential users of the possibilities and equipment available in this field. The report first summarizes the various experimental surveys conduced. Then, using the AVM equipment database to draw up an exhaustive list of available equipment, it provides a full-scope picture of the vibration measurement systems (sensors, conditioners and exciters) and data processing resources commonly used on industrial sites and in laboratories. A definition is also given of a mobile test unit, called `shelter`, and a test bench used for the testing and performance rating of the experimental analysis methods developed by the group. The report concludes with a description of two fixed installations: - the calibration bench ensuring the requisite quality level for the vibration measurement systems ; - the training bench, whereby know-how acquired in the field in the field of measurement and experimental analysis processes is made available to others. (author). 27 refs., 15 figs., 2 appends.

  10. The Health Monitoring Method of Concrete Dams Based on Ambient Vibration Testing and Kernel Principle Analysis

    Directory of Open Access Journals (Sweden)

    Lin Cheng

    2015-01-01

    Full Text Available The ambient vibration testing (AVT measurement of concrete dams on full-scale can show the practical dynamic properties of structure in the operation state. For most current researches, the AVT data is generally analyzed to identify the structural vibration characteristics, that is, modal parameters. The identified modal parameters, which can provide the global damage information or the damage location information of structure, can be used as the basis of structure health monitoring. Therefore, in this paper, the health monitoring method of concrete dams based on the AVT is studied. The kernel principle analysis (KPCA based method is adopted to eliminate the effect of environmental variables and monitor the health of dam under varying environments. By taking full advantage of the AVT data obtained from vibration observation system of dam, the identification capabilities and the warning capabilities of structural damage can be improved. With the simulated AVT data of the numerical model of a concrete gravity dam and the measured AVT data of a practical engineering, the performance of the dam health monitoring method proposed in this paper is verified.

  11. Vibration measurement-based simple technique for damage detection of truss bridges: A case study

    Directory of Open Access Journals (Sweden)

    Sudath C. Siriwardane

    2015-10-01

    Full Text Available The bridges experience increasing traffic volume and weight, deteriorating of components and large number of stress cycles. Therefore, assessment of the current condition of steel railway bridges becomes necessary. Most of the commonly available approaches for structural health monitoring are based on visual inspection and non-destructive testing methods. The visual inspection is unreliable as those depend on uncertainty behind inspectors and their experience. Also, the non-destructive testing methods are found to be expensive. Therefore, recent researches have noticed that dynamic modal parameters or vibration measurement-based structural health monitoring methods are economical and may also provide more realistic predictions to damage state of civil infrastructure. Therefore this paper proposes a simple technique to locate the damage region of railway truss bridges based on measured modal parameters. The technique is discussed with a case study. Initially paper describes the details of considered railway bridge. Then observations of visual inspection, material testing and in situ load testing are discussed under separate sections. Development of validated finite element model of the considered bridge is comprehensively discussed. Hence, variations of modal parameters versus position of the damage are plotted. These plots are considered as the main reference for locating the damage of the railway bridge in future periodical inspection by comparing the measured corresponding modal parameters. Finally the procedure of periodical vibration measurement and damage locating technique are clearly illustrated.

  12. Non-contact measurement of facial surface vibration patterns during singing by scanning laser Doppler vibrometer

    Directory of Open Access Journals (Sweden)

    Tatsuya eKitamura

    2015-11-01

    Full Text Available This paper presents a method of measuring the vibration patterns onfacial surfaces by using a scanning laser Doppler vibrometer(LDV. The surfaces of the face, neck, and body vibrate duringphonation and, according to Titze (2001, these vibrations occur whenaerodynamic energy is efficiently converted into acoustic energy atthe glottis. A vocalist's vibration velocity patterns may thereforeindicate his or her phonatory status or singing skills. LDVs enablelaser-based non-contact measurement of the vibration velocity anddisplacement of a certain point on a vibrating object, and scanningLDVs permit multipoint measurements. The benefits of scanning LDVsoriginate from the facts that they do not affect the vibrations ofmeasured objects and that they can rapidly measure the vibrationpatterns across planes. A case study is presented herein todemonstrate the method of measuring vibration velocity patterns with ascanning LDV. The objective of the experiment was to measure thevibration velocity differences between the modal and falsettoregisters while three professional soprano singers sang sustainedvowels at four pitch frequencies. The results suggest that there is apossibility that pitch frequency are correlated with vibrationvelocity. However, further investigations are necessary to clarify therelationships between vibration velocity patterns and phonation statusand singing skills.

  13. The effects of whole-body vibration on the Wingate test for anaerobic power when applying individualized frequencies.

    Science.gov (United States)

    Surowiec, Rachel K; Wang, Henry; Nagelkirk, Paul R; Frame, Jeffrey W; Dickin, D Clark

    2014-07-01

    Recently, individualized frequency (I-Freq) has been introduced with the notion that athletes may elicit a greater reflex response at differing levels (Hz) of vibration. The aim of the study was to evaluate acute whole-body vibration as a feasible intervention to increase power in trained cyclists and evaluate the efficacy of using I-Freq as an alternative to 30Hz, a common frequency seen in the literature. Twelve highly trained, competitive male cyclists (age, 29.9 ± 10.0 years; body height, 175.4 ± 7.8 cm; body mass, 77.3 ± 13.9 kg) participated in the study. A Wingate test for anaerobic power was administered on 3 occasions: following a control of no vibration, 30 Hz, or I-freq. Measures of peak power, average power (AP), and the rate of fatigue were recorded and compared with the vibration conditions using separate repeated measures analysis of variance. Peak power, AP, and the rate of fatigue were not significantly impacted by either the 30 Hz or I-Freq vibration interventions (p > 0.05). Given the trained status of the individuals in this study, the ability to elicit an acute response may have been muted. Future studies should further refine the vibration parameters used and assess changes in untrained or recreationally trained populations.

  14. Integrated Vibration and Acceleration Testing to Reduce Payload Mass, Cost and Mission Risk Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a capability to provide integrated acceleration, vibration, and shock testing using a state-of-the-art centrifuge, allowing for the test of...

  15. Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR

    Science.gov (United States)

    Iida, Daisuke; Toge, Kunihiro; Manabe, Tetsuya

    2017-07-01

    All-fiber distributed vibration sensing is attracting attention in relation to structural health monitoring because it is cost effective, offers high coverage of the monitored area and can detect various structural problems. And in particular the demand for high-speed vibration sensing operating at more than 10 kHz has increased because high frequency vibration indicates high energy and severe trouble in the monitored object. Optical fiber vibration sensing with phase-sensitive optical time domain reflectometry (phase-OTDR) has long been studied because it can be used for distributed vibration sensing in optical fiber. However, pulse reflectometry such as OTDR cannot measure high-frequency vibration whose cycle is shorter than the repetition time of the OTDR. That is, the maximum detectable frequency depends on fiber length. In this paper, we describe a vibration sensing technique with frequency-multiplexed OTDR that can detect the entire distribution of a high-frequency vibration thus allowing us to locate a high-speed vibration point. We can measure the position, frequency and dynamic change of a high-frequency vibration whose cycle is shorter than the repetition time. Both frequency and position are visualized simultaneously for a 5-km fiber with an 80-kHz frequency response and a 20-m spatial resolution.

  16. High frequent total station measurements for the monitoring of bridge vibrations

    Science.gov (United States)

    Lienhart, Werner; Ehrhart, Matthias; Grick, Magdalena

    2017-03-01

    Robotic total stations (RTS) are frequently used for the measurement of temperature induced bridge deformations or during load testing of bridges. In experimental setups, total stations have also been used for the measurement of dynamic bridge deformations. However, with standard configurations the measurement rate is not constant and on average an update rate of 7-10Hz can be achieved. This is not sufficient for the vibration monitoring of bridges considering their natural frequencies which are also in the same range. In this paper, we present different approaches to overcome these problems. In the first two approaches we demonstrate how the measurement rate to prisms can be increased to 20Hz to determine vertical deformations of bridges. Critical aspects like the measurement resolution of the automated target tracking and the correct sequence of steering commands are discussed. In another approach we demonstrate how vertical bridge vibrations can be measured using an image assisted total station (IATS) and corresponding processing techniques. The advantage of image-based methods is that structural features of a bridge like bolts can be used as targets. Therefore, no expensive prisms have to be mounted and access to the bridge is not required. All approaches are verified by laboratory investigations and their suitability is proven in a field experiment on a 74m long footbridge. In this field experiment the natural frequencies derived from the total station measurements are compared to the results of accelerometer measurements.

  17. Somatosensory Nerve Function, Measured by Vibration Thresholds in Asymptomatic Tennis Players: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Sarah Harrisson

    2015-06-01

    Full Text Available Tennis players are vulnerable to injury in their upper limbs due to the repetitive exposure to racket vibrations and torsional forces during play, leading to musculoskeletal adaptations in the dominant arm including some evidence of changes in nerve function (Colak et al., 2004. Vibration is a sensitive technique for diagnosing mild pathology in clinically asymptomatic participant groups. It has been used in participants with various musculoskeletal disorders (Laursen et al., 2006 (Tucker et al., 2007 showing widespread and bilateral increases in vibration threshold. Tests of somatosensory function by vibration will be abnormal prior to changes in nerve conduction velocity. Thus vibration testing in a sub-clinical group of participants may a more sensitive measure of nerve function compared to nerve conduction by electrodiagnostic testing. The aim of this pilot study was to conduct an exploratory investigation to establish whether tennis players have a reduction in their somatosensory nerve function compared to non- tennis playing controls. It also set out to compare the somatosensory nerve function of the dominant compared to the non-dominant upper limb in tennis players. Healthy tennis players (males, n = 8, females, n = 2, mean age 22 years and control non- tennis playing volunteers (males, n = 6, females, n = 4, mean age 22 years were recruited on an opportunistic basis from a tennis centre in London UK. Participants were excluded if they had any history of neurological impairment, serious injury or fracture or any arthritic condition affecting the upper limbs, cervical or thoracic spine. Control participants were excluded if it was deemed that they played a sport where there was exposure to repetitive use of the upper body. Ethical approval was obtained from the University College London Ethics Committee and all participants gave written informed consent. A preliminary clinical examination was carried out on all participants followed by

  18. Solar Ultraviolet Magnetograph Investigation (SUMI) Component Responses to Payload Vibration Testing

    Science.gov (United States)

    Hunt, Ronald A.

    2011-01-01

    Vibration testing of SUMI was performed at both the experiment and payload levels. No accelerometers were installed inside the experiment during testing, but it is certain that component responses were very high. The environments experienced by optical and electronic components in these tests is an area of ongoing concern. The analysis supporting this presentation included a detailed finite element model of the SUMI experiment section, the dynamic response of which, correlated well with accelerometer measurements from the testing of the experimental section at Marshall Space Flight Center. The relatively short timeframe available to complete the task and the limited design information available was a limitation on the level of detail possible for the non-experiment portion of the model. However, since the locations of interest are buried in the experimental section of the model, the calculated responses should be enlightening both for the development of test criteria and for guidance in design.

  19. A new compound control method for sine-on-random mixed vibration test

    Science.gov (United States)

    Zhang, Buyun; Wang, Ruochen; Zeng, Falin

    2017-09-01

    Vibration environmental test (VET) is one of the important and effective methods to provide supports for the strength design, reliability and durability test of mechanical products. A new separation control strategy was proposed to apply in multiple-input multiple-output (MIMO) sine on random (SOR) mixed mode vibration test, which is the advanced and intensive test type of VET. As the key problem of the strategy, correlation integral method was applied to separate the mixed signals which included random and sinusoidal components. The feedback control formula of MIMO linear random vibration system was systematically deduced in frequency domain, and Jacobi control algorithm was proposed in view of the elements, such as self-spectrum, coherence, and phase of power spectral density (PSD) matrix. Based on the excessive correction of excitation in sine vibration test, compression factor was introduced to reduce the excitation correction, avoiding the destruction to vibration table or other devices. The two methods were synthesized to be applied in MIMO SOR vibration test system. In the final, verification test system with the vibration of a cantilever beam as the control object was established to verify the reliability and effectiveness of the methods proposed in the paper. The test results show that the exceeding values can be controlled in the tolerance range of references accurately, and the method can supply theory and application supports for mechanical engineering.

  20. Measurement of mechanical quality factors of polymers in flexural vibration for high-power ultrasonic application.

    Science.gov (United States)

    Wu, Jiang; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2016-07-01

    A method for measuring the mechanical quality factor (Q factor) of materials in large-amplitude flexural vibrations was devised on the basis of the original definition of the Q factor. The Q factor, the ratio of the reactive energy to the dissipated energy, was calculated from the vibration velocity distribution. The bar thickness was selected considering the effect of the thickness on the estimation error. In the experimental setup, a 1-mm-thick polymer-based bar was used as a sample and fixed on the top of a longitudinal transducer. Using transducers of different lengths, flexural waves in the frequency range of 20-90kHz were generated on the bar. The vibration strain in the experiment reached 0.06%. According to the Bernoulli-Euler model, the reactive energy and dissipated energy were estimated from the vertical velocity distribution on the bar, and the Q factors were measured as the driving frequency and strain were varied. The experimental results showed that the Q factors decrease as the driving frequencies and strains increase. At a frequency of 28.30kHz, the Q factor of poly(phenylene sulfide) (PPS) reached approximately 460 when the strain was smaller than 0.005%. PPS exhibited a much higher Q factor than the other tested polymers, which implies that it is a potentially applicable material as the elastomer for high-power ultrasonic devices. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Distributed vibration sensing on optical fibre: field testing in borehole seismic applications

    Science.gov (United States)

    Frignet, B.; Hartog, A. H.; Mackie, D.; Kotov, O. I.; Liokumovich, L. B.

    2014-05-01

    We describe the measurement of seismic waves in a borehole using distributed vibration sensing conveyed on wireline cable. The optical measurement is compared directly with the results of a multi-level borehole seismic survey with conventional electrical accelerometers.

  2. Force limited random vibration testing: the computation of the semi-empirical constant C2 for a real test article and unknown supporting structure

    NARCIS (Netherlands)

    Wijker, Jacob J; Ellenbroek, Marcellinus Hermannus Maria; de Boer, Andries

    2015-01-01

    To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications. Besides the random vibration specification, the total mass and the turn-over frequency of the test article (load),

  3. Integrating Oil Debris and Vibration Measurements for Intelligent Machine Health Monitoring. Degree awarded by Toledo Univ., May 2002

    Science.gov (United States)

    Dempsey, Paula J.

    2003-01-01

    A diagnostic tool for detecting damage to gears was developed. Two different measurement technologies, oil debris analysis and vibration were integrated into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual measurement technologies. This diagnostic tool was developed and evaluated experimentally by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Rig. An oil debris sensor and the two vibration algorithms were adapted as the diagnostic tools. An inductance type oil debris sensor was selected for the oil analysis measurement technology. Gear damage data for this type of sensor was limited to data collected in the NASA Glenn test rigs. For this reason, this analysis included development of a parameter for detecting gear pitting damage using this type of sensor. The vibration data was used to calculate two previously available gear vibration diagnostic algorithms. The two vibration algorithms were selected based on their maturity and published success in detecting damage to gears. Oil debris and vibration features were then developed using fuzzy logic analysis techniques, then input into a multi sensor data fusion process. Results show combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spur gears. As a result of this research, this new diagnostic tool has significantly improved detection of gear damage in the NASA Glenn Spur Gear Fatigue Rigs. This research also resulted in several other findings that will improve the development of future health monitoring systems. Oil debris analysis was found to be more reliable than vibration analysis for detecting pitting fatigue failure of gears and is capable of indicating damage progression. Also, some vibration algorithms are as sensitive to operational effects as they

  4. The Shock and Vibration Bulletin. Part 4. Vibration Testing, Instrumentation, Loads and Environments, Tracked Vehicles

    Science.gov (United States)

    1978-09-01

    distribution. . % logic. Clock speeds were kept very low, extensive buf- fering and shielding were used, and capacitive filters were This idea was...As Lorisciousness of the • . o a load from a shorted to open circuit, and capacitive to concept grows. it is expected that the control systems...transducer, and an angular velocity vibrometer . for collecting a broad base of aircraft angular Their applications will be discussed in light vibration

  5. MEASUREMENT OF VIBRATION PARAMETERS OF THE WAVEGUIDE FOR MEDICAL TREATMENT

    Directory of Open Access Journals (Sweden)

    A. Palevicius

    2011-01-01

    Full Text Available Methods allowing investigation of vibrations of the stainless steel waveguide by combining noncontact techniques with the state-of-the-art multiphysics software are developed. The vibrations of the waveguide, used in nowadays surgery are examined by the aids of the holographic interferometry technique, vibrometer based on Doppler shift of backscattered laser light and the virtual model of the waveguide is created by the Comsol Multiphysics software. 

  6. Analysis of In-Flight Vibration Measurements from Helicopter Transmissions

    Science.gov (United States)

    Mosher, Marianne; Huff, Ed; Barszcz

    2004-01-01

    In-flight vibration measurements from the transmission of an OH-58C KIOWA are analyzed. In order to understand the effect of normal flight variation on signal shape, the first gear mesh components of the planetary gear system and bevel gear are studied in detail. Systematic patterns occur in the amplitude and phase of these signal components with implications for making time synchronous averages and interpreting gear metrics in flight. The phase of the signal component increases as the torque increases; limits on the torque range included in a time synchronous average may now be selected to correspond to phase change limits on the underlying signal. For some sensors and components, an increase in phase variation and/or abrupt change in the slope of the phase dependence on torque are observed in regions of very low amplitude of the signal component. A physical mechanism for this deviation is postulated. Time synchronous averages should not be constructed in torque regions with wide phase variation.

  7. Measuring ultra-sonic in-plane vibrations with the scanning confocal heterodyne interferometer

    Science.gov (United States)

    Rembe, C.; Ur-Rehman, F.; Heimes, F.; Boedecker, S.; Dräbenstedt, A.

    2010-05-01

    The advanced progress in miniaturization technologies of mechanical systems and structures has led to a growing demand of measurement tools for three-dimensional vibrations at ultra-high frequencies. Particularly radio-frequency, micro-electro-mechanical (RF-MEM) technology is a planar technology and, thus, the resonating structures are much larger in lateral dimensions compared to the height. Consequently, most ultra-high-frequency devices have larger inplane vibration amplitudes than out-of-plane amplitudes. Recently, we have presented a heterodyne interferometer for vibration frequencies up to 1.2 GHz. In this paper we demonstrate a new method to extract broad-bandwidth spectra of in-plane vibrations with our new heterodyne interferometer. To accomplish this goal we have combined heterodyne interferometry, scanning vibrometry, edge-knife technique, amplitude demodulation, and digital-image processing. With our experimental setup we can realize in-plane vibration measurements up to 600 MHz. We will also show our first measurements of a broad-bandwidth, in-plane vibration around 200 MHz. Our in-plane and out-of-plane vibration measurements are phase-correlated and, therefore, our technique is suitable for broad-bandwidth, full-3D vibration measurements of ultrasonic microdevices.

  8. Force Limiting Vibration Tests Evaluated from both Ground Acoustic Tests and FEM Simulations of a Flight Like Vehicle System Assembly

    Science.gov (United States)

    Smith, Andrew; LaVerde, Bruce; Waldon, James; Hunt, Ron

    2014-01-01

    Marshall Space Flight Center has conducted a series of ground acoustic tests with the dual goals of informing analytical judgment, and validating analytical methods when estimating vibroacoustic responses of launch vehicle subsystems. The process of repeatedly correlating finite element-simulated responses with test-measured responses has assisted in the development of best practices for modeling and post-processing. In recent work, force transducers were integrated to measure interface forces at the base of avionics box equipment. Other force data was indirectly measured using strain gauges. The combination of these direct and indirect force measurements has been used to support and illustrate the advantages of implementing the Force Limiting approach for equipment qualification tests. The comparison of force response from integrated system level tests to measurements at the same locations during component level vibration tests provides an excellent illustration. A second comparison of the measured response cases from the system level acoustic tests to finite element simulations has also produced some principles for assessing the suitability of Finite Element Models (FEMs) for making vibroacoustics estimates. The results indicate that when FEM models are employed to guide force limiting choices, they should include sufficient detail to represent the apparent mass of the system in the frequency range of interest.

  9. Comparison of Vocal Vibration-Dose Measures for Potential-Damage Risk Criteria

    Science.gov (United States)

    Titze, Ingo R.; Hunter, Eric J.

    2015-01-01

    Purpose: School-teachers have become a benchmark population for the study of occupational voice use. A decade of vibration-dose studies on the teacher population allows a comparison to be made between specific dose measures for eventual assessment of damage risk. Method: Vibration dosimetry is reformulated with the inclusion of collision stress.…

  10. Measurement of Translational and Angular Vibration Using a Scanning Laser Doppler Vibrometer

    Directory of Open Access Journals (Sweden)

    A.B. Stanbridge

    1996-01-01

    Full Text Available An experimental procedure for obtaining angular and translational vibration in one measurement, using a continuously scanning laser Doppler vibrometer, is described. Sinusoidal scanning, in a straight line, enables one angular vibration component to be measured, but by circular scanning, two principal angular vibrations and their directions can be derived directly from the frequency response sidebands. Examples of measurements on a rigid cube are given. Processes of narrow-band random excitation and modal analysis are illustrated with reference to measurements on a freely suspended beam. Sideband frequency response references are obtained by using multiplied excitation force and mirror-drive signals.

  11. Measurement of Mechatronic Property of Biological Gel with Micro-Vibrating Electrode at Ultrasonic Frequency

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2008-10-01

    Full Text Available A measurement system has been designed with a micro-vibrating electrode at ultrasonic frequency to measure local impedance of biological gel in vitro. The designed system consists of two electrodes, where one of the electrodes vibrates with a piezoelectric actuator. The component of variation at impedance between two electrodes with vibration of one electrode is analyzed at the corresponding spectrum. The manufactured system was applied to measure impedance of a physiological saline solution, a potassium chloride solution, a dextran aqueous solution, and an egg. The experimental results show that the designed system is effective to measure local mechatronic property of biological gel.

  12. The choice of boundary conditions and mesh for scaffolding FEM model on the basis of natural vibrations measurements

    Science.gov (United States)

    Cyniak, Patrycja; Błazik-Borowa, Ewa; Szer, Jacek; Lipecki, Tomasz; Szer, Iwona

    2018-01-01

    Scaffolding is a specific construction with high susceptibility to low frequency vibrations. The numerical model of scaffolding presented in this paper contains real imperfections received from geodetic measurements of real construction. Boundary conditions were verified on the basis of measured free vibrations. A simulation of a man walking on penultimate working level as a dynamic load variable in time was made for verified model. The paper presents procedure for a choice of selected parameters of the scaffolding FEM model. The main aim of analysis is the best projection of the real construction and correct modeling of worker walking on the scaffolding. Different boundary conditions are considered, because of their impact on construction vibrations. Natural vibrations obtained from FEM calculations are compared with free vibrations measured during in-situ tests. Structure accelerations caused by walking human are then considered in this paper. Methodology of creating numerical models of scaffoldings and analysis of dynamic effects during human walking are starting points for further considerations about dynamic loads acting on such structures and effects of these loads to construction and workers, whose workplaces are situated on the scaffolding.

  13. Measurement of Micro Vibration of Car by Piezoelectric Ceramics

    Science.gov (United States)

    Kurihara, Yosuke; Masuyama, Kosuke; Nakamura, Testuo; Bamba, Takeshi; Watanabe, Kajiro

    Recently, there are various accidents and crimes related to the car. In some cases, the accidents and the crimes can be prevented if it is possible to detect a human who is in the car. For example, we can prevent a baby who is left in a car under the hot weather from dehydration or death occurred by heat inside disease. In another case, it is estimated that the United States currently has as many as 12 million illegal immigrants. In order to prevent further influx of illegal immigrants, the police are physically searching incoming vehicles at national boundaries aiming at finding those who are hiding inside. However, the physical inspections require much manpower cost and time. An inspection method to see inside the vehicles through X-ray images has also been used for this end. But the cost and the installation places are the problems of the large-scale X-ray system. Proposed in this paper is a piezoelectric ceramic system to handily measure the micro vibrations of motor vehicles. And applying the algorithm of Support Vector Machine (SVM), the existence of human body inside vehicles can be detected. The experiment was carried out using four types of vehicles: a mini car; an auto mobile; a van; and a truck weighing 1.5 tons. As the results, the correct determination ratio was 91.2% for the experiment with the piezoelectric ceramic under the front wheels and 97.0% under the rear wheels, when the vehicle used for the examination had also been used together with other three types of vehicles to obtain SVM training data. When the vehicle used for the examination had not been used together with the other three to obtain SVM training data, on the other hand, the correct determination ratio was 93.7% for the experiment with the piezoelectric ceramic under the front wheels and 95.7% under the rear wheels.

  14. New Facility For Micro-Vibration Measurements ESA Reaction Wheel Characterisation Facility

    Science.gov (United States)

    Decobert, Francois; Wagner, Mark; Airey, Stephen

    2012-07-01

    A micro-vibration measurement table has been developed by ESA and SEREME for the measurement of micro forces at high frequencies. The motivation for the Research and Development of this new equipment was the characterisation of reaction wheel dynamic behavior which may influence the pointing stability of observation satellites. There was the need to have an improved test equipment being able to quantify very low level forces and moments in 6 degrees of freedom. The measured data can be used as input to numerical analysis and simulation to derive a prediction of the dynamic disturbances induced by the operation of a reaction wheel. The new facility combines higher frequency capability i.e. first bare table resonance modes higher than 1250 Hz with high measurement sensitivity and low force threshold (20mN respectively 2mNm).

  15. Comparison between Accelerometer and Laser Vibrometer to Measure Traffic Excited Vibrations on Bridges

    OpenAIRE

    Rossi, G.; Marsili, R.; Gusella, V.; Gioffrè, M.

    2002-01-01

    The use of accelerometer based measurement techniques for evaluating bridge forced vibrations or to perform bridge modal analysis is well established. It is well known to all researchers who have experience in vibration measurements that values of acceleration amplitude can be very low at low frequencies and that a limitation to the use of accelerometer can be due to the threshold parameter of this kind of transducer. Under this conditions the measurement of displacement seems more appropriat...

  16. Vibration isolation measures due to the high sensitive linear accelerator at the Paul Scherrer Institute

    Directory of Open Access Journals (Sweden)

    Trombik Peter

    2015-01-01

    Full Text Available The new 735m long linear accelerator “SwissFEL” at the Paul Scherrer Institute (PSI in Würenlingen is extremely sensitive against vibrations coming from surrounding equipment (pumps, ventilators, transformers, etc.. The manufacturer’s vibration limit for this linear accelerator is 0.1μm displacement amplitude. Therefore, all vibration sources must strictly be isolated to the highest-possible degree from the rest of the structure. This paper discusses the vibration situation in general for this unique construction (ground vibrations, vibration propagations / structural amplifications, vibration limits, etc. and as a case study the isolation of a pump located in the building. Steel springs were used and it was achieved to reduce the vibration transmitted to the floor by more than 99%, to a level where the coherent component of the motion recorded on the floor next to the linear accelerator is non-measurable / below the ground motions. The measurements were found to be in good accordance with the FEM model used.

  17. Alternative measures to observe and record vocal fold vibrations

    NARCIS (Netherlands)

    Schutte, HK; McCafferty, G; Coman, W; Carroll, R

    1996-01-01

    Vocal fold vibration patterns form the basis for the production of vocal sound. Over the years much effort has been spend to optimize the ways to visualize and give a description of these patterns. Before video possibilities became available the description of the patterns was Very time-consuming.

  18. Vibration Durability Testing of Nickel Manganese Cobalt Oxide (NMC Lithium-Ion 18,650 Battery Cells

    Directory of Open Access Journals (Sweden)

    James Michael Hooper

    2016-01-01

    Full Text Available Electric vehicle (EV manufacturers are employing cylindrical format cells in the construction of the vehicles’ battery systems. There is evidence to suggest that both the academic and industrial communities have evaluated cell degradation due to vibration and other forms of mechanical loading. The primary motivation is often the need to satisfy the minimum requirements for safety certification. However, there is limited research that quantifies the durability of the battery and in particular, how the cells will be affected by vibration that is representative of a typical automotive service life (e.g., 100,000 miles. This paper presents a study to determine the durability of commercially available 18,650 cells and quantifies both the electrical and mechanical vibration-induced degradation through measuring changes in cell capacity, impedance and natural frequency. The impact of the cell state of charge (SOC and in-pack orientation is also evaluated. Experimental results are presented which clearly show that the performance of 18,650 cells can be affected by vibration profiles which are representative of a typical vehicle life. Consequently, it is recommended that EV manufacturers undertake vibration testing, as part of their technology selection and development activities to enhance the quality of EVs and to minimize the risk of in-service warranty claims.

  19. Laser-Doppler vibrating tube densimeter for measurements at high temperatures and pressures.

    Science.gov (United States)

    Aida, Tsutomu; Yamazaki, Ai; Akutsu, Makoto; Ono, Takumi; Kanno, Akihiro; Hoshina, Taka-aki; Ota, Masaki; Watanabe, Masaru; Sato, Yoshiyuki; Smith, Richard L; Inomata, Hiroshi

    2007-11-01

    A laser-Doppler vibrometer was used to measure the vibration of a vibrating tube densimeter for measuring P-V-T data at high temperatures and pressures. The apparatus developed allowed the control of the residence time of the sample so that decomposition at high temperatures could be minimized. A function generator and piezoelectric crystal was used to excite the U-shaped tube in one of its normal modes of vibration. Densities of methanol-water mixtures are reported for at 673 K and 40 MPa with an uncertainty of 0.009 g/cm3.

  20. Blade Vibration Measurement System for Characterization of Closely Spaced Modes and Mistuning Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There are several ongoing challenges in non-contacting blade vibration and stress measurement systems that can address closely spaced modes and blade-to-blade...

  1. Transverse Beam Halo Measurements at High Intensity Neutrino Source (HINS) using Vibrating Wire Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, M.; Hanna, B.; Scarpine, V.; Shiltsev, V.; Steimel, J.; Artinian, S.; Arutunian, S.

    2015-02-26

    The measurement and control of beam halos will be critical for the applications of future high-intensity hadron linacs. In particular, beam profile monitors require a very high dynamic range when used for the transverse beam halo measurements. In this study, the Vibrating Wire Monitor (VWM) with aperture 60 mm was installed at the High Intensity Neutrino Source (HINS) front-end to measure the transverse beam halo. A vibrating wire is excited at its resonance frequency with the help of a magnetic feedback loop, and the vibrating and sensitive wires are connected through a balanced arm. The sensitive wire is moved into the beam halo region by a stepper motor controlled translational stage. We study the feasibility of the vibrating wire for the transverse beam halo measurements in the low-energy front-end of the proton linac.

  2. Analysis of three-component ambient vibration array measurements

    Science.gov (United States)

    Fäh, Donat; Stamm, Gabriela; Havenith, Hans-Balder

    2008-01-01

    Both synthetic and observed ambient vibration array data are analysed using high-resolution beam-forming. In addition to a classical analysis of the vertical component, this paper presents results derived from processing horizontal components. We analyse phase velocities of fundamental and higher mode Rayleigh and Love waves, and particle motions (ellipticity) retrieved from H/V spectral ratios. A combined inversion with a genetic algorithm and a strategy for selecting possible model parameters allow us to define structural models explaining the data. The results from synthetic data for simple models with one or two layers of sediments suggest that, in most cases, the number of layers has to be reduced to a few sediment strata to find the original structure. Generally, reducing the number of soft-sediment layers in the inversion process with genetic algorithms leads to a class of models that are less smooth. They have a stronger impedance contrast between sediments and bedrock. Combining Love and Rayleigh wave dispersion curves with the ellipticity of the fundamental mode Rayleigh waves has some advantages. Scatter is reduced when compared to using structural models obtained only from Rayleigh wave phase velocity curves. By adding information from Love waves some structures can be excluded. Another possibility for constraining inversion results is to include supplementary geological or borehole information. Analysing radial components also can provide segments of Rayleigh wave dispersion curves for modes not seen on the vertical component. Finally, using ellipticity information allows us to confine the total depth of the soft sediments. For real sites, considerable variability in the measured phase velocity curves is observed. This comes from lateral changes in the structure or seismic sources within the array. Constraining the inversion by combining Love and Rayleigh wave information can help reduce such problems. Frequency bands in which the Rayleigh wave

  3. Design and Test of Semi-Active Vibration-Reducing System for Lathe

    Directory of Open Access Journals (Sweden)

    Hongsheng Hu

    2014-09-01

    Full Text Available In this paper, its theory design, analysis and test system of semi-active vibration controlling system used for precision machine have been done. Firstly, lathe bed and spindle entity were modeled by using UG software; Then modes of the machine bed and the key components of spindle were obtained by using ANSYS software; Finally, harmonic response analysis of lathe spindle under complex load was acquired, which provided a basis of MR damper’s structure optimization design for a certain type of precision machine. In order to prove its effectives, a prototype semi-active vibration controlling lathe with MR damper was developed. Tests have been done, and comparison results between passive vibration isolation equipment and semi-active vibration controlling equipment proved its good performances of MR damper.

  4. Experimental measurements and finite element analysis of the coupled vibrational characteristics of piezoelectric shells.

    Science.gov (United States)

    Huang, Yu-Hsi; Ma, Chien-Ching

    2012-04-01

    Piezoelectric plates can provide low-frequency transverse vibrational displacements and high-frequency planar vibrational displacements, which are usually uncoupled. However, piezoelectric shells can induce three-dimensional coupled vibrational displacements over a large frequency range. In this study, three-dimensional coupled vibrational characteristics of piezoelectric shells with free boundary conditions are investigated using three different experimental methods and finite element numerical modeling. For the experimental measurements, amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) is used to obtain resonant frequencies and radial, lateral, and angular mode shapes. This optical technique utilizes a real-time, full-field, non-contact optical system that measures both the natural frequency and corresponding vibration mode shape simultaneously. The second experimental technique used, laser Doppler vibrometry (LDV), is a pointwise displacement measurement method that determines the resonant frequencies of the piezoelectric shell. An impedance analyzer is also used to determine the resonant frequencies of the piezoelectric shell. The experimental results of the resonant frequencies and mode shapes for the piezoelectric shell are verified with a numerical finite element model. Excellent agreement between the experimental and numerical results is found for the three-dimensional coupled vibrational characteristics of the piezoelectric shell. It is noted in this study that there is no coupled phenomenon at low frequencies over which radial modes dominate. However, three-dimensional coupled vibrational modes do occur at high resonant frequencies over which lateral or angular modes dominate.

  5. Measurement of vibrations at different sections of rail through fiber optic sensors

    Science.gov (United States)

    Barreda, A.; Molina-Jiménez, T.; Valero, E.; Recuero, S.

    2012-02-01

    This paper presents the results of an investigation about how the vibration of railway vehicles affects nearby buildings. The overall objective is to study the vibration generated in urban environments by tram, train and subway, its transmission to the ground and how the buildings and constructions of the environment receive them. Vibrations can generate noise and vibrations in buildings. For this reason it is necessary to characterize the level of vibration affecting rail, road infrastructure and sidewalks and nearby buildings, to assess the influence of the train (speed, type, profile wheel ,..), rail (area of rolling) and route of step, and finally define interim corrective measures. In this study measurements of levels of energy and vibration excitation frequencies will be undertaken through optical techniques: optical fiber networks with distributed Bragg sensors. Measuring these vibrations in different configurations allows us to evaluate the suitability of different sections of rail for different types of uses or environments. This study aims to help improve the safety of the built environment in the vicinity of a railway operation, and thus increase the comfort for passengers and to reduce the environmental impact.

  6. Electronic Speckle Pattern Shearing Interferometry using Photopolymer Diffractive Optical Elements for Vibration Measurements

    OpenAIRE

    Mihaylova, Emilia; Naydenova, Izabela; Martin, Suzanne; Toal, Vincent

    2004-01-01

    Electronic speckle pattern shearing interferometry (ESPSI) is superior to Electronic speckle pattern interferometry (ESPI) when strain distribution, arising from object deformation or vibration, need to be measured. This is because shearography provides data directly related to the spatial derivatives of the displacement. Further development of ESPSI systems could be beneficial for wider application to the measurement of mechanical characteristics of vibrating objects. Two electronic speckle ...

  7. Compact holographic optical element-based electronic speckle pattern interferometer for rotation and vibration measurements

    Science.gov (United States)

    Bavigadda, Viswanath; Moothanchery, Mohesh; Pramanik, Manojit; Mihaylova, Emilia; Toal, Vincent

    2017-03-01

    An out-of-plane sensitive electronic speckle pattern interferometer (ESPI) using holographic optical elements (HOEs) for studying rotations and vibrations is presented. Phase stepping is implemented by modulating the wavelength of the laser diode in a path length imbalanced interferometer. The time average ESPI method is used for vibration measurements. Some factors influencing the measurements accuracy are reported. Some advantages and limitations of the system are discussed.

  8. Low-frequency vibration measurement by a dual-frequency DBR fiber laser

    Science.gov (United States)

    Zhang, Bing; Cheng, Linghao; Liang, Yizhi; Jin, Long; Guo, Tuan; Guan, Bai-Ou

    2017-09-01

    A dual-frequency distributed Bragg reflector (DBR) fiber laser based sensor is demonstrated for low-frequency vibration measurement through the Doppler effect. The response of the proposed sensor is quite linear and is much higher than that of a conventional accelerometer. The proposed sensor can work down to 1 Hz with high sensitivity. Therefore, the proposed sensor is very efficient in low-frequency vibration measurement.

  9. Ambient Vibration Tests of an Arch Dam with Different Reservoir Water Levels: Experimental Results and Comparison with Finite Element Modelling

    Directory of Open Access Journals (Sweden)

    Sergio Vincenzo Calcina

    2014-01-01

    Full Text Available This paper deals with the ambient vibration tests performed in an arch dam in two different working conditions in order to assess the effect produced by two different reservoir water levels on the structural vibration properties. The study consists of an experimental part and a numerical part. The experimental tests were carried out in two different periods of the year, at the beginning of autumn (October 2012 and at the end of winter (March 2013, respectively. The measurements were performed using a fast technique based on asynchronous records of microtremor time-series. In-contact single-station measurements were done by means of one single high resolution triaxial tromometer and two low-frequency seismometers, placed in different points of the structure. The Standard Spectral Ratio method has been used to evaluate the natural frequencies of vibration of the structure. A 3D finite element model of the arch dam-reservoir-foundation system has been developed to verify analytically determined vibration properties, such as natural frequencies and mode shapes, and their changes linked to water level with the experimental results.

  10. Integrated Vehicle Ground Vibration Testing in Support of NASA Launch Vehicle Loads and Controls Analysis

    Science.gov (United States)

    Tuma, Margaret L.; Davis, Susan R.; Askins, Bruce R.; Salyer, Blaine H.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) Ares Projects Office (APO) is continuing to make progress toward the final design of the Ares I crew launch vehicle and Ares V cargo launch vehicle. Ares I and V will form the space launch capabilities necessary to fulfill NASA's exploration strategy of sending human beings to the Moon, Mars, and beyond. As with all new space vehicles there will be a number of tests to ensure the design can be Human Rated. One of these is the Integrated Vehicle Ground Vibration Test (IVGVT) that will be measuring responses of the Ares I as a system. All structural systems possess a basic set of physical characteristics unique to that system. These unique characteristics include items such as mass distribution, frequency and damping. When specified, they allow engineers to understand and predict how a structural system like the Ares I launch vehicle behaves under given loading conditions. These physical properties of launch vehicles may be predicted by analysis or measured through certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified through testing before the vehicle is Human Rated. The IVGVT is intended to measure by test the fundamental dynamic characteristics of Ares I during various phases of operational/flight. This testing includes excitations of the vehicle in lateral, longitudinal, and torsional directions at vehicle configurations representing different trajectory points. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and Guidance, Navigation, and Controls (GN&C) analysis models for verifying analyses of Ares I. NASA launch vehicles from Saturn to Shuttle have undergone Ground Vibration Tests (GVTs) leading to successful launch vehicles. A GVT was not performed on the unmanned Delta III. This vehicle was

  11. A miniaturized ferrule-top optical cantilever for vibration measurement

    Science.gov (United States)

    Li, J.; Xu, S. M.; Sun, J. N.; Tang, Y. Q.; Dong, F. Z.

    2017-04-01

    In this paper, we propose techniques to design and fabricate polymer micro-cantilevers for attachment onto the end of standard single mode fibers using laser machining. The polymer cantilever is fabricated by laser micro-machining a sheet of polymer into the required shape and then bonded onto the top of a ceramic ferrule by photo resist as a flat supporting and bonding layer. The dimension of resulting cantilever is 1.2 mm long, 300 μm wide, and 25 μm thick. In this work we describe the fabrication of single sensors, however the process could be scaled to offer a route towards mass production. Cantilever vibration caused by vibration signal are monitored by a DFB laser based phase interrogation system. Proof-of-concept experiments show that the sensor is capable of detecting vibration signal with a frequency range of 0-800Hz. By using thinner polymer sheet and machining longer cantilever, the frequency response range can be extended up to a few kHz.

  12. Vibration Mitigation without Dissipative Devices: First Large-Scale Testing of a State Switched Inducer

    Directory of Open Access Journals (Sweden)

    Daniel Tirelli

    2014-01-01

    Full Text Available A new passive device for mitigating cable vibrations is proposed and its efficiency is assessed on 45-meter long taut cables through a series of free and forced vibration tests. It consists of a unilateral spring attached perpendicularly to the cable near the anchorage. Because of its ability to change the cable dynamic behaviour through intermittent activation, the device has been called state switched inducer (SSI. The cable behaviour is shown to be deeply modified by the SSI: the forced vibration response is anharmonicc and substantially reduced in amplitude whereas the free vibration decay is largely sped up through a beating phenomenon. The vibration mitigation effect is mainly due to the activation and coupling of various vibration modes, as evidenced in the response spectra of the equipped cable. This first large-scale experimental campaign shows that the SSI outperforms classical passive devices, thus paving the way to a new kind of low-cost vibration mitigation systems which do not rely on dissipation.

  13. Application of Finite Element Based Simulation and Modal Testing Methods to Improve Vehicle Powertrain Idle Vibration

    Directory of Open Access Journals (Sweden)

    Polat Sendur

    2017-01-01

    Full Text Available Current practice of analytical and test methods related to the analysis, testing and improvement of vehicle vibrations is overviewed. The methods are illustrated on the determination and improvement of powertrain induced steering wheel vibration of a heavy commercial truck. More specifically, the transmissibility of powertrain idle vibration to cabin is investigated with respect to powertrain rigid body modes and modal alignment of the steering column/wheel system is considered. It is found out that roll mode of the powertrain is not separated from idle excitation for effective vibration isolation as well as steering wheel column mode is close to the 3rd engine excitation frequency order, which results in high vibration levels. Powertrain roll mode is optimized by tuning the powertrain mount stiffness to improve the performance. Steering column mode is also separated from the 3rd engine excitation frequency by the application of a mass absorber. It is concluded that the use of analytical and test methods to address the complex relation between design parameters and powertrain idle response is effective to optimize the system performance and evaluate the trade-offs in the vehicle design such as vibration performance and weight. Reference Number: www.asrongo.org/doi:4.2017.2.1.10

  14. Developing Uncertainty Models for Robust Flutter Analysis Using Ground Vibration Test Data

    Science.gov (United States)

    Potter, Starr; Lind, Rick; Kehoe, Michael W. (Technical Monitor)

    2001-01-01

    A ground vibration test can be used to obtain information about structural dynamics that is important for flutter analysis. Traditionally, this information#such as natural frequencies of modes#is used to update analytical models used to predict flutter speeds. The ground vibration test can also be used to obtain uncertainty models, such as natural frequencies and their associated variations, that can update analytical models for the purpose of predicting robust flutter speeds. Analyzing test data using the -norm, rather than the traditional 2-norm, is shown to lead to a minimum-size uncertainty description and, consequently, a least-conservative robust flutter speed. This approach is demonstrated using ground vibration test data for the Aerostructures Test Wing. Different norms are used to formulate uncertainty models and their associated robust flutter speeds to evaluate which norm is least conservative.

  15. Proposal of the Sound Insulating Measures for Vibrational Sorter and Verification of the Effectiveness Measures

    Directory of Open Access Journals (Sweden)

    Pavol Liptai

    2017-09-01

    Full Text Available The paper describes a specific design of the sound insulating enclosure of the vibrating sorter. Recycling aspects have also been taken into account when designing the enclosure, because recycled foam has been applied as a sound-absorbing material. Acoustic camera was used to measure, analyze, evaluate and for sound sources localization and identification. The visualization method was used to locate the critical locations of the device and then quantify them. To evaluate the effectiveness of the proposed enclosure, the measurements of the sound parameters were performed before and after the realization soundproofing measure. The measured results show the requested efficiency of the sound insulating enclosure in terms of noise reduction as well as dust in the vicinity of the sorter.

  16. A New Approach for Reliability Life Prediction of Rail Vehicle Axle by Considering Vibration Measurement

    Directory of Open Access Journals (Sweden)

    Meral Bayraktar

    2014-01-01

    Full Text Available The effect of vibration on the axle has been considered. Vibration measurements at different speeds have been performed on the axle of a running rail vehicle to figure out displacement, acceleration, time, and frequency response. Based on the experimental works, equivalent stress has been used to find out life of the axles for 90% and 10% reliability. Calculated life values of the rail vehicle axle have been compared with the real life data and it is found that the life of a vehicle axle taking into account the vibration effects is in good agreement with the real life of the axle.

  17. Objectives and Progress on Ground Vibration Testing for the Ares Projects

    Science.gov (United States)

    Tuma, Margaret L.; Chenevert, Donald J.

    2010-01-01

    Integrated vehicle ground vibration testing (IVGVT) will be a vital component for ensuring the safety of NASA s next generation of exploration vehicles to send human beings to the Moon and beyond. A ground vibration test (GVT) measures the fundamental dynamic characteristics of launch vehicles during various phases of flight. The Ares Flight & Integrated Test Office (FITO) will be conducting the IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2012 to 2014 using Test Stand (TS) 4550. MSFC conducted similar GVT for the Saturn V and Space Shuttle vehicles. FITO will perform the IVGVT on the Ares I crew launch vehicle, which will lift the Orion crew exploration vehicle to low Earth orbit, and the Ares V cargo launch vehicle, which can launch the lunar lander into orbit and send the combined Orion/lander vehicles toward the Moon. Ares V consists of a six-engine core stage with two solid rocket boosters and an Earth departure stage (EDS). The same engine will power the EDS and the Ares I second stage. The current plan is to test six configurations in three unique test positions inside TS 4550. Four Ares I second stage test configurations will be tested in Position 3, consisting of the Upper Stage and Orion crew module in four nominal conditions: J-2X engine ignition, post Launch Abort System (LAS) jettison, critical slosh mass, and J-2X burn-out. Position 2 consists of the entire launch stack at first stage burn-out (using empty first stage segments). Position 1 represents the entire launch stack at lift-off (using inert first stage segments). Because of long disuse, TS 4550 is being repaired and modified for reactivation to conduct the Ares I IVGVT. The Shuttle-era platforms have been removed and are being replaced with mast climbers that provide ready access to the test articles and can be moved easily to support different positions within the test stand. Two new cranes will help move test articles at the test stand and at the

  18. Ground vibration test results for Drones for Aerodynamic and Structural Testing (DAST)/Aeroelastic Research Wing (ARW-1R) aircraft

    Science.gov (United States)

    Cox, T. H.; Gilyard, G. B.

    1986-01-01

    The drones for aerodynamic and structural testing (DAST) project was designed to control flutter actively at high subsonic speeds. Accurate knowledge of the structural model was critical for the successful design of the control system. A ground vibration test was conducted on the DAST vehicle to determine the structural model characteristics. This report presents and discusses the vibration and test equipment, the test setup and procedures, and the antisymmetric and symmetric mode shape results. The modal characteristics were subsequently used to update the structural model employed in the control law design process.

  19. Investigation of three-dimensional vibration measurement by a single scanning laser Doppler vibrometer

    Science.gov (United States)

    Chen, Da-Ming; Zhu, W. D.

    2017-01-01

    A scanning laser Doppler vibrometer (SLDV) has been widely used in non-contact vibration measurement. This paper presents a novel investigation of three-dimensional (3D) vibration measurement by a single SLDV sequentially placed at three different positions, where 3D vibration is defined as three vibration components along axes of a specified measurement coordinate system (MCS), which can give more precise knowledge of structural dynamic characteristics. A geometric model of the SLDV is proposed and a vibrometer coordinate system (VCS) based on the geometric model is defined and fixed on the SLDV. The pose of a SLDV with respect to a MCS is expressed in the form of a translation vector and a direction cosine matrix from the VCS to the MCS, which can be calculated by four or more target points with known coordinates in both the MCS and the VCS. An improved method based on the least squares method and singular value decomposition is proposed to obtain the pose of the SLDV. Compared with an inverse method, the proposed method can yield an orthogonal direction cosine matrix and be applicable to a two-dimensional structure. Effects of the number of target points on the accuracy and stability of the proposed method are investigated. With three direction cosine matrices of three different positions obtained by the proposed method, measured vibration velocities along laser line-of-sight directions can be transformed to vibration components along axes of the MCS. An experiment was conducted to measure 3D vibration of a target point on a beam under sinusoidal excitation by a single SLDV sequentially placed at three different positions. Vibration components along axes of the MCS obtained by the single SLDV were in good agreement with those from a commercial Polytec 3D scanning laser vibrometer PSV-500-3D.

  20. A New Large Vibration Test Facility Concept for the James Webb Space Telescope

    Science.gov (United States)

    Ross, Brian P.; Johnson, Eric L.; Hoksbergen, Joel; Lund, Doug

    2014-01-01

    The James Webb Space Telescope consists of three main components, the Integrated Science Instrument Module (ISIM) Element, the Optical Telescope Element (OTE), and the Spacecraft Element. The ISIM and OTE are being assembled at the National Aeronautics and Space Administration's Goddard Spaceflight Center (GSFC). The combined OTE and ISIM Elements, called OTIS, will undergo sine vibration testing before leaving Goddard. OTIS is the largest payload ever tested at Goddard and the existing GSFC vibration facilities are incapable of performing a sine vibration test of the OTIS payload. As a result, a new large vibration test facility is being designed. The new facility will consist of a vertical system with a guided head expander and a horizontal system with a hydrostatic slip table. The project is currently in the final design phase with installation to begin in early 2015 and the facility is expected to be operational by late 2015. This paper will describe the unique requirements for a new large vibration test facility and present the selected final design concepts.

  1. Vibrations on pulse tube based Dry Dilution Refrigerators for low noise measurements

    Energy Technology Data Exchange (ETDEWEB)

    Olivieri, E. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405 Orsay (France); Billard, J.; De Jesus, M.; Juillard, A. [Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, F-69622 Villeurbanne (France); Leder, A. [Massachussets Institute of Technology, Laboratory for Nuclear Science, 77 Massachusetts Avenue Cambridge, MA 02139-4307 (United States)

    2017-06-21

    Dry Dilution Refrigerators (DDR) based on pulse tube cryo-coolers have started to replace Wet Dilution Refrigerators (WDR) due to the ease and low cost of operation. However these advantages come at the cost of increased vibrations, induced by the pulse tube. In this work, we present the vibration measurements performed on three different commercial DDRs. We describe in detail the vibration measurement system we assembled, based on commercial accelerometers, conditioner and DAQ, and examined the effects of the various damping solutions utilized on three different DDRs, both in the low and high frequency regions. Finally, we ran low temperature, pseudo-massive (30 and 250 g) germanium bolometers in the best vibration-performing system under study and report on the results.

  2. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy

    CERN Document Server

    Karhu, J; Vainio, M; Metsälä, M; Hoekstra, S; Halonen, L

    2016-01-01

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, $\

  3. Shock and vibration tests of uranium mononitride fuel pellets for a space power nuclear reactor

    Science.gov (United States)

    Adams, D. W.

    1972-01-01

    Shock and vibration tests were conducted on cylindrically shaped, depleted, uranium mononitride (UN) fuel pellets. The structural capabilities of the pellets were determined under exposure to shock and vibration loading which a nuclear reactor may encounter during launching into space. Various combinations of diametral and axial clearances between the pellets and their enclosing structures were tested. The results of these tests indicate that for present fabrication of UN pellets, a diametral clearance of 0.254 millimeter and an axial clearance of 0.025 millimeter are tolerable when subjected to launch-induced loads.

  4. Temperature measurement in the convective and segregated vibrated bed of powder : A numerical study

    OpenAIRE

    Kiyono, Satoru; Taguchi, Y-h.

    2004-01-01

    In numerically simulated vibrated beds of powder, we measure temperature under convection by the generalized Einstein's relation. The spatial temperature distribution turns out to be quite uniform except for the boundary layers. In addition to this, temperature remains uniform even if segregation occurs. This suggests the possibility that there exists some "thermal equilibrium state" even in a vibrated bed of powder. This finding may lead to a unified view of the dynamic steady state of granu...

  5. Comparison between Accelerometer and Laser Vibrometer to Measure Traffic Excited Vibrations on Bridges

    Directory of Open Access Journals (Sweden)

    G. Rossi

    2002-01-01

    Full Text Available The use of accelerometer based measurement techniques for evaluating bridge forced vibrations or to perform bridge modal analysis is well established. It is well known to all researchers who have experience in vibration measurements that values of acceleration amplitude can be very low at low frequencies and that a limitation to the use of accelerometer can be due to the threshold parameter of this kind of transducer. Under this conditions the measurement of displacement seems more appropriate. On the other hand laser vibrometer systems detect relative displacements as opposed to the absolute measures of accelerometers. Vibrations have been measured simultaneously by a typical accelerometer for civil structures and by a laser vibrometer equipped with a fringe counter board in terms of velocity and displacements. The accelerations calculated from the laser vibrometer signals and the one directly measured by the accelerometer has been compared.

  6. Spinning optical resonator sensor for torsional vibrational applications measurements

    Science.gov (United States)

    Ali, Amir R.; Gatherer, Andrew; Ibrahim, Mariam S.

    2016-03-01

    Spinning spherical resonators in the torsional vibrational applications could cause a shift in its whispering gallery mode (WGM). The centripetal force acting on the spinning micro sphere resonator will leads to these WGM shifts. An analysis and experiment were carried out in this paper to investigate and demonstrate this effect using different polymeric resonators. In this experiment, centripetal force exerted by the DC-Motor on the sphere induces an elastic deformation of the resonator. This in turn induces a shift in the whispering gallery modes of the sphere resonator. Materials used for the sphere are polydimethylsiloxane (PDMS 60:1 where 60 parts base silicon elastomer to 1 part polymer curing agent by volume) with shear modulus (G≍1kPa), (PDMS 10:1) with shear modulus (G≍300kPa), polymethylmethacrylate (PMMA, G≍2.6×109GPa) and silica (G≍3×1010 GPa). The sphere size was kept constant with 1mm in diameter for all above materials. The optical modes of the sphere exit using a tapered single mode optical fiber that is coupled to a distributed feedback laser. The transmission spectrum through the fiber is monitored to detect WGM shifts. The results showed the resonators with smaller shear modulus G experience larger WGM shift due to the larger mechanical deformation induced by the applied external centripetal force. Also, the results show that angular velocity sensors used in the torsional vibrational applications could be designed using this principle.

  7. Technical Road Testing of the 18,000 BTU Air Conditioners (Vibration Profile)

    Science.gov (United States)

    1990-06-27

    equimped with a calibrated fifth wheel driven speedanetr. Instrumented testing was crducted on the Mzso area izproved gravel road, Belgian block, two...item, conducting the test, and acquiring and processing all test data. 1.5 SYSTEM DESCRIPTION Two 50/60 Hz, 3-2hase, 208-volt, 18,000 BTU/hr compact...operationally checked periodically and at the conclusion of the road vibration test. A limited amount of data processing was performed at the test

  8. In-situ testing of the liquefaction potential of soft ground using an s-wave vibrator and seismic cones. Part 1. System, concept and preliminary test result; S ha vibrator oyobi seismic cone wo mochiita gen`ichi jiban ekijoka potential no hyoka. 1. System kosei oyobi genchi yosatsu keisoku kekka

    Energy Technology Data Exchange (ETDEWEB)

    Inazaki, T. [Public Works Research Institute, Tsukuba (Japan)

    1996-05-01

    For the purpose of evaluating liquefaction in situ, it was proposed that an S-wave vibrator designed to serve as a source in a reflection exploration method be utilized as a strong vibration generating source, and measurement was conducted in this connection. Equipment used in this test included an S-wave vibrator, static cone penetration machine, and various measuring cones. A multiplicity of measuring cones had been inserted beforehand into the target layers and comparison layers, and changes upon vibrator activation were measured. On a dry bed of the Tonegawa river, a 40m{sup 2} field was set up, and 41 cone penetration tests were conducted, with the cones positioned zigzag at 5m intervals. In this way, the ground structure was disclosed from the surface to the 10m-deep level. For the measurement, 3-component cones and seismic cones were placed at prescribed depths, and fluctuations and waveforms presented by pore water pressure at each level were determined with the vibration source changing its place. It was found that the changes in the pore water pressure exposed to vibration assume characteristic patterns corresponding to the conditions of vibration application. 5 figs., 1 tab.

  9. On the Modeling of a MEMS Based Capacitive Accelerometer for Measurement of Tractor Seat Vibration

    Directory of Open Access Journals (Sweden)

    M. Alidoost

    2010-04-01

    Full Text Available Drivers of heavy vehicles often face with higher amplitudes of frequencies range between 1-80 Hz. Hence, this range of frequency results in temporary or even sometimes permanent damages to the health of drivers. Examples for these problems are damages to the vertebral column and early tiredness, which both reduce the driver’s performance significantly. One solution to this problem is to decrease the imposed vibration to the driver’s seat by developing an active seat system. These systems require an online measuring unit to sense vibrations transferred to the seat. The measuring unit can include a capacitive micro-accelerometer on the basis of MEMS which measure online vibrations on the seat. In this study, the mechanical behavior of a capacitive micro-accelerometer for the vibration range applied to a tractor seat has been simulated. The accelerometer is capable to measure step, impact and harmonic external excitations applied to the system. The results of the study indicate that, with increasing the applied voltage, the system sensitivity also increases, but the measuring range of vibrations decreases and vice versa. The modeled accelerometer, at damping ratio of 0.67 is capable to measure accelerations within the frequency range of lower than 130 Hz.

  10. Measurement of Vibrational Non-Equilibrium in a Supersonic Freestream Using Dual-Pump CARS

    Science.gov (United States)

    Cutler, Andrew D.; Magnotti, Gaetano; Cantu, Luca M. L.; Gallo, Emanuela C. A.; Danehy, Paul M.; Burle, Rob; Rockwell, Robert; Goyne, Christopher; McDaniel, James

    2012-01-01

    Measurements have been conducted at the University of Virginia Supersonic Combustion Facility of the flow in a constant area duct downstream of a Mach 2 nozzle, where the airflow has first been heated to approximately 1200 K. Dual-pump CARS was used to acquire rotational and vibrational temperatures of N2 and O2 at two planes in the duct at different downstream distances from the nozzle exit. Wall static pressures in the nozzle are also reported. With a flow of clean air, the vibrational temperature of N2 freezes at close to the heater stagnation temperature, while the O2 vibrational temperature is about 1000 K. The results are well predicted by computational fluid mechanics models employing separate "lumped" vibrational and translational/rotational temperatures. Experimental results are also reported for a few percent steam addition to the air and the effect of the steam is to bring the flow to thermal equilibrium.

  11. Measurement of Vibration Detection Threshold and Tactile Spatial Acuity in Human Subjects.

    Science.gov (United States)

    Moshourab, Rabih; Frenzel, Henning; Lechner, Stefan; Haseleu, Julia; Bégay, Valérie; Omerbašić, Damir; Lewin, Gary R

    2016-09-01

    Tests that allow the precise determination of psychophysical thresholds for vibration and grating orientation provide valuable information about mechanosensory function that are relevant for clinical diagnosis as well as for basic research. Here, we describe two psychophysical tests designed to determine the vibration detection threshold (automated system) and tactile spatial acuity (handheld device). Both procedures implement a two-interval forced-choice and a transformed-rule up and down experimental paradigm. These tests have been used to obtain mechanosensory profiles for individuals from distinct human cohorts such as twins or people with sensorineural deafness.

  12. Measurements of bridges' vibration characteristics using a mobile phone

    Directory of Open Access Journals (Sweden)

    Z. M. C. Pravia

    Full Text Available ABSTRACTThis research presents an alternative way to perform a bridge inspection, which considers the dynamics parameters from the structure. It shows an experimental phase with use of a mobile phone to extract the accelerations answers from two concrete bridges, from those records is feasible to obtain natural frequencies using the Fast Fourier Transform (FFT.Numerical models with uses finite element model (FEM allow to determine the natural frequencies from the two concrete bridges and compare with the experimental phase of each one. The final results shows it's possible to use mobiles phones to extract vibration answers from concrete bridges and define the structural behavior of bridges from natural frequencies, this procedure could be used to evaluate bridges with lower costs.

  13. Simultaneous Measurement of Multiple Mechanical Properties of Single Cells Using AFM by Indentation and Vibration.

    Science.gov (United States)

    Zhang, Chuang; Shi, Jialin; Wang, Wenxue; Xi, Ning; Wang, Yuechao; Liu, Lianqing

    2017-12-01

    The mechanical properties of cells, which are the main characteristics determining their physical performance and physiological functions, have been actively studied in the fields of cytobiology and biomedical engineering and for the development of medicines. In this study, an indentation-vibration-based method is proposed to simultaneously measure the mechanical properties of cells in situ, including cellular mass (m), elasticity (k), and viscosity (c). The proposed measurement method is implemented based on the principle of forced vibration stimulated by simple harmonic force using an atomic force microscope (AFM) system integrated with a piezoelectric transducer as the substrate vibrator. The corresponding theoretical model containing the three mechanical properties is derived and used to perform simulations and calculations. Living and fixed human embryonic kidney 293 (HEK 293) cells were subjected to indentation and vibration to measure and compare their mechanical parameters and verify the proposed approach. The results that the fixed sample cells are more viscous and elastic than the living sample cells and the measured mechanical properties of cell are consistent within, but not outside of the central region of the cell, are in accordance with the previous studies. This work provides an approach to simultaneous measurement of the multiple mechanical properties of single cells using an integrated AFM system based on the principle force vibration and thickness-corrected Hertz model. This study should contribute to progress in biomedical engineering, cytobiology, medicine, early diagnosis, specific therapy and cell-powered robots.

  14. Vortex-Induced Vibration Tests of a Marine Growth Wrapped Cylinder at Subcritical Reynolds Number

    Directory of Open Access Journals (Sweden)

    Kurian V. J.

    2017-01-01

    Full Text Available Vortex Induced Vibrations (VIV may cause great damage to deep water risers. Estimation of accurate hydrodynamic coefficients and response amplitudes for fouled tubular cylinders subjected to VIVs is a complex task. This paper presents the results of an extensive experimental investigation on in-line and cross-flow forces acting on cylinders wrapped with marine growth, subjected to current at Subcritical Reynolds Number. The drag and lift force coefficients have been determined through the use of the Fast Fourier Analysis methods. The different tests were conducted in the offshore engineering laboratory at Universiti Teknologi PETRONAS (UTP, Malaysia. In this study, a cylinder with outer diameter Do = 27 mm, fixed at top as cantilever beam was used. The in-line and cross-flow forces were measured using VIV Force Totaller (VIVFT. VIVFT is a two degree of freedom (2DOF forces sensor developed by UTP to measure the VIV forces. The tests were conducted for current velocity varied between 0.118 to 0.59 m/s. The test results suggest that the cylinder wrapped with marine growth has shown an overall increase in drag and inertia coefficients as well as on response amplitudes.

  15. A Coupling Vibration Test Bench and the Simulation Research of a Maglev Vehicle

    Directory of Open Access Journals (Sweden)

    Weihua Ma

    2015-01-01

    Full Text Available To study the characteristics of the coupling vibration between a maglev vehicle and its track beam system and to improve the performance of the levitation system, a new type of vibration test bench was developed. Take a single maglev frame as the study object; simulation of the coupling vibration of the maglev vehicle, levitation system, and track beam were achieved. In addition, all types of real track irregularity excitations can be simulated using hydraulic actuators of the test bench. To expand the research scope, a simulation model was developed that can conduct the simulation research synergistically with the test bench. Based on a dynamics model of the test bench, the dynamics simulation method determined the influence on the levitation control performance of three factors: the track beam support stiffness, the track beam mass, and the track irregularity. The vibration resonance phenomenon of the vehicle/track system was reproduced by the dynamics simulation, and a portion of the simulation results were validated by the test results. By combining the test bench and the dynamics model, experiments can be guided by the simulation results, and the experimental results can validate the dynamics simulation results.

  16. Design and Performance Testing of a Novel Three-Dimensional Elliptical Vibration Turning Device

    Directory of Open Access Journals (Sweden)

    Jieqiong Lin

    2017-10-01

    Full Text Available A novel three-dimensional (3D elliptical vibration turning device which is on the basis of the leaf-spring-flexure-hinges-based (LSFH-based double parallel four-bar linkages (DPFLMs has been proposed. In order to evaluate the performance of the developed 3D elliptical vibration cutting generator (EVCG, the off-line tests were carried out to investigate the stroke, dynamic performance, resolution, tracking accuracy and hysteresis along the three vibration axes. Experimental results indicate that the maximum stroke of three vibration axes can reach up to 26 μm. The working bandwidth can reach up to 1889 Hz. The resolution and hysteresis tests show that the developed 3D EVCG has a good tracking accuracy, relative high resolution and low hysteresis, which is appropriate for micro/nano machining. Kinematical modeling is carried out to investigate the tool vibration trajectory. Experimental results shown that the simulation results agree well with the experimental one, which indicate that the developed 3D EVCG can be used as an option for micro/nano machining.

  17. Fixed Base Modal Testing Using the NASA GRC Mechanical Vibration Facility

    Science.gov (United States)

    Staab, Lucas D.; Winkel, James P.; Suarez, Vicente J.; Jones, Trevor M.; Napolitano, Kevin L.

    2016-01-01

    The Space Power Facility at NASA's Plum Brook Station houses the world's largest and most powerful space environment simulation facilities, including the Mechanical Vibration Facility (MVF), which offers the world's highest-capacity multi-axis spacecraft shaker system. The MVF was designed to perform sine vibration testing of a Crew Exploration Vehicle (CEV)-class spacecraft with a total mass of 75,000 pounds, center of gravity (cg) height above the table of 284 inches, diameter of 18 feet, and capability of 1.25 gravity units peak acceleration in the vertical and 1.0 gravity units peak acceleration in the lateral directions. The MVF is a six-degree-of-freedom, servo-hydraulic, sinusoidal base-shake vibration system that has the advantage of being able to perform single-axis sine vibration testing of large structures in the vertical and two lateral axes without the need to reconfigure the test article for each axis. This paper discusses efforts to extend the MVF's capabilities so that it can also be used to determine fixed base modes of its test article without the need for an expensive test-correlated facility simulation.

  18. Pulsed differential holographic measurements of vibration modes of high temperature panels

    Science.gov (United States)

    Evensen, D. A.; Aprahamian, R.; Overoye, K. R.

    1972-01-01

    Holography is a lensless imaging technique which can be applied to measure static or dynamic displacements of structures. Conventional holography cannot be readily applied to measure vibration modes of high-temperature structures, due to difficulties caused by thermal convection currents. The present report discusses the use of pulsed differential holography, which is a technique for recording structural motions in the presence of random fluctuations such as turbulence. An analysis of the differential method is presented, and demonstration experiments were conducted using heated stainless steel plates. Vibration modes were successfully recorded for the heated plates at temperatures of 1000, 1600, and 2000 F. The technique appears promising for such future measurments as vibrations of the space shuttle TPS panels or recording flutter of aeroelastic models in a wind-tunnel.

  19. Vibration measurement on composite material with embedded optical fiber based on phase-OTDR

    Science.gov (United States)

    Franciscangelis, C.; Margulis, W.; Floridia, C.; Rosolem, J. B.; Salgado, F. C.; Nyman, T.; Petersson, M.; Hallander, P.; Hällstrom, S.; Söderquist, I.; Fruett, F.

    2017-04-01

    Distributed sensors based on phase-optical time-domain reflectometry (phase-OTDR) are suitable for aircraft health monitoring due to electromagnetic interference immunity, small dimensions, low weight and flexibility. These features allow the fiber embedment into aircraft structures in a nearly non-intrusive way to measure vibrations along its length. The capability of measuring vibrations on avionics structures is of interest for what concerns the study of material fatigue or the occurrence of undesirable phenomena like flutter. In this work, we employed the phase-OTDR technique to measure vibrations ranging from some dozens of Hz to kHz in two layers of composite material board with embedded polyimide coating 0.24 numerical aperture single-mode optical fiber.

  20. Vibration measurement of a model wind turbine using high speed photogrammetry

    NARCIS (Netherlands)

    Kalpoe, D.; Khoshelham, K.; Gorte, B.

    2011-01-01

    We investigate the application of the photogrammetric approach to measuring the vibration of a model wind turbine in a sequence of stereo image pairs acquired by high speed cameras. The challenge of the photogrammetric measurement of a highly dynamic phenomenon is the efficiency of the point

  1. Wind-Tunnel Tests of a Bridge Model with Active Vibration Control

    DEFF Research Database (Denmark)

    Hansen, H. I.; Thoft-Christensen, Palle; Mendes, P. A.

    The application of active control systems to reduce wind vibrations in bridges is a new area of research. This paper presents the results that were obtained on a set of wind tunnel tests of a bridge model equipped with active movable flaps. Based on the monitored position and motion of the deck...

  2. Dynamic Testing: Toward a Multiple Exciter Test

    Science.gov (United States)

    2015-04-01

    complex electronics and munitions that are more susceptible to fatigue failure increased the potential for vibration to cause catastrophic failures... fatigue equiva- lent laboratory vibration specifications based on measured field data were also advancing. This led to the inclusion of the first fatigue ...critical vibration testing element. The field vibration environment may be described as the simultaneous vibration in three translational and three

  3. Vibration test on KMRR reactor structure and primary cooling system piping

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Seung Hoh; Kim, Tae Ryong; Park, Jin Hoh; Park, Jin Suk; Ryoo, Jung Soo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-10-01

    Most equipments, piping systems and reactor structures in nuclear power plants are subjected to flow induced vibration due to high temperature and high pressure coolant flowing inside or outside of the equipments, systems and structures. Because the flow induced vibration sometimes causes significant damage to reactor structures and piping systems, it is important and necessary to evaluate the vibration effect on them and to prove their structural integrity. Korea Multipurpose Research Reactor (KMRR) being constructed by KAERI is 30 MWt pool type research reactor. Since its main structures and piping systems were designed and manufactured in accordance with the standards and guidelines for commercial nuclear power plant, it was decided to evaluate their vibratory response in accordance with the standards and guidelines for commercial NPP. The objective of this vibration test is the assessment of vibration levels of KMRR reactor structure and primary cooling piping system for their structural integrity under the steady-state or transient operating condition. 38 figs, 14 tabs, 2 refs. (Author).

  4. Lessons learned from CIRFT testing on SNF vibration integrity study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jiang, Hao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Rob L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    A cyclic integrated reversible-bending fatigue tester (CIRFT) was developed to support U.S. NRC and DOE Used Fuel Disposition Campaign studies on high burn-up (HBU) spent nuclear fuel (SNF) transportation during normal conditions of transport (NCT). Two devices were developed; the first CIRFT was successfully installed and operated in the ORNL hot-cells in September 2013. Since hot cell testing commenced several HBU SNF samples from both Zr-4 and M5 clads were investigated. The second CIRFT device was developed in February 2014, and has been used to test clad/fuel surrogate rods (stainless steel with alumina pellet inserts). The second CIRFT machine has also been used for sensor development and test sensitivity analyses, as well as loading boundary condition parameter studies. The lessons learned from CIRFT testing will be presented in this paper.

  5. An on-road shock and vibration response test series utilizing worst case and statistical analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cap, J.S. [Sandia National Labs., Albuquerque, NM (US). Mechanical and Thermal Environments Dept.

    1997-11-01

    Defining the maximum expected shock and vibration responses for an on-road truck transportation environment is strongly dependent on the amount of response data that can be obtained. One common test scheme consists of measuring response data over a relatively short prescribed road course and then reviewing that data to obtain the maximum response levels. The more mathematically rigorous alternative is to collect an unbiased ensemble of response data during a long road trip. This paper compares data gathered both ways during a recent on-road certification test for a tractor trailer van being designed by Sandia.

  6. Ensuring Safe Exploration: Ares Launch Vehicle Integrated Vehicle Ground Vibration Testing

    Science.gov (United States)

    Tuma, M. L.; Chenevert, D. J.

    2010-01-01

    Integrated vehicle ground vibration testing (IVGVT) will be a vital component for ensuring the safety of NASA's next generation of exploration vehicles to send human beings to the Moon and beyond. A ground vibration test (GVT) measures the fundamental dynamic characteristics of launch vehicles during various phases of flight. The Ares Flight & Integrated Test Office (FITO) will be leading the IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2012 to 2014 using Test Stand (TS) 4550. MSFC conducted similar GVT for the Saturn V and Space Shuttle vehicles. FITO is responsible for performing the IVGVT on the Ares I crew launch vehicle, which will lift the Orion crew exploration vehicle to low Earth orbit, and the Ares V cargo launch vehicle, which can launch the lunar lander into orbit and send the combined Orionilander vehicles toward the Moon. Ares V consists of a six-engine core stage with two solid rocket boosters and an Earth departure stage (EDS). The same engine will power the EDS and the Ares I second stage. For the Ares IVGVT, the current plan is to test six configurations in three unique test positions inside TS 4550. Position 1 represents the entire launch stack at liftoff (using inert first stage segments). Position 2 consists of the entire launch stack at first stage burn-out (using empty first stage segments). Four Ares I second stage test configurations will be tested in Position 3, consisting of the Upper Stage and Orion crew module in four nominal conditions: J-2X engine ignition, post Launch Abort System (LAS) jettison, critical slosh mass, and J-2X burn-out. Because of long disuse, TS 4550 is being repaired and reactivated to conduct the Ares I IVGVT. The Shuttle-era platforms have been removed and are being replaced with mast climbers that provide ready access to the test articles and can be moved easily to support different positions within the test stand. The electrical power distribution system for TS 4550 was

  7. Fatigue Failure Results for Multi-Axial versus Uniaxial Stress Screen Vibration Testing

    Directory of Open Access Journals (Sweden)

    Wayne E. Whiteman

    2002-01-01

    Full Text Available To date, the failure potential and prediction between simultaneous multi-axial versus sequentially applied uniaxial vibration stress screen testing has been the subject of great debate. In most applications, current vibration tests are done by sequentially applying uniaxial excitation to the test specimen along three orthogonal axes. The most common standards for testing military equipment are published in MIL-STD-810F and NAVMAT P-9492. Previous research had shown that uniaxial testing may be unrealistic and inadequate. This current research effort is a continuing effort to systematically investigate the differences between fatigue damage mechanisms and the effects of uniaxial versus tri-axial testing. This includes assessing the ability of the tri-axial method in predicting the formation of damage mechanisms, specifically looking at the effects of stress or fatigue failure. Multi-axial testing achieves the synergistic effect of exciting all modes simultaneously and induces a more realistic vibration stress loading condition. As such, it better approximates real-world operating conditions. This paper provides the latest results on the differences between multi-axial and uniaxial testing of a simple notched cantilever beam.

  8. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy

    Science.gov (United States)

    Karhu, J.; Nauta, J.; Vainio, M.; Metsälä, M.; Hoekstra, S.; Halonen, L.

    2016-06-01

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring-down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, ν 1 + ν 2 + ν 3 + ν4 1 + ν5 - 1 in the normal mode notation. Single-photon transitions to this state from the vibrational ground state are forbidden. Ten lines of the newly measured state are observed and fitted with the linear least-squares method to extract the band parameters. The vibrational term value was measured to be at 9775.0018(45) cm-1, the rotational parameter B was 1.162 222(37) cm-1, and the quartic centrifugal distortion parameter D was 3.998(62) × 10-6 cm-1, where the numbers in the parenthesis are one-standard errors in the least significant digits.

  9. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy.

    Science.gov (United States)

    Karhu, J; Nauta, J; Vainio, M; Metsälä, M; Hoekstra, S; Halonen, L

    2016-06-28

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring-down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, ν1+ν2+ν3+ν4 (1)+ν5 (-1) in the normal mode notation. Single-photon transitions to this state from the vibrational ground state are forbidden. Ten lines of the newly measured state are observed and fitted with the linear least-squares method to extract the band parameters. The vibrational term value was measured to be at 9775.0018(45) cm(-1), the rotational parameter B was 1.162 222(37) cm(-1), and the quartic centrifugal distortion parameter D was 3.998(62) × 10(-6) cm(-1), where the numbers in the parenthesis are one-standard errors in the least significant digits.

  10. Design of Accelerated Reliability Test for CNC Motorized Spindle Based on Vibration Signal

    Directory of Open Access Journals (Sweden)

    Chen Chao

    2016-01-01

    Full Text Available Motorized spindle is the key functional component of CNC machining centers which is a mechatronics system with long life and high reliability. The reliability test cycle of motorized spindle is too long and infeasible. This paper proposes a new accelerated test for reliability evaluation of motorized spindle. By field reliability test, authors collect and calculate the load data including rotational speed, cutting force and torque. Load spectrum distribution law is analyzed. And authors design a test platform to apply the load spectrum. A new method to define the fuzzy acceleration factor based on the vibration signal is proposed. Then the whole test plan of accelerated reliability test is done.

  11. Broadband measurement of translational and angular vibrations using a single continuously scanning laser Doppler vibrometer.

    Science.gov (United States)

    Salman, Muhammad; Sabra, Karim G

    2012-09-01

    A continuous scanning laser Doppler velocimetry (CSLDV) technique is used to measure the low frequency broadband vibrations associated with human skeletal muscle vibrations (typically f laser beam over distances that are short compared to the characteristic wavelengths of the vibrations. The high frequency scan (compared to the vibration frequency) enables the detection of broadband translational and angular velocities at a single point using amplitude demodulation of the CSDLV signal. For instance, linear scans allow measurement of the normal surface velocity and one component of angular velocity vector, while circular scans allow measurement of an additional angular velocity component. This CSLDV technique is first validated here using gel samples mimicking soft tissues and then applied to measure multiple degrees of freedom (DOF) of a subject's hand exhibiting fatigue-induced tremor. Hence this CSLDV technique potentially provides a means for measuring multiple DOF of small human body parts (e.g., fingers, tendons, small muscles) for various applications (e.g., haptic technology, remote surgery) when the use of skin-mounted sensors (e.g. accelerometers) can be problematic due to mass-loading artifacts or tethering issues.

  12. Analysis of the detection materials as resonant pads for attaching the measuring arm of the interferometer when sensing mechanical vibrations

    Science.gov (United States)

    Nedoma, Jan; Fajkus, Marcel; Martinek, Radek; Zboril, Ondrej; Bednarek, Lukas; Novak, Martin; Witas, Karel; Vasinek, Vladimir

    2017-05-01

    Fiber-optic sensors (FOS), today among the most widespread measuring sensors and during various types of measuring, are irreplaceable. Among the distinctive features include immunity to electromagnetic interference, passivity regarding power supply and high sensitivity. One of the representatives FOS is the interferometric sensors working on the principle of interference of light. Authors of this article focused on the analysis of the detection material as resonant pads for attaching the measuring arm of the interferometer when sensing mechanical vibrations (low frequencies). A typical example is the use of interferometer sensors in automobile traffic while sensing a vibration response from the roadway while passing the cars. For analysis was used sensor with Mach-Zehnder interferometer. Defined were different detection materials about different size and thickness. We analyzed the influence on the sensitivity (amplitude response) of the interferometer. Based on the results we have defined the best material for sensing mechanical vibrations. The signal was processed by applications created in LabView development environment. The results were verified by repeated testing in laboratory conditions.

  13. A novel vibration sensor based on phase grating interferometry

    Science.gov (United States)

    Li, Qian; Liu, Xiaojun; Zhao, Li; Lei, Zili; Lu, Zhen; Guo, Lei

    2017-05-01

    Vibration sensors with high accuracy and reliability are needed urgently for vibration measurement. In this paper a vibration sensor with nanometer resolution is developed. This sensor is based on the principle of phase grating interference for displacement measurement and spatial polarization phase-shift interference technology, and photoelectric counting and A/D signal subdivision are adopted for vibration data output. A vibration measurement system consisting of vibration actuator and displacement adjusting device has been designed to test the vibration sensor. The high resolution and high reliability of the sensor are verified through a series of comparison experiments with Doppler interferometer.

  14. Electronic speckle pattern shearing interferometry using photopolymer diffractive optical elements for vibration measurements

    Science.gov (United States)

    Mihaylova, Emilia M.; Naydenova, Izabela; Martin, Suzanne; Toal, Vincent

    2004-06-01

    Electronic speckle pattern shearing interferometry (ESPSI) is superior to Electronic speckle pattern interferometry (ESPI) when strain distribution, arising from object deformation or vibration, need to be measured. This is because shearography provides data directly related to the spatial derivatives of the displacement. Further development of ESPSI systems could be beneficial for wider application to the measurement of mechanical characteristics of vibrating objects. Two electronic speckle pattern shearing interferometers (ESPSI) suitable for vibration measurements are presented. In both ESPSI systems photopolymer holographic gratings are used to shear the images and to control the size of the shear. The holographic gratings are recorded using an acrylamide-based photopolymer material. Since the polymerization process occurs during recording, the holograms are produced without any development or processing. The ESPSI systems with photopolymer holographic gratings are simple and compact. Introducing photopolymer holographic gratings in ESPSI gives the advantage of using high aperture optical elements at relatively low cost. It is demonstrated that both ESPSI system can be used for vibration measurements. The results obtained are promising for future applications of the systems for modal analysis.

  15. Measurements and analysis of vibrations at Virilla Bridge, national route N° 1

    Directory of Open Access Journals (Sweden)

    Francisco Navarro-Henríquez

    2015-06-01

    The measurements allowed quantifying the vibration magnitudes and deformation in various sections of the bridge, on condition of vehicular traffic service (environmental performance. The experimental results are compared with computational analytical modeling of the structure and also with national and international standards.

  16. Analysis of a Mechanical System’s Dynamic Proper-ties by Vibrations Measurements

    Directory of Open Access Journals (Sweden)

    Radu Panaitescu-Liess

    2010-01-01

    Full Text Available This paper aims to present some theoretical notions about the solution of the reverse problem in the dynamic response study of a mechanical system. Thus, by measuring vibration, some dynamic properties of the mechanical system considered can be determined.

  17. Nonlinear Vibration Response Measured at Umbo and Stapes in the Rabbit Middle ear.

    Science.gov (United States)

    Peacock, John; Pintelon, Rik; Dirckx, Joris

    2015-10-01

    Using laser vibrometry and a stimulation and signal analysis method based on multisines, we have measured the response and the nonlinearities in the vibration of the rabbit middle ear at the level of the umbo and the stapes. With our method, we were able to detect and quantify nonlinearities starting at sound pressure levels of 93-dB SPL. The current results show that no significant additional nonlinearity is generated as the vibration signal is passed through the middle ear chain. Nonlinearities are most prominent in the lower frequencies (125 Hz to 1 kHz), where their level is about 40 dB below the vibration response. The level of nonlinearities rises with a factor of nearly 2 as a function of sound pressure level, indicating that they may become important at very high sound pressure levels such as those used in high-power hearing aids.

  18. Performance testing of diesel engines using vibrational-acoustical diagnostic methods

    Energy Technology Data Exchange (ETDEWEB)

    Maack, H.H.; Neumann, G.

    1982-01-01

    Vibroacoustic condition monitoring is based on the measurement, processing and analysis of the solid-borne and airborne vibration signals emanating from a machine. Several assemblies belonging to diesel engines have a characteristic signal structure induced by impact excitation. The author proceeds from a generalised condition monitoring process to discuss the problem of the origin, transmission, measurement and analysis of vibroacoustic signals from diesel engines and presents a procedure based on a combination of frequency analysis in the temporary elimination of signal components.

  19. Quantification of the influence of external vibrations on the measurement error of a coriolis mass-flow meter

    NARCIS (Netherlands)

    van de Ridder, Bert; Hakvoort, Wouter; van Dijk, Johannes; Lötters, Joost Conrad; de Boer, Andries

    2014-01-01

    In this paper the influence of external vibrations on the measurement value of a Coriolis mass-flow meter (CMFM) for low flows is investigated and quantified. Model results are compared with experimental results to improve the knowledge on how external vibrations affect the mass-flow measurement

  20. A Heterodyne-based Method for Measuring Object Movement Speed and Vibration Parameters

    Directory of Open Access Journals (Sweden)

    M. A. Kostromin

    2015-01-01

    Full Text Available Now, in the industry and science, laser methods and tools are widely used to measure various parameters of objects and environment. Among them is distinguished the method of a heterodyne interferometry allowing real time measurements of fairly high accuracy. However, there is an essential shortcoming in this method. It is rather narrow range of measurements because a period of the wave-interference pattern is commensurable with the light wavelength. Therefore, for measurement of parameters of extended objects this work offers a method, which allows us to form the period wave-interference pattern commensurable with the object sizes using two channels of measurement, i.e. rough and exact, thereby providing a wide range and high accuracy of measurement. The article considers the offered method application to measure a movement speed and vibration parameters of the object and shows its advantage. It describes a structure of the heterodyne-based meter of the cross speed of object movement using the offered method where, as a result of the reflector cross movement, the phase of interfering beams is changed because the wave-interference pattern will be displaced with respect to the optoelectronic sensor slit. The paper defines efficiently working borders of this method for measuring object speed. It is found that to measure the amplitude of vibrations it is determined in this case by calculating the Bessel function transitions through zero. Thus, for disambiguation in determination of the amplitude size rather complicated equipment is demanded. It is shown that the offered method allows us to take absolute measurements of amplitude and frequency of vibrations along with simplified implementation. The calculations show that for the real speeds of the object movement this method, as compared to a known Doppler method, will have the higher sensitivity, which is easily regulated in a wide range by changing the frequency to the cross speeds of the movement

  1. A novel vibration-based fault diagnostic algorithm for gearboxes under speed fluctuations without rotational speed measurement

    Science.gov (United States)

    Hong, Liu; Qu, Yongzhi; Dhupia, Jaspreet Singh; Sheng, Shuangwen; Tan, Yuegang; Zhou, Zude

    2017-09-01

    The localized failures of gears introduce cyclic-transient impulses in the measured gearbox vibration signals. These impulses are usually identified from the sidebands around gear-mesh harmonics through the spectral analysis of cyclo-stationary signals. However, in practice, several high-powered applications of gearboxes like wind turbines are intrinsically characterized by nonstationary processes that blur the measured vibration spectra of a gearbox and deteriorate the efficacy of spectral diagnostic methods. Although order-tracking techniques have been proposed to improve the performance of spectral diagnosis for nonstationary signals measured in such applications, the required hardware for the measurement of rotational speed of these machines is often unavailable in industrial settings. Moreover, existing tacho-less order-tracking approaches are usually limited by the high time-frequency resolution requirement, which is a prerequisite for the precise estimation of the instantaneous frequency. To address such issues, a novel fault-signature enhancement algorithm is proposed that can alleviate the spectral smearing without the need of rotational speed measurement. This proposed tacho-less diagnostic technique resamples the measured acceleration signal of the gearbox based on the optimal warping path evaluated from the fast dynamic time-warping algorithm, which aligns a filtered shaft rotational harmonic signal with respect to a reference signal assuming a constant shaft rotational speed estimated from the approximation of operational speed. The effectiveness of this method is validated using both simulated signals from a fixed-axis gear pair under nonstationary conditions and experimental measurements from a 750-kW planetary wind turbine gearbox on a dynamometer test rig. The results demonstrate that the proposed algorithm can identify fault information from typical gearbox vibration measurements carried out in a resource-constrained industrial environment.

  2. Ground vibration measurements for Fermilab future collider projects

    Directory of Open Access Journals (Sweden)

    B. Baklakov

    1998-07-01

    Full Text Available This article presents results of wideband seismic measurements at the Fermilab site, namely, in the tunnel of the Tevatron and on the surface nearby, as well as in two deep tunnels in the Illinois dolomite, thought to be a possible geological environment of the Fermilab future accelerators.

  3. A New Vibration Measurement Procedure for On-Line Quality Control of Electronic Devices

    Directory of Open Access Journals (Sweden)

    Gian Marco Revel

    2002-01-01

    Full Text Available In this paper the problem of experimentally testing the mechanical reliability of electronic components for quality control is approached. In general, many tests are performed on electronic devices (personal computers, power supply units, lamps, etc., according to the relevant international standards (IEC, in order to verify their resistance to shock and vibrations, but these are mainly “go no-go” experiments, performed on few samples taken from the production batches.

  4. Vibration and thermal vacuum qualification test results for a low-voltage tungsten-halogen light

    Science.gov (United States)

    Sexton, J. Andrew

    1991-01-01

    The results of a space flight qualification test program for a low-voltage, quartz tungsten-halogen light are presented. The test program was designed to qualify a halogen light for use in the Pool Boiling Experiment, a Get Away Special (GAS) payload that will be flown in the space shuttle payload bay. Vibration and thermal vacuum tests were performed. The test results indicated that the halogen light will survive the launch and ascent loads, and that the convection-free environment associated with the GAS payload system will not detrimentally affect the operation of the halogen light.

  5. Theoretical analysis and experimental measurement for resonant vibration of piezoceramic circular plates.

    Science.gov (United States)

    Huang, Chi-Hung; Lin, Yu-Chih; Ma, Chien-Ching

    2004-01-01

    Based on the electroelastic theory for piezoelectric plates, the vibration characteristics of piezoceramic disks with free-boundary conditions are investigated in this work by theoretical analysis, numerical simulation, and experimental measurement. The resonance of thin piezoceramic disks is classified into three types of vibration modes: transverse, tangential, and radial extensional modes. All of these modes are investigated in detail. Two optical techniques, amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) and laser Doppler vibrometer (LDV), are used to validate the theoretical analysis. Because the clear fringe patterns are shown only at resonant frequencies, both the resonant frequencies and the corresponding mode shapes are obtained experimentally at the same time by the proposed AF-ESPI method. Good quality of the interferometric fringe patterns for both the transverse and extensional vibration mode shapes are demonstrated. The resonant frequencies of the piezoceramic disk also are measured by the conventional impedance analysis. Both theoretical and experimental results indicate that the transverse and tangential vibration modes cannot be measured by the impedance analysis, and only the resonant frequencies of extensional vibration modes can be obtained. Numerical calculations based on the finite element method also are performed, and the results are compared with the theoretical analysis and experimental measurements. It is shown that the finite element method (FEM) calculations and the experimental results agree fairly well for the resonant frequencies and mode shapes. The resonant frequencies and mode shapes predicted by theoretical analysis and calculated by finite element method are in good agreement, and the difference of resonant frequencies for both results with the thickness-to-diameter (h/D) ratios, ranging from 0.01 to 0.1, are presented.

  6. Comparison of analysis and vibration test results for a multiple supported piping system

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, B.J.; Kot, C.A.; Srinivasan, M.G.

    1989-01-01

    The behavior of a nuclear power plant piping system subjected to high level vibrational excitation is investigated experimentally and analytically. The objective is to evaluate the piping analysis method employed in the SMACS computer code. Experimental data are obtained from the Large Shaker Experiments (SHAG) conducted at the HDR Test Facility in Kahl/Main, FRG, in which the dynamic behavior of an in-plant piping system with various support configurations was investigated. Comparisons of calculational results with measured data indicate that the adequacy of the prediction depends primarily on the modeling of boundary conditions and dynamic supports. Treating the latter as rigid and using building motion as input, in general, results in under prediction of piping response. On the other hand when accelerations on the pipe side of the dynamic support attachment are used as input, piping response is highly overpredicted. Also modeling wall/floor component attachments as fixed usually leads to underprediction of amplitude as well as differences in the frequency content of response. 9 refs., 18 figs., 1 tab.

  7. Tire stiffness and damping determined from static and free-vibration tests. [aircraft tires

    Science.gov (United States)

    Sleeper, R. K.; Dreher, R. C.

    1980-01-01

    Stiffness and damping of a nonrolling tire were determined experimentally from both static force-displacement relations and the free-vibration behavior of a cable-suspended platen pressed against the tire periphery. Lateral and force-and-aft spring constants and damping factors of a 49 x 17 size aircraft tire for different tire pressure and vertical loads were measured assuming a rate-independent damping form. In addition, a technique was applied for estimating the magnitude of the tire mass which participates in the vibratory motion of the dynamic tests. Results show that both the lateral and force-and-aft spring constants generally increase with tire pressure but only the latter increased significantly with vertical tire loading. The fore-and-aft spring constants were greater than those in the lateral direction. The static-spring-constant variations were similar to the dynamic variations but exhibited lower magnitudes. Damping was small and insensitive to tire loading. Furthermore, static damping accounted for a significant portion of that found dynamically. Effective tire masses were also small.

  8. MODELLING AND VIBRATION ANALYSIS OF A ROAD PROFILE MEASURING SYSTEM

    Directory of Open Access Journals (Sweden)

    C. B. Patel

    2010-06-01

    Full Text Available During a vehicle development program, load data representing severe customer usage is required. The dilemma faced by a design engineer during the design process is that during the initial stage, only predicted loads estimated from historical targets are available, whereas the actual loads are available only at the fag end of the process. At the same time, changes required, if any, are easier and inexpensive during the initial stages of the design process whereas they are extremely costly in the latter stages of the process. The use of road profiles and vehicle models to predict the load acting on the whole vehicle is currently being researched. This work hinges on the ability to accurately measure road profiles. The objective of the work is to develop an algorithm, using MATLAB Simulink software, to convert the input signals into measured road profile. The algorithm is checked by the MATLAB Simulink 4 degrees of freedom half car model. To make the whole Simulink model more realistic, accelerometer and laser sensor properties are introduced. The present work contains the simulation of the mentioned algorithm with a half car model and studies the results in distance, time, and the frequency domain.

  9. The Shock Vibration Bulletin. Part 4. Structural Dynamics and Modal Test and Analysis

    Science.gov (United States)

    1987-01-01

    Feb. 1971. 17 16. B. Bresler, and A. C. Scordelis , ’Shear Strength of Reinforced Concrete Beams-,Series 100, Issue 13, Structure and Material Research...their adequacy. Dynamic analyses, choice of failure thresholds of failure are even harder to theories , and an accurate dynamic model are estimate...without experimental evidence. shown to be crucial in fulfilling the 29 71 L requirements. Vibration testing data are theories of failure have to be

  10. Force Limited Vibration Testing and Subsequent Redesign of the Naval Postgraduate School CubeSat Launcher

    Science.gov (United States)

    2014-06-01

    complex (e.g., Honeycomb ), this approach can significantly increase the cost of a satellite program. 3. Limit the responses of the satellite to match...LEFT BLANK xv LIST OF ACRONYMS AND ABBREVIATIONS ABC Aft Bulkhead Carrier ADaMSat AS&T Development and Maturation Satellite AFSPC Air Force Space...vibration testing FRF frequency response function GEMSat Government Experimental Multi- Satellite GRACE Government Rideshare Advanced Concepts Experiments

  11. Vibration Durability Testing of Nickel Cobalt Aluminum Oxide (NCA Lithium-Ion 18650 Battery Cells

    Directory of Open Access Journals (Sweden)

    James Michael Hooper

    2016-04-01

    Full Text Available This paper outlines a study undertaken to determine if the electrical performance of Nickel Cobalt Aluminum Oxide (NCA 3.1 Ah 18650 battery cells can be degraded by road induced vibration typical of an electric vehicle (EV application. This study investigates if a particular cell orientation within the battery assembly can result in different levels of cell degradation. The 18650 cells were evaluated in accordance with Society of Automotive Engineers (SAE J2380 standard. This vibration test is synthesized to represent 100,000 miles of North American customer operation at the 90th percentile. This study identified that both the electrical performance and the mechanical properties of the NCA lithium-ion cells were relatively unaffected when exposed to vibration energy that is commensurate with a typical vehicle life. Minor changes observed in the cell’s electrical characteristics were deemed not to be statistically significant and more likely attributable to laboratory conditions during cell testing and storage. The same conclusion was found, irrespective of cell orientation during the test.

  12. Modal Analysis and Measurement of Water Cooling Induced Vibrations on a CLIC Main Beam Quadrupole Prototype

    CERN Document Server

    Artoos, K; Esposito, M; Fernandez Carmona, P; Guinchard, M; Janssens, S; Leuxe, R; Modena, M; Moron Ballester, R; Struik, M; Deleglise, C; Jeremie, A

    2011-01-01

    To reach the Compact Linear Collider (CLIC) design luminosity, the mechanical jitter of the CLIC main beam quadrupoles should be smaller than 1.5 nm integrated root mean square (r.m.s.) displacement above 1 Hz. A stiff stabilization and nano-positioning system is being developed but the design and effectiveness of such a system will greatly depend on the stiffness of the quadrupole magnet which should be as high as possible. Modal vibration measurements were therefore performed on a first assembled prototype magnet to evaluate the different mechanical modes and their frequencies. The results were then compared with a Finite Element (FE) model. The vibrations induced by water-cooling without stabilization were measured with different flow rates. This paper describes and analyzes the measurement results.

  13. Analysis of classical guitars' vibrational behavior based on scanning laser vibrometer measurements

    Science.gov (United States)

    Czajkowska, Marzena

    2012-06-01

    One of the main goals in musical acoustics research is to link measurable, physical properties of a musical instrument with subjective assessments of its tone quality. The aim of the research discussed in this paper was to observe the structural vibrations of different class classical guitars in relation to their quality. This work focuses on mid-low-and low-class classical (nylon-stringed) guitars. The main source of guitar body vibrations come from top and back plate vibrations therefore these were the objects of structural mode measurements and analysis. Sixteen classical guitars have been investigated, nine with cedar and seven with spruce top plate. Structural modes of top and back plates have been measured with the aid of a scanning laser vibrometer and the instruments were excited with a chirp signal transferred by bone vibrator. The issues related to excitor selection have been discussed. Correlation and descriptive statistics of top and back plates measurement results have been investigated in relation to guitar quality. The frequency range of 300 Hz to 5 kHz as well as selected narrowed frequency bands have been analyzed for cedar and spruce guitars. Furthermore, the influence of top plate wood type on vibration characteristics have been observed on three pairs of guitars. The instruments were of the same model but different top plate material. Determination and visualization of both guitar plates' modal patterns in relation to frequency are a significant attainment of the research. Scanning laser vibrometer measurements allow particular mode observation and therefore mode identification, as opposed to sound pressure response measurements. When correlating vibration characteristics of top and back plates it appears that Pearson productmoment correlation coefficient is not a parameter that associates with guitar quality. However, for best instruments with cedar top, top-back correlation coefficient has relatively greater value in 1-2 kHz band and lower in

  14. [Vibrations of the human tympanic membrane measured with Laser Doppler Vibrometer].

    Science.gov (United States)

    Szymański, Marcin; Rusinek, Rafał; Zadrozniak, Marek; Warmiński, Jerzy; Morshed, Kamal

    2009-01-01

    The knowledge of the physiology of the normal ear is important to understand the function of the ear. It is especially crucial in the reconstruction of the destroyed ear to apply the knowledge of the normal ear. We present results of tympanic membrane vibrations measurements using Laser Doppler Vibrometer in human temporal bone specimens. Six temporal bone specimens were harvested within 48 hours of death and stored cooled until preparation. The preparation included mastoidectomy with posterior tympanotomy and partial resection of the facial nerve to visualize the stapes with its footplate. We measured velocity and displacement of each quadrant of the tympanic membrane and the umbo with the laser Vibrometer equipped with velocity and displacement decoders. The sensor head OFV-534 produced and read the reflected laser beam directed at a measured point with a dedicated micromanipulator attached to an operating microscope. A retro-reflective tape was used to enhance the reflection of the laser beam. Vibrations were induced by a acoustic stimulation at the tympanic membrane. The results of the measurements were corrected to a sound pressure in the external ear canal. Laser Doppler Vibrometer system allows an undisturbed measurement of vibrations in the middle ear. Posterior quadrants of the tympanic membrane have greater velocity and displacement than anterior quadrants in lower frequencies up to 2 kHz.

  15. Space robots with flexible appendages: Dynamic modeling, coupling measurement, and vibration suppression

    Science.gov (United States)

    Meng, Deshan; Wang, Xueqian; Xu, Wenfu; Liang, Bin

    2017-05-01

    For a space robot with flexible appendages, vibrations of flexible structure can be easily excited during both orbit and/or attitude maneuvers of the base and the operation of the manipulators. Hence, the pose (position and attitude) of the manipulator's end-effector will greatly deviate from the desired values, and furthermore, the motion of the manipulator will trigger and exacerbate vibrations of flexible appendages. Given lack of the atmospheric damping in orbit, the vibrations will last for quite a while and cause the on-orbital tasks to fail. We derived the rigid-flexible coupling dynamics of a space robot system with flexible appendages and established a coupling model between the flexible base and the space manipulator. A specific index was defined to measure the coupling degree between the flexible motion of the appendages and the rigid motion of the end-effector. Then, we analyzed the dynamic coupling for different conditions, such as modal displacements, joint angles (manipulator configuration), and mass properties. Moreover, the coupling map was adopted and drawn to represent the coupling motion. Based on this map, a trajectory planning method was addressed to suppress structure vibration. Finally, simulation studies of typical cases were performed, which verified the proposed models and method. This work provides a theoretic basis for the system design, performance evaluation, trajectory planning, and control of such space robots.

  16. In vivo measurement of basilar membrane vibration in the unopened chinchilla cochlea using high frequency ultrasound.

    Science.gov (United States)

    Landry, Thomas G; Bance, Manohar L; Leadbetter, Jeffrey; Adamson, Robert B; Brown, Jeremy A

    2017-06-01

    The basilar membrane and organ of Corti in the cochlea are essential for sound detection and frequency discrimination in normal hearing. There are currently no methods used for real-time high resolution clinical imaging or vibrometry of these structures. The ability to perform such imaging could aid in the diagnosis of some pathologies and advance understanding of the causes. It is demonstrated that high frequency ultrasound can be used to measure basilar membrane vibrations through the round window of chinchilla cochleas in vivo. The basic vibration characteristics of the basilar membrane agree with previous studies that used other methods, although as expected, the sensitivity of ultrasound was not as high as optical methods. At the best frequency for the recording location, the average vibration velocity amplitude was about 4 mm/s/Pa with stimulus intensity of 50 dB sound pressure level. The displacement noise floor was about 0.4 nm with 256 trial averages (5.12 ms per trial). Although vibration signals were observed, which likely originated from the organ of Corti, the spatial resolution was not adequate to resolve any of the sub-structures. Improvements to the ultrasound probe design may improve resolution and allow the responses of these different structures to be better discriminated.

  17. Robustness of railway rolling stock speed calculation using ground vibration measurements

    Directory of Open Access Journals (Sweden)

    Kouroussis Georges

    2015-01-01

    Full Text Available Evaluating railway vehicle speed is an important task for both railway operators and researchers working in the area of vehicle/track dynamics, noise and vibration assessment. The objective of this paper is to present a new technique capable of automatically calculating train speed from vibration sensors placed at short or long distances from the track structure. The procedure combines three separate signal processing techniques to provide high precision speed estimates. In order to present a complete validation, the robustness of the proposed method is evaluate using synthetic railway vibration time histories generated using a previously validated vibration numerical model. A series of simulations are performed, analysing the effect of vehicle speed, singular wheel and rail surface defects, and soil configuration. Virtual conditions of measurement are also examined, taking into account external sources other than trains, and sensor response. It is concluded that the proposed method offers high performance for several train/track/soil arrangements. It is also used to predict train speeds during field trials performed on operational railway lines in Belgium and in UK.

  18. Quantitative estimation of the influence of external vibrations on the measurement error of a coriolis mass-flow meter

    NARCIS (Netherlands)

    van de Ridder, Bert; Hakvoort, Wouter; van Dijk, Johannes; Lötters, Joost Conrad; de Boer, Andries; Dimitrovova, Z.; de Almeida, J.R.

    2013-01-01

    In this paper the quantitative influence of external vibrations on the measurement value of a Coriolis Mass-Flow Meter for low flows is investigated, with the eventual goal to reduce the influence of vibrations. Model results are compared with experimental results to improve the knowledge on how

  19. A MEMS Resonant Sensor to Measure Fluid Density and Viscosity under Flexural and Torsional Vibrating Modes.

    Science.gov (United States)

    Zhao, Libo; Hu, Yingjie; Wang, Tongdong; Ding, Jianjun; Liu, Xixiang; Zhao, Yulong; Jiang, Zhuangde

    2016-06-06

    Methods to calculate fluid density and viscosity using a micro-cantilever and based on the resonance principle were put forward. Their measuring mechanisms were analyzed and the theoretical equations to calculate the density and viscosity were deduced. The fluid-solid coupling simulations were completed for the micro-cantilevers with different shapes. The sensing chips with micro-cantilevers were designed based on the simulation results and fabricated using the micro electromechanical systems (MEMS) technology. Finally, the MEMS resonant sensor was packaged with the sensing chip to measure the densities and viscosities of eight different fluids under the flexural and torsional vibrating modes separately. The relative errors of the measured densities from 600 kg/m³ to 900 kg/m³ and viscosities from 200 μPa·s to 1000 μPa·s were calculated and analyzed with different microcantilevers under various vibrating modes. The experimental results showed that the effects of the shape and vibrating mode of micro-cantilever on the measurement accuracies of fluid density and viscosity were analyzed in detail.

  20. A MEMS Resonant Sensor to Measure Fluid Density and Viscosity under Flexural and Torsional Vibrating Modes

    Directory of Open Access Journals (Sweden)

    Libo Zhao

    2016-06-01

    Full Text Available Methods to calculate fluid density and viscosity using a micro-cantilever and based on the resonance principle were put forward. Their measuring mechanisms were analyzed and the theoretical equations to calculate the density and viscosity were deduced. The fluid-solid coupling simulations were completed for the micro-cantilevers with different shapes. The sensing chips with micro-cantilevers were designed based on the simulation results and fabricated using the micro electromechanical systems (MEMS technology. Finally, the MEMS resonant sensor was packaged with the sensing chip to measure the densities and viscosities of eight different fluids under the flexural and torsional vibrating modes separately. The relative errors of the measured densities from 600 kg/m3 to 900 kg/m3 and viscosities from 200 μPa·s to 1000 μPa·s were calculated and analyzed with different microcantilevers under various vibrating modes. The experimental results showed that the effects of the shape and vibrating mode of micro-cantilever on the measurement accuracies of fluid density and viscosity were analyzed in detail.

  1. IEEE 802.11-Based Wireless Sensor System for Vibration Measurement

    Directory of Open Access Journals (Sweden)

    Yutaka Uchimura

    2010-01-01

    Full Text Available Network-based wireless sensing has become an important area of research and various new applications for remote sensing are expected to emerge. One of the promising applications is structural health monitoring of building or civil engineering structure and it often requires vibration measurement. For the vibration measurement via wireless network, time synchronization is indispensable. In this paper, we introduce a newly developed time synchronized wireless sensor network system. The system employs IEEE 802.11 standard-based TSF-counter and sends the measured data with the counter value. TSF based synchronization enables consistency on common clock among different wireless nodes. We consider the scale effect on synchronization accuracy and evaluated the effect by taking beacon collisions into account. The scalability issue by numerical simulations is also studied. This paper also introduces a newly developed wireless sensing system and the hardware and software specifications are introduced. The experiments were conducted in a reinforced concrete building to evaluate synchronization accuracy. The developed system was also applied for a vibration measurement of a 22-story steel structured high rise building. The experimental results showed that the system performed more than sufficiently.

  2. Accurate acoustic power measurement for low-intensity focused ultrasound using focal axial vibration velocity

    Science.gov (United States)

    Tao, Chenyang; Guo, Gepu; Ma, Qingyu; Tu, Juan; Zhang, Dong; Hu, Jimin

    2017-07-01

    Low-intensity focused ultrasound is a form of therapy that can have reversible acoustothermal effects on biological tissue, depending on the exposure parameters. The acoustic power (AP) should be chosen with caution for the sake of safety. To recover the energy of counteracted radial vibrations at the focal point, an accurate AP measurement method using the focal axial vibration velocity (FAVV) is proposed in explicit formulae and is demonstrated experimentally using a laser vibrometer. The experimental APs for two transducers agree well with theoretical calculations and numerical simulations, showing that AP is proportional to the square of the FAVV, with a fixed power gain determined by the physical parameters of the transducers. The favorable results suggest that the FAVV can be used as a valuable parameter for non-contact AP measurement, providing a new strategy for accurate power control for low-intensity focused ultrasound in biomedical engineering.

  3. Review on structural damage assessment via transmissibility with vibration based measurements

    Science.gov (United States)

    Zhou, Yun-Lai; Hongyou, Cao; Zhen, Ni; Abdel Wahab, Magd

    2017-05-01

    In this study, transmissibility based damage assessment techniques with vibration measurement are reviewed with highlighting the recent advancements since damage might induce severe changes and cause huge economic losses in both civil and mechanical engineering structures. In recent years, transmissibility underwent booming and divergent application for damage assessment both in experimental model and engineering application, and this review provides a fundamental understanding for transmissibility based damage assessment by summarizing those research outputs, which can serve as useful reference for further investigations.

  4. Research on the Random Shock Vibration Test Based on the Filter-X LMS Adaptive Inverse Control Algorithm

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2016-01-01

    Full Text Available The related theory and algorithm of adaptive inverse control were presented through the research which pointed out the adaptive inverse control strategy could effectively eliminate the noise influence on the system control. Proposed using a frequency domain filter-X LMS adaptive inverse control algorithm, and the control algorithm was applied to the two-exciter hydraulic vibration test system of random shock vibration control process and summarized the process of the adaptive inverse control strategies in the realization of the random shock vibration test. The self-closed-loop and field test show that using the frequency-domain filter-X LMS adaptive inverse control algorithm can realize high precision control of random shock vibration test.

  5. Statistical correlation analysis for comparing vibration data from test and analysis

    Science.gov (United States)

    Butler, T. G.; Strang, R. F.; Purves, L. R.; Hershfeld, D. J.

    1986-01-01

    A theory was developed to compare vibration modes obtained by NASTRAN analysis with those obtained experimentally. Because many more analytical modes can be obtained than experimental modes, the analytical set was treated as expansion functions for putting both sources in comparative form. The dimensional symmetry was developed for three general cases: nonsymmetric whole model compared with a nonsymmetric whole structural test, symmetric analytical portion compared with a symmetric experimental portion, and analytical symmetric portion with a whole experimental test. The theory was coded and a statistical correlation program was installed as a utility. The theory is established with small classical structures.

  6. Serological tests for diagnosis and staging of hand-arm vibration syndrome (HAVS).

    Science.gov (United States)

    Kao, Dennis S; Yan, Ji-Geng; Zhang, Lin-Ling; Kaplan, Rachel E; Riley, Danny A; Matloub, Hani S

    2008-06-01

    The current gold standard for the diagnosis and staging of hand-arm vibration syndrome (HAVS) is the Stockholm workshop scale, which is subjective and relies on the patient's recalling ability and honesty. Therefore, great potentials exist for diagnostic and staging errors. The purpose of this study is to determine if objective serum tests, such as levels of soluble thrombomodulin (sTM) and soluble intercellular adhesion molecule-1 (sICAM-1), may be used in the diagnosis and staging of HAVS. Twenty two nonsmokers were divided into a control group (n = 11) and a vibration group (n = 11). The control group included subjects without history of frequent vibrating tool use. The vibration group included construction workers with average vibrating tool use of 12.2 years. All were classified according to the Stockholm workshop scale (SN, sensorineural symptoms; V, vascular symptoms. SN0, no numbness; SN1, intermittent numbness; SN2, reduced sensory perception; SN3, reduced tactile discrimination; V0, no vasospasmic attacks; V1, intermittent vasospasm involving distal phalanges; V2, intermittent vasospasm extending to middle phalanges; V3, intermittent vasospasm extending to proximal phalanges; V4, skin atrophy/necrosis). All control subjects were SN0 V0. Seven out of 11 vibration subjects were SN1 V1, and 4 out of 11 were SN1 V2. A 10-cm(3) sample of venous blood was collected from each subject. The sTM and sICAM-1 levels were determined by enzyme-linked immunosorbent assay. The mean plasma sTM levels were as follows: control group = 2.93 +/- 0.47 ng/ml, and vibration group = 3.61 +/- 0.24 ng/ml. The mean plasma sICAM-1 levels were as follows: control group = 218.8 +/- 54.1 ng/ml, and vibration group = 300.3 +/- 53.2 ng/ml. The sTM and sICAM-1 differences between control and vibration groups were statistically significant (p Stockholm workshop scale, mean plasma sTM levels were SN0 V0 group = 2.93 +/- 0.47 ng/ml, SN1 V1 group = 3.59 +/- 0.25 ng/ml, and SN1 V2 group = 3

  7. Noise Radiation Measure-Sound Power and its Test Methods

    OpenAIRE

    Zeng Xianren; Zuo Yanyan

    2013-01-01

    This study mainly aims to study the characteristics and theory of sound radiation of steady-state vibration. Study shows that sound radiation power of steady-state vibration is constant. And taking excavator for experimental object by hemisphere surface method, the radiated sound power of the excavator is the same as testing the sound pressure on various surfaces based on relevant international standard. Finally, a test method of radiated sound power for cylindrical vibration object is proposed.

  8. VIBRATIONS MEASUREMENT IN ORDER TO IDENTIFY THE FAULTS TO THE TABLES AND SUPPORTS ON WHICH THE EMBROIDERY MACHINES ARE PLACED

    Directory of Open Access Journals (Sweden)

    ŞUTEU Marius

    2014-05-01

    Full Text Available The aim of this paper is to accurately and quickly identify the faults of the tables and supports on which the embroidery machines are placed through vibrations measuring method. Vibrations measurements on Happy embroidery machine were performed at S.C. CONFIDEX S.R.L Oradea. A FFT spectrum analyzer Impaq was used, made by Benstone Instruments Inc –SUA. The measurements were performed in order to seek the role and importance of the rigidity of embroidery machine supports for a better and more efficient performance of the machine. Before performing these measurements was determined the optimal operating mode of the embroidery machine. The vibration measurements were performed in each measuring point, by installing a vibration sensor on the three directions of the Cartesian coordinates system: axial (X, horizontal (Y, vertical (Z. In the present paper is shown only the measuring direction Z (sensor mounting direction and advance of the material on x direction (the embroidery direction this is the most relevant direction, as on this part the embroidery is executed. After performing these vibration measurements on the HAPPY embroidery machine, previously mounted on a big table, after that mounted on a smaller table and a less rigid base. The same vibrations measurements were performed and it was noticed that it is mandatory to position the machine on a big table and a stable base because it will influence both the reliability and the working regime of the machine.

  9. Geared induction motor fault diagnosis by current, noise and vibration considering measurement environment

    Directory of Open Access Journals (Sweden)

    Ki-Seok Kim

    2017-01-01

    Full Text Available Lots of motors have been being used in industry. Therefore many studies have been carried out about the failure diagnosis of motors. In this paper, a diagnosis of gear fault connected to a motor shaft is studied. The fault diagnosis is executed through the comparison of normal gear and abnormal gear. In the abnormal gearbox, a tooth of the intermediate gear is damaged. The measured FFT data are compared with the normal data and analyzed for q-axis current, noise and vibration. Fault gear was found by comparing the FFT with normal FFT. From these, the difference between the normal and abnormal states can be seen by the frequency characteristic analysis for the current as well as noise and vibration.

  10. Small-scale rotor test rig capabilities for testing vibration alleviation algorithms

    Science.gov (United States)

    Jacklin, Stephen A.; Leyland, Jane Anne

    1987-01-01

    A test was conducted to assess the capabilities of a small scale rotor test rig for implementing higher harmonic control and stability augmentation algorithms. The test rig uses three high speed actuators to excite the swashplate over a range of frequencies. The actuator position signals were monitored to measure the response amplitudes at several frequencies. The ratio of response amplitude to excitation amplitude was plotted as a function of frequency. In addition to actuator performance, acceleration from six accelerometers placed on the test rig was monitored to determine whether a linear relationship exists between the harmonics of N/Rev control input and the least square error (LSE) identification technique was used to identify local and global transfer matrices for two rotor speeds at two batch sizes each. It was determined that the multicyclic control computer system interfaced very well with the rotor system and kept track of the input accelerometer signals and their phase angles. However, the current high speed actuators were found to be incapable of providing sufficient control authority at the higher excitation frequencies.

  11. Comparison of the sound pressure measurement and the speed measurement of the gearbox vibrating surface

    Directory of Open Access Journals (Sweden)

    Tomasz FIGLUS

    2012-01-01

    Full Text Available The paper attempts to assess the utility of sound pressure level registered in the near field of about 0,01 m away from the vibrating surface in the studies of the housing vibroacoustic activity. Based on the studies performed for the four pairs of wheels, with different loads and different speeds of gearbox, have been indicated the usefulness of the noise recorded in near field in vibroacoustic analysis.

  12. A Novel Slope Method for Measurement of Fluid Density with a Micro-cantilever under Flexural and Torsional Vibrations.

    Science.gov (United States)

    Zhao, Libo; Hu, Yingjie; Hebibul, Rahman; Ding, Jianjun; Wang, Tongdong; Xu, Tingzhong; Liu, Xixiang; Zhao, Yulong; Jiang, Zhuangde

    2016-09-11

    A novel method, which was called a slope method, has been proposed to measure fluid density by the micro-cantilever sensing chip. The theoretical formulas of the slope method were discussed and established when the micro-cantilever sensing chip was under flexural and torsional vibrations. The slope was calculated based on the fitted curve between the excitation and output voltages of sensing chip under the nonresonant status. This measuring method need not sweep frequency to find the accurate resonant frequency. Therefore, the fluid density was measured easily based on the calculated slope. In addition, the micro-cantilver was drived by double sided excitation and free end excitation to oscillate under flexural and torsional vibrations, respectively. The corresponding experiments were carried out to measure the fluid density by the slope method. The measurement results were also analyzed when the sensing chip was under flexural and torsional nonresonant vibrations separately. The measurement accuracies under these vibrations were all better than 1.5%, and the density measuring sensitivity under torsional nonresonant vibration was about two times higher than that under flexural nonresonant vibration.

  13. Development of a sine-dwell ground vibration test (GVT) system

    CSIR Research Space (South Africa)

    Van Zyl, Lourens H

    2006-02-27

    Full Text Available Vibration Test (GVT) System Presented at CSIR Research and Innovation Conference: 27 - 28 February 2006 DPSS Mr Louw van Zyl Mr Erik Wegman 27 February 2006 Slide 2 © CSIR 2006 www.csir.co.za Agenda • Introduction Why ground... stream_source_info VanZyl_2006.pdf.txt stream_content_type text/plain stream_size 9765 Content-Encoding UTF-8 stream_name VanZyl_2006.pdf.txt Content-Type text/plain; charset=UTF-8 Development of a Sine-Dwell Ground...

  14. Analysis of Within-Test Variability of Non-Destructive Test Methods to Evaluate Compressive Strength of Normal Vibrated and Self-Compacting Concretes

    Science.gov (United States)

    Nepomuceno, Miguel C. S.; Lopes, Sérgio M. R.

    2017-10-01

    Non-destructive tests (NDT) have been used in the last decades for the assessment of in-situ quality and integrity of concrete elements. An important step in the application of NDT methods concerns to the interpretation and validation of the test results. In general, interpretation of NDT results should involve three distinct phases leading to the development of conclusions: processing of collected data, analysis of within-test variability and quantitative evaluation of property under investigation. The analysis of within-test variability can provide valuable information, since this can be compared with that of within-test variability associated with the NDT method in use, either to provide a measure of the quality control or to detect the presence of abnormal circumstances during the in-situ application. This paper reports the analysis of the experimental results of within-test variability of NDT obtained for normal vibrated concrete and self-compacting concrete. The NDT reported includes the surface hardness test, ultrasonic pulse velocity test, penetration resistance test, pull-off test, pull-out test and maturity test. The obtained results are discussed and conclusions are presented.

  15. Study of V-OTDR stability for dynamic strain measurement in piezoelectric vibration

    Science.gov (United States)

    Ren, Meiqi; Lu, Ping; Chen, Liang; Bao, Xiaoyi

    2016-09-01

    In a phase-sensitive optical-time domain reflectometry (Φ-OTDR) system, the challenge for dynamic strain measurement lies in large intensity fluctuations from trace to trace. The intensity fluctuation caused by stochastic characteristics of Rayleigh backscattering sets detection limit for the minimum strength of vibration measurement and causes the large measurement uncertainty. Thus, a trace-to-trace correlation coefficient is introduced to quantify intensity fluctuation of Φ-OTDR traces and stability of the sensor system theoretically and experimentally. A novel approach of measuring dynamic strain induced by various driving voltages of lead zirconate titanate (PZT) in Φ-OTDR is also demonstrated. Piezoelectric vibration signals are evaluated through analyzing peak values of fast Fourier transform spectra at the fundamental frequency and high-order harmonics based on Bessel functions. High trace-to-trace correlation coefficients varying from 0.824 to 0.967 among 100 measurements are obtained in experimental results, showing the good stability of our sensor system, as well as small uncertainty of measured peak values.

  16. Effect of self-vibration on accuracy of free-fall absolute gravity measurement with laser interferometer

    Science.gov (United States)

    Feng, Jin-yang; Wu, Shu-qing; Li, Chun-jian; Su, Duo-wu; Yu, Mei

    2015-02-01

    A free-fall absolute gravimeter was used to measure the gravity acceleration of a corner-cube released in high vacuum, and the gravity acceleration was determined by fitting the free-falling trajectories obtained through optical interferometry. During the measurement, the self-vibration of an absolute gravimeter caused ground vibration and the change in optical path length due to vibration of vacuum-air interface, which resulted in a measurement error. Numerical simulation was run by introducing vibration disturbance to the trajectories of free-fall. The effect of disturbance under different instrumental self-vibration conditions was analyzed. Simulation results indicated that the deviation of calculated gravity acceleration from the preset value and residuals amplitude after fitting depended on the amplitude and initial phase of the vibration disturbance. The deviation value and fitting residuals amplitude increased with the increasing of amplitude and there was a one-to-one correspondence between the two. The deviation of calculated gravity acceleration decreases by properly setting the initial phase difference of vibration disturbance with respect to the interference fringe signal.

  17. Theoretical and Numerical Experiences on a Test Rig for Active Vibration Control of Mechanical Systems with Moving Constraints

    Directory of Open Access Journals (Sweden)

    M. Rinchi

    2004-01-01

    Full Text Available Active control of vibrations in mechanical systems has recently benefited of the remarkable development of robust control techniques. These control techniques are able to guarantee performances in spite of unavoidable modeling errors. They have been successfully codified and implemented for vibrating structures whose uncertain parameters could be assumed to be time-invariant. Unfortunately a wide class of mechanical systems, such as machine tools with carriage motion realized by a ball-screw, are characterized by time varying modal parameters. The focus of this paper is on modeling and controlling the vibrations of such systems. A test rig for active vibration control is presented. An analytical model of the test rig is synthesized starting by design data. Through experimental modal analysis, parametric identification and updating procedures, the model has been refined and a control system has been synthesized.

  18. Vibration Noise Modeling for Measurement While Drilling System Based on FOGs

    Directory of Open Access Journals (Sweden)

    Chunxi Zhang

    2017-10-01

    Full Text Available Aiming to improve survey accuracy of Measurement While Drilling (MWD based on Fiber Optic Gyroscopes (FOGs in the long period, the external aiding sources are fused into the inertial navigation by the Kalman filter (KF method. The KF method needs to model the inertial sensors’ noise as the system noise model. The system noise is modeled as white Gaussian noise conventionally. However, because of the vibration while drilling, the noise in gyros isn’t white Gaussian noise any more. Moreover, an incorrect noise model will degrade the accuracy of KF. This paper developed a new approach for noise modeling on the basis of dynamic Allan variance (DAVAR. In contrast to conventional white noise models, the new noise model contains both the white noise and the color noise. With this new noise model, the KF for the MWD was designed. Finally, two vibration experiments have been performed. Experimental results showed that the proposed vibration noise modeling approach significantly improved the estimated accuracies of the inertial sensor drifts. Compared the navigation results based on different noise model, with the DAVAR noise model, the position error and the toolface angle error are reduced more than 90%. The velocity error is reduced more than 65%. The azimuth error is reduced more than 50%.

  19. An approach to compatible multiple nonlinear vibrational spectroscopy measurements using a commercial sum frequency generation system.

    Science.gov (United States)

    Ye, Shuji; Wei, Feng

    2011-06-21

    In this paper, we designed a compatible multiple nonlinear vibrational spectroscopy system that can be used for recording infrared-visible sum frequency generation vibrational spectra (SFG) and infrared-infrared-visible three-pump-field four-wave-mixing (IIV-TPF-FWM) spectra using a commercial EKSPLA SFG system. This is the first time IIV-TPF-FWM signals were obtained using picosecond laser pulses. We have applied this compatible system to study the surface and vibrational structures of riboflavin molecules (also known as vitamin B2). The SFG spectra of eight polarization combinations have non-vanishing signals. The signals with incoming s-polarized IR are relatively weaker than the signals with incoming p-polarized IR. Under the double resonant conditions, the SFG signals of the conjugated tricyclic ring are greatly enhanced. For the IIV-TPF-FWM spectra with incoming p-polarized IR, only the sspp and pppp polarization combinations have non-vanishing signals. The IIV-TPF-FWM spectra show a very strong peak at 1585 cm(-1) that is mainly dominated by the N(5)-C(4a) stretch. The method developed in this study will be helpful for researchers, either using a home-built or commercial (EKSPLA) SFG system, to obtain independent and complementary measurements for SFG spectroscopy and more detailed structural information of interfacial molecules.

  20. Analysis of crack initiation and growth in the high level vibration test at Tadotsu

    Energy Technology Data Exchange (ETDEWEB)

    Kassir, M.K.; Park, Y.J.; Hofmayer, C.H.; Bandyopadhyay, K.K.; Shteyngart, S. [Brookhaven National Lab., Upton, NY (United States)

    1993-08-01

    The High Level Vibration Test data are used to assess the accuracy and usefulness of current engineering methodologies for predicting crack initiation and growth in a cast stainless steel pipe elbow under complex, large amplitude loading. The data were obtained by testing at room temperature a large scale modified model of one loop of a PWR primary coolant system at the Tadotsu Engineering Laboratory in Japan. Fatigue crack initiation time is reasonably predicted by applying a modified local strain approach (Coffin-Mason-Goodman equation) in conjunction with Miner`s rule of cumulative damage. Three fracture mechanics methodologies are applied to investigate the crack growth behavior observed in the hot leg of the model. These are: the {Delta}K methodology (Paris law), {Delta}J concepts and a recently developed limit load stress-range criterion. The report includes a discussion on the pros and cons of the analysis involved in each of the methods, the role played by the key parameters influencing the formulation and a comparison of the results with the actual crack growth behavior observed in the vibration test program. Some conclusions and recommendations for improvement of the methodologies are also provided.

  1. Metal sheet thickness profile measurement method based on two-side line triangulation and continuous vibration compensation

    Science.gov (United States)

    Lehtonen, Petri; Miettinen, Jari; Keränen, Heimo; Vaarala, Tapio

    2008-04-01

    Dimension measurements in metal production are getting increasingly important to improve quality and yield. One important measurement is thickness profile, in this case of copper strip. Knowing the strip profile in entrance and exit side of milling line helps optimizing the milling depth and give information about tool wearing. In this study a comparative measurement method was traversing point measurement system. It gives profile as a series of points which take a relatively long time to measure. Now presented method is based on two-side optical triangulation formed by line illuminators and CMOS-cameras and enables instantaneous thickness profile measurement. Results from both sides are fixed together using reference plates on both ends of the measurement area. From 1.3 m stand-off distance, 1.4 m wide measurement area is achieved. This paper presents the measurement method and results of laboratory and on-line tests. Using laser line illumination the accuracy of thickness was 150 μm when measuring 9 mm thick test plate. Accuracy was limited by laser speckle during static calibration. Other illumination method based on white light was therefore tested and the accuracy was 12 μm correspondingly. Measurement time for one profile was 1 second and resolution in cross machine direction 50 mm after averaging. Now presented method enables thickness profile measurement of copper and other metal sheets. Using white light the accuracy is at same level as the present traversing point measurement. Method has also continuous reference measurement to compensate errors caused by vibration; therefore the system can be realized at reasonable cost.

  2. Testing techniques and comparisons between theory and test for vibration modes of ring stiffened truncated-cone shells.

    Science.gov (United States)

    Naumann, E. C.

    1972-01-01

    Vibration tests were carried out on truncated-cone shells with widely spaced ring stiffeners. The models were excited by an air shaker for LF modes and by small electrodynamic shakers for HF modes. The Novozhilov thin shell theory according to which a ring is an assembly of an arbitrary number of segments, each being a short truncated-cone shell of uniform thickness, is used in the analysis of the results. A mobile, noncontacting, displacement-sensitive sensor system developed by the author was used in the tests. Tests results are given for a free-free 60-deg cone and for a clamped-free 60-deg cone. The tests are characterized as having considerable value for the classification of prevalent multimode responses in shells of this type.

  3. Full-field Measurement of Deformation and Vibration using Digital Image Correlation

    Directory of Open Access Journals (Sweden)

    Liang-Chih Chen

    2015-05-01

    Full Text Available The main intention of this study was to investigate the full-field measurement of de-formation and vibration using a program we developed for digital image correlation. Digital image correlation is a measuring method that can calculate the displacement of each point on an object by using recorded images. By capturing continuous images of the object in deformation or in motion, the displacements of feature points on the object can be tracked and used in calculations to determine the full-field deformation, strain and vibration of the object. We used the fast and simple algorithm in our program as the core, and conducted non-contact full-field displacement measurement by tracking feature points from images taken after motion. The measuring accuracy can be up to 0.1 pixel. Our experimental results show the technique to be very accurate and useful. We also applied this technique under conditions where an ordinary sensor could not be used.

  4. Comparison of electrochemical skin conductance and vibration perception threshold measurement in the detection of early diabetic neuropathy.

    Directory of Open Access Journals (Sweden)

    Amit Goel

    Full Text Available The early diagnosis of diabetic peripheral neuropathy (DPN is challenging. Sudomotor dysfunction is one of the earliest detectable abnormalities in DPN. The present study aimed to determine the diagnostic performance of the electrochemical skin conductance (ESC test in detecting early DPN, compared with the vibration perception threshold (VPT test and diabetic neuropathy symptom (DNS score, using the modified neuropathy disability score (NDS as the reference standard. Five hundred and twenty-three patients with type 2 diabetes underwent an NDS-based clinical assessment for neuropathy. Participants were classified into the DPN and non-DPN groups based on the NDS (≥ 6. Both groups were evaluated further using the DNS, and VPT and ESC testing. A receiver-operator characteristic (ROC curve analysis was performed to compare the efficacy of ESC measurements with those of DNS and VPT testing in detecting DPN. The DPN group (n = 110, 21% had significantly higher HbA1c levels and longer diabetes durations compared with the non-DPN group (n = 413. The sensitivity of feet ESC 15 V, and DNS ≥ 1, were 16.4, 10.9 and 1.8, respectively. ESC measurement is an objective and sensitive technique for the early detection of DPN. Feet ESC measurement was superior to VPT testing for identifying patients with early DPN.

  5. Comparison of electrochemical skin conductance and vibration perception threshold measurement in the detection of early diabetic neuropathy.

    Science.gov (United States)

    Goel, Amit; Shivaprasad, Channabasappa; Kolly, Anish; Sarathi H A, Vijaya; Atluri, Sridevi

    2017-01-01

    The early diagnosis of diabetic peripheral neuropathy (DPN) is challenging. Sudomotor dysfunction is one of the earliest detectable abnormalities in DPN. The present study aimed to determine the diagnostic performance of the electrochemical skin conductance (ESC) test in detecting early DPN, compared with the vibration perception threshold (VPT) test and diabetic neuropathy symptom (DNS) score, using the modified neuropathy disability score (NDS) as the reference standard. Five hundred and twenty-three patients with type 2 diabetes underwent an NDS-based clinical assessment for neuropathy. Participants were classified into the DPN and non-DPN groups based on the NDS (≥ 6). Both groups were evaluated further using the DNS, and VPT and ESC testing. A receiver-operator characteristic (ROC) curve analysis was performed to compare the efficacy of ESC measurements with those of DNS and VPT testing in detecting DPN. The DPN group (n = 110, 21%) had significantly higher HbA1c levels and longer diabetes durations compared with the non-DPN group (n = 413). The sensitivity of feet ESC 15 V, and DNS ≥ 1, were 16.4, 10.9 and 1.8, respectively. ESC measurement is an objective and sensitive technique for the early detection of DPN. Feet ESC measurement was superior to VPT testing for identifying patients with early DPN.

  6. Measurement of flexoelectric response in polyvinylidene fluoride films for piezoelectric vibration energy harvesters

    Science.gov (United States)

    Choi, Seung-Bok; Kim, Gi-Woo

    2017-02-01

    This study presents an investigation on the measurement of flexoelectric response in β-phase polyvinylidene fluoride (PVDF) films attached on cantilever beam-based flexible piezoelectric vibration energy harvesters (PVEHs). The flexoelectric response associated with negative strain gradients was simulated through harmonic response analysis by using the finite element method (FEM). The polarization frequency response functions (FRFs) modified by direct flexoelectric effect of PVDF films was experimentally validated by multi-mode FRFs. From quantitative comparisons between experimental observations and simulated estimation of FRFs, it is demonstrated that the direct flexoelectric response can be observed in PVDF films attached on PVEHs.

  7. The Skull Vibration-Induced Nystagmus Test of Vestibular Function—A Review

    Science.gov (United States)

    Dumas, Georges; Curthoys, Ian S.; Lion, Alexis; Perrin, Philippe; Schmerber, Sébastien

    2017-01-01

    A 100-Hz bone-conducted vibration applied to either mastoid induces instantaneously a predominantly horizontal nystagmus, with quick phases beating away from the affected side in patients with a unilateral vestibular loss (UVL). The same stimulus in healthy asymptomatic subjects has little or no effect. This is skull vibration-induced nystagmus (SVIN), and it is a useful, simple, non-invasive, robust indicator of asymmetry of vestibular function and the side of the vestibular loss. The nystagmus is precisely stimulus-locked: it starts with stimulation onset and stops at stimulation offset, with no post-stimulation reversal. It is sustained during long stimulus durations; it is reproducible; it beats in the same direction irrespective of which mastoid is stimulated; it shows little or no habituation; and it is permanent—even well-compensated UVL patients show SVIN. A SVIN is observed under Frenzel goggles or videonystagmoscopy and recorded under videonystagmography in absence of visual-fixation and strong sedative drugs. Stimulus frequency, location, and intensity modify the results, and a large variability in skull morphology between people can modify the stimulus. SVIN to 100 Hz mastoid stimulation is a robust response. We describe the optimum method of stimulation on the basis of the literature data and testing more than 18,500 patients. Recent neural evidence clarifies which vestibular receptors are stimulated, how they cause the nystagmus, and why the same vibration in patients with semicircular canal dehiscence (SCD) causes a nystagmus beating toward the affected ear. This review focuses not only on the optimal parameters of the stimulus and response of UVL and SCD patients but also shows how other vestibular dysfunctions affect SVIN. We conclude that the presence of SVIN is a useful indicator of the asymmetry of vestibular function between the two ears, but in order to identify which is the affected ear, other information and careful clinical judgment are

  8. Monitoring vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Tiryaki, B. [Hacettepe University (Turkey). Dept. of Mining Engineering

    2003-12-01

    The paper examines the prediction and optimisation of machine vibrations in longwall shearers. Underground studies were carried out at the Middle Anatolian Lignite Mine, between 1993 and 1997. Several shearer drums with different pick lacing arrangements were designed and tested on double-ended ranging longwall shearers employed at the mine. A computer program called the Vibration Analysis Program (VAP) was developed for analysing machine vibrations in longwall shearers. Shearer drums that were tested underground, as well as some provided by leading manufacturers, were analyzed using these programs. The results of the experiments and computer analyses are given in the article. 4 refs., 9 figs.

  9. Correlation of analysis with high level vibration test results for primary coolant piping

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.J.; Hofmayer, C.H. [Brookhaven National Lab., Upton, NY (United States); Costello, J.F. [Nuclear Regulatory Commission, Washington, DC (United States)

    1992-05-01

    Dynamic tests on a modified 1/2.5-scale model of pressurized water reactor (PWR) primary coolant piping were performed using a large shaking table at Tadotsu, Japan. The High Level Vibration Test (HLVT) program was part of a cooperative study between the United States (Nuclear Regulatory Commission/Brookhaven National Laboratory, NRC/BNL) and Japan (Ministry of International Trade and Industry/Nuclear Power Engineering Center). During the test program, the excitation level of each test run was gradually increased up to the limit of the shaking table and significant plastic strains, as well as cracking, were induced in the piping. To fully utilize the test results, NRC/BNL sponsored a project to develop corresponding analytical predictions for the nonlinear dynamic response of the piping for selected test runs. The analyses were performed using both simplified and detailed approaches. The simplified approaches utilize a linear solution and an approximate formulation for nonlinear dynamic effects such as the use of a deamplification factor. The detailed analyses were performed using available nonlinear finite element computer codes, including the MARC, ABAQUS, ADINA and WECAN codes. A comparison of various analysis techniques with the test results shows a higher prediction error in the detailed strain values in the overall response values. A summary of the correlation analyses was presented before the BNL. This paper presents a detailed description of the various analysis results and additional comparisons with test results.

  10. Correlation of analysis with high level vibration test results for primary coolant piping

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.J.; Hofmayer, C.H. (Brookhaven National Lab., Upton, NY (United States)); Costello, J.F. (Nuclear Regulatory Commission, Washington, DC (United States))

    1992-01-01

    Dynamic tests on a modified 1/2.5-scale model of pressurized water reactor (PWR) primary coolant piping were performed using a large shaking table at Tadotsu, Japan. The High Level Vibration Test (HLVT) program was part of a cooperative study between the United States (Nuclear Regulatory Commission/Brookhaven National Laboratory, NRC/BNL) and Japan (Ministry of International Trade and Industry/Nuclear Power Engineering Center). During the test program, the excitation level of each test run was gradually increased up to the limit of the shaking table and significant plastic strains, as well as cracking, were induced in the piping. To fully utilize the test results, NRC/BNL sponsored a project to develop corresponding analytical predictions for the nonlinear dynamic response of the piping for selected test runs. The analyses were performed using both simplified and detailed approaches. The simplified approaches utilize a linear solution and an approximate formulation for nonlinear dynamic effects such as the use of a deamplification factor. The detailed analyses were performed using available nonlinear finite element computer codes, including the MARC, ABAQUS, ADINA and WECAN codes. A comparison of various analysis techniques with the test results shows a higher prediction error in the detailed strain values in the overall response values. A summary of the correlation analyses was presented before the BNL. This paper presents a detailed description of the various analysis results and additional comparisons with test results.

  11. Design, analysis and testing of a new piezoelectric tool actuator for elliptical vibration turning

    Science.gov (United States)

    Lin, Jieqiong; Han, Jinguo; Lu, Mingming; Yu, Baojun; Gu, Yan

    2017-08-01

    A new piezoelectric tool actuator (PETA) for elliptical vibration turning has been developed based on a hybrid flexure hinge connection. Two double parallel four-bar linkage mechanisms and two right circular flexure hinges were chosen to guide the motion. The two input displacement directional stiffness were modeled according to the principle of virtual work modeling method and the kinematic analysis was conducted theoretically. Finite element analysis was used to carry out static and dynamic analyses. To evaluate the performance of the developed PETA, off-line experimental tests were carried out to investigate the step responses, motion strokes, resolutions, parasitic motions, and natural frequencies of the PETA along the two input directions. The relationship between input displacement and output displacement, as well as the tool tip’s elliptical trajectory in different phase shifts was analyzed. By using the developed PETA mechanism, micro-dimple patterns were generated as the preliminary application to demonstrate the feasibility and efficiency of PETA for elliptical vibration turning.

  12. Vibration-based structural health monitoring using output-only measurements under changing environment

    Science.gov (United States)

    Deraemaeker, A.; Reynders, E.; De Roeck, G.; Kullaa, J.

    2008-01-01

    This paper deals with the problem of damage detection using output-only vibration measurements under changing environmental conditions. Two types of features are extracted from the measurements: eigenproperties of the structure using an automated stochastic subspace identification procedure and peak indicators computed on the Fourier transform of modal filters. The effects of environment are treated using factor analysis and damage is detected using statistical process control with the multivariate Shewhart- T control charts. A numerical example of a bridge subject to environmental changes and damage is presented. The sensitivity of the damage detection procedure to noise on the measurements, environment and damage is studied. An estimation of the computational time needed to extract the different features is given, and a table is provided to summarize the advantages and drawbacks of each of the features studied.

  13. Gearbox Fault Features Extraction Using Vibration Measurements and Novel Adaptive Filtering Scheme

    Directory of Open Access Journals (Sweden)

    Ghalib R. Ibrahim

    2012-01-01

    Full Text Available Vibration signals measured from a gearbox are complex multicomponent signals, generated by tooth meshing, gear shaft rotation, gearbox resonance vibration signatures, and a substantial amount of noise. This paper presents a novel scheme for extracting gearbox fault features using adaptive filtering techniques for enhancing condition features, meshing frequency sidebands. A modified least mean square (LMS algorithm is examined and validated using only one accelerometer, instead of using two accelerometers in traditional arrangement, as the main signal and a desired signal is artificially generated from the measured shaft speed and gear meshing frequencies. The proposed scheme is applied to a signal simulated from gearbox frequencies with a numerous values of step size. Findings confirm that 10−5 step size invariably produces more accurate results and there has been a substantial improvement in signal clarity (better signal-to-noise ratio, which makes meshing frequency sidebands more discernible. The developed scheme is validated via a number of experiments carried out using two-stage helical gearbox for a healthy pair of gears and a pair suffering from a tooth breakage with severity fault 1 (25% tooth removal and fault 2 (50% tooth removal under loads (0%, and 80% of the total load. The experimental results show remarkable improvements and enhance gear condition features. This paper illustrates that the new approach offers a more effective way to detect early faults.

  14. Vibration measurements of the Daniel K. Inouye Solar Telescope mount, Coudé rotator, and enclosure assemblies

    Science.gov (United States)

    McBride, William R.; McBride, Daniel R.

    2016-08-01

    The Daniel K. Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world, with a 4-meter off-axis primary mirror and 16 meter rotating Coudé laboratory within the telescope pier. The off-axis design requires a mount similar to an 8-meter on-axis telescope. Both the telescope mount and the Coudé laboratory utilize a roller bearing technology in place of the more commonly used hydrostatic bearings. The telescope enclosure utilizes a crawler mechanism for the altitude axis. As these mechanisms have not previously been used in a telescope, understanding the vibration characteristics and the potential impact on the telescope image is important. This paper presents the methodology used to perform jitter measurements of the enclosure and the mount bearings and servo system in a high-noise environment utilizing seismic accelerometers and high dynamic-range data acquisition equipment, along with digital signal processing (DSP) techniques. Data acquisition and signal processing were implemented in MATLAB. In the factory acceptance testing of the telescope mount, multiple accelerometers were strategically located to capture the six axes-of-motion of the primary and secondary mirror dummies. The optical sensitivity analysis was used to map these mirror mount displacements and rotations into units of image motion on the focal plane. Similarly, tests were done with the Coudé rotator, treating the entire rotating instrument lab as a rigid body. Testing was performed by recording accelerometer data while the telescope control system performed tracking operations typical of various observing scenarios. The analysis of the accelerometer data utilized noise-averaging fast Fourier transform (FFT) routines, spectrograms, and periodograms. To achieve adequate dynamic range at frequencies as low as 3Hz, the use of special filters and advanced windowing functions were necessary. Numerous identical automated tests were compared to identify and select the data sets

  15. Measurement of dynamic patterns of an elastic membrane at bi-modal vibration using high speed electronic speckle pattern interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Preciado, Jorge Sanchez; Lopez, Carlos Perez; Santoyo, Fernando Mendoza [Grupo de Metrología Optica, Centro de Investigaciones en Óptica, A. C. Loma del Bosque 115, Col. Lomas del Campestre, León, Guanajuato, 37150 (Mexico)

    2014-05-27

    Implementing a hybrid arrangement of Laser Doppler Vibrometry (LDV) and high speed Electronic Speckle Pattern Interferometry (ESPI) we were able to measure the dynamic patterns of a flat rectangular elastic membrane clamped at its edges stimulated with the sum of two resonance frequencies. ESPI is a versatile technique to analyze in real-time the deformation of a membrane since its low computational cost and easy implementation of the optical setup. Elastic membranes present nonlinear behaviors when stimulated with low amplitude signals. The elastic membrane under test, with several non rational related vibrating modals below the 200 Hz, was stimulated with two consecutives resonant frequencies. The ESPI patterns, acquired at high speed rates, shown a similar behavior for the dual frequency stimulation as in the case of patterns formed with the entrainment frequency. We think this may be related to the effects observed in the application of dual frequency stimulation in ultrasound.

  16. The feasibility of modal testing for measurement of the dynamic characteristics of goat vertebral motion segments.

    Science.gov (United States)

    van Engelen, S J P M; van der Veen, A J; de Boer, A; Ellenbroek, M H M; Smit, T H; van Royen, B J; van Dieën, J H

    2011-05-17

    Structural vibration testing might be a promising method to study the mechanical properties of spinal motion segments as an alternative to imaging and spinal manipulation techniques. Structural vibration testing is a non-destructive measurement technique that measures the response of a system to an applied vibration as a function of frequency, and allows determination of modal parameters such as resonance frequencies (ratio between stiffness and mass), vibration modes (pattern of motion) and damping. The objective of this study was to determine if structural vibration testing can reveal the resonance frequencies that correspond to the mode shapes flexion-extension, lateroflexion and axial rotation of lumbar motion segments, and to establish whether resonance frequencies can discriminate specific structural alterations of the motion segment. Therefore, a shaker was used to vibrate the upper vertebra of 16 goat lumbar motion segments, while the response was obtained from accelerometers on the transverse and spinous processes and the anterior side of the upper vertebra. Measurements were performed in three conditions: intact, after dissection of the ligaments and after puncturing the annulus fibrosus. The results showed clear resonance peaks for flexion-extension, lateral bending and axial rotation for all segments. Dissection of the ligaments did not affect the resonance frequencies, but puncturing the annulus reduced the resonance frequency of axial rotation. These results indicate that vibration testing can be utilised to assess the modal parameters of lumbar motion segments, and might eventually be used to study the mechanical properties of spinal motion segments in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Specialized data analysis of SSME and advanced propulsion system vibration measurements

    Science.gov (United States)

    Coffin, Thomas; Swanson, Wayne L.; Jong, Yen-Yi

    1993-01-01

    The basic objectives of this contract were to perform detailed analysis and evaluation of dynamic data obtained during Space Shuttle Main Engine (SSME) test and flight operations, including analytical/statistical assessment of component dynamic performance, and to continue the development and implementation of analytical/statistical models to effectively define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational conditions. This study was to provide timely assessment of engine component operational status, identify probable causes of malfunction, and define feasible engineering solutions. The work was performed under three broad tasks: (1) Analysis, Evaluation, and Documentation of SSME Dynamic Test Results; (2) Data Base and Analytical Model Development and Application; and (3) Development and Application of Vibration Signature Analysis Techniques.

  18. Long-range vibration sensor based on correlation analysis of optical frequency-domain reflectometry signals.

    Science.gov (United States)

    Ding, Zhenyang; Yao, X Steve; Liu, Tiegen; Du, Yang; Liu, Kun; Han, Qun; Meng, Zhuo; Chen, Hongxin

    2012-12-17

    We present a novel method to achieve a space-resolved long- range vibration detection system based on the correlation analysis of the optical frequency-domain reflectometry (OFDR) signals. By performing two separate measurements of the vibrated and non-vibrated states on a test fiber, the vibration frequency and position of a vibration event can be obtained by analyzing the cross-correlation between beat signals of the vibrated and non-vibrated states in a spatial domain, where the beat signals are generated from interferences between local Rayleigh backscattering signals of the test fiber and local light oscillator. Using the proposed technique, we constructed a standard single-mode fiber based vibration sensor that can have a dynamic range of 12 km and a measurable vibration frequency up to 2 kHz with a spatial resolution of 5 m. Moreover, preliminarily investigation results of two vibration events located at different positions along the test fiber are also reported.

  19. N Vibrational Temperatures and OH Number Density Measurements in a NS Pulse Discharge Hydrogen-Air Plasmas

    Science.gov (United States)

    Hung, Yichen; Winters, Caroline; Jans, Elijah R.; Frederickson, Kraig; Adamovich, Igor V.

    2017-06-01

    This work presents time-resolved measurements of nitrogen vibrational temperature, translational-rotational temperature, and absolute OH number density in lean hydrogen-air mixtures excited in a diffuse filament nanosecond pulse discharge, at a pressure of 100 Torr and high specific energy loading. The main objective of these measurements is to study a possible effect of nitrogen vibrational excitation on low-temperature kinetics of HO2 and OH radicals. N2 vibrational temperature and gas temperature in the discharge and the afterglow are measured by ns broadband Coherent Anti-Stokes Scattering (CARS). Hydroxyl radical number density is measured by Laser Induced Fluorescence (LIF) calibrated by Rayleigh scattering. The results show that the discharge generates strong vibrational nonequilibrium in air and H2-air mixtures for delay times after the discharge pulse of up to 1 ms, with peak vibrational temperature of Tv ≈ 2000 K at T ≈ 500 K. Nitrogen vibrational temperature peaks ≈ 200 μs after the discharge pulse, before decreasing due to vibrational-translational relaxation by O atoms (on the time scale of a few hundred μs) and diffusion (on ms time scale). OH number density increases gradually after the discharge pulse, peaking at t 100-300 μs and decaying on a longer time scale, until t 1 ms. Both OH rise time and decay time decrease as H2 fraction in the mixture is increased from 1% to 5%. OH number density in a 1% H2-air mixture peaks at approximately the same time as vibrational temperature in air, suggesting that OH kinetics may be affected by N2 vibrational excitation. However, preliminary kinetic modeling calculations demonstrate that OH number density overshoot is controlled by known reactions of H and O radicals generated in the plasma, rather than by dissociation by HO2 radical in collisions with vibrationally excited N2 molecules, as has been suggested earlier. Additional measurements at higher specific energy loadings and kinetic modeling

  20. The relationship between clinical and standardized tests for hand-arm vibration syndrome.

    Science.gov (United States)

    Poole, C J M; Mason, H; Harding, A-H

    2016-06-01

    Standardized laboratory tests are undertaken to assist the diagnosis and staging of hand-arm vibration syndrome (HAVS), but the strength of the relationship between the tests and clinical stages of HAVS is unknown. To assess the relationship between the results of thermal aesthesiometry (TA), vibrotactile (VT) thresholds and cold provocation (CP) tests with the modified Stockholm scales for HAVS and to determine whether the relationship is affected by finger skin temperature. Consecutive records of workers referred to a Tier 5 HAVS assessment centre from 2006 to 2015 were identified. The diagnosis and staging of cases was undertaken from the clinical information contained in the records. Cases with alternative or mixed diagnoses were excluded and staging performed according to the modified Stockholm scale without knowledge of the results of the standardized laboratory tests. A total of 279 cases of HAVS were analysed. Although there was a significant trend for sensorineural (SN) and vascular scores to increase with clinical stage (P 30°C. CP scores distributed bimodally and correlated poorly with clinical staging (r = 0.2). Standardized SN tests distinguish between the lower Stockholm stages, but not above 2SN early. This has implications for health surveillance and UK policy. © Crown copyright 2016.

  1. Measurement of higher harmonics in periodic vibrations using phase-modulated TV holography with digital image processing.

    Science.gov (United States)

    Løkberg, O J; Pedersen, H M; Valø, H; Wang, G

    1994-08-01

    We separately measure the higher harmonics vibration patterns of a periodic vibrating object by using time-average TV holography and phase modulation. During measurements the frequency of the phase modulation is adjusted to each harmonic component while the excitation of the object is set low enough to record all components on the linear part of the fringe function. Using acoustical phase stepping and calibration of the fringe function, we compute the amplitude and phase distributions of the frequency component. We measure components up to the 65th harmonic by using square-wave excitation.

  2. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning.

    Science.gov (United States)

    Li, Chuan; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego

    2016-06-17

    Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs) are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM). The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults.

  3. Report on acoustic and vibration measurements on 250 MVA transformer at St. Vital Station, Winnipeg, Manitoba

    Energy Technology Data Exchange (ETDEWEB)

    Weissman, K. [QuietPower Systems, Inc., New York, NE (United States); McLoughlin, M. [Noise Cancellation Technologies, Inc., Linthicum, MD (United States); Schott, R. [Western Canada Testing, Inc., Portage Laprairie, MB (Canada); Tennese, G. [Manitoba Hydro, Winnipeg, MB (Canada); Daneryd, A. [SECRC ABB Corporate Research, Vasteras (Sweden)

    1998-09-01

    Vibroacoustic behaviour of a power transformer was characterized prior to employing active noise control (ANC) to control transformer noise. The effect of changes in temperature and loading conditions on the vibration pattern of the transformer tank received particular attention. The transformer quieting technology has been developed and implemented by QuietPower Systems of New York and Noise Cancellation Technologies Inc., of Maryland. Results of the study will be used to ensure that actuator placement is appropriate for each of the seasons experienced throughout the year, as well as to build boundary element and finite element models of the tank vibration and the associated radiated noise. Boundary element results show that the first four harmonics are the primary contributors to radiated noise. The finite element model used to examine the modal response of the tank structure showed high modal densities, even around the lower order harmonics (120 Hz). This can be interpreted to mean that statistical techniques normally associated with high frequency noise problems may be applicable here because of the high modal density. Results of the completed summer and winter measurements permit an evaluation of the effects of loading conditions, temperature and other environmental factors on transformer noise. Appendix B contains the results of numerical simulations on a 250 MVA transformer. 3 refs., 72 figs., 2 appendices.

  4. Prediction and measurements of vibrations from a railway track lying on a peaty ground

    Science.gov (United States)

    Picoux, B.; Rotinat, R.; Regoin, J. P.; Le Houédec, D.

    2003-10-01

    This paper introduces a two-dimensional model for the response of the ground surface due to vibrations generated by a railway traffic. A semi-analytical wave propagation model is introduced which is subjected to a set of harmonic moving loads and based on a calculation method of the dynamic stiffness matrix of the ground. In order to model a complete railway system, the effect of a simple track model is taken into account including rails, sleepers and ballast especially designed for the study of low vibration frequencies. The priority has been given to a simple formulation based on the principle of spatial Fourier transforms compatible with good numerical efficiency and yet providing quick solutions. In addition, in situ measurements for a soft soil near a railway track were carried out and will be used to validate the numerical implementation. The numerical and experimental results constitute a significant body of useful data to, on the one hand, characterize the response of the environment of tracks and, on the other hand, appreciate the importance of the speed and weight on the behaviour of the structure.

  5. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning

    Science.gov (United States)

    Li, Chuan; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego

    2016-01-01

    Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs) are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM). The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults. PMID:27322273

  6. Active vibration control testing of the SPICES program: final demonstration article

    Science.gov (United States)

    Dunne, James P.; Jacobs, Jack H.

    1996-05-01

    The Synthesis and Processing of Intelligent Cost Effective Structures (SPICES) Program is a partnership program sponsored by the Advanced Research Projects Agency. The mission of the program is to develop cost effective material processing and synthesis technologies to enable new products employing active vibration suppression and control devices to be brought to market. The two year program came to fruition in 1995 through the fabrication of the final smart components and testing of an active plate combined with two trapezoidal rails, forming an active mount. Testing of the SPICES combined active mount took place at McDonnell Douglas facilities in St. Louis, MO, in October-December 1995. Approximately 15 dB reduction in overall response of a motor mounted on the active structure was achieved. Further details and results of the SPICES combined active mount demonstration testing are outlined. Results of numerous damping and control strategies that were developed and employed in the testing are presented, as well as aspects of the design and fabrication of the SPICES active mount components.

  7. Measurement of Vibrated Bulk Density of Coke Particle Blends Using Image Texture Analysis

    Science.gov (United States)

    Azari, Kamran; Bogoya-Forero, Wilinthon; Duchesne, Carl; Tessier, Jayson

    2017-09-01

    A rapid and nondestructive machine vision sensor was developed for predicting the vibrated bulk density (VBD) of petroleum coke particles based on image texture analysis. It could be used for making corrective adjustments to a paste plant operation to reduce green anode variability (e.g., changes in binder demand). Wavelet texture analysis (WTA) and gray level co-occurrence matrix (GLCM) algorithms were used jointly for extracting the surface textural features of coke aggregates from images. These were correlated with the VBD using partial least-squares (PLS) regression. Coke samples of several sizes and from different sources were used to test the sensor. Variations in the coke surface texture introduced by coke size and source allowed for making good predictions of the VBD of individual coke samples and mixtures of them (blends involving two sources and different sizes). Promising results were also obtained for coke blends collected from an industrial-baked carbon anode manufacturer.

  8. Strain measurement based battery testing

    Science.gov (United States)

    Xu, Jeff Qiang; Steiber, Joe; Wall, Craig M.; Smith, Robert; Ng, Cheuk

    2017-05-23

    A method and system for strain-based estimation of the state of health of a battery, from an initial state to an aged state, is provided. A strain gauge is applied to the battery. A first strain measurement is performed on the battery, using the strain gauge, at a selected charge capacity of the battery and at the initial state of the battery. A second strain measurement is performed on the battery, using the strain gauge, at the selected charge capacity of the battery and at the aged state of the battery. The capacity degradation of the battery is estimated as the difference between the first and second strain measurements divided by the first strain measurement.

  9. Ground Vibration Test Planning and Pre-Test Analysis for the X-33 Vehicle

    Science.gov (United States)

    Bedrossian, Herand; Tinker, Michael L.; Hidalgo, Homero

    2000-01-01

    This paper describes the results of the modal test planning and the pre-test analysis for the X-33 vehicle. The pre-test analysis included the selection of the target modes, selection of the sensor and shaker locations and the development of an accurate Test Analysis Model (TAM). For target mode selection, four techniques were considered, one based on the Modal Cost technique, one based on Balanced Singular Value technique, a technique known as the Root Sum Squared (RSS) method, and a Modal Kinetic Energy (MKE) approach. For selecting sensor locations, four techniques were also considered; one based on the Weighted Average Kinetic Energy (WAKE), one based on Guyan Reduction (GR), one emphasizing engineering judgment, and one based on an optimum sensor selection technique using Genetic Algorithm (GA) search technique combined with a criteria based on Hankel Singular Values (HSV's). For selecting shaker locations, four techniques were also considered; one based on the Weighted Average Driving Point Residue (WADPR), one based on engineering judgment and accessibility considerations, a frequency response method, and an optimum shaker location selection based on a GA search technique combined with a criteria based on HSV's. To evaluate the effectiveness of the proposed sensor and shaker locations for exciting the target modes, extensive numerical simulations were performed. Multivariate Mode Indicator Function (MMIF) was used to evaluate the effectiveness of each sensor & shaker set with respect to modal parameter identification. Several TAM reduction techniques were considered including, Guyan, IRS, Modal, and Hybrid. Based on a pre-test cross-orthogonality checks using various reduction techniques, a Hybrid TAM reduction technique was selected and was used for all three vehicle fuel level configurations.

  10. An international review of laser Doppler vibrometry: Making light work of vibration measurement

    Science.gov (United States)

    Rothberg, S. J.; Allen, M. S.; Castellini, P.; Di Maio, D.; Dirckx, J. J. J.; Ewins, D. J.; Halkon, B. J.; Muyshondt, P.; Paone, N.; Ryan, T.; Steger, H.; Tomasini, E. P.; Vanlanduit, S.; Vignola, J. F.

    2017-12-01

    In 1964, just a few years after the invention of the laser, a fluid velocity measurement based on the frequency shift of scattered light was made and the laser Doppler technique was born. This comprehensive review paper charts advances in the development and applications of laser Doppler vibrometry (LDV) since those first pioneering experiments. Consideration is first given to the challenges that continue to be posed by laser speckle. Scanning LDV is introduced and its significant influence in the field of experimental modal analysis described. Applications in structural health monitoring and MEMS serve to demonstrate LDV's applicability on structures of all sizes. Rotor vibrations and hearing are explored as examples of the classic applications. Applications in acoustics recognise the versatility of LDV as demonstrated by visualisation of sound fields. The paper concludes with thoughts on future developments, using examples of new multi-component and multi-channel instruments.

  11. Effect Of Vibration On Occupant Driving Performances Measured By Simulated Driving

    Directory of Open Access Journals (Sweden)

    Amzar Azizan

    2015-08-01

    Full Text Available Although the performance of vehicle driver has been well investigated in many types of environments however drowsy driving caused by vibration has received far less attention. Experiment procedures comprised of two 10-minutes simulated driving sessions in no-vibration condition and with-vibration condition. In with-vibration condition volunteers were exposed to a Gaussian random vibration with 1-15 Hz frequency bandwidth at 0.2 ms-2 r.m.s. for 30-minutes. A deviation in lane position and vehicle speed were recorded and analyzed. Volunteers have also rated their subjective drowsiness by giving score using Karolinska Sleepiness Scale KSS every 5-minutes interval. Strong evidence of driving impairment following 30-minutes exposure to vibration were found significant in all volunteers p 0.05.

  12. Test-retest reliability of muscle vibration effects on postural sway

    NARCIS (Netherlands)

    Kiers, H.; Brumagne, S.; van Dieen, J.H.; Vanhees, L.

    2014-01-01

    The effect of alterations in the processing of proprioceptive signals, on postural control, has been studied using muscle vibration effects. However, reliability and agreement of muscle vibration have still to be addressed.This study aimed to assess intra- and interday reliability and agreement of

  13. Measurement of Internal Friction for Tungsten by the Curve Vibrating Method with Variation of Voltage and Temperature

    Directory of Open Access Journals (Sweden)

    Elin Yusibani

    2013-12-01

    Full Text Available Application of a curved vibrating wire method (CVM to measure gas viscosity has been widely used. A fine Tungsten wire with 50 mm of diameter is bent into a semi-circular shape and arranged symmetrically in a magnetic field of about 0.2 T. The frequency domain is used for calculating the viscosity as a response for forced oscillation of the wire. Internal friction is one of the parameter in the CVM which is has to be measured beforeahead. Internal friction coefficien for the wire material which is the inverse of the quality factor has to be measured in a vacuum condition. The term involving internal friction actually represents the effective resistance of motion due to all non-viscous damping phenomena including internal friction and magnetic damping. The testing of internal friction measurement shows that at different induced voltage and elevated temperature at a vacuum condition, it gives the value of internal friction for Tungsten is around 1 to 4 10-4.

  14. Full-field vibration measurements of the violin using digital stroboscopic holographic interferometry and electromagnetic stimulation of the strings

    Science.gov (United States)

    Keersmaekers, Lissa; Keustermans, William; De Greef, Daniël; Dirckx, Joris J. J.

    2016-06-01

    We developed a setup in which the strings of the violin are driven electromagnetically, and the resulting vibration of the instrument is measured with digital stroboscopic holography. A 250mW single mode green laser beam is chopped using an acousto-optic modulator, generating illumination pulses of 2% of the vibration period. The phase of the illumination pulse is controlled by a programmable function generator so that digital holograms can be recorded on a number of subsequent time positions within the vibration phase. From these recordings, the out of plane motion as a function of time is reconstructed in full field. We show results of full-field vibration amplitude and vibration phase maps, and time resolved full-field deformations of the violin back plane. Time resolved measurements show in detail how the deformation of the violin plane changes as a function of time at different frequencies. We found very different behavior under acoustic stimulation of the instrument and when using electromagnetic stimulation of a string. The aim of the work it to gather data which can be used in power flow calculations to study how the energy of the strings is conducted to the body of the violin and eventually is radiated as sound.

  15. Full-field vibration measurements of the violin using digital stroboscopic holographic interferometry and electromagnetic stimulation of the strings

    Energy Technology Data Exchange (ETDEWEB)

    Keersmaekers, Lissa; Keustermans, William, E-mail: william.keustermans@uantwerpen.be; De Greef, Daniël; Dirckx, Joris J. J. [University of Antwerp, Laboratory of Biophysics and Biomedical Physics, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2016-06-28

    We developed a setup in which the strings of the violin are driven electromagnetically, and the resulting vibration of the instrument is measured with digital stroboscopic holography. A 250 mW single mode green laser beam is chopped using an acousto-optic modulator, generating illumination pulses of 2% of the vibration period. The phase of the illumination pulse is controlled by a programmable function generator so that digital holograms can be recorded on a number of subsequent time positions within the vibration phase. From these recordings, the out of plane motion as a function of time is reconstructed in full field. We show results of full-field vibration amplitude and vibration phase maps, and time resolved full-field deformations of the violin back plane. Time resolved measurements show in detail how the deformation of the violin plane changes as a function of time at different frequencies. We found very different behavior under acoustic stimulation of the instrument and when using electromagnetic stimulation of a string. The aim of the work it to gather data which can be used in power flow calculations to study how the energy of the strings is conducted to the body of the violin and eventually is radiated as sound.

  16. Measurement of Vibrations in Two Tower-Typed Assistant Personal Robot Implementations with and without a Passive Suspension System.

    Science.gov (United States)

    Moreno, Javier; Clotet, Eduard; Tresanchez, Marcel; Martínez, Dani; Casanovas, Jordi; Palacín, Jordi

    2017-05-14

    This paper presents the vibration pattern measurement of two tower-typed holonomic mobile robot prototypes: one based on a rigid mechanical structure, and the other including a passive suspension system. Specific to the tower-typed mobile robots is that the vibrations that originate in the lower part of the structure are transmitted and amplified to the higher areas of the tower, causing an unpleasant visual effect and mechanical stress. This paper assesses the use of a suspension system aimed at minimizing the generation and propagation of vibrations in the upper part of the tower-typed holonomic robots. The two robots analyzed were equipped with onboard accelerometers to register the acceleration over the X, Y, and Z axes in different locations and at different velocities. In all the experiments, the amplitude of the vibrations showed a typical Gaussian pattern which has been modeled with the value of the standard deviation. The results have shown that the measured vibrations in the head of the mobile robots, including a passive suspension system, were reduced by a factor of 16.

  17. Measurement of Vibrations in Two Tower-Typed Assistant Personal Robot Implementations with and without a Passive Suspension System

    Directory of Open Access Journals (Sweden)

    Javier Moreno

    2017-05-01

    Full Text Available This paper presents the vibration pattern measurement of two tower-typed holonomic mobile robot prototypes: one based on a rigid mechanical structure, and the other including a passive suspension system. Specific to the tower-typed mobile robots is that the vibrations that originate in the lower part of the structure are transmitted and amplified to the higher areas of the tower, causing an unpleasant visual effect and mechanical stress. This paper assesses the use of a suspension system aimed at minimizing the generation and propagation of vibrations in the upper part of the tower-typed holonomic robots. The two robots analyzed were equipped with onboard accelerometers to register the acceleration over the X, Y, and Z axes in different locations and at different velocities. In all the experiments, the amplitude of the vibrations showed a typical Gaussian pattern which has been modeled with the value of the standard deviation. The results have shown that the measured vibrations in the head of the mobile robots, including a passive suspension system, were reduced by a factor of 16.

  18. Prevalence of Hand-transmitted Vibration Exposure among Grass-cutting Workers using Objective and Subjective Measures

    Science.gov (United States)

    Azmir, N. A.; Yahya, M. N.

    2017-01-01

    Extended exposure to hand-transmitted vibration from vibrating machine is associated with an increased occurrence of symptoms of occupational disease related to hand disorder. The present case study is to determine the prevalence and correlation of significant subjective as well as objective variables that induce to hand arm vibration syndrome (HAVS) among hand-held grass-cutting workers in Malaysia. Thus, recommendations are made for grass-cutting workers and grass maintenance service management based on findings. A cross sectional study using adopted subjective Hand Arm Vibration Exposure Risk Assessment (HAVERA) questionnaire from Vibration Injury Network on hand disorder signs and symptoms was distributed to a sample of one hundred and sixty eight male workers from grass and turf maintenance industry that use vibrating machine as part of their work. For objective measure, hand-transmitted vibration measurement was collected on site during operation by the following ISO 5349-1, 2001. Two groups were identified in this research comprising of high exposure group and low-moderate exposure group. Workers also gave information about their personal identification, social history, workers’ health, occupational history and machine safety inspection. There was positive HAVS symptoms relationship between the low-moderate exposure group and high exposure group among hand-held grass-cutting workers. The prevalence ratio (PR) was considered high for experiencing white colour change at fingers and fingers go numb which are 3.63 (1.41 to 9.39) and 4.24 (2.18 to 8.27), respectively. The estimated daily vibration exposure, A(8) differs between 2.1 to 20.7 ms-2 for right hand while 2.7 to 29.1 ms-2 for left hand. The subjects claimed that the feel of numbness at left hand is much stronger compared to right hand. The results suggest that HAVS is diagnosed in Malaysia especially in agriculture sector. The A(8) indicates that the exposure value is more than exposure limit value

  19. Utilization of old vibro-acoustic measuring equipment to grasp basic concepts of vibration measurements

    DEFF Research Database (Denmark)

    Darula, Radoslav

    2013-01-01

    The aim of the paper is to show that even old vibro-acoustic (analog) equipment can be used as a very suitable teaching equipment to grasp basic principles of measurements in an era, when measurement equipments are more-or-less treated as ‘black-boxes’, i.e. the user cannot see directly how...

  20. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms.

    Science.gov (United States)

    Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan

    2015-08-14

    High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.

  1. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms

    Directory of Open Access Journals (Sweden)

    Qianqian Wu

    2015-08-01

    Full Text Available High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.

  2. Real-time micro-vibration multi-spot synchronous measurement within a region based on heterodyne interference

    Science.gov (United States)

    Lan, Ma; Xiao, Wen; Chen, Zonghui; Hao, Hongliang; Pan, Feng

    2018-01-01

    Real-time micro-vibration measurement is widely used in engineering applications. It is very difficult for traditional optical detection methods to achieve real-time need in a relatively high frequency and multi-spot synchronous measurement of a region at the same time,especially at the nanoscale. Based on the method of heterodyne interference, an experimental system of real-time measurement of micro - vibration is constructed to satisfy the demand in engineering applications. The vibration response signal is measured by combing optical heterodyne interferometry and a high-speed CMOS-DVR image acquisition system. Then, by extracting and processing multiple pixels at the same time, four digital demodulation technique are implemented to simultaneously acquire the vibrating velocity of the target from the recorded sequences of images. Different kinds of demodulation algorithms are analyzed and the results show that these four demodulation algorithms are suitable for different interference signals. Both autocorrelation algorithm and cross-correlation algorithm meet the needs of real-time measurements. The autocorrelation algorithm demodulates the frequency more accurately, while the cross-correlation algorithm is more accurate in solving the amplitude.

  3. Modal mass estimation from ambient vibrations measurement: A method for civil buildings

    Science.gov (United States)

    Acunzo, G.; Fiorini, N.; Mori, F.; Spina, D.

    2018-01-01

    A new method for estimating the modal mass ratios of buildings from unscaled mode shapes identified from ambient vibrations is presented. The method is based on the Multi Rigid Polygons (MRP) model in which each floor of the building is ideally divided in several non-deformable polygons that move independent of each other. The whole mass of the building is concentrated in the centroid of the polygons and the experimental mode shapes are expressed in term of rigid translations and of rotations. In this way, the mass matrix of the building can be easily computed on the basis of simple information about the geometry and the materials of the structure. The modal mass ratios can be then obtained through the classical equation of structural dynamics. Ambient vibrations measurement must be performed according to this MRP models, using at least two biaxial accelerometers per polygon. After a brief illustration of the theoretical background of the method, numerical validations are presented analysing the method sensitivity for possible different source of errors. Quality indexes are defined for evaluating the approximation of the modal mass ratios obtained from a certain MRP model. The capability of the proposed model to be applied to real buildings is illustrated through two experimental applications. In the first one, a geometrically irregular reinforced concrete building is considered, using a calibrated Finite Element Model for validating the results of the method. The second application refers to a historical monumental masonry building, with a more complex geometry and with less information available. In both cases, MRP models with a different number of rigid polygons per floor are compared.

  4. Defects detection on the welded reinforcing steel with self-shielded wires by vibration tests

    Directory of Open Access Journals (Sweden)

    Crâştiu Ion

    2017-01-01

    Full Text Available The aim of this paper is the development and validation of a vibroacustic technique to welding defects detection, especially for welded reinforcing structures. In welded structures subjected to dynamic cyclic loads may appear and propagate fatigue cracks due to local structural damage. These cracks may initiate due to the technological parameters used in welding process, or due to environmental operating conditions. By the means of Finite Element Method (FEM, the natural frequencies and shape modes of more welded steel specimens are determined. The analysis is carried out in undamaged condition as well as damaged one, after artificially induced damages. The experimental measurement of the vibroacustic response is carried out by using a condenser microphone, which is suitable for high-fidelity acoustic measurements in the frequency range of 20 – 20.000 Hz. The vibration responses of the welded specimens, in free-free conditions, are carried out using algorithms based on Fast Fourier Transform (FFT, and Prony's series. The results are compared to modal parameters estimated using FE Analysis.

  5. General measure of Enterprising Tendency test

    OpenAIRE

    Caird, Sally

    2013-01-01

    The General measure of Enterprising Tendency test (GET2) is a measure of enterprising tendency developed for educational use and self assessment. It measures five entrepreneurial attributes, namely Need for achievement, Need for Autonomy, Creative Tendency, Calculated Risk taking and Locus of control, providing interpretation for this enterprising attributes. Since 1998 there has been considerable worldwide interest in the test of General Enterprising Tendency (GET test) developed and tested ...

  6. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy

    NARCIS (Netherlands)

    Karhu, J.; Nauta, J.; Vainio, M.; Metsala, M.; Hoekstra, S.; Halonen, L.

    2016-01-01

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to

  7. Numerical methods for acquisition and analysis of vibration tests; Methodes numeriques d'acquisition et de depouillement d'essais aux vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Badel, D.; Cocchi, G.; Oules, H. [Centre d' Etudes Scientifiques et Techniques d' Aquitaine (France). Centre d' Etudes Nucleaires

    1969-07-01

    The S.I.D.E.X. is a digital computer assisted facility for Data acquisition and Data processing. It is designed for sine wave or random environment tests, mechanical or acoustical vibrations, shock waves. The mathematical principles and the system configuration have been described in the CEA file nb R-3666. The present one describes the numerical methods and the programs available up to now. Some examples of results obtained are shown at the end. (authors) [French] Le systeme integre de depouillement pour l'experimentation S.I.D.E.X., a pour but d'effectuer les calibration, les acquisitions et les depouillements des essais aux vibrations sinusoidales ou aleatoires, mecaniques ou acoustiques et des essais de chocs. Les methodes mathematiques correspondantes et la configuration digitale employee ont ete decrites dans le rapport CEA nb CEA-R-3666. Le present rapport indique les methodes numeriques en vigueur et les programmes actuellement disponibles. Des exemples de resultats obtenus sont egalement presentes. (auteurs)

  8. FEM Updating of Tall Buildings using Ambient Vibration Data

    DEFF Research Database (Denmark)

    Ventura, C. E.; Lord, J. F.; Turek, M.

    2005-01-01

    Ambient vibration testing is the most economical non-destructive testing method to acquire vibration data from large civil engineering structures. The purpose of this paper is to demonstrate how ambient vibration Modal Identification techniques can be effectively used with Model Updating tools...... and the corresponding mode shapes. The degree of torsional coupling between the modes was also investigated. The modal identification results obtained from ambient vibration measurements of each building were used to update a finite element model of the structure. The starting model of each structure was developed from...... an ambient vibration modal identification....

  9. Correlation of finite-element structural dynamic analysis with measured free vibration characteristics for a full-scale helicopter fuselage

    Science.gov (United States)

    Kenigsberg, I. J.; Dean, M. W.; Malatino, R.

    1974-01-01

    The correlation achieved with each program provides the material for a discussion of modeling techniques developed for general application to finite-element dynamic analyses of helicopter airframes. Included are the selection of static and dynamic degrees of freedom, cockpit structural modeling, and the extent of flexible-frame modeling in the transmission support region and in the vicinity of large cut-outs. The sensitivity of predicted results to these modeling assumptions are discussed. Both the Sikorsky Finite-Element Airframe Vibration analysis Program (FRAN/Vibration Analysis) and the NASA Structural Analysis Program (NASTRAN) have been correlated with data taken in full-scale vibration tests of a modified CH-53A helicopter.

  10. Vibrational spectra of nanowires measured using laser doppler vibrometry and STM studies of epitaxial graphene : an LDRD fellowship report.

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, Laura Butler

    2009-09-01

    A few of the many applications for nanowires are high-aspect ratio conductive atomic force microscope (AFM) cantilever tips, force and mass sensors, and high-frequency resonators. Reliable estimates for the elastic modulus of nanowires and the quality factor of their oscillations are of interest to help enable these applications. Furthermore, a real-time, non-destructive technique to measure the vibrational spectra of nanowires will help enable sensor applications based on nanowires and the use of nanowires as AFM cantilevers (rather than as tips for AFM cantilevers). Laser Doppler vibrometry is used to measure the vibration spectra of individual cantilevered nanowires, specifically multiwalled carbon nanotubes (MWNTs) and silver gallium nanoneedles. Since the entire vibration spectrum is measured with high frequency resolution (100 Hz for a 10 MHz frequency scan), the resonant frequencies and quality factors of the nanowires are accurately determined. Using Euler-Bernoulli beam theory, the elastic modulus and spring constant can be calculated from the resonance frequencies of the oscillation spectrum and the dimensions of the nanowires, which are obtained from parallel SEM studies. Because the diameters of the nanowires studied are smaller than the wavelength of the vibrometer's laser, Mie scattering is used to estimate the lower diameter limit for nanowires whose vibration can be measured in this way. The techniques developed in this thesis can be used to measure the vibrational spectra of any suspended nanowire with high frequency resolution Two different nanowires were measured - MWNTs and Ag{sub 2}Ga nanoneedles. Measurements of the thermal vibration spectra of MWNTs under ambient conditions showed that the elastic modulus, E, of plasma-enhanced chemical vapor deposition (PECVD) MWNTs is 37 {+-} 26 GPa, well within the range of E previously reported for CVD-grown MWNTs. Since the Ag{sub 2}Ga nanoneedles have a greater optical scattering efficiency than

  11. Fundamental Frequencies of Vibration of Footbridges in Portugal: From In Situ Measurements to Numerical Modelling

    Directory of Open Access Journals (Sweden)

    C. S. Oliveira

    2014-01-01

    Full Text Available Since 1995, we have been measuring the in situ dynamic characteristics of different types of footbridges built in Portugal (essentially steel and precast reinforced concrete decks with single spans running from 11 to 110 m long, using expedite exciting and measuring techniques. A database has been created, containing not only the fundamental dynamic characteristics of those structures (transversal, longitudinal, and vertical frequencies but also their most important geometric and mechanical properties. This database, with 79 structures organized into 5 main typologies, allows the setting of correlations of fundamental frequencies as a negative power function of span lengths L  (L-0.6 to L-1.4. For 63 footbridges of more simple geometry, it was possible to obtain these correlations by typology. A few illustrative cases representing the most common typologies show that linear numerical models can reproduce the in situ measurements with great accuracy, not only matching the frequencies of vibration but also the amplitudes of motion caused by several pedestrian load patterns.

  12. Quantitative IR Spectrum and Vibrational Assignments for Glycolaldehyde Vapor: Glycolaldehyde Measurements in Biomass Burning Plumes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Timothy J.; Sams, Robert L.; Profeta, Luisa T.; Akagi, Sheryl; Burling, Ian R.; Yokelson, Robert J.; Williams, Stephen D.

    2013-04-15

    Glycolaldehyde (GA, 2-hydroxyethanal, C2H4O2) is a semi-volatile molecule of atmospheric importance, recently proposed as a precursor in the formation of aqueous-phase secondary organic aerosol (SOA). There are few methods to measure glycolaldehyde vapor, but infrared spectroscopy has been used successfully. Using vetted protocols we have completed the first assignment of all fundamental vibrational modes and derived quantitative IR absorption band strengths using both neat and pressure-broadened GA vapor. Even though GA is problematic due to its propensity to both dimerize and condense, our intensities agree well with the few previously published values. Using the reference ν10 band Q-branch at 860.51 cm-1, we have also determined GA mixing ratios in biomass burning plumes generated by field and laboratory burns of fuels from the southeastern and southwestern United States, including the first field measurements of glycolaldehyde in smoke. The GA emission factors were anti-correlated with modified combustion efficiency confirming release of GA from smoldering combustion. The GA emission factors (g of GA emitted per kg dry biomass burned on a dry mass basis) had a low dependence on fuel type consistent with the production mechanism being pyrolysis of cellulose. GA was emitted at 0.23 ± 0.13% of CO from field fires and we calculate that it accounts for ~18% of the aqueous-phase SOA precursors that we were able to measure.

  13. Multiple vibrations measurement using phase-sensitive OTDR merged with Mach-Zehnder interferometer based on frequency division multiplexing.

    Science.gov (United States)

    He, Haijun; Shao, Li-Yang; Luo, Bin; Li, Zonglei; Zou, Xihua; Zhang, Zhiyong; Pan, Wei; Yan, Lianshan

    2016-03-07

    A novel measurement scheme for multiple high-frequency vibrations has been demonstrated by combining phase-sensitive optical time domain reflectometry (Ф-OTDR) and Mach-Zehnder interferometer (MZI) based on frequency division multiplexing. The light source is directly launched into the MZI structure, while it was modulated by an acoustic optical modulator (AOM) with a frequency shift of 200 MHz for the Ф-OTDR part. The vibration frequency is obtained by demodulating the interference signal obtained by the MZI structure, while the vibration position is located by Ф-OTDR system. The spatial resolution of 10m is obtained over 3 km sensing fiber. And the detectable vibration frequency reaches up to 40 kHz. Compared to the previous schemes, this system works without dead zone in the detectable frequency range. Furthermore, the frequency spectrum mapping method has been adopted to determine multiple high-frequency vibrations simultaneously. The experimental results prove the concept and match well with the theoretical analysis.

  14. Experimental Validation of the Dynamic Inertia Measurement Method to Find the Mass Properties of an Iron Bird Test Article

    Science.gov (United States)

    Chin, Alexander; Herrera, Claudia; Spivey, Natalie; Fladung, William; Cloutier, David

    2015-01-01

    This presentation describes the DIM method and how it measures the inertia properties of an object by analyzing the frequency response functions measured during a ground vibration test (GVT). The DIM method has been in development at the University of Cincinnati and has shown success on a variety of small scale test articles. The NASA AFRC version was modified for larger applications.

  15. Direct measurement of additional Ar-H2O vibration-rotation-tunneling bands in the millimeter-submillimeter range

    Science.gov (United States)

    Zou, Luyao; Widicus Weaver, Susanna L.

    2016-06-01

    Three new weak bands of the Ar-H2O vibration-rotation-tunneling spectrum have been measured in the millimeter wavelength range. These bands were predicted from combination differences based on previously measured bands in the submillimeter region. Two previously reported submillimeter bands were also remeasured with higher frequency resolution. These new measurements allow us to obtain accurate information on the Coriolis interaction between the 101 and 110 states. Here we report these results and the associated improved molecular constants.

  16. What do educational test scores really measure?

    DEFF Research Database (Denmark)

    McIntosh, James; D. Munk, Martin

    measure of pure cognitive ability. We find that variables which are not closely associated with traditional notions of intelligence explain a significant proportion of the variation in test scores. This adds to the complexity of interpreting test scores and suggests that school culture, attitudes......, and possible incentive problems make it more difficult to elicit true values of what the tests measure....

  17. Vibration analysis on driver’s seat of agricultural tractors during tillage tests

    Energy Technology Data Exchange (ETDEWEB)

    Gialamas, T.; Gravalos, I.; Kateris, D.; Xyradakis, P.; Dimitriadis, C.

    2016-07-01

    The vibration of the driver’s seat of agricultural tractors was investigated during three alternative tillage operations. Three tractors including a range of specifications were considered, at a range of forward speeds. The interactions between the tractors, implements and speeds were examined using the SPSS program and the GLM-ANOVA method. The results analysis indicated that the tractors played the first major role in vibration development in the lateral axis and was followed by the implements. In contrast, the implements played the first major role in the development of vibration in the horizontal axis and are followed by factor tractors. The statistically significant effect in vertical and horizontal axes shows the factor implements. In addition, the statistically significant effect in the vertical and lateral axes shows again the implements to be the most significant factor. Of the implements, the plough shows the highest vibration and displays statistically significant difference in comparison with the other implements.

  18. Vibration Durability Testing of Nickel Cobalt Aluminum Oxide (NCA) Lithium-Ion 18650 Battery Cells

    OpenAIRE

    Hooper, James Michael; Marco, James; Chouchelamane, Gael Henri; Lyness, Christopher; Taylor, James

    2016-01-01

    This paper outlines a study undertaken to determine if the electrical performance of Nickel Cobalt Aluminum Oxide (NCA) 3.1 Ah 18650 battery cells can be degraded by road induced vibration typical of an electric vehicle (EV) application. This study investigates if a particular cell orientation within the battery assembly can result in different levels of cell degradation. The 18650 cells were evaluated in accordance with Society of Automotive Engineers (SAE) J2380 standard. This vibration tes...

  19. Designing, modelling and testing of vibration energy harvester with nonlinear stiffness

    Science.gov (United States)

    Rubes, Ondrej; Hadas, Zdenek

    2017-05-01

    This paper is focused on a design of a piezoelectric vibration energy harvester with an additional nonlinear stiffness. Common piezoelectric energy harvesters consist of a cantilever with piezoceramic layers and a tip mass for tuning up the operation frequency. This system is excited by mechanical vibrations and it provides an autonomous source of electrical energy. A linear stiffness of the cantilever has very narrow resonance frequency bandwidth which makes the piezoelectric cantilever sensitive to tuning up of the resonance frequency. It could be tuned only for one narrow vibration frequency bandwidth. The piezoelectric vibration energy harvester with nonlinear stiffness could provide the resonance frequency bandwidth wider and it allows energy harvesting from the wider bandwidth of excitation vibrations. The additional nonlinear stiffness is implemented by using a set of permanent magnets. A simulation and an experiment were performed and the results show a wider resonance bandwidth. However, it depended on direction of vibration frequency sweeping. The frequency bandwidth is more than three times wider but there is only a half resonance amplitude of oscillations. That means that the maximal harvested power is lower but the average harvested power around resonance frequency was higher which was the goal of this research.

  20. Model-independent quantitative measurement of nanomechanical oscillator vibrations using electron-microscope linescans

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huan; Fenton, J. C.; Chiatti, O. [London Centre for Nanotechnology, University College London, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Warburton, P. A. [London Centre for Nanotechnology, University College London, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2013-07-15

    Nanoscale mechanical resonators are highly sensitive devices and, therefore, for application as highly sensitive mass balances, they are potentially superior to micromachined cantilevers. The absolute measurement of nanoscale displacements of such resonators remains a challenge, however, since the optical signal reflected from a cantilever whose dimensions are sub-wavelength is at best very weak. We describe a technique for quantitative analysis and fitting of scanning-electron microscope (SEM) linescans across a cantilever resonator, involving deconvolution from the vibrating resonator profile using the stationary resonator profile. This enables determination of the absolute amplitude of nanomechanical cantilever oscillations even when the oscillation amplitude is much smaller than the cantilever width. This technique is independent of any model of secondary-electron emission from the resonator and is, therefore, applicable to resonators with arbitrary geometry and material inhomogeneity. We demonstrate the technique using focussed-ion-beam–deposited tungsten cantilevers of radius ∼60–170 nm inside a field-emission SEM, with excitation of the cantilever by a piezoelectric actuator allowing measurement of the full frequency response. Oscillation amplitudes approaching the size of the primary electron-beam can be resolved. We further show that the optimum electron-beam scan speed is determined by a compromise between deflection of the cantilever at low scan speeds and limited spatial resolution at high scan speeds. Our technique will be an important tool for use in precise characterization of nanomechanical resonator devices.

  1. Spectral Analysis of Pressure, Noise and Vibration Velocity Measurement in Cavitation

    Science.gov (United States)

    Jablonská, Jana; Mahdal, Miroslav; Kozubková, Milada

    2017-12-01

    The article deals with experimental investigation of water cavitation in the convergent-divergent nozzle of rectangular cross-section. In practice, a quick and simple determination of cavitation is essential, especially if it is basic cavitation or cavitation generated additionally by the air being sucked. Air influences the formation, development and size of the cavity area in hydraulic elements. Removal or reduction of the cavity area is possible by structural changes of the element. In case of the cavitation with the suction air, it is necessary to find the source of the air and seal it. The pressure gradient, the flow, the oxygen content in the tank, and hence the air dissolved in the water, the air flow rate, the noise intensity and the vibration velocity on the nozzle wall were measured on laboratory equipment. From the selected measurements the frequency spectrum of the variation of the water flow of the cavity with cavitation without air saturation and with air saturation was compared and evaluated.

  2. Analysis of the Acoustic and Vibration Measurement in the Disintegration Process

    Directory of Open Access Journals (Sweden)

    Ľudmila Ušalová

    2004-12-01

    Full Text Available In the last thirty years there have been many developments in the use of acoustical and vibration measurement and their analysis for monitoring the condition of rotating machinery. These have been in three areas of interest the: detection of machinery pieces faults, the diagnosis and the prognosis. Of these areas, the diagnosis and prognosis still require an expert to determine what analyses to perform and to interpret the results. Currently much effort is being put into the automated fault diagnosis and prognosis. Major benefits come from the ability to predict with a reasonable accuracy how long a machine can safely operate (often a matter of several months from incipient faults are first detected. This article briefly summarizes selected signal processing methods, which are possible to be suggested for the vibroacoustical measurements evalution. These techniques are presented with a reference to their use in the rock disintegration process. Simultaneously, several cases are discussed where a great care must be taken in setting up input parameters or very misleading data would be produced.

  3. Finite-Element Vibration Analysis and Modal Testing of Graphite Epoxy Tubes and Correlation Between the Data

    Science.gov (United States)

    Taleghani, Barmac K.; Pappa, Richard S.

    1996-01-01

    Structural materials in the form of graphite epoxy composites with embedded rubber layers are being used to reduce vibrations in rocket motor tubes. Four filament-wound, graphite epoxy tubes were studied to evaluate the effects of the rubber layer on the modal parameters (natural vibration frequencies, damping, and mode shapes). Tube 1 contained six alternating layers of 30-degree helical wraps and 90-degree hoop wraps. Tube 2 was identical to tube 1 with the addition of an embedded 0.030-inch-thick rubber layer. Tubes 3 and 4 were identical to tubes 1 and 2, respectively, with the addition of a Textron Kelpoxy elastomer. This report compares experimental modal parameters obtained by impact testing with analytical modal parameters obtained by NASTRAN finite-element analysis. Four test modes of tube 1 and five test modes of tube 3 correlate highly with corresponding analytical predictions. Unsatisfactory correlation of test and analysis results occurred for tubes 2 and 4 and these comparisons are not shown. Work is underway to improve the analytical models of these tubes. Test results clearly show that the embedded rubber layers significantly increase structural modal damping as well as decrease natural vibration frequencies.

  4. Development, implementation, and characterization of a standalone embedded viscosity measurement system based on the impedance spectroscopy of a vibrating wire sensor

    Science.gov (United States)

    Santos, José; Janeiro, Fernando M.; Ramos, Pedro M.

    2015-10-01

    This paper presents an embedded liquid viscosity measurement system based on a vibrating wire sensor. Although multiple viscometers based on different working principles are commercially available, there is still a market demand for a dedicated measurement system capable of performing accurate, fast measurements and requiring little or no operator training for simple systems and solution monitoring. The developed embedded system is based on a vibrating wire sensor that works by measuring the impedance response of the sensor, which depends on the viscosity and density of the liquid in which the sensor is immersed. The core of the embedded system is a digital signal processor (DSP) which controls the waveform generation and acquisitions for the measurement of the impedance frequency response. The DSP also processes the acquired waveforms and estimates the liquid viscosity. The user can interact with the measurement system through a keypad and an LCD or through a computer with a USB connection for data logging and processing. The presented system is tested on a set of viscosity standards and the estimated values are compared with the standard manufacturer specified viscosity values. A stability study of the measurement system is also performed.

  5. Validation of measured friction by process tests

    DEFF Research Database (Denmark)

    Eriksen, Morten; Henningsen, Poul; Tan, Xincai

    The objective of sub-task 3.3 is to evaluate under actual process conditions the friction formulations determined by simulative testing. As regards task 3.3 the following tests have been used according to the original project plan: 1. standard ring test and 2. double cup extrusion test. The task...... has, however, been extended to include a number of new developed process tests: 3. forward rod extrusion test, 4. special ring test at low normal pressure, 5. spike test (especially developed for warm and hot forging). Validation of the measured friction values in cold forming from sub-task 3.1 has...... been made with forward rod extrusion, and very good agreement was obtained between the measured friction values in simulative testing and process testing....

  6. Dynamic characteristics of a cable-stayed bridge measured from traffic-induced vibrations

    Science.gov (United States)

    Wang, Yun-Che; Chen, Chern-Hwa

    2012-09-01

    This paper studies the dynamic characteristics of the Kao-Ping-Hsi cable-stayed bridge under daily traffic conditions. Experimental data were measured from a structural monitoring system, and system-identification techniques, such as the random decrement (RD) technique and Ibrahim time-domain (ITD) method, were adopted. The first five modes of the bridge were identified for their natural frequencies and damping ratios under different traffic loading conditions, in terms of root-mean-square (RMS) deck velocities. The magnitude of the torsion mode of the Kao-Ping-Hsi cable-stayed bridge is found to be one order-of-magnitude less than the transfer mode, and two orders-of-magnitude less than the vertical modes. Out results indicated that vibrations induced by traffic flow can be used as an indicator to monitor the health of the bridge due to their insensitivity to the natural frequencies of the cable-stayed bridge. Furthermore, the damping ratios may be used as a more sensitive indicator to describe the condition of the bridge.

  7. Coupled thermal, structural and vibrational analysis of a hypersonic engine for flight test

    Energy Technology Data Exchange (ETDEWEB)

    Sook-Ying, Ho [Defence Science and Technology Organisation, SA (Australia); Paull, A. [Queensland Univ., Dept. of Mechanical Engineering (Australia)

    2006-07-15

    This paper describes a relatively simple and quick method for implementing aerodynamic heating models into a finite element code for non-linear transient thermal-structural and thermal-structural-vibrational analyses of a Mach 10 generic HyShot scram-jet engine. The thermal-structural-vibrational response of the engine was studied for the descent trajectory from 60 to 26 km. Aerodynamic heating fluxes, as a function of spatial position and time for varying trajectory points, were implemented in the transient heat analysis. Additionally, the combined effect of varying dynamic pressure and thermal loads with altitude was considered. This aero-thermal-structural analysis capability was used to assess the temperature distribution, engine geometry distortion and yielding of the structural material due to aerodynamic heating during the descent trajectory, and for optimising the wall thickness, nose radius of leading edge, etc. of the engine intake. A structural vibration analysis was also performed following the aero-thermal-structural analysis to determine the changes in natural frequencies of the structural vibration modes that occur at the various temperatures associated with the descent trajectory. This analysis provides a unique and relatively simple design strategy for predicting and mitigating the thermal-structural-vibrational response of hypersonic engines. (authors)

  8. Microwave-range shielding effectiveness measurements using a dual vibrating intrinsic reverberation chamber

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes; Serra, Ramiro; Schipper, H.

    2012-01-01

    Reverberation chambers create a statistical uniformly distributed field which is very useful for reliable electromagnetic interference measurements. Another advantage of these chambers is the high field strength which can be generated compared to conventional test setups. A reverberation chamber

  9. Measuring Task Proficiency with Tailored Response Testing.

    Science.gov (United States)

    Baker, Herbert George; And Others

    Tailored Response Testing (TRT) is a new type of test that has demonstrated its applicability to the evaluation of human performance in a wide variety of occupations and work settings. The Navy is using TRT to measure the technical proficiency of job incumbents in three of its jobs. The methodology holds great promise for testing aboard ships as…

  10. Accelerated lifetime test of vibration isolator made of Metal Rubber material

    Science.gov (United States)

    Ao, Hongrui; Ma, Yong; Wang, Xianbiao; Chen, Jianye; Jiang, Hongyuan

    2017-01-01

    The Metal Rubber material (MR) is a kind of material with nonlinear damping characteristics for its application in the field of aerospace, petrochemical industry and so on. The study on the lifetime of MR material is impendent to its application in engineering. Based on the dynamic characteristic of MR, the accelerated lifetime experiments of vibration isolators made of MR working under random vibration load were conducted. The effects of structural parameters of MR components on the lifetime of isolators were studied and modelled with the fitting curves of degradation data. The lifetime prediction methods were proposed based on the models.

  11. Measurement of children's creativity by tests

    Directory of Open Access Journals (Sweden)

    Maksić Slavica B.

    2003-01-01

    Full Text Available After over a 50-year permanent development of tests designed to measure creativity and the results they produced, a question is raised if creativity can be measured by tests at all. A special problem are procedures for measuring creative potential in younger children because children, unlike adults, do not possess creative products that are a single reliable evidence of creativity in the real world. The paper considers test reliability and validity in measuring creativity as well as the dilemma: how much justifiable it is to measure children's creativity by tests if it is not clear what they measure and if there is not a significant relationship between creativity scores and creativity in life. Unsatisfactory creativity test reliability and validity does not mean those tests should be given up the majority of researchers agree. Of the tests of creativity administered in work with the young, the status of Urban-Jellen Test of Creative Thinking - Drawing Production (TCT-DP is given prominence due to the fact that over the past ten years or so it has been used in a larger number of studies as well as in some studies carried out in this country. In TCT-DP scoring is not based on statistical uncommonness of the figures produced but on a number of criteria derived from Gestalt psychology. The factor analyses of the defined criteria of creativity, applied on samples in various settings yielded that the test contains an essential factor of creativity "novelty".

  12. Design and Execution of a Test Rig for Studying the Vibrations of a Gearbox

    Directory of Open Access Journals (Sweden)

    Zoltan Korka

    2008-10-01

    Full Text Available The current trend in the construction of gearboxes, regarding the speed increase, favours the increase of the dynamic loads which are accompanying the operation of these kinds of machines. The phenomena of dynamic contact like frictions, collisions and shocks which are taking place in cinematic couples, engines and mechanisms during their movement, are generating vibrations in a wide range of frequencies.

  13. Tissue vibration in prolonged running.

    Science.gov (United States)

    Friesenbichler, Bernd; Stirling, Lisa M; Federolf, Peter; Nigg, Benno M

    2011-01-04

    The impact force in heel-toe running initiates vibrations of soft-tissue compartments of the leg that are heavily dampened by muscle activity. This study investigated if the damping and frequency of these soft-tissue vibrations are affected by fatigue, which was categorized by the time into an exhaustive exercise. The hypotheses were tested that (H1) the vibration intensity of the triceps surae increases with increasing fatigue and (H2) the vibration frequency of the triceps surae decreases with increasing fatigue. Tissue vibrations of the triceps surae were measured with tri-axial accelerometers in 10 subjects during a run towards exhaustion. The frequency content was quantified with power spectra and wavelet analysis. Maxima of local vibration intensities were compared between the non-fatigued and fatigued states of all subjects. In axial (i.e. parallel to the tibia) and medio-lateral direction, most local maxima increased with fatigue (supporting the first hypothesis). In anterior-posterior direction no systematic changes were found. Vibration frequency was minimally affected by fatigue and frequency changes did not occur systematically, which requires the rejection of the second hypothesis. Relative to heel-strike, the maximum vibration intensity occurred significantly later in the fatigued condition in all three directions. With fatigue, the soft tissue of the triceps surae oscillated for an extended duration at increased vibration magnitudes, possibly due to the effects of fatigue on type II muscle fibers. Thus, the protective mechanism of muscle tuning seems to be reduced in a fatigued muscle and the risk of potential harm to the tissue may increase. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. CARS temperature measurements in a hypersonic propulsion test facility

    Science.gov (United States)

    Jarrett, O., Jr.; Smith, M. W.; Antcliff, R. R.; Northam, G. B.; Cutler, A. D.

    1990-01-01

    Static-temperature measurements performed in a reacting vitiated air-hydrogen Mach-2 flow in a duct in Test Cell 2 at NASA LaRC by using a coherent anti-Stokes Raman spectroscopy (CARS) system are discussed. The hypersonic propulsion Test Cell 2 hardware is outlined with emphasis on optical access ports and safety features in the design of the Test Cell. Such design considerations as vibration, noise, contamination from flow field or atmospheric-borne dust, unwanted laser- and electrically-induced combustion, and movement of the sampling volume in the flow are presented. The CARS system is described, and focus is placed on the principle and components of system-to-monochromator signal coupling. Contour plots of scramjet combustor static temperature in a reacting-flow region are presented for three stations, and it is noted that the measurements reveal such features in the flow as maximum temperature near the model wall in the region of the injector footprint.

  15. Image-based tracking system for vibration measurement of a rotating object using a laser scanning vibrometer

    Science.gov (United States)

    Kim, Dongkyu; Khalil, Hossam; Jo, Youngjoon; Park, Kyihwan

    2016-06-01

    An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.

  16. Image-based tracking system for vibration measurement of a rotating object using a laser scanning vibrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongkyu, E-mail: akein@gist.ac.kr; Khalil, Hossam; Jo, Youngjoon; Park, Kyihwan, E-mail: khpark@gist.ac.kr [School of Mechatronics, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, South Korea, 500-712 (Korea, Republic of)

    2016-06-28

    An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.

  17. Decay Rate Measurement of the First Vibrationally Excited State of MgH+ in a Cryogenic Paul Trap

    DEFF Research Database (Denmark)

    Versolato, O.O.; Schwarz, M.; Hansen, A.K.

    2013-01-01

    We present a method to measure the decay rate of the first excited vibrational state of polar molecular ions that are part of a Coulomb crystal in a cryogenic linear Paul trap. Specifically, we have monitored the decay of the |ν=1,J=1⟩X towards the |ν=0,J=0⟩X level in MgH+ by saturated laser exci...

  18. The Shock and Vibration Bulletin. Part 2. Model Test and Analysis, Testing Techniques, Machinery Dynamics, Isolation and Damping, Structural Dynamics

    Science.gov (United States)

    1986-08-01

    jBfr 5? JOR JS T SIONAL/lBRATIONjerF^EAR-RANCHED PROPULSION.gVSTEMS j... 117 / H.F. Tavares, Cepstrum Engenharia Ltda., Rio de Janeiro, Brazil and V...MODELLING IN FINITE ELEMENT ANALYSES OF TORSIONAL VIBRATION OF GEAR-BRANCHED PROPULSION SYSTEMS H. F. Tavares Cepstrum Engenharia Ltda. S8o Paulo

  19. Absolute measurement of subnanometer scale vibration of cochlear partition of an excised guinea pig cochlea using spectral-domain phase-sensitive optical coherence tomography

    Science.gov (United States)

    Subhash, Hrebesh M.; Choudhury, Niloy; Jacques, Steven L.; Wang, Ruikang K.; Chen, Fangyi; Zha, Dingjun; Nuttall, Alfred L.

    2012-01-01

    Direct measurement of absolute vibration parameters from different locations within the mammalian organ of Corti is crucial for understanding the hearing mechanics such as how sound propagates through the cochlea and how sound stimulates the vibration of various structures of the cochlea, namely, basilar membrane (BM), recticular lamina, outer hair cells and tectorial membrane (TM). In this study we demonstrate the feasibility a modified phase-sensitive spectral domain optical coherence tomography system to provide subnanometer scale vibration information from multiple angles within the imaging beam. The system has the potential to provide depth resolved absolute vibration measurement of tissue microstructures from each of the delay-encoded vibration images with a noise floor of ~0.3nm at 200Hz.

  20. Laboratory testing & measurement on optical imaging systems

    CSIR Research Space (South Africa)

    Theron, B

    2013-04-01

    Full Text Available The purpose of the workshop was for participants to interactively discuss (with regard to optical imaging or optical imaging systems): Local end-user needs; What those needs imply for associated new & existing laboratory testing & measurement...

  1. Vibration analysis of cryocoolers

    Science.gov (United States)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira; Koyama, Tomohiro; Li, Rui

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas.

  2. Vibration analysis of cryocoolers

    Energy Technology Data Exchange (ETDEWEB)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Koyama, Tomohiro; Rui Li [Sumitomo Heavy Industries Ltd., Tokyo (Japan)

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas. (Author)

  3. Stroboscopic shearography for vibration analysis

    Science.gov (United States)

    Steinchen, Wolfgang; Kupfer, Gerhard; Maeckel, Peter; Voessing, Frank

    1999-09-01

    Digital Shearography, a laser interferometric technique in conjunction with the digital image processing, has the potential for vibration analysis due to its simple optical system and insensitivity against small rigid body motions. This paper will focus on its recent developments for vibration analysis and for nondestructive testing (NDT) by dynamic (harmonical) excitation. With the introduction of real time observation using automatically refreshing reference frame, both small and large rigid body motions are greatly suppressed. The development of a smaller and more mobile measuring device in conjunction with a user guided comfortable program Shearwin enables the digital shearography to be applied easily as an industrial online testing tool.

  4. Force limited random vibration testing: the computation of the semi-empirical constant $C(2) $ C 2 for a real test article and unknown supporting structure

    Science.gov (United States)

    Wijker, J. J.; Ellenbroek, M. H. M.; Boer, A. de

    2015-09-01

    To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications. Besides the random vibration specification, the total mass and the turn-over frequency of the test article (load), C^2 is a very important parameter for FLVT. A number of computational methods to estimate C^2 are described in the literature, i.e. the simple and the complex two degree of freedom system, STDFS and CTDFS, respectively. The motivation of this work is to evaluate the method for the computation of a realistic value of C^2 to perform a representative random vibration test based on force limitation, when the description of the supporting structure (source) is more or less unknown. Marchand discussed the formal description of obtaining C^2, using the maximum PSD of the acceleration and maximum PSD of the force, both at the interface between test article and supporting structure. Stevens presented the coupled systems modal approach (CSMA), where simplified asparagus patch models (parallel-oscillator representation) of load and source are connected. The asparagus patch model consists of modal effective masses and spring stiffnesses associated with the natural frequencies. When the random acceleration vibration specification is given the CSMA method is suitable to compute the value of the parameter C^2. When no mathematical model of the source can be made available, estimations of the value C^2 can be find in literature. In this paper a probabilistic mathematical representation of the unknown source is proposed, such that the asparagus patch model of the source can be approximated. The chosen probabilistic design parameters have a uniform distribution. The computation of the value C^2 can be done in conjunction with the CSMA method, knowing the apparent mass of the load and the random acceleration specification at the interface between load and source, respectively. Data of two

  5. Acoustic determination of cracks in welded joints. [by resonant structural vibration measurements

    Science.gov (United States)

    Baltanoiu, M.; Criciotoiu, E.

    1974-01-01

    The acoustic analysis method permits detection of any cracks that might take place and their manner of propagation. The study deals with the cracks produced in experiments to determine the welding technology for a welded gray cast iron workpiece by using piezoelectric transducers to determine vibration acceleration.

  6. Structural Health Monitoring Using Wireless Technologies: An Ambient Vibration Test on the Adolphe Bridge, Luxembourg City

    Directory of Open Access Journals (Sweden)

    Adrien Oth

    2012-01-01

    Full Text Available Major threats to bridges primarily consist of the aging of the structural elements, earthquake-induced shaking and standing waves generated by windstorms. The necessity of information on the state of health of structures in real-time, allowing for timely warnings in the case of damaging events, requires structural health monitoring (SHM systems that allow the risks of these threats to be mitigated. Here we present the results of a short-duration experiment carried out with low-cost wireless instruments for monitoring the vibration characteristics and dynamic properties of a strategic civil infrastructure, the Adolphe Bridge in Luxembourg City. The Adolphe Bridge is a masonry arch construction dating from 1903 and will undergo major renovation works in the upcoming years. Our experiment shows that a network of these wireless sensing units is well suited to monitor the vibration characteristics of such a historical arch bridge and hence represents a low-cost and efficient solution for SHM.

  7. A High-Speed Target-Free Vision-Based Sensor for Bus Rapid Transit Viaduct Vibration Measurements Using CMT and ORB Algorithms

    Directory of Open Access Journals (Sweden)

    Qijun Hu

    2017-06-01

    Full Text Available Bus Rapid Transit (BRT has become an increasing source of concern for public transportation of modern cities. Traditional contact sensing techniques during the process of health monitoring of BRT viaducts cannot overcome the deficiency that the normal free-flow of traffic would be blocked. Advances in computer vision technology provide a new line of thought for solving this problem. In this study, a high-speed target-free vision-based sensor is proposed to measure the vibration of structures without interrupting traffic. An improved keypoints matching algorithm based on consensus-based matching and tracking (CMT object tracking algorithm is adopted and further developed together with oriented brief (ORB keypoints detection algorithm for practicable and effective tracking of objects. Moreover, by synthesizing the existing scaling factor calculation methods, more rational approaches to reducing errors are implemented. The performance of the vision-based sensor is evaluated through a series of laboratory tests. Experimental tests with different target types, frequencies, amplitudes and motion patterns are conducted. The performance of the method is satisfactory, which indicates that the vision sensor can extract accurate structure vibration signals by tracking either artificial or natural targets. Field tests further demonstrate that the vision sensor is both practicable and reliable.

  8. The impact of vibrational Raman scattering of air on DOAS measurements of atmospheric trace gases

    Science.gov (United States)

    Lampel, J.; Frieß, U.; Platt, U.

    2015-09-01

    In remote sensing applications, such as differential optical absorption spectroscopy (DOAS), atmospheric scattering processes need to be considered. After inelastic scattering on N2 and O2 molecules, the scattered photons occur as additional intensity at a different wavelength, effectively leading to "filling-in" of both solar Fraunhofer lines and absorptions of atmospheric constituents, if the inelastic scattering happens after the absorption. Measured spectra in passive DOAS applications are typically corrected for rotational Raman scattering (RRS), also called Ring effect, which represents the main contribution to inelastic scattering. Inelastic scattering can also occur in liquid water, and its influence on DOAS measurements has been observed over clear ocean water. In contrast to that, vibrational Raman scattering (VRS) of N2 and O2 has often been thought to be negligible, but it also contributes. Consequences of VRS are red-shifted Fraunhofer structures in scattered light spectra and filling-in of Fraunhofer lines, additional to RRS. At 393 nm, the spectral shift is 25 and 40 nm for VRS of O2 and N2, respectively. We describe how to calculate VRS correction spectra according to the Ring spectrum. We use the VRS correction spectra in the spectral range of 420-440 nm to determine the relative magnitude of the cross-sections of VRS of O2 and N2 and RRS of air. The effect of VRS is shown for the first time in spectral evaluations of Multi-Axis DOAS data from the SOPRAN M91 campaign and the MAD-CAT MAX-DOAS intercomparison campaign. The measurements yield in agreement with calculated scattering cross-sections that the observed VRS(N2) cross-section at 393 nm amounts to 2.3 ± 0.4 % of the cross-section of RRS at 433 nm under tropospheric conditions. The contribution of VRS(O2) is also found to be in agreement with calculated scattering cross-sections. It is concluded, that this phenomenon has to be included in the spectral evaluation of weak absorbers as it

  9. Analysis and testing of an integrated semi-active seat suspension for both longitudinal and vertical vibration control

    Science.gov (United States)

    Bai, Xian-Xu; Jiang, Peng; Pan, Hui; Qian, Li-Jun

    2016-04-01

    An integrated semi-active seat suspension for both longitudinal and vertical vibration control is analyzed and tested in this paper. The seat suspension consists of a switching mechanism transforming both longitudinal and vertical motions into a rotary motion and a real-time damping-controllable system-a rotary magnetorheological (MR) damper working in pure shear mode and its corresponding control system. The switching mechanism employs the parallelogram frames as a motion guide which keeps the seat moving longitudinally and vertically. At the same time, both longitudinal and vertical motions are transformed into a reciprocating rotary motion that is transmitted to the rotary MR damper after an amplification by a gear mechanism. Both the longitudinal and vertical vibrations can be attenuated in real time through controlling the damping force (or torque) of the rotary MR damper. The mathematical model of the seat suspension system is established, simulated, and analyzed. The experimental test based on the test rig in Hefei University of Technology is implemented, and the results of simulation and experimental test are compared and analyzed.

  10. GPR measurements and estimation for road subgrade damage caused by neighboring train vibration load

    Science.gov (United States)

    Zhao, Yonghui; Lu, Gang; Ge, Shuangcheng

    2015-04-01

    Generally, road can be simplified as a three-layer structure, including subgrade, subbase and pavement. Subgrade is the native material underneath a constructed road. It is commonly compacted before the road construction, and sometimes stabilized by the addition of asphalt, lime or other modifiers. As the mainly supporting structure, subgrade damage would lead in pavement settlement, displacement and crack. Assessment and monitoring of the subgrade condition currently involves trial pitting and subgrade sampling. However there is a practical limit on spatial density at which trail pits and cores can be taken. Ground penetrating radar (GPR) has been widely used to characterize highway pavement profiling, concrete structure inspection and railroad track ballast estimation. GPR can improve the economics of road maintenance. Long-term train vibration load might seriously influence the stability of the subgrade of neighboring road. Pavement settlement and obvious cracks have been found at a municipal road cross-under a railway with culvert box method. GPR test was conducted to estimate the subgrade and soil within 2.0 m depth for the further road maintenance. Two survey lines were designed in each lane, and total 12 GPR sections have been implemented. Considering both the penetrating range and the resolution, a antenna with a 500 MHz central frequency was chosen for on-site GPR data collection. For data acquisition, we used the default operating environment and scanning parameters for the RAMAC system: 60kHz transmission rate, 50 ns time window, 1024 samples per scan and 0.1 m step-size. Continuous operation was used; the antenna was placed on the road surface and slowly moved along the road. The strong surrounding disturbance related to railroad and attachments, might decrease the reliability of interpretation results. Some routine process methods (including the background removing, filtering) have been applied to suppress the background noise. Additionally, attribute

  11. Identification of dynamic characteristics by field vibration test in Tsurumi Tsubasa bridge; Tsurumi Tsubasakyo no shindo jikken ni yoru doteki tokusei no dotei

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, H. [Saitama University, Saitama (Japan). Faculty of Engineering; Takano, H.; Ogasawara, M.; Shimosato, T. [Metropolitan Expressway Public Corp., Tokyo (Japan); Kato, M.; Okada, J. [NKK Corp., Tokyo (Japan)

    1996-07-21

    Field vibration test of the Tsurumi Tsubasa Bridge, a long span cable stayed bridge, has been conducted. Focusing on its dynamic characteristics, an identification method from test results and its validity were investigated. The natural frequency identified using mode circle and resonance curve from steady vibration test agreed with that identified by the peak method from free damping test. Accordingly, there was no difference due to identification methods, and both methods provided appropriate accuracy. The natural vibration mode obtained from the steady vibration test agreed with that obtained by the eigenvalue analysis. The dispersion of experimental values, which indicates the adaptation to mode circle method, became a scale indicating reliability of identified values. When the damping obtained by the half power method for the microtremors test is compared with that identified from the steady vibration test and free damping test, it is required to compare them at lower amplitude level region, considering that the amplitude level of microtremors test is very low. For the dynamic characteristics of the Tsurumi Tsubasa Bridge, it was found that it has lower natural frequency and higher modal damping compared with other cable stayed bridges with similar scale of span. 18 refs., 13 figs., 4 tabs.

  12. Damage monitoring and impact detection using optical fiber vibration sensors

    Science.gov (United States)

    Yang, Y. C.; Han, K. S.

    2002-06-01

    Intensity-based optical fiber vibrations sensors (OFVSs) are used in damage monitoring of fiber-reinforced plastics, in vibration sensing, and location of impacts. OFVSs were constructed by placing two cleaved fiber ends in a capillary tube. This sensor is able to monitor structural vibrations. For vibration sensing, the optical fiber sensor was mounted on the carbon fiber reinforced composite beam, and its response was investigated for free and forced vibration. For locating impact points, four OFVSs were placed at chosen positions and the different arrival times of impact-generated vibration signals were recorded. The impact location can be determined from these time delays. Indentation and tensile tests were performed with the measurement of the optical signal and acoustic emission (AE). The OFVSs accurately detected both free and forced vibration signals. Accurate locations of impact were determined on an acrylate plate. It was found that damage information, comparable in quality to AE data, could be obtained from the OFVS signals.

  13. Measurement of intravenously administered γ-Fe2O3 particle amount in mice tissues using vibrating sample magnetometer.

    Science.gov (United States)

    Kishimoto, Mikio; Miyamoto, Ryoichi; Oda, Tatsuya; Ohara, Yusuke; Yanagihara, Hideto; Ohkohchi, Nobuhiro; Kita, Eiji

    2014-12-01

    Dispersions of platelet γ-Fe2O3 particles 30-50nm in size were intravenously administered to mice and the amount of particles accumulated in each tissue was obtained by magnetization measurement using a vibrating sample magnetometer. Background noise was greatly reduced by measuring dried tissues under a magnetic field of 500 Oe so that the effect of diamagnetism was slight. Remarkable particle accumulation was observed in the liver and spleen. Considerable particle accumulation was observed in the lung when a large quantity of γ-Fe2 O3 particles was administered. There was no significant particle accumulation in the kidney and heart.

  14. Noise and Vibration Modeling for Anti-Lock Brake Systems

    Science.gov (United States)

    Zhan, Wei

    A new methodology is proposed for noise and vibration analysis for Anti-Lock Brake Systems (ABS). First, a correlation between noise and vibration measurement data and simulation results need to be established. This relationship allows the engineers to focus on modeling and simulation instead of noise and vibration testing. A comprehensive ABS model is derived for noise and vibration study. The model can be set up to do different types of simulations for noise and vibration analysis. If some data is available from actual testing, then the test data can be easily imported into the model as an input to replace the corresponding part in the model. It is especially useful when the design needs to be modified, or trade-off between ABS performance and noise and vibration is necessary. The model can greatly reduce the time to market for ABS products. It also makes system level optimization possible.

  15. Direct friction measurement in draw bead testing

    DEFF Research Database (Denmark)

    Olsson, David Dam; Bay, Niels; Andreasen, Jan Lasson

    2005-01-01

    The application of draw beads in sheet metal stamping ensures controlled drawing-in of flange parts. Lubrication conditions in draw beads are severe due to sliding under simultaneous bending. Based on the original draw bead test design by Nine [1] comprehensive studies of friction in draw beads...... have been reported in literature. A major drawback in all these studies is that friction is not directly measured, but requires repeated measurements of the drawing force with and without relative sliding between the draw beads and the sheet material. This implies two tests with a fixed draw bead tool...... and a freely rotating tool respectively, an approach, which inevitably implies large uncertainties due to scatter in the experimental conditions. In order to avoid this problem a new draw bead test is proposed by the authors measuring the friction force acting on the tool radius directly by a build...

  16. Low-wavenumber turbulent boundary layer wall-pressure measurements from vibration data on a cylinder in pipe flow

    Science.gov (United States)

    Bonness, William K.; Capone, Dean E.; Hambric, Stephen A.

    2010-09-01

    The response of a structure to turbulent boundary layer (TBL) excitation has been an area of research for roughly 50 years, although uncertainties persist surrounding the low-wavenumber levels of the TBL surface pressure spectrum. In this experimental investigation, a cylindrical shell with a smooth internal surface is subjected to TBL excitation from water in fully developed pipe flow. The cylinder's vibration response to this excitation is used to determine low-wavenumber TBL surface pressure levels at lower streamwise wavenumbers than previously reported ( k1/ k cJournal of Sound and Vibration 112(1) (1987) 125-147] and is roughly 23 dB lower than an early TBL model by Corcos [ Journal of the Acoustical Society of America 35(2) (1963) 192-198]. The current data is a few decibels below the lower bound of related measurements in air by Farabee and Geib [ ICIASF '75 Record, 1975, pp. 311-319] and Martin and Leehey [ Journal of Sound and Vibration 52(1) (1977) 95-120]. A simple wavenumber white form for the TBL surface pressure spectrum at low-wavenumber is suggested.

  17. The approximation function of bridge deck vibration derived from the measured eigenmodes

    Directory of Open Access Journals (Sweden)

    Sokol Milan

    2017-12-01

    Full Text Available This article deals with a method of how to acquire approximate displacement vibration functions. Input values are discrete, experimentally obtained mode shapes. A new improved approximation method based on the modal vibrations of the deck is derived using the least-squares method. An alternative approach to be employed in this paper is to approximate the displacement vibration function by a sum of sine functions whose periodicity is determined by spectral analysis adapted for non-uniformly sampled data and where the parameters of scale and phase are estimated as usual by the least-squares method. Moreover, this periodic component is supplemented by a cubic regression spline (fitted on its residuals that captures individual displacements between piers. The statistical evaluation of the stiffness parameter is performed using more vertical modes obtained from experimental results. The previous method (Sokol and Flesch, 2005, which was derived for near the pier areas, has been enhanced to the whole length of the bridge. The experimental data describing the mode shapes are not appropriate for direct use. Especially the higher derivatives calculated from these data are very sensitive to data precision.

  18. Time evolution of vibrational temperatures in a CO2 glow discharge measured with infrared absorption spectroscopy

    Science.gov (United States)

    Klarenaar, B. L. M.; Engeln, R.; van den Bekerom, D. C. M.; van de Sanden, M. C. M.; Morillo-Candas, A. S.; Guaitella, O.

    2017-11-01

    Vibrational temperatures of CO2 are studied in a pulsed glow discharge by means of time-resolved in situ Fourier transform infrared spectroscopy, with a 10 μs temporal resolution. A method to analyze the infrared transmittance through vibrationally excited CO2 is presented and validated on a previously published CO2 spectrum, showing good agreement between fit and data. The discharge under study is pulsed with a typical duty cycle of 5–10 ms on–off, at 50 mA and 6.7 mbar. A rapid increase of the temperature of the asymmetric stretch vibration (T 3) is observed at the start of the pulse, reaching 1050 K, which is an elevation of 550 K above the rotational temperature ({T}{{rot}}) of 500 K. After the plasma pulse, the characteristic relaxation time of T 3 to {T}{{rot}} strongly depends on the rotational temperature. By adjusting the duty cycle, the rotational temperature directly after the discharge is varied from 530 to 860 K, resulting in relaxation times between 0.4 and 0.1 ms. Equivalently, as the gas heats up during the plasma pulse, the elevation of T 3 above {T}{{rot}} decreases strongly.

  19. The Shock and Vibration Bulletin: Proceedings on the Symposium on ShocK and Vibration (52nd) Held in New Orleans, Louisiana on 26-28 October 1981. Part 3. Environmental Testing and Simulation, Flight Environments.

    Science.gov (United States)

    1982-05-01

    New York, NY ITIZ AND AUTHIORS OF PAPERS PRESENTED IN THE SHORT DISCUSSION TOPICS SESSION NOTE: lb... pepere were only pneemnteo at the Symposium...system then is to create the Gunfire vibration testing is typically per- desired line spectrum, fourier transform it formed on black boxes which do not

  20. What grades and achievement tests measure.

    Science.gov (United States)

    Borghans, Lex; Golsteyn, Bart H H; Heckman, James J; Humphries, John Eric

    2016-11-22

    Intelligence quotient (IQ), grades, and scores on achievement tests are widely used as measures of cognition, but the correlations among them are far from perfect. This paper uses a variety of datasets to show that personality and IQ predict grades and scores on achievement tests. Personality is relatively more important in predicting grades than scores on achievement tests. IQ is relatively more important in predicting scores on achievement tests. Personality is generally more predictive than IQ on a variety of important life outcomes. Both grades and achievement tests are substantially better predictors of important life outcomes than IQ. The reason is that both capture personality traits that have independent predictive power beyond that of IQ.

  1. Testing for Distortions in Performance Measures

    DEFF Research Database (Denmark)

    Sloof, Randolph; Van Praag, Mirjam

    2015-01-01

    Distorted performance measures in compensation contracts elicit suboptimal behavioral responses that may even prove to be dysfunctional (gaming). This paper applies the empirical test developed by Courty and Marschke (Review of Economics and Statistics, 90, 428-441) to detect whether the widely...... used class of residual income-based performance measures-such as economic value added (EVA)-is distorted, leading to unintended agent behavior. The paper uses a difference-in-differences approach to account for changes in economic circumstances and the self-selection of firms using EVA. Our findings...... indicate that EVA is a distorted performance measure that elicits the gaming response....

  2. Testing for Distortions in Performance Measures

    DEFF Research Database (Denmark)

    Sloof, Randolph; Van Praag, Mirjam

    Distorted performance measures in compensation contracts elicit suboptimal behavioral responses that may even prove to be dysfunctional (gaming). This paper applies the empirical test developed by Courty and Marschke (2008) to detect whether the widely used class of Residual Income based...... performance measures —such as Economic Value Added (EVA)— is distorted, leading to unintended agent behavior. The paper uses a difference-in-differences approach to account for changes in economic circumstances and the self-selection of firms using EVA. Our findings indicate that EVA is a distorted...... performance measure that elicits the gaming response....

  3. A low cycle fatigue test device for micro-cantilevers based on self-excited vibration principle.

    Science.gov (United States)

    Qi, Mingjing; Liu, Zhiwei; Yan, Xiaojun

    2014-10-01

    This paper reports a low-cycle fatigue test device for micro-cantilevers, which are widely used in micro scale structures. The working principle of the device is based on the phenomenon that a micro-cantilever can be set into self-excited vibration between two electrodes under DC voltage. Compared with previous devices, this simple device can produce large strain amplitude on non-notched specimens, and allows a batch of specimens to be tested simultaneously. Forty-two micro-cantilever specimens were tested and their fatigue fracture surfaces exhibit typical low cycle fatigue characteristics. As such, the device is very attractive for future fatigue investigation for micro scale structures.

  4. Accurate test limits under nonnormal measurement error

    NARCIS (Netherlands)

    Albers, Willem/Wim; Kallenberg, W.C.M.; Otten, G.D.

    1998-01-01

    When screening a production process for nonconforming items the objective is to improve the average outgoing quality level. Due to measurement errors specification limits cannot be checked directly and hence test limits are required, which meet some given requirement, here given by a prescribed

  5. Work zone performance measures pilot test.

    Science.gov (United States)

    2011-04-01

    Currently, a well-defined and validated set of metrics to use in monitoring work zone performance do not : exist. This pilot test was conducted to assist state DOTs in identifying what work zone performance : measures can and should be targeted, what...

  6. Viscoelastic material properties’ identification using high speed full field measurements on vibrating plates

    Directory of Open Access Journals (Sweden)

    Pierron F.

    2010-06-01

    Full Text Available The paper presents an experimental application of a method leading to the identification of the elastic and damping material properties of isotropic vibrating plates. The theory assumes that the searched parameters can be extracted from curvature and deflection fields measured on the whole surface of the plate at two particular instants of the vibrating motion. The experimental application consists in an original excitation fixture, a particular adaptation of an optical full-field measurement technique, a data preprocessing giving the curvature and deflection fields and finally in the identification process using the Virtual Fields Method (VFM. The principle of the deflectometry technique used for the measurements is presented. First results of identification on an acrylic plate are presented and compared to reference values. Details about a new experimental arrangement, currently in progress, is presented. It uses a high speed digital camera to over sample the full-field measurements.

  7. Measurement on Tinetti test: instrumentation and procedures.

    Science.gov (United States)

    Lombardi, R; Buizza, A; Gandolfi, R; Vignarelli, C; Guaita, A; Panella, L

    2001-01-01

    A measurement system and associate signal processing procedures for quantifying subject's performance during the performance-oriented assessment of balance as defined in Tinetti test (TT) is described. It is based on two inclinometers measuring trunk inclination in two orthogonal planes. Signals from the transducers are acquired by a PC through A/DC board. Signal processing consists in computing morphological parameters describing the main features of subject movement during the different TT maneuvers. The system is simple, cheap, user friendly, causes no discomfort to the patient and can easily be modified to comply with either new requirements or the needs of other performance tests dealing with trunk movement. Preliminary results of measurements on both normals and patients suggest the viability of this approach and the possibility of discriminating normal from abnormal performance, based on the values of the morphological parameters.

  8. Gearbox vibration diagnostic analyzer

    Science.gov (United States)

    1992-01-01

    This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.

  9. Modeling and Experimental Tests of a Mechatronic Device to Measure Road Profiles Considering Impact Dynamics

    DEFF Research Database (Denmark)

    Souza, A.; Santos, Ilmar

    2002-01-01

    Vehicles travel at different speeds and, as a consequence, experience a broad spectrum of vibrations. One of the most important source of vehicle vibration is the road profile. Hence the knowledge of the characteristics of a road profile enables engineers to predict the dynamic behavior...... of a vehicle and to test its components in laboratory. In this framework a mechanism to measure road profiles is designed and presented. Such a mechanism is composed of two rolling wheels and two long beams attached to the vehicles by means of four Kardan joints. The wheels are kept in contact to the ground...... profile by means of gravitational and spring forces. Accelerometers are attached above the rolling wheels and the wheels follow the profiles of a rough ground. After integrating the acceleration signal twice and measuring the vehicle displacement the road profiles can be achieved. It is important...

  10. Data Management Techniques for Blade Vibration Analysis

    Directory of Open Access Journals (Sweden)

    Przysowa Radosław

    2016-07-01

    Full Text Available Well-designed procedures are required to handle large amounts of data, generated by complex measurement systems used in engine tests. The paper presents selected methodologies and software tools for characterisation and monitoring of blade vibration. Common file formats and data structures as well as methods to process and visualise tip-timing data are discussed. Report Generation Framework (RGF developed in Python is demonstrated as a flexible tool for processing and publishing blade vibration results.

  11. Blind identification of full-field vibration modes of output-only structures from uniformly-sampled, possibly temporally-aliased (sub-Nyquist), video measurements

    Science.gov (United States)

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles; Mascareñas, David

    2017-03-01

    Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers have high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30-60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than

  12. Adaptations of mouse skeletal muscle to low intensity vibration training

    Science.gov (United States)

    McKeehen, James N.; Novotny, Susan A.; Baltgalvis, Kristen A.; Call, Jarrod A.; Nuckley, David J.; Lowe, Dawn A.

    2013-01-01

    Purpose We tested the hypothesis that low intensity vibration training in mice improves contractile function of hindlimb skeletal muscles and promotes exercise-related cellular adaptations. Methods We subjected C57BL/6J mice to 6 wk, 5 d·wk−1, 15 min·d−1 of sham or low intensity vibration (45 Hz, 1.0 g) while housed in traditional cages (Sham-Active, n=8; Vibrated-Active, n=10) or in small cages to restrict physical activity (Sham-Restricted, n=8; Vibrated-Restricted, n=8). Contractile function and resistance to fatigue were tested in vivo (anterior and posterior crural muscles) and ex vivo on the soleus muscle. Tibialis anterior and soleus muscles were evaluated histologically for alterations in oxidative metabolism, capillarity, and fiber types. Epididymal fat pad and hindlimb muscle masses were measured. Two-way ANOVAs were used to determine effects of vibration and physical inactivity. Results Vibration training resulted in a 10% increase in maximal isometric torque (P=0.038) and 16% faster maximal rate of relaxation (P=0.030) of the anterior crural muscles. Posterior crural muscles were unaffected by vibration, with the exception of greater rates of contraction in Vibrated-Restricted mice compared to Vibrated-Active and Sham-Restricted mice (P=0.022). Soleus muscle maximal isometric tetanic force tended to be greater (P=0.057) and maximal relaxation was 20% faster (P=0.005) in Vibrated compared to Sham mice. Restriction of physical activity induced muscle weakness but was not required for vibration to be effective in improving strength or relaxation. Vibration training did not impact muscle fatigability or any indicator of cellular adaptation investigated (P≥0.431). Fat pad but not hindlimb muscle masses were affected by vibration training. Conclusion Vibration training in mice improved muscle contractility, specifically strength and relaxation rates, with no indication of adverse effects to muscle function or cellular adaptations. PMID:23274599

  13. Simultaneous Measurements of the Vehicle, Track, and Soil Vibrations at a Surface, Bridge, and Tunnel Railway Line

    Directory of Open Access Journals (Sweden)

    Lutz Auersch

    2017-01-01

    Full Text Available A complex measuring campaign has been performed including the simultaneous measurement of vehicle, track, and soil vibrations during train runs at 16, 25, 40, 63, 80, 100, 125, 140, and 160 km/h and impulse measurements of the passenger car, three track sections, and the soil. A ballast track on the soil surface and on a concrete bridge has been investigated as well as a slab track in a tunnel. The evaluation and comparison of all these data show a generally good agreement for all components if the strong low- and high-frequency cut-off characteristics of the layered and damped soil are incorporated. There is a strong causal correlation between the vehicle and the soil by the dynamic excitation forces and a weak relation between the track and the soil by the axle-sequence spectrum of the train. However, the similarity between the axle-impulse spectrum observed at the track and the spectra of the ground vibration leads to the special excitation component of “scattered axle impulses” which is predominant at the far field points of the soil.

  14. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen

    2012-01-01

      lab   studies   in   that   we   found   a   decreased   detection   rate   in   busy   environments.   Here   we   test   with   a   much   larger   sample   and   age   range,   and   contribute   with   the   first   vibration  sensitivity  testing  outside  the  lab  in  an  urban   public...

  15. Note: A kinematic shaker system for high amplitude, low frequency vibration testing.

    Science.gov (United States)

    Swaminathan, Anand; Poese, Matthew E; Smith, Robert W M; Garrett, Steven L

    2015-11-01

    This note describes a shaker system capable of high peak-velocity, large amplitude, low frequency, near-sinusoidal excitation that has been constructed and employed in experiments on the inhibition of Rayleigh-Bénard convection using acceleration modulation. The production of high peak-velocity vibration is of interest in parametric excitation problems of this type and reaches beyond the capabilities of standard electromagnetic shakers. The shaker system described employs a kinematic linkage to two counter-rotating flywheels, driven by a variable-speed electrical motor, producing peak-to-peak displacements of 15.24 cm to a platform mounted on two guide rails. In operation, this shaker has been demonstrated to produce peak speeds of up to 3.7 m/s without failure.

  16. High-voltage test and measuring techniques

    CERN Document Server

    Hauschild, Wolfgang

    2014-01-01

    It is the intent of this book to combine high-voltage (HV) engineering with HV testing technique and HV measuring technique. Based on long-term experience gained by the authors as lecturer and researcher as well as member in international organizations, such as IEC and CIGRE, the book will reflect the state of the art as well as the future trends in testing and diagnostics of HV equipment to ensure a reliable generation, transmission and distribution of electrical energy. The book is intended not only for experts but also for students in electrical engineering and high-voltage engineering.

  17. 3D synthetic aperture PIV measurements from artificial vibrating vocal folds

    CERN Document Server

    Daily, Jesse; Belden, Jesse; Thomson, Scott; Truscott, Tadd

    2011-01-01

    During speech, air from the lungs is forced past the vocal folds which vibrate, producing sound. A pulsatile jet of air is formed downstream of the vibrating folds which interacts with the various structures in the airway. Currently, it is postulated that the way this jet interacts with the downstream structures in the airway directly affects the quality of human speech. In order to better understand this jet, it is desirable to visualize the jet in three dimensions. We present the results of a method that reconstructs the three dimensional velocity field using Synthetic aperture PIV (SAPIV) \\cite{Belden:2010}. SAPIV uses an array of high-speed cameras to artificially create a single camera with a variable focal length. This is accomplished by overlapping the images from the array to create a "focal stack". As the images are increasingly overlapped, more distant image planes come into focus. 3D PIV is then performed on the "refocused" focal stack to reconstruct the flow field in three dimensions. SAPIV has th...

  18. Educational Testing as an Accountability Measure

    DEFF Research Database (Denmark)

    Ydesen, Christian

    2013-01-01

    This article reveals perspectives based on experiences from twentieth-century Danish educational history by outlining contemporary, test-based accountability regime characteristics and their implications for education policy. The article introduces one such characteristic, followed by an empirical...... analysis of the origins and impacts of test-based accountability measures applying both top-down and bottom-up perspectives. These historical perspectives offer the opportunity to gain a fuller understanding of this contemporary accountability concept and its potential, appeal, and implications...... for continued use in contemporary educational settings. Accountability measures and practices serve as a way to govern schools; by analysing the history of accountability as the concept has been practised in the education sphere, the article will discuss both pros and cons of such a methodology, particularly...

  19. Test Beam Measurements on Picosec Gaseous Detector.

    CERN Document Server

    Sohl, Lukas

    2017-01-01

    In the Picosec project micro pattern gaseous detectors with a time resolution of some ten picoseconds are developed. The detectors are based on Micromegas detectors. With a cherenkov window and a photocathode the time jitter from different position of the primary ionization clusters can be substituted. This reports describes the beam setup and measurements of different Picosec prototypes. A time resolution of under 30 ps has been measured during the test beam. This report gives an overview of my work as a Summer Student. I set up and operated a triple-GEM tracker and a trigger system for the beam. During the beam I measured different prototypes of Picosec detectors and analysed the data.

  20. Blind identification of full-field vibration modes from video measurements with phase-based video motion magnification

    Science.gov (United States)

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Kenyon, Garrett; Farrar, Charles; Mascareñas, David

    2017-02-01

    Experimental or operational modal analysis traditionally requires physically-attached wired or wireless sensors for vibration measurement of structures. This instrumentation can result in mass-loading on lightweight structures, and is costly and time-consuming to install and maintain on large civil structures, especially for long-term applications (e.g., structural health monitoring) that require significant maintenance for cabling (wired sensors) or periodic replacement of the energy supply (wireless sensors). Moreover, these sensors are typically placed at a limited number of discrete locations, providing low spatial sensing resolution that is hardly sufficient for modal-based damage localization, or model correlation and updating for larger-scale structures. Non-contact measurement methods such as scanning laser vibrometers provide high-resolution sensing capacity without the mass-loading effect; however, they make sequential measurements that require considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation, optical flow), video camera based measurements have been successfully used for vibration measurements and subsequent modal analysis, based on techniques such as the digital image correlation (DIC) and the point-tracking. However, they typically require speckle pattern or high-contrast markers to be placed on the surface of structures, which poses challenges when the measurement area is large or inaccessible. This work explores advanced computer vision and video processing algorithms to develop a novel video measurement and vision-based operational (output-only) modal analysis method that alleviate the need of structural surface preparation associated with existing vision-based methods and can be implemented in a relatively efficient and autonomous manner with little

  1. Nevada Test Site seismic: telemetry measurements

    Energy Technology Data Exchange (ETDEWEB)

    Albright, J N; Parker, L E; Horton, E H

    1983-08-01

    The feasibility and limitations of surface-to-tunnel seismic telemetry at the Nevada Test Site were explored through field measurements using current technology. Range functions for signaling were determined through analysis of monofrequency seismic signals injected into the earth at various sites as far as 70 km (43 mi) from installations of seismometers in the G-Tunnel complex of Rainier Mesa. Transmitted signal power at 16, 24, and 32 Hz was measured at two locations in G-Tunnel separated by 670 m (2200 ft). Transmissions from 58 surface sites distributed primarily along three azimuths from G-Tunnel were studied. The G-Tunnel noise environment was monitored over the 20-day duration of the field tests. Noise-power probability functions were calculated for 20-s and 280-s seismic-record populations. Signaling rates were calculated for signals transmitted from superior transmitter sites to G-Tunnel. A detection threshold of 13 dB re 1 nm/sup 2/ displacement power at 95% reliability was demanded. Consideration of field results suggests that even for the frequency range used in this study, substantially higher signaling rates are likely to be obtained in future work in view of the present lack of information relevant to hardware-siting criteria and the seismic propagation paths at the Nevada Test Site. 12 references.

  2. Low-wavenumber turbulent boundary layer wall-pressure measurements from vibration data over smooth and rough surfaces in pipe flow

    Science.gov (United States)

    Evans, Neal D.; Capone, Dean E.; Bonness, William K.

    2013-07-01

    The vibration response of a thin cylindrical shell excited by fully developed turbulent pipe flow is measured and used to extract the fluctuating pressure levels generated by the boundary layer. Parameters used to extract the turbulent fluctuating pressure levels are determined via experimental modal analyses of the water-filled pipe and measured vibration levels from flow through the pipe at 5.8 m/s. Measurements are reported for hydraulically smooth and fully rough surface conditions. Smooth wall-pressure levels are compared to the turbulent boundary layer pressure model of Chase [The character of the turbulent wall pressure at subconvective wavenumbers and a suggested comprehensive model. Journal of Sound and Vibration112 (1) (1987) 125-147] and the measurements of Bonness et al. [Low-wavenumber turbulent boundary layer wall-pressure measurements from vibration data on a cylinder in pipe flow. Journal of Sound and Vibration329 (2010) 4166-4180]. Results for the smooth pipe match the predicted smooth wall-pressure spectrum and correspond to a normalized low wavenumber-white level which is -41 dB below the maximum level at the convective peak. Pressure levels from the fully rough condition display a low-wavenumber-white level which is 28 dB below the convective peak level. This suggests an increase of 13 dB in low-wavenumber wall pressure for the uniformly distributed roughness elements in this study over a hydraulically smooth surface.

  3. A New Design of the Test Rig to Measure the Transmission Error of Automobile Gearbox

    Science.gov (United States)

    Hou, Yixuan; Zhou, Xiaoqin; He, Xiuzhi; Liu, Zufei; Liu, Qiang

    2017-12-01

    Noise and vibration affect the performance of automobile gearbox. And transmission error has been regarded as an important excitation source in gear system. Most of current research is focused on the measurement and analysis of single gear drive, and few investigations on the transmission error measurement in complete gearbox were conducted. In order to measure transmission error in a complete automobile gearbox, a kind of electrically closed test rig is developed. Based on the principle of modular design, the test rig can be used to test different types of gearbox by adding necessary modules. The test rig for front engine, rear-wheel-drive gearbox is constructed. And static and modal analysis methods are taken to verify the performance of a key component.

  4. Temperature buffer test design, instrumentation and measurements

    Science.gov (United States)

    Sandén, Torbjörn; Goudarzi, Reza; de Combarieu, Michel; Åkesson, Mattias; Hökmark, Harald

    The Temperature Buffer Test, TBT, is a heated full-scale field experiment carried out jointly by ANDRA and SKB at the SKB Äspö Hard Rock Laboratory in Southeast Sweden. An existing 8 m deep, 1.8 m diameter KBS-3-type deposition hole located at -420 m level has been selected for the test. The objectives are to improve the general understanding of Thermo-Hydro-Mechanical, THM, behavior of buffer materials submitted to severe thermal conditions with temperatures well over 100 °C during water uptake of partly saturated bentonite-based buffer materials, and to check, in due time, their properties after water saturation. The test includes two carbon steel heating canisters each 3 m high and 0.6 m diameter, surrounded by 0.6 m of buffer material. There is a 0.2 m thick sand shield between the upper heater and the surrounding bentonite, while the lower heater is surrounded by bentonite only. On top of the stack of bentonite blocks is a confining plug anchored to the rock. In the slot between buffer and rock wall is a sand filter equipped with pipes to control the water pressure at the boundary, which is seldom done with an EBS in situ experiment. Both heater mid-height planes are densely instrumented in order to follow, with direct or indirect methods, buffer THM evolution. Temperature, relative humidity, stress and pore pressure have been monitored since the test start in March 2003. Total water inflow is also monitored. Firstly, the present paper describes the test design, the instrumentation, the plug anchoring system and the system for water boundary pressure control. Second, having described the test, the paper shows different measurements that illustrate evolution of temperature, saturation, suction and swelling pressure in the upper and the lower buffer.

  5. Vibrationally Excited c-C_3H_2 Re-Visited New Laboratory Measurements and Theoretical Calculations

    Science.gov (United States)

    Gupta, Harshal; Westerfield, J. H.; Baraban, Joshua H.; Changala, Bryan; Thorwirth, Sven; Stanton, John F.; Martin-Drumel, Marie-Aline; Pirali, Olivier; Gottlieb, Carl A.; McCarthy, Michael C.

    2017-06-01

    Cyclopropenylidene, c-C_3H_2, is one of the more abundant organic molecules in the interstellar medium, as evidenced from astronomical detection of its single ^{13}C and both its singly- and doubly-deuterated isotopic species. For this reason, vibrational satellites are of considerable astronomical interest, and were the primary motivation for the earlier laboratory work by Mollaaghababa and co-workers [1]. The recent detection of intense unidentified lines near 18 GHz in a hydrocarbon discharge by FT microwave spectroscopy has spurred a renewed search for the vibrational satellite transitions of c-C_3H_2. Several strong lines have been definitively assigned to the v_6 progression on the basis of follow-up measurements at 3 mm, double resonance and millimeter-wave absorption spectroscopy, and new theoretical calculations using a rovibrational VMP2 method [2] and a high-quality ab initio potential energy surface. The treatment was applied to several excited states as well as the ground state, and included deperturbation of Coriolis interactions. [1] R. Mollaaghababa, C.A. Gottlieb, J. M. Vrtilek, and P. Thaddeus, J. Chem. Phys., 99, 890-896 (1992). [2] P. B. Changala and J. H. Baraban. J. Chem. Phys., 145, 174106 (2016).

  6. Integrated Vehicle Ground Vibration Testing in Support of Launch Vehicle Loads and Controls Analysis

    Science.gov (United States)

    Tuma, Margaret L.; Chenevert, Donald J.

    2009-01-01

    NASA has conducted dynamic tests on each major launch vehicle during the past 45 years. Each test provided invaluable data to correlate and correct analytical models. GVTs result in hardware changes to Saturn and Space Shuttle, ensuring crew and vehicle safety. Ares I IVGT will provide test data such as natural frequencies, mode shapes, and damping to support successful Ares I flights. Testing will support controls analysis by providing data to reduce model uncertainty. Value of testing proven by past launch vehicle successes and failures. Performing dynamic testing on Ares vehicles will provide confidence that the launch vehicles will be safe and successful in their missions.

  7. Stochastic Modeling of Structural Uncertainty/Variability from Ground Vibration Modal Test Data (Postprint)

    Science.gov (United States)

    2012-07-01

    inclusion of a nonlinear bend–twist couple without permanent deformation of the test article. For modal testing, a Polytec PSV -400-3D scanning laser...scanned using the Polytec PSV -400-3D scanning LDV. The joined-wing test article was excited with an autoping hammer with a force sensor mounted to the

  8. A critical review of the neurophysiological evidence underlying clinical vestibular testing using sound, vibration and galvanic stimuli.

    Science.gov (United States)

    Curthoys, Ian S

    2010-02-01

    In addition to activating cochlear receptors, air conducted sound (ACS) and bone conducted vibration (BCV) activate vestibular otolithic receptors, as shown by neurophysiological evidence from animal studies--evidence which is the foundation for using ACS and BCV for clinical vestibular testing by means of vestibular-evoked myogenic potentials (VEMPs). Recent research is elaborating the specificity of ACS and BCV on vestibular receptors. The evidence that saccular afferents can be activated by ACS has been mistakenly interpreted as showing that ACS only activates saccular afferents. That is not correct - ACS activates both saccular and utricular afferents, just as BCV activates both saccular and utricular afferents, although the patterns of activation for ACS and BCV do not appear to be identical. The otolithic input to sternocleidomastoid muscle appears to originate predominantly from the saccular macula. The otolithic input to the inferior oblique appears to originate predominantly from the utricular macula. Galvanic stimulation by surface electrodes on the mastoids very generally activates afferents from all vestibular sense organs. This review summarizes the physiological results, the potential artifacts and errors of logic in this area, reconciles apparent disagreements in this field. The neurophysiological results on BCV have led to a new clinical test of utricular function - the n10 of the oVEMP. The cVEMP tests saccular function while the oVEMP tests utricular function. Copyright (c) 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Two dimensional vibrations of the guinea pig apex organ of Corti measured in vivo using phase sensitive Fourier domain optical coherence tomography

    Science.gov (United States)

    Ramamoorthy, Sripriya; Zhang, Yuan; Petrie, Tracy; Fridberger, Anders; Ren, Tianying; Wang, Ruikang; Jacques, Steven L.; Nuttall, Alfred L.

    2015-02-01

    In this study, we measure the in vivo apical-turn vibrations of the guinea pig organ of Corti in both axial and radial directions using phase-sensitive Fourier domain optical coherence tomography. The apical turn in guinea pig cochlea has best frequencies around 100 - 500 Hz which are relevant for human speech. Prior measurements of vibrations in the guinea pig apex involved opening the otic capsule, which has been questioned on the basis of the resulting changes to cochlear hydrodynamics. Here this limitation is overcome by measuring the vibrations through bone without opening the otic capsule. Furthermore, we have significantly reduced the surgery needed to access the guinea pig apex in the axial direction by introducing a miniature mirror inside the bulla. The method and preliminary data are discussed in this article.

  10. Deck and Cable Dynamic Testing of a Single-span Bridge Using Radar Interferometry and Videometry Measurements

    Science.gov (United States)

    Piniotis, George; Gikas, Vassilis; Mpimis, Thanassis; Perakis, Harris

    2016-03-01

    This paper presents the dynamic testing of a roadway, single-span, cable-stayed bridge for a sequence of static load and ambient vibration monitoring scenarios. Deck movements were captured along both sideways of the bridge using a Digital Image Correlation (DIC) and a Ground-based Microwave Interfererometer (GBMI) system. Cable vibrations were measured at a single point location on each of the six cables using the GBMI technique. Dynamic testing involves three types of analyses; firstly, vibration analysis and modal parameter estimation (i. e., natural frequencies and modal shapes) of the deck using the combined DIC and GBMI measurements. Secondly, dynamic testing of the cables is performed through vibration analysis and experimental computation of their tension forces. Thirdly, the mechanism of cable-deck dynamic interaction is studied through their Power Spectra Density (PSD) and the Short Time Fourier Transform (STFT) analyses. Thereby, the global (deck and cable) and local (either deck or cable) bridge modes are identified, serving a concrete benchmark of the current state of the bridge for studying the evolution of its structural performance in the future. The level of synergy and complementarity between the GBMI and DIC techniques for bridge monitoring is also examined and assessed.

  11. Researches Concerning to Minimize Vibrations when Processing Normal Lathe

    Directory of Open Access Journals (Sweden)

    Lenuța Cîndea

    2015-09-01

    Full Text Available In the cutting process, vibration is inevitable appearance, and in situations where the amplitude exceeds the limits of precision dimensional and shape of the surfaces generated vibrator phenomenon is detrimental.Field vibration is an issue of increasingly developed, so the futures will a better understanding of them and their use even in other sectors.The paper developed experimental measurement of vibrations at the lathe machining normal. The scheme described kinematical machine tool, cutting tool, cutting conditions, presenting experimental facility for measuring vibration occurring at turning. Experimental results have followed measurement of amplitude, which occurs during interior turning the knife without silencer incorporated. The tests were performed continuously for different speed, feed and depth of cut.

  12. Diagnostic tests in Raynaud's phenomena in workers exposed to vibration: a comparative study

    DEFF Research Database (Denmark)

    Olsen, N

    1988-01-01

    C, was regarded as an abnormal response, FSP(A) test. A hand cooling, preceded by 30 minute body precooling, was performed in water at 10 degrees C during five minute ischaemia. The finger colours after hand cooling were evaluated by a directly visual inspection, FCV test, and by a blind assessment...

  13. Bending stiffness evaluation of Teca and Guajará lumber through tests of transverse and longitudinal vibration - doi: 10.4025/actascitechnol.v34i1.10728

    Directory of Open Access Journals (Sweden)

    Marcelo Rodrigo Carreira

    2011-11-01

    Full Text Available The grading of structural lumber besides contributing for increasing the structure's safety, due to the reduction of the material variability, also allows its rational use. Due to the good correlation between strength and bending stiffness, the latter has been used in estimating the mechanical strength of lumber pieces since the 60’s. For industrial application, there are equipment and techniques to evaluate the bending stiffness of lumber, through dynamic tests such as the longitudinal vibration technique, also known as stress wave, and the transverse vibration technique. This study investigated the application of these two techniques in the assessment of the modulus of elasticity in bending of Teca beams (Tectona grandis, from reforestation, and of the tropical species Guajará (Micropholis venulosa. The modulus of elasticity estimated by dynamic tests showed good correlation with the modulus measured in the static bending test. Meantime, we observed that the accuracy of the longitudinal vibration technique was significantly reduced in the evaluation of the bending stiffness of Teca pieces due to the knots existing in this species.

  14. Experimental Analysis of Mast Lifting and Bending Forces on Vibration Patterns Before and After Pinion Reinstallation in an OH-58 Transmission Test Rig

    Science.gov (United States)

    Huff, Edward M.; Lewicki, David G.; Tumer, Irem Y.; Decker, Harry; Barszez, Eric; Zakrajsek, James J.; Norvig, Peter (Technical Monitor)

    2000-01-01

    As part of a collaborative research program between NASA Ames Research Center (ARC), NASA Glenn Research Center (GRC), and the US Army Laboratory, a series of experiments is being performed in GRC's 500 HP OH-58 Transmission Test Rig facility and ARC's AH-I Cobra and OH-58c helicopters. The findings reported in this paper were drawn from Phase-I of a two-phase test-rig experiment, and are focused on the vibration response of an undamaged pinion gear operating in the transmission test rig. To simulate actual flight conditions, the transmission system was run at three torque levels, as well as two mast lifting and two mast bending levels. The test rig was also subjected to disassembly and reassembly of the main pinion housing to simulate the effect of maintenance operations. An analysis of variance based on the total power of the spectral distribution indicates the relative effect of each experimental factor, including Wong interactions with torque. Reinstallation of the main pinion assembly is shown to introduce changes in the vibration signature, suggesting the possibility of a strong effect of maintenance on HUMS design and use. Based on these results, further research will be conducted to compare these vibration responses with actual OH58c helicopter transmission vibration patterns.

  15. Effectiveness of an Occupational Health Intervention Program to Reduce Whole Body Vibration Exposure: An Evaluation Study With a Controlled Pretest-Post-test Design

    NARCIS (Netherlands)

    Tiemessen, Ivo J. H.; Hulshof, Carel T. J.; Frings-Dresen, Monique H. W.

    2009-01-01

    Background An effective intervention program aiming to reduce whole body vibration (WBV) exposure at work will reduce the number of low back complaints in the near future. Methods An evaluation study with a controlled pretest-post-test design. Nine companies and 126 drivers were included in the

  16. SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation

    Science.gov (United States)

    Lewandowski, Edward J.; Suarez, Vicente J.; Goodnight, Thomas W.; Callahan, John

    2007-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical radioisotope power system (RPS) launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources were designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.

  17. Vibration-reducing gloves: transmissibility at the palm of the hand in three orthogonal directions

    Science.gov (United States)

    McDowell, Thomas W.; Dong, Ren G.; Welcome, Daniel E.; Xu, Xueyan S.; Warren, Christopher

    2015-01-01

    Vibration-reducing (VR) gloves are commonly used as a means to help control exposures to hand-transmitted vibrations generated by powered hand tools. The objective of this study was to characterise the vibration transmissibility spectra and frequency-weighted vibration transmissibility of VR gloves at the palm of the hand in three orthogonal directions. Seven adult males participated in the evaluation of seven glove models using a three-dimensional hand–arm vibration test system. Three levels of hand coupling force were applied in the experiment. This study found that, in general, VR gloves are most effective at reducing vibrations transmitted to the palm along the forearm direction. Gloves that are found to be superior at reducing vibrations in the forearm direction may not be more effective in the other directions when compared with other VR gloves. This casts doubts on the validity of the standardised glove screening test. Practitioner Summary This study used human subjects to measure three-dimensional vibration transmissibility of vibration-reducing gloves at the palm and identified their vibration attenuation characteristics. This study found the gloves to be most effective at reducing vibrations along the forearm direction. These gloves did not effectively attenuate vibration along the handle axial direction. PMID:24160755

  18. Shielding effectiveness measurements of materials and enclosures using a dual vibrating intrinsic reverberation chamber

    NARCIS (Netherlands)

    Schipper, Han; Leferink, Frank Bernardus Johannes

    2015-01-01

    Reverberation chambers create a statistical uniformly distributed field which is very useful for shielding effectiveness measurements. Two adjacent reverberation chambers made of flexible cloth have been developed and are used for shielding effectiveness measurements. The field stirring is achieved

  19. Investigations into the Uncertainties of Interferometric Measurements of Linear and Circular Vibrations

    Directory of Open Access Journals (Sweden)

    Hans-Jürgen von Martens

    1997-01-01

    Full Text Available A uniform description is given of a method of measurement using a Michelson interferometer for measuring the linear motion quantities acceleration, velocity and displacement, and a diffraction grating interferometer for measuring the circular motion quantities angular acceleration, angular velocity and rotation angle. The paper focusses on an analysis of the dynamic behaviour of an interferometric measurement system based on the counting technique with regard to the measurement errors due to deterministic and stochastic disturbing quantities. The error analysis and description presented are aimed at giving some rules, mathematical expressions and graphical presentations that have proved to be helpful in recognizing the errors in interferometric measurements of motion quantities, optimizing the measurement conditions (e.g., filter settings, obtaining corrections and estimating the uncertainty of measurement.

  20. An evaluation of iced bridge hanger vibrations through wind tunnel testing and quasi-steady theory

    DEFF Research Database (Denmark)

    Gjelstrup, Henrik; Georgakis, Christos T.; Larsen, A.

    2012-01-01

    for wind perpendicular to the cylinder at velocities below 30 m/s and for temperatures between -5C and -1C. Aerodynamic drag, lift and moment coefficients are obtained from the static tests, whilst mean and fluctuating responses are obtained from the dynamic tests. The influence of varying surface...... roughness is also examined. The static force coefficients are used to predict parameter regions where aerodynamic instability of the iced bridge hanger might be expected to occur, through use of an adapted theoretical 3- DOF quasi-steady galloping instability model, which accounts for sectional axial...

  1. Measurement Theory in Language Testing: Past Traditions and Current Trends

    Science.gov (United States)

    Salmani-Nodoushan, Mohammad Ali

    2009-01-01

    A good test is one that has at least three qualities: reliability, or the precision with which a test measures what it is supposed to measure; validity, i.e., if the test really measures what it is supposed to measure, and practicality, or if the test, no matter how sound theoretically, is practicable in reality. These are the sine qua non for any…

  2. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2004-08-31

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.

  3. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2004-10-13

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed. The month of June, 2004 was primarily occupied with the writing of the Phase I Final Report, the sole deliverable of Phase I, which will be submitted in the next quarter. Redesign of the laboratory prototype and design of the downhole (Phase II) prototype was

  4. Evaluating vibration performance of a subsea pump module by full-scale testing and numerical modelling

    NARCIS (Netherlands)

    Beek, P.J.G. van; Pereboom, H.P.; Slot, H.J.

    2016-01-01

    Prior to subsea installation, a subsea system has to be tested to verify whether it performs in accordance with specifications and component specific performance evaluation criteria. It is important to verify that the assembled components work in accordance with the assumptions and design criteria

  5. Standardized Testing: Measurement of Academic Achievement

    Science.gov (United States)

    Weaver, Keshia

    2011-01-01

    Standardized testing has been a very important issue in education today. Many schools use the testing score to determine whether a child should continue to the next grade level. As we review the methods teachers use to prepare students for these types of tests, the amount of instruction time utilized to cover test materials, and the level of…

  6. Validation of vibration testing for the assessment of the mechanical properties of human lumbar motion segments

    NARCIS (Netherlands)

    van Engelen, S.J.P.M.; Ellenbroek, Marcellinus Hermannus Maria; van Royen, B.J.; de Boer, Andries; van Dieën, J.H.

    2012-01-01

    Experimental modal analysis is a non-destructive measurement technique, which applies low forces and small deformations to assess the integrity of a structure. It is therefore a promising method to study the mechanical properties of the spine in vivo. Previously, modal parameters successfully

  7. Concorde noise-induced building vibrations: John F. Kennedy International Airport

    Science.gov (United States)

    Mayes, W. H.; Stephens, D. G.; Deloach, R.; Cawthorn, J. M.; Holmes, H. K.; Lewis, R. B.; Holliday, B. G.; Ward, D. W.; Miller, W. T.

    1978-01-01

    Outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded at eight homesites and a school along with the associated vibration levels in the walls, windows, and floors at these test sites. Limited subjective tests were conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise. Both vibration and rattle were detected subjectively in several houses for some operations of both the Concorde and subsonic aircraft. Seated subjects more readily detected floor vibrations than wall or window vibrations. Aircraft noise generally caused more window vibrations than common nonaircraft events such as walking and closing doors. Nonaircraft events and aircraft flyovers resulted in comparable wall vibration levels, while floor vibrations were generally greater for nonaircraft events than for aircraft flyovers. The relationship between structural vibration and aircraft noise is linear, with vibration levels being accurately predicted from overall sound pressure levels (OASPL) measured near the structure. Relatively high levels of structural vibration measured during Concorde operations are due more to higher OASPL levels than to unique Concorde-source characteristics.

  8. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  9. Application of a commercially-manufactured Doppler-shift laser velocimeter to the measurement of basilar-membrane vibration*

    Science.gov (United States)

    Ruggero, Mario A.; Rich, Nola C.

    2013-01-01

    A commercially-available laser Doppler-shift velocimeter has been coupled to a compound microscope equipped with ultra-long-working-distance objectives for the purpose of measuring basilar membrane vibrations in the chinchilla. The animal preparation is nearly identical to that used in our laboratory for similar measurements using the Mössbauer technique. The vibrometer head is mounted on the third tube of the microscope’s trinocular head and its laser beam is focused on high-refractive-index glass microbeads (10–30 µm) previously dropped, through the perilymph of Scala tympani, on the basilar membrane. For equal sampling times, overall sensitivity of the laser velocimetry system is at least one order of magnitude greater than usually attained using the Mössbauer technique. However, the most important advantage of laser velocimetry vis-à-vis the Mössbauer technique is its linearity, which permits undistorted recording of signals over a wide velocity range. Thus, for example, we have measured basilar-membrane responses to clicks whose waveforms have dynamic ranges exceeding 60 dB. PMID:1827787

  10. Vibration Testing Procedures for Bone Stiffness Assessment in Fractures Treated with External Fixation.

    Science.gov (United States)

    Mattei, Lorenza; Longo, Antonia; Di Puccio, Francesca; Ciulli, Enrico; Marchetti, Stefano

    2017-04-01

    A bone healing assessment is crucial for the successful treatment of fractures, particularly in terms of the timing of support devices. However, in clinical practice, this assessment is only made qualitatively through bone manipulation and X-rays, and hence cannot be repeated as often as might be required. The present study reconsiders the quantitative method of frequency response analysis for healing assessments, and specifically for fractures treated with an external fixator. The novelty consists in the fact that bone excitation and response are achieved through fixator pins, thus overcoming the problem of transmission through soft-tissues and their damping effect. The main objective was to develop and validate a test procedure in order to characterize the treated bone. More than 80 tests were performed on a tibia phantom alone, a phantom with pins, and a phantom with a complete fixator. Different excitation techniques and input-output combinations were compared. The results demonstrated the effectiveness of a procedure based on impact tests using a micro-hammer. Pins and fixator were demonstrated to influence the frequency response of the phantom by increasing the number of resonant frequencies. This procedure will be applied in future studies to monitor healing both in in vitro and in vivo conditions.

  11. Experimental Issues in Testing a Semiactive Technique to Control Earthquake Induced Vibration

    Directory of Open Access Journals (Sweden)

    Nicola Caterino

    2014-01-01

    Full Text Available This work focuses on the issues to deal with when approaching experimental testing of structures equipped with semiactive control (SA systems. It starts from practical experience authors gained in a recent wide campaign on a large scale steel frame structure provided with a control system based on magnetorheological dampers. The latter are special devices able to achieve a wide range of physical behaviours using low-power electrical currents. Experimental activities involving the use of controllable devices require special attention in solving specific aspects that characterize each of the three phases of the SA control loop: acquisition, processing, and command. Most of them are uncommon to any other type of structural testing. This paper emphasizes the importance of the experimental assessment of SA systems and shows how many problematic issues likely to happen in real applications are also present when testing these systems experimentally. This paper highlights several problematic aspects and illustrates how they can be addressed in order to achieve a more realistic evaluation of the effectiveness of SA control solutions. Undesired and unavoidable effects like delays and control malfunction are also remarked. A discussion on the way to reduce their incidence is also offered.

  12. Study on the Effect and Mechanism of Aerodynamic Measures for the Vortex-Induced Vibration of Separate Pairs of Box Girders in Cable-Stayed Bridges

    Directory of Open Access Journals (Sweden)

    Han Xin He

    2015-01-01

    Full Text Available Although not always resulting in catastrophic failures, vortex-induced vibration (VIV response can seriously impact the fatigue life and functionality of bridges, especially for separate pairs of box girders in cable-stayed bridges. This study investigates the effects of three aerodynamic measures: grating, inclined web plate, and the baffles on separated box girders in the cable-stayed bridges. The experimental result indicates that the grating of different opening ratios can control the vortex-induced vibration effectively, and the optimized grating opening ratio set in this paper is 40%. Increasing the angle of inclined web plate has a great control on mitigation of the vortex-induced vibration. However, there is an optimum angle where the amplitude of vortex-induced vibration is the smallest at low wind speed. The amplitude of vortex-induced vibration becomes larger with the increase of the web inclined angle that exceeds the optimum angle. Comparatively, the baffles installed on both sides of the inclined webs are more effective to restrain the vortex-induced resonance. The Computational Fluent Dynamics (CFD software is utilized to investigate the mechanism of the experimental results.

  13. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: AMSU-A2 METSAT Instrument (S/N 108) Acceptance Level Vibration Tests of Dec 1999/Jan 2000 (S/O 784077, OC-454)

    Science.gov (United States)

    Heffner, R.

    2000-01-01

    This is the Engineering Test Report, AMSU-A2 METSAT Instrument (S/N 108) Acceptance Level Vibration Test of Dec 1999/Jan 2000 (S/O 784077, OC-454), for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  14. Preparation and measurement of FBG-based length, temperature, and vibration sensors

    Science.gov (United States)

    Mikel, Bretislav; Helan, Radek; Buchta, Zdenek; Jelinek, Michal; Cip, Ondrej

    2016-12-01

    We present system of structure health measurement by optical fiber sensors based on fiber Bragg gratings. Our system is focused to additionally install to existing buildings. We prepared first set-up of the system to monitoring of the nuclear power plant containment shape deformation. The presented system can measure up to several tens of sensors simultaneously. Each sensor contains optical fiber grating to measurement of change of length and the other independed fiber grating to monitor the temperature and the other ineligible effects.

  15. Field Test Data for Detecting Vibrations of a Building Using High-Speed Video Cameras

    Science.gov (United States)

    2017-10-01

    5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US Army Research Laboratory ATTN: RDRL-SES-P 2800 Powder Mill Road...The team set up a low-frequency ServoDrive speaker inside of ARL’s Building 108 facility. In this experiment, the speaker generated tones at 19, 28...ground-truth data. The field test and the data collected are documented in this report. The team developed image processing algorithms to analyze the

  16. Blade Vibration Measurement System for Characterization of Closely Spaced Modes and Mistuning Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase I project successfully demonstrated that the advanced non-contacting stress measurement system (NSMS) was able to address closely spaced modes and...

  17. Most incompatible measurements for robust steering tests

    Science.gov (United States)

    Bavaresco, Jessica; Quintino, Marco Túlio; Guerini, Leonardo; Maciel, Thiago O.; Cavalcanti, Daniel; Cunha, Marcelo Terra

    2017-08-01

    We address the problem of characterizing the steerability of quantum states under restrictive measurement scenarios, i.e., the problem of determining whether a quantum state can demonstrate steering when subjected to N measurements of k outcomes. We consider the cases of either general positive operator-valued measures (POVMs) or specific kinds of measurements (e.g., projective or symmetric). We propose general methods to calculate lower and upper bounds for the white-noise robustness of a d -dimensional quantum state under different measurement scenarios that are also applicable to the study of the noise robustness of the incompatibility of sets of unknown qudit measurements. We show that some mutually unbiased bases, symmetric informationally complete measurements, and other symmetric choices of measurements are not optimal for steering the isotropic states and provide candidates for the most incompatible sets of measurements in each case. Finally, we provide numerical evidence that nonprojective POVMs do not improve over projective ones for this task.

  18. Pressure Change Measurement Leak Testing Errors

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, Jeff M [ORNL; Walker, William C [ORNL

    2014-01-01

    A pressure change test is a common leak testing method used in construction and Non-Destructive Examination (NDE). The test is known as being a fast, simple, and easy to apply evaluation method. While this method may be fairly quick to conduct and require simple instrumentation, the engineering behind this type of test is more complex than is apparent on the surface. This paper intends to discuss some of the more common errors made during the application of a pressure change test and give the test engineer insight into how to correctly compensate for these factors. The principals discussed here apply to ideal gases such as air or other monoatomic or diatomic gasses; however these same principals can be applied to polyatomic gasses or liquid flow rate with altered formula specific to those types of tests using the same methodology.

  19. Analysis and testing of an inner bypass magnetorheological damper for shock and vibration mitigation

    Science.gov (United States)

    Bai, Xian-Xu; Hu, Wei; Wereley, Norman M.

    2013-04-01

    Aiming at fundamentally improving the performance of MR dampers, including maximizing dynamic range (i.e., ratio of field-on to field-off damping force) while simultaneously minimizing field-off damping force, this study presents the principle of an inner bypass magnetorheological damper (IBMRD). The IBMRD is composed of a pair of twin tubes, i.e., the inner tube and outer concentric tube, a movable piston-shaft arrangement, and an annular MR fluid flow gap sandwiched between the concentric tubes. In the IBMRD, the inner tube serves simultaneously as the guide for the movable piston and the bobbin for the electromagnetic coil windings, and five active rings on the inner tube, annular MR fluid flow gap, and outer tube forms five closed magnetic circuits. The annular fluid flow gap is an inner bypass annular valve where the rheology of the MR fluids, and hence the damping force of the MR damper, is controlled. Based on the structural principle of the IBMRD, the IBMRD is configured and its finite element analysis (FEA) is implemented. After theoretically constructing the hydro-mechanical model for the IBMRD, its mathematical model is established using a Bingham-plastic nonlinear fluid model. The characteristics of the IBMRD are theoretically evaluated and compared to those of a conventional piston-bobbin MR damper with an identical active length and cylinder diameter. In order to validate the theoretical results predicted by the mathematical model, the prototype IBMRD is designed, fabricated, and tested. The servo-hydraulic testing machine (type: MTS 810) and rail-guided drop tower are used to provide sinusoidal displacement excitation and shock excitation to the IBMRD, respectively.

  20. Flexible Helicoids, Atomic Force Microscopy (AFM Cantilevers in High Mode Vibration, and Concave Notch Hinges in Precision Measurements and Research

    Directory of Open Access Journals (Sweden)

    Yakov Tseytlin

    2012-05-01

    Full Text Available Flexible structures are the main components in many precision measuring and research systems. They provide miniaturization, repeatability, minimal damping, low measuring forces, and very high resolution. This article focuses on the modeling, development, and comparison of three typical flexible micro- nano-structures: flexible helicoids, atomic force microscopy (AFM cantilevers, and concave notch hinges. Our theory yields results which allow us to increase the accuracy and functionality of these structures in new fields of application such as the modeling of helicoidal DNA molecules’ mechanics, the definition of instantaneous center of rotation in concave flexure notch hinges, and the estimation of the increase of spring constants and resolution at higher mode vibration in AFM cantilevers with an additional concentrated and end extended mass. We developed the original kinetostatic, reverse conformal mapping of approximating contours, and non-linear thermomechanical fluctuation methods for calculation, comparison, and research of the micromechanical structures. These methods simplify complicated solutions in micro elasticity but provide them with necessary accuracy. All our calculation results in this article and in all corresponding referenced author’s publications are in a good agreement with experimental and finite element modeling data within 10% or less.

  1. Merenje torzionih oscilacija pomoću mernih traka / Measurement of torsional vibrations by using strain gages

    Directory of Open Access Journals (Sweden)

    Dragan Trifković

    2005-05-01

    Full Text Available U ovom radu prikazan je metod merenja torzionih oscilacija mehaničkih sistema na osnovu merenja torzionog napona pomoću mernih traka. Ovaj metod naročito je pogodan za proveru nivoa naprezanja elemenata sistema, koji prenose promenljive obrtne momente i torziono osciluju. Osim toga, mogu se određivati i kritične brzine obrtanja elemenata sistema, pri kojima se javljaju rezonantna naprezanja i otkazi sistema, kao što su: pojačana buka, trošenje zupčanika, zamor materijala, oštećenja i lomovi vratila, spojnica i si. Predložen je merni lanac u kojem centralno mesto zauzima suvremeni mobilni merni sistem Spider 8, koji omogućava merenje, obradu i prikaz rezultata pomoću računara. / In this work the measuring method of torsion vibrations is presented according to the measurement of torsion stress using strain gages. This method is particularly suitable in checking the system elements strain level that transfers changeable torsion moments and oscillate torsionally. Besides that, the system elements critical velocity rotation can be estimated, folio-wed by the resonant strain and problems in the function of that system such as: amplified noise, -wearing-out of gears, fatigue crack, damage and break of shafts and junctions etc. The measuring chain is proposed in -which the central part is a contemporary mobile system Spider 8, -which enables measurement, processing and displays measured results on a computer.

  2. Bias Errors in Measurement of Vibratory Power and Implication for Active Control of Structural Vibration

    DEFF Research Database (Denmark)

    Ohlrich, Mogens; Henriksen, Eigil; Laugesen, Søren

    1997-01-01

    errors can be largely compensated for by an absolute calibration of the transducers and inverse filtering that results in very small residual errors. Experimental results of this study indicate that these uncertainties will be in the order of one percent with respect to amplitude and two tenth......Uncertainties in power measurements performed with piezoelectric accelerometers and force transducers are investigated. It is shown that the inherent structural damping of the transducers is responsible for a bias phase error, which typically is in the order of one degree. Fortunately, such bias...... of a degree for the phase. This implies that input power at a single point can be measured to within one dB in practical structures which possesses some damping. The uncertainty is increased, however, when sums of measured power contributions from more sources are to be minimised, as is the case in active...

  3. A test chip for automatic reliability measurements of interconnect vias

    NARCIS (Netherlands)

    Lippe, K.; Lippe, K.; Hasper, A.; Hasper, A.; Elfrink, G.W.; Niehof, J.; Niehof, J.; Kerkhoff, Hans G.

    1992-01-01

    A test circuit for electromigration reliability measurements was designed and tested. The device under test (DUT) is a via-hole chain. The test circuit permits simultaneous measurements of a number of DUTs, and a fatal error of one DUT does not influence the measurement results of the other DUTs.

  4. Testing and performance of a new friction damper for seismic vibration control

    Science.gov (United States)

    Martínez, Carlos A.; Curadelli, Oscar

    2017-07-01

    In the last two decades, great efforts were carried out to reduce the seismic demand on structures through the concept of energy dissipation instead of increasing the stiffness and strength. Several devices based on different energy dissipation principles have been developed and implemented worldwide, however, most of the dissipation devices are usually installed using diagonal braces, which entail certain drawbacks on apertures for circulation, lighting or ventilation and architectural or functional requirements often preclude this type of installations. In this work, a conceptual development of a novel energy dissipation device, called Multiple Friction Damper (MFD), is proposed and examined. To verify its characteristics and performance, the MFD was implemented on a single storey steel frame experimental model and tested under different conditions of normal force and real time acceleration records. Experimental results demonstrated that the new MFD constitutes an effective and reliable alternative to control the structural response in terms of displacement and acceleration. A mathematical formulation based on the Wen's model reflecting the nonlinear behaviour of the device is also presented.

  5. Vibrational power flow and structural intensity: Measurements and limitations at low frequencies

    DEFF Research Database (Denmark)

    Ohlrich, Mogens

    1991-01-01

    The cross-spectral methods and their sensitivity to phase errors are investigated for the two and four-accelerometer arrays. From experiments on a beam structure it is attempted to verify the influence of phase errors and to determine the usable frequency ranges of the two methods. Measurements a...

  6. Measuring test coverage of SoA services

    NARCIS (Netherlands)

    Sneed, Harry M.; Verhoef, Chris

    2015-01-01

    One of the challenges of testing in a SoA environment is that testers do not have access to the source code of the services they are testing. Therefore they are not able to measure test coverage at the code level, as is done in conventional white-box testing. They are compelled to measure test

  7. Experimental Studies on Damage Detection in Frame Structures Using Vibration Measurements

    Directory of Open Access Journals (Sweden)

    Giancarlo Fraraccio

    2010-01-01

    Full Text Available This paper presents an experimental study of frequency and time domain identification algorithms and discusses their effectiveness in structural health monitoring of frame structures using acceleration input and response data. Three algorithms were considered: 1 a frequency domain decomposition algorithm (FDD, 2 a time domain Observer Kalman IDentification algorithm (OKID, and 3 a subsequent physical parameter identification algorithm (MLK. Through experimental testing of a four-story steel frame model on a uniaxial shake table, the inherent complications of physical instrumentation and testing are explored. Primarily, this study aims to provide a dependable first-order and second-order identification of said test structure in a fully instrumented state. Once the characteristics (i.e. the stiffness matrix for a benchmark structure have been determined, structural damage can be detected by a change in the identified structural stiffness matrix. This work also analyzes the stability of the identified structural stiffness matrix with respect to fluctuations of input excitation magnitude and frequency content in an experimental setting.

  8. Comparison of a Vibrating Foam Roller and a Non-vibrating Foam Roller Intervention on Knee Range of Motion and Pressure Pain Threshold: A Randomized Controlled Trial.

    Science.gov (United States)

    Cheatham, Scott W; Stull, Kyle R; Kolber, Morey J

    2017-08-08

    The use of foam rollers to provide soft-tissue massage has become a common intervention among health and fitness professionals. Recently, manufacturers have merged the science of vibration therapy and foam rolling with the development of vibrating foam rollers. To date, no peer reviewed investigations have been published on this technology. The purpose of this study was to compare the effects of a vibrating roller and non-vibrating roller intervention on prone knee flexion passive range of motion (ROM) and pressure pain thresholds (PPT) of the quadriceps musculature. Forty-five recreationally active adults were randomly allocated to one of three groups: vibrating roller, non-vibrating roller, and control. Each roll intervention lasted a total of 2 minutes. The control group did not roll. Dependent variables included prone knee flexion ROM and PPT measures. Statistical analysis included parametric and non-parametric tests to measure changes among groups. The vibrating roller demonstrated the greatest increase in PPT (180kPa, p< 0.001), followed by the non-vibrating roller (112kPa, p< 0.001), and control (61kPa, p<0.001). For knee ROM, the vibrating roller demonstrated the greatest increase in ROM (7 degrees, p< 0.001), followed by the non-vibrating roller (5 degrees, p< 0.001), and control (2 degrees, p<0.001). Between groups, there was significant difference in PPT between the vibrating and non-vibrating roller (p=.03) and vibrating roller and control (p<.001). There was also a significant difference between the non-vibrating roller and control (p<.001). For knee ROM, there was no significant difference between the vibrating and non-vibrating roller (p=.31). A significant difference was found between the vibrating roller and control group (p<.001) and non-vibrating roller and control (p<.001). The results suggest that a vibrating roller may increase an individual's tolerance to pain greater than a non-vibrating roller. This investigation should be considered

  9. Prediction of vibration level in tunnel blasting; Tonneru kusshin happa ni yotte reiki sareru shindo no reberu yosoku ho

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, A. [Kumamoto Industries Univ, Kumamoto (Japan); Yamamoto, M. [Asahi Chemical Industry Co. Ltd., Tokyo (Japan); Inaba, C. [Nishimatsu Construction Co. Ltd., Kanagawa (Japan); Kaneko, K. [Hokkaido Univ (Japan)

    1997-08-01

    For avoiding the generation of public hazard due to ground vibration causes by blasting in tunneling, it is important to devise a blasting method for ensuring the level of the ground vibration caused thereby under a limit, and an exact predication of ground vibration before blasting is desirable. In this study, the characteristics of the ground vibration caused by tunnel blasting are analyzed, and a summary of amplitude spectra calculating method is described. A theoretical analysis method for predicting the vibration level is proposed based on spectrum-multiplicative method. Vibration caused by multistage blasting in tunneling is most strong and deemed as important. When observing the process of elastic wave motion caused by multistage blasting being measured, the process can be divided into three element processes in frequency area as vibration source spectrum, transmission attenuation spectrum and frequency response function vibrating test, and, with the multiplication of them, the amplitude spectra at an observation portion can be estimated. 12 refs., 12 figs.

  10. Passive Optical Technique to Measure Physical Properties of a Vibrating Surface

    Science.gov (United States)

    2014-01-01

    According to the manufacturer’s data sheet , the beam angle is 6.7o and the efficiency is 10.3%. Imaging was performed with a Phantom v7.1 camera...Reflectance,” U.S. Government Printing 0ffice Stock No. 003-003-01793, U.S. NBS Monograph 160, NBS (1977) [2] Maurer, J., “Retrieval of surface albedo ...from space,” U.Hi., http://www2.hawaii.edu/~jmaurer/ albedo /, (2002) [3] Clark, F.O., “Remote Passive Measurement of Information Including Engine Shaft

  11. Hand function tests and questions on hand symptoms as related to the Stockholm workshop scales for diagnosis of hand-arm vibration syndrome.

    Science.gov (United States)

    Cederlund, R; Iwarsson, S; Lundborg, G

    2003-04-01

    The severity of hand-arm vibration syndrome (HAVS) is usually graded according to the Stockholm workshop scales. Although the Stockholm workshop scales are regarded the gold standard for assessing the severity of HAVS, they are based primarily on subjective symptoms. The aim of the present study was to explore the agreement between Stockholm workshop scales and the outcome from ten well-defined clinical tests commonly used in hand rehabilitation for assessment of hand function. One hundred and eleven vibration-exposed workers participated in the study. Ten objective tests of hand function and four questions on subjective hand symptoms were included. The results indicated that, out of these tests, perception of vibration, perception of touch/pressure and dexterity showed a moderate agreement with Stockholm workshop scales. Among specific questions on hand symptoms, cold intolerance and pain showed a high agreement with Stockholm workshop scales. It is concluded that defined objective tests combined with directed questions on specific hand symptoms, together with the Stockholm workshop scales, may be helpful for diagnosing HAVS.

  12. Force measurement using strain-gauge balance in a shock tunnel with long test duration.

    Science.gov (United States)

    Wang, Yunpeng; Liu, Yunfeng; Luo, Changtong; Jiang, Zonglin

    2016-05-01

    Force tests were conducted at the long-duration-test shock tunnel JF12, which has been designed and built in the Institute of Mechanics, Chinese Academy of Sciences. The performance tests demonstrated that this facility is capable of reproducing a flow of dry air at Mach numbers from 5 to 9 at more than 100 ms test duration. Therefore, the traditional internal strain-gauge balance was considered for the force tests use in this large impulse facility. However, when the force tests are conducted in a shock tunnel, the inertial forces lead to low-frequency vibrations of the test model and its motion cannot be addressed through digital filtering because a sufficient number of cycles cannot be found during a shock tunnel run. The post-processing of the balance signal thus becomes extremely difficult when an averaging method is employed. Therefore, the force measurement encounters many problems in an impulse facility, particularly for large and heavy models. The objective of the present study is to develop pulse-type sting balance by using a strain-gauge sensor that can be applied in the force measurement of 100 ms test time, especially for the force test of the large-scale model. Different structures of the S-series (i.e., sting shaped balances) strain-gauge balance are proposed and designed, and the measuring elements are further optimized to overcome the difficulties encountered during the measurement of aerodynamic force in a shock tunnel. In addition, the force tests were conducted using two large-scale test models in JF12 and the S-series strain-gauge balances show good performance in the force measurements during the 100 ms test time.

  13. Testing of PZT shifters for interferometric measurements

    Science.gov (United States)

    Schmit, Joanna; Piatkowski, Tadeusz

    1991-08-01

    Nowadays PZT shifters are widely used for interferometric measurements by phase shifting methods. The required accuracy of single step is very high. There for the methods of measuring metrological features of PZT shifters are described specificly intensity methods in Michelson and Sagnac interferometers and Lissajoux figures method 1-D and 2-D Fourier transform method (FTM) in Fizeau interferometer. The 1-D FTM is found most convenient for real time calibration in experimental setup.

  14. Detection of the local sliding in the tyre-road contact by measuring vibrations on the inner liner of the tyre

    Science.gov (United States)

    Niskanen, Arto J.; Tuononen, Ari J.

    2017-04-01

    Intelligent tyres can provide vital information from the tyre-road contact, especially for autonomous cars and intelligent infrastructure. In this paper, the acceleration measured on the inner liner of a tyre is used to detect the local sliding in the tyre-road contact. The Hilbert-Huang transform is utilized to extract the relevant vibration components and localize them in the wheel rotation angle domain. The energy of the vibration in the trailing part of the contact is shown to increase in low-friction conditions which can be related to the sliding of the tread part as a result of the shear stresses exceeding the local friction limit. To separate the effect of the surface roughness and the friction, different road surfaces were used in the measurements. In addition, the effects of different driving manoeuvres on the measured accelerations and the propagation of the sliding zone in the contact patch during braking are illustrated.

  15. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2006-01-17

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. Work during this quarter centered on the testing of the rebuilt laboratory prototype and its conversion into a version that will be operable in the drilling tests at TerraTek Laboratories. In addition, formations for use in these tests were designed and constructed, and a test protocol was developed. The change in scope and no-cost extension of Phase II to January, 2006, described in our last report, were approved. The tests are scheduled to be run during the week of January 23, and should be completed before the end of the month.

  16. 40 CFR 401.13 - Test procedures for measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Test procedures for measurement. 401.13... AND STANDARDS GENERAL PROVISIONS § 401.13 Test procedures for measurement. The test procedures for measurement which are prescribed at part 136 of this chapter shall apply to expressions of pollutant amounts...

  17. Animal Communications Through Seismic Vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Peggy (University of Tulsa)

    2001-05-02

    Substrate vibration has been important to animals as a channel of communication for millions of years, but our literature on vibration in this context of biologically relevant information is only decades old. The jaw mechanism of the earliest land vertebrates allowed them to perceive substrate vibrations as their heads lay on the ground long before airborne sounds could be heard. Although the exact mechanism of vibration production and the precise nature of the wave produced are not always understood, recent development of affordable instrumentation to detect and measure vibrations has allowed researchers to answer increasingly sophisticated questions about how animals send and receive vibration signals. We now know that vibration provides information used in predator defense, prey detection, recruitment to food, mate choice, intrasexual competition, and maternal/brood social interactions in a variety of insect orders, spiders, crabs, scorpions, chameleons, frogs, golden moles, mole rats, kangaroos rats, wallabies, elephants and bison.

  18. Axial force measurement for esophageal function testing

    DEFF Research Database (Denmark)

    Gravesen, Flemming Holbæk; Funch-Jensen, Peter; Gregersen, Hans

    2009-01-01

    The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the "golden standard" for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze...... force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external...

  19. Qualification of the JWST MIRI Instrument Using Force Limited Vibration

    Science.gov (United States)

    Sykes, J.; Eccleston, P.; Laine, B.; Ngan, I.; Salvignol, J. C.

    2012-07-01

    The MIRI instrument design was qualified for sine and random environments using force limited testing to limit the dynamic responses of the sensitive optical components and mechanisms while demonstrating adequate margin with regard to the environmental flight conditions. Force limiting was achieved using force transducers located between the interface of the instrument and the shaker adapter during the vibration test. Interface forces for each of the three interface points were measured in three orthogonal axes during the low level sine test and used to compute the overturning moment, while the resulting global interface force was directly measured by combining the signals from three individual interfaces during the high level vibrations such that automatic notching could be applied. The test was performed in the recently upgraded vibration facility of the Rutherford Appleton Laboratory. In order to demonstrate and develop the MIRI flight model test approach and procedures, a pull- through test was carried out using the Structural Model of the instrument which had been previously vibrated in 2005 at a different facility. This early test allowed measurement of the facility behaviour with the test article, exercising the notching and abort functions, and highlighting an issue with the stiffness of the adapter, as well as several other lessons learned. An adapter with additional in-plane stiffness to ensure in-phase movement of the interfaces and correct functioning of the force-limiting system was subsequently designed, manufactured and tested in time for the instrument FM test. The vibration test was executed very smoothly thanks to the lessons learned from the preparatory test and the work carried out by the team in advance of the test in preparing modelling and analysis tools which could be used in quasi-real time during the test campaign. The paper intends to present the force limited vibration notching approach as well as the lessons learned from this test.

  20. Competency measurements: testing convergent validity for two measures.

    Science.gov (United States)

    Cowin, Leanne S; Hengstberger-Sims, Cecily; Eagar, Sandy C; Gregory, Linda; Andrew, Sharon; Rolley, John

    2008-11-01

    This paper is a report of a study to investigate whether the Australian National Competency Standards for Registered Nurses demonstrate correlations with the Finnish Nurse Competency Scale. Competency assessment has become popular as a key regulatory requirement and performance indicator. The term competency, however, does not have a globally accepted definition and this has the potential to create controversy, ambiguity and confusion. Variations in meaning and definitions adopted in workplaces and educational settings will affect the interpretation of research findings and have implications for the nursing profession. A non-experimental cross-sectional survey design was used with a convenience sample of 116 new graduate nurses in 2005. The second version of the Australian National Competency Standards and the Nurse Competency Scale was used to elicit responses to self-assessed competency in the transitional year (first year as a Registered Nurse). Correlational analysis of self-assessed levels of competence revealed a relationship between the Australian National Competency Standards (ANCI) and the Nurse Competency Scale (NCS). The correlational relation between ANCI domains and NCS factors suggests that these scales are indeed used to measure related dimensions. A statistically significant relationship (r = 0.75) was found between the two competency measures. Although the finding of convergent validity is insufficient to establish construct validity for competency as used in both measures in this study, it is an important step towards this goal. Future studies on relationships between competencies must take into account the validity and reliability of the tools.

  1. Theoretical analysis based on fundamental functions of thin plate and experimental measurement for vibration characteristics of a plate coupled with liquid

    Science.gov (United States)

    Liao, Chan-Yi; Wu, Yi-Chuang; Chang, Ching-Yuan; Ma, Chien-Ching

    2017-04-01

    This study combined theoretical, experimental, and numerical analysis to investigate the vibration characteristics of a thin rectangular plate positioned horizontally at the bottom of a rectangular container filled with liquid. Flow field pressure was derived using an equation governing the behavior of incompressible fluids. Analytic solutions to vibrations in a thin plate in air served as the fundamental function of the thin plate coupled with liquid. We then used liquid pressure, and the out-of-plane deflection of the thin plate for the construction of frequency response functions for the analysis of vibration characteristics in the liquid-plate coupling system. Two experimental methods were employed to measure the vibration characteristics of the thin plate immersed in water. The first involved using sensors of polyvinylidene difluoride (PVDF) to measure transient signals of fluid-plate system subjected an impact at the thin plate. These were then converted to the frequency domain in order to obtain the resonant frequencies of the fluid-plate coupling system. The second method was amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI), which was used to measure the dynamic characteristics of the thin plate in the flow field. This method was paired with the image processing techniques, temporal speckle pattern interferometry (TSPI) and temporal standard deviation (TSTD), to obtain clear mode shapes of the thin plate and resonant frequencies. Comparison of the results from theoretical analysis, finite element method, and experimental measurements confirmed the accuracy of our theoretical analysis, which was superior to the conventional approach based on beam mode shape functions. The experimental methods proposed in this study can be used to measure the resonant frequencies of underwater thin plates, and clear mode shapes can be obtained using AF-ESPI. Our results indicate that the resonant frequencies of thin plates underwater are lower than

  2. Multi-Exciter Vibroacoustic Simulation of Hypersonic Flight Vibration

    Energy Technology Data Exchange (ETDEWEB)

    GREGORY,DANNY LYNN; CAP,JEROME S.; TOGAMI,THOMAS C.; NUSSER,MICHAEL A.; HOLLINGSHEAD,JAMES RONALD

    1999-11-11

    Many aerospace structures must survive severe high frequency, hypersonic, random vibration during their flights. The random vibrations are generated by the turbulent boundary layer developed along the exterior of the structures during flight. These environments have not been simulated very well in the past using a fixed-based, single exciter input with an upper frequency range of 2 kHz. This study investigates the possibility of using acoustic ardor independently controlled multiple exciters to more accurately simulate hypersonic flight vibration. The test configuration, equipment, and methodology are described. Comparisons with actual flight measurements and previous single exciter simulations are also presented.

  3. Airflow induced vibration of the Si-IT prototype

    CERN Document Server

    Dijkstra, H; De Aguiar, V; Rigo, V

    2014-01-01

    In this note we present the results of air-flow induced vibration tests performed on mechanical prototypes of the Si option of the Inner Tracker upgrade. We made a modal analyze where we observed the eigenfrequency of the Si-ladder structure at ∼30 Hz as previously measured at CERN. Flowing dry-air to cool the prototypes we do not observe a lock-in state of the vortex induced vibration (VIV). The maximum observed vibration amplitude is calculated. We conclude that the VIV excites the eigenfrequency almost independently from the air-flow speed, and with an amplitude which does not damage the structure.

  4. On the impact of Vibrational Raman Scattering of N2/O2 on MAX-DOAS Measurements of atmospheric trace gases

    Science.gov (United States)

    Lampel, Johannes; Zielcke, Johannes; Frieß, Udo; Platt, Ulrich; Wagner, Thomas

    2015-04-01

    In remote sensing applications, such as the applications of differential optical absorption spectroscopy (DOAS), atmospheric scattering processes need to be considered since they can modify the observed spectra. Inelastic scattering of photons by N2 and O2 molecules can be observed as additional intensity, effectively leading to filling-in of both, solar Fraunhofer lines and absorption bands of atmospheric constituents. The main contribution is due to rotational Raman scattering, which can lead to changes in observed optical densities of absorption lines up to several percent. Measured optical densities are typically corrected for this effect (also known as Ring Effect). In contrast to that Vibrational Raman scattering of N2 and O2 was often thought to be negligible, but also contributes to this effect. We present calculations of Vibrational Raman cross-sections for O2 and N2 for the application in passive DOAS measurements. Consequences of vibrational Raman scattering are red-shifted Fraunhofer structures, so called 'Fraunhofer Ghost' lines (FGL), in scattered light spectra and filling-in of Fraunhofer lines, additional to rotational Raman scattering. We also present first unequivocal observations of FGL at optical densities of up to several 104. From our measurements and calculations of the optical density of these FGL, we conclude, that this phenomenon has to be included in the spectral evaluation of weak absorbers. Its relevance is demonstrated in spectral evaluations of Multi-Axis (MAX)-DOAS data and an agreement with calculated scattering cross-sections is found. To exclude cross-sensitivities with other absorbers, such as water vapour, MAX-DOAS data from different latitudes and different instruments were analysed. We evaluate the influence of the additional intensities due to vibrational Raman scattering on the spectral retrieval of IO, Glyoxal, H2O and NO2 in the blue wavelength range. In the case of NO2 the column densities derived from certain wavelength

  5. VLTI-UT vibrations effort and performances

    Science.gov (United States)

    Poupar, Sébastien; Haguenauer, Pierre; Alonso, Jaime; Schuhler, Nicolas; Henriquez, Juan-Pablo; Berger, Jean-Philippe; Bourget, Pierre; Brillant, Stephane; Castillo, Roberto; Gitton, Philippe; Gonte, Frederic; Di Lieto, Nicola; Lizon, Jean-Louis; Merand, Antoine; Woillez, Julien

    2014-07-01

    The ESO Very Large Telescope Interferometer (VLTI) using the Unit Telescope (UT) was strongly affected by vibrations since the first observations. Investigation by ESO on that subject had started in 2007, with a considerable effort since mid 2008. An important number of investigations on various sub-systems (On telescope: Guiding, Passive supports, Train Coude, insulation of electronics cabinets; On Instruments: dedicated campaign on each instruments with a special attention on the ones equipped with Close Cycle Cooler) were realized. Vibrations were not only recorded and analyzed using the usual accelerometers but also using on use sub-systems as InfRared Image Sensor (IRIS) and Multiple Applications Curvature Adaptive Optics (MACAO) and using a specific tool developed for vibrations measurements Mirror vibrAtion Metrology systeM for the Unit Telescope (MAMMUT). Those tools and systems have been used in order to improve the knowledge on telescope by finding sources. The sources whenever it was possible were damped. As known for years, instruments are still the principal sources of vibrations, for the majority of the UT. A special test in which 2 UTs instruments were completely shut down was realized to determine the minimum Optical Path Length (OPL) achievable. Vibrations is now a part of the instruments interface document and during the installation of any new instrument (KMOS) or system (AOF) a test campaign is realized. As a result some modifications (damping of CCC) can be asked in case of non-compliance. To ensure good operational conditions, levels of vibrations are regularly recorded to control any environmental change.

  6. Experimental study on titanium wire drawing with ultrasonic vibration.

    Science.gov (United States)

    Liu, Shen; Shan, Xiaobiao; Guo, Kai; Yang, Yuancai; Xie, Tao

    2018-02-01

    Titanium and its alloys have been widely used in aerospace and biomedical industries, however, they are classified as difficult-to-machine materials. In this paper, ultrasonic vibration is imposed on the die to overcome the difficulties during conventional titanium wire drawing processes at the room temperature. Numerical simulations were performed to investigate the variation of axial stress within the contacting region and study the change of the drawing stress with several factors in terms of the longitudinal amplitude and frequency of the applied ultrasonic vibration, the diameter reduction ratio, and the drawing force. An experimental testing equipment was established to measure the drawing torque and rotational velocity of the coiler drum during the wire drawing process. The result indicates the drawing force increases with the growth of the drawing velocity and the reduction ratio, whether with or without vibrations. Application of either form of ultrasonic vibrations contributes to the further decrease of the drawing force, especially the longitudinal vibration with larger amplitude. SEM was employed to detect the surface morphology of the processed wires drawn under the three circumstances. The surface quality of the drawn wires with ultrasonic vibrations was apparently improved compared with those using conventional method. In addition, the longitudinal and torsional composite vibration was more effective for surface quality improvement than pure longitudinal vibration, however, at the cost of weakened drawing force reduction effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Imaging performance comparison between CMOS and sCMOS detectors in a vibration test on large areas using digital holographic interferometry

    Science.gov (United States)

    Flores-Morenoa, J. M.; Torre I., Manuel H. De la; Aguayo, Daniel D.; Fernando Mendoza, S.

    2014-05-01

    A comparison of the interferometric imaging performance of two different cameras during a vibration study is presented. One of the cameras has a high speed CMOS sensor and the second one uses a high resolution (scientific) sCMOS sensor. This comparison is based on the interferometric response as a merit parameter of these sensors which is not a conventional procedure. Even when the current standard for image quality is on the signal to noise ratio calculations, an interferometric test to evaluate the fringe pattern visibility is equivalent to the contrast to noise ratio value. An out of plane digital holographic interferometer is used to test each camera once at the time with the same experimental conditions. The object under study is a metallically framed table with a Formica cover with an observable area of 1.1 m2. The sample is deformed by means of a controlled vibration induced by a tip ended linear step motor. Results from each camera are presented as the retrieved optical phase during the vibration. Finally, some conclusions based on the post processed images are presented suggesting a smoother optical phase obtained with the sCMOS camera.

  8. Calculation and analysis of the harmonic vibrational frequencies in molecules at extreme pressure: Methodology and diborane as a test case

    Science.gov (United States)

    Cammi, R.; Cappelli, C.; Mennucci, B.; Tomasi, J.

    2012-10-01

    We present a new quantum chemical method for the calculation of the equilibrium geometry and the harmonic vibrational frequencies of molecular systems in dense medium at high pressures (of the order of GPa). The new computational method, named PCM-XP, is based on the polarizable continuum model (PCM), amply used for the study of the solvent effects at standard condition of pressure, and it is accompanied by a new method of analysis for the interpretation of the mechanisms underpinning the effects of pressure on the molecular geometries and the harmonic vibrational frequencies. The PCM-XP has been applied at the density functional theory level to diborane as a molecular system under high pressure. The computed harmonic vibrational frequencies as a function of the pressure have shown a satisfactory agreement with the corresponding experimental results, and the parallel application of the method of analysis has reveled that the effects of the pressure on the equilibrium geometry can be interpreted in terms of direct effects on the electronic charge distribution of the molecular solutes, and that the effects on the harmonic vibrational frequencies can be described in terms of two physically distinct effects of the pressure (curvature and relaxation) on the potential energy for the motion of the nuclei.

  9. Adaptations of mouse skeletal muscle to low-intensity vibration training.

    Science.gov (United States)

    McKeehen, James N; Novotny, Susan A; Baltgalvis, Kristen A; Call, Jarrod A; Nuckley, David J; Lowe, Dawn A

    2013-06-01

    We tested the hypothesis that low-intensity vibration training in mice improves contractile function of hindlimb skeletal muscles and promotes exercise-related cellular adaptations. We subjected C57BL/6J mice to 6 wk, 5 d·wk, 15 min·d of sham or low-intensity vibration (45 Hz, 1.0g) while housed in traditional cages (Sham-Active, n = 8; Vibrated-Active, n = 10) or in small cages to restrict physical activity (Sham-Restricted, n = 8; Vibrated-Restricted, n = 8). Contractile function and resistance to fatigue were tested in vivo (anterior and posterior crural muscles) and ex vivo on the soleus muscle. Tibialis anterior and soleus muscles were evaluated histologically for alterations in oxidative metabolism, capillarity, and fiber types. Epididymal fat pad and hindlimb muscle masses were measured. Two-way ANOVAs were used to determine the effects of vibration and physical inactivity. Vibration training resulted in a 10% increase in maximal isometric torque (P = 0.038) and 16% faster maximal rate of relaxation (P = 0.030) of the anterior crural muscles. Posterior crural muscles were unaffected by vibration, except greater rates of contraction in Vibrated-Restricted mice compared with Vibrated-Active and Sham-Restricted mice (P = 0.022). Soleus muscle maximal isometric tetanic force tended to be greater (P = 0.057), and maximal relaxation was 20% faster (P = 0.005) in vibrated compared with sham mice. The restriction of physical activity induced muscle weakness but was not required for vibration to be effective in improving strength or relaxation. Vibration training did not affect muscle fatigability or any indicator of cellular adaptation investigated (P ≥ 0.431). Fat pad but not hindlimb muscle masses were affected by vibration training. Vibration training in mice improved muscle contractility, specifically strength and relaxation rates, with no indication of adverse effects to muscle function or cellular adaptations.

  10. The dynamic response of prone-to-fall columns to ambient vibrations: comparison between measurements and numerical modelling

    Science.gov (United States)

    Valentin, J.; Capron, A.; Jongmans, D.; Baillet, L.; Bottelin, P.; Donze, F.; Larose, E.; Mangeney, A.

    2017-02-01

    Seismic noise measurements (ambient vibrations) have been increasingly used in rock slope stability assessment for both investigation and monitoring purposes. Recent studies made on gravitational hazard revealed significant spectral amplification at given frequencies and polarization of the wave-field in the direction of maximum rock slope displacement. Different properties (resonance frequencies, polarization and spectral ratio amplitudes) can be derived from the spectral analysis of the seismic noise to characterize unstable rock masses. The objective here is to identify the dynamic parameters that could be used to gain information on prone-to-fall rock columns' geometry. To do so, the dynamic response of prone-to-fall columns to seismic noise has been studied on two different sites exhibiting cliff-like geometry. Dynamic parameters (main resonance frequency and spectral ratio amplitudes) that could characterize the column decoupling were extracted from seismic noise and their variations were studied taking into account the external environmental parameter fluctuations. Based on this analysis, a two-dimensional numerical model has been set up to assess the influence of the rear vertical fractures identified on both sites on the rock column motion response. Although a simple relation was found between spectral ratio amplitudes and the rock column slenderness, it turned out that the resonance frequency is more stable than the spectral ratio amplitudes to characterize this column decoupling, provided that the elastic properties of the column can be estimated. The study also revealed the effect of additional remote fractures on the dynamic parameters, which in turn could be used for detecting the presence of such discontinuities.

  11. Excitation of the low lying vibrational levels of H2O by O(3P) as measured on Spacelab 2

    Science.gov (United States)

    Meyerott, R. E.; Swenson, G. R.; Schweitzer, E. L.; Koch, D. G.

    1994-01-01

    The data from the infrared telescope (IRT), which was flown on space shuttle Challenger Spacelab 2 mission (July 1985), were originally reported by Koch et al. (1987) as originating from near orbital emissions, primarily H2O. In this study, analysis of this data was extended to determine the collisional cross sections for the excitation of the low lying vibrational levels of H2O, present in the orbiter cloud, by atmospheric O(3P). The evaluation of the contribution to the measured signal from solar excitation and ram O excitation of outgassing H2O permits the determination of the H2O column density and the excitation cross section of the (101) level at an O(3P) velocity of approximately 7.75 km/s. Contributions to the radiation in the 1.7-3.0 micron band by transitions from the (100), (001), and multiquantum excited levels are discussed. The findings of the study are (1) the IRT data for the 4.5-9.5 micron and the nighttime data for the 1.7-3.0 micron sensors are consistent with being explained by collision excitation of H2O by O(3P), (2) diurnal variations of 4.5-9.5 micron intensities follow the model predicted O density for a full orbit, (3) daytime increases in the H2O cloud density were not evident, (4) the cross sections for the collisional excitation process are derived and compared to values computated by Johnson (1986) and Redmon et al. (1986), (5) theoretical investigation suggests greater than 60% of the radiation from H2O is a result of multiphoton emission resulting from collisional multiquanta excitation, and (6) the large daytime increase in the 1.7-3.0 micron intensity data suggests that O(+) may likely be instrumental in producing excited H2O(+) through charge exchange.

  12. Compensation of Unavailable Test Frequencies During Immunity Measurements

    Science.gov (United States)

    Gronwald, F.; Kebel, R.; Stadtler, T.

    2012-05-01

    Radiated immunity tests usually are performed in shielded test environments, such as anechoic chambers, GTEM-cells, and mode stirred chambers, for example. Then, if testing is performed in the frequency domain, the corresponding EMC-standards often specify test frequencies that have to be used. These requirements may become incompatible in case of large test objects, such as passenger aircraft, that cannot be placed in shielded test environments but only can be tested in open environments where, for regulatory reasons, not all required test frequencies can be applied. In this contribution it is investigated whether incomplete test procedures due to unavailable test frequencies can be compensated by alternative measurement setups.

  13. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: AMSU-A1 EOS Instrument, (S/N 202) Qualification Level Vibration Tests of August/September 1998, (S/O 565632, OC-417) Plus Addendum A

    Science.gov (United States)

    Heffer, R.

    1998-01-01

    The purpose of this report is to present a qualification level vibration testing performed on the S/N 202, EOS AMSU-A1 Instrument was vibration tested to qualification levels per the Ref. 1 shop order. The instrument withstood the 8 g sine sweep test, the 7.5 Grms random vibration test, and the 18.75 g sine burst test in each of the three orthogonal axes. Some loss of transmissibility, however, is seen in the lower reflector after Z-axis random vibration. The test sequence was not without incidence. Failure of Channel 7 in the Limited Performance Test (LPT) performed after completion of the 1 st (X-axis) axis vibration sequence, required replacement of the DRO and subsequent re-testing of the instrument. The post-vibration comprehensive performance test (CPT) was successfully run after completion of the three axes of vibration with the replacement component installed in the instrument. Passing the CPT signified the successful completion of the S/N 202 A1 qualification vibration testing.

  14. A study on the evaluation of vibration effect and the development of vibration reduction method for Wolsung unit 1 main steam piping

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun; Kim, Yeon Whan [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Kim, Tae Ryong; Park, Jin Ho [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of)

    1996-08-01

    The main steam piping of nuclear power plant which runs between steam generator and high pressure turbine has been experienced to have a severe effect on the safe operation of the plant due to the vibration induced by the steam flowing inside the piping. The imposed cyclic loads by the vibration could result in the degradation of the related structures such as connection parts between main instruments, valves, pipe supports and building. The objective of the study is to reduce the vibration level of Wolsung nuclear power plant unit 1 main steam pipeline by analyzing vibration characteristics of the piping, identifying sources of the vibration and developing a vibration reduction method .The location of the maximum vibration is piping between the main steam header and steam chest .The stress level was found to be within the allowable limit .The main vibration frequency was found to be 4{approx}6 Hz which is the same as the natural frequency from model test .A vibration reduction method using pipe supports of energy absorbing type(WEAR)is selected .The measured vibration level after WEAR installation was reduced about 36{approx}77% in displacement unit (author). 36 refs., 188 figs.

  15. 49 CFR 178.608 - Vibration standard.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration standard. 178.608 Section 178.608... Testing of Non-bulk Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this section...

  16. Downhole Vibration Monitoring and Control System

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2007-09-30

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. The key feature of this system is its use of a magnetorheological fluid (MRF) to allow the damping coefficient to be changed extensively, rapidly and reversibly without the use of mechanical valves, but only by the application of a current. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. Much of the effort was devoted to the design and testing of the MRF damper, itself. The principal objectives of Phase II were: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in a drilling laboratory. Phase II concluded on January 31, 2006, and a final report was issued. Work on Phase III of the project began during the first quarter, 2006, with the objectives of building precommercial prototypes, testing them in a drilling laboratory and the field; developing and implementing a commercialization plan. All of these have been accomplished. The Downhole Vibration Monitoring & Control System (DVMCS) prototypes have been successfully proven in testing at the TerraTek drilling facility and at the Rocky Mountain Oilfield Test Center (RMOTC.) Based on the results of these tests, we have signed a definitive development and distribution agreement with Smith, and commercial deployment is underway. This current version of the DVMCS monitors and controls axial vibrations. Due to time and budget constraints of this program, it was not possible to complete a system that would also deal with lateral and torsional (stick-slip) vibrations as originally planned; however, this effort is continuing without DOE

  17. Clinical evaluation of hand-arm-vibration syndrome in shipyard workers: sensitivity and specificity as compared to Stockholm classification and vibrometry testing.

    Science.gov (United States)

    Kent, D C; Allen, R; Bureau, P; Cherniack, M; Hans, J; Robinson, M

    1998-02-01

    The hand-arm-vibration syndrome (HAVS) is a complex entity composed of circulatory, sensory, and motor disturbances, as well as associated musculoskeletal components. This study was performed to find a diagnostic testing modality with sufficient sensitivity, specificity, and predictive value to be utilized as a screening test for this disorder in a working population. A full range of testing modalities was utilized in the shipyard medical department. In addition, a clinical diagnosis of vascular and sensorineural disease was established in the workers by a combination of plethysmography, vibrometry, two point discrimination, and monofilament testing in an independent occupational medicine clinic. No one test modality met the requirements for such a definitive diagnostic test. Rather, a range of modalities was required to reach any acceptable level of predictive value, with sufficient degrees of specificity and sensitivity.

  18. Human Factors Assessment of Vibration Effects on Visual Performance During Launch

    Science.gov (United States)

    Holden, Kritina

    2009-01-01

    The Human Factors Assessment of Vibration Effects on Visual Performance During Launch (Visual Performance) investigation will determine visual performance limits during operational vibration and g-loads on the Space Shuttle, specifically through the determination of minimum readable font size during ascent using planned Orion display formats. Research Summary: The aim of the Human Factors Assessment of Vibration Effects on Visual Performance during Launch (Visual Performance) investigation is to provide supplementary data to that collected by the Thrust Oscillation Seat Detailed Technical Objective (DTO) 695 (Crew Seat DTO) which will measure seat acceleration and vibration from one flight deck and two middeck seats during ascent. While the Crew Seat DTO data alone are important in terms of providing a measure of vibration and g-loading, human performance data are required to fully interpret the operational consequences of the vibration values collected during Space Shuttle ascent. During launch, crewmembers will be requested to view placards with varying font sizes and indicate the minimum readable size. In combination with the Crew Seat DTO, the Visual Performance investigation will: Provide flight-validated evidence that will be used to establish vibration limits for visual performance during combined vibration and linear g-loading. o Provide flight data as inputs to ongoing ground-based simulations, which will further validate crew visual performance under vibration loading in a controlled environment. o Provide vibration and performance metrics to help validate procedures for ground tests and analyses of seats, suits, displays and controls, and human-in-the-loop performance.

  19. Vibrational Diver

    Science.gov (United States)

    Kozlov, Victor; Ivanova, Alevtina; Schipitsyn, Vitalii; Stambouli, Moncef

    2014-10-01

    The paper is concerned with dynamics of light solid in cavity with liquid subjected to rotational vibration in the external force field. New vibrational phenomenon - diving of a light cylinder to the cavity bottom is found. The experimental investigation of a horizontal annulus with a partition has shown that under vibration a light body situated in the upper part of the layer is displaced in a threshold manner some distance away from the boundary. In this case the body executes symmetric tangential oscillations. An increase of the vibration intensity leads to a tangential displacement of the body near the external boundary. This displacement is caused by the tangential component of the vibrational lift force, which appears as soon as the oscillations lose symmetry. In this case the trajectory of the body oscillatory motion has the form of a loop. The tangential lift force makes stable the position of the body on the inclined section of the layer and even in its lower part. A theoretical interpretation has been proposed, which explains stabilization of a quasi-equilibrium state of a light body near the cavity bottom in the framework of vibrational hydromechanics.

  20. Test device for measuring permeability of a barrier material

    Science.gov (United States)

    Reese, Matthew; Dameron, Arrelaine; Kempe, Michael

    2014-03-04

    A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed thereon and an edge seal which seals the test card to the barrier material. Another exemplary embodiment is an electrical calcium test device comprising: a test card an impermeable spacer, an edge seal which seals the test card to the spacer and an edge seal which seals the spacer to the barrier material.

  1. Deviations of frequency and the mode of vibration of commercially available whole-body vibration training devices.

    Science.gov (United States)

    Kaeding, T S

    2015-06-01

    Research in the field of whole body vibration (WBV) training and the use of it in practice might be hindered by the fact that WBV training devices generate and transmit frequencies and/or modes of vibration which are different to preset adjustments. This research project shall clarify how exact WBV devices apply the by manufacturer information promised preset frequency and mode of vibration. Nine professional devices for WBV training were tested by means of a tri-axial accelerometer. The accelerations of each device were recorded under different settings with a tri-axial accelerometer. Beneath the measurement of different combinations of preset frequency and amplitude the repeatability across 3 successive measurements with the same preset conditions and one measurement under loaded condition were carried out. With 3 exceptions (both Board 3000 & srt medical PRO) we did not find noteworthy divergences between preset and actual applied frequencies. In these 3 devices we found divergences near -25%. Loading the devices did not affect the applied frequency or mode of vibration. There were no important divergences measurable for the applied frequency and mode of vibration regarding repeatability. The results of our measurements cannot be generalized as we only measured one respectively at most two devices of one model in terms of a random sample. Based on these results we strongly recommend that user in practice and research should analyse their WBV training devices regarding applied frequency and mode of vibration.

  2. Relative Power of the Wilcoxon Test, the Friedman Test, and Repeated-Measures ANOVA on Ranks.

    Science.gov (United States)

    Zimmerman, Donald W.; Zumbo, Bruno D.

    1993-01-01

    Comparisons of the Wilcoxon test, Friedman test, and repeated-measures analysis of variance (ANOVA) on ranks in a computer simulation show that the Friedman test performs like the sign test whereas the ANOVA performs like the Wilcoxon test. Classification of these tests in introductory statistics textbooks should be revised. (SLD)

  3. Infra-red and vibration tests of hybrid ablative/ceramic matrix technological breadboards for earth re-entry thermal protection systems

    Science.gov (United States)

    Barcena, Jorge; Garmendia, Iñaki; Triantou, Kostoula; Mergia, Konstatina; Perez, Beatriz; Florez, Sonia; Pinaud, Gregory; Bouilly, Jean-Marc; Fischer, Wolfgang P. P.

    2017-05-01

    A new thermal protection system for atmospheric earth re-entry is proposed. This concept combines the advantages of both reusable and ablative materials to establish a new hybrid concept with advanced capabilities. The solution consists of the design and the integration of a dual shield resulting on the overlapping of an external thin ablative layer with a Ceramic Matrix Composite (CMC) thermo-structural core. This low density ablative material covers the relatively small heat peak encountered during re-entry the CMC is not able to bear. On the other hand the big advantage of the CMC based TPS is of great benefit which can deal with the high integral heat for the bigger time period of the re-entry. To verify the solution a whole testing plan is envisaged, which as part of it includes thermal shock test by infra-red heating (heating flux up to 1 MW/m2) and vibration test under launcher conditions (Volna and Ariane 5). Sub-scale tile samples (100×100 mm2) representative of the whole system (dual ablator/ceramic layers, insulation, stand-offs) are specifically designed, assembled and tested (including the integration of thermocouples). Both the thermal and the vibration test are analysed numerically by simulation tools using Finite Element Models. The experimental results are in good agreement with the expected calculated parameters and moreover the solution is qualified according to the specified requirements.

  4. Identification of aeroelastic forces and static drag coefficients of a twin cable bridge stay from full-scale ambient vibration measurements

    DEFF Research Database (Denmark)

    Acampora, Antonio; Georgakis, Christos T.; Macdonald, J.H.G.

    2014-01-01

    rather than reduced velocity, indicating that Reynolds number governs the aeroelastic effects in these conditions. There is a significant drop in the aerodynamic damping in the critical Reynolds number range, which is believed to be related to the large amplitude cable vibrations observed on some bridges...... presents results from full-scale measurements on the special arrangement of twin cables adopted for the Øresund Bridge. The monitoring system records wind and weather conditions, as well as accelerations of certain cables and a few locations on the deck and tower. Using the Eigenvalue Realization Algorithm...... (ERA), the damping and stiffness matrices are identified for different vibration modes of the cables, with sufficient accuracy to identify changes in the total effective damping and stiffness matrices due to the aeroelastic forces acting on the cables. The damping matrices identified from the full...

  5. Energy Finite Element Analysis for Computing the High Frequency Vibration of the Aluminum Testbed Cylinder and Correlating the Results to Test Data

    Science.gov (United States)

    Vlahopoulos, Nickolas

    2005-01-01

    The Energy Finite Element Analysis (EFEA) is a finite element based computational method for high frequency vibration and acoustic analysis. The EFEA solves with finite elements governing differential equations for energy variables. These equations are developed from wave equations. Recently, an EFEA method for computing high frequency vibration of structures either in vacuum or in contact with a dense fluid has been presented. The presence of fluid loading has been considered through added mass and radiation damping. The EFEA developments were validated by comparing EFEA results to solutions obtained by very dense conventional finite element models and solutions from classical techniques such as statistical energy analysis (SEA) and the modal decomposition method for bodies of revolution. EFEA results have also been compared favorably with test data for the vibration and the radiated noise generated by a large scale submersible vehicle. The primary variable in EFEA is defined as the time averaged over a period and space averaged over a wavelength energy density. A joint matrix computed from the power transmission coefficients is utilized for coupling the energy density variables across any discontinuities, such as change of plate thickness, plate/stiffener junctions etc. When considering the high frequency vibration of a periodically stiffened plate or cylinder, the flexural wavelength is smaller than the interval length between two periodic stiffeners, therefore the stiffener stiffness can not be smeared by computing an equivalent rigidity for the plate or cylinder. The periodic stiffeners must be regarded as coupling components between periodic units. In this paper, Periodic Structure (PS) theory is utilized for computing the coupling joint matrix and for accounting for the periodicity characteristics.

  6. Progress Letter Report on Bending Fatigue Test System Development for Spent Nuclear Fuel Vibration Integrity Study (Out-of-cell fatigue testing development - Task 2.4)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Wang, Hong [ORNL; Cox, Thomas S [ORNL; Baldwin, Charles A [ORNL; Bevard, Bruce Balkcom [ORNL

    2013-08-01

    Vibration integrity of high burn-up spent nuclear fuel in transportation remains to be a critical component of US nuclear waste management system. The structural evaluation of package for spent fuel transportation eventually will need to see if the content or spent fuel is in a subcritical condition. However, a system for testing and characterizing such spent fuel is still lacking mainly due to the complication involved with dealing radioactive specimens in a hot cell environment. Apparently, the current state-of-the-art in spent fuel research and development is quite far away from the delivery of reliable mechanical property data for the assessment of spent fuels in the transport package evaluation. Under the sponsorship of US NRC, ORNL has taken the challenge in developing a robust testing system for spent fuel in hot cell. An extensive literature survey was carried out and unique requirements of such testing system were identified. The U-frame setup has come to the top among various designs examined for reverse bending fatigue test of spent fuel rod. The U-frame has many features that deserve mentioned here: Easy to install spent fuel rod in test; Less linkages than in conventional bending test setup such as three-point or four-point bending; Target the failure mode relevant to the fracture of spent fuel rod in transportation by focusing on pure bending; The continuous calibrations and modifications resulted in the third generation (3G) U-frame testing setup. Rigid arms are split along the LBB axis at rod sample ends. For each arm, this results in a large arm body and an end piece. Mating halves of bushings were modified into two V-shaped surfaces on which linear roller bearings (LRB) are embedded. The rod specimen is installed into the test fixture through opening and closing slide end-pieces. The 3G apparently has addressed major issues of setup identified in the previous stage and been proven to be eligible to be further pursued in this project. On the other

  7. Tests of a two-color interferometer and polarimeter for ITER density measurements

    Science.gov (United States)

    Van Zeeland, M. A.; Carlstrom, T. N.; Finkenthal, D. K.; Boivin, R. L.; Colio, A.; Du, D.; Gattuso, A.; Glass, F.; Muscatello, C. M.; O’Neill, R.; Smiley, M.; Vasquez, J.; Watkins, M.; Brower, D. L.; Chen, J.; Ding, W. X.; Johnson, D.; Mauzey, P.; Perry, M.; Watts, C.; Wood, R.

    2017-12-01

    A full-scale 120 m path length ITER toroidal interferometer and polarimeter (TIP) prototype, including an active feedback alignment system, has been constructed and undergone initial testing at General Atomics. In the TIP prototype, two-color interferometry is carried out at 10.59 μm and 5.22 μm using a CO2 and quantum cascade laser (QCL) respectively while a separate polarimetry measurement of the plasma induced Faraday effect is made at 10.59 μm. The polarimeter system uses co-linear right and left-hand circularly polarized beams upshifted by 40 and 44 MHz acousto-optic cells respectively, to generate the necessary beat signal for heterodyne phase detection, while interferometry measurements are carried out at both 40 MHz and 44 MHz for the CO2 laser and 40 MHz for the QCL. The high-resolution phase information is obtained using an all-digital FPGA based phase demodulation scheme and precision clock source. The TIP prototype is equipped with a piezo tip/tilt stage active feedback alignment system responsible for minimizing noise in the measurement and keeping the TIP diagnostic aligned indefinitely on its 120 m beam path including as the ITER vessel is brought from ambient to operating temperatures. The prototype beam path incorporates translation stages to simulate ITER motion through a bake cycle as well as other sources of motion or misalignment. Even in the presence of significant motion, the TIP prototype is able to meet ITER’s density measurement requirements over 1000 s shot durations with demonstrated phase resolution of 0.06° and 1.5° for the polarimeter and vibration compensated interferometer respectively. TIP vibration compensated interferometer measurements of a plasma have also been made in a pulsed radio frequency device and show a line-integrated density resolution of δ {nL}=3.5× {10}17 m‑2.

  8. Vibration Durability Testing of Nickel Manganese Cobalt Oxide (NMC) Lithium-Ion 18,650 Battery Cells

    OpenAIRE

    Hooper, James Michael; Marco, James; Chouchelamane, Gael H.; Lyness, Christopher

    2016-01-01

    Electric vehicle (EV) manufacturers are employing cylindrical format cells in the construction of the vehicles’ battery systems. There is evidence to suggest that both the academic and industrial communities have evaluated cell degradation due to vibration and other forms of mechanical loading. The primary motivation is often the need to satisfy the minimum requirements for safety certification. However, there is limited research that quantifies the durability of the battery and in particular...

  9. The C-Test: An Integrative Measure of Crystallized Intelligence

    OpenAIRE

    Purya Baghaei; Mona Tabatabaee

    2015-01-01

    Crystallized intelligence is a pivotal broad ability factor in the major theories of intelligence including the Cattell-Horn-Carroll (CHC) model, the three-stratum model, and the extended Gf-Gc (fluid intelligence-crystallized intelligence) model and is usually measured by means of vocabulary tests and other verbal tasks. In this paper the C-Test, a text completion test originally proposed as a test of general proficiency in a foreign language, is introduced as an integrative measure of cryst...

  10. Experimental identification of viscous damping in linear vibration

    Science.gov (United States)

    Srikantha Phani, A.; Woodhouse, J.

    2009-01-01

    This paper is concerned with the experimental evaluation of the performance of viscous damping identification methods in linear vibration theory. Both existing and some new methods proposed by the present authors [A.S. Phani, J. Woodhouse, Viscous damping identification in linear vibration, Journal of Sound and Vibration 303 (3-5) (2007) 475-500] are applied to experimental data measured on two test structures: a coupled three cantilever beam with moderate modal overlap and a free-free beam with low modal overlap. The performance of each method is quantified and compared based on three norms and the best methods are identified. The role of complex modes in damping identification from vibration measurements is critically assessed.

  11. Measures used by medical students to reduce test anxiety

    National Research Council Canada - National Science Library

    Afzal, Hasnain; Afzal, Sara; Siddique, Saad Ahmed; Naqvi, Syed Anwar Ahmad

    2012-01-01

    .... The 10-item Westside Test Anxiety Scale, was used to measure anxiety and the pre-designed questionnaire asked the students about the frequent measures used by them to overcome anxiety during exams...

  12. Improving measurement-invariance assessments: correcting entrenched testing deficiencies

    OpenAIRE

    Hayduk, Leslie A

    2016-01-01

    Background Factor analysis historically focused on measurement while path analysis employed observed variables as though they were error-free. When factor- and path-analysis merged as structural equation modeling, factor analytic notions dominated measurement discussions ? including assessments of measurement invariance across groups. The factor analytic tradition fostered disregard of model testing and consequently entrenched this deficiency in measurement invariance assessments. Discussion ...

  13. Development of a phase-sensitive Fourier domain optical coherence tomography system to measure mouse organ of Corti vibrations in two cochlear turns

    Energy Technology Data Exchange (ETDEWEB)

    Ramamoorthy, Sripriya [Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon (United States); Zhang, Yuan; Jacques, Steven [Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon (United States); Petrie, Tracy; Wang, Ruikang [Department of Bioengineering, University of Washington, Seattle, Washington (United States); Nuttall, Alfred L. [Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon (United States); Kresge Hearing Research Institute, The University of Michigan, Ann Arbor, Michigan (United States)

    2015-12-31

    In this study, we have developed a phase-sensitive Fourier-domain optical coherence tomography system to simultaneously measure the in vivo inner ear vibrations in the hook area and second turn of the mouse cochlea. This technical development will enable measurement of intra-cochlear distortion products at ideal locations such as the distortion product generation site and reflection site. This information is necessary to un-mix the complex mixture of intra-cochlear waves comprising the DPOAE and thus leads to the non-invasive identification of the local region of cochlear damage.

  14. Prognostic and Remaining Life Prediction of Electronic Device under Vibration Condition Based on CPSD of MPI

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2016-01-01

    Full Text Available Prognostic of electronic device under vibration condition can help to get information to assist in condition-based maintenance and reduce life-cycle cost. A prognostic and remaining life prediction method for electronic devices under random vibration condition is proposed. Vibration response is measured and monitored with acceleration sensor and OMA parameters, including vibration resonance frequency, especially first-order resonance frequency, and damping ratio is calculated with cross-power spectrum density (CPSD method and modal parameter identification (MPI algorithm. Steinberg vibration fatigue model which considers transmissibility factor is used to predict the remaining life of electronic component. Case study with a test board is carried out and remaining life is predicted. Results show that with this method the vibration response characteristic can be monitored and predicted.

  15. Setting up of a theoretical-experimental approach for the measurement of the vibrational impact on cultural heritages due to vehicular traffic

    Directory of Open Access Journals (Sweden)

    Salvatore Barbaro

    2006-02-01

    Full Text Available During the last years, the constant increase of the request for transport by road and by rail, connected to the economic and social development process, has provoked the birth of the phenomenon of the vibrations induced by the means of transports, with the result of stimulating the resident population's curiosity and the technical personnel's interest. Into the historic centres of the towns, it is possible to trace a series of concomitant factors that tend further to increase this process: the road superstructure mostly used in the historical centres are often stony, and their usage is due mainly to aesthetic reasons; the no-measurement or the lack of maintenance are often the causes of high levels of roughness; the buildings set into the historical centres have got a historical-art value of primary importance and some part of them (such as mosaics, pictures, etc. are very sensitive to vibrations, being sticking to the outside walls; According to what said above, the noisy and vibrations provoked by the road traffic are becoming even more one of the main cause of the environmental damage.

  16. Sub-surface characterization of the Anphiteatrum Flavium Area (Rome, Italy through single-station ambient vibration measurements

    Directory of Open Access Journals (Sweden)

    Salomon Hailemikael

    2017-07-01

    Our results point out that there is a strong temporal and spatial stability of the H/V curves, suggesting a uniform seismic response at the monument site. Conversely, spectral amplitudes of AMV show relevant temporal and spatial variability at the investigated site, due to the daily variations of AMV levels and to the low-pass filtering effect of the stiff Amphiteatrum Flavium foundation that strongly attenuates the signals for frequencies above 4 Hz, i.e. those mostly originated by traffic vibrations. Moreover, we observe that the main vibration frequencies of the super-structure are not present as energetic peaks in the spectra of the ground-motion recorded at its base.

  17. Effect of shelf aging on vibration transmissibility of anti-vibration gloves.

    Science.gov (United States)

    Shibata, Nobuyuki

    2017-10-05

    Anti-vibration gloves have been used in real workplaces to reduce vibration transmitted through hand-held power tools to the hand. Generally materials used for vibration attenuation in gloves are resilient materials composed of certain synthetic and/or composite polymers. The mechanical characteristics of the resilient materials used in anti-vibration gloves are prone to be influenced by environmental conditions such as temperature, humidity, and photo-irradiation, which cause material degradation and aging. This study focused on the influence of shelf aging on the vibration attenuation performance of air-packaged anti-vibration gloves following 2 years of shelf aging. Effects of shelf aging on the vibration attenuation performance of anti-vibration gloves were examined according to the Japan industrial standard JIS T8114 test protocol. The findings indicate that shelf aging induces the reduction of vibration attenuation performance in air-packaged anti-vibration gloves.

  18. Measuring Writing Ability with the Cloze Test is not Closed.

    Science.gov (United States)

    Esau, Helmut; Yost, Carlson

    This paper describes an experiment that was undertaken to examine the usefulness of the cloze test as an objective measure of a native speaker's writing ability. A modified version of the cloze test used by Oller and others to measure integrative language skills in non-native speakers was given to 100 freshman English students. The test…

  19. 40 CFR 86.154-98 - Measurement procedure; refueling test.

    Science.gov (United States)

    2010-07-01

    ... measurement portion of the refueling test shall be performed as follows: (1) The line from the fuel tank(s) to... Administrator conducts the non-integrated system partial refueling test, the fuel flow shall continue until the... refueling tests. The fuel flow shall continue until the refueling nozzle automatic shut-off is activated...

  20. Score-based tests of measurement invariance: Use in practice

    Directory of Open Access Journals (Sweden)

    Ting eWang

    2014-05-01

    Full Text Available In this paper, we consider a family of recently-proposed measurement invariance tests that are based on the scores of a fitted model. This family can be used to test for measurement invariance w.r.t. a continuous auxiliary variable, without pre-specification of subgroups. Moreover, the family can be used when one wishes to test for measurement invariance w.r.t. an ordinal auxiliary variable, yielding test statistics that are sensitive to violations that are monotonically related to the ordinal variable (and less sensitive to non-monotonic violations. The paper is specifically aimed at potential users of the tests who may wish to know (i how the tests can be employed for their data, and (ii whether the tests can accurately identify specific models parameters that violate measurement invariance (possibly in the presence of model misspecification. After providing an overview of the tests, we illustrate their general use via the R packages lavaan and strucchange. We then describe two novel simulations that provide evidence of the tests' practical abilities. As a whole, the paper provides researchers with the tools and knowledge needed to apply these tests to general measurement invariance scenarios.

  1. PREDICTION THE EVOLUTION OF TEMPERATURE AND VIBRATIONS ON SPINDLE USING ARTIFICIAL NEURAL NETWORKS AND FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Daniel Petru GHENCEA

    2016-05-01

    Full Text Available Simulation spindle behavior in terms of temperature and vibration at higher speeds is more economical and more secure (avoid undesirable mechanical events than testing practice. Testing practice has an important role in finalizing the product but throughout the course of prototype testing is more advantageous economic development simulation parameters based on data sets collected to dangerous speeds. In this paper we present an analysis mode hybrid (artificial neural networks - fuzzy logic on prediction the evolution of temperatures and vibrations at higher speeds for which no measurements were made. The main advantage of the method is the simultaneous prediction of the dynamics of temperature and vibration levels.

  2. FLOW-INDUCED VIBRATION IN PIPES: CHALLENGESS AND SOLUTIONS - A REVIEW

    Directory of Open Access Journals (Sweden)

    M. SIBA

    2016-03-01

    Full Text Available The Flow-induced vibration has recently been the topic of experimental, numerical, and theoretical studies. It was intended to implement better applications for controlling the flow using orifice technique. Having the flow under control, the orifice becomes an instrument for measuring the flow. The flow of all fluid such as water, oil, gas and vapours through an orifice was tested and mathematical models were developed adequately. The basic theme for these enormous studies was the need for the very accurate flow measurements through orifices. All experimental, theoretical, numerical, and analytical studies have agreed that there is more than one avenue to develop, modify, and enhance such measurements. However, one factor that affects the flow measurements is the vibration which was not treated as required until the mid-20th century due to enormous discoveries that damages could be rooted to vibration. Researchers have studied vibration and then proposed mathematical models in conjunction with the pressure and velocity measurements of the flowing fluids and then the effect of the vibration, induced or not induced, has been under continuous investigation. This paper is an attempt to review the previous studies regarding understanding the nature of the vibration and the possible effects of vibration on the flow and on the piping structure in order to limit the damage caused by the vibration. This study shows that the need for more experimental studies and more comprehensive analytical approaches are, in particular, very essential to develop better results.

  3. The C-Test: An Integrative Measure of Crystallized Intelligence

    Directory of Open Access Journals (Sweden)

    Purya Baghaei

    2015-05-01

    Full Text Available Crystallized intelligence is a pivotal broad ability factor in the major theories of intelligence including the Cattell-Horn-Carroll (CHC model, the three-stratum model, and the extended Gf-Gc (fluid intelligence-crystallized intelligence model and is usually measured by means of vocabulary tests and other verbal tasks. In this paper the C-Test, a text completion test originally proposed as a test of general proficiency in a foreign language, is introduced as an integrative measure of crystallized intelligence. Based on the existing evidence in the literature, it is argued that the construct underlying the C-Test closely matches the abilities underlying the language component of crystallized intelligence, as defined in the well-established theories of intelligence. It is also suggested that by carefully selecting texts from pertinent knowledge domains, the factual knowledge component of crystallized intelligence could also be measured by the C-Test.

  4. NedWind 25 Blade Testing at NREL for the European Standards Measurement and Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    Larwood, S.; Musial, W.; Freebury, G.; Beattie, A.G.

    2001-04-19

    In the mid-90s the European community initiated the Standards, Measurements, and Testing (SMT) program to harmonize testing and measurement procedures in several industries. Within the program, a project was carried out called the European Wind Turbine Testing Procedure Development. The second part of that project, called Blade Test Methods and Techniques, included the United States and was devised to help blade-testing laboratories harmonize their testing methods. This report provides the results of those tests conducted by the National Renewable Energy Laboratory.

  5. Vibrational spectroscopy of resveratrol

    Science.gov (United States)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő

    2007-11-01

    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  6. Man-Induced Vibrations

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Hansen, Lars Pilegaard

    1994-01-01

    concerned with spectator-induced vertical vibrations on grandstands. The idea is to use impulse response analysis and base the load description on the load impulse. If the method is feasable, it could be used in connection with the formulation of requirements in building codes. During the last two decades...... work has been done on the measurement of the exact load functions and related reponse analysis. A recent work using a spectral description has been performed by Per-Erik Erikson and includes a good literature survey. Bachmann and Ammann give a good overview of vibrations caused by human activity. Other...

  7. Vibrating minds

    CERN Document Server

    2009-01-01

    Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.

  8. Analysis of algorithms for detection of resonance frequencies in vibration measurements on super heater tubes; Analys av algoritmer foer detektering av resonansfrekvenser i vibrationsmaetningar paa oeverhettartuber

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Daniel

    2010-07-01

    Combustion of fuel in thermal power plants emits particles which creates coatings on the super heater tubes. The coatings isolate the tubes and impairs the efficiency of the heat transfer. Cleaning the tubes occurs while the power plant is running but without any knowledge of the actual coating. A change in frequency corresponds to a change in mass of the coatings. This thesis has been focusing in estimating resonance frequencies in vibration measurements made by strain gauges on the tubes. To improve the estimations a target tracking algorithm had been added. The results indicates that it is possible to estimate the resonance frequencies but the algorithms need to be verified on more signals.

  9. FY 2016 Status Report: CIRFT Testing Data Analyses and Updated Curvature Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    This report provides a detailed description of FY15 test result corrections/analysis based on the FY16 Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) test program methodology update used to evaluate the vibration integrity of spent nuclear fuel (SNF) under normal transportation conditions. The CIRFT consists of a U-frame testing setup and a real-time curvature measurement method. The three-component U-frame setup of the CIRFT has two rigid arms and linkages to a universal testing machine. The curvature of rod bending is obtained through a three-point deflection measurement method. Three linear variable differential transformers (LVDTs) are used and clamped to the side connecting plates of the U-frame to capture the deformation of the rod. The contact-based measurement, or three-LVDT-based curvature measurement system, on SNF rods has been proven to be quite reliable in CIRFT testing. However, how the LVDT head contacts the SNF rod may have a significant effect on the curvature measurement, depending on the magnitude and direction of rod curvature. It has been demonstrated that the contact/curvature issues can be corrected by using a correction on the sensor spacing. The sensor spacing defines the separation of the three LVDT probes and is a critical quantity in calculating the rod curvature once the deflections are obtained. The sensor spacing correction can be determined by using chisel-type probes. The method has been critically examined this year and has been shown to be difficult to implement in a hot cell environment, and thus cannot be implemented effectively. A correction based on the proposed equivalent gauge-length has the required flexibility and accuracy and can be appropriately used as a correction factor. The correction method based on the equivalent gauge length has been successfully demonstrated in CIRFT data analysis for the dynamic tests conducted on Limerick (LMK) (17 tests), North Anna (NA) (6 tests), and Catawba mixed oxide (MOX

  10. Measuring and Modeling Change in Examinee Effort on Low-Stakes Tests across Testing Occasions

    Science.gov (United States)

    Sessoms, John; Finney, Sara J.

    2015-01-01

    Because schools worldwide use low-stakes tests to make important decisions, value-added indices computed from test scores must accurately reflect student learning, which requires equal test-taking effort across testing occasions. Evaluating change in effort assumes effort is measured equivalently across occasions. We evaluated the longitudinal…

  11. THE PROBLEM OF IMPROVEMENT OF THE AVIONIC EQUIPMENT VIBRATION RESISTANCE

    Directory of Open Access Journals (Sweden)

    E. A. Danilova

    2017-01-01

    Full Text Available The article gives an approach to a solution of the problem of improvement the avionic equipment vibration resistance. It is shown that the use of the tests, which are provided by the state standards do not insure the required level of the failures caused by mechanical damages. Due to the fact that the tests are carried out restrictedly they do not completely reveal the main resonant phenomena, which define the structure vibrational strength. It is shown that the main challenges of the improvement are to increase the adequacy of test and real modes of vibration, to increase the accuracy of reproduction of the test modes on shake tables and also to increase the reliability of measuring information about the modes of vibration and dynamic responses of an object of researches and to increase the information capacity of the vibrational tests. To ensure the equivalence of the test modes to the modes of maintenance the modes of tests are provided, they are not created by in-phase submission of a test signal in points of fixing the printed circuit boards. It is shown that with the help of control over the amplitudes and phases of affecting signals on resonance frequencies the displacement of maxima deflection in the area of the printed circuit board is possible and, thereby, it is enable to increase the reliability. The received results of mathematical simulation and their correlation with the results of full-scale tests specified on the limitation of vibration tests by means of standard techniques. The conclusion about the necessity of full-scale tests modifications is drawn.

  12. Hidden dangers revealed by misdiagnosed diabetic neuropathy: A comparison of simple clinical tests for the screening of vibration perception threshold at primary care level.

    Science.gov (United States)

    Azzopardi, Kurt; Gatt, Alfred; Chockalingam, Nachiappan; Formosa, Cynthia

    2017-10-10

    Diabetic peripheral neuropathy is an important complication and contributes to the morbidity of diabetes mellitus. Evidence indicates early detection of diabetic peripheral neuropathy results in fewer foot ulcers and amputations. The aim of this study was to compare different screening modalities in the detection of diabetic peripheral neuropathy in a primary care setting. A prospective non-experimental comparative multi-centre cross sectional study was conducted in various Primary Health Centres. One hundred participants living with Type 2 diabetes for at least 10 years were recruited using a convenience sampling method. The Vibratip, 128Hz tuning fork and neurothesiometer were compared in the detection of vibration perception. This study showed different results of diabetic peripheral neuropathy screening tests, even in the same group of participants. This study has shown that the percentage of participants who did not perceive vibrations was highest when using the VibraTip (28.5%). This was followed by the neurothesiometer (21%) and the 128Hz tuning fork (12%) (pneuropathy in patients with diabetes is crucial. This study demonstrates that some instruments are more sensitive to vibration perception than others. We recommend that different modalities should be used in patients with diabetes and when results do not concur, further neurological evaluation should be performed. This would significantly reduce the proportion of patients with diabetes who would be falsely identified as having no peripheral neuropathy and subsequently denied the benefit of beneficial and effective secondary risk factor control. Copyright © 2017 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  13. Developing and testing pediatric oral healthcare quality measures.

    Science.gov (United States)

    Herndon, Jill Boylston; Crall, James J; Aravamudhan, Krishna; Catalanotto, Frank A; Huang, I-Chan; Rudner, Nancy; Tomar, Scott L; Shenkman, Elizabeth A

    2015-01-01

    This study describes processes used to develop and test pediatric oral healthcare quality measures and provides recommendations for implementation. At the request of the Centers for Medicare and Medicaid Services, the Dental Quality Alliance (DQA) was formed in 2008 as a multi-stakeholder group to develop oral healthcare quality measures. For its initial focus on pediatric care, measure development processes included a literature review and environmental scan to identify relevant measure concepts, which were rated on importance, feasibility, and validity using the RAND/UCLA modified Delphi approach. These measure concepts and a gap assessment led to the development of a proposed set of measures that were tested for feasibility, reliability, and validity. Of 112 measure concepts identified, 59 met inclusion criteria to undergo formal rating. Twenty-one of 59 measure concepts were rated as "high scoring." Subsequently, 11 quality and related care delivery measures comprising a proposed pediatric starter set were developed and tested; 10 measures met feasibility, reliability, and validity criteria and were approved by the DQA stakeholder membership. These measures are currently being incorporated into Medicaid, Children's Health Insurance Program, and commercial quality improvement programs. Broad stakeholder engagement, rigorous measure development and testing processes, and regular opportunities for public input contributed to the development and validation of the first set of fully specified and tested pediatric oral healthcare quality measures, which have high feasibility for implementation in both public and private sectors. This achievement marks an important essential step toward improving oral healthcare and oral health outcomes for children. © 2015 American Association of Public Health Dentistry.

  14. Determining Damping Trends from a Range of Cable Harness Assemblies on a Launch Vehicle Panel from Test Measurements

    Science.gov (United States)

    Smith, Andrew; Davis, R. Ben; LaVerde, Bruce; Jones, Douglas

    2012-01-01

    The team of authors at Marshall Space Flight Center (MSFC) has been investigating estimating techniques for the vibration response of launch vehicle panels excited by acoustics and/or aero-fluctuating pressures. Validation of the approaches used to estimate these environments based on ground tests of flight like hardware is of major importance to new vehicle programs. The team at MSFC has recently expanded upon the first series of ground test cases completed in December 2010. The follow on tests recently completed are intended to illustrate differences in damping that might be expected when cable harnesses are added to the configurations under test. This validation study examines the effect on vibroacoustic response resulting from the installation of cable bundles on a curved orthogrid panel. Of interest is the level of damping provided by the installation of the cable bundles and whether this damping could be potentially leveraged in launch vehicle design. The results of this test are compared with baseline acoustic response tests without cables. Damping estimates from the measured response data are made using a new software tool that employs a finite element model (FEM) of the panel in conjunction with advanced optimization techniques. This paper will report on the \\damping trend differences. observed from response measurements for several different configurations of cable harnesses. The data should assist vibroacoustics engineers to make more informed damping assumptions when calculating vibration response estimates when using model based analysis approach. Achieving conservative estimates that have more flight like accuracy is desired. The paper may also assist analysts in determining how ground test data may relate to expected flight response levels. Empirical response estimates may also need to be adjusted if the measured response used as an input to the study came from a test article without flight like cable harnesses.

  15. 76 FR 1136 - Electroshock Weapons Test and Measurement Workshop

    Science.gov (United States)

    2011-01-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE National Institute of Standards and Technology Electroshock Weapons Test and Measurement Workshop AGENCY: National Institute of Standards and Technology (NIST), United States Department of Commerce. ACTION: Notice...

  16. Canadian Health Measures Survey pre-test: design, methods, results.

    Science.gov (United States)

    Tremblay, Mark; Langlois, Renée; Bryan, Shirley; Esliger, Dale; Patterson, Julienne

    2007-01-01

    The Canadian Health Measures Survey (CHMS) pre-test was conducted to provide information about the challenges and costs associated with administering a physical health measures survey in Canada. To achieve the specific objectives of the pre-test, protocols were developed and tested, and methods for household interviewing and clinic testing were designed and revised. The cost, logistics and suitability of using fixed sites for the CHMS were assessed. Although data collection, transfer and storage procedures are complex, the pre-test experience confirmed Statistics Canada's ability to conduct a direct health measures survey and the willingness of Canadians to participate in such a health survey. Many operational and logistical procedures worked well and, with minor modifications, are being employed in the main survey. Fixed sites were problematic, and survey costs were higher than expected.

  17. Laboratory and workplace assessments of rivet bucking bar vibration emissions.

    Science.gov (United States)

    McDowell, Thomas W; Warren, Christopher; Xu, Xueyan S; Welcome, Daniel E; Dong, Ren G

    2015-04-01

    Sheet metal workers operating rivet bucking bars are at risk of developing hand and wrist musculoskeletal disorders associated with exposures to hand-transmitted vibrations and forceful exertions required to operate these hand tools. New bucking bar technologies have been introduced in efforts to reduce workplace vibration exposures to these workers. However, the efficacy of these new bucking bar designs has not been well documented. While there are standardized laboratory-based methodologies for assessing the vibration emissions of many types of powered hand tools, no such standard exists for rivet bucking bars. Therefore, this study included the development of a laboratory-based method for assessing bucking bar vibrations which utilizes a simulated riveting task. With this method, this study evaluated three traditional steel bucking bars, three similarly shaped tungsten alloy bars, and three bars featuring spring-dampeners. For comparison the bucking bar vibrations were also assessed during three typical riveting tasks at a large aircraft maintenance facility. The bucking bars were rank-ordered in terms of unweighted and frequency-weighted acceleration measured at the hand-tool interface. The results suggest that the developed laboratory method is a reasonable technique for ranking bucking bar vibration emissions; the lab-based riveting simulations produced similar rankings to the workplace rankings. However, the laboratory-based acceleration averages were considerably lower than the workplace measurements. These observations suggest that the laboratory test results are acceptable for comparing and screening bucking bars, but the laboratory measurements should not be directly used for assessing the risk of workplace bucking bar vibration exposures. The newer bucking bar technologies exhibited significantly reduced vibrations compared to the traditional steel bars. The results of this study, together with other information such as rivet quality, productivity, tool

  18. Vibrations transmitted from human hands to upper arm, shoulder, back, neck, and head.

    Science.gov (United States)

    Xu, Xueyan S; Dong, Ren G; Welcome, Daniel E; Warren, Christopher; McDowell, Thomas W; Wu, John Z

    2017-12-01

    Some powered hand tools can generate significant vibration at frequencies below 25 Hz. It is not clear whether such vibration can be effectively transmitted to the upper arm, shoulder, neck, and head and cause adverse effects in these substructures. The objective of this study is to investigate the vibration transmission from the human hands to these substructures. Eight human subjects participated in the experiment, which was conducted on a 1-D vibration test system. Unlike many vibration transmission studies, both the right and left hand-arm systems were simultaneously exposed to the vibration to simulate a working posture in the experiment. A laser vibrometer and three accelerometers were used to measure the vibration transmitted to the substructures. The apparent mass at the palm of each hand was also measured to help in understanding the transmitted vibration and biodynamic response. This study found that the upper arm resonance frequency was 7-12 Hz, the shoulder resonance was 7-9 Hz, and the back and neck resonances were 6-7 Hz. The responses were affected by the hand-arm posture, applied hand force, and vibration magnitude. The transmissibility measured on the upper arm had a trend similar to that of the apparent mass measured at the palm in their major resonant frequency ranges. The implications of the results are discussed. Musculoskeletal disorders (MSDs) of the shoulder and neck are important issues among many workers. Many of these workers use heavy-duty powered hand tools. The combined mechanical loads and vibration exposures are among the major factors contributing to the development of MSDs. The vibration characteristics of the body segments examined in this study can be used to help understand MSDs and to help develop more effective intervention methods.

  19. Pressure-Decay Measurements Improve Bubble-Point Test

    Science.gov (United States)

    Silkey, J. S.; Orton, G. F.

    1983-01-01

    Technique reduces by factor of about 100 minimum detectable flaw size in bubble-point test. By measuring rate of slow leakage, flaws as small as about 10-4 in. 2 (0.06mm2) are detected. Since technique does not require observation of screen, tests run on screens already installed inside tanks and pipes.

  20. A Measure of Failure: The Political Origins of Standardized Testing

    Science.gov (United States)

    Garrison, Mark J.

    2009-01-01

    How did standardized tests become the measure of performance in our public schools? In this compelling work, Mark J. Garrison attempts to answer this question by analyzing the development of standardized testing, from the days of Horace Mann and Alfred Binet to the current scene. Approaching the issue from a sociohistorical perspective, the author…