WorldWideScience

Sample records for test site mixed

  1. Preparations for Mixed Waste Disposal at the Nevada Test Site

    International Nuclear Information System (INIS)

    Clark, D.K.; Perez, P.A.; Doyle, G.

    2006-01-01

    The Radioactive Waste Management Complex (RWMC) at the Nevada Test Site (NTS) is preparing for the receipt and disposal of low-level mixed waste (MV) generated within the U.S. Department of Energy (DOE) complex. The NTS maintains and develops disposal locations to accommodate various waste forms, and is engaged in developing verification and handling processes to ensure proper acceptance and disposal. Operations at the RWMC are focused on ensuring future disposal needs can be accommodated with a maximum benefit to risk ratio. This paper addresses the programmatic developments implemented at the NTS to accommodate the receipt, verification, and disposal of MW. The Radioactive Waste Acceptance Program (RWAP) has incorporated aspects of the Waste Analysis Plan (WAP) into the Nevada Test Site Waste Acceptance Criteria (NTSWAC). The verification program includes statistical sampling components that take into account waste form, program reliability, and other factors. The WAP allows for a conglomerate of verification techniques including visual examination, non-destructive examination, and chemical screening ensuring compliance with the NTSWAC. The WAP also provides for the acceptance of MW with most U.S. Environmental Protection Agency waste codes. The MW sent to the NTS for disposal must meet Land-Disposal Restriction standards. To support the verification processes outlined in the WAP, a Real-Time-Radiography (RTR) facility was constructed. Using a 450 keV, 5-mA tube-head system with a bridge and manipulator assembly, MW packages can undergo non-destructive examination (x-ray) at the RWMC. Prior to the NTS accepting the waste shipment, standard waste boxes, drums, and nominally sized bulk items can be manipulated on a cart and examined directly or skewed in real-time to ensure compliance with NTSWAC requirement s An existing MW disposal cell at the RWMC has been tailored to meet the requirements of a Category 2 non-reactor Nuclear Facility. In retrofitting an existing

  2. Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations

    International Nuclear Information System (INIS)

    Carilli, J.T.; Krenzien, S.K.; Geisinger, R.G.; Gordon, S.J.; Quinn, B.

    2009-01-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams

  3. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    International Nuclear Information System (INIS)

    2009-01-01

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP)

  4. Development of a mixed waste management facility at the Nevada Test Site

    International Nuclear Information System (INIS)

    Dolenc, M.R.; Kendall, E.W.

    1989-01-01

    The US Department of Energy (DOE) produces some radioactive low-level wastes (LLW) which contain hazardous components. By definition, the management of those mixed wastes (MW) at the Nevada Test Site (NTS) requires compliance with US Environmental Protection Agency (EPA) and state of Nevada regulations for hazardous wastes, and DOE regulations for LLW. Preparations for operation of a separate Mixed Waste Management Unit (MWMU) in the 1990s are underway. The 167-acre MWMU will be a part of the 732-acre Area 5 Radioactive Waste Management Site (RWMS). The MWMU is being developed in response to a DOE Office of Defense Waste and Transporation Management need to provide enhanced capabilities and facilities for safe, secure, and efficient disposal of defense-related MW in accordance with DOE, EPA, and state of Nevada requirements. Planned activities relating to the development of the MWMU include completing National Environmental Policy Act (NEPA) requirements; responding to any notices of deficiencies (NODs) on the NTS Part B Permit application; conducting generator audits as part of the NTS MW certification program; optimizing the design and operation of the vadose zone monitoring system; developing protocols for the sampling and analysis of MW, and facility construction. This paper describes the permitting and regulatory environment, the specific application of the permit process to the NTS, and the phased development of an MWMU at the NTS

  5. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    U.S. Department of Energy, Nevada Operations Office, Waste Acceptance Criteria

    1999-01-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the Nevada Test Site

  6. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site: Proposed Mixed Waste Disposal Unit (MWSU)

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2010-07-19

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When the proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.

  7. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NSO Waste Management Project

    2008-06-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  8. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    International Nuclear Information System (INIS)

    NNSA/NSO Waste Management Project

    2008-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal

  9. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    Energy Technology Data Exchange (ETDEWEB)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    2005-07-01

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.

  10. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    International Nuclear Information System (INIS)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    2005-01-01

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal

  11. Macroencapsulated and elemental lead mixed waste sites report

    International Nuclear Information System (INIS)

    Kalia, A.; Jacobson, R.

    1996-09-01

    The purpose of this study was to compile a list of the Macroencapsulated (MACRO) and Elemental Lead (EL) Mixed Wastes sites that will be treated and require disposal at the Nevada Test Site within the next five to ten years. The five sites selected were: Hanford Site, Richland, Washington; Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho; Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee; Rocky Flats Environmental Technology (RF), Golden, Colorado; and Savannah River (SRS), Charleston, South Carolina. A summary of total lead mixed waste forms at the five selected DOE sites is described in Table E-1. This table provides a summary of total waste and grand total of the current inventory and five-year projected generation of lead mixed waste for each site. This report provides conclusions and recommendations for further investigations. The major conclusions are: (1) the quantity of lead mixed current inventory waste is 500.1 m 3 located at the INEL, and (2) the five sites contain several other waste types contaminated with mercury, organics, heavy metal solids, and mixed sludges

  12. Deployment of an Alternative Closure Cover and Monitoring System at the Mixed Waste Disposal Unit U-3ax/bl at the Nevada Test Site

    International Nuclear Information System (INIS)

    Levitt, D.G.; Fitzmaurice, T.M.

    2001-01-01

    In October 2000, final closure was initiated of U-3ax/bl, a mixed waste disposal unit at the Nevada Test Site (NTS). The application of approximately 30 cm of topsoil, composed of compacted native alluvium onto an operational cover, seeding of the topsoil, installation of soil water content sensors within the cover, and deployment of a drainage lysimeter facility immediately adjacent to the disposal unit initiated closure. This closure is unique in that it required the involvement of several U.S. Department of Energy (DOE) Environmental Management (EM) groups: Waste Management (WM), Environmental Restoration (ER), and Technology Development (TD). Initial site characterization of the disposal unit was conducted by WM. Regulatory approval for closure of the disposal unit was obtained by ER, closure of the disposal unit was conducted by ER, and deployment of the drainage lysimeter facility was conducted by WM and ER, with funding provided by the Accelerated Site Technology Deployment ( ASTD) program, administered under TD. In addition, this closure is unique in that a monolayer closure cover, also known as an evapotranspiration (ET) cover, consisting of native alluvium, received regulatory approval instead of a traditional Resource Conservation and Recovery Act (RCRA) multi-layered cover. Recent studies indicate that in the arid southwestern United States, monolayer covers may be more effective at isolating waste than layered covers because of the tendency of clay layers to desiccate and crack, and subsequently develop preferential pathways. The lysimeter facility deployed immediately adjacent to the closure cover consists of eight drainage lysimeters with three surface treatments: two were left bare; two were revegetated with native species; two were allowed to revegetate with invader species; and two are reserved for future studies. The lysimeters are constructed such that any drainage through the bottoms of the lysimeters can be measured. Sensors installed in the

  13. Methodology to remediate a mixed waste site

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J.B.

    1994-08-01

    In response to the need for a comprehensive and consistent approach to the complex issue of mixed waste management, a generalized methodology for remediation of a mixed waste site has been developed. The methodology is based on requirements set forth in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA) and incorporates ``lessons learned`` from process design, remediation methodologies, and remediation projects. The methodology is applied to the treatment of 32,000 drums of mixed waste sludge at the Oak Ridge K-25 Site. Process technology options are developed and evaluated, first with regard to meeting system requirements and then with regard to CERCLA performance criteria. The following process technology options are investigated: (1) no action, (2) separation of hazardous and radioactive species, (3) dewatering, (4) drying, and (5) solidification/stabilization. The first two options were eliminated from detailed consideration because they did not meet the system requirements. A quantitative evaluation clearly showed that, based on system constraints and project objectives, either dewatering or drying the mixed waste sludge was superior to the solidification/stabilization process option. The ultimate choice between the drying and the dewatering options will be made on the basis of a technical evaluation of the relative merits of proposals submitted by potential subcontractors.

  14. Methodology to remediate a mixed waste site

    International Nuclear Information System (INIS)

    Berry, J.B.

    1994-08-01

    In response to the need for a comprehensive and consistent approach to the complex issue of mixed waste management, a generalized methodology for remediation of a mixed waste site has been developed. The methodology is based on requirements set forth in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA) and incorporates ''lessons learned'' from process design, remediation methodologies, and remediation projects. The methodology is applied to the treatment of 32,000 drums of mixed waste sludge at the Oak Ridge K-25 Site. Process technology options are developed and evaluated, first with regard to meeting system requirements and then with regard to CERCLA performance criteria. The following process technology options are investigated: (1) no action, (2) separation of hazardous and radioactive species, (3) dewatering, (4) drying, and (5) solidification/stabilization. The first two options were eliminated from detailed consideration because they did not meet the system requirements. A quantitative evaluation clearly showed that, based on system constraints and project objectives, either dewatering or drying the mixed waste sludge was superior to the solidification/stabilization process option. The ultimate choice between the drying and the dewatering options will be made on the basis of a technical evaluation of the relative merits of proposals submitted by potential subcontractors

  15. Mixed mechanisms of multi-site phosphorylation.

    Science.gov (United States)

    Suwanmajo, Thapanar; Krishnan, J

    2015-06-06

    Multi-site phosphorylation is ubiquitous in cell biology and has been widely studied experimentally and theoretically. The underlying chemical modification mechanisms are typically assumed to be distributive or processive. In this paper, we study the behaviour of mixed mechanisms that can arise either because phosphorylation and dephosphorylation involve different mechanisms or because phosphorylation and/or dephosphorylation can occur through a combination of mechanisms. We examine a hierarchy of models to assess chemical information processing through different mixed mechanisms, using simulations, bifurcation analysis and analytical work. We demonstrate how mixed mechanisms can show important and unintuitive differences from pure distributive and processive mechanisms, in some cases resulting in monostable behaviour with simple dose-response behaviour, while in other cases generating new behaviour-like oscillations. Our results also suggest patterns of information processing that are relevant as the number of modification sites increases. Overall, our work creates a framework to examine information processing arising from complexities of multi-site modification mechanisms and their impact on signal transduction. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Mixed waste management at the Hanford Site

    International Nuclear Information System (INIS)

    Roberts, R.J.; Jasen, W.G.

    1991-01-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA) have led to the definition of a group of wastes called radioactive mixed wastes (RMW). As a result of the radioactive and hazardous properties of these wastes, special projects have been initiated for the management of RMW. This paper addresses the management of solid RMW. The management of bulk liquid RMW will not be described. 7 refs., 4 figs

  17. Patch testing with corticosteroid mixes in Europe

    DEFF Research Database (Denmark)

    Isaksson, M; Andersen, Klaus Ejner; Brandão, F M

    2000-01-01

    , each at 2 concentrations, were inserted into the standard series of 16 participating clinics. Tests were read on day (D) 3 or 4. 5432 patients were tested, and 110 (2.0%) had positive reactions to at least 1 of the 8 test preparations. Of the 8 preparations, mix I identified most allergic patients......This study investigated whether a corticosteroid mix containing tixocortol pivalate, budesonide, and hydrocortisone-17-butyrate could detect contact allergy to corticosteroids. 2 corticosteroid mixes, 1 with a high (mix I) and 1 with a low (mix II) concentration and the 3 individual constituents......, followed by mix II, budesonide 0.10%, budesonide 0.002%, and tixocortol pivalate, both concentrations (1.0 and 0.10%) tracing the same number. With the mixes, 53.2-59.6% of tixocortol pivalate allergy was missed. 47 patients were allergic to either concentration of tixocortol pivalate, 25% of these only...

  18. Nevada Test Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-10-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

  19. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal

  20. Patch testing with constituents of Compositae mixes.

    Science.gov (United States)

    Paulsen, Evy; Andersen, Klaus E

    2012-05-01

    The development of mixes containing Compositae plant extracts has improved the diagnosis of Compositae contact allergy, but none of them has fulfilled the criteria for an ideal European plant mix. To evaluate which constituents of two commercial Compositae mixes were most useful as screening agents. These comprised 76 patients testing positive to Compositae mix 6% in petrolatum and 29 patients testing positive to Compositae mix 5% pet., all of whom were tested with constituents of the respective mixes. The majority of patients tested positive to parthenolide or parthenolide-containing extracts, followed by German chamomile, yarrow, and arnica. As German chamomile is a weak sensitizer, the results suggest cross-reactions or reactions to unknown allergens. No one was positive to Roman chamomile. Even though parthenolide seems to be a suitable supplement to the baseline series, the results emphasize that it is important to patch test with extracts of native or locally grown plants, not only because of the geographical variation, but also because of the potential unknown allergens contained in short ether preparations and the variability in the individual patient's exposure and cross-reaction patterns. © 2012 John Wiley & Sons A/S.

  1. Statistical Tests for Mixed Linear Models

    CERN Document Server

    Khuri, André I; Sinha, Bimal K

    2011-01-01

    An advanced discussion of linear models with mixed or random effects. In recent years a breakthrough has occurred in our ability to draw inferences from exact and optimum tests of variance component models, generating much research activity that relies on linear models with mixed and random effects. This volume covers the most important research of the past decade as well as the latest developments in hypothesis testing. It compiles all currently available results in the area of exact and optimum tests for variance component models and offers the only comprehensive treatment for these models a

  2. Mixed waste disposal facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Wells, M.N.; Bailey, L.L.

    1991-01-01

    The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission

  3. Nevada test site waste acceptance criteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document.

  4. Nevada test site waste acceptance criteria

    International Nuclear Information System (INIS)

    1996-01-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document

  5. Pulse Jet Mixing Tests With Noncohesive Solids

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Fort, James A.; Wells, Beric E.; Sundaram, S. K.; Scott, Paul A.; Minette, Michael J.; Smith, Gary L.; Burns, Carolyn A.; Greenwood, Margaret S.; Morgen, Gerald P.; Baer, Ellen BK; Snyder, Sandra F.; White, Michael K.; Piepel, Gregory F.; Amidan, Brett G.; Heredia-Langner, Alejandro

    2012-02-17

    This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid. The tests were conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants, and the test data were used to develop models predicting two measures of mixing performance for full-scale WTP vessels. The models predict the cloud height (the height to which solids will be lifted by the PJM action) and the critical suspension velocity (the minimum velocity needed to ensure all solids are suspended off the floor, though not fully mixed). From the cloud height, the concentration of solids at the pump inlet can be estimated. The predicted critical suspension velocity for lifting all solids is not precisely the same as the mixing requirement for 'disturbing' a sufficient volume of solids, but the values will be similar and closely related. These predictive models were successfully benchmarked against larger scale tests and compared well with results from computational fluid dynamics simulations. The application of the models to assess mixing in WTP vessels is illustrated in examples for 13 distinct designs and selected operational conditions. The values selected for these examples are not final; thus, the estimates of performance should not be interpreted as final conclusions of design adequacy or inadequacy. However, this work does reveal that several vessels may require adjustments to design, operating features, or waste feed properties to ensure confidence in operation. The models described in this report will prove to be valuable engineering tools to evaluate options as designs are finalized for the WTP. Revision 1 refines data sets used for model development and summarizes models developed since the completion of Revision 0.

  6. Routine patch testing with frullanolide mix

    DEFF Research Database (Denmark)

    Ducombs, G; Lepoittevin, J P; Berl, V

    2003-01-01

    Contact sensitivity to plants containing 1 or more sesquiterpene lactones (SLs) is difficult to diagnose. The mixture of SLs (SL mix) has been shown to detect only about 60% of sensitized individuals. In order to improve the diagnosis of sensitization to plants containing SLs, we have tested a mi...

  7. Phase III (full scale) agitated mixing test plan

    International Nuclear Information System (INIS)

    Ruff, D.T.

    1994-01-01

    Waste Receiving and Processing Facility Module 2A (WRAP 2A) is the proposed second module of the WRAP facility. This facility will provide the required treatment for contact Handled (CH) Low Level (LL) Mixed Waste (MW) to allow its permanent disposal. Solidification of a portion of this waste using a cement based grout has been selected in order to reduce the toxicity and mobility of the waste in the disposal site. Mixing of the waste with the cement paste and material handling constraints/requirements associated with the mixed material is, therefore, a key process in the overall treatment strategy. This test plan addresses Phase 3, Full Scale Testing. The objectives of these tests are to determine if there are scale-up issues associated with the mixing results obtained in Phase 1 and 2 mixing tests, verify the workability of mixtures resulting from previous formulation development efforts (Waste Immobilization Development [WID]), and provide a baseline for WRAP 2A mixing equipment design. To this end, the following objectives are of particular interest: determine geometric influence of mixing blade at full scale (i.e., size, type, and location: height/offset); determine if similar results in terms of mixing effectiveness and product quality are achievable at this scale; determine if vibration is as effective at this larger scale in fluidizing the mixture and aiding in cleaning the vessel; determine if baffles or sweeping blades are needed to aid in mixing at the larger size and for cleaning the vessel; and determine quality of the poured monolithic product and investigate exotherm and filling influences at this larger size

  8. Nevada Test Site Waste Acceptance Criteria, December 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal.

  9. Nevada Test Site Waste Acceptance Criteria, December 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal

  10. Corrective Action Decision Document/Corrective Action Plan for the 92-Acre Area and Corrective Action Unit 111: Area 5 WMD Retired Mixed Waste Pits, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for the 92-Acre Area, the southeast quadrant of the Radioactive Waste Management Site, located in Area 5 of the Nevada Test Site (NTS). The 92-Acre Area includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' Data Quality Objectives (DQOs) were developed for the 92-Acre Area, which includes CAU 111. The result of the DQO process was that the 92-Acre Area is sufficiently characterized to provide the input data necessary to evaluate corrective action alternatives (CAAs) without the collection of additional data. The DQOs are included as Appendix A of this document. This CADD/CAP identifies and provides the rationale for the recommended CAA for the 92-Acre Area, provides the plan for implementing the CAA, and details the post-closure plan. When approved, this CADD/CAP will supersede the existing Pit 3 (P03) Closure Plan, which was developed in accordance with Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities.' This document will also serve as the Closure Plan and the Post-Closure Plan, which are required by 40 CFR 265, for the 92-Acre Area. After closure activities are complete, a request for the modification of the Resource Conservation and Recovery Act Permit that governs waste management activities at the NTS will be submitted to the Nevada Division of Environmental Protection to incorporate the requirements for post-closure monitoring. Four CAAs, ranging from No Further Action to Clean Closure, were evaluated for the 92-Acre Area. The CAAs were evaluated on technical merit focusing on performance, reliability, feasibility, safety, and cost. Based on the evaluation of the data used to develop the conceptual site model; a review of past, current, and future operations at the site; and the detailed and comparative analysis of the

  11. Corrective Action Decision Document/Corrective Action Plan for the 92-Acre Area and Corrective Action Unit 111: Area 5 WMD Retired Mixed Waste Pits, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-07-31

    This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for the 92-Acre Area, the southeast quadrant of the Radioactive Waste Management Site, located in Area 5 of the Nevada Test Site (NTS). The 92-Acre Area includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' Data Quality Objectives (DQOs) were developed for the 92-Acre Area, which includes CAU 111. The result of the DQO process was that the 92-Acre Area is sufficiently characterized to provide the input data necessary to evaluate corrective action alternatives (CAAs) without the collection of additional data. The DQOs are included as Appendix A of this document. This CADD/CAP identifies and provides the rationale for the recommended CAA for the 92-Acre Area, provides the plan for implementing the CAA, and details the post-closure plan. When approved, this CADD/CAP will supersede the existing Pit 3 (P03) Closure Plan, which was developed in accordance with Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities.' This document will also serve as the Closure Plan and the Post-Closure Plan, which are required by 40 CFR 265, for the 92-Acre Area. After closure activities are complete, a request for the modification of the Resource Conservation and Recovery Act Permit that governs waste management activities at the NTS will be submitted to the Nevada Division of Environmental Protection to incorporate the requirements for post-closure monitoring. Four CAAs, ranging from No Further Action to Clean Closure, were evaluated for the 92-Acre Area. The CAAs were evaluated on technical merit focusing on performance, reliability, feasibility, safety, and cost. Based on the evaluation of the data used to develop the conceptual site model; a review of past, current, and future operations at the site; and the detailed and comparative

  12. Pulse Jet Mixing Tests With Noncohesive Solids

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Fort, James A.; Wells, Beric E.; Sundaram, S. K.; Scott, Paul A.; Minette, Michael J.; Smith, Gary L.; Burns, Carolyn A.; Greenwood, Margaret S.; Morgen, Gerald P.; Baer, Ellen BK; Snyder, Sandra F.; White, Michael; Piepel, Gregory F.; Amidan, Brett G.; Heredia-Langner, Alejandro; Bailey, Sharon A.; Bower, John C.; Denslow, Kayte M.; Eakin, David E.; Elmore, Monte R.; Gauglitz, Phillip A.; Guzman, Anthony D.; Hatchell, Brian K.; Hopkins, Derek F.; Hurley, David E.; Johnson, Michael D.; Kirihara, Leslie J.; Lawler, Bruce D.; Loveland, Jesse S.; Mullen, O Dennis; Pekour, Mikhail S.; Peters, Timothy J.; Robinson, Peter J.; Russcher, Michael S.; Sande, Susan; Santoso, Christian; Shoemaker, Steven V.; Silva, Steve M.; Smith, Devin E.; Su, Yin-Fong; Toth, James J.; Wiberg, John D.; Yu, Xiao-Ying; Zuljevic, Nino

    2009-05-11

    This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants. The test data were used to independently develop mixing models that can be used to predict full-scale WTP vessel performance and to rate current WTP mixing system designs against two specific performance requirements. One requirement is to ensure that all solids have been disturbed during the mixing action, which is important to release gas from the solids. The second requirement is to maintain a suspended solids concentration below 20 weight percent at the pump inlet. The models predict the height to which solids will be lifted by the PJM action, and the minimum velocity needed to ensure all solids have been lifted from the floor. From the cloud height estimate we can calculate the concentration of solids at the pump inlet. The velocity needed to lift the solids is slightly more demanding than "disturbing" the solids, and is used as a surrogate for this metric. We applied the models to assess WTP mixing vessel performance with respect to the two perform¬ance requirements. Each mixing vessel was evaluated against these two criteria for two defined waste conditions. One of the wastes was defined by design limits and one was derived from Hanford waste characterization reports. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy the performance criteria used for any of the conditions evaluated. The remaining three vessel types provide varying assessments when the different particle characteristics are evaluated. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy

  13. Pulse Jet Mixing Tests With Noncohesive Solids

    International Nuclear Information System (INIS)

    Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Fort, James A.; Wells, Beric E.; Sundaram, S.K.; Scott, Paul A.; Minette, Michael J.; Smith, Gary L.; Burns, Carolyn A.; Greenwood, Margaret S.; Morgen, Gerald P.; Baer, Ellen B.K.; Snyder, Sandra F.; White, Michael; Piepel, Gregory F.; Amidan, Brett G.; Heredia-Langner, Alejandro; Bailey, Sharon A.; Bower, John C.; Denslow, Kayte M.; Eakin, David E.; Elmore, Monte R.; Gauglitz, Phillip A.; Guzman, Anthony D.; Hatchell, Brian K.; Hopkins, Derek F.; Hurley, David E.; Johnson, Michael D.; Kirihara, Leslie J.; Lawler, Bruce D.; Loveland, Jesse S.; Mullen, O. Dennis; Pekour, Mikhail S.; Peters, Timothy J.; Robinson, Peter J.; Russcher, Michael S.; Sande, Susan; Santoso, Christian; Shoemaker, Steven V.; Silva, Steve M.; Smith, Devin E.; Su, Yin-Fong; Toth, James J.; Wiberg, John D.; Yu, Xiao-Ying; Zuljevic, Nino

    2009-01-01

    This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants. The test data were used to independently develop mixing models that can be used to predict full-scale WTP vessel performance and to rate current WTP mixing system designs against two specific performance requirements. One requirement is to ensure that all solids have been disturbed during the mixing action, which is important to release gas from the solids. The second requirement is to maintain a suspended solids concentration below 20 weight percent at the pump inlet. The models predict the height to which solids will be lifted by the PJM action, and the minimum velocity needed to ensure all solids have been lifted from the floor. From the cloud height estimate we can calculate the concentration of solids at the pump inlet. The velocity needed to lift the solids is slightly more demanding than ''disturbing'' the solids, and is used as a surrogate for this metric. We applied the models to assess WTP mixing vessel performance with respect to the two performance requirements. Each mixing vessel was evaluated against these two criteria for two defined waste conditions. One of the wastes was defined by design limits and one was derived from Hanford waste characterization reports. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy the performance criteria used for any of the conditions evaluated. The remaining three vessel types provide varying assessments when the different particle characteristics are evaluated. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy

  14. Atomic test site (south Australia)

    International Nuclear Information System (INIS)

    Godman, N.A.; Cousins, Jim; Hamilton, Archie.

    1993-01-01

    The debate, which lasted about half an hour, is reported verbatin. It was prompted by the campaign by the Maralinga people of South Australia to have their traditional lands restored to them. Between 1953 and 1957 the United Kingdom government carried out of atomic tests and several hundred minor trials on the lands. A clean-up programme had taken place in 1967 but further decontamination was needed before the area is safe for traditional aboriginal life and culture. A small area will remain contaminated with plutonium for thousands of years. The cost and who would pay, the Australian or UK government was being negotiated. The UK government's position was that the site is remote, the health risk is slight and the clean-up operation of 1967 was acknowledged as satisfactory by the Australian government. (UK)

  15. Designing chemical soil characterization programs for mixed waste sites

    International Nuclear Information System (INIS)

    Meyers, K.A. Jr.

    1989-01-01

    The Weldon Spring Site Remedial Action Project is a remedial action effort funded by the U.S. Department of Energy. The Weldon Spring Site, a former uranium processing facility, is located in east-central Missouri on a portion of a former ordnance works facility which produced trinitrotoluene during World War II. As a result of both uranium and ordnance production, the soils have become both radiologically and chemically contaminated. As a part of site characterization efforts in support of the environmental documentation process, a chemical soil characterization program was developed. This program consisted of biased and unbiased sampling program which maximized areal coverage, provided a statistically sound data base and maintained cost effectiveness. This paper discusses how the general rationale and processes used at the Weldon Spring Site can be applied to other mixed and hazardous waste sites

  16. Nevada Test Site Wetlands Assessment

    Energy Technology Data Exchange (ETDEWEB)

    D. J. Hansen

    1997-05-01

    This report identifies 16 Nevada Test Site (NTS) natural water sources that may be classified by the U.S. Army Corps of Engineers (USACE) as jurisdictional wetlands and identifies eight water sources that may be classified as waters of the United States. These water sources are rare, localized habitats on the NTS that are important to regional wildlife and to isolated populations of water tolerant plants and aquatic organisms. No field investigations on the NTS have been conducted in the past to identify those natural water sources which would be protected as rare habitats and which may fall under regulatory authority of the Clean Water Act (CWA) of 1997. This report identifies and summarizes previous studies of NTS natural water sources, and identifies the current DOE management practices related to the protection of NTS wetlands. This report also presents management goals specific for NTS wetlands that incorporate the intent of existing wetlands legislation, the principles of ecosystem management, and the interests of regional land managers and other stakeholders.

  17. Ship Systems Survivability Test Site

    Data.gov (United States)

    Federal Laboratory Consortium — Area for testing survivability of shipboard systems to include electrical, communications, and fire suppression. Multipurpose test range for supporting gun firing,...

  18. Controlled Archaeological Test Site (CATS) Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CATS facility is at the Construction Engineering Research Laboratory (CERL), Champaign, IL. This 1-acre test site includes a variety of subsurface features carefully...

  19. Minimization of mixed waste in explosive testing operations

    International Nuclear Information System (INIS)

    Gonzalez, M.A.; Sator, F.E.; Simmons, L.F.

    1993-02-01

    In the 1970s and 1980s, efforts to manage mixed waste and reduce pollution focused largely on post-process measures. In the late 1980s, the approach to waste management and pollution control changed, focusing on minimization and prevention rather than abatement, treatment, and disposal. The new approach, and the formulated guidance from the US Department of Energy, was to take all necessary measures to minimize waste and prevent the release of pollutants to the environment. Two measures emphasized in particular were source reduction (reducing the volume and toxicity of the waste source) and recycling. In 1988, a waste minimization and pollution prevention program was initiated at Site 300, where the Lawrence Livermore National Laboratory (LLNL) conducts explosives testing. LLNL's Defense Systems/Nuclear Design (DS/ND) Program has adopted a variety of conservation techniques to minimize waste generation and cut disposal costs associated with ongoing operations. The techniques include minimizing the generation of depleted uranium and lead mixed waste through inventory control and material substitution measures and through developing a management system to recycle surplus explosives. The changes implemented have reduced annual mixed waste volumes by more than 95% and reduced overall radioactive waste generation (low-level and mixed) by more than 75%. The measures employed were cost-effective and easily implemented

  20. Nevada Test Site Environmental Report 2004

    International Nuclear Information System (INIS)

    BECHTEL NEVADA

    2005-01-01

    The ''Nevada Test Site Environmental Report 2004'' was prepared by Bechtel Nevada (BN) to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of non-radiological releases, implementation status of the NTS Environmental Management System, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled ''Nevada Test Site Environmental Report Summary 2004''. It was produced this year to provide a more cost-effective and wider distribution of a hardcopy summary of the ''Nevada Test Site Environmental Report 2004'' to interested DOE stakeholders

  1. Nevada Test Site Environmental Report 2005, Attachment A - Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2006-10-01

    This appendix to the ''Nevada Test Site Environmental Report 2005'', dated October 2006 (DOE/NV/11718--1214; DOE/NV/25946--007) expands on the general description of the Nevada Test Site (NTS) presented in the Introduction. Included are subsections that summarize the site?s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This appendix complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  2. Nevada Test Site Environmental Report 2005, Attachment A - Site Description

    International Nuclear Information System (INIS)

    Cathy A. Wills

    2006-01-01

    This appendix to the ''Nevada Test Site Environmental Report 2005'', dated October 2006 (DOE/NV/11718--1214; DOE/NV/25946--007) expands on the general description of the Nevada Test Site (NTS) presented in the Introduction. Included are subsections that summarize the site?s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This appendix complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report

  3. Nevada Test Site Environmental Report 2007 Attachment A: Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2008-09-01

    This appendix expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2007 (U.S. Department of Energy [DOE], 2008). Included are subsections that summarize the site's geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  4. Testing and building theories: mixed methods synthesis

    OpenAIRE

    Harden, Angela

    2008-01-01

    Presentation on use of mixed methods in diverse study types, which combines the findings of ‘qualitative’ and ‘quantitative’ studies within a single systematic review, in order to address the same, overlapping or complementary review questions.

  5. Double tracks test site characterization report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This report presents the results of site characterization activities performed at the Double Tracks Test Site, located on Range 71 North, of the Nellis Air Force Range (NAFR) in southern Nevada. Site characterization activities included reviewing historical data from the Double Tracks experiment, previous site investigation efforts, and recent site characterization data. The most recent site characterization activities were conducted in support of an interim corrective action to remediate the Double Tracks Test Site to an acceptable risk to human health and the environment. Site characterization was performed using a phased approach. First, previously collected data and historical records sere compiled and reviewed. Generalized scopes of work were then prepared to fill known data gaps. Field activities were conducted and the collected data were then reviewed to determine whether data gaps were filled and whether other areas needed to be investigated. Additional field efforts were then conducted, as required, to adequately characterize the site. Characterization of the Double Tracks Test Site was conducted in accordance with the US Department of Energy`s (DOE) Streamlined Approach for Environmental Restoration (SAFER).

  6. Mixed Waste Management Facility closure at the Savannah River Site

    International Nuclear Information System (INIS)

    Bittner, M.F.

    1991-08-01

    The Mixed Waste Management Facility of the Savannah River Plant received hazardous and solid low level radioactive wastes from 1972 until 1986. Because this facility did not have a permit to receive hazardous wastes, a Resource Conservation and Recovery Act closure was performed between 1987 and 1990. This closure consisted of dynamic compaction of the waste trenches and placement of a 3-foot clay cap, a 2-foot soil cover, and a vegetative layer. Operations of the waste disposal facility, tests performed to complete the closure design, and the construction of the closure cap are discussed herein

  7. Preliminary Scaling Estimate for Select Small Scale Mixing Demonstration Tests

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Fort, James A.; Gauglitz, Phillip A.; Rector, David R.; Schonewill, Philip P.

    2013-09-12

    The Hanford Site double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions’ Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems.

  8. The use of chemical and radionuclide risk estimates in site performance evaluation of mixed waste sites

    International Nuclear Information System (INIS)

    Till, J.E.; Meyer, K.R.

    1988-01-01

    Many radioactive waste sites contain not only radioactive material but also varying amounts of chemical waste. The use of such procedures implies some risk at any exposure level, and thus requires that an exposure level be determined that corresponds to an acceptable risk to an individual or a population. Although the uncertainties and limitations of these methods are of concern, the assumption has been generally adopted that the human dose response for all carcinogens is linear, with no threshold occurring at low levels of exposure. With the move toward decontamination programs and clean-up of various mixed waste sites throughout the US, there is interest in the possibility that risk estimates calculated individually for radionuclides and for chemicals may be combined to reflect the total risk for each site. The purpose of this paper is to examine the feasibility of combining risk estimates during risk/benefit analyses. For a variety of reasons, the state of radiation risk assessment is more advanced than that of chemical risk assessment. The reasons for this disparity are summarized in this paper. Quantitative radiation risk assessment is currently being performed, but involves a high degree of uncertainty. Chemical risk assessment in general does not allow quantitative results bracketed by uncertainty analysis. Therefore, it is concluded that it is currently not possible to develop a useful, quantitative combined risk assessment for a mixed waste site, but that it may be possible to develop such a capability in the future

  9. Nevada Test Site Environmental Report 2008 Attachment A: Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2009-09-01

    This attachment expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2008 (National Security Technologies, LLC [NSTec], 2009a). Included are subsections that summarize the site’s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site’s environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  10. Nevada Test Site Environmental Report 2009, Attachment A: Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills, ed.

    2010-09-13

    This attachment expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2009. Included are subsections that summarize the site’s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site’s environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  11. Nevada Test Site Environmental Report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada

    2004-10-01

    The Nevada Test Site Environmental Report 2003 was prepared by Bechtel Nevada to meet the requirements and guidelines of the U.S. Department of Energy and the information needs of the public. This report is meant to be useful to members of the public, public officials, regulators, and Nevada Test Site contractors. The Executive Summary strives to present in a concise format the purpose of the document, the NTS mission and major programs, a summary of radiological releases and doses to the public resulting from site operations, a summary of non-radiological releases, and an overview of the Nevada Test Site Environmental Management System. The Executive Summary, combined with the following Compliance Summary, are written to meet all the objectives of the report and to be stand-alone sections for those who choose not to read the entire document.

  12. Nevada Test Site, site treatment plan 1999 annual update

    International Nuclear Information System (INIS)

    1999-03-01

    A Site Treatment Plan (STP) is required for facilities at which the US Department of Energy Nevada Operations Office (DOE/NV) generates or stores mixed waste (MW), defined by the Federal Facility Compliance Act (FFC Act) as waste containing both a hazardous waste subject to the Resource Conservation and Recovery Act (RCRA) and a radioactive material subject to the Atomic Energy Act. This STP was written to identify specific treatment facilities for treating DOE/NV generated MW and provides proposed implementation schedules. This STP was approved by the Nevada Division of Environmental Protection (NDEP) and provided the basis for the negotiation and issuance of the FFC Act Consent Order (CO) dated March 6, 1996, and revised June 15, 1998. The FFC Act CO sets forth stringent regulatory requirements to comply with the implementation of the STP

  13. Site characterization data from the Area 5 science boreholes, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Blout, D.O.; Hammermeister, P.; Zukosky, K.A.

    1995-02-01

    The Science Borehole Project consists of eight boreholes that were drilled (from 45.7 m [150 ft] to 83.8 m [275 ft] depth) in Area 5 of the Nevada Test Site, Nye County, Nevada, on behalf of the US Department of Energy. These boreholes are part of the Area 5 Site Characterization Program developed to meet data needs associated with regulatory requirements applicable to the disposal of low-level and mixed waste at this site. This series of boreholes was specifically designed to characterize parameters controlling near-surface gas transport and to monitor changes in these and liquid flow-related parameters over time. These boreholes are located along the four sides of the approximately 2.6-km 2 (1-mi 2 ) Area 5 Radioactive Waste Management Site to provide reasonable spatial coverage for sampling and characterization. Laboratory testing results of samples taken from core and drill cuttings are reported

  14. Nevada Test Site Environmental Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA

    2005-10-01

    The ''Nevada Test Site Environmental Report 2004'' was prepared by Bechtel Nevada (BN) to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of non-radiological releases, implementation status of the NTS Environmental Management System, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled ''Nevada Test Site Environmental Report Summary 2004''. It was produced this year to provide a more cost-effective and wider distribution of a hardcopy summary of the ''Nevada Test Site Environmental Report 2004'' to interested DOE stakeholders.

  15. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA, JUNE 2006

    Energy Technology Data Exchange (ETDEWEB)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE

    2006-06-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

  16. Nevada Test Site Environmental Report 2008 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2009-09-01

    The Nevada Test Site Environmental Report (NTSER) 2008 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ NTSERs are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx.

  17. Nevada Test Site Environmental Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2009-09-01

    The Nevada Test Site Environmental Report (NTSER) 2008 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ NTSERs are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx.

  18. Bioremediation of mixed microbial mats: System development of mixed contaminants for application at the Savannah River Site. Annual technical progress report, October 1, 1995--September 30, 1996

    International Nuclear Information System (INIS)

    Bender, J.; Phillips, P.

    1996-01-01

    The fundamental objective of this project is to develop and field test the mixed microbial mat bioremediation system for decontamination of target sites at SRS. Although microbial mats have performed well in several pilot projects in the past, atypical problems and site characteristics at SRS demand special field designs. In the interest of designing a pilot and locating it at an appropriate site, the project investigators have worked closely with the technical staff at the SREL. We have concluded that the diverse characteristics of contaminations at SRS may dictate testing several pilot designs during the course of this project

  19. Nevada Test Site annual site environmental report, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Wruble, D T; McDowell, E M [eds.

    1990-11-01

    Prior to 1989 annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the US Department of Energy, Nevada Operations Office (DOE/NV). Results of the offsite radiological surveillance program conducted by the US Environmental Protection Agency (EPA), Environmental Monitoring Systems Laboratory, Las Vegas, Nevada, were reported separately by that Agency. Beginning with this 1989 annual Site environmental report for the NTS, these two documents are being combined into a single report to provide a more comprehensive annual documentation of the environmental protection program conducted for the nuclear testing program and other nuclear and non-nuclear activities at the Site. The two agencies have coordinated preparation of this combined onsite and offsite report through sharing of information on environmental releases and meteorological, hydrological, and other supporting data used in dose-estimate calculations. 57 refs., 52 figs., 65 tabs.

  20. Nevada Test Site Environmental Report 2007 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2008-09-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) directs the management and operation of the Nevada Test Site (NTS). The NTS is the nation's historical testing site for nuclear weapons from 1951 through 1992 and is currently the nation's unique site for ongoing national-security related missions and high-risk operations. NNSA/NSO strives to provide to the public an understanding of the current activities on the NTS, including environmental monitoring and compliance activities aimed at protecting the public and the environment from radiation hazards and from nonradiological impacts. This document is a summary of the Nevada Test Site Environmental Report (NTSER) for calendar year 2007 (see attached compact disc on inside back cover). The NTSER is a comprehensive report of environmental activities performed at the NTS and offsite facilities over the previous calendar year. It is prepared annually to meet the requirements and guidelines of the U.S. Department of Energy (DOE) and the information needs of NNSA/NSO stakeholders. To provide an abbreviated and more readable version of the NTSER, this summary report is produced. This summary does not include detailed data tables, monitoring methods or design, a description of the NTS environment, or a discussion of all environmental program activities performed throughout the year. The reader may obtain a hard copy of the full NTSER as directed on the inside front cover of this summary report.

  1. Nevada Test Site Environmental Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2008-09-01

    The Nevada Test Site Environmental Report 2007 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2007. This NTSER was prepared to satisfy DOE Order 231.1A, Environment, Safety and Health Reporting. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This report meets these objectives for the NTS and three offsite Nevada facilities mentioned in this report.

  2. Nevada Test Site Environmental Report 2007

    International Nuclear Information System (INIS)

    Cathy Wills

    2008-01-01

    The Nevada Test Site Environmental Report 2007 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2007. This NTSER was prepared to satisfy DOE Order 231.1A, Environment, Safety and Health Reporting. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This report meets these objectives for the NTS and three offsite Nevada facilities mentioned in this report

  3. Tonopah Test Range closure sites revegetation plan

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.C.; Hall, D.B.

    1997-05-01

    This document is a revegetation plan for long-term stabilization (revegetation) of land disturbed by activities associated with the closure of a Bomblet Pit and the Five Points Landfill. Both sites are on the Tonopah Test Range (TTR) located in south-central Nevada. This document contains general reclamation practices and procedures that will be followed during the revegetation of these sites. The revegetation procedures proposed have been developed over several years of research and include the results of reclamation trials at Area 11 and Area 19 on the Nevada Test Site (NTS), and more recently at the Double Tracks (Nellis Air Force Range) reclamation demonstration plots. In addition, the results of reclamation efforts and concurrent research efforts at the Yucca Mountain Project have been considered in the preparation of this revegetation plan.

  4. Nevada Test Site Environmental Report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills, ed.

    2010-09-13

    The Nevada Test Site Environmental Report 2009 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ Nevada Test Site Environmental Reports (NTSERs) are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx. This NTSER was prepared to satisfy DOE Order DOE O 231.1A, “Environment, Safety and Health Reporting.” Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NNSA/NSO Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This NTSER summarizes data and compliance status for calendar year 2009 at the Nevada Test Site (NTS) and its two support facilities, the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory (RSL)-Nellis. It also addresses environmental restoration (ER) projects conducted at the Tonopah Test Range (TTR). Through a Memorandum of Agreement, NNSA/NSO is responsible for the oversight of TTR ER projects, and the Sandia Site Office of NNSA (NNSA/SSO) has oversight of all other TTR activities. NNSA/SSO produces the TTR annual environmental report available at http://www.sandia.gov/news/publications/environmental/index.html.

  5. Asphalt mix characterization using dynamic modulus and APA testing.

    Science.gov (United States)

    2005-11-01

    final report summarizes two research efforts related to asphalt mix characterization: dynamic modulus and Asphalt Pavement Analyzer testing. One phase of the research consisted of a laboratory-based evaluation of dynamic modulus of Oregon dense-grade...

  6. Nevada Test Site Radiation Protection Program

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers' Council, Nevada Test Site

    2007-08-09

    Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

  7. Nevada Test Site Environmental Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2006-10-01

    The Nevada Test Site Environmental Report 2005 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts.

  8. Nevada Test Site Environmental Report 2005

    International Nuclear Information System (INIS)

    Cathy A. Wills

    2006-01-01

    The Nevada Test Site Environmental Report 2005 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts

  9. Argonne National Laboratory's photo-oxidation organic mixed waste treatment system - installation and startup testing

    International Nuclear Information System (INIS)

    Shearer, T.L.; Nelson, R.A.; Torres, T.; Conner, C.; Wygmans, D.

    1997-01-01

    This paper describes the installation and startup testing of the Argonne National Laboratory (ANL-E) Photo-Oxidation Organic Mixed Waste Treatment System. This system will treat organic mixed (i.e., radioactive and hazardous) waste by oxidizing the organics to carbon dioxide and inorganic salts in an aqueous media. The residue will be treated in the existing radwaste evaporators. The system is installed in the Waste Management Facility at the ANL-E site in Argonne, Illinois. 1 fig

  10. FPGA based mixed-signal circuit novel testing techniques

    International Nuclear Information System (INIS)

    Pouros, Sotirios; Vassios, Vassilios; Papakostas, Dimitrios; Hristov, Valentin

    2013-01-01

    Electronic circuits fault detection techniques, especially on modern mixed-signal circuits, are evolved and customized around the world to meet the industry needs. The paper presents techniques used on fault detection in mixed signal circuits. Moreover, the paper involves standardized methods, along with current innovations for external testing like Design for Testability (DfT) and Built In Self Test (BIST) systems. Finally, the research team introduces a circuit implementation scheme using FPGA

  11. Nondestructive evaluation of warm mix asphalt through resonant column testing.

    Science.gov (United States)

    2014-02-01

    Non-destructive testing has been used for decades to characterize engineering properties of hot-mix asphalt. Among such tests is the resonant column (RC) test, which is commonly used to characterize soil materials. The resonant column device at Penn ...

  12. The test search for true mixed-signal cores

    NARCIS (Netherlands)

    Kerkhoff, Hans G.

    2005-01-01

    The well-known method towards testing mixed-signal cores is functional testing and essentially measuring key parameters of the core. However, especially if performance requirements increase, and embedded cores are considered, functional testing becomes technically and economically less attractive. A

  13. Hydrogeologic investigations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hawkins, W.L.; Trudeau, D.A.; Drellack, S.L.

    1992-01-01

    The Nevada Test Site was established in 1950 as a continental area for testing nuclear devices and, since 1963, all nuclear detonations there have been underground. Most tests are conducted in vertical shafts with a small percentage conducted in tunnels. The majority of detonation points are above the water table, primarily in volcanic rocks or alluvium. In the testing areas the water table is 450--700 m below the surface. Pre- and post- event geologic investigations are conducted for each test location and long-term studies assess the impact of underground testing on a more regional scale. Studies in progress have not identified any impact on the regional ground water system from testing, but some local effects have been recognized. In some areas where several large tests have been conducted below the water table, water levels hundreds of meters above the regional water table have been measured and radioactivity has been discovered associated with fractures in a few holes. Flow-through and straddle packer testing has revealed unexpectedly high hydraulic pressures at depth. Recently, a multiple completion monitoring well installed to study three zones has confirmed the existence of a significant upward hydraulic gradient. These observations of local pressurization and fracture flow are being further explored to determine the influence of underground nuclear testing on the regional hydrogeologic system

  14. Engineering scale mixing system tests for MWTF title II design

    International Nuclear Information System (INIS)

    Chang, S.C.

    1994-01-01

    Mixing tests for the Multifunction Waste Tank Facility (MWTF) were conducted in 1/25 and 1/10 scale test tanks with different slurry levels, solids concentrations, different jet mixers and with simulated in-tank structures. The same test procedure was used as in the Title I program, documented in WHC-SD-W236A-ER-005. The test results support the scaling correlation derived previously in the Title I program. The tests also concluded that a partially filled tank requires less mixing power, and horizontal and angled jets in combination (H/A mixer) are significantly more effective than the two horizontal jet mixers (H/H mixer) when used for mixing slurry with a high solids concentrations

  15. Nevada Test Site waste acceptance criteria [Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-08-01

    Revision one updates the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document.

  16. Nevada Test Site waste acceptance criteria [Revision 1

    International Nuclear Information System (INIS)

    None

    1997-01-01

    Revision one updates the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document

  17. Nevada Test Site Environmental Report Summary 2009

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills, ed.

    2010-09-13

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) directs the management and operation of the Nevada Test Site (NTS). NNSA/NSO prepares the Nevada Test Site Environmental Report (NTSER) to provide the public an understanding of the environmental monitoring and compliance activities that are conducted on the NTS to protect the public and the environment from radiation hazards and from nonradiological impacts. The NTSER is a comprehensive report of environmental activities performed at the NTS and offsite facilities over the previous calendar year. It is prepared annually to meet the requirements and guidelines of the U.S. Department of Energy (DOE) and the information needs of NNSA/NSO stakeholders. This summary provides an abbreviated and more readable version of the NTSER. It does not contain detailed descriptions or presentations of monitoring designs, data collection methods, data tables, the NTS environment, or all environmental program activities performed throughout the year. The reader may obtain a hard copy of the full NTSER as directed on the inside front cover of this summary report.

  18. Qualitative theory testing as mixed-method research

    OpenAIRE

    Piper, Stewart

    2006-01-01

    While the concept of mixed-methods research is more usually associated with combining\\ud quantitative and qualitative approaches, this paper outlines a study that mixed methods by\\ud undertaking qualitative theory testing and derivation when examining the relationship between\\ud health promotion theory and hospital nursing practice. Thus, it is concerned with relating the\\ud metatheoretical aspects of the debate and not with the pragmatic aspects of the research and\\ud concomitant methods. A ...

  19. Freshwater algae of the Nevada Test Site

    International Nuclear Information System (INIS)

    Taylor, W.D.; Giles, K.R.

    1979-06-01

    Fifty-two species of freshwater algae were identified in samples collected from the eight known natural springs of the Nevada Test Site. Although several species were widespread, 29 species were site specific. Diatoms provided the greatest variety of species at each spring. Three-fifths of all algal species encountered were diatoms. Well-developed mats of filamentous green algae (Chlorophyta) were common in many of the water tanks associated with the springs and accounted for most of the algal biomass. Major nutrients were adequate, if not abundant, in most spring waters - growth being limited primarily by light and physical habitat. There was some evidence of cesium-137 bioconcentration by algae at several of the springs

  20. Freshwater algae of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, W.D.; Giles, K.R.

    1979-06-01

    Fifty-two species of freshwater algae were identified in samples collected from the eight known natural springs of the Nevada Test Site. Although several species were widespread, 29 species were site specific. Diatoms provided the greatest variety of species at each spring. Three-fifths of all algal species encountered were diatoms. Well-developed mats of filamentous green algae (Chlorophyta) were common in many of the water tanks associated with the springs and accounted for most of the algal biomass. Major nutrients were adequate, if not abundant, in most spring waters - growth being limited primarily by light and physical habitat. There was some evidence of cesium-137 bioconcentration by algae at several of the springs.

  1. The Role of Cohesive Particle Interactions on Solids Uniformity and Mobilization During Jet Mixing: Testing Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Wells, Beric E.; Bamberger, Judith A.; Fort, James A.; Chun, Jaehun; Jenks, Jeromy WJ

    2010-04-01

    Radioactive waste that is currently stored in large underground tanks at the Hanford Site will be staged in selected double-shell tanks (DSTs) and then transferred to the Waste Treatment and Immobilization Plant (WTP). Before being transferred, the waste will be mixed, sampled, and characterized to determine if the waste composition and meets the waste feed specifications. Washington River Protection Solutions is conducting a Tank Mixing and Sampling Demonstration Program to determine the mixing effectiveness of the current baseline mixing system that uses two jet mixer pumps and the adequacy of the planned sampling method. The overall purpose of the demonstration program is to mitigate the technical risk associated with the mixing and sampling systems meeting the feed certification requirements for transferring waste to the WTP.The purpose of this report is to analyze existing data and evaluate whether scaled mixing tests with cohesive simulants are needed to meet the overall objectives of the small-scale mixing demonstration program. This evaluation will focus on estimating the role of cohesive particle interactions on various physical phenomena that occur in parts of the mixing process. A specific focus of the evaluation will be on the uniformity of suspended solids in the mixed region. Based on the evaluation presented in this report and the absence of definitive studies, the recommendation is to conduct scaled mixing tests with cohesive particles and augment the initial testing with non-cohesive particles. In addition, planning for the quantitative tests would benefit from having test results from some scoping experiments that would provide results on the general behavior when cohesive inter-particle forces are important.

  2. Research on jet mixing of settled sludges in nuclear waste tanks at Hanford and other DOE sites: A historical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Powell, M.R.; Onishi, Y.; Shekarriz, R.

    1997-09-01

    Jet mixer pumps will be used in the Hanford Site double-shell tanks to mobilize and mix the settled solids layer (sludge) with the tank supernatant liquid. Predicting the performance of the jet mixer pumps has been the subject of analysis and testing at Hanford and other U.S. Department of Energy (DOE) waste sites. One important aspect of mixer pump performance is sludge mobilization. The research that correlates mixer pump design and operation with the extent of sludge mobilization is the subject of this report. Sludge mobilization tests have been conducted in tanks ranging from 1/25-scale (3 ft-diameter) to full scale have been conducted at Hanford and other DOE sites over the past 20 years. These tests are described in Sections 3.0 and 4.0 of this report. The computational modeling of sludge mobilization and mixing that has been performed at Hanford is discussed in Section 5.0.

  3. Population dose near the Semipalatinsk test site

    International Nuclear Information System (INIS)

    Hille, R.; Hill, P.; Kluson, J.; Seisebaev, A.; Smagulov, S.

    1998-01-01

    To determine the consequences of atmospheric atomic bomb tests for the population in the surroundings of the former nuclear weapons test site near Semipalatinsk in Kazakhstan, a pilot study was performed by an international cooperation between Kazakh, French, Czech and German institutions at two villages, Mostik and Maisk. Together with Kazakh scientists, eight experts from Europe carried out a field mission in September 1995 to assess, within the framework of a NATO supported project, the radiological situation as far as external doses, environmental contamination and body burden of man were concerned. A summary of the results obtained is presented. The actual radiological situation near the test site is characterized by fallout contaminations. Cs was found in upper soil layers in concentrations similar to those of the global fallout. Also Sr, Am and Co were observed. The resulting present dose to the population is low. Mean external doses from soil contamination for Maisk and Mostik (0.60-0.63 mSv/ year) presently correspond to mean external doses in normal environments. Mean values of the annual internal doses observed in these two villages are below 2 μSv/year for 90 Sr. For other radionuclides the internal doses are also negligible. (orig.)

  4. lmerTest Package: Tests in Linear Mixed Effects Models

    DEFF Research Database (Denmark)

    Kuznetsova, Alexandra; Brockhoff, Per B.; Christensen, Rune Haubo Bojesen

    2017-01-01

    by providing p values for tests for fixed effects. We have implemented the Satterthwaite's method for approximating degrees of freedom for the t and F tests. We have also implemented the construction of Type I - III ANOVA tables. Furthermore, one may also obtain the summary as well as the anova table using...

  5. Nevada Test Site Groundwater Well Rehabilitation Plan

    Energy Technology Data Exchange (ETDEWEB)

    David B. Hudson

    2006-12-01

    This plan describes actions to improve the utility and credibility of the Nevada Test Site (NTS) interim groundwater monitoring program. The two principal actions are: (1) well maintenance/rehabilitation activities and (2) the deployment of dedicated low-cost and reliable jack-pumps for groundwater sampling from deep monitoring wells. The scope of this proposal is to perform these actions on some number of nine selected wells (Figure 1) to evaluate whether these actions are achievable, practical, cost effective, and result in improved groundwater data quality.

  6. Closure Report for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-27

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 104, Area 7 Yucca Flat Atmospheric Test Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 104 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management. CAU 104 consists of the following 15 Corrective Action Sites (CASs), located in Area 7 of the Nevada National Security Site: · CAS 07-23-03, Atmospheric Test Site T-7C · CAS 07-23-04, Atmospheric Test Site T7-1 · CAS 07-23-05, Atmospheric Test Site · CAS 07-23-06, Atmospheric Test Site T7-5a · CAS 07-23-07, Atmospheric Test Site - Dog (T-S) · CAS 07-23-08, Atmospheric Test Site - Baker (T-S) · CAS 07-23-09, Atmospheric Test Site - Charlie (T-S) · CAS 07-23-10, Atmospheric Test Site - Dixie · CAS 07-23-11, Atmospheric Test Site - Dixie · CAS 07-23-12, Atmospheric Test Site - Charlie (Bus) · CAS 07-23-13, Atmospheric Test Site - Baker (Buster) · CAS 07-23-14, Atmospheric Test Site - Ruth · CAS 07-23-15, Atmospheric Test Site T7-4 · CAS 07-23-16, Atmospheric Test Site B7-b · CAS 07-23-17, Atmospheric Test Site - Climax Closure activities began in October 2012 and were completed in April 2013. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan for CAU 104. The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste, mixed waste, and recyclable material. Some wastes exceeded land disposal limits and required treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite landfills. The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office

  7. Rehabilitation of nuclear test site at Maralinga

    International Nuclear Information System (INIS)

    Grad, P.

    1997-01-01

    A program to rehabilitate contaminated areas at the Maralinga Nuclear Test Range in South Australia is being undertaken by the Australian Department of Primary Industries and Energy (DPIE). A major part of the program is directed at reducing the risk presented by the contaminated debris buried at Taranaki, Maralinga's most heavily contaminated site. The rehabilitation program is using the insitu vitrification technology developed for the US Department of Energy. The program is now in its third phase, involving the construction of the full-scale treatment plant. This will be completed later this year. The fourth and last phase will involve the treatment of the Taranaki pits. This will commence in 1998. Tests carried out so far indicated that the normalized leach rates for all oxides in the vitrified product were less than 0.1g/m 2 . ills

  8. GES [Ground Engineering System] test site preparation

    International Nuclear Information System (INIS)

    Cox, C.M.; Mahaffey, M.K.; Miller, W.C.; Schade, A.R.; Toyoda, K.G.

    1987-10-01

    Activities are under way at Hanford to convert the 309 containment building and its associated service wing to a nuclear test facility for the Ground Engineering System (GES) test. Conceptual design is about 80% complete, encompassing facility modifications, a secondary heat transport system, a large vacuum system, a test article cell and handing system, control and data handling systems, and safety andl auxiliary systems. The design makes extensive use of existing equipment to minimize technical risk and cost. Refurbishment of this equipment is 25% complete. Cleanout of some 1000 m 3 of equipment from the earlier reactor test in the facility is 85% complete. An Environmental Assessment was prepared and revised to incorporate Department of Energy (DOE) comments. It is now in the DOE approval chain, where a Finding of No Significant Impact is expected. During the next year, definite design will be well advanced, long-lead procurements will be initiated, construction planning will be completed, an operator training plan will be prepared, and the site (preliminary) safety analysis report will be drafted

  9. Mixed parents, mixed results : Testing the effects of cross-nativity partnership on children's educational attainment

    NARCIS (Netherlands)

    Emonds, Viktor; van Tubergen, F.A.

    2015-01-01

    In this article, we have used panel data from the Children of Immigrants Longitudinal Survey (N = 3,337) to test several mechanisms (English proficiency, friends with native parents, parental socioeconomic status [SES], educational attitudes, bilingualism, and family stability) by which mixed

  10. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2008-09-01

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

  11. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2008-01-01

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells

  12. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  13. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  14. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste

  15. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation

  16. Savannah River Site mixed waste Proposed Site Treatment Plan (PSTP). Volumes 1 and 2 and reference document: Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Helmich, E.; Noller, D.K.; Wierzbicki, K.S.; Bailey, L.L.

    1995-07-13

    The DOE is required by the Resource Conservation and Recovery Act to prepare site treatment plans describing the development of treatment capacities and technologies for treating mixed waste. This proposed plan contains Savannah River Site`s preferred options and schedules for constructing new facilities, and otherwise obtaining treatment for mixed wastes. The proposed plan consists of 2 volumes. Volume 1, Compliance Plan, identifies the capacity to be developed and the schedules as required. Volume 2, Background, provides a detailed discussion of the preferred options with technical basis, plus a description of the specific waste streams. Chapters are: Introduction; Methodology; Mixed low level waste streams; Mixed transuranic waste; High level waste; Future generation of mixed waste streams; Storage; Process for evaluation of disposal issues in support of the site treatment plans discussions; Treatment facilities and treatment technologies; Offsite waste streams for which SRS treatment is the Preferred Option (Naval reactor wastes); Summary information; and Acronyms and glossary. This revision does not contain the complete revised report, but only those pages that have been revised.

  17. Testing for Granger causality in large mixed-frequency VARs

    NARCIS (Netherlands)

    Götz, T.B.; Hecq, A.W.

    2014-01-01

    In this paper we analyze Granger causality testing in a mixed-frequency VAR, originally proposed by Ghysels (2012), where the difference in sampling frequencies of the variables is large. In particular, we investigate whether past information on a low-frequency variable help in forecasting a

  18. Site characterization and monitoring data from Area 5 Pilot Wells, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1994-02-01

    The Special Projects Section (SPS) of Reynolds Electrical ampersand Engineering Co., Inc. (REECO) is responsible for characterizing the subsurface geology and hydrology of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) for the US Department of Energy, Nevada Operations Office (DOE/NV), Environmental Restoration and Waste Management Division, Waste Operations Branch. The three Pilot Wells that comprise the Pilot Well Project are an important part of the Area 5 Site Characterization Program designed to determine the suitability of the Area 5 RWMS for disposal of low-level waste (LLW), mixed waste (MW), and transuranic waste (TRU). The primary purpose of the Pilot Well Project is two-fold: first, to characterize important water quality and hydrologic properties of the uppermost aquifer; and second, to characterize the lithologic, stratigraphic, and hydrologic conditions which influence infiltration, redistribution, and percolation, and chemical transport through the thick vadose zone in the vicinity of the Area 5 RWMS. This report describes Pilot Well drilling and coring, geophysical logging, instrumentation and stemming, laboratory testing, and in situ testing and monitoring activities

  19. Management and disposition of off-site laboratory-generated mixed/low level waste

    International Nuclear Information System (INIS)

    Fisher, D.L.

    1993-10-01

    The Fernald Environmental Management Project (FEMP) is the first Department of Energy (DOE) site to take back mixed and low level waste generated at commercial laboratories from chemical analyses and treatability studies on samples taken from the site. This paper discusses the steps addressed and the issues resolved in order to initiate the task of taking back mixed/low level waste. Such issues included regulatory, waste management and contractual issues

  20. In situ vitrification of a mixed-waste contaminated soil site: The 116-B-6A crib at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Luey, J.; Koegler, S.S.; Kuhn, W.L.; Lowery, P.S.; Winkelman, R.G.

    1992-09-01

    The first large-scale mixed-waste test of in situ vitrification (ISV) has been completed. The large-scale test was conducted at an actual contaminated soil site, the 116-B-6A crib, on the Department of Energy's Hanford Site. The large-scale test was a demonstration of the ISV technology and not an interim action for the 116-B-6A crib. This demonstration has provided technical data to evaluate the ISV process for its potential in the final disposition of mixed-waste contaminated soil sites at Hanford. Because of the test's successful completion. technical data on the vitrified soil are available on how well the process incorporates transuranics and heavy metals into the waste form. how well the form resists leaching of transuranics and heavy metals. how well the process handles sites with high combustible loadings, and the important site parameters which may affect the achievable process depth. This report describes the 116-B-6A crib site, the objectives of the ISV demonstration, the results in terms of the objectives, and the overall process performance.

  1. Waste generation and pollution prevention progress fact sheet: Nevada Test Site

    International Nuclear Information System (INIS)

    1994-01-01

    The Nevada Test Site is responsible for maintaining nuclear testing capability, supporting science-based Stockpile Stewardship experiments, maintaining nuclear agency response capability, applying environmental restoration techniques to areas affected by nuclear testing, managing low-level and mixed radioactive waste, investigating demilitarization technologies, investigating counter- proliferation technologies, supporting work-for-others programs and special Department of Defense activities, operating a hazardous materials spill test center, and providing for the commercial development of the site. This fact sheet provides information on routine waste generation and projected reduction by waste type. Also, materials recycled by the Nevada Test Site in 1994 are listed

  2. Nevada Test Site Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The Nevada Test Site (NTS) Resource Management Plan (RMP) describes the NTS Stewardship Mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. The NTS Stewardship Mission is to manage the land and facilities at the NTS as a unique and valuable national resource. The RMP has defined goals for twelve resource areas based on the principles of ecosystem management. These goals were established using an interdisciplinary team of DOE/NV resource specialists with input from surrounding land managers, private parties, and representatives of Native American governments. The overall goal of the RMP is to facilitate improved NTS land use management decisions within the Great Basin and Mojave Desert ecoregions.

  3. Suppression Pool Mixing and Condensation Tests in PUMA Facility

    International Nuclear Information System (INIS)

    Ling Cheng; Kyoung Suk Woo; Mamoru Ishii; Jaehyok Lim; Han, James

    2006-01-01

    Condensation of steam with non-condensable in the form of jet flow or bubbly flow inside the suppression pool is an important phenomenon on determining the containment pressure of a passively safe boiling water reactor. 32 cases of pool mixing and condensation test have been performed in Purdue University Multi-Dimensional Integral Test Assembly (PUMA) facility under the sponsor of the U.S. Nuclear Regulatory Commission to investigate thermal stratification and pool mixing inside the suppression pool during the reactor blowdown period. The test boundary conditions, such as the steam flow rate, the noncondensable gas flow rate, the initial water temperature, the pool initial pressure and the vent opening submergence depth, which covers a wide range of prototype (SBWR-600) conditions during Loss of Coolant Accident (LOCA) were obtained from the RELAP5 calculation. The test results show that steam is quickly condensed at the exit of the vent opening. For pure steam injection or low noncondensable injection cases, only the portion above the vent opening in the suppression pool is heated up by buoyant plumes. The water below the vent opening can be heated up slowly through conduction. The test results also show that the degree of thermal stratification in suppression pool is affected by the vent opening submergence depth, the pool initial pressure and the steam injection rate. And it is slightly affected by the initial water temperature. From these tests it is concluded that the pool mixing is strongly affected by the noncondensable gas flow rate. (authors)

  4. Surface water management at a mixed waste remediation site

    International Nuclear Information System (INIS)

    Schlotzhauer, D.S.; Warbritton, K.R.

    1991-01-01

    The Weldon Spring Remedial Action Project (WSSRAP) deals with chemical and radiological contaminants. MK-Ferguson Company is managing the project under contract with the US Department of Energy. Remedial activities include demolishing buildings, constructing material storage and staging areas, excavating and consolidating waste materials, and treating and disposing of the materials in a land disposal facility. Due to the excavation and construction required during remediation, a well-planned surface water management system is essential. Planning involves characterization of source areas and surface water transport mechanisms and identification of applicable regulations. System components include: erosion control sediment control, flow attenuation, and management of contaminated water. Combinations of these components may be utilized during actual construction and remediation to obtain optimum control. Monitoring is performed during implementation in order to assess the effectiveness of control measures. This management scheme provides for comprehensive management of surface water at this site by providing control and/or treatment to appropriate standards. Although some treatment methodologies for contaminated water are specific to site contaminants, this comprehensive program provides a management approach which is applicable to many remedial projects in order to minimize contaminant release and meet Clean Water Act requirements

  5. Savannah River Site mixed waste Proposed Site Treatment Plan (PSTP). Volumes 1 and 2 and reference document: Revision 2

    International Nuclear Information System (INIS)

    Helmich, E.; Noller, D.K.; Wierzbicki, K.S.; Bailey, L.L.

    1995-01-01

    The DOE is required by the Resource Conservation and Recovery Act to prepare site treatment plans describing the development of treatment capacities and technologies for treating mixed waste. This proposed plan contains Savannah River Site's preferred options and schedules for constructing new facilities, and otherwise obtaining treatment for mixed wastes. The proposed plan consists of 2 volumes. Volume 1, Compliance Plan, identifies the capacity to be developed and the schedules as required. Volume 2, Background, provides a detailed discussion of the preferred options with technical basis, plus a description of the specific waste streams. Chapters are: Introduction; Methodology; Mixed low level waste streams; Mixed transuranic waste; High level waste; Future generation of mixed waste streams; Storage; Process for evaluation of disposal issues in support of the site treatment plans discussions; Treatment facilities and treatment technologies; Offsite waste streams for which SRS treatment is the Preferred Option (Naval reactor wastes); Summary information; and Acronyms and glossary. This revision does not contain the complete revised report, but only those pages that have been revised

  6. Testing the ecological site group concept

    Science.gov (United States)

    The 2016 “Ecological Sites for Landscape Management” special issue of Rangelands recommended an update to our thinking of Ecological Sites, suggesting that in our desire to make Ecological Sites more quantitative, we abandoned consideration of Ecological Sites’ spatial context. In response, Ecologic...

  7. Relevance of positive patch-test reactions to fragrance mix.

    Science.gov (United States)

    Devos, Steven A; Constandt, Lieve; Tupker, Ron A; Noz, Kathy C; Lucker, Georges P H; Bruynzeel, Derk P; Schuttelaar, Marie-Louise A; Kruyswijk, Mente R J; van Zuuren, Esther J; Vink, Jaqueline; Coenraads, Pieter-Jan; Kiemeney, Lambertus A L M; van der Valk, Pieter G M

    2008-01-01

    Fragrances are an important cause of allergic contact dermatitis. We presume that the traditional fragrance mix (FM) detects 70 to 80% of fragrance-allergic patients. FM has an irritant potential. Weak positive reactions may have a greater chance of being irrelevant than strong reactions. To improve the appraisal of FM patch-test reactions, we studied the relevance of reactions of different strength. We also studied the predictive value of the following on the relevance of the initial FM patch-test results: patch-test results of a repeated FM test; results of patch tests with balsam of Peru, colophony, and ingredients of the mix; and (history of) atopic dermatitis. One hundred thirty-eight patients who had doubtful positive (?+) or positive (+ to +++) reactions were included in the study. We determined relevance by history taking, location and course of the dermatitis, and additional patch testing. Patients were retested with FM and with each ingredient separately. The relevance of reactions to FM increases with the strength of the reactions. Predictors of relevance are the results of retesting with FM, the results of tests with the ingredients, and a history and/or present symptoms of atopic dermatitis. Retesting with FM and its ingredients may add to the benefit of patch testing.

  8. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 3, Site specific---Illinois through New York

    International Nuclear Information System (INIS)

    1993-04-01

    The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provides site-specific information on DOE's mixed waste streams and a general review of available and planned treatment facilities for mixed wastes for the following sites: Argonne National Laboratory-East; Site A/plot M in Palos Forest Preserve, Illinois; Ames Laboratory; Paducah Gaseous Diffusion Plant; Portsmouth Naval Shipyard; Kansas City Plant; University of Missouri; Weldon Springs Site, St. Charles, Missouri; Nevada Test Site; Middlesex Sampling Plant, Middlesex, New Jersey; Princeton Plasma Physics Laboratory; LANL; Sandia national laboratory; Brookhaven National Laboratory; Colonie Interim Storage Site, Colonie, New York; Knolls Atomic Power Laboratory; Knolls Atomic Power Laboratory-Kesselring Site; and West Valley Demonstration Project

  9. Mixed Portmanteau Test for Diagnostic Checking of Time Series Models

    Directory of Open Access Journals (Sweden)

    Sohail Chand

    2014-01-01

    Full Text Available Model criticism is an important stage of model building and thus goodness of fit tests provides a set of tools for diagnostic checking of the fitted model. Several tests are suggested in literature for diagnostic checking. These tests use autocorrelation or partial autocorrelation in the residuals to criticize the adequacy of fitted model. The main idea underlying these portmanteau tests is to identify if there is any dependence structure which is yet unexplained by the fitted model. In this paper, we suggest mixed portmanteau tests based on autocorrelation and partial autocorrelation functions of the residuals. We derived the asymptotic distribution of the mixture test and studied its size and power using Monte Carlo simulations.

  10. U.S. Department of Energy, Office of Technology Development, mixed-waste treatment research, development, demonstration, testing, and evaluation

    International Nuclear Information System (INIS)

    Berry, J.B.

    1993-01-01

    Both chemically hazardous and radioactive species contaminate mixed waste. Historically, technology has been developed to treat either hazardous or radioactive waste. Technology specifically designed to produce a low-risk final waste form for mixed low-level waste has not been developed, demonstrated, or tested. Site-specific solutions to management of mixed waste have been initiated; however, site-specific programs result in duplication of technology development effort between various sites. There is a clear need for technology designed to meet the unique requirements for mixed-waste processing and a system-wide integrated strategy for developing technology and managing mixed waste. This paper discusses the US Department of Energy (DOE) approach to addressing these unique requirements through a national technology development effort

  11. Environmental assessment for double tracks test site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1996-04-01

    The U.S. Department of Energy, Nevada Operations Office (DOE/NV), with appropriate approvals from the U.S. Air Force (USAF), proposes to conduct environmental restoration operations at the Double Tracks test site located on the Nellis Air Force Range (NAFR) in Nye County, Nevada. This environmental assessment (EA) evaluates the potential environmental consequences of four alternative actions for conducting the restoration operation and of the no action alternative. The EA also identifies mitigation measures, where appropriate, designed to protect natural and cultural resources and reduce impacts to human health and safety. The environmental restoration operation at the Double Tracks test site would serve two primary objectives. First, the proposed work would evaluate the effectiveness of future restoration operations involving contamination over larger areas. The project would implement remediation technology options and evaluate how these technologies could be applied to the larger areas of contaminated soils on the Nevada Test Site (NTS), the Tonopah Test Range (TTR), and the NAFR. Second, the remediation would provide for the removal of plutonium contamination down to or below a predetermined level which would require cleanup of 1 hectare (ha) (2.5 acres), for the most likely case, or up to 3.0 ha (7.4 acres) of contaminated soil, for the upper bounding case

  12. Environmental assessment for double tracks test site, Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The U.S. Department of Energy, Nevada Operations Office (DOE/NV), with appropriate approvals from the U.S. Air Force (USAF), proposes to conduct environmental restoration operations at the Double Tracks test site located on the Nellis Air Force Range (NAFR) in Nye County, Nevada. This environmental assessment (EA) evaluates the potential environmental consequences of four alternative actions for conducting the restoration operation and of the no action alternative. The EA also identifies mitigation measures, where appropriate, designed to protect natural and cultural resources and reduce impacts to human health and safety. The environmental restoration operation at the Double Tracks test site would serve two primary objectives. First, the proposed work would evaluate the effectiveness of future restoration operations involving contamination over larger areas. The project would implement remediation technology options and evaluate how these technologies could be applied to the larger areas of contaminated soils on the Nevada Test Site (NTS), the Tonopah Test Range (TTR), and the NAFR. Second, the remediation would provide for the removal of plutonium contamination down to or below a predetermined level which would require cleanup of 1 hectare (ha) (2.5 acres), for the most likely case, or up to 3.0 ha (7.4 acres) of contaminated soil, for the upper bounding case.

  13. Properties Important To Mixing For WTP Large Scale Integrated Testing

    International Nuclear Information System (INIS)

    Koopman, D.; Martino, C.; Poirier, M.

    2012-01-01

    Large Scale Integrated Testing (LSIT) is being planned by Bechtel National, Inc. to address uncertainties in the full scale mixing performance of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. External review boards have raised questions regarding the overall representativeness of simulants used in previous mixing tests. Accordingly, WTP requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in LSIT. Among the first tasks assigned to SRNL was to develop a list of waste properties that matter to pulse-jet mixer (PJM) mixing of WTP tanks. This report satisfies Commitment 5.2.3.1 of the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2010-2: physical properties important to mixing and scaling. In support of waste simulant development, the following two objectives are the focus of this report: (1) Assess physical and chemical properties important to the testing and development of mixing scaling relationships; (2) Identify the governing properties and associated ranges for LSIT to achieve the Newtonian and non-Newtonian test objectives. This includes the properties to support testing of sampling and heel management systems. The test objectives for LSIT relate to transfer and pump out of solid particles, prototypic integrated operations, sparger operation, PJM controllability, vessel level/density measurement accuracy, sampling, heel management, PJM restart, design and safety margin, Computational Fluid Dynamics (CFD) Verification and Validation (V and V) and comparison, performance testing and scaling, and high temperature operation. The slurry properties that are most important to Performance Testing and Scaling depend on the test objective and rheological classification of the slurry (i

  14. Interpreting Results from the Standardized UXO Test Sites

    National Research Council Canada - National Science Library

    May, Michael; Tuley, Michael

    2007-01-01

    ...) and the Environmental Security Technology Certification Program (ESCTP) to complete a detailed analysis of the results of testing carried out at the Standardized Unexploded Ordnance (UXO) Test Sites...

  15. Nevada test site defense waste acceptance criteria, certification, and transfer requirements

    International Nuclear Information System (INIS)

    1988-10-01

    The Nevada Test Site (NTS) Defense Waste Acceptance Criteria, Certification and Transfer Requirements establishes procedures and criteria for safe transfer, disposal, and storage of defense transuranic, low-level, and mixed waste at the NTS. Included are an overview of the NTS defense waste management program; the NTS waste acceptance criteria for transuranic, low-level, and mixed wastes; waste certification requirements and guidance; application to submit waste; and requirements for waste transfer and receipt. 5 figs., 16 tabs

  16. Goodness-of-fit tests in mixed models

    KAUST Repository

    Claeskens, Gerda

    2009-05-12

    Mixed models, with both random and fixed effects, are most often estimated on the assumption that the random effects are normally distributed. In this paper we propose several formal tests of the hypothesis that the random effects and/or errors are normally distributed. Most of the proposed methods can be extended to generalized linear models where tests for non-normal distributions are of interest. Our tests are nonparametric in the sense that they are designed to detect virtually any alternative to normality. In case of rejection of the null hypothesis, the nonparametric estimation method that is used to construct a test provides an estimator of the alternative distribution. © 2009 Sociedad de Estadística e Investigación Operativa.

  17. Structural geology report: Spent Fuel Test - Climax Nevada Test Site

    International Nuclear Information System (INIS)

    Wilder, D.G.; Yow, J.L. Jr.

    1984-10-01

    We performed underground mapping and core logging in the Climax Stock, a granitic intrusive at the Nevada Test Site, as part of a major field test to determine the feasibility of using granitic or crystalline rock for the underground storage of spent fuel from a nuclear reactor. This mapping and logging identified more than 2500 fractures, over 1500 of which were described in enough detail to allow statistical analyses and orientation studies to be performed. We identified eight joint sets, three major shear sets, and a fault zone within the Spent Fuel Test - Climax (SFT-C) portion of the Stock. Joint sets identified within the SFT-C and elsewhere in the Stock correlated well. The orientations of joint sets identified by other investigators were consistent with our findings, indicating that the joint sets are persistent and have a relatively uniform orientation throughout a major portion of the Stock. The one joint set not seen elsewhere in the Stock is healed and the wall rock is altered, implying that healed joints were not included in the mapping criteria used by other investigators. The shear sets were distinguished from the joint sets by virtue of crushed minerals, continuous clay infilling, and other evidences of shearing, and from faults by the lack of offsetting. Previous investigators working mainly in the Pile Driver Drifts identified two of the shear sets. The third set, being nearly parallel to these Drifts had not been identified previously. The fault zone identified at the far (Receiving Room) end of the project is oriented approximately N45 0 E-75 0 SE, similar to both the Boundary and Shaft Station Faults. We have, therefore, concluded that the Receiving Room Fault is one of a series of normal faults that occur within the Climax Stock and that are possibly related, in both age and genesis, to the Boundary Fault. 52 refs., 26 figs., 11 tabs

  18. Multiple Site Damage in Flat Panel Testing

    National Research Council Canada - National Science Library

    Shrage, Daniel

    2000-01-01

    This report aimed to experimentally verify analytical models that predict the residual strength of representative aircraft structures, such as wide panels, that are subjected to Multiple Site Damage (MSD...

  19. Laboratory testing of ozone oxidation of Hanford site waste

    International Nuclear Information System (INIS)

    Delegard, C.H.; Stubbs, A.M.; Bolling, S.D.; Colby, S.A.

    1994-01-01

    Organic constituents in radioactive waste stored in underground tanks at the U.S. Department of Energy's Hanford Site provoke safety concerns arising from their low-temperature reactions with nitrate and nitrite oxidants. Destruction of the organics would eliminate both safety problems. Oxone oxidation was investigated to destroy organic species present in simulated and genuine waste from Hanford Site Tank 241-SY-101. Bench-scale tests showed high-shear mixing apparatus achieved efficient gas-to-solution mass transfer and utilization of the ozone reagent. Oxidations of nitrite (to form nitrate) and organic species were observed. The organics formed carbonate and oxalate as well as nitrate and nitrogen gas from organic nitrogen. Formate, acetate and oxalate were present both in source waste and as reaction intermediates. Metal species oxidations also were observed directly or inferred by solubilities. Chemical precipitations of metal ions such as strontium and americium occurred as the organic species were destroyed by ozone. Reaction stoichiometries were consistent with the reduction of one oxygen atom per ozone molecule

  20. Framework for DOE mixed low-level waste disposal: Site fact sheets

    Energy Technology Data Exchange (ETDEWEB)

    Gruebel, M.M.; Waters, R.D.; Hospelhorn, M.B.; Chu, M.S.Y. [eds.

    1994-11-01

    The Department of Energy (DOE) is required to prepare and submit Site Treatment Plans (STPS) pursuant to the Federal Facility Compliance Act (FFCAct). Although the FFCAct does not require that disposal be addressed in the STPS, the DOE and the States recognize that treatment of mixed low-level waste will result in residues that will require disposal in either low-level waste or mixed low-level waste disposal facilities. As a result, the DOE is working with the States to define and develop a process for evaluating disposal-site suitability in concert with the FFCAct and development of the STPS. Forty-nine potential disposal sites were screened; preliminary screening criteria reduced the number of sites for consideration to twenty-six. The DOE then prepared fact sheets for the remaining sites. These fact sheets provided additional site-specific information for understanding the strengths and weaknesses of the twenty-six sites as potential disposal sites. The information also provided the basis for discussion among affected States and the DOE in recommending sites for more detailed evaluation.

  1. Interim report on flash floods, Area 5 - Nevada Test Site

    International Nuclear Information System (INIS)

    French, R.H.

    1980-09-01

    Examination of the presently available data indicates that consideration must be given to the possibility of flash floods when siting waste management facilities in Area 5 of the Nevada Test Site. 6 figures, 7 tables

  2. Use of risk to resolve conflicts in assessing hazards at mixed-waste sites

    International Nuclear Information System (INIS)

    Rechard, R.P.; Chu, M.S.Y.

    1991-01-01

    Two main issues contribute to the assessment of health hazard from mixed waste: the scientific methods to assess these materials and the legislative and regulatory control of these materials. This paper is primarily concerned with the scientific method of assessing hazards from mixed waste (i.e., carcinogenic chemicals, noncarcinogenic chemicals, and radioactive material). This paper discusses SRS, a Site Ranking System, and its use of risk concepts to avoid introducing new inconsistencies when ranking mixed-waste sites. SRS ranks each site by scoring factors that influence the human health risk. The factors are (1) the potentially exposed population, (2) the average amount of exposure to the waste, and (3) the toxicity of the waste. The relative risk of a release is measured as the product of these three factors. The third factor, toxicity, is indexed with a single score, but because methods of measuring toxicity differ for carcinogenic chemicals, noncarcinogenic chemicals, and radionuclides, comparison can be difficult; hence, this paper also summarizes the logic and assumptions used to make toxicity comparisons in SRS. As may be expected, results from a ranking scheme based on risk are different from results generated by the original Hazard Ranking System (HRS), used by the Environmental Protection Agency. This paper briefly discusses these differences for five Superfund sites (no mixed waste). The legislative and regulatory control of these materials to protect human health is also discussed. 37 refs., 1 tab

  3. 1996 Hanford site report on land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1996-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order milestone M-26-OIF. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal-restricted mixed waste management at the Hanford Site.

  4. Nevada Test Site Waste Acceptance Criteria (NTSWAC), Rev. 7-01

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2009-05-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NTSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex for disposal.

  5. Nevada Test Site Waste Acceptance Criteria (NTSWAC), Rev. 7-01

    International Nuclear Information System (INIS)

    2009-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NTSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex for disposal.

  6. Nevada Test Site Resource Management Plan: Annual summary, January 2000

    International Nuclear Information System (INIS)

    2000-01-01

    The Nevada Test Site Resource Management Plan published in December of 1998 (DOE/NV--518) describes the Nevada Test Site stewardship mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. As part of the Nevada Test Site Resource Management Plan, DOE Nevada Operations Office has committed to perform and publish an annual summary review of DOE Nevada Operations' stewardship of the Nevada Test Site. This annual summary includes a description of progress made toward the goals of the Nevada Test Site Resource Management Plan, pertinent monitoring data, actions that were taken to adapt to changing conditions, and any other changes to the Nevada Test Site Resource Management Plan

  7. Nevada Test Site Resource Management Plan: Annual summary, January 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-01

    The Nevada Test Site Resource Management Plan published in December of 1998 (DOE/NV--518) describes the Nevada Test Site stewardship mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. As part of the Nevada Test Site Resource Management Plan, DOE Nevada Operations Office has committed to perform and publish an annual summary review of DOE Nevada Operations' stewardship of the Nevada Test Site. This annual summary includes a description of progress made toward the goals of the Nevada Test Site Resource Management Plan, pertinent monitoring data, actions that were taken to adapt to changing conditions, and any other changes to the Nevada Test Site Resource Management Plan.

  8. The additivity of radionuclide and chemical risk estimates in performance evaluation of mixed-waste sites

    International Nuclear Information System (INIS)

    Till, J.E.; Meyer, K.R.

    1990-01-01

    Methods for assessing radioactive waste sites that contain chemical constituents are in the formative stages. In evaluating these sites, a key concern will be the hazard to personnel involved in cleanup work and to the general population. This paper focuses on what we have learned from pathway analysis and risk assessment about providing a combined estimate of risk from exposure to both chemicals and radionuclides. Quantitative radiation risk assessment involves a high degree of uncertainty. Chemical risk assessment generally does not provide quantitative results. Thus, it is not currently possible to develop a useful, quantitative combined risk assessment for mixed-waste sites

  9. Measurement of LNAPL flux using single-well intermittent mixing tracer dilution tests.

    Science.gov (United States)

    Smith, Tim; Sale, Tom; Lyverse, Mark

    2012-01-01

    The stability of subsurface Light Nonaqueous Phase Liquids (LNAPLs) is a key factor driving expectations for remedial measures at LNAPL sites. The conventional approach to resolving LNAPL stability has been to apply Darcy's Equation. This paper explores an alternative approach wherein single-well tracer dilution tests with intermittent mixing are used to resolve LNAPL stability. As a first step, an implicit solution for single-well intermittent mixing tracer dilution tests is derived. This includes key assumptions and limits on the allowable time between intermittent mixing events. Second, single-well tracer dilution tests with intermittent mixing are conducted under conditions of known LNAPL flux. This includes a laboratory sand tank study and two field tests at active LNAPL recovery wells. Results from the sand tank studies indicate that LNAPL fluxes in wells can be transformed into formation fluxes using corrections for (1) LNAPL thicknesses in the well and formation and (2) convergence of flow to the well. Using the apparent convergence factor from the sand tank experiment, the average error between the known and measured LNAPL fluxes is 4%. Results from the field studies show nearly identical known and measured LNAPL fluxes at one well. At the second well the measured fluxes appear to exceed the known value by a factor of two. Agreement between the known and measured LNAPL fluxes, within a factor of two, indicates that single-well tracer dilution tests with intermittent mixing can be a viable means of resolving LNAPL stability. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.

  10. TTP AL921102: An integrated geophysics program for non-intrusive characterization of mixed-waste landfill sites

    International Nuclear Information System (INIS)

    Hasbrouck, J.C.

    1992-11-01

    Chem-Nuclear Geotech, Inc. (Geotech), operating contractor for the US Department of Energy Grand Junction Projects Office, is conducting the Integrated Geophysics Program for Non-Intrusive Characterization of Mixed-Waste Landfill Sites (Technical Task Plan [TTP] AL921102). The TTP is part of the Mixed-Waste Landfill Integrated Demonstration (MWLID). The objective of this task was to demonstrate that an integrated program of surface geophysics can be used to effectively and nonintrusively characterize n-mixed-waste landfill sites. To accomplish this objective, integrated field demonstrations were conducted over two previously identified areas of interest (designated Areas A and B) within the MWLID test site at the Chemical Waste Landfill (CWL), Technical Area 3, at the Sandia National Laboratories, Albuquerque, New Mexico (Figures 1 and 2). Area A was centered roughly around the Chromic Acid and Organics Pits in the southeast-central portion of the landfill and Area B was centered around the ''60's Pits'' area in the northeast-central portion of the landfill. Pit locations were known in Area A and suspected in Area B. This progress report describes the geophysical surveys conducted by Geotech and presents preliminary displays and analyses. Volume 2 of this report contains the raw data for all the surveys conducted by Geotech for this TTP

  11. Fabrication and performance testing of CANDU mixed-oxide fuel

    International Nuclear Information System (INIS)

    Dimayuga, F.C.; Floyd, M.R.; Cox, D.S.

    2000-01-01

    AECL's mixed-oxide fuel fabrication activities are performed in the Recycle Fuel Fabrication Laboratories (RFFL) at the Chalk River Laboratories. Since the start-up of the RFFL in the mid-1970s, several fabrication campaigns have been conducted in the facility, producing various types of mixed-oxide (MOX) fuel, which were used for both irradiation and physics testing. More recently, CANDU fuel bundles containing 0.5 w-t % plutonium in natural uranium, produced in the RFFL, were successfully irradiated in the NRU reactor at powers up to 65 kW/m and to burnups ranging from 13 to 23 MW·d/kg HE. Two of the bundles had power histories that bound the normal powers and burnups of natural UO 2 CANDU fuel ( 2 fuel. Significantly more grain growth was observed than that expected for UO 2 fuel; however, this increase in grain growth had no effect on the overall performance of the fuel. Two other bundles operated to extended burnups of 19 to 23 MW·d/kg HE. Burnup extension above 15 MW·d/kg HE only had a small effect on FGR. (author)

  12. Hanford Site Emergency Alerting System siren testing report

    International Nuclear Information System (INIS)

    Weidner, L.B.

    1997-01-01

    The purpose of the test was to determine the effective coverage of the proposed upgrades to the existing Hanford Site Emergency Alerting System (HSEAS). The upgrades are to enhance the existing HSEAS along the Columbia River from the Vernita Bridge to the White Bluffs Boat Launch as well as install a new alerting system in the 400 Area on the Hanford Site. Five siren sites along the Columbia River and two sites in the 400 Area were tested to determine the site locations that will provide the desired coverage

  13. HIV/AIDS testing sites and locator services

    Data.gov (United States)

    U.S. Department of Health & Human Services — The HIV Testing Sites & Care Services Locator is a first-of-its-kind, location-based search tool that allows you to search for testing services, housing...

  14. Assessment of the Nevada Test Site as a Site for Distributed Resource Testing and Project Plan: March 2002

    Energy Technology Data Exchange (ETDEWEB)

    Horgan, S.; Iannucci, J.; Whitaker, C.; Cibulka, L.; Erdman, W.

    2002-05-01

    The objective of this project was to evaluate the Nevada Test Site (NTS) as a location for performing dedicated, in-depth testing of distributed resources (DR) integrated with the electric distribution system. In this large scale testing, it is desired to operate multiple DRs and loads in an actual operating environment, in a series of controlled tests to concentrate on issues of interest to the DR community. This report includes an inventory of existing facilities at NTS, an assessment of site attributes in relation to DR testing requirements, and an evaluation of the feasibility and cost of upgrades to the site that would make it a fully qualified DR testing facility.

  15. Nevada Test Site, Nye County, Nevada. Final environmental impact statement

    International Nuclear Information System (INIS)

    1977-09-01

    This environmental statement for the Nevada Test Site (NTS) considers underground nuclear detonations with yields of one megaton or less, along with the preparations necessary for such detonations. The testing activities considered also include other continuing and intermittent activities, both nuclear and nonnuclear, which can best be conducted in the remote and controlled area of the Nevada Test Site. These activities are listed, with emphasis on weapons testing programs which do not remain static

  16. Nevada Test Site, Nye County, Nevada. Final environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-09-01

    This environmental statement for the Nevada Test Site (NTS) considers underground nuclear detonations with yields of one megaton or less, along with the preparations necessary for such detonations. The testing activities considered also include other continuing and intermittent activities, both nuclear and nonnuclear, which can best be conducted in the remote and controlled area of the Nevada Test Site. These activities are listed, with emphasis on weapons testing programs which do not remain static.

  17. Genetic testing by cancer site: endocrine system.

    Science.gov (United States)

    Pilarski, Robert; Nagy, Rebecca

    2012-01-01

    Numerous hereditary syndromes, caused by mutations in multiple tumor suppressor genes and oncogenes, can cause tumors in organs of the endocrine system. The primary syndromes (and genes) addressed here include multiple endocrine neoplasia types 1 and 2 (MEN1 and RET genes), Cowden syndrome (PTEN), hereditary pheochromocytoma/paraganglioma syndromes (multiple genes), and von Hippel-Lindau disease (VHL). Clinical genetic testing is available for each of these syndromes and is generally directed to individuals with endocrine or other tumors and additional features suggestive of a hereditary syndrome. However, for some endocrine tumors, the proportion because of heredity is so high that genetic testing may be appropriate for all affected individuals. Management for hereditary cases typically involves aggressive screening and/or surgical protocols, starting at young ages to minimize morbidity and mortality. Endocrine tumors can be less commonly seen in a number of other hereditary syndromes (eg, neurofibromatosis), which are not reviewed in this section.

  18. Social problems on Semipalatinsk test site

    International Nuclear Information System (INIS)

    Cherepnin, Yu.S.; Zhdanov, N.A.; Tumenova, B.N.

    2000-01-01

    In the report main stages of National Nuclear Center of Republic of Kazakhstan activity in the field of scientific information obtain about consequences of conducted nuclear tests, radioecological and medical and biological researches, restoration of natural environment and people's health in Republic of Kazakhstan are reflected. Chronicle and results of joint works within frameworks of international programs in these field are given as well. Analysis of up-to-date social problems of population of the region is carried out

  19. On-site cell field test support program

    Science.gov (United States)

    Staniunas, J. W.; Merten, G. P.

    1982-09-01

    Utility sites for data monitoring were reviewed and selected. Each of these sites will be instrumented and its energy requirements monitored and analyzed for one year prior to the selection of 40 Kilowatt fuel cell field test sites. Analyses in support of the selection of sites for instrumentation shows that many building sectors offered considerable market potential. These sectors include nursing home, health club, restaurant, industrial, hotel/motel and apartment.

  20. The Road Side Unit for the A270 Test Site

    NARCIS (Netherlands)

    Passchier, I.; Driessen, B.J.F.; Heijligers, B.M.R.; Netten, B.D.; Schackmann, P.P.M.

    2011-01-01

    The design and implementation of the Road Side Unit for the A270 Test Site is presented. It consists of a sensor platform and V2I communication platform with full coverage of the test site. A service platform enables applications to make use of these facilities. The RSU will be used both for the

  1. Methods of Usability Testing in Libraries Web Sites

    Directory of Open Access Journals (Sweden)

    Eman Fawzy

    2006-03-01

    Full Text Available A Study about libraries' web sites evaluation, that is the Usability, the study talking about methods of usability testing and define it, and its important in web sites evaluation, then details the methods of usability: questionnaire, core groups, testing experimental model, cards arrangement, and composed evaluation.

  2. Estimation of fatigue characteristics of asphaltic mixes using simple tests

    NARCIS (Netherlands)

    Medani, T.O.; Molenaar, A.A.A.

    2000-01-01

    A simplified procedure for estimation of fatigue characteristics of asphaltic mixes is presented. The procedure requires the determination of the so-called master curve (Le. the relationship between the mix stiffness, the loading time and the temperature), the asphalt properties and the mix

  3. Transuranic (TRU) Waste Repackaging at the Nevada Test Site

    International Nuclear Information System (INIS)

    Di Sanza, E.F.; Pyles, G.; Ciucci, J.; Arnold, P.

    2009-01-01

    This paper describes the activities required to modify a facility and the process of characterizing, repackaging, and preparing for shipment the Nevada Test Site's (NTS) legacy transuranic (TRU) waste in 58 oversize boxes (OSB). The waste, generated at other U.S. Department of Energy (DOE) sites and shipped to the NTS between 1974 and 1990, requires size-reduction for off-site shipment and disposal. The waste processing approach was tailored to reduce the volume of TRU waste by employing decontamination and non-destructive assay. As a result, the low-level waste (LLW) generated by this process was packaged, with minimal size reduction, in large sea-land containers for disposal at the NTS Area 5 Radioactive Waste Management Complex (RWMC). The remaining TRU waste was repackaged and sent to the Idaho National Laboratory Consolidation Site for additional characterization in preparation for disposal at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. The DOE National Nuclear Security Administration Nevada Site Office and the NTS Management and Operating (M and O) contractor, NSTec, successfully partnered to modify and upgrade an existing facility, the Visual Examination and Repackaging Building (VERB). The VERB modifications, including a new ventilation system and modified containment structure, required an approved Preliminary Documented Safety Analysis prior to project procurement and construction. Upgrade of the VERB from a radiological facility to a Hazard Category 3 Nuclear Facility required new rigor in the design and construction areas and was executed on an aggressive schedule. The facility Documented Safety Analysis required that OSBs be vented prior to introduction into the VERB. Box venting was safely completed after developing and implementing two types of custom venting systems for the heavy gauge box construction. A remotely operated punching process was used on boxes with wall thickness of up to 3.05 mm (0.120 in) to insert aluminum

  4. Specific mixing facilitates the comparative quantification of phosphorylation sites with significant dysregulations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing [Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R& A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Bo [Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R& A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023 (China); Liu, Zheyi; Dong, Mingming; Mao, Jiawei; Zhou, Ye; Chen, Jin [Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R& A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Fangjun, E-mail: wangfj@dicp.ac.cn [Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R& A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023 (China); Zou, Hanfa [Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R& A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023 (China)

    2017-01-15

    Mass spectrometry (MS) based quantitative analyses of proteome and proteome post-translational modifications (PTMs) play more and more important roles in biological, pharmaceutical and clinical studies. However, it is still a big challenge to accurately quantify the proteins or proteins PTM sites with extreme relative abundances in comparative protein samples, such as the significantly dysregulated ones. Herein, a novel quantification strategy, Mixing at Specific Ratio (MaSR) before isotope labeling, had been developed to improve the quantification accuracy and coverage of extreme proteins and protein phosphorylation sites. Briefly, the comparative protein samples were firstly mixed together at specific ratios of 9:1 and 1:9 (w/w), followed with mass differentiate light and heavy isotope labeling, respectively. The extreme proteins and protein phosphorylation sites, even if the newly expressed or disappeared ones, could be accurately quantified due to all of the proteins' relative abundances had been adjusted to 2 orders of magnitude (1/9-9) by this strategy. The number of quantified phosphorylation sites with more than 20 folds changes was improved about 10 times in comparative quantification of pervanadate stimulated phosphoproteome of HeLa cells, and 134 newly generated and 21 disappeared phosphorylation sites were solely quantified by the MaSR strategy. The significantly up-regulated phosphorylation sites were mainly involved in the key phosphoproteins regulating the insulin-related pathways, such as PI3K-AKT and RAS-MAPK pathways. Therefore, the MaSR strategy exhibits as a promising way in elucidating the biological processes with significant dysregulations. - Highlights: • All the proteins' relative abundances were adjusted into 2 orders of magnitude (1/9-9). • The quantification accuracy and coverage of extreme proteins and protein phosphorylation sites had been improved. • The newly expressed or disappeared proteins and protein

  5. Cementation and solidification of miscellaneous mixed wastes at the Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Phillips, J.A.; Semones, G.B.

    1995-01-01

    The Rocky Flats Environmental Technology Site produces a variety of wastes which are amenable to micro-encapsulation in cement Portland cement is an inexpensive and readily available material for this application. The Waste Projects (WP) group at Rocky Flats evaluated cementation to determine its effectiveness in encapsulating several wastes. These included waste analytical laboratory solutions, incinerator ash, hydroxide precipitation sludge, and an acidic solution from the Delphi process (a chemical oxidation technology being evaluated as an alternative to incineration). WP prepared surrogate wastes and conducted designed experiments to optimize the cement formulation for the waste streams. These experiments used a Taguchi or factorial experimental design, interactions between the variables were also considered in the testing. Surrogate waste samples were spiked with various levels of each of six Resource Conservation and Recovery Act (RCRA) listed metals (Cd, Cr, Ba, Pb, Ni, and Ag), cemented using the optimized formulation, and analyzed for leach resistance using the Toxicity Characteristic Leaching Procedure (TCLP). The metal spike levels chosen were based on characterization data, and also based on an estimate of the highest levels of contaminants suspected in the waste. This paper includes laboratory test results for each waste studied. These include qualitative observations as well as quantitative data from TCLP analyses and environmental cycling studies. The results from these experiments show that cement stabilization of the different wastes can produce final waste forms which meet the current RCRA Land Disposal Restriction (LDR) requirements. Formulations that resulted in LDR compliant waste forms are provided. The volume increases associated with cementation are also lower than anticipated. Future work will include verification studies with actual mixed radioactive waste as well as additional formulation development studies on other waste streams

  6. Penetration Testing Model for Web sites Hosted in Nuclear Malaysia

    International Nuclear Information System (INIS)

    Mohd Dzul Aiman Aslan; Mohamad Safuan Sulaiman; Siti Nurbahyah Hamdan; Saaidi Ismail; Mohd Fauzi Haris; Norzalina Nasiruddin; Raja Murzaferi Mokhtar

    2012-01-01

    Nuclear Malaysia web sites has been very crucial in providing important and useful information and services to the clients as well as the users worldwide. Furthermore, a web site is important as it reflects the organisation image. To ensure the integrity of the content of web site, a study has been made and a penetration testing model has been implemented to test the security of several web sites hosted at Nuclear Malaysia for malicious attempts. This study will explain how the security was tested in the detailed condition and measured. The result determined the security level and the vulnerability of several web sites. This result is important for improving and hardening the security of web sites in Nuclear Malaysia. (author)

  7. Malignant tumors and Semipalatinsk test site

    International Nuclear Information System (INIS)

    Balmukhanov, S.B.; Gusev, B.I.; Abdrakhmanov, Zh.N.

    1998-01-01

    Mutational biological effect of ionizing irradiation initiates and promotes neoplastic process (cancer or leukemia) as well as genetic defects in further generations. It is well-known that the far-off irradiation effects, caused by deoxyribonucleic acid mutation, take place for adulterers when irradiation dose is within 20 c Sv and for foetus when it is 1.0 c Sv. According to information obtained by a number of researches, irradiation dose of within 0.5-0.9 c Sv, and even 0.1 c Sv, cannot be considered to be safe in regards to their capabilities to cause formation of malignant tumors. Number of people, being effected by the ionizing irradiation during 40 years of nuclear weapon testiness conduction (more than 600), comes to about 3 mill., half of which are Kazakstan people. In addition, more than 500 different areas in Semipalatinsk region, which have different level of radiation contamination. The excess malignant tumor sick rate, caused by irradiation effect, was studied for two groups of population that were being continuously examined since 1960. The exposure external irradiation dose was from 80 to 274 c Sv for the main population group (10 thousands). The testing group of population (11 thousands) was effected by the irradiation dose of 7-10 c Sv

  8. 1995 Report on Hanford site land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1995-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order Milestone M-26-01E. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal restricted mixed waste at the Hanford Site. The U.S. Department of Energy, its predecessors, and contractors at the Hanford Site were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 and Atomic Energy Act of 1954. This report covers mixed waste only. The Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDRs) plan and its annual updates to comply with LDR requirements for radioactive mixed waste. This report is the fifth update of the plan first issued in 1990. Tri-Party Agreement negotiations completed in 1993 and approved in January 1994 changed and added many new milestones. Most of the changes were related to the Tank Waste Remediation System and these changes are incorporated into this report.

  9. Hanford tank initiative test facility site selection study

    International Nuclear Information System (INIS)

    Staehr, T.W.

    1997-01-01

    The Hanford Tanks Initiative (HTI) project is developing equipment for the removal of hard heel waste from the Hanford Site underground single-shell waste storage tanks. The HTI equipment will initially be installed in the 241-C-106 tank where its operation will be demonstrated. This study evaluates existing Hanford Site facilities and other sites for functional testing of the HTI equipment before it is installed into the 241-C-106 tank

  10. TTP AL921102: An integrated geophysics program for non-intrusive characterization of mixed-Waste landfill sites. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hasbrouck, J.C.

    1993-09-01

    This Technical Task conducted for the US Department of Energy Office of Technology Development demonstrates the effectiveness of integrating several surface geophysical techniques to nonintrusively characterize mixed-waste landfill sites. An integrated approach enables an area to be characterized faster and cheaper because repeated access is not necessary and offers data and interpretations not attainable by a single technique. Field demonstrations using the complex galvanic resistivity, spontaneous potential (SP), ground-penetrating radar (GPR), time-domain electromagnetic (TDEM), shear-wave (S-wave) seismic and compressional-wave (P-wave) seismic geophysical techniques were conducted at the Mixed-Waste Landfill Integrated Demonstration (MWLID) test site at the Sandia National Laboratories/New Mexico in Albuquerque. Data were acquired in two areas that have both known and unknown attributes. Although data from numerous profiles were analyzed, three lines were chosen as representative of the landfill site: Line 20E that crosses both the known Chromic Acid and Organics Pits, Line 60E that transectes an essentially barren area, and Line 125E located in an area with unknown subsurface conditions.

  11. Nevada Test Site Radiological Control Manual, Revision 1

    International Nuclear Information System (INIS)

    2010-01-01

    Management. The NTS has been the primary location for testing nuclear explosives in the continental United States since 1951. The topographical and geological characteristics of the NTS afford some protection to the inhabitants of the surrounding areas from potential radiation exposure as a result of release of radioactivity or contamination from nuclear testing operations. Historically, testing programs at the NTS have included atmospheric testing in the 1950s and early 1960s; underground testing in drilled, vertical holes and horizontal tunnels; earth-cratering experiments; and open air nuclear reactor and engine testing. Current activities include operating low-level radioactive and mixed waste disposal facilities for United States defense-generated waste, assembly and execution of subcritical experiments, assembly/disassembly of special experiments, the storage and use of special nuclear materials, performing criticality experiments, emergency responder training, surface cleanup and site characterization of contaminated land areas, environmental activity by the University system, and nonnuclear test operations, such as controlled spills of hazardous materials at the Hazardous Materials Spill Center. Currently, the major potential for occupational radiation exposure is associated with the burial of low-level radioactive waste and the handling of radioactive sources. Remediation of contaminated land areas may also result in radiological exposures. The Tenant Organizations (TOs) that are responsible for conducting operations, according to this manual, include National Security Technologies, LLC (NSTec), Defense Threat Reduction Agency, Desert Research Institute, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Navarro Nevada Environmental Services, LLC, Sandia National Laboratories, and WSI. These organizations operate under this manual only when they are performing activities under the purview of NNSA/NSO. To ensure that the appropriate procedures

  12. Estimation of the common cause failure probabilities on the component group with mixed testing scheme

    International Nuclear Information System (INIS)

    Hwang, Meejeong; Kang, Dae Il

    2011-01-01

    Highlights: ► This paper presents a method to estimate the common cause failure probabilities on the common cause component group with mixed testing schemes. ► The CCF probabilities are dependent on the testing schemes such as staggered testing or non-staggered testing. ► There are many CCCGs with specific mixed testing schemes in real plant operation. ► Therefore, a general formula which is applicable to both alternate periodic testing scheme and train level mixed testing scheme was derived. - Abstract: This paper presents a method to estimate the common cause failure (CCF) probabilities on the common cause component group (CCCG) with mixed testing schemes such as the train level mixed testing scheme or the alternate periodic testing scheme. In the train level mixed testing scheme, the components are tested in a non-staggered way within the same train, but the components are tested in a staggered way between the trains. The alternate periodic testing scheme indicates that all components in the same CCCG are tested in a non-staggered way during the planned maintenance period, but they are tested in a staggered way during normal plant operation. Since the CCF probabilities are dependent on the testing schemes such as staggered testing or non-staggered testing, CCF estimators have two kinds of formulas in accordance with the testing schemes. Thus, there are general formulas to estimate the CCF probability on the staggered testing scheme and non-staggered testing scheme. However, in real plant operation, there are many CCCGs with specific mixed testing schemes. Recently, Barros () and Kang () proposed a CCF factor estimation method to reflect the alternate periodic testing scheme and the train level mixed testing scheme. In this paper, a general formula which is applicable to both the alternate periodic testing scheme and the train level mixed testing scheme was derived.

  13. Usability Testing in a Library Web Site Redesign Project.

    Science.gov (United States)

    McMullen, Susan

    2001-01-01

    Discusses the need for an intuitive library information gateway to meet users' information needs and describes the process involved in redesigning a library Web site based on experiences at Roger Williams University. Explains usability testing methods that were used to discover how users were interacting with the Web site interface. (Author/LRW)

  14. Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Reneau, S.L.; Raymond, R. Jr.

    1995-12-01

    This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau

  15. Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Reneau, S.L.; Raymond, R. Jr. [eds.

    1995-12-01

    This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau.

  16. Corrective action investigation plan for Corrective Action Unit 340, Pesticide Release Sites, Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This Correction Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense. As required by the FFACO (1996), this document provides or references all of the specific information for planning investigation activities associated with three Corrective Action Sites (CASs) located at the Nevada Test Site (NTS). These CASs are collectively known as Corrective Action Unit (CAU) 340, Pesticide Release Sites. According to the FFACO, CASs are sites that may require corrective action(s) and may include solid waste management units or individual disposal or release sites. These sites are CAS 23-21-01, Area 23 Quonset Hut 800 (Q800) Pesticide Release Ditch; CAS 23-18-03, Area 23 Skid Huts Pesticide Storage; and CAS 15-18-02, Area 15 Quonset Hut 15-11 Pesticide Storage (Q15-11). The purpose of this CAIP for CAU 340 is to direct and guide the investigation for the evaluation of the nature and extent of pesticides, herbicides, and other contaminants of potential concern (COPCs) that were stored, mixed, and/or disposed of at each of the CASs.

  17. Tonopah Test Range Environmental Restoration Corrective Action Sites

    International Nuclear Information System (INIS)

    Ronald B. Jackson

    2007-01-01

    Corrective Action Sites (CASs) and Corrective Action Units (CAUs) at the Tonopah Test Range (TTR) may be placed into three categories: Clean Closure/No Further Action, Closure in Place, or Closure in Progress

  18. New data on the Paleozoic of the Semipalatinsk test site

    International Nuclear Information System (INIS)

    Ergaliev, G.Kh.; Myasnikov, A.K.; Nikitin, I.F.; Polyanskij, N.V.; Sergeeva, L.V.; Sergieva, M.N.; Sal'menova, L.T.; Utegulov, M.T.; Tsaj, D.T.; Shuzhanov, V.M.

    1998-01-01

    The latest data on Paleozoic of the Semipalatinsk test site acquired as result of the stratigraphic and pale ontological investigation which have been conducted for the first time after 46-year interval in geological studies are presented. (author)

  19. Closure Report for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-06-01

    Corrective Action Unit (CAU) 107 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Low Impact Soil Sites' and consists of the following 15 Corrective Action Sites (CASs), located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site: CAS 01-23-02, Atmospheric Test Site - High Alt; CAS 02-23-02, Contaminated Areas (2); CAS 02-23-03, Contaminated Berm; CAS 02-23-10, Gourd-Amber Contamination Area; CAS 02-23-11, Sappho Contamination Area; CAS 02-23-12, Scuttle Contamination Area; CAS 03-23-24, Seaweed B Contamination Area; CAS 03-23-27, Adze Contamination Area; CAS 03-23-28, Manzanas Contamination Area; CAS 03-23-29, Truchas-Chamisal Contamination Area; CAS 04-23-02, Atmospheric Test Site T4-a; CAS 05-23-06, Atmospheric Test Site; CAS 09-23-06, Mound of Contaminated Soil; CAS 10-23-04, Atmospheric Test Site M-10; and CAS 18-23-02, U-18d Crater (Sulky). Closure activities were conducted from February through April 2009 according to the FFACO (1996; as amended February 2008) and Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 107 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2009). The corrective action alternatives included No Further Action and Closure in Place with Administrative Controls. Closure activities are summarized.

  20. Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km) (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).

  1. The Semipalatinsk Nuclear Test Site: Through My Own Eyes

    Science.gov (United States)

    2014-07-01

    a complex of highly classified Scientific Research Institutes (NII, in Russian) and experimental plants which served to test site. The latter were...of a symbiosis of the latest scientific institutes, experimental plants , test sites, and a large prison camp. Prisoners’ hands built the plants , the...Figure 1-2. Former home of Lavrenti Beria in Kurchatov Kurchatov City is still called the city of immortals : there is no cemetery here, and

  2. Treatment of M-area mixed wastes at the Savannah River Site

    International Nuclear Information System (INIS)

    1994-06-01

    The Department of Energy has prepared this environmental assessment, DOE/EA-0918, to assess the potential environmental impacts of the treatment of mixed wastes currently stored in the M-Area at the Savannah River Site, near Aiken, South Carolina. DOE is proposing to treat and stabilize approximately 700,000 gallons of mixed waste currently stored in the Interim Treatment/Storage Facility (IT/SF) and Mixed Waste Storage Shed (MWSS). This waste material is proposed to be stabilized using a vitrification process and temporarily stored until final disposal is available by the year 2005. This document has been prepared to assess the potential environmental impacts attributable to the treatment and stabilization of M-area mixed wastes, the closure of the interim storage area, and storage of the vitrified waste until disposal in onsite RCRA vaults. Based on the analyses in the environmental assessment, the Department of Energy has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required, and the Department of Energy is issuing this finding of no significant impact

  3. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    International Nuclear Information System (INIS)

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-01-01

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal

  4. Calendar Year 2002 Hanford Site mixed waste land disposal restrictions report (section 1 thru 3)

    International Nuclear Information System (INIS)

    MISKHO, A.G.

    2003-01-01

    Volume 1 presents information concerning the storage and minimization of mixed waste and the potential sources for the generation of additional mixed waste. This information, presented in accordance with ''Hanford Federal Facility Agreement and Consent Order'' (Tri-Party Agreement) (Ecology et al. 2001) Milestone M-26-01M, is Volume 1 of a two-volume report on the status of Hanford Site land disposal restricted mixed waste, other mixed waste, and other waste that the U.S. Department of Energy (DOE), Washington State Department of Ecology (Ecology), and US. Environmental Protection Agency (EPA) have agreed to include in this report. This volume contains the approval page for both volumes and includes the storage report. Information pertaining to waste characterization and treatment are addressed in Volume 2. Appendix A lists the land disposal restrictions (LDR) reporting requirements and explains where the requirements are addressed in this report. The reporting period for this document is from January 1, 2002, to December 31, 2002. Clearance form only sent to RHA

  5. Chemodynamics of EDTA in a simulated mixed waste: the Hanford Site's complex concentrate waste

    International Nuclear Information System (INIS)

    Toste, A.P.; Ohnuki, Toshihiko

    1999-01-01

    Enormous stockpiles of mixed wastes at the USDOE's Hanford Site, the original US plutonium production facility, await permanent disposal. One mixed waste derived from reprocessing spent fuel was found to contain numerous nuclear related organics including chelating agents like EDTA and complexing agents, which have been used as decontamination agents, etc. Their presence in actual mixed wastes indicates that the organic content of nuclear wastes is dynamic and complicate waste management efforts. The subjects of this report is the chemo-degradation of EDTA degradation in a simulant Hanford's complex concentrate waste. The simulant was prepared by adding EDTA to an inorganic matrix, which was formulated based on past analyses of the actual waste. Aliquots of the EDTA simulant were withdrawn at different time points, derivatized via methylation and analyzed by gas chromatography and Gc/MS to monitor the disappearance of EDTA and the appearance of its' degradation products. This report also compares the results of EDTA's chemo-degradation to the g-radiolysis of EDTA in the simulant, the subject of a recently published article. Finally based on the results of these two studies, an assesment of the potential impact of EDTA degradation on the management of mixed wastes is offered. (J.P.N.)

  6. Treatment of M-area mixed wastes at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The Department of Energy has prepared this environmental assessment, DOE/EA-0918, to assess the potential environmental impacts of the treatment of mixed wastes currently stored in the M-Area at the Savannah River Site, near Aiken, South Carolina. DOE is proposing to treat and stabilize approximately 700,000 gallons of mixed waste currently stored in the Interim Treatment/Storage Facility (IT/SF) and Mixed Waste Storage Shed (MWSS). This waste material is proposed to be stabilized using a vitrification process and temporarily stored until final disposal is available by the year 2005. This document has been prepared to assess the potential environmental impacts attributable to the treatment and stabilization of M-area mixed wastes, the closure of the interim storage area, and storage of the vitrified waste until disposal in onsite RCRA vaults. Based on the analyses in the environmental assessment, the Department of Energy has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required, and the Department of Energy is issuing this finding of no significant impact.

  7. Nevada Test Site Environmental Report 2006 and Site Description (Volume 1)

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2007-10-01

    The Nevada Test Site Environmental Report 2006 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2006 produced to be a more cost-effective means of distributing information contained in the NTSER to interested DOE stakeholders.

  8. Nevada Test Site Environmental Report 2006 and Site Description (Volume 1)

    International Nuclear Information System (INIS)

    Cathy Wills

    2007-01-01

    The Nevada Test Site Environmental Report 2006 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2006 produced to be a more cost-effective means of distributing information contained in the NTSER to interested DOE stakeholders

  9. Nuclear Materials Management for the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Jesse C. Schreiber

    2007-01-01

    The Nevada Test Site (NTS) has transitioned from its historical role of weapons testing to a broader role that is focused on being a solution to multiple National Nuclear Security Administration (NNSA) challenges and opportunities with nuclear materials for the nation. NTS is supporting other NNSA sites challenged with safe nuclear materials storage and disposition. NNSA, with site involvement, is currently transforming the nuclear stockpile and supporting infrastructure to meet the 2030 vision. Efforts are under way to make the production complex smaller, more consolidated, and more modern. With respect to the nuclear material stockpile, the NNSA sites are currently reducing the complex nuclear material inventory through dispositioning and consolidating nuclear material. This includes moving material from other sites to NTS. State-of-the-art nuclear material management and control practices at NTS are essential for NTS to ensure that these new activities are accomplished in a safe, secure, efficient, and environmentally responsible manner. NTS is aggressively addressing this challenge

  10. Life cycle cost analysis changes mixed waste treatment program at the Savannah River Site

    International Nuclear Information System (INIS)

    Pickett, J.B.; England, J.L.; Martin, H.L.

    1992-01-01

    A direct result of the reduced need for weapons production has been a re-evaluation of the treatment projects for mixed (hazardous/radioactive) wastes generated from metal finishing and plating operations and from a mixed waste incinerator at the Savannah River Site (SRS). A Life Cycle Cost (LCC) analysis was conducted for two waste treatment projects to determine the most cost effective approach in response to SRS mission changes. A key parameter included in the LCC analysis was the cost of the disposal vaults required for the final stabilized wasteform(s) . The analysis indicated that volume reduction of the final stabilized wasteform(s) can provide significant cost savings. The LCC analysis demonstrated that one SRS project could be eliminated, and a second project could be totally ''rescoped and downsized.'' The changes resulted in an estimated Life Cycle Cost saving (over a 20 year period) of $270,000,000

  11. Intra-site Secure Transport Vehicle test and evaluation

    International Nuclear Information System (INIS)

    Scott, S.

    1995-01-01

    In the past many DOE and DoD facilities involved in handling nuclear material realized a need to enhance the safely and security for movement of sensitive materials within their facility, or ''intra-site''. There have been prior efforts to improve on-site transportation; however, there remains a requirement for enhanced on-site transportation at a number of facilities. The requirements for on-site transportation are driven by security, safety, and operational concerns. The Intra-site Secure Transport Vehicle (ISTV) was designed to address these concerns specifically for DOE site applications with a standardized vehicle design. This paper briefly reviews the ISTV design features providing significant enhancement of onsite transportation safety and security, and also describes the test and evaluation activities either complete of underway to validate the vehicle design and operation

  12. Training requirements for preparing hazardous waste site workers for involvement with mixed waste

    International Nuclear Information System (INIS)

    Waite, D.A.; Mantooth, D.S.

    1988-01-01

    In the future, it is highly probable that many more of the site remediation jobs will involve radioactive materials, presenting the existing trained workforce with new challenges. The purpose of this paper is to examine the training that the present workforce needs to supplement their knowledge and experience to be properly prepared to work with radioactive materials when the need arises. The REM site worker characterization data used as the basis of this discussion were developed through a survey of education, experience, and supplemental training information for Ebasco and Envirosphere hazardous waste site workers. These individuals are categorized in terms of their academic degrees and disciplines; their experience with hazardous materials, personnel protection concepts, and instrumentation; and supplemental training. The minimum requirements for working with mixed nuclear and chemically hazardous, or mixed wastes are proposed in terms of the three characteristics referred to earlier in the personnel characterization activity: education, experience and training. These requirements are derived on the basis of experience, not regulatory guidance, and the rationale for each component is suggested. The identification of additional training needed to prepare the REM workers for involvement with mixed waste is accomplished through the comparison of the requirements with the existing capabilities. These comparisons are done on the basis of the same three characteristics that are utilized in the previous sections of this discussion. The paper is concluded with suggestions pertaining to the most efficient and cost effective means by which these suggestions are tailored to the circumstances that might exist within various companies in terms of the capabilities to conduct the training, and the financial and time constraints involved

  13. Perforated mixed carcinoid-adenocarcinoma in transverse colon and at gastroenterostomy site: case report

    Directory of Open Access Journals (Sweden)

    Karakaş Barış R

    2010-12-01

    Full Text Available Abstract Goblet cell carcinoid of the large intestine is a rare neoplasm, usually located in ascending colon and rectum. A 60-year-old male patient underwent surgery after the diagnosis of acute abdomen. Exploratory laparotomy revealed perforation with a diameter of 1 cm at the site of the previously performed gastroenterostomy and dilatation of the right colic flexure, secondary to a solid obstructive mass located in the mid-portion of transverse colon. Histopathological investigation of the biopsies, taken from the gastroenterostomy site and the tumor, revealed mixed carcinoid-adenocarcinoma with carcinoid component, predominantly composed of goblet cells. Three cycles of FOLFOX-4 protocol was administered. Following respiratory distress secondary to pulmonary metastasis, the patient's condition deteriorated and subsequently died in the fourth postoperative month. Our aim with this paper is to point out that more cases should be reported for more effective diagnosis, histopathological study, clinical investigation, treatment and prognosis of this specific neoplasm.

  14. Measured data from the Avery Island Site C heater test

    International Nuclear Information System (INIS)

    Waldman, H.; Stickney, R.G.

    1984-11-01

    Over the past six years, a comprehensive field testing program was conducted in the Avery Island salt mine. Three single canister heater tests were included in the testing program. Specifically, electric heaters, which simulate canisters of heat-generating nuclear waste, were placed in the floor of the Avery Island salt mine, and measurements were made of the response of the salt to heating. These tests were in operation by June 1978. One of the three heater tests, Site C, operated for a period of 1858 days and was decommissioned during July and August 1983. This data report presents the temperature and displacement data gathered during the operation and decommissioning of the Site C heater test. The purpose of this data report is to transmit the data to the scientific community. Rigorous analysis and interpretation of the data are considered beyond the scope of a data report. 6 references, 21 figures, 1 table

  15. Geochemical tracers for monitoring fluid mixing during a CO2-water injection field test

    Science.gov (United States)

    Black, J. R.; Vu, H. P.; Haese, R. R.

    2015-12-01

    A series of injection-withdrawl (push-pull) well tests were conducted at the Otway CO2CRC field site using the CRC-2 well to determine the impact of injecting impurities (54 ppm SO2, 9 ppm NO2, 1100 ppm N2 and 6150 ppm O2) with a CO2 stream on mineral dissolution/precipitation processes in a siliciclastic reservoir. Four geochemical tracers were added to the injection waters of two sequential tests to monitor for any fluid mixing in the reservoir during the tests. Bromide and strontium were added as tracers to the injection water of test 1, and fluoresceine and lithium were added as tracers to the injection water of test 2. Injection waters in both tests were allowed to soak in the reservoir before they were back-produced to monitor for any water-rock interactions that took place. The results suggest mixing of injection and in situ formation waters as well as reactivity of some of the tracers. Bromide behaves as an inert tracer and the concentration decreases by 6 and 15% after 11 and 21 days of soaking, respectively, suggesting minor fluid mixing in the reservoir. Fluorescein drops by about 50% after two days of soaking, which may be due to adsorption onto minerals under acidic conditions. Strontium and lithium concentrations decrease over time in excess to the bromide concentration decrease, this may indicate the precipitation of Sr and Li bearing mineral phases that are calculated to be supersaturated with respect to the composition of back-produced waters. The decrease in bromide tracer concentration over time can be explained by preferential flow paths and hydrodynamic mixing during the soak period. Importantly, ideal tracer behavior was observed during a subsequent experiment where water was continuously back-produced. Our results show that typical (shallow) groundwater tracers need to be applied with caution when studying the hydrodynamics in a CO2 storage reservoir. Further geochemical and hydrodynamic modelling is underway to fully explain our observations.

  16. Growth of site trees and stand structure in mixed stands of Pacific silver fir and western hemlock.

    Science.gov (United States)

    Marshall D. Murray; Peggy C. Leonard

    1990-01-01

    Height and diameter growth of Pacific silver fir (Abies amabilis Dougl. ex Forbes) and western hemlock (Tsuga heterophylla (Raf.) Sarg.) site trees, as well as overall stand structure on 0.15-acre plots, were analyzed in mixed stands 43 to 57 years old in breast height age at six locations in western Washington. These mixed...

  17. Microbiological-enhanced mixing across scales during in-situ bioreduction of metals and radionuclides at Department of Energy Sites

    Energy Technology Data Exchange (ETDEWEB)

    Valocchi, Albert [Univ. of Illinois, Urbana-Champaign, IL (United States); Werth, Charles [Univ. of Texas, Austin, TX (United States); Liu, Wen-Tso [Univ. of Illinois, Urbana-Champaign, IL (United States); Sanford, Robert [Univ. of Illinois, Urbana-Champaign, IL (United States); Nakshatrala, Kalyan [Univ. of Houston, TX (United States)

    2015-10-20

    Bioreduction is being actively investigated as an effective strategy for subsurface remediation and long-term management of DOE sites contaminated by metals and radionuclides (i.e. U(VI)). These strategies require manipulation of the subsurface, usually through injection of chemicals (e.g., electron donor) which mix at varying scales with the contaminant to stimulate metal reducing bacteria. There is evidence from DOE field experiments suggesting that mixing limitations of substrates at all scales may affect biological growth and activity for U(VI) reduction. Although current conceptual models hold that biomass growth and reduction activity is limited by physical mixing processes, a growing body of literature suggests that reaction could be enhanced by cell-to-cell interaction occurring over length scales extending tens to thousands of microns. Our project investigated two potential mechanisms of enhanced electron transfer. The first is the formation of single- or multiple-species biofilms that transport electrons via direct electrical connection such as conductive pili (i.e. ‘nanowires’) through biofilms to where the electron acceptor is available. The second is through diffusion of electron carriers from syntrophic bacteria to dissimilatory metal reducing bacteria (DMRB). The specific objectives of this work are (i) to quantify the extent and rate that electrons are transported between microorganisms in physical mixing zones between an electron donor and electron acceptor (e.g. U(IV)), (ii) to quantify the extent that biomass growth and reaction are enhanced by interspecies electron transport, and (iii) to integrate mixing across scales (e.g., microscopic scale of electron transfer and macroscopic scale of diffusion) in an integrated numerical model to quantify these mechanisms on overall U(VI) reduction rates. We tested these hypotheses with five tasks that integrate microbiological experiments, unique micro-fluidics experiments, flow cell experiments, and

  18. Microbiological-enhanced mixing across scales during in-situ bioreduction of metals and radionuclides at Department of Energy Sites

    International Nuclear Information System (INIS)

    Valocchi, Albert; Werth, Charles; Liu, Wen-Tso; Sanford, Robert; Nakshatrala, Kalyan

    2015-01-01

    Bioreduction is being actively investigated as an effective strategy for subsurface remediation and long-term management of DOE sites contaminated by metals and radionuclides (i.e. U(VI)). These strategies require manipulation of the subsurface, usually through injection of chemicals (e.g., electron donor) which mix at varying scales with the contaminant to stimulate metal reducing bacteria. There is evidence from DOE field experiments suggesting that mixing limitations of substrates at all scales may affect biological growth and activity for U(VI) reduction. Although current conceptual models hold that biomass growth and reduction activity is limited by physical mixing processes, a growing body of literature suggests that reaction could be enhanced by cell-to-cell interaction occurring over length scales extending tens to thousands of microns. Our project investigated two potential mechanisms of enhanced electron transfer. The first is the formation of single- or multiple-species biofilms that transport electrons via direct electrical connection such as conductive pili (i.e. nanowire) through biofilms to where the electron acceptor is available. The second is through diffusion of electron carriers from syntrophic bacteria to dissimilatory metal reducing bacteria (DMRB). The specific objectives of this work are (i) to quantify the extent and rate that electrons are transported between microorganisms in physical mixing zones between an electron donor and electron acceptor (e.g. U(IV)), (ii) to quantify the extent that biomass growth and reaction are enhanced by interspecies electron transport, and (iii) to integrate mixing across scales (e.g., microscopic scale of electron transfer and macroscopic scale of diffusion) in an integrated numerical model to quantify these mechanisms on overall U(VI) reduction rates. We tested these hypotheses with five tasks that integrate microbiological experiments, unique micro-fluidics experiments, flow cell experiments, and multi

  19. Unsaturated zone carbon dioxide flux, mixing, and isotopic composition at the USGS Amargosa Desert Research Site

    Science.gov (United States)

    Conaway, C. H.; Thordsen, J. J.; Thomas, B.; Haase, K.; Moreo, M. T.; Walvoord, M. A.; Andraski, B. J.; Stonestrom, D. A.

    2015-12-01

    Elevated concentrations of tritium, radiocarbon, and volatile organic compounds at the USGS Amargosa Desert Research Site, adjacent to a low-level radioactive waste disposal facility, have stimulated research on factors affecting transport of these contaminants. This research includes an examination of unsaturated zone carbon dioxide (CO2) fluxes, mixing, and isotopic composition, which can help in understanding these factors. In late April 2015 we collected 76 soil-gas samples in multi-layer foil bags from existing 1.5-m deep tubes, both inside and outside the low-level waste area, as well as from two 110-m-deep multilevel gas-sampling boreholes and a distant background site. These samples were analyzed for carbon dioxide concentration and isotopic composition by direct injection into a cavity ring-down spectrometer. Graphical analysis of results indicates mixing of CO2 characteristic of the root zone (δ13C -18 ‰ VPDB), deep soil gas of the capillary fringe (-20‰), and CO2 produced by microbial respiration of organic matter disposed in the waste area trenches (-28‰). Land-surface boundary conditions are being constrained by the application of a novel non-dispersive infrared sensor and traditional concentration and flux measurements, including discrete CO2 flux data using a gas chamber method to complement continuous data from surface- and tower-based CO2 sensors. These results shed light on radionuclide and VOC mobilization and transport mechanisms from this and similar waste disposal facilities.

  20. 1993 report on Hanford Site land disposal restrictions for mixed wastes

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.

    1993-04-01

    Since the early 1940s, the contractors at the Hanford Site have been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste (RMW). This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976{sup 2}(RCRA) and Atomic Energy Act{sup 3}. This report covers mixed waste only. Hazardous waste that is not contaminated with radionuclides is not addressed in this report. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order{sup 1} (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for RMW. This report is the third update of the plan first issued in 1990. The Tri-Party Agreement requires, and the baseline plan and annual update reports provide, the information that follows: Waste characterization information; storage data; treatment information; waste reduction information; schedule; and progress.

  1. Site Release Report for C-Well Pipeline, UE-25 Large Rocks Test Site, and 29 GSF Test Pits

    International Nuclear Information System (INIS)

    K.E. Rasmuson

    2002-01-01

    The U.S. Department of Energy has implemented a program to reclaim lands disturbed by site characterization at Yucca Mountain. Long term goals of the program are to re-establish processes on disturbed sites that will lead to self-sustaining plant communities. The Biological Opinion for Yucca Mountain Site Characterization Studies required that the U.S. Department of Energy develop a Reclamation Standards and Monitoring Plan to evaluate the success of reclamation efforts. According to the Reclamation Standards and Monitoring Plan, reclaimed sites will be monitored periodically, remediated if necessary, and eventually compared to an appropriate reference area to determine whether reclamation goals have been achieved and the site can be released from further monitoring. Plant cover, density, and species richness (success parameters) on reclaimed sites are compared to 60 percent of the values (success criteria) for the same parameters on the reference area. Small sites (less than 0.1 ha) are evaluated for release using qualitative methods while large sites (greater than 0.1 ha) are evaluated using quantitative methods. In the summer of 2000, 31 small sites reclaimed in 1993 and 1994 were evaluated for reclamation success and potential release from further monitoring. Plant density, cover, and species richness were estimated on the C-Well Pipeline, UE-25 Large Rocks test site, and 29 ground surface facility test pits. Evidence of erosion, reproduction and natural recruitment, exotic species abundance, and animal use (key attributes) also were recorded for each site and used in success evaluations. The C-Well Pipeline and ground surface facility test pits were located in a ''Larrea tridentata - Ephedra nevadensis'' vegetation association while the UE-25 Large Rocks test site was located in an area dominated by ''Coleogyne ramosissima and Ephedra nevadensis''. Reference areas in the same vegetation associations with similar slope and aspect were chosen for comparison to

  2. Site Release Reports for C-Well Pipeline, UE-25 Large Rocks Test Site, and 29 GSF Test Pits

    Energy Technology Data Exchange (ETDEWEB)

    K.E. Rasmuson

    2002-04-02

    The U.S. Department of Energy has implemented a program to reclaim lands disturbed by site characterization at Yucca Mountain. Long term goals of the program are to re-establish processes on disturbed sites that will lead to self-sustaining plant communities. The Biological Opinion for Yucca Mountain Site Characterization Studies required that the U.S. Department of Energy develop a Reclamation Standards and Monitoring Plan to evaluate the success of reclamation efforts. According to the Reclamation Standards and Monitoring Plan, reclaimed sites will be monitored periodically, remediated if necessary, and eventually compared to an appropriate reference area to determine whether reclamation goals have been achieved and the site can be released from further monitoring. Plant cover, density, and species richness (success parameters) on reclaimed sites are compared to 60 percent of the values (success criteria) for the same parameters on the reference area. Small sites (less than 0.1 ha) are evaluated for release using qualitative methods while large sites (greater than 0.1 ha) are evaluated using quantitative methods. In the summer of 2000, 31 small sites reclaimed in 1993 and 1994 were evaluated for reclamation success and potential release from further monitoring. Plant density, cover, and species richness were estimated on the C-Well Pipeline, UE-25 Large Rocks test site, and 29 ground surface facility test pits. Evidence of erosion, reproduction and natural recruitment, exotic species abundance, and animal use (key attributes) also were recorded for each site and used in success evaluations. The C-Well Pipeline and ground surface facility test pits were located in a ''Larrea tridentata - Ephedra nevadensis'' vegetation association while the UE-25 Large Rocks test site was located in an area dominated by ''Coleogyne ramosissima and Ephedra nevadensis''. Reference areas in the same vegetation associations with similar slope

  3. Overview of software development at the parabolic dish test site

    Science.gov (United States)

    Miyazono, C. K.

    1985-01-01

    The development history of the data acquisition and data analysis software is discussed. The software development occurred between 1978 and 1984 in support of solar energy module testing at the Jet Propulsion Laboratory's Parabolic Dish Test Site, located within Edwards Test Station. The development went through incremental stages, starting with a simple single-user BASIC set of programs, and progressing to the relative complex multi-user FORTRAN system that was used until the termination of the project. Additional software in support of testing is discussed including software in support of a meteorological subsystem and the Test Bed Concentrator Control Console interface. Conclusions and recommendations for further development are discussed.

  4. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Wickline, Alfred

    2005-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action

  5. Relevance of positive patch-test reactions to fragrance mix.

    NARCIS (Netherlands)

    Devos, S.A.; Constandt, L.; Tupker, R.A.; Noz, K.C.; Lucker, G.P.H.; Bruynzeel, D.P.; Schuttelaar, M.L.; Kruyswijk, M.R.; Zuuren, E.J. van; Vink, J.; Coenraads, P.J.; Kiemeney, L.A.L.M.; Valk, P.G.M. van der

    2008-01-01

    BACKGROUND: Fragrances are an important cause of allergic contact dermatitis. We presume that the traditional fragrance mix (FM) detects 70 to 80% of fragrance-allergic patients. FM has an irritant potential. Weak positive reactions may have a greater chance of being irrelevant than strong

  6. Relevance of positive patch-test reactions to fragrance mix

    NARCIS (Netherlands)

    Devos, S.A.; Constandt, L.; Tupker, R.A.; Noz, K.C.; Lucker, G.P.H.; Bruynzeel, D.P.; Schuttelaar, M.L.A.; Kruyswijk, M.R.J.; van Zuuren, E.J.; Vink, J.; Coenraads, P.J.; Kiemeney, L.A.L.M.; van der Valk, P.G.M.

    2008-01-01

    BACKGROUND: Fragrances are an important cause of allergic contact dermatitis. We presume that the traditional fragrance mix (FM) detects 70 to 80% of fragrance-allergic patients. FM has an irritant potential. Weak positive reactions may have a greater chance of being irrelevant than strong

  7. A mixed multi-unit combinatorial auctions test suite

    NARCIS (Netherlands)

    Giovannucci, A.; Cerquides, J.; Endriss, U.; Vinyals, M.; Rodriguez, J.A.; Rosell, B.; Decker, K.S.; Sichman, J.S.; Sierra, C.; Castelfranchi, C.

    2009-01-01

    Supply Chain Formation (SCF) is the process of determining the participants in a supply chain, who will exchange what with whom, and the terms of the exchanges. Mixed multi-unit combinatorial auctions (MMUCAs) offer a high potential to solve SCF problems, and thus be employed for the automated

  8. On-site test for cannabinoids in oral fluid.

    Science.gov (United States)

    Desrosiers, Nathalie A; Lee, Dayong; Schwope, David M; Milman, Garry; Barnes, Allan J; Gorelick, David A; Huestis, Marilyn A

    2012-10-01

    Oral fluid (OF) testing offers noninvasive sample collection for on-site drug testing; however, to date, test performance for Δ(9)-tetrahydrocannabinol (THC) detection has had unacceptable diagnostic sensitivity. On-site tests must accurately identify cannabis exposure because this drug accounts for the highest prevalence in workplace drug testing and driving under the influence of drugs (DUID) programs. Ten cannabis smokers (9 males, 1 female) provided written informed consent to participate in this institutional review board-approved study and smoked 1 6.8%-THC cigarette ad libitum. OF was collected with the Draeger DrugTest(®) 5000 test cassette and Quantisal™ device 0.5 h before and up to 22 h after smoking. Test cassettes were analyzed within 15 min (n = 66), and Quantisal GC-MS THC results obtained within 24 h. Final THC detection times and test performances were assessed at different cannabinoid cutoffs. Diagnostic sensitivity, diagnostic specificity, and efficiency at DrugTest 5000's 5 μg/L screening cutoff and various THC confirmation cutoffs were 86.2-90.7, 75.0-77.8, and 84.8-87.9%, respectively. Last detection times were >22 h, longer than previously suggested. Confirmation of 11-nor-9-carboxy-THC, absent in THC smoke, minimized the potential for passive OF contamination and still provided 22-h windows of detection, appropriate for workplace drug testing, whereas confirmation of cannabidiol, and/or cannabinol yielded shorter 6-h windows of detection, appropriate for DUID OF testing. The DrugTest 5000 on-site device provided high diagnostic sensitivity for detection of cannabinoid exposure, and the selection of OF confirmation analytes and cutoffs provided appropriate windows of detection to meet the goals of different drug testing programs. © 2012 American Association for Clinical Chemistry

  9. Political aspects of nuclear test effects at Semipalatinsk nuclear test site

    International Nuclear Information System (INIS)

    Sydykov, E.B.; Panin, M.S.

    2003-01-01

    The paper describes tense struggle of Kazakhstan people for closure of the Semipalatinsk Nuclear Test Site. It reveals major foreign policy aspects and nuclear test effects for both Kazakhstan and the world community. (author)

  10. Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste: Volume 3, Site evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Waters, R.D.; Gruebel, M.M. [eds.

    1996-03-01

    A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussion of the results for each site.

  11. Special Nuclear Material Portal Monitoring at the Nevada Test Site

    International Nuclear Information System (INIS)

    DeAnn Long; Michael Murphy

    2008-01-01

    Prior to April 2007, acceptance and performance testing of the various Special Nuclear Material (SNM) monitoring devices at the Nevada Test Site (NTS) was performed by the Radiological Health Instrumentation department. Calibration and performance testing on the PM-700 personnel portal monitor was performed, but there was no test program for the VM-250 vehicle portal monitor. The handheld SNM monitors, the TSA model 470B, were being calibrated annually, but there was no performance test program. In April of 2007, the Material Control and Accountability Manager volunteered to take over performance testing of all SNM portal monitors at NTS in order to strengthen the program and meet U.S. Department of Energy Order requirements. This paper will discuss the following activities associated with developing a performance testing program: changing the culture, learning the systems, developing and implementing procedures, troubleshooting and repair, validating the process, physical control of equipment, acquisition of new systems, and implementing the performance test program

  12. Closure report for CAU No. 450: Historical UST release sites, Nevada Test Site. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report addresses the closure of 11 historical underground storage tank release sites within various areas of the Nevada Test Site. This report contains remedial verification of the soil sample analytical results for the following: Area 11 Tweezer facility; Area 12 boiler house; Area 12 service station; Area 23 bypass yard; Area 23 service station; Area 25 power house; Area 25 tech. services building; Area 25 tech. operations building; Area 26 power house; and Area 27 boiler house.

  13. Mixed

    Directory of Open Access Journals (Sweden)

    Pau Baya

    2011-05-01

    Full Text Available Remenat (Catalan (Mixed, "revoltillo" (Scrambled in Spanish, is a dish which, in Catalunya, consists of a beaten egg cooked with vegetables or other ingredients, normally prawns or asparagus. It is delicious. Scrambled refers to the action of mixing the beaten egg with other ingredients in a pan, normally using a wooden spoon Thought is frequently an amalgam of past ideas put through a spinner and rhythmically shaken around like a cocktail until a uniform and dense paste is made. This malleable product, rather like a cake mixture can be deformed pulling it out, rolling it around, adapting its shape to the commands of one’s hands or the tool which is being used on it. In the piece Mixed, the contortion of the wood seeks to reproduce the plasticity of this slow heavy movement. Each piece lays itself on the next piece consecutively like a tongue of incandescent lava slowly advancing but with unstoppable inertia.

  14. Resource Conservation and Recovery Act Industrial Sites quality assurance project plan: Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1994-06-01

    This quality assurance project plan (QAPjP) describes the measures that shall be taken to ensure that the environmental data collected during characterization and closure activities of Resource Conservation and Recovery Act (RCRA) Industrial Sites at the Nevada Test Site (NTS) are meaningful, valid, defensible, and can be used to achieve project objectives. These activities are conducted by the US Department of Energy Nevada Operations Office (DOE/NV) under the Nevada Environmental Restoration (ER) Project. The Nevada ER Project consists of environmental restoration activities on the NTS, Tonopah Test Range, Nellis Air Force Range, and eight sites in five other states. The RCRA Industrial Sites subproject constitutes a component of the Nevada ER Project. Currently, this QAPjP is limited to the seven RCRA Industrial Sites identified within this document that are to be closed under an interim status and pertains to all field- investigation, analytical-laboratory, and data-review activities in support of these closures. The information presented here supplements the RCRA Industrial Sites Project Management Plan and is to be used in conjunction with the site-specific subproject sampling and analysis plans

  15. Impact of the Macmillan specialist Care at Home service: a mixed methods evaluation across six sites.

    Science.gov (United States)

    Johnston, Bridget; Patterson, Anne; Bird, Lydia; Wilson, Eleanor; Almack, Kathryn; Mathews, Gillian; Seymour, Jane

    2018-02-23

    The Midhurst Macmillan Specialist Palliative Care at Home Service was founded in 2006 to improve community-based palliative care provision. Principal components include; early referral; home-based clinical interventions; close partnership working; and flexible teamwork. Following a successful introduction, the model was implemented in six further sites across England. This article reports a mixed methods evaluation of the implementation across these 'Innovation Centres'. The evaluation aimed to assess the process and impact on staff, patients and carers of providing Macmillan Specialist Care at Home services across the six sites. The study was set within a Realist Evaluation framework and used a longitudinal, mixed methods research design. Data collection over 15 months (2014-2016) included: Quantitative outcome measures - Palliative Performance Scale [PPS] and Palliative Prognostic Index [PPI] (n = 2711); Integrated Palliative Outcome Scales [IPOS] (n = 1157); Carers Support Needs Assessment Tool [CSNAT] (n = 241); Views of Informal Carers -Evaluation of Services [VOICES-SF] (n = 102); a custom-designed Service Data Tool [SDT] that gathered prospective data from each site (n = 88). Qualitative data methods included: focus groups with project team and staff (n = 32 groups with n = 190 participants), and, volunteers (n = 6 groups with n = 32 participants). Quantitative data were analysed using SPPS Vs. 21 and qualitative data was examined via thematic analysis. Comparison of findings across the six sites revealed the impact of their unique configurations on outcomes, compounded by variations in stage and mode of implementation. PPS, PPI and IPOS data revealed disparity in early referral criteria, complicated by contrasting interpretations of palliative care. The qualitative analysis, CSNAT and VOICES-SF data confirmed the value of the Macmillan model of care but uptake of specialist home-based clinical interventions was limited. The

  16. Comparison of simultaneous patch testing with parthenolide and sesquiterpene lactone mix

    DEFF Research Database (Denmark)

    Orion, E; Paulsen, Evy; Andersen, Klaus Ejner

    1998-01-01

    Several studies have pointed out that the sesquiterpene lactone (SL) mix is a safe, though inadequate, screen for Compositae allergy. To test the usefulness of the sesquiterpene lactone parthenolide as a supplementary Compositae screening test to the mix, both were included in the standard series...

  17. Seed Bank Variation under Contrasting Site Quality Conditions in Mixed Oak Forests of Southeastern Ohio, USA

    Directory of Open Access Journals (Sweden)

    Christine J. Small

    2010-01-01

    Full Text Available Seed bank composition was sampled in 192–2.5 m2 quadrats, established in six regenerating clearcut (∼7 years and six second-growth (∼125 years mixed-oak forest stands in southeastern Ohio. Seed bank and aboveground composition diverged markedly (Sørensen's coefficient <10%, emphasizing the importance of fast-growing, early-successional germinants to early ecosystem recovery. Seed richness was significantly (P<.01 higher in clearcut stands, suggesting declining richness with stand age. Richness estimations 28%–60% higher than observed values demonstrated high seed bank heterogeneity, emphasizing the need for intensive sampling to assess temperate forest seed bank variation. Site quality (topographic aspect strongly influenced seed bank composition, with greater importance of early-successional trees, thicket-forming shrubs, and nonnative species on mesic sites. Thus, forest seed banks are likely to play an important, site-dependent role in shaping competitive environments for commercially important timber species after harvesting and soil disturbance and have the potential for marked influence on postharvest forest development.

  18. Seed Bank Variation under Contrasting Site Quality Conditions in Mixed Oak Forests of Southeastern Ohio, USA

    International Nuclear Information System (INIS)

    Small, Ch.J.; McCarthy, B.C.

    2010-01-01

    Seed bank composition was sampled in 192-2.5 m 2 quadrats, established in six regenerating clearcut (∼7 years) and six second-growth ((∼125 years) mixed-oak forest stands in southeastern Ohio. Seed bank and aboveground composition diverged markedly (Sorensen's coefficient <10%), emphasizing the importance of fast-growing, early-successional germinants to early ecosystem recovery. Seed richness was significantly (ρ<.01) higher in clearcut stands, suggesting declining richness with stand age. Richness estimations 28%-60% higher than observed values demonstrated high seed bank heterogeneity, emphasizing the need for intensive sampling to assess temperate forest seed bank variation. Site quality (topographic aspect) strongly influenced seed bank composition, with greater importance of early-successional trees, thicket-forming shrubs, and nonnative species on mesic sites. Thus, forest seed banks are likely to play an important, site-dependent role in shaping competitive environments for commercially important timber species after harvesting and soil disturbance and have the potential for marked influence on post harvest forest development.

  19. Mixed oxide fuels testing in the advanced test reactor to support plutonium disposition

    International Nuclear Information System (INIS)

    Ryskamp, J.M.; Sterbentz, J.W.; Chang, G.S.

    1995-09-01

    An intense worldwide effort is now under way to find means of reducing the stockpile of weapons-grade plutonium. One of the most attractive solutions would be to use WGPu as fuel in existing light water reactors (LWRs) in the form of mixed oxide (MOX) fuel - i.e., plutonia (PUO 2 ) mixed with urania (UO 2 ). Before U.S. reactors could be used for this purpose, their operating licenses would have to be amended. Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification, (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania, (3) The effects of WGPu isotopic composition, (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight, (5) The effects of americium and gallium in WGPu, (6) Fission gas release from MOX fuel pellets made from WGPu, (7) Fuel/cladding gap closure, (8) The effects of power cycling and off-normal events on fuel integrity, (9) Development of radial distributions of burnup and fission products, (10) Power spiking near the interfaces of MOX and urania fuel assemblies, and (11) Fuel performance code validation. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified

  20. Tests of Parameterized Langmuir Circulation Mixing in the Oceans Surface Mixed Layer II

    Science.gov (United States)

    2017-08-11

    zero in deep mixed layers below the influence of the surface waves. When the SDC is zero, the GV and GS functions ((29) and (30)) will be zero, and...current and do not include the SDC. With the inclusion of the SDC in the Coriolis term in the momentum equations, the net transport of u is not zero, but...balances the net transport of the SDC us, so that the combined net downwind transport of the Eulerian current plus the SDC is zero. Hence, since the

  1. Geomechanics of the Climax mine-by, Nevada Test Site

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1981-03-01

    A generic test of retrievable geologic storage of spent fuel assemblies in an underground chamber is being conducted at the Nevada Test Site. The horizontal shrinkage of the pillars is not explainable, but the vertical pillar stresses are easily understood. A two-phase project was initiated to estimate the in-situ deformability of the Climax granite and to refine the in-situ stress field data, and to model the mine-by

  2. On-site testing of crop drying fans

    OpenAIRE

    Winkelman, Paul M.

    1988-01-01

    The commercial peanut dryers used today were first conceived when energy was relatively inexpensive. Since then, energy costs have increased significantly, and more efficient peanuts dryers are desirable. To evaluate dryer efficiency, a mobile fan test facility was designed, built and calibrated for on-site fan airflow and energy measurements. Four-, six-, and eight-trailer peanut dryers were tested for performance. The characteristics observed were delivery of fan airflow as compared to m...

  3. Association between positive patch tests to epoxy resin and fragrance mix I ingredients

    DEFF Research Database (Denmark)

    Andersen, Klaus Ejner; Christensen, Lars Porskjaer; Vølund, Aage

    2009-01-01

    BACKGROUND: Both epoxy resin (diglycidyl ether of bisphenol A) and fragrance mix I are included in the European baseline series of contact allergens. A significant association between positive reactions to epoxy resin and fragrance mix has been reported by others. OBJECTIVE: To investigate...... and possibly reproduce this association with the use of TRUE((R)) test data and supplementary tests with fragrance mix ingredients from the Department of Dermatology, Odense University Hospital. MATERIALS AND METHODS: Six thousand one hundred and fifteen consecutive eczema patients tested from 1995 to 2007...... were included, and test results from all patients tested with fragrance mix ingredients were analysed. RESULTS: One hundred and forty-five (2.4%) were positive to epoxy resin and 282 (4.6%) were positive to fragrance mix I. Nineteen were positive to both giving an odds ratio of 3.3, which...

  4. Options for clean-up of the Maralinga test site

    International Nuclear Information System (INIS)

    1985-06-01

    This report examines the limit of contamination of the soil and ground cover by 239 Pu, 235 U and 241 Am which may be considered as permitting the unrestricted land use of the former nuclear weapon test sites at Emu and Maralinga by Aboriginal groups. It reports on the options available to achieve this objective and their cost

  5. Probabilistic Description of a Clay Site using CPTU tests

    DEFF Research Database (Denmark)

    Andersen, Sarah; Lauridsen, Kristoffer; Nielsen, Benjaminn Nordahl

    2012-01-01

    A clay site at the harbour of Aarhus, where numerous cone penetration tests have been conducted, is assessed. The upper part of the soil deposit is disregarded, and only the clay sections are investigated. The thickness of the clay deposit varies from 5 to 6 meters, and is sliced into sections of 1...

  6. Nevada test site radionuclide inventory and distribution: project operations plan

    International Nuclear Information System (INIS)

    Kordas, J.F.; Anspaugh, L.R.

    1982-01-01

    This document is the operational plan for conducting the Radionuclide Inventory and Distribution Program (RIDP) at the Nevada Test Site (NTS). The basic objective of this program is to inventory the significant radionuclides of NTS origin in NTS surface soil. The expected duration of the program is five years. This plan includes the program objectives, methods, organization, and schedules

  7. Nevada Test Site Radiological Control Manual. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2010-02-09

    This document supersedes DOE/NV/25946--801, “Nevada Test Site Radiological Control Manual,” Revision 0 issued in October 2009. Brief Description of Revision: A minor revision to correct oversights made during revision to incorporate the 10 CFR 835 Update; and for use as a reference document for Tenant Organization Radiological Protection Programs.

  8. Water-rock interaction modelling and uncertainties of mixing modelling. SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Gimeno, Maria J.; Auque, Luis F.; Gomez, Javier B.; Acero, Patricia (Univ. of Zaragoza, Zaragoza (Spain))

    2009-01-15

    , hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on available primary data from the extended data freeze L2.3 at Laxemar (November 30 2007). The data interpretation was carried out during November 2007 to September 2008. Several groups within ChemNet were involved and the evaluation was conducted independently using different approaches ranging from expert knowledge to geochemical and mathematical modelling including transport modelling. During regular ChemNet meetings the results have been presented and discussed. The original works by the ChemNet modellers are presented in four level III reports containing complementary information for the bedrock hydrogeochemistry Laxemar Site Descriptive Model (SDM-Site Laxemar, R-08-93) level II report. There is also a fifth level III report: Fracture mineralogy of the Laxemar area (R-08-99). This report presents the modelling work performed by the UZ (Univ. of Zaragoza) group as part of the work plan for Laxemar-Simpevarp 2.2 and 2.3. The main processes determining the global geochemical evolution of the Laxemar-Simpevarp groundwaters system are mixing and reaction processes. Mixing has taken place between different types of waters (end members) over time, making the discrimination of the main influences not always straightforward. Several lines of evidence suggest the input of dilute waters (cold or warm), at different stages, into a bedrock with pre-existing very saline groundwaters. Subsequently, marine water entered the system over the Littorina period (when the topography and the distance to the coast allowed it) and mixed with pre-existent groundwaters of variable salinity. In the Laxemar subarea mainland, the Littorina input occurred only locally and it has mostly been flushed out by the subsequent input of warm meteoric waters with a distinctive modern isotopic signature. In addition to mixing processes and superimposed to their

  9. Water-rock interaction modelling and uncertainties of mixing modelling. SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Gimeno, Maria J.; Auque, Luis F.; Gomez, Javier B.; Acero, Patricia

    2009-01-01

    , hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on available primary data from the extended data freeze L2.3 at Laxemar (November 30 2007). The data interpretation was carried out during November 2007 to September 2008. Several groups within ChemNet were involved and the evaluation was conducted independently using different approaches ranging from expert knowledge to geochemical and mathematical modelling including transport modelling. During regular ChemNet meetings the results have been presented and discussed. The original works by the ChemNet modellers are presented in four level III reports containing complementary information for the bedrock hydrogeochemistry Laxemar Site Descriptive Model (SDM-Site Laxemar, R-08-93) level II report. There is also a fifth level III report: Fracture mineralogy of the Laxemar area (R-08-99). This report presents the modelling work performed by the UZ (Univ. of Zaragoza) group as part of the work plan for Laxemar-Simpevarp 2.2 and 2.3. The main processes determining the global geochemical evolution of the Laxemar-Simpevarp groundwaters system are mixing and reaction processes. Mixing has taken place between different types of waters (end members) over time, making the discrimination of the main influences not always straightforward. Several lines of evidence suggest the input of dilute waters (cold or warm), at different stages, into a bedrock with pre-existing very saline groundwaters. Subsequently, marine water entered the system over the Littorina period (when the topography and the distance to the coast allowed it) and mixed with pre-existent groundwaters of variable salinity. In the Laxemar subarea mainland, the Littorina input occurred only locally and it has mostly been flushed out by the subsequent input of warm meteoric waters with a distinctive modern isotopic signature. In addition to mixing processes and superimposed to their effects, different

  10. Closure Plan for the Area 3 Radioactive Waste Management Site at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2007-09-01

    The Area 3 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec) for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the interim closure plan for the Area 3 RWMS, which was presented in the Integrated Closure and Monitoring Plan (ICMP) (DOE, 2005). The format and content of this plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). The major updates to the plan include a new closure date, updated closure inventory, the new institutional control policy, and the Title II engineering cover design. The plan identifies the assumptions and regulatory requirements, describes the disposal sites and the physical environment in which they are located, presents the design of the closure cover, and defines the approach and schedule for both closing and monitoring the site. The Area 3 RWMS accepts low-level waste (LLW) from across the DOE Complex in compliance with the NTS Waste Acceptance Criteria (NNSA/NSO, 2006). The Area 3 RWMS accepts both packaged and unpackaged unclassified bulk LLW for disposal in subsidence craters that resulted from deep underground tests of nuclear devices in the early 1960s. The Area 3 RWMS covers 48 hectares (119 acres) and comprises seven subsidence craters--U-3ax, U-3bl, U-3ah, U-3at, U-3bh, U-3az, and U-3bg. The area between craters U-3ax and U-3bl was excavated to form one large disposal unit (U-3ax/bl); the area between craters U-3ah and U-3at was also excavated to form another large disposal unit (U-3ah/at). Waste unit U-3ax/bl is closed; waste units U-3ah/at and U-3bh are active; and the remaining craters, although currently undeveloped, are available for disposal of waste if required. This plan specifically addresses the closure of the U-3ah/at and the U-3bh LLW units. A final closure

  11. 183-H Basin Mixed Waste Analysis and Testing Report

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of this sampling and analysis report is to provide data necessary to support treatment and disposal options for the low-level mixed waste from the 183-H solar evaporation ponds. In 1973, four of the 16 flocculation and sedimentation basins were designated for use as solar evaporation basins to provide waste reduction by natural evaporation of liquid chemical wastes from the 300 Area fuel fabrication facilities. The primary purpose of this effort is to gather chemical and bulk property data for the waste in the drums/boxes of sediment removed from the basin at Central Waste Complex

  12. Closure Report for Corrective Action Unit 398: Area 25 Spill Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K. B. Campbell

    2003-04-01

    This Closure Report (CR) documents the activities performed to close Corrective Action Unit (CAU) 398: Area 25 Spill Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996, and the Nevada Division of Environmental Protection (NDEP)-approved Streamlined Approach for Environmental Restoration (SA4FER) Plan for CAU 398: Area 25 Spill Sites, Nevada Test Site, Nevada (U.S. Department of Energy, Nevada Operations Office [DOEN], 2001). CAU 398 consists of the following thirteen Corrective Action Sites (CASs) all located in Area 25 of the Nevada Test Site (NTS) (Figure 1): CAS 25-25-02, Oil Spills, CAS 25-25-03, Oil Spills, CAS 25-25-04, Oil Spills, CAS 25-25-05, Oil Spills, CAS 25-25-06, Oil Spills, CAS 25-25-07, Hydraulic Oil Spill(s), CAS 25-25-08, Hydraulic Oil Spill(s), CAS 25-25-16, Diesel Spill (from CAS 25-01-02), CAS 25-25-17, Subsurface Hydraulic Oil Spill, CAS 25-44-0 1, Fuel Spill, CAS 25-44-04, Acid Spill (from CAS 25-01-01), CAS 25-44-02, Spill, and CAS 25-44-03, Spill. Copies of the analytical results for the site verification samples are included in Appendix B. Copies of the CAU Use Restriction Information forms are included in Appendix C.

  13. Developing restoration planting mixes for active ski slopes: a multi-site reference community approach.

    Science.gov (United States)

    Burt, Jennifer Williamson

    2012-03-01

    Downhill ski areas occupy large expanses of mountainous lands where restoration of ecosystem function is of increasing importance and interest. Establishing diverse native plant communities on ski runs should enhance sediment and water retention, wildlife habitat, biodiversity and aesthetics. Because ski slopes are managed for recreation, ski slope revegetation mixes must consist of low-stature or herbaceous plants that can tolerate typical environmental conditions on ski slopes (high elevation, disturbed soils, open, steep slopes). The most appropriate reference communities for selecting ski slope revegetation species are thus successional, or seral plant communities in similar environments (i.e., other ski slopes). Using results from a broad-scale reference community analysis, I evaluated plant communities naturally occurring on ski slopes from 21 active and abandoned ski areas throughout the northern Sierra Nevada to identify native plant species suitable for use in ski slope restoration. I constructed a baseline planting palette of regionally appropriate plant species (for restoration of either newly created or already existing ski runs) that is functionally diverse and is likely to succeed across a broad range of environments. I also identify a more comprehensive list of species for more specialized planting mixes based on site-specific goals and particular environmental settings. Establishing seral plant communities may be an appropriate restoration goal for many other types of managed lands, including roadsides, firebreaks and utility rights-of-way. This study describes an ecological (and potentially cost-effective) approach to developing restoration planting palettes for such managed lands.

  14. Developing Restoration Planting Mixes for Active Ski Slopes: A Multi-Site Reference Community Approach

    Science.gov (United States)

    Burt, Jennifer Williamson

    2012-03-01

    Downhill ski areas occupy large expanses of mountainous lands where restoration of ecosystem function is of increasing importance and interest. Establishing diverse native plant communities on ski runs should enhance sediment and water retention, wildlife habitat, biodiversity and aesthetics. Because ski slopes are managed for recreation, ski slope revegetation mixes must consist of low-stature or herbaceous plants that can tolerate typical environmental conditions on ski slopes (high elevation, disturbed soils, open, steep slopes). The most appropriate reference communities for selecting ski slope revegetation species are thus successional, or seral plant communities in similar environments (i.e., other ski slopes). Using results from a broad-scale reference community analysis, I evaluated plant communities naturally occurring on ski slopes from 21 active and abandoned ski areas throughout the northern Sierra Nevada to identify native plant species suitable for use in ski slope restoration. I constructed a baseline planting palette of regionally appropriate plant species (for restoration of either newly created or already existing ski runs) that is functionally diverse and is likely to succeed across a broad range of environments. I also identify a more comprehensive list of species for more specialized planting mixes based on site-specific goals and particular environmental settings. Establishing seral plant communities may be an appropriate restoration goal for many other types of managed lands, including roadsides, firebreaks and utility rights-of-way. This study describes an ecological (and potentially cost-effective) approach to developing restoration planting palettes for such managed lands.

  15. Identification of dissolved-constituent sources in mine-site ground water using batch mixing

    Science.gov (United States)

    Clark, Gregory M.; Williams, Robert S.

    1991-01-01

    Batch-mixing experiments were used to help identify lithologic and mineralogic sources of increased concentrations of dissolved solids in water affected by surface coal mining in northwestern Colorado. Ten overburden core samples were analyzed for mineral composition and mixed with distilled water for 90 days until mineral-water equilibrium was reached. Between one day and 90 days after initial contact, specific conductance in the sample mixtures had a median increase of 306 percent. Dissolved-solids concentrations ranged from 200 to 8,700 mg/L in water samples extracted from the mixtures after 90 days. Mass-balance simulations were conducted using the geochemical models BALANCE and WATEQF to quantify mineral-water interactions occurring in five selected sample mixtures and in water collected from a spring at a reclaimed mine site. The spring water is affected by mineral-water interactions occurring in all of the lithologic units comprising the overburden. Results of the simulations indicate that oxidation of pyrite, dissolution of dolomite, gypsum, and epsomite, and cation-exchange reactions are the primary mineral-water interactions occurring in the overburden. Three lithologic units in the overburden (a coal, a sandstone, and a shale) probably contribute most of the dissolved solids to the spring water. Water sample extracts from mixtures using core from these three units accounted for 85 percent of the total dissolved solids in the 10 sample extracts. Other lithologic units in the over-burden probably contribute smaller quantities of dissolved solids to the spring water.

  16. Identification of dissolved-constituent sources in mine-site ground water using batch mixing

    International Nuclear Information System (INIS)

    Clark, G.M.; Williams, R.S. Jr.

    1991-01-01

    Batch-mixing experiments were used to help identify lithologic mineralogic sources of increased concentrations of dissolved solids in water affected by surface coal mining in northwestern Colorado. Ten overburden core samples were analyzed for mineral composition and mixed with distilled water for 90 days until mineral-water equilibrium was reached. Dissolved-solids concentrations ranged from 200 to 8,700 mg/L in water samples extracted from the mixtures after 90 days. Mass-balance simulations were conducted using the geochemical models BALANCE and WATEQF to quantify mineral-water interactions occurring in five selected sample mixtures and in water collected from a spring at a reclaimed mine site. The spring water is affected by mineral-water interactions occurring in all of lithologic units comprising the overburden. Results of the simulations indicate that oxidation of pyrite, dissolution of dolomite, gypsum, and epsomite, and cation-exchange reactions are the primary mineral-water interactions occurring in the overburden. Three lithologic units in the overburden probably contribute most of the dissolved solids to the spring water. Water sample extracts from mixtures using core from these three units accounted for 85 percent of the total dissolved solids in the 10 sample extracts. Other lithologic units in the overburden probably contribute smaller quantities of dissolved solids to the spring water

  17. 1997 Hanford site report on land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1997-04-07

    The baseline land disposal restrictions (LDR) plan was prepared in 1990 in accordance with the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tn-Party Agreement) Milestone M-26-00 (Ecology et al, 1989). The text of this milestone is below. ''LDR requirements include limitations on storage of specified hazardous wastes (including mixed wastes). In accordance with approved plans and schedules, the U.S. Department of Energy (DOE) shall develop and implement technologies necessary to achieve full compliance with LDR requirements for mixed wastes at the Hanford Site. LDR plans and schedules shall be developed with consideration of other action plan milestones and will not become effective until approved by the U.S. Environmental Protection Agency (EPA) (or Washington State Department of Ecology [Ecology]) upon authorization to administer LDRs pursuant to Section 3006 of the Resource Conservation and Recovery Act of 1976 (RCRA). Disposal of LDR wastes at any time is prohibited except in accordance with applicable LDR requirements for nonradioactive wastes at all times. The plan will include, but not be limited to, the following: Waste characterization plan; Storage report; Treatment report; Treatment plan; Waste minimization plan; A schedule depicting the events necessary to achieve full compliance with LDR requirements; and A process for establishing interim milestones.

  18. Environmental assessment of SP-100 ground engineering system test site: Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    The US Department of Energy (DOE) proposes to modify an existing reactor containment building (decommissioned Plutonium Recycle Test Reactor (PRTR) 309 Building) to provide ground test capability for the prototype SP-100 reactor. The 309 Building (Figure 1.1) is located in the 300 Area on the Hanford Site in Washington State. The National Environmental Policy Act (NEPA) requires that Federal agencies assess the potential impacts that their actions may have on the environment. This Environmental Assessment describes the consideration given to environmental impacts during reactor concept and test site selection, examines the environmental effects of the DOE proposal to ground test the nuclear subsystem, describes alternatives to the proposed action, and examines radiological risks of potential SP-100 use in space. 73 refs., 19 figs., 7 tabs.

  19. Lawrence Livermore National Laboratory Experimental Test Site (Site 300) Potable Water System Operations Plan

    Energy Technology Data Exchange (ETDEWEB)

    Ocampo, Ruben P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bellah, Wendy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-04

    The existing Lawrence Livermore National Laboratory (LLNL) Site 300 drinking water system operation schematic is shown in Figures 1 and 2 below. The sources of water are from two Site 300 wells (Well #18 and Well #20) and San Francisco Public Utilities Commission (SFPUC) Hetch-Hetchy water through the Thomas shaft pumping station. Currently, Well #20 with 300 gallons per minute (gpm) pump capacity is the primary source of well water used during the months of September through July, while Well #18 with 225 gpm pump capacity is the source of well water for the month of August. The well water is chlorinated using sodium hypochlorite to provide required residual chlorine throughout Site 300. Well water chlorination is covered in the Lawrence Livermore National Laboratory Experimental Test Site (Site 300) Chlorination Plan (“the Chlorination Plan”; LLNL-TR-642903; current version dated August 2013). The third source of water is the SFPUC Hetch-Hetchy Water System through the Thomas shaft facility with a 150 gpm pump capacity. At the Thomas shaft station the pumped water is treated through SFPUC-owned and operated ultraviolet (UV) reactor disinfection units on its way to Site 300. The Thomas Shaft Hetch- Hetchy water line is connected to the Site 300 water system through the line common to Well pumps #18 and #20 at valve box #1.

  20. LLNL Experimental Test Site (Site 300) Potable Water System Operations Plan

    Energy Technology Data Exchange (ETDEWEB)

    Ocampo, R. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bellah, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-14

    The existing Lawrence Livermore National Laboratory (LLNL) Site 300 drinking water system operation schematic is shown in Figures 1 and 2 below. The sources of water are from two Site 300 wells (Well #18 and Well #20) and San Francisco Public Utilities Commission (SFPUC) Hetch-Hetchy water through the Thomas shaft pumping station. Currently, Well #20 with 300 gallons per minute (gpm) pump capacity is the primary source of well water used during the months of September through July, while Well #18 with 225 gpm pump capacity is the source of well water for the month of August. The well water is chlorinated using sodium hypochlorite to provide required residual chlorine throughout Site 300. Well water chlorination is covered in the Lawrence Livermore National Laboratory Experimental Test Site (Site 300) Chlorination Plan (“the Chlorination Plan”; LLNL-TR-642903; current version dated August 2013). The third source of water is the SFPUC Hetch-Hetchy Water System through the Thomas shaft facility with a 150 gpm pump capacity. At the Thomas shaft station the pumped water is treated through SFPUC-owned and operated ultraviolet (UV) reactor disinfection units on its way to Site 300. The Thomas Shaft Hetch- Hetchy water line is connected to the Site 300 water system through the line common to Well pumps #18 and #20 at valve box #1.

  1. On-site tests on the nuclear power plants

    International Nuclear Information System (INIS)

    Morilhat, P.; Favennec, J.M.; Neau, P.; Preudhomme, E.

    1996-01-01

    On-site tests and experiments are performed by EDF Research and Development Division on the nuclear power plants to assess the behaviour of major components submitted to thermal and vibratory solicitations. On-going studies deal with the qualification of new nuclear power plant standard and with the feedback of plants under operation. The tests, particularly the investigation tests, correspond to large investments and entail an important data volume which must ensure the continuity over a long period of the order of magnitude of the in-service plant life (around 40 years). This paper addresses the on-site experimental activities, describes the means to be used, and gives an example: the qualification of SG of new 1450 MW nuclear power plants. (author)

  2. Environmental site assessments should include radon gas testing

    International Nuclear Information System (INIS)

    Nardi, M.A.

    1991-01-01

    There are two emerging influences that will require radon gas testing as part of many property transfers and most site assessments. These requirements come from lending regulators and state legislatures. Fannie Mae and others have developed environmental investigation guidelines for the purchase of environmentally contaminated real estate. These guidelines include radon gas testing for many properties. Several states have enacted laws that require environmental disclosure forms be prepared to ensure that the parties involved in certain real estate transactions are aware of the environmental liabilities that may come with the transfer of property. Indiana has recently enacted legislation that would require the disclosure of the presence of radon gas on many commercial real estate transactions. With more lenders and state governments likely to follow this trend, radon gas testing should be performed during all property transfers and site assessment to protect the parties involved from any legal liabilities

  3. Off-site monitoring for the Mighty Oak nuclear test

    International Nuclear Information System (INIS)

    Black, S.C.; Smith, A.E.; Costa, C.F.

    1986-07-01

    After a nuclear explosives test, code name Mighty Oak, the tunnel leading to the test point became contaminated with radioactive debris. To re-enter and recover valuable equipment and data, the DOE purged the tunnel air using particulate and charcoal filters to minimize discharge of radioactivity to the atmosphere. During this purging, the EPA established special air samples supplementing their routine air monitoring networks. Analysis of the collected samples for radioactive noble gases and for gamma-emitting radionuclides indicated that only low levels of xenon-133 were released in amounts detectable in populated areas near the Nevada Test Site. The maximum dose to an individual was calculated to be 0.36 microrem, assuming that person remained in the open field at the measurement site during the whole period of the purging

  4. Rehabilitation of the former nuclear test sites at Maralinga

    International Nuclear Information System (INIS)

    Costello, J.M.; Davoren, P.J.

    1994-01-01

    The Department of Primary Industries and Energy, Canberra, has commenced tendering procedures for appointment of a Project Management Organisation for the Rehabilitation of the former British atomic weapon test sites at Maralinga and Emu in South Australia. This paper gives a historical background to the atomic tests, and reports scientific and engineering studies conducted by the Technical Assessment Group (TAG) to define practical and economic options for rehabilitation of the former test sites. The rehabilitation option preferred by the Australian Government will focus on removal and burial of soil and fragments highly contaminated with plutonium oxide, and erection of warning fences around areas where permanent residence will not be permitted. The application of in-situ vitrification is under investigation for stabilisation of twenty one disposal pits containing up to twenty kilograms of plutonium at Taranaki. 3 refs., 2 tabs., 3 figs

  5. Nevada Test Site Radiation Protection Program - Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers' Council

    2008-06-01

    Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection,' establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration off-site projects. This NTS RPP promulgates the radiation protection standards, limits, and program requirements for occupational exposure to ionizing radiation resulting from NNSA/NSO activities at the NTS and other operational areas as stated in 10 CFR 835.1(a). NNSA/NSO activities (including design, construction, operation, and decommissioning) within the scope of this RPP may result in occupational exposures to radiation or radioactive material. Therefore, a system of control is implemented through specific references to the site-specific NV/YMP RCM. This system of control is intended to ensure that the following criteria are met: (1) occupational exposures are maintained as low as reasonably achievable (ALARA), (2) DOE's limiting values are not exceeded, (3) employees are aware of and are prepared to cope with emergency conditions, and (4) employees are not inadvertently exposed to radiation or radioactive material.

  6. Nevada Test Site Radiation Protection Program - Revision 1

    International Nuclear Information System (INIS)

    Nevada Test Site Radiological Control Managers' Council

    2008-01-01

    Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection,' establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration off-site projects. This NTS RPP promulgates the radiation protection standards, limits, and program requirements for occupational exposure to ionizing radiation resulting from NNSA/NSO activities at the NTS and other operational areas as stated in 10 CFR 835.1(a). NNSA/NSO activities (including design, construction, operation, and decommissioning) within the scope of this RPP may result in occupational exposures to radiation or radioactive material. Therefore, a system of control is implemented through specific references to the site-specific NV/YMP RCM. This system of control is intended to ensure that the following criteria are met: (1) occupational exposures are maintained as low as reasonably achievable (ALARA), (2) DOE's limiting values are not exceeded, (3) employees are aware of and are prepared to cope with emergency conditions, and (4) employees are not inadvertently exposed to radiation or radioactive material

  7. Effluent testing for the Oak Ridge mixed waste incinerator: Emissions test for August 27, 1990

    International Nuclear Information System (INIS)

    Bostick, W.D.; Bunch, D.H.; Gibson, L.V.; Hoffmann, D.P.; Shoemaker, J.L.

    1990-12-01

    On August 27, 1990, a special emissions test was performed at the K-1435 Toxic Substance Control Act Mixed Waste Incinerator. A sampling and analysis plan was implemented to characterize the incinerator waste streams during a 6 hour burn of actual mixed waste. The results of this characterization are summarized in the present report. Significant among the findings is the observation that less than 3% of the uranium fed to the incinerator kiln was discharged as stack emission. This value is consistent with the estimate of 4% or less derived from long-term mass balance of previous operating experience and with the value assumed in the original Environmental Impact Statement. Approximately 1.4% of the total uranium fed to the incinerator kiln appeared in the aqueous scrubber blowdown; about 85% of the total uranium in the aqueous waste was insoluble (i.e., removable by filtration). The majority of the uranium fed to the incinerator kiln appeared in the ash material, apparently associated with phosphorous as a sparingly-soluble species. Many other metals of potential regulatory concern also appeared to concentrate in the ash as sparingly-soluble species, with minimal partition to the aqueous waste. The aqueous waste was discharged to the Central Neutralization Facility where it was effectively treated by coprecipitation with iron. The treated, filtered aqueous effluent met Environmental Protection Agency interim primary drinking water standards for regulated metals

  8. Nondestructive testing and assessment of consolidation effects of earthen sites

    Directory of Open Access Journals (Sweden)

    Xudong Wang

    2016-10-01

    Full Text Available Earthen sites are widely distributed throughout China, and most of them belong to archaeological sites with significant values, which not only directly witness the origin, formation and development of Chinese civilization, but also possess important values for conservation and exhibition. Many researches and practices on their conservation and consolidation have been carried out; however, the consolidation effect is mainly judged by visual observation and expert evaluation. Scientific assessment of conservation and consolidation effects is a challenging issue. Many instruments in other fields cannot be directly applied to the conservation of cultural relics due to their peculiarity. In order to assess the effects of field conservation experiments, this paper tries to understand the consolidation effects at Liangzhu site using nondestructive or micro-damage methods, including thermo-physical parameters testing, infrared thermal imaging, high-density microelectrode resistivity testing, portable microscope observation, and hydrophilic and hydrophobic testing, and thereby explores the practicable methods for evaluating the properties of consolidation materials for earthen sites treatment.

  9. Testing protocols for evaluating monolithic waste forms containing mixed wastes

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Sams, T.L.; Pitt, W.W.

    1986-01-01

    Test protocols have been presented which can be used as a guide in cement-based grout formulation development studies. Based on experience at ORNL, these six tests are generally sufficient to develop a grout product which will meet all applicable DOE, NRC, and EPA performance criteria. As such, these tests can be used to minimize the time required to tailor a grout to be compatible with both the waste stream and the process disposal scenario. 9 refs

  10. Crystal Structure of Menin Reveals Binding Site for Mixed Lineage Leukemia (MLL) Protein

    Energy Technology Data Exchange (ETDEWEB)

    Murai, Marcelo J.; Chruszcz, Maksymilian; Reddy, Gireesh; Grembecka, Jolanta; Cierpicki, Tomasz (Michigan); (UV)

    2014-10-02

    Menin is a tumor suppressor protein that is encoded by the MEN1 (multiple endocrine neoplasia 1) gene and controls cell growth in endocrine tissues. Importantly, menin also serves as a critical oncogenic cofactor of MLL (mixed lineage leukemia) fusion proteins in acute leukemias. Direct association of menin with MLL fusion proteins is required for MLL fusion protein-mediated leukemogenesis in vivo, and this interaction has been validated as a new potential therapeutic target for development of novel anti-leukemia agents. Here, we report the first crystal structure of menin homolog from Nematostella vectensis. Due to a very high sequence similarity, the Nematostella menin is a close homolog of human menin, and these two proteins likely have very similar structures. Menin is predominantly an {alpha}-helical protein with the protein core comprising three tetratricopeptide motifs that are flanked by two {alpha}-helical bundles and covered by a {beta}-sheet motif. A very interesting feature of menin structure is the presence of a large central cavity that is highly conserved between Nematostella and human menin. By employing site-directed mutagenesis, we have demonstrated that this cavity constitutes the binding site for MLL. Our data provide a structural basis for understanding the role of menin as a tumor suppressor protein and as an oncogenic co-factor of MLL fusion proteins. It also provides essential structural information for development of inhibitors targeting the menin-MLL interaction as a novel therapeutic strategy in MLL-related leukemias.

  11. Field evaluation of a horizontal well recirculation system for groundwater treatment: Pilot test at the Clean Test Site Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    International Nuclear Information System (INIS)

    Muck, M.T.; Kearl, P.M.; Siegrist, R.L.

    1998-01-01

    This report presents the results of field testing a horizontal well recirculation system at the Portsmouth Gaseous Diffusion Plant (PORTS). The recirculation system uses a pair of horizontal wells, one for groundwater extraction and treatment and the other for reinjection of treated groundwater, to set up a recirculation flow field. The induced flow field from the injection well to the extraction well establishes a sweeping action for the removal and treatment of groundwater contaminants. The overall purpose of this project is to study treatment of mixed groundwater contaminants that occur in a thin water-bearing zone not easily targeted by traditional vertical wells. The project involves several research elements, including treatment-process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and pilot testing at a contaminated site. The results of the pilot test at an uncontaminated site, the Clean Test Site (CTS), are presented in this report

  12. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Grant Evenson

    2006-01-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139

  13. Lightning vulnerability of nuclear explosive test systems at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hasbrouck, R.T.

    1985-01-01

    A task force chartered to evaluate the effects of lightning on nuclear explosives at the Nevada Test Site has made several recommendations intended to provide lightning-invulnerable test device systems. When these recommendations have been implemented, the systems will be tested using full-threat-level simulated lightning

  14. Preliminary siting criteria for the proposed mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Jorgenson-Waters, M.

    1992-09-01

    The Mixed and Low-Level Waste Treatment Facility project was established in 1991 by the US Department of Energy Idaho Field Office. This facility will provide treatment capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This report identifies the siting requirements imposed on facilities that treat and store these waste types by Federal and State regulatory agencies and the US Department of Energy. Site selection criteria based on cost, environmental, health and safety, archeological, geological and service, and support requirements are presented. These criteria will be used to recommend alternative sites for the new facility. The National Environmental Policy Act process will then be invoked to evaluate the alternatives and the alternative sites and make a final site determination

  15. Creation of geographic information database of subsatellite calibration test site

    Science.gov (United States)

    Zyelyk, Ya. I.; Semeniv, O. V.

    2014-12-01

    The prototype of geographic information database (DB) of the sub-satellite calibration test site has been created, to which user can be accessed from the free open-source geographic information system Quantum GIS (QGIS) environment. QGIS is used as an integrator of all data and applications and visualizer of the satellite imagery and vector layers of test sites in the cartographic interface. Conversion of the database from the local representation in the MS Access to the server representation in the PostgreSQL environment has been performed. Dynamic application to QGIS for user interaction from QGIS environment with the object-relational database and to display information from the database has been created. Functional-algorithmic part of these application and the interface for user interaction with the database has been developed.

  16. Nevada Test Site tortoise population monitoring study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, J.M.; Zander, K.K.

    1994-12-01

    A Tortoise Population Monitoring Study was initiated to determine and monitor the density of desert tortoises (Gopherus agassizii) on the Nevada Test Site. Quadrat sampling was conducted following methodology described in the Draft Desert Tortoise Recovery Plan (FWS, 1993). So few tortoises were found that densities could not be calculated. Based on estimates of capture probabilities and densities from other studies, it was determined that 1-km{sup 2} (0.4 mi{sup 2}) plots did not contain enough tortoises for estimating densities with the Recovery Plan methods. It was recommended that additional surveys on the Nevada Test Site using those methods not be conducted. Any future efforts to monitor desert tortoise densities should start by identifying other possible methods, determining their relative power to detect changes, and estimating their cost.

  17. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report

  18. Nevada Test Site site treatment plan. Final annual update. Revision 1

    International Nuclear Information System (INIS)

    1998-04-01

    A Site Treatment Plan (STP) is required for facilities at which the US Department of Energy Nevada Operations Office (DOE/NV) generates or stores mixed waste (MW), defined by the Federal Facility Compliance Act (FFCAct) as waste containing both a hazardous waste subject to the Resource Conservation and Recovery Act (RCRA) and a radioactive material subject to the Atomic Energy Act. This STP was written to identify specific treatment facilities for treating DOE/NV generated MW and provides proposed implementation schedules. This STP was approved by the Nevada Division of Environmental Protection (NDEP) and provided the basis for the negotiation and issuance of the FFCAct Consent Order (CO) dated March 6, 1996. The FFCAct CO sets forth stringent regulatory requirements to comply with the implementation of the STP

  19. Association between positive patch tests to epoxy resin and fragrance mix I ingredients.

    Science.gov (United States)

    Andersen, Klaus Ejner; Christensen, Lars Porskjaer; Vølund, Aage; Johansen, Jeanne Duus; Paulsen, Evy

    2009-03-01

    Both epoxy resin (diglycidyl ether of bisphenol A) and fragrance mix I are included in the European baseline series of contact allergens. A significant association between positive reactions to epoxy resin and fragrance mix has been reported by others. To investigate and possibly reproduce this association with the use of TRUE((R)) test data and supplementary tests with fragrance mix ingredients from the Department of Dermatology, Odense University Hospital. Six thousand one hundred and fifteen consecutive eczema patients tested from 1995 to 2007 were included, and test results from all patients tested with fragrance mix ingredients were analysed. One hundred and forty-five (2.4%) were positive to epoxy resin and 282 (4.6%) were positive to fragrance mix I. Nineteen were positive to both giving an odds ratio of 3.3, which is significant (95% CI 2.0-5.4). Analysis of association to individual fragrance mix ingredients showed a significant association to alpha-amyl cinnamal and isoeugenol. The significant association between positive reactions to epoxy resin and fragrance mix I was reproduced. However, the clinical implications are not clarified, and even though the association may be coincidental, the fact that it can be reproduced with a different patch test system and in a different population speaks against a random result. Further studies may help to interpret the association.

  20. Application to transfer radioactive waste to the Nevada Test Site

    International Nuclear Information System (INIS)

    1992-01-01

    All waste described in this application has been, and will be, generated by LANL in support of the nuclear weapons test program at the NTS. All waste originates on the NTS. DOE Order 5820.2A states that low-level radioactive waste shall be disposed of at the site where it is generated, when practical. Since the waste is produced at the NTS, it is cost effective for LANL to dispose of the waste at the NTS

  1. 2003 Nevada Test Site Annual Illness and Injury Surveillance Report

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    2007-05-23

    Annual Illness and Injury Surveillance Program report for 2003 for the Nevada Test Site. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  2. A new apparatus and method for mixing solutes for injection tests in ...

    African Journals Online (AJOL)

    2009-07-17

    Jul 17, 2009 ... The trigger-tube apparatus and method was developed for mixing solutes and tracers for injection tests. The apparatus is a cap-trigger tube segment and the technique mixes solutes in boreholes in 2 min. Trigger-tube with solute/tracer is intro- duced into the well, the trigger is released, the tube is ...

  3. Perspectives of investigation and development of Semipalatinsk Test Site

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.; Lukashenko, S.N.

    2008-01-01

    Full text: Since the Semipalatinsk Test Site has been stopped and up until now, National Nuclear Center of the Republic of Kazakhstan (NNC RK) in cooperation with other specialist from Kazakhstan and international scientific community have accumulated large scope of information about current radiological situation at Semipalatinsk Nuclear Test Site (SNTS) and adjacent territories. There were revealed all important spots of radioactive contamination, identified main pathways and mechanisms for present and potential proliferation of radioactive substances. Obtained data assure us that present-day SNTS provides no negative impact on population on adjacent to the Site territories excluding people in the water basin of the river Shagan. Compliance with regulatory requirements and special rules for SNTS territory assures radiation safety at commercial activities on the Site. At the same time, the radiological situation does not remain stable; there were revealed the processes of radionuclide migration what requires regular monitoring of radiological situation at SNTS. Taking into account the scale of the Site and the variety of tests performed there, the information available about SNTS can not be completely exhaustive but enables us to propose a scientifically grounded plan for further research and practical measures aimed at remediation and reclamation of lands. implementation of such measures should return up to 80% of the lands to commercial use. SNTS is one of the world largest nuclear test sites with decisive contribution to creation and development of nuclear weapon. To considerable extent, these were works at SNTS which established nuclear parity between the superpowers one of the crucial factors in the history of human civilization in the 20 century. Also taking into account the interest to SNTS paid by international organizations, it is reasonable to initiate a procedure and recognize SNTS as a landmark including it in the UNESCO List of Cultural and Nature

  4. Confirmation test of powder mixing process in J-MOX

    International Nuclear Information System (INIS)

    Ota, Hiroshi; Osaka, Shuichi; Kurita, Ichiro

    2009-01-01

    Japan Nuclear Fuel Ltd. (hereafter, JNFL) MOX Fuel Fabrication Plant (hereafter, J-MOX) is what fabricates MOX fuel for domestic light water power plants. Development of design concept of J-MOX was started mid 90's and the frame of J-MOX process was clarified around 2000 including adoption of MIMAS process as apart of J-MOX powder process. JNFL requires to take an answer to any technical question that has not been clarified ever before by world's MOX and/or Uranium fabricators before it commissions equipment procurement. J-MOX is to be constructed adjacent to the Rokkasho Reprocessing Plant (RRP) and to utilize MH-MOX powder recovered at RRP. The combination of the MIMAS process and the MH-MOX powder is what has never tried in the world. Therefore JNFL started a series of confirmation tests of which the most important is the powder test to confirm the applicability of MH-MOX powder to the MIMAS process. The MH-MOX powder, consisting of 50% plutonium oxide and 50% uranium oxide, originates JAEA development utilizing microwave heating (MH) technology. The powder test started with laboratory scale small equipment utilizing both uranium and the MOX powder in 2000, left a solution to tough problem such as powder adhesion onto equipment, and then was followed by a large scale equipment test again with uranium and the MOX powder. For the MOX test, actual size equipment within glovebox was manufactured and installed in JAEA plutonium fuel center in 2005, and based on results taken so far an understanding that the MIMAS equipment, with the MH-MOX powder, can present almost same quality MOX pellet as what is introduced as fabricated in Europe was developed. The test was finished at the end of Japanese fiscal year (JFY) 2007, and it was confirmed that the MOX pellets fabricated in this test were almost satisfied with the targeted specifications set for domestic LWR MOX fuels. (author)

  5. Study of radionuclide contamination at the former Semipalatinsk test site

    International Nuclear Information System (INIS)

    Artemyev, O.A.

    2002-01-01

    In the paper the contamination technical areas of the former Semipalatinsk test site is discussed in details. It is concluded, that radioactive contamination of the Degelen technical area caused by underground nuclear tests is mainly retained within tunnels and cavities. Investigation showed that many tunnel portal areas here are contaminated by radioactive substances. Areas of significantly high contamination levels are also found at the Balapan technical area mainly around borehole sleeves. A serious source of radioactive contamination is tritium in used boreholes and high content of radionuclides produced due to the fission of nuclear device and activation of rocks at crater rim around the Atom lake

  6. DOUBLE TRACKS Test Site interim corrective action plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The DOUBLE TRACKS site is located on Range 71 north of the Nellis Air Force Range, northwest of the Nevada Test Site (NTS). DOUBLE TRACKS was the first of four experiments that constituted Operation ROLLER COASTER. On May 15, 1963, weapons-grade plutonium and depleted uranium were dispersed using 54 kilograms of trinitrotoluene (TNT) explosive. The explosion occurred in the open, 0.3 m above the steel plate. No fission yield was detected from the test, and the total amount of plutonium deposited on the ground surface was estimated to be between 980 and 1,600 grams. The test device was composed primarily of uranium-238 and plutonium-239. The mass ratio of uranium to plutonium was 4.35. The objective of the corrective action is to reduce the potential risk to human health and the environment and to demonstrate technically viable and cost-effective excavation, transportation, and disposal. To achieve these objectives, Bechtel Nevada (BN) will remove soil with a total transuranic activity greater then 200 pCI/g, containerize the soil in ``supersacks,`` transport the filled ``supersacks`` to the NTS, and dispose of them in the Area 3 Radioactive Waste Management Site. During this interim corrective action, BN will also conduct a limited demonstration of an alternative method for excavation of radioactive near-surface soil contamination.

  7. Pressure Drop Test of Hybrid Mixing Vane Spacer Grid

    Energy Technology Data Exchange (ETDEWEB)

    Oh, D. S.; Chang, S. K.; Kim, B. D.; Chun, S. Y.; Chun, T. H

    2007-08-15

    The pressure loss test has been accomplished in the test section containing 5x5 rod bundle with a length of 2 m including 3 spacer grids. The test has been performed for the 5 kinds of spacer grids to compare the pressure loss characteristics: 1. Plain spacer grid which has the same body of the Hybrid but without vane (Plain), 2. Hybrid Vane spacer grid (Hybrid), 3. Hybrid-SC spacer grid which is constructed with coined, chamfered strip and is fabricated by spot welding, 4. Hybrid-LC spacer grid which is constructed with coined, chamfered strip and is fabricated by line welding along intersection line, 5. Westinghouse spacer grid with split vane (Plus-7). The pressure loss coefficient of the Plain, Hybrid, Hybrid-SC, Hybrid-LC, and Plus-7 spacer grid is 0.93, 1.15, 1.02, 1.04, and 1.08, respectively.

  8. Characterization and remediation of a mixed waste-contaminated site at Kirtland Air Force Base, New Mexico

    International Nuclear Information System (INIS)

    Johnston, J.W.; Thacker, M.S.; DeWitt, C.B.

    1997-01-01

    In the area of environmental restoration, one of the most challenging problems is the task of remediating mixed waste-contaminated sites. This paper discusses a successful Interim Corrective Measure (ICM) performed at a mixed waste-contaminated site on Kirtland Air Force Base (AFB) in Albuquerque, New Mexico. The site, known as RW-68, Cratering Area and Radium Dump/Slag Piles, was used during the late 1940s and early 1950s for the destruction and incineration of captured World War II aircraft. It contained 19 slag piles totaling approximately 150 tons of slag, ash, refractory brick, and metal debris. The piles were contaminated with radium-226 and RCRA-characteristic levels of heavy metals. Therefore, the piles were considered mixed waste. To eliminate the threat to human health and the environment, an ICM of removal, segregation, stabilization, and disposal was conducted from October through December 1996. Approximately 120 cubic yards (cu yds) of mixed waste, 188 cu yds of low-level radioactive-contaminated soil, 1 cu yd of low-level radioactive-contaminated debris, 5 cu yds of RCRA-characteristic hazardous waste, and 45 tons of nonhazardous debris were stabilized and disposed of during the ICM. To render the RCRA metals and radionuclides insoluble, stabilization was performed on the mixed and RCRA-characteristic waste streams. All stabilized material was subjected to TCLP analysis to verify it no longer exhibited RCRA-characteristic properties. Radiological and geophysical surveys were conducted concurrently with site remediation activities. These surveys provided real-time documentation of site conditions during each phase of the ICM and confirmed successful cleanup of the site. The three radioactive waste streams, stabilized mixed waste, low-level radioactive-contaminated soil, and low-level radioactive-contaminated debris, were disposed of at the Envirocare low-level radioactive disposal facility

  9. 1994 Report on Hanford Site land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1994-04-01

    The baseline land disposal restrictions (LDR) plan was prepared in 1990 in accordance with the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) Milestone M-26-00 (Ecology et al. 1992). The text of this milestone is below. LDR requirements include limitations on storage of specified hazardous wastes (including mixed wastes). In accordance with approved plans and schedules, the US Department of Energy (DOE) shall develop and implement technologies necessary to achieve full compliance with LDR requirements for mixed wastes at the Hanford Site. LDR plans and schedules shall be developed with consideration at other action plan milestones and will not become effective until approved by the US Environmental Protection Agency (EPA) (or Washington State Department of Ecology [Ecology]) upon authorization to administer LDRs pursuant to Section 3006 of the Resource Conservation and Recovery Act of 1976 (RCRA). Disposal of LDR wastes at any time is prohibited except in accordance with applicable LDR requirements for nonradioactive wastes at all times. The plan will include, but not be limited to, the following: waste characterization plan; storage report; treatment report; treatment plan; waste minimization plan; a schedule depicting the events necessary to achieve full compliance with LDR requirements; a process for establishing interim milestones. The original plan was published in October 1990. This is the fourth of a series of annual updates required by Tri-Party Agreement Milestone M-26-01. A Tri-Party Agreement change request approved in March 1992 changed the annual due date from October to April and consolidated this report with a similar one prepared under Milestone M-25-00. The reporting period for this report is from April 1, 1993, to March 31, 1994.

  10. An aerial radiological survey of the Nevada Test Site

    International Nuclear Information System (INIS)

    Hendricks, T.J.; Riedhauser, S.R.

    1999-01-01

    A team from the Remote Sensing Laboratory conducted an aerial radiological survey of the US Department of Energy's Nevada Test Site including three neighboring areas during August and September 1994. The survey team measured the terrestrial gamma radiation at the Nevada Test Site to determine the levels of natural and man-made radiation. This survey included the areas covered by previous surveys conducted from 1962 through 1993. The results of the aerial survey showed a terrestrial background exposure rate that varied from less than 6 microroentgens per hour (mR/h) to 50 mR/h plus a cosmic-ray contribution that varied from 4.5 mR/h at an elevation of 900 meters (3,000 feet) to 8.5 mR/h at 2,400 meters (8,000 feet). In addition to the principal gamma-emitting, naturally occurring isotopes (potassium-40, thallium-208, bismuth-214, and actinium-228), the man-made radioactive isotopes found in this survey were cobalt-60, cesium-137, europium-152, protactinium-234m an indicator of depleted uranium, and americium-241, which are due to human actions in the survey area. Individual, site-wide plots of gross terrestrial exposure rate, man-made exposure rate, and americium-241 activity (approximating the distribution of all transuranic material) are presented. In addition, expanded plots of individual areas exhibiting these man-made contaminations are given. A comparison is made between the data from this survey and previous aerial radiological surveys of the Nevada Test Site. Some previous ground-based measurements are discussed and related to the aerial data. In regions away from man-made activity, the exposure rates inferred from the gamma-ray measurements collected during this survey agreed very well with the exposure rates inferred from previous aerial surveys

  11. An aerial radiological survey of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, T J; Riedhauser, S R

    1999-12-01

    A team from the Remote Sensing Laboratory conducted an aerial radiological survey of the US Department of Energy's Nevada Test Site including three neighboring areas during August and September 1994. The survey team measured the terrestrial gamma radiation at the Nevada Test Site to determine the levels of natural and man-made radiation. This survey included the areas covered by previous surveys conducted from 1962 through 1993. The results of the aerial survey showed a terrestrial background exposure rate that varied from less than 6 microroentgens per hour (mR/h) to 50 mR/h plus a cosmic-ray contribution that varied from 4.5 mR/h at an elevation of 900 meters (3,000 feet) to 8.5 mR/h at 2,400 meters (8,000 feet). In addition to the principal gamma-emitting, naturally occurring isotopes (potassium-40, thallium-208, bismuth-214, and actinium-228), the man-made radioactive isotopes found in this survey were cobalt-60, cesium-137, europium-152, protactinium-234m an indicator of depleted uranium, and americium-241, which are due to human actions in the survey area. Individual, site-wide plots of gross terrestrial exposure rate, man-made exposure rate, and americium-241 activity (approximating the distribution of all transuranic material) are presented. In addition, expanded plots of individual areas exhibiting these man-made contaminations are given. A comparison is made between the data from this survey and previous aerial radiological surveys of the Nevada Test Site. Some previous ground-based measurements are discussed and related to the aerial data. In regions away from man-made activity, the exposure rates inferred from the gamma-ray measurements collected during this survey agreed very well with the exposure rates inferred from previous aerial surveys.

  12. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was

  13. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed

  14. Deep Resistivity Structure of Mid Valley, Nevada Test Site, Nevada

    Science.gov (United States)

    Wallin, Erin L.; Rodriguez, Brian D.; Williams, Jackie M.

    2009-01-01

    The U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. From 1951 to 1992, 828 underground nuclear tests were conducted at the Nevada Test Site northwest of Las Vegas (DOE UGTA, 2003). Most of these tests were conducted hundreds of feet above the ground-water table; however, more than 200 of the tests were near, or within, the water table. This underground testing was limited to specific areas of the Nevada Test Site including Pahute Mesa, Rainier Mesa/Shoshone Mountain (RM-SM), Frenchman Flat, and Yucca Flat. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain (RM-SM) Corrective Action Unit (CAU) (National Security Technologies, 2007). During 2003, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO collected and processed data at the Nevada Test Site in and near Yucca Flat (YF) to help define the character, thickness, and lateral extent of the pre-Tertiary confining units. We collected 51 magnetotelluric (MT) and audio-magnetotelluric (AMT) stations for that research (Williams and others, 2005a, 2005b, 2005c, 2005d, 2005e, and 2005f). In early 2005 we extended that research with 26 additional MT data stations (Williams and others, 2006) located on and near Rainier Mesa and Shoshone Mountain (RM-SM). The new stations extended the area of the hydrogeologic study previously conducted in Yucca Flat, further refining what is known about the pre

  15. Test site experiments with a reconfigurable stepped frequency GPR

    Science.gov (United States)

    Persico, Raffaele; Matera, Loredana; Piro, Salvatore; Rizzo, Enzo; Capozzoli, Luigi

    2016-04-01

    In this contribution, some new possibilities offered by a reconfigurable stepped frequency GPR system are exposed. In particular, results achieved from a prototypal system achieved in two scientific test sites will be shown together with the results achieved in the same test sites with traditional systems. Moreover a novel technique for the rejection of undesired interferences is shown, with the use of interferences caused on purpose. Key words GPR, reconfigurable stepped frequency. Introduction A reconfigurable GPR system is meant as a GPR where some parameter can be changed vs. the frequency (if the system is stepped frequency) or vs. the time (if the system is pulsed) in a programmable way. The programming should then account for the conditions met in the scenario at hand [1]. Within the research project AITECH (http://www.aitechnet.com/ibam.html), the Institute for Archaeological and Monumental Heritage, together with the University of Florence and the IDS corporation have implemented a prototype, that has been used in sites of cultural interest in Italy [2], but also abroad in Norway and Malta. The system is a stepped frequency GPR working in the frequency range 50-1000 MHz, and its reconfigurability consists in three properties. The first one is the fact that the length of the antennas can be modulated by the aperture and closure of two electronic switches present along the arms of the antennas, so that the antennas can become electrically (and electronically) longer or shorter, so becoming more suitable to radiate some frequencies rather than some other. In particular, the system can radiate three different bands in the comprehensive range between 50-1000 MHz, so being suitable for different depth range of the buried targets, and the three bands are gathered in a unique "going through" because for each measurement point the system can sweep the entire frequency range trhee times, one for each configuration of the switchres on the arms. The second property is

  16. Environmental Survey preliminary report, Nevada Test Site, Mercury, Nevada

    International Nuclear Information System (INIS)

    1988-04-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Nevada Test Site (NTS), conducted June 22 through July 10, 1987. The Survey is being conducted by a multidisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the NTS. The Survey covers all environment media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations and activities performed at the NTS, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activities. The Sampling and Analysis Plan is being executed by the Battelle Columbus Division under contract with DOE. When completed, the results will be incorporated into the NTS Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the NTS Survey. 165 refs., 42 figs., 52 tabs

  17. Environmental Survey preliminary report, Nevada Test Site, Mercury, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    1988-04-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Nevada Test Site (NTS), conducted June 22 through July 10, 1987. The Survey is being conducted by a multidisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the NTS. The Survey covers all environment media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations and activities performed at the NTS, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activities. The Sampling and Analysis Plan is being executed by the Battelle Columbus Division under contract with DOE. When completed, the results will be incorporated into the NTS Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the NTS Survey. 165 refs., 42 figs., 52 tabs.

  18. Carbon storage as affected by different site preparation techniques two years after mixed forest stand installation

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, F.; Figueiredo, T. de; Martins, A.

    2014-06-01

    Aim of study: This study aims at evaluating the impact of site preparation techniques prior to plantation on carbon storage and distribution in a young mixed stand of Pseudotsuga menziesii (PM) and Castanea sativa (CS). Area of study: The experimental field was established near Macedo de Cavaleiros, Northern Portugal, at 700 m elevation, mean annual temperature 12 degree centigrade and mean annual rainfall 678 mm. Material and methods: The experimental layout includes three replicates, where the different treatments corresponding to different tillage intensities were randomly distributed (high, moderate and slight intensity), in plots with an area of 375 m{sup 2} each. Twenty six months after forest stand installation, samples of herbaceous vegetation (0.49 m{sup 2} quadrat), forest species (8 PM and 8 CS) and mineral soil (at 0-5, 5-15, 15-30 and 30-60 cm depth) were collected in 15 randomly selected points in each treatment, processed in laboratory and analyzed for carbon by elemental carbon analyzer. Main results: The results obtained showed that: (i) more than 90% of the total carbon stored in the system is located in the soil, increasing in depth with tillage intensity; (ii) the contribution of herbaceous vegetation and related roots to the carbon storage is very low; (iii) the amount of carbon per tree is higher in CS than in PM; (iv) the global carbon storage was affected by soil tillage generally decreasing with the increase of tillage intensity. Accordingly, carbon storage capacity as affected by the application of different site preparation techniques should be a decision support tool in afforestation schemes. (Author)

  19. Evaluation of Flygt Mixers for Application in Savannah River Site Tank 19. Test Results from Phase B: Mid-Scale Testing at PNNL

    International Nuclear Information System (INIS)

    Powell, M.R.; Combs, W.H.; Farmer, J.R.; Gladki, H.; Hatchell, B.K.; Johnson, M.A.; Poirier, M.R.; Rodwell, P.O.

    1999-01-01

    Pacific Northwest National Laboratory (PNNL) performed mixer tests using 3-kW (4-hp) Flygt mixers in 1.8- and 5.7-m-diameter tanks at the 336 building facility in Richland, Washington to evaluate candidate scaling relationships for Flygt mixers used for sludge mobilization and particle suspension. These tests constituted the second phase of a three-phase test program involving representatives from ITT Flygt Corporation, the Savannah River Site (SRS), the Oak Ridge National Laboratory (ORNL), and PNNL. The results of the first phase of tests, which were conducted at ITT Flygt's facility in a 0.45-m-diameter tank, are documented in Powell et al. (1999). Although some of the Phase B tests were geometrically similar to selected Phase A tests (0.45-m tank), none of the Phase B tests were geometrically, cinematically, and/or dynamically similar to the planned Tank 19 mixing system. Therefore, the mixing observed during the Phase B tests is not directly indicative of the mixing expected in Tank 19 and some extrapolation of the data is required to make predictions for Tank 19 mixing. Of particular concern is the size of the mixer propellers used for the 5.7-m tank tests. These propellers were more than three times larger than required by geometric scaling of the Tank 19 mixers. The implications of the lack of geometric similarity, as well as other factors that complicate interpretation of the test results, are discussed in Section 5.4

  20. Special Nuclear Material Portal Monitoring at the Nevada Test Site

    International Nuclear Information System (INIS)

    Mike Murphy

    2008-01-01

    In the past, acceptance and performance testing of the various Special Nuclear Material (SNM) monitoring devices at the Nevada Test Site has been performed by the Radiological Health Instrumentation Department. Calibration and performance tests on the PM-700 personnel portal monitor were performed but there was no test program for the VM-250 vehicle portal monitor because it had never been put into service. The handheld SNM monitors, the TSA model 470B, were being calibrated annually, but there was no program in place to test them quarterly. In April of 2007, the Material Control and Accountability (MC and A) Manager at the time decided that the program needed to be strengthened and MC and A took over performance testing of all SNM portal monitoring equipment. This paper will discuss the following activities associated with creating a performance testing program: changing the culture, learning the systems, writing procedures, troubleshooting/repairing, validating the process, control of equipment, acquisition of new systems, and running the program

  1. Immunological condition in population living near Semipalatinsk tests site

    International Nuclear Information System (INIS)

    Satow, Yukio; Ueda, Masafumi.

    1992-01-01

    This is the brief introduction of the immunological survey at Pavlodar, Kazakhstan SSR, a 300 km away from the Semipalatinsk test site, originally reported by Beysembaev E.A.,Valivach M.N. (Course of Clinical Immunology in Pavlodar Dzerzhynsky str., 166), Molochanov N.E. (Pavlodar Regional Hospital), Kazakav, V.M. (Radiologist Lab. of Regional Sanitary and Epidemiology Station), Ounusov B.A. and Osorodnikova O.P. (Clinical Immunology Centre in Pavlodar). The comparative investigations on (1) 150 preschool age children in Pavlodar before and 6 months after the cessation of nuclear tests, (2) 25 children suffering from frequent respiratory infections before the cessation and 25 analogous children after the cessation, and (3) 69 children (age 1 - 7) and 70 adults (age 28 - 58) inhabitants of Maysky district, where radioactivity is especially high, and 50 children and 50 adults of Pavlodar inhabitants, are reported. Erythrocyte rosette-forming cells, immunoglobulins G, A, and M, etc. are tested. (A.Y.)

  2. Nevada Test Site fallout in the area of Enterprise, Utah

    International Nuclear Information System (INIS)

    Krey, P.W.; Hardy, E.P.; Heit, M.

    1980-04-01

    The analysis of a sediment core from the Enterprise reservoir in southwestern Utah has provided a record of fallout in the area dating to 1945. Assming that all the 137 Cs fallout that occurred at Enterprise reservoir between 1951 and 1957 came exclusively from the Nevada tests, an upper limit of the integrated deposit from this source is 18 mCi/km 2 of 137 Cs decay corrected to 1979 out of a total of 101 measured in 1979. The maximum infinity dose from the external radiation caused by this Nevada Test Site fallout is estimated to be 1700 mrad. This maximum dose is only a factor of two higher than the cumulative estimated dose in Enterprise derived from the radiological surveys conducted after each test. This indicates that the region around Enterprise reservoir did not experience an intrusion of fallout from NTS greatly in excess of what had been deduced from the post-shot external radiation surveys

  3. Savannah River Site TEP-SET tests uncertainty report

    International Nuclear Information System (INIS)

    Taylor, D.J.N.

    1993-09-01

    This document presents a measurement uncertainty analysis for the instruments used for the Phase I, II and III of the Savannah River One-Fourth Linear Scale, One-Sixth Sector, Tank/Muff/Pump (TMP) Separate Effects Tests (SET) Experiment Series. The Idaho National Engineering Laboratory conducted the tests for the Savannah River Site (SRS). The tests represented a range of hydraulic conditions and geometries that bound anticipated Large Break Loss of Coolant Accidents in the SRS reactors. Important hydraulic phenomena were identified from experiments. In addition, code calculations will be benchmarked from these experiments. The experimental system includes the following measurement groups: coolant density; absolute and differential pressures; turbine flowmeters (liquid phase); thermal flowmeters (gas phase); ultrasonic liquid level meters; temperatures; pump torque; pump speed; moderator tank liquid inventory via a load cells measurement; and relative humidity meters. This document also analyzes data acquisition system including the presampling filters as it relates to these measurements

  4. Ecological survey for the siting of the Mixed and Low-Level Waste Disposal Facility

    International Nuclear Information System (INIS)

    Hoskinson, R.L.

    1994-05-01

    This report summarizes the results of field ecological surveys conducted by the Center for Integrated Environmental Technologies (CIET) on the Idaho National Engineering Lab. (INEL) at two candidate locations for the siting of the Mixed and Low-Level Waste Disposal Facility (MLLWDF). The purpose of these surveys was to comply with all Federal laws and Executive Orders to identify and evaluate any potential environmental impacts because of the project. The boundaries of the candidate locations were marked with blaze-orange lath survey marker stakes by the project management. Global Positioning in System (GPS) measurements of the marker stakes were made, and input to the Arc/Info geographic information system (GIS). Field surveys were conducted to assess any potential impact to any important species, important habitats, and to any environmental study areas. The GIS location data were overlayed onto the INEL vegetation map and an analysis of vegetation classes on the locations was done. Two species of rare vascular plants have previously been reported to occur in the vicinity of the candidate locations. Two C2 species, the ferruginous hawk (Buteo regalis) and the loggerhead shrike (Lanius ludovicianus) would also be expected to frequent the candidate locations. No significant ecological impact is anticipated if the MLLWDF were constructed on either candidate location. However, both candidate locations are in the central area of the INEL where there is minimal disturbance to the ecosystem by facilities or humans

  5. Closure report for Corrective Action Unit 211, Area 15 EPA Farm waste sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    This Closure Report summarizes the corrective actions which were completed at the Corrective Action Sites within Corrective Action Unit 211 Area 15 Farm Waste Sties at the Nevada Test Site. Current site descriptions, observations and identification of wastes removed are included on FFACO Corrective Action Site housekeeping closure verification forms

  6. Preliminary interpretation of thermal data from the Nevada Test Site

    International Nuclear Information System (INIS)

    Sass, J.H.; Lachenbruch, A.H.

    1982-01-01

    Analysis of data from 60 wells in and around the Nevada Test Site, including 16 in the Yucca Mountain area, indicates a thermal regime characterized by large vertical and lateral gradients in heat flow. Estimates of heat flow indicate considerable variation on both regional and local scales. The variations are attributable primarily to hydrologic processes involving interbasin flow with a vertical component of (seepage) velocity (volume flux) of a few mm/yr. Apart from indicating a general downward movement of water at a few mm/yr, the reults from Yucca Mountain are as yet inconclusive. The purpose of the study was to determine the suitability of the area for proposed repository sites

  7. Practical Implementation of Defect-Oriented Testing for a Mixed-Signal Class-D Amplifier

    NARCIS (Netherlands)

    Beurze, R.H.; Xing, Y; Xing, Y.; van Kleef, R.; Tangelder, R.J.W.T.; Engin, N.

    1999-01-01

    This paper describes the flow of defect-oriented testing from beginning to end, based on the industrial test development for a commercial mixed-signal class-D amplifier. A software tool called DOTSS (Defect-Oriented Test Simulation System) was used to perform the fault simulations. The greatest

  8. MISSED: an environment for mixed-signal microsystem testing and diagnosis

    NARCIS (Netherlands)

    Kerkhoff, Hans G.; Docherty, G.

    1993-01-01

    A tight link between design and test data is proposed for speeding up test-pattern generation and diagnosis during mixed-signal prototype verification. Test requirements are already incorporated at the behavioral level and specified with increased detail at lower hierarchical levels. A strict

  9. MISMATCH: A basis for semi-automatic functional mixed-signal test-pattern generation

    NARCIS (Netherlands)

    Kerkhoff, Hans G.; Tangelder, R.J.W.T.; Speek, Han; Engin, N.

    1996-01-01

    This paper describes a tool which assists the designer in the rapid generation of functional tests for mixed-signal circuits down to the actual test-signals for the tester. The tool is based on manipulating design data, making use of macro-based test libraries and tester resources provided by the

  10. Two-colour chewing gum mixing ability test for evaluating masticatory performance in children with mixed dentition: validity and reliability study.

    Science.gov (United States)

    Kaya, M S; Güçlü, B; Schimmel, M; Akyüz, S

    2017-11-01

    The unappealing taste of the chewing material and the time-consuming repetitive task in masticatory performance tests using artificial foodstuff may discourage children from performing natural chewing movements. Therefore, the aim was to determine the validity and reliability of a two-colour chewing gum mixing ability test for masticatory performance (MP) assessment in mixed dentition children. Masticatory performance was tested in two groups: systemically healthy fully dentate young adults and children in mixed dentition. Median particle size was assessed using a comminution test, and a two-colour chewing gum mixing ability test was applied for MP analysis. Validity was tested with Pearson correlation, and reliability was tested with intra-class correlation coefficient, Pearson correlation and Bland-Altman plots. Both comminution and two-colour chewing gum mixing ability tests revealed statistically significant MP differences between children (n = 25) and adults (n = 27, both P tests was positive and significant (r = 0·418, P = 0·002). Correlations for interobserver reliability and test-retest values were significant (r = 0·990, P = 0·0001 and r = 0·995, P = 0·0001). Although both methods could discriminate MP differences, the comminution test detected these differences generally in a wider range compared to two-colour chewing gum mixing ability test. However, considering the high reliability of the results, the two-colour chewing gum mixing ability test can be used to assess masticatory performance in children, especially at non-clinical settings. © 2017 John Wiley & Sons Ltd.

  11. Site investigation SFR. Water-rock interaction and mixing modelling in the SFR

    International Nuclear Information System (INIS)

    Gimeno, Maria J.; Auque, Luis F.; Gomez, Javier B.; Acero, Patricia

    2011-10-01

    the major geochemical processes controlling the behaviour of variables such as pH and Eh and, in general, all the parameters controlled by microbial or water-rock interaction processes. Thus, an integration of the mineralogical and microbiological data has also been performed. The other aim is to characterise the mixing processes that have affected the groundwaters over time. Thus, a statistical analysis has been performed with M3 in order to obtain a more quantitative approach to the mixing processes in the system, as well as to provide a mathematical basis to take into account all the variability of the system and to evaluate the reliability of the categorised groundwater types which are based on expert judgement (Nilsson et al. 2010). Therefore, this report should be considered as a supporting document to the final hydrogeochemical site description version 1.0 (Nilsson et al. 2011). Most of the main geochemical characters and trends observed in the SFR groundwaters are similar to those observed at Forsmark, especially if only groundwaters with marine contributions are compared. This applies to the carbonate, sulphate, silica and fluoride systems. No clear pH trend with depth has been found in these waters which may reflect the lateral heterogeneity of the groundwater system. The high and variable HCO 3 - values found in groundwaters with a marine signature seem to be the result of the biological activity during infiltration of marine waters through seabed sediments. Calcite equilibrium is the main pH controlling process, and its presence has been detected at all depths. Marine waters are the main source of sulphur, and neither heterogeneous reactions with sulphate minerals (undersaturated, in the case of gypsum or in equilibrium in the case of barite), nor sulphate reducing microbial activity have played an important role on the control of dissolved sulphate concentrations (conditioned, therefore, mainly by mixing). Dissolved silica and fluoride concentrations are

  12. Site investigation SFR. Water-rock interaction and mixing modelling in the SFR

    Energy Technology Data Exchange (ETDEWEB)

    Gimeno, Maria J.; Auque, Luis F.; Gomez, Javier B.; Acero, Patricia (University of Zaragoza (Spain))

    2011-10-15

    the major geochemical processes controlling the behaviour of variables such as pH and Eh and, in general, all the parameters controlled by microbial or water-rock interaction processes. Thus, an integration of the mineralogical and microbiological data has also been performed. The other aim is to characterise the mixing processes that have affected the groundwaters over time. Thus, a statistical analysis has been performed with M3 in order to obtain a more quantitative approach to the mixing processes in the system, as well as to provide a mathematical basis to take into account all the variability of the system and to evaluate the reliability of the categorised groundwater types which are based on expert judgement (Nilsson et al. 2010). Therefore, this report should be considered as a supporting document to the final hydrogeochemical site description version 1.0 (Nilsson et al. 2011). Most of the main geochemical characters and trends observed in the SFR groundwaters are similar to those observed at Forsmark, especially if only groundwaters with marine contributions are compared. This applies to the carbonate, sulphate, silica and fluoride systems. No clear pH trend with depth has been found in these waters which may reflect the lateral heterogeneity of the groundwater system. The high and variable HCO{sub 3}{sup -} values found in groundwaters with a marine signature seem to be the result of the biological activity during infiltration of marine waters through seabed sediments. Calcite equilibrium is the main pH controlling process, and its presence has been detected at all depths. Marine waters are the main source of sulphur, and neither heterogeneous reactions with sulphate minerals (undersaturated, in the case of gypsum or in equilibrium in the case of barite), nor sulphate reducing microbial activity have played an important role on the control of dissolved sulphate concentrations (conditioned, therefore, mainly by mixing). Dissolved silica and fluoride

  13. Ingestion of Nevada Test Site Fallout: Internal dose estimates

    International Nuclear Information System (INIS)

    Whicker, F.W.; Kirchner, T.B.; Anspaugh, L.R.

    1996-01-01

    This paper summarizes individual and collective dose estimates for the internal organs of hypothetical yet representative residents of selected communities that received measurable fallout from nuclear detonations at the Nevada Test Site. The doses, which resulted from ingestion of local and regional food products contaminated with over 20 radionuclides, were estimated with use of the PATHWAY food-chain-transport model to provide estimates of central tendency and uncertainty. The thyroid gland received much higher doses than other internal organs and tissues. In a avery few cases, infants might have received thyroid doses in excess of 1 Gy, depending on location, diet, and timing of fallout. 131 I was the primary thyroid dose contributor, and fresh milk was the main exposure pathway. With the exception of the thyroid, organ doses from the ingestion pathway were much smaller (<3%) than those from external gamma exposure to deposited fallout. Doses to residents living closest to the Nevada Test Site were contributed mainly by a few fallout events; doses to more distantly located people were generally smaller, but a greater number of events provided measurable contributions. The effectiveness of different fallout events in producing internal organ doses through ingestion varied dramatically with seasonal timing of the test, with maximum dose per unit fallout occurring for early summer depositions when milk cows were on pasture and fresh, local vegetables were used. Within specific communities, internal doses differed by age, sex, and lifestyle. Collective internal dose estimates for specific geographic areas are provided

  14. Site Guidelines for a Deep Borehole Field Test

    Science.gov (United States)

    Sassani, D.; Kuhlman, K. L.; Freeze, G. A.; MacKinnon, R. J.; Perry, F.

    2015-12-01

    The US DOE Office of Nuclear Energy Used Nuclear Fuel Disposition Campaign (UFDC) is initiating a Deep Borehole Field Test (DBFT), without use of any radioactive waste, to evaluate the geoscience of the approach and technical capabilities for implementation. DOE has identified Sandia National Laboratories (SNL) as the Technical Lead for the UFDC DBFT Project, with the role of supporting DOE in (i) developing the overall DBFT Project Plan, (ii) management and integration of all DBFT Project activities, and (iii) providing Project technical guidance to DOE, other DOE National Laboratories, and university partners. The DBFT includes drilling one Characterization Borehole (CB-8.5" diameter), followed by an optional Field Test Borehole (FTB), to a depth of about 5,000 m (16,400 feet) into crystalline basement rock in a geologically stable continental location. The DBFT CB will be drilled and completed to facilitate downhole scientific testing and analyses. If site conditions are found to be favorable, DOE may drill the larger-diameter (17") FTB to facilitate proof-of-concept of handling, emplacement, and retrieval activities using surrogate waste containers. Guidelines for favorable DBFT site geohydrochemical and geomechanical conditions will be discussed and status of the DBFT Project will be provided. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-6426A.

  15. Rooting Characteristics of Vegetation near Areas 3 and 5 Radioactive Waste Management Sites at the Nevada Test Site

    International Nuclear Information System (INIS)

    Dennis J. Hansen and W. Kent Ostler

    2003-01-01

    The U.S. Department of Energy emplaced high-specific-activity low-level radioactive wastes and limited quantities of classified transuranic wastes in Greater Confinement Disposal (GCD) boreholes from 1984 to 1989. The boreholes are located at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site (NTS) in southern Nevada. The boreholes were backfilled with native alluvium soil. The surface of these boreholes and trenches is expected to be colonized by native vegetation in the future. Considering the long-term performance of the disposal facilities, bioturbation (the disruption of buried wastes by biota) is considered a primary release mechanism for radionuclides disposed in GCD boreholes as well as trenches at both Areas 3 and 5 RWMSs. This report provides information about rooting characteristics of vegetation near Areas 3 and 5 RWMSs. Data from this report are being used to resolve uncertainties involving parameterization of performance assessment models used to characterize the biotic mixing of soils and radionuclide transport processes by biota. The objectives of this study were to: (1) survey the prior ecological literature on the NTS and identify pertinent information about the vegetation, (2) conduct limited field studies to describe the current vegetation in the vicinity of Areas 3 and 5 RWMSs so as to correlate findings with more extensive vegetation data collected at Yucca Mountain and the NTS, (3) review prior performance assessment documents and evaluate model assumptions based on current ecological information, and (4) identify data deficiencies and make recommendations for correcting such deficiencies

  16. Water-rock interaction modelling and uncertainties of mixing modelling. SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Gimeno, Maria J.; Auque, Luis F.; Gomez, Javier B.; Acero, Patricia (Univ. of Zaragoza, Zaragoza (Spain))

    2008-08-15

    in geochemistry, hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on 2.2 data and complementary 2.3 data, was carried out during September 2006 to December 2007. Several groups within ChemNet were involved and the evaluation was conducted independently using different approaches ranging from expert knowledge to geochemical and mathematical modelling including transport modelling. During regular ChemNet meetings the results have been presented and discussed. This report presents the modelling work performed by the University of Zaragoza group as part of the work planned for Forsmark during stages 2.2 and 2.3. The chemical characteristics of the groundwaters in the Forsmark and Laxemar areas are the result of a complex mixing process driven by the input of different recharge waters since the last glaciation. The successive penetration at different depths of dilute glacial melt-waters, Littorina Sea waters and dilute meteoric waters has triggered complex density and hydraulically driven flows that have mixed them with long residence time, highly saline waters present in the fractures and in the rock matrix. A general description of the main characteristics and processes controlling the hydrogeochemical evolution with depth in the Forsmark groundwater system is presented in this report: The hydrochemical characteristics and evolution of the Near surface waters (up to 20 m depth) is mainly determined by weathering reactions and especially affected by the presence of limestones. The biogenic CO{sub 2} input (derived from decay of organic matter and root respiration) and the associated weathering of carbonates control the pH and the concentrations of Ca and HCO{sub 3}- in the near-surface environment. Current seasonal variability of CO{sub 2} input produces variable but high calcium and bicarbonate contents in the Forsmark near-surface waters: up to 240 mg/L Ca and 150 to

  17. Water-rock interaction modelling and uncertainties of mixing modelling. SDM-Site Forsmark

    International Nuclear Information System (INIS)

    Gimeno, Maria J.; Auque, Luis F.; Gomez, Javier B.; Acero, Patricia

    2008-08-01

    geochemistry, hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on 2.2 data and complementary 2.3 data, was carried out during September 2006 to December 2007. Several groups within ChemNet were involved and the evaluation was conducted independently using different approaches ranging from expert knowledge to geochemical and mathematical modelling including transport modelling. During regular ChemNet meetings the results have been presented and discussed. This report presents the modelling work performed by the University of Zaragoza group as part of the work planned for Forsmark during stages 2.2 and 2.3. The chemical characteristics of the groundwaters in the Forsmark and Laxemar areas are the result of a complex mixing process driven by the input of different recharge waters since the last glaciation. The successive penetration at different depths of dilute glacial melt-waters, Littorina Sea waters and dilute meteoric waters has triggered complex density and hydraulically driven flows that have mixed them with long residence time, highly saline waters present in the fractures and in the rock matrix. A general description of the main characteristics and processes controlling the hydrogeochemical evolution with depth in the Forsmark groundwater system is presented in this report: The hydrochemical characteristics and evolution of the Near surface waters (up to 20 m depth) is mainly determined by weathering reactions and especially affected by the presence of limestones. The biogenic CO 2 input (derived from decay of organic matter and root respiration) and the associated weathering of carbonates control the pH and the concentrations of Ca and HCO 3 - in the near-surface environment. Current seasonal variability of CO 2 input produces variable but high calcium and bicarbonate contents in the Forsmark near-surface waters: up to 240 mg/L Ca and 150 to 900 mg/L HCO 3 - . These

  18. Environmental plutonium levels near the Nevada Test Site

    International Nuclear Information System (INIS)

    Bliss, W.A.; Jakubowski, F.M.

    1977-01-01

    The Environmental Monitoring and Support Laboratory-Las Vegas is engaged in a study to define the distribution of plutonium in the environment surrounding the Nevada Test Site (NTS). Extensive soil sampling has been conducted around the NTS, both to define areal distribution and to investigate local concentrating effects by natural phenomena. Additionally, air filters used in the off-NTS air surveillance network as well as those collected in special studies have been analyzed for plutonium to better define ambient levels and to investigate the possibility of resuspension. Results of these, as well as other studies related to defining the ambient plutonium levels around the NTS, are given in this report

  19. Cytogenetic Monitoring of Mammals of Semipalatinsk Test Site

    International Nuclear Information System (INIS)

    Zhapbasov, R.Zh.; Tusupbaev, V.I.; Karimbaeva, K.S.; Seisebaev, A.T.; Nurgalieva, K.G.; Chenal, C.

    1998-01-01

    The cytogenetic monitoring of the natural populations of mammals living under conditions of environment radioactive contamination is the simplest method to study the genetic consequences of nuclear tests. This work presents the preliminary results of the cytogenetic monitoring of the natural populations of rodents (Allactaga maior Kerr., Allactaga saltafor Eversm., Citellus erytrogenus Brandt) and domestic sheep (Ovis aries). The exposure of gonads is considered to be the most hazardous among the consequences of the chronic ionizing exposure since the exposure of gonads can cause not only somatic damages but also hereditary ones transferring to the farther generations, The genetic damage assessment of rodent reproductive cells was performed using the morphological test for abnormal form of the sperm head. It is generally accepted, that spermatogenesis disorders, which result in abnormal spermatozoa, are bound to the genetic disturbances during mitotic and meiotic division stages of male sex cells. The analysis of data obtained shows that the rodent males living on the radioactive contaminated sites (Balapan, Degelen) have the higher numbers of abnormal spermatozoa. So, the Allactaga maior taken from the sites with the gamma background of 250 μr/h showed the frequency of abnormal spermatozoa within 48.27 - 62.73 %. This value for the control animals from the gamma background of 11 - 16 μr/h did not exceed 5.8 %. The most objective and sensitive method for assessment of environmental contamination genetic consequences for the natural populations is to determine the damages of the cell genetic apparatus, e. g. the frequency of the visible changes in chromosome number and structure. The cytogenetic study of animals showed that the significant number of marrow cells of rodents and sheep living on the technical fields of the Test Site are the metaphase cells with polyploid (0.98 - 3.50 %) and aneuploidy (11.03 -19.72 %) chromosomal sets. There were also found the

  20. Closure Report for Corrective Action Unit 537: Waste Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 537 is identified in the ''Federal Facility Agreement and Consent Order'' (FFACO) of 1996 as Waste Sites. CAU 537 is located in Areas 3 and 19 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada, and consists of the following two Corrective Action Sites (CASs): CAS 03-23-06, Bucket; Yellow Tagged Bags; and CAS 19-19-01, Trash Pit. CAU 537 closure activities were conducted in April 2007 according to the FFACO and Revision 3 of the Sectored Clean-up Work Plan for Housekeeping Category Waste Sites (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2003). At CAS 03-23-06, closure activities included removal and disposal of a 15-foot (ft) by 15-ft by 8-ft tall wooden shed containing wood and metal debris and a 5-gallon plastic bucket containing deteriorated plastic bags with yellow radioactive contamination tape. The debris was transported to the Area 9 U10c Landfill for disposal after being screened for radiological contamination according to the ''NV/YMP Radiological Control Manual'' (NNSA/NSO, 2004). At CAS 19-19-01, closure activities included segregation, removal, and disposal of non-friable, non-regulated asbestos-containing material (ACM) and construction debris. The ACM was determined to be non-friable by waste characterization samples collected prior to closure activities. The ACM was removed and double-bagged by licensed, trained asbestos workers and transported to the Area 9 U10c Landfill for disposal. Construction debris was transported in end-dump trucks to the Area 9 U10c Landfill for disposal. Closure activities generated sanitary waste/construction debris and ACM. Waste generated during closure activities was appropriately managed and disposed. Waste characterization sample results are included as Appendix A of this report, and waste disposition documentation is included as Appendix B of this report. Copies of the Sectored Housekeeping Site Closure

  1. Evaluative Testing of 5LA3421: A Multicomponent Prehistoric and Historic Site, Pinon Canyon Maneuver Site, Las Animas County, Colorado

    National Research Council Canada - National Science Library

    Charles, Mona; Baker, Thann; Markussen, Christine; Nathan, Randy; Duke, Philip

    2004-01-01

    In the summer of 2002, evaluative testing was undertaken at a large multicomponent site for the purpose of evaluating the potential of this site to yield significant information about the prehistory...

  2. Flood Assessment Area 3 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2007-01-01

    A flood assessment was conducted at the Area 3 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) in Nye County, Nevada (Figure 1-1). The study area encompasses the watershed of Yucca Flat, a closed basin approximately 780 square kilometers (km2) (300 square miles) in size. The focus of this effort was on a drainage area of approximately 94 km2 (36 mi2), determined from review of topographic maps and aerial photographs to be the only part of the Yucca Flat watershed that could directly impact the Area 3 RWMS. This smaller area encompasses portions of the Halfpint Range, including Paiute Ridge, Jangle Ridge, Carbonate Ridge, Slanted Buttes, Cockeyed Ridge, and Banded Mountain. The Area 3 RWMS is located on coalescing alluvial fans emanating from this drainage area

  3. Flood Assessment Area 3 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2007-07-01

    A flood assessment was conducted at the Area 3 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) in Nye County, Nevada (Figure 1-1). The study area encompasses the watershed of Yucca Flat, a closed basin approximately 780 square kilometers (km2) (300 square miles) in size. The focus of this effort was on a drainage area of approximately 94 km2 (36 mi2), determined from review of topographic maps and aerial photographs to be the only part of the Yucca Flat watershed that could directly impact the Area 3 RWMS. This smaller area encompasses portions of the Halfpint Range, including Paiute Ridge, Jangle Ridge, Carbonate Ridge, Slanted Buttes, Cockeyed Ridge, and Banded Mountain. The Area 3 RWMS is located on coalescing alluvial fans emanating from this drainage area.

  4. HIV testing sites' communication about adolescent confidentiality: potential barriers and facilitators to testing.

    Science.gov (United States)

    Hyden, Christel; Allegrante, John P; Cohall, Alwyn T

    2014-03-01

    This study sought to evaluate HIV testing locations in New York City in terms of staff communication of confidentiality policies for adolescent clients. Using the New York State Directory of HIV Counseling and Testing Resources as a sampling frame, this study made telephone contact with 164 public HIV testing locations in New York City and used a semistructured interview to ask questions about confidentiality, parental permission, and parent access to test results. At 48% of locations, either HIV testing was not offered or we were unable to reach a staff member to ask questions about testing options and confidentiality. At the remaining sites, information provided regarding confidentiality, parental consent, and privacy of test results was correct only 69% to 85% of the time. Additionally, 23% of sites successfully contacted offered testing exclusively between 9:00 a.m. and 3:00 p.m. weekdays, when most adolescents are in school. Our findings point to a need for increased training and quality control at the clinical level to ensure that consumers in need of HIV testing are provided with accurate information and accessible services. Furthermore, these results highlight the need for more "patient-centric" sites with enhanced accessibility for potential clients, particularly youth.

  5. The 'Guetsch' Alpine wind power test site; Alpine Test Site Guetsch. Handbuch und Fachtagung

    Energy Technology Data Exchange (ETDEWEB)

    Cattin, R.

    2008-12-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at the influence of icing-up on the operation of wind turbines in mountainous areas. Within the Swiss research project 'Alpine Test Site Guetsch', extensive icing studies were carried out at the Guetsch site near Andermatt, Switzerland. This document deals with the following subjects: Information about ice formation on structures, in particular with respect to wind turbines, standards and international research activities, wind measurements under icing-up conditions, estimation of the frequency of icing-up conditions, effects of icing-up on wind turbines, ice detection, measures available for de-icing and anti-icing as well as ice throw. A list of factors to be taken into account by the planners and operators of wind turbines in alpine environments is presented.

  6. External exposure estimates for individuals near the Nevada Test Site

    International Nuclear Information System (INIS)

    Henderson, R.W.; Smale, R.F.

    1987-01-01

    Individuals living near the Nevada Test Site were exposed to both beta and gamma radiations from fission products and activation products resulting from the atmospheric testing of nuclear devices. These exposures were functions of the amount of material deposited, the time of arrival of the debris, and the amount of shielding afforded by structures. Results are presented for each of nine generic life styles. These are representative of the living patterns of the people residing in the area. For each event at each location for which data exist, a representative of each life style was closely followed for a period of thirty days. The results of these detailed calculations are then extrapolated to the present. 7 refs., 5 figs., 2 tabs

  7. Closure Strategy Nevada Test Site Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2007-03-01

    This paper presents an overview of the strategy for closure of part of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), which is about 65 miles northwest of Las Vegas, Nevada (Figure 1). The Area 5 RWMS is in the northern part of Frenchman Flat, approximately 14 miles north of Mercury. The Area 5 RWMS encompasses 732 acres subdivided into quadrants, and is bounded by a 1,000-foot (ft)-wide buffer zone. The northwest and southwest quadrants have not been developed. The northeast and southeast quadrants have been used for disposal of unclassified low-level radioactive waste (LLW) and indefinite storage of classified materials. This paper focuses on closure of the 38 waste disposal and classified material storage units within the southeast quadrant of the Area 5 RWMS, called the ''92-Acre Area''. The U.S Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is currently planning to close the 92-Acre Area by 2011. Closure planning for this site must take into account the regulatory requirements for a diversity of waste streams, disposal and storage configurations, disposal history, and site conditions. For ease of discussion, the 92-Acre Area has been subdivided into six closure units defined by waste type, location, and similarity in regulatory requirements. Each of the closure units contains one or more waste disposal units; waste disposal units are also called waste disposal cells. The paper provides a brief background of the Area 5 RWMS, identifies key closure issues for the 92-Acre Area, recommends actions to address the issues, and provides the National Security Technologies, LLC (NSTec), schedule for closure.

  8. Acid base characterization of the surface of mixed species of algae Spirulin by potentiometric titration and discrete site distribution model

    OpenAIRE

    Lima, Elizabete C. de; Masini, Jorge C.

    1999-01-01

    Acid base properties of mixed species of the microalgae Spirulina were studied by potentiometric titration in medium of 0.01 and 0.10 mols L-1 NaNO3 at 25.0±0.10 C using modified Gran functions or nonlinear regression techniques for data fitting. The discrete site distribution model was used, permitting the characterization of five classes of ionizable sites in both ionic media. This fact suggests that the chemical heterogeneity of the ionizable sites on the cell surface plays a major role on...

  9. Mixing Effects in Norway Spruce—European Beech Stands Are Modulated by Site Quality, Stand Age and Moisture Availability

    Directory of Open Access Journals (Sweden)

    Léa Houpert

    2018-02-01

    Full Text Available Although mixing tree species is considered an efficient risk-reduction strategy in the face of climate change, the conditions where mixtures are more productive than monocultures are under ongoing debate. Generalizations have been difficult because of the variety of methods used and due to contradictory findings regarding the effects of the species investigated, mixing proportions, and many site and stand conditions. Using data from 960 plots of the Swiss National Forest Inventory data, we assessed whether Picea abies (L. Karst–Fagus sylvatica L. mixed stands are more productive than pure stands, and whether the mixing effect depends on site- or stand-characteristics. The species proportions were estimated using species proportion by area, which depends on the maximum stand basal area of an unmanaged stand (BAmax. Four different alternatives were used to estimate BAmax and to investigate the effect of these differing alternatives on the estimated mixture effect. On average, the mixture had a negative effect on the growth of Picea abies. However, this effect decreased as moisture availability increased. Fagus sylvatica grew better in mixtures and this effect increased with site quality. A significant interaction between species proportions and quadratic mean diameter, a proxy for stand age, was found for both species: the older the stand, the better the growth of Fagus sylvatica and the lower the growth of Picea abies. Overyielding was predicted for 80% of the investigated sites. The alternative to estimate BAmax weakly modulated the estimated mixture effect, but it did not affect the way mixing effects changed with site characteristics.

  10. Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada & Kauai Test Facility, Hawaii.

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

    2005-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b).

  11. Geologic investigations of drill hole sloughing problems, Nevada Test Site

    International Nuclear Information System (INIS)

    Drellack, S.L. Jr.; Davies, W.J.; Gonzales, J.L.; Hawkins, W.L.

    1983-01-01

    Severe sloughing zones encountered while drilling large diameter emplacement holes in Yucca Flat, Nevada Test Site, have been identified, correlated and predicted through detailed geologic investigations. In central and southeastern Area 7 and in northern Area 3, the unstable zones are a very fine-grained, well-sorted, unconsolidated sand deposit, probably eolian in origin, which will readily flow into large diameter drill holes. Other areas exhibit hole erosion related to poor induration or extensive zeolitization of the Tertiary tuff units which are very friable and porous. By examining drill hole samples, geophysical logs, caliper logs and drilling histories, these problem zones can be characterized, correlated and then projected into nearby sites. Maps have been generated to show the depth, thickness and areal extent of these strata. In some cases, they are local and have a lenticular geometry, while in others they are quite extensive. The ability to predict such features can enhance the quality of the hole construction and completion operations to avoid costly delays and the loss of valuable testing real estate. The control of hole enlargements will also eliminate related containment concerns, such as stemming uncertainties

  12. Calcination/dissolution testing for Hanford Site tank wastes

    International Nuclear Information System (INIS)

    Colby, S.A.; Delegard, C.H.; McLaughlin, D.F.; Danielson, M.J.

    1994-07-01

    Thermal treatment by calcination offers several benefits for the treatment of Hanford Site tank wastes, including the destruction of organics and ferrocyanides and an hydroxide fusion that permits the bulk of the mostly soluble nonradioactive constituents to be easily separated from the insoluble transuranic residue. Critical design parameters were tested, including: (1) calciner equipment design, (2) hydroxide fusion chemistry, and (3) equipment corrosion. A 2 gal/minute pilot plant processed a simulated Tank 101-SY waste and produced a free flowing 700 C molten calcine with an average calciner retention time of 20 minutes and >95% organic, nitrate, and nitrite destruction. Laboratory experiments using actual radioactive tank waste and the simulated waste pilot experiments indicate that 98 wt% of the calcine produced is soluble in water, leaving an insoluble transuranic fraction. All of the Hanford Site tank wastes can benefit from calcination/dissolution processing, contingent upon blending various tank waste types to ensure a target of 70 wt% sodium hydroxide/nitrate/nitrite fluxing agent. Finally, corrosion testing indicates that a jacketed nickel liner cooled to below 400 C would corrode <2 mil/year (0.05 mm/year) from molten calcine attack

  13. Shaking-Table Tests for Immersed Tunnels at Different Sites

    Directory of Open Access Journals (Sweden)

    Xinjun Cheng

    2017-01-01

    Full Text Available Immersed tunnels are typically built in areas subjected to ground motion. Therefore, an evaluation of the seismic performance of the soil-tunnel system is essential. A series of shaking-table tests was conducted to study the influences of the site soil and overlying water layer on the seismic responses of soil deposits and an immersed tunnel. Detailed information on the experiment setup is provided with special focus on the similitude relationship, fabrication of the model system, measurement setup, and loading procedures for a simulation of the seismic waves. Three groups of tests at different sites in dry sand, saturated sand, and saturated sand with an overlying water layer were carried out using the same seismic excitations. The seismic responses of the soil deposits and the dynamic responses of the tunnel model were obtained. The experiment results indicate that, when considering only horizontal earthquake excitations, soil liquefaction significantly influences the propagation of seismic waves and the dynamic responses of the tunnel, whereas the water layer has no obvious effects on the dynamic performance of the ground or tunnel. Furthermore, the acceleration responses of the tunnel elements were analyzed qualitatively, and the joints are deemed important elements in an antiseismic immersed tunnel design.

  14. Laboratory and On-Site Tests for Rapid Runway Repair

    Directory of Open Access Journals (Sweden)

    Federico Leonelli

    2017-11-01

    Full Text Available The attention to rapid pavement repair has grown fast in recent decades: this topic is strategic for the airport management process for civil purposes and peacekeeping missions. This work presents the results of laboratory and on-site tests for rapid runway repair, in order to analyse and compare technical and mechanical performances of 12 different materials currently used in airport. The study focuses on site repairs, a technique adopted most frequently than repairs with modular elements. After describing mechanical and physical properties of the examined materials (2 bituminous emulsions, 5 cement mortars, 4 cold bituminous mixtures and 1 expanding resin, the study presents the results of carried out mechanical tests. The results demonstrate that the best performing material is a one-component fast setting and hardening cement mortar with graded aggregates. This material allows the runway reopening 6 h after the work. A cold bituminous mixture (bicomponent premixed cold asphalt with water as catalyst and the ordinary cement concrete allow the reopening to traffic after 18 h, but both ensure a lower service life (1000 coverages than the cement mortar (10,000 coverages. The obtained results include important information both laboratory level and field, and they could be used by airport management bodies and road agencies when scheduling and evaluating pavement repairs.

  15. Development and evaluation of a test program for Y-site compatibility testing of total parenteral nutrition and intravenous drugs.

    Science.gov (United States)

    Staven, Vigdis; Wang, Siri; Grønlie, Ingrid; Tho, Ingunn

    2016-03-22

    There is no standardized procedure or consensus to which tests should be performed to judge compatibility/incompatibility of intravenous drugs. The purpose of this study was to establish and evaluate a test program of methods suitable for detection of physical incompatibility in Y-site administration of total parenteral nutrition (TPN) and drugs. Eight frequently used methods (dynamic light scattering, laser diffraction, light obscuration, turbidimetry, zeta potential, light microscopy, pH-measurements and visual examination using Tyndall beams), were scrutinized to elucidate strengths and weaknesses for compatibility testing. The responses of the methods were tested with samples containing precipitation of calcium phosphate and with heat destabilized TPN emulsions. A selection of drugs (acyclovir, ampicillin, ondansetron and paracetamol) was mixed with 3-in-1 TPN admixtures (Olimel® N5E, Kabiven® and SmofKabiven®) to assess compatibility (i.e. potential precipitates and emulsion stability). The obtained compatibility data was interpreted according to theory and compared to existing compatibility literature to further check the validity of the methods. Light obscuration together with turbidimetry, visual inspection and pH-measurements were able to capture signs of precipitations. For the analysis of emulsion stability, light obscuration and estimation of percent droplets above 5 μm (PFAT5) seemed to be the most sensitive method; however laser diffraction and monitoring changes in pH might be a useful support. Samples should always be compared to unmixed controls to reveal changes induced by the mixing. General acceptance criteria are difficult to define, although some limits are suggested based on current experience. The experimental compatibility data was supported by scattered reports in literature, further confirming the suitability of the test program. However, conflicting data are common, which complicates the comparison to existing literature. Testing of

  16. Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste

    International Nuclear Information System (INIS)

    Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

    1997-05-01

    A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance

  17. Ice residual properties in mixed-phase clouds at the high-alpine Jungfraujoch site

    Science.gov (United States)

    Kupiszewski, Piotr; Zanatta, Marco; Mertes, Stephan; Vochezer, Paul; Lloyd, Gary; Schneider, Johannes; Schenk, Ludwig; Schnaiter, Martin; Baltensperger, Urs; Weingartner, Ernest; Gysel, Martin

    2016-10-01

    Ice residual (IR) and total aerosol properties were measured in mixed-phase clouds (MPCs) at the high-alpine Jungfraujoch research station. Black carbon (BC) content and coating thickness of BC-containing particles were determined using single-particle soot photometers. The ice activated fraction (IAF), derived from a comparison of IR and total aerosol particle size distributions, showed an enrichment of large particles in the IR, with an increase in the IAF from values on the order of 10-4 to 10-3 for 100 nm (diameter) particles to 0.2 to 0.3 for 1 μm (diameter) particles. Nonetheless, due to the high number fraction of submicrometer particles with respect to total particle number, IR size distributions were still dominated by the submicrometer aerosol. A comparison of simultaneously measured number size distributions of BC-free and BC-containing IR and total aerosol particles showed depletion of BC by number in the IR, suggesting that BC does not play a significant role in ice nucleation in MPCs at the Jungfraujoch. The potential anthropogenic climate impact of BC via the glaciation effect in MPCs is therefore likely to be negligible at this site and in environments with similar meteorological conditions and a similar aerosol population. The IAF of the BC-containing particles also increased with total particle size, in a similar manner as for the BC-free particles, but on a level 1 order of magnitude lower. Furthermore, BC-containing IR were found to have a thicker coating than the BC-containing total aerosol, suggesting the importance of atmospheric aging for ice nucleation.

  18. ESCAR, tests of superconducting bending magnets at the accelerator site

    International Nuclear Information System (INIS)

    Gilbert, W.S.; Lambertson, G.R.; Meuser, R.B.; Rechen, J.B.

    1979-03-01

    ESCAR (Experimental Superconducting Accelerator Ring) was conceived as a project in accelerator technology development which would provide data and experience to insure that planning for larger superconducting synchrotrons would proceed in a knowledgeable and responsible manner. It was to consist of the fabrication and operation of a relatively small proton synchrotron and storage ring with superconducting magnet elements for all of the main ring. The project was funded and design work began in July 1974. During the next two years it became increasingly apparent that the funding rate was directly limiting the rate of completion of ESCAR and that an intermediate goal, a test of the unconventional aspects of the project, was desirable. To that end, twelve dipole bending magnets, one-half of those required for the total ring, were installed at the site along with the 1500 watt helium refrigerator, cryogenic distribution system, electrical power supplies, vacuum systems, and necessary instrumentation. This truncated system was put through an extended series of tests which were completed in June 1978 at which time the ESCAR Project was terminated. ESCAR, and the dipole magnets have been described previously. The results of the systems tests have also been reported. The tests involving the dipole magnets are described

  19. Safeguards First Principles Initiative at the Nevada Test Site

    International Nuclear Information System (INIS)

    Johnson, Geneva

    2007-01-01

    The Material Control and Accountability (MC and A) program at the Nevada Test Site (NTS) was selected as a test bed for the Safeguards First Principles Initiative (SFPI). The implementation of the SFPI is evaluated using the system effectiveness model and the program is managed under an approved MC and A Plan. The effectiveness model consists of an evaluation of the critical elements necessary to detect, deter, and/or prevent the theft or diversion of Special Nuclear Material (SNM). The modeled results indicate that the MC and A program established under this variance is still effective, without creating unacceptable risk. Extensive performance testing is conducted through the duration of the pilot to ensure the protection system is effective and no material is at an unacceptable risk. The pilot was conducted from January 1, 2007, through May 30, 2007. This paper will discuss the following activities in association with SFPI: (1) Development of Timeline; (2) Crosswalk of DOE Order and SFPI; (3) Peer Review; (4) Deviation; (5) MC and A Plan and Procedure changes; (6) Changes implemented at NTS; (7) Training; and (8) Performance Test

  20. Environmental Monitoring Plan, Nevada Test Site and support facilities

    International Nuclear Information System (INIS)

    1991-11-01

    This Environmental Monitoring Plan applies to the US Department of Energy's (DOE's) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Field Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this Environmental Monitoring Plan brings together in one document a description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA). The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US. All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards

  1. Applied field test procedures on petroleum release sites

    International Nuclear Information System (INIS)

    Gilbert, G.; Nichols, L.

    1995-01-01

    The effective remediation of petroleum contaminated soils and ground water is a significant issue for Williams Pipe Line Co. (Williams): costing $6.8 million in 1994. It is in the best interest, then, for Williams to adopt approaches and apply technologies that will be both cost-effective and comply with regulations. Williams has found the use of soil vapor extraction (SVE) and air sparging (AS) field test procedures at the onset of a petroleum release investigation/remediation accomplish these goals. This paper focuses on the application of AS/SVE as the preferred technology to a specific type of remediation: refined petroleum products. In situ field tests are used prior to designing a full-scale remedial system to first validate or disprove initial assumptions on applicability of the technology. During the field test, remedial system design parameters are also collected to tailor the design and operation of a full-scale system to site specific conditions: minimizing cost and optimizing effectiveness. In situ field tests should be designed and operated to simulate as close as possible the operation of a full-scale remedial system. The procedures of an in situ field test will be presented. The results of numerous field tests and the associated costs will also be evaluated and compared to full-scale remedial systems and total project costs to demonstrate overall effectiveness. There are many advantages of As/SVE technologies over conventional fluid extraction or SVE systems alone. However, the primary advantage is the ability to simultaneously reduce volatile and biodegradable compound concentrations in the phreatic, capillary fringe, and unsaturated zones

  2. Hot-mix asphalt testing for the South African pavement design method

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2010-08-01

    Full Text Available of local and international hot-mix asphalt (HMA) test methods and modify or adapt them to suit South African road pavement conditions. This paper presents various laboratory HMA test protocols developed as part of the project to revise SAPDM. Large scale...

  3. Reactivity to patch tests with nickel sulfate and fragrance mix in infants

    DEFF Research Database (Denmark)

    Jøhnke, H; Norberg, L A; Vach, W

    2004-01-01

    The pattern of patch test reactivity to nickel sulfate and fragrance mix was studied with respect to patch test performance, reproducibility and clinical relevance in a population of unselected infants followed prospectively from birth to 18 months of age. TRUE Testtrade mark patches with nickel ...

  4. Mixed Waste Management Facility (MWMF) closure, Savannah River Plant: Clay cap test section construction report

    Energy Technology Data Exchange (ETDEWEB)

    1988-02-26

    This report contains appendices 3 through 6 for the Clay Cap Test Section Construction Report for the Mixed Waste Management Facility (MWMF) closure at the Savannah River Plant. The Clay Cap Test Program was conducted to evaluate the source, lab. permeability, in-situ permeability, and compaction characteristics, representative of kaolin clays from the Aiken, South Carolina vicinity. (KJD)

  5. Irradiation and examination results of the AC-3 mixed-carbide test

    International Nuclear Information System (INIS)

    Mason, R.E.; Hoth, C.W.; Stratton, R.W.; Botta, F.

    1992-01-01

    The AC-3 test was a cooperative Swiss/US irradiation test of mixed-carbide, (U,Pr)C, fuel pins in the Fast Flux Test Facility. The test included 25 Swiss-fabricated sphere-pac-type fuel pins and 66 U.S. fabricated pellet-type fuel pins. The test was designed to operate at prototypical fast reactor conditions to provide a direct comparison of the irradiation performance of the two fuel types. The test design and fuel fabrication processes used for the AC-3 test are presented

  6. Laser Doppler Flare Imaging and Quantitative Thermal Thresholds Testing Performance in Small and Mixed Fiber Neuropathies.

    Directory of Open Access Journals (Sweden)

    Alon Abraham

    Full Text Available Small fiber neuropathy might be a part of typical mixed small and large fiber neuropathy, or a distinct entity, affecting exclusively small nerve fibers.Explore the utility of small nerve fiber testing in patients with clinical presentation suggesting small fiber neuropathy, with and without evidence for concomitant large fiber neuropathy.Patients attending the neuromuscular clinic from 2012 to 2015 with a clinical presentation suggesting small nerve fiber impairment, who had Laser Doppler flare imaging (LDIFlare and quantitative thermal testing (QTT were evaluated for this study. Patients with clinical or electrophysiological evidence for concomitant large fiber neuropathy were not excluded.The sensitivities of LDIFlare, cooling and heat threshold testing were 64%, 36%, and 0% respectively for clinically highly suggestive small fiber neuropathy, 64%, 56%, and 19% respectively for mixed fiber neuropathy, and 86%, 79%, and 29% respectively for diabetic mixed fiber neuropathy.LDIFlare and cooling thresholds testing are non-invasive small nerve fiber testing modalities, with moderate performance in patients with small and mixed fiber neuropathy, and excellent performance in diabetic mixed fiber neuropathy.

  7. Site Characterization Data from the U3ax/bl Exploratory Boreholes at the Nevada Test Site

    International Nuclear Information System (INIS)

    2005-01-01

    This report provides qualitative analyses and preliminary interpretations of hydrogeologic data obtained from two 45-degree, slanted exploratory boreholes drilled within the Area 3 Radioactive Waste Management Site (RWMS) at the Nevada Test Site. Borehole UE-3bl-D1 was drilled beneath the U3ax/bl mixed waste disposal unit, and Borehole UE-3bl-U1 was drilled in undisturbed alluvium adjacent to the disposal unit. The U3ax/bl disposal unit is located within two conjoined subsidence craters, U3ax and U3bl, which were created by underground nuclear testing. Data from these boreholes were collected to support site characterization activities for the U3ax/bl disposal unit and the entire Area 3 RWMS. Site characterization at disposal units within the Area 3 RWMS must address the possibility that subsidence craters and associated disturbed alluvium of the chimneys beneath the craters might serve as pathways for contaminant migration. The two boreholes were drilled and sampled to compare hydrogeologic properties of alluvium below the waste disposal unit with those of adjacent undisturbed alluvium. Whether Borehole UE-3bl-D1 actually penetrated the chimney of the U3bl crater is uncertain. Analyses of core samples showed little difference in hydrogeologic properties between the two boreholes. Important findings of this study include the following: No hazardous or radioactive constituents of waste disposal concern were found in the samples obtained from either borehole. No significant differences in physical and hydrogeologic properties between boreholes is evident, and no evidence of significant trends with depth for any of these properties was observed. The values observed are typical of sandy materials. The alluvium is dry, with volumetric water content ranging from 5.6 to 16.2 percent. Both boreholes exhibit a slight increase in water content with depth, the only such trend observed. Water potential measurements on core samples from both boreholes show a large positive

  8. TC-13 Mod 0 and Mod 2 Steam Catapult Test Site

    Data.gov (United States)

    Federal Laboratory Consortium — Located on 11,000 feet of test runway, the TC-13 Mod 0 and Mod 2 Steam Catapult Test Site has in-ground catapults identical to those aboard carriers. This test site...

  9. Closure Report for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 536 is located in Area 3 of the Nevada Test Site. CAU 536 is listed in the Federal Facility Agreement and Consent Order of 1996 as Area 3 Release Site, and comprises a single Corrective Action Site (CAS): (sm b ullet) CAS 03-44-02, Steam Jenny Discharge The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CAS 03-44-02 is clean closure. Closure activities included removing and disposing of total petroleum hydrocarbon (TPH)- and polyaromatic hydrocarbon (PAH)-impacted soil, soil impacted with plutonium (Pu)-239, and concrete pad debris. CAU 536 was closed in accordance with the NDEP-approved CAU 536 Corrective Action Plan (CAP), with minor deviations as approved by NDEP. The closure activities specified in the CAP were based on the recommendations presented in the CAU 536 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2004). This Closure Report documents CAU 536 closure activities. During closure activities, approximately 1,000 cubic yards (yd3) of hydrocarbon waste in the form of TPH- and PAH-impacted soil and debris, approximately 8 yd3 of Pu-239-impacted soil, and approximately 100 yd3 of concrete debris were generated, managed, and disposed of appropriately. Additionally, a previously uncharacterized, buried drum was excavated, removed, and disposed of as hydrocarbon waste as a best management practice. Waste minimization techniques, such as the utilization of laboratory analysis to characterize and classify waste streams, were employed during the performance of closure

  10. Siting and constructing very deep monitoring wells on the US Department of Energy's Nevada Test Site

    International Nuclear Information System (INIS)

    Cullen, J.J.; Jacobson, R.L.; Russell, C.E.

    1991-01-01

    Many aspects of the Nevada Test Site's (NTS) hydrogeologic setting restrict the use of traditional methods for the siting and construction of ground-water characterization and monitoring wells. The size of the NTS precludes establishing high-density networks of characterization wells, as are typically used at smaller sites. The geologic complexity and variability of the NTS requires that the wells be criticality situated. The hydrogeologic complexity requires that each well provide access to many aquifers. Depths to ground water on the NTS require the construction of wells averaging approximately 1000 meters in depth. Wells meeting these criteria are uncommon in the ground-water industry, therefore techniques used by petroleum engineers are being employed to solve certain siting-, design- and installation-related problems. To date, one focus has been on developing completion strings that facilitate routine and efficient ground-water sampling from multiple intervals in a single well. The method currently advocated employs a new design of sliding side door sleeve that is actuated by an electrically operated hydraulic shifting tool. Stemming of the wells is being accomplished with standard materials (cement based grouts and sands); however, new stemming methods are being developed, to accommodate the greater depths, to minimize pH-related problems caused by the use of cements, to enhance the integrity of the inter-zone seals, and to improve the representativeness of radionuclide analyses performed on ground-water samples. Bench-scale experiments have been used to investigate the properties of more than a dozen epoxy-aggregate grout mixtures -- materials that are commonly used in underwater sealing applications

  11. Nevada Test Site Annual Site Environmental Report for Calendar Year - 1999

    International Nuclear Information System (INIS)

    Townsend, Y.E.; Grossman, R.F.

    2000-01-01

    Prior to 1989, annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the U.S. Department of Energy, Nevada Operations Office (DOE/NV). Results of the Offsite Radiological Surveillance and Long-Term Hydrological Monitoring programs conducted by the U.S. Environmental Protection Agency's (EPA's) Laboratory (various names) in Las Vegas, Nevada, were reported separately by that Agency. Beginning with the 1989 Annual Site Environmental Report for the NTS, these two documents were combined into a single report to provide a more comprehensive annual documentation of the environmental protection activities conducted for the nuclear testing program and other nuclear and non-nuclear operations at the NTS. The two agencies have coordinated preparation of this eleventh combined onsite and offsite report through sharing of information on environmental surveillance and releases as well as meteorological, hydrological, and other supporting data used in dose-estimation calculations

  12. Nevada Test Site Annual Site Environmental Report for Calendar Year - 1999

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, Y.E.; Grossman, R.F.

    2000-10-01

    Prior to 1989, annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the U.S. Department of Energy, Nevada Operations Office (DOE/NV). Results of the Offsite Radiological Surveillance and Long-Term Hydrological Monitoring programs conducted by the U.S. Environmental Protection Agency's (EPA's) Laboratory (various names) in Las Vegas, Nevada, were reported separately by that Agency. Beginning with the 1989 Annual Site Environmental Report for the NTS, these two documents were combined into a single report to provide a more comprehensive annual documentation of the environmental protection activities conducted for the nuclear testing program and other nuclear and non-nuclear operations at the NTS. The two agencies have coordinated preparation of this eleventh combined onsite and offsite report through sharing of information on environmental surveillance and releases as well as meteorological, hydrological, and other supporting data used in dose-estimation calculations.

  13. Nevada Test Site annual site environmental report for calendar year 1998

    Energy Technology Data Exchange (ETDEWEB)

    Black, S.C.; Townsend, Y.E.

    1999-10-01

    Prior to 1989, annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the US Department of Energy, Nevada Operations Office (DOE/NV). Results of the Offsite Radiological Surveillance and Long-Term Hydrological Monitoring Programs conducted by the US Environmental Protection Agency's (EPA) Laboratory (various names) in Las Vegas, Nevada, were reported separately by that Agency. Beginning with the 1989 Annual Site Environmental Report for the NTS, these two documents were combined into a single report to provide a more comprehensive annual documentation of the environmental protection activities conducted for the nuclear testing program and other nuclear and non-nuclear operations at the NTS. The two agencies have coordinated preparation of this tenth combined onsite and offsite report through sharing of information on environmental surveillance and releases as well as meteorological, hydrological, and other supporting data used in dose-estimation calculations.

  14. Nevada Test Site annual site environmental report for calendar year 1998

    International Nuclear Information System (INIS)

    Black, S.C.; Townsend, Y.E.

    1999-01-01

    Prior to 1989, annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the US Department of Energy, Nevada Operations Office (DOE/NV). Results of the Offsite Radiological Surveillance and Long-Term Hydrological Monitoring Programs conducted by the US Environmental Protection Agency's (EPA) Laboratory (various names) in Las Vegas, Nevada, were reported separately by that Agency. Beginning with the 1989 Annual Site Environmental Report for the NTS, these two documents were combined into a single report to provide a more comprehensive annual documentation of the environmental protection activities conducted for the nuclear testing program and other nuclear and non-nuclear operations at the NTS. The two agencies have coordinated preparation of this tenth combined onsite and offsite report through sharing of information on environmental surveillance and releases as well as meteorological, hydrological, and other supporting data used in dose-estimation calculations

  15. A detailed investigation on the global minimum structures of mixed rare-gas clusters: geometry, energetics, and site occupancy.

    Science.gov (United States)

    Marques, Jorge M C; Pereira, Francisco B

    2013-03-05

    We performed a global minimum search of mixed rare-gas clusters by applying an evolutionary algorithm (EA), which was recently proposed for binary atomic systems (Marques and Pereira, Chem. Phys. Lett. 2010, 485, 211). Before being applied to the potentials used in this work, the EA was further tested against results previously reported for the Ar(N)Xe(38-N) clusters and several new putative global minima were discovered. We employed either simple Lennard-Jones (LJ) potentials or more realistic functions to describe pair interactions in Ar(N)Kr(38-N), Ar(N)Xe(38-N), and Kr(N)Xe(38-N) clusters. The long-range tail of the pair-potentials shows some influence on the energetic features and shape of the structure of clusters. In turn, core-shell type structures are mostly observed for global minima of the binary rare-gas clusters, for both accurate and LJ potentials. However, the long-range tail of the potential may have influence on the type of atoms that segregate on the surface or form the core of the cluster. While relevant differences for the preferential site occupancy occur between the two potentials for Ar(N)Kr(38-N) (for N > 21), the type of atoms that segregate on the surface for Ar(N)Xe(38-N) and Kr(N)Xe(38-N) clusters is unaffected by the accuracy of the long-range part of the interaction in almost all cases. Moreover, the global minimum search for model-potentials in binary systems reveals that the surface-site occupancy is mainly determined by the combination of two parameters: the size ratio of the two types of particles forming the cluster and the minimum-energy ratio corresponding to the pair-interactions between unlike atoms. Copyright © 2012 Wiley Periodicals, Inc.

  16. Classification of groundwater at the Nevada Test Site

    International Nuclear Information System (INIS)

    Chapman, J.B.

    1994-08-01

    Groundwater occurring at the Nevada Test Site (NTS) has been classified according to the ''Guidelines for Ground-Water Classification Under the US Environmental Protection Agency (EPA) Ground-Water Protection Strategy'' (June 1988). All of the groundwater units at the NTS are Class II, groundwater currently (IIA) or potentially (IIB) a source of drinking water. The Classification Review Area (CRA) for the NTS is defined as the standard two-mile distance from the facility boundary recommended by EPA. The possibility of expanding the CRA was evaluated, but the two-mile distance encompasses the area expected to be impacted by contaminant transport during a 10-year period (EPA,s suggested limit), should a release occur. The CRA is very large as a consequence of the large size of the NTS and the decision to classify the entire site, not individual areas of activity. Because most activities are located many miles hydraulically upgradient of the NTS boundary, the CRA generally provides much more than the usual two-mile buffer required by EPA. The CRA is considered sufficiently large to allow confident determination of the use and value of groundwater and identification of potentially affected users. The size and complex hydrogeology of the NTS are inconsistent with the EPA guideline assumption of a high degree of hydrologic interconnection throughout the review area. To more realistically depict the site hydrogeology, the CRA is subdivided into eight groundwater units. Two main aquifer systems are recognized: the lower carbonate aquifer system and the Cenozoic aquifer system (consisting of aquifers in Quaternary valley fill and Tertiary volcanics). These aquifer systems are further divided geographically based on the location of low permeability boundaries

  17. Underground radionuclide migration at the Nevada Test Site

    International Nuclear Information System (INIS)

    Nimz, G.J.; Thompson, J.L.

    1992-11-01

    This document reviews results from a number of studies concerning underground migration of radionuclides from nuclear test cavities at the Nevada Test Site. Discussed are all cases known to the Department of Energy's Hydrology and Radionuclide Migration Program where radionuclides have been detected outside of the immediate vicinity of those nuclear test cavities that are identifiable as the source of the nuclides, as well as cases where radionuclides might have been expected and were intentionally sought but not found. There are nine locations where source identifiable radionuclide migration has been detected, one where migration was purposely induced by pumping, and three where migration might be expected but was not found. In five of the nine cases of non-induced migration, the inferred migration mechanism is prompt fracture injection during detonation. In the other four cases, the inferred migration mechanism is groundwater movement. In only a few of the reviewed cases can the actual migration mechanism be stated with confidence, and the attempt has been made to indicate the level of confidence for each case. References are cited where more information may be obtained. As an aid to future study, this document concludes with a brief discussion of the aspects of radionuclide migration that, as the present review indicates, are not yet understood. A course of action is suggested that would produce a better understanding of the phenomenon of radionuclide migration

  18. Source effects on surface waves from Nevada Test Site explosions

    International Nuclear Information System (INIS)

    Patton, H.J.; Vergino, E.S.

    1981-11-01

    Surface waves recorded on the Lawrence Livermore National Laboratory (LLNL) digital network have been used to study five underground nuclear explosions detonated in Yucca Valley at the Nevada Test Site. The purpose of this study is to characterize the reduced displacement potential (RDP) at low frequencies and to test secondary source models of underground explosions. The observations consist of Rayleigh- and Love-wave amplitude and phase spectra in the frequency range 0.03 to 0.16 Hz. We have found that Rayleigh-wave spectral amplitudes are modeled well by a RDP with little or no overshoot for explosions detonated in alluvium and tuff. On the basis of comparisons between observed and predicted source phase, the spall closure source proposed by Viecelli does not appear to be a significant source of Rayleigh waves that reach the far field. We tested two other secondary source models, the strike-slip, tectonic strain release model proposed by Toksoez and Kehrer and the dip-slip thrust model of Masse. The surface-wave observations do not provide sufficient information to discriminate between these models at the low F-values (0.2 to 0.8) obtained for these explosions. In the case of the strike-slip model, the principal stress axes inferred from the fault slip angle and strike angle are in good agreement with the regional tectonic stress field for all but one explosion, Nessel. The results of the Nessel explosion suggest a mechanism other than tectonic strain release

  19. Barometric pressure transient testing applications at the Nevada Test Site: formation permeability analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, J.M.

    1984-12-01

    The report evaluates previous investigations of the gas permeability of the rock surrounding emplacement holes at the Nevada Test Site. The discussion sets the framework from which the present uncertainty in gas permeability can be overcome. The usefulness of the barometric pressure testing method has been established. Flow models were used to evaluate barometric pressure transients taken at NTS holes U2fe, U19ac and U20ai. 31 refs., 103 figs., 18 tabs. (ACR)

  20. Barometric pressure transient testing applications at the Nevada Test Site: formation permeability analysis. Final report

    International Nuclear Information System (INIS)

    Hanson, J.M.

    1984-12-01

    The report evaluates previous investigations of the gas permeability of the rock surrounding emplacement holes at the Nevada Test Site. The discussion sets the framework from which the present uncertainty in gas permeability can be overcome. The usefulness of the barometric pressure testing method has been established. Flow models were used to evaluate barometric pressure transients taken at NTS holes U2fe, U19ac and U20ai. 31 refs., 103 figs., 18 tabs

  1. Soil microbiota of Area 13 of the Nevada Test Site

    International Nuclear Information System (INIS)

    Au, F.H.F.; Leavitt, V.D.

    1985-01-01

    The influence of two desert plants, Atriplex canescens and Eurotia lanata, on kind and abundance of soil microbiota was determined in soil samples collected from Area 13 of the Nevada Test Site. This study was part of a larger research program to elucidate the role of soil microorganisms on the biological availability and the mobility of soil-deposited plutonium. The fungi identified in the soil samples included Aspergillus, Penicillium, Rhizopus, Stachybotrys, stysanus, Circinella, Cheaetomium, and Fusarium. The numbers of bacteria and fungi were generally highest at the 2.5- to 5.0-cm soil depth at both the mound and the interspace sampling sites. The highest numbers of fungi were found around the mound. The relative abundance of Aspergillus increased with increasing distance from the plants, whereas that of Penicillium decreased. Dematiaceae and chaetomium, both cellulose decomposers, were highest in the 0- to 2.5-cm soil segment. The abundance and distribution of soil microorganisms capable of incorporating plutonium (and probably other radionuclides as well) around the plants investigated indicate that this may be a factor in the bioavailability and movement of plutonium in the edaphic system. 17 references, 1 figure, 27 tables

  2. Coda Spectral Peaking for Nevada Nuclear Test Site Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, K R; Mayeda, K; Walter, W R

    2007-09-10

    We have applied the regional S-wave coda calibration technique of Mayeda et al. (2003) to earthquake data in and around the Nevada Test Site (NTS) using 4 regional broadband stations from the LLNL seismic network. We applied the same path and site corrections to tamped nuclear explosion data and averaged the source spectra over the four stations. Narrowband coda amplitudes from the spectra were then regressed against inferred yield based on the regional m{sub b}(Pn) magnitude of Denny et al. (1987), along with the yield formulation of Vergino and Mensing (1990). We find the following: (1) The coda-derived spectra show a peak which is dependent upon emplacement depth, not event size; (2) Source size estimates are stable for the coda and show a dependence upon the near-source strength and gas porosity; (3) For explosions with the same m{sub b}(Pn) or inferred yield, those in weaker material have lower coda amplitudes at 1-3 Hz.

  3. 1997 annual site environmental report, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Culp, Todd; Duncan, Dianne (ed.); Forston, William; Sanchez, Rebecca (ed.)

    1998-08-01

    Sandia National Laboratories (SNL) operates the Tonopah Test Range for the Department of Energy's (DOE) Weapons Ordnance Program. Thes annual report (calendar year 1997) summarizes the compliance status to environmental regulations applicable at the site including those statutes that govern air and water quality, waste management, cleanup of contaminated areas, control of toxic substances, and adherence to requirements as related to the National Environmental Policy Act. In compliance with DOE orders, SNL also conducts environmental surveillance for radiological and nonradiological contaminants. SNL's responsibility for environmental surveillance extends only to those activities performed by SNL or under its direction. Annual radiological and nonradiological routine releases and unplanned releases (occurrences) are also summarized. This report has been prepared as required by DOE Order 5400.1, General Environmental Protection Program.

  4. Relative abundance of desert tortoises on the Nevada Test Site

    International Nuclear Information System (INIS)

    Rautenstrauch, K.R.; O'Farrell, T.P.

    1993-01-01

    Seven hundred fifty-nine transects having a total length of 1,191 km were walked during 1981--1986 to determine the distribution and relative abundance of desert tortoises (Gopherus agassizii) on the Nevada Test Site (NTS). The abundance of tortoises on NTS was low to very low relative to other populations in the Mojave Desert. Sign of tortoises was found from 880 to 1,570 m elevation and was more abundant above 1,200 m than has been reported previously for Nevada. Tortoises were more abundant on NTS on the upper alluvial fans and slopes of mountains than in valley bottoms. They also were more common on or near limestone and dolomite mountains than on mountains of volcanic origin

  5. Biodiversity Analysis of Vegetation on the Nevada Test Site

    International Nuclear Information System (INIS)

    W. K. Ostler; D. J. Hansen

    2001-01-01

    The Nevada Test Site (NTS) located in south central Nevada encompasses approximately 3,561 square kilometers and straddles two major North American deserts, Mojave and Great Basin. Transitional areas between the two desert types have been created by gradients in elevation, precipitation, temperature, and soils. From 1996-1998, more than 1,500 ecological landform units were sampled at the NTS for numerous biotic and abiotic parameters. These data provide a basis for spatial evaluations of biodiversity over landscape scales at the NTS. Species diversity maps (species richness vs. species abundance) have been produced. Differences in ecosystem diversity at the ecoregion, alliance, association, and ecological landform unit levels are presented. Spatial distribution maps of species presence and abundance provide evidence of where transition zones occur and the resulting impact on biodiversity. The influences of abiotic factors (elevation, soil, precipitation) and anthropogenic disturbance on biodiversity are assessed

  6. Biodiversity analysis of vegetation on the Nevada Test Site

    International Nuclear Information System (INIS)

    Ostler, W. K.; Hansen, D. J.

    2000-01-01

    The Nevada Test Site (NTS), located in south-central Nevada, encompasses approximately 3,500 square kilometers and straddles two major North American deserts, Mojave and Great Basin. Transitional areas between the two desert types have been created by gradients in elevation, precipitation, temperature, and soils. From 1996 to 1998, more than 1,500 ecological landform units were sampled at the NTS for numerous biotic and abiotic parameters. The data provide a basis for spatial evaluations of biodiversity over landscape scales at the NTS. Biodiversity maps (species richness vs. species abundance) have been produced. Differences in biodiversity among ecoregions and vegetation alliances are presented. Spatial distribution maps of species' presence and abundance provide evidence of where transition zones occur and the resulting impact on biodiversity. The influences of abiotic factors, such as elevation, soil, and precipitation, on biodiversity are assessed

  7. Correlation of alluvial deposits at the Nevada Test Site

    International Nuclear Information System (INIS)

    Grothaus, B.; Howard, N.

    1977-01-01

    Because characteristics of rock layers and problems in drilling must be studied before radioactive waste can be safely contained, an evaluation was made of methods for correlating alluvial deposits at Yucca Flat of the Nevada Test Site (NTS). Although correlation of Tertiary volcanic tuff beds at the NTS has been successfully achieved, correlation of stratigraphic zones in the overlying alluvium has posed technical difficulties. We have evaluated several methods for correlating alluvial deposits from drillholes, including electric resistivity logs (E logs), visual examination of sidewall samples and comparison of their carbonate (CO 2 ) content, downhole stereo photography for identifying debris flow deposits, caliche age-dating, and specific yield and permeability measurements of deposits. For predicting the thickness of zones having similar physical properties in the alluvium, E log measurements were found to be the most useful of these methods

  8. Nevada Test Site Experimental Farm: summary report 1963-1981

    International Nuclear Information System (INIS)

    Black, S.C.; Smith, D.D.

    1984-08-01

    This report summarizes the findings from experiments conducted at the Experimental Dairy Farm located on the Nevada Test Site. These experiments included the air-forage-cow-milk transport of the radioiodines, and the metabolism and milk transfer of other fission products and several actinides. Major studies are listed in chronological order from 1964 to 1978 and include the purpose, procedures, isotopes used, and findings for each such study. Animal exposures occurred from fallout, from artificial aerosol generation, and from oral or intravenous administration. A complete bibliography and references to published reports of the experiments are included. The findings from the radioisotope studies at the Experimental Dairy Farm and the results obtained from the Animal Investigation Program provide a rationale for making predictions and for planning protective actions that could be useful in emergency response to accidental contaminating events where fresh fission products are involved. 61 references

  9. 1996 Site environmental report Tonopah test range Tonopah, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Culp, T. [Sandia National Labs., Albuquerque, NM (United States); Forston, W. [Kirk-Mayer, Inc., Tonopah, NV (United States); Duncan, D. [ed.] [GRAM, Inc., Albuquerque, NM (United States); Sanchez, R. [Jobs Plus, Albuquerque, NM (United States)

    1997-08-01

    Sandia National Laboratories (SNL) operates the Tonopah Test Range (TTR) for the Department of Energy`s (DOE) Weapons Ordnance Program. This annual report (calendar year 1996) summarizes the compliance status to environmental regulations applicable at the site including those statutes that govern air and water quality, waste management, clean-up of contaminated areas, control of toxic substances, and adherence to requirements as related to the National Environmental Policy Act (NEPA). In compliance with DOE Orders, SNL also conducts environmental surveillance for radiological and nonradiological contaminants. SNL`s responsibility for environmentals surveillance for radiological and nonradiological contaminants. SNL`s responsibility for environmental surveillance extends only to those activities performed by SNL or under its direction. Annual radiological and nonradiological routine releases and unplanned releases (occurrences) are also summarized herein.

  10. Relative abundance of desert tortoises on the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Rautenstrauch, K.R.; O`Farrell, T.P.

    1993-12-31

    Seven hundred fifty-nine transects having a total length of 1,191 km were walked during 1981--1986 to determine the distribution and relative abundance of desert tortoises (Gopherus agassizii) on the Nevada Test Site (NTS). The abundance of tortoises on NTS was low to very low relative to other populations in the Mojave Desert. Sign of tortoises was found from 880 to 1,570 m elevation and was more abundant above 1,200 m than has been reported previously for Nevada. Tortoises were more abundant on NTS on the upper alluvial fans and slopes of mountains than in valley bottoms. They also were more common on or near limestone and dolomite mountains than on mountains of volcanic origin.

  11. 1996 Site environmental report Tonopah test range Tonopah, Nevada

    International Nuclear Information System (INIS)

    Culp, T.; Forston, W.; Duncan, D.

    1997-08-01

    Sandia National Laboratories (SNL) operates the Tonopah Test Range (TTR) for the Department of Energy's (DOE) Weapons Ordnance Program. This annual report (calendar year 1996) summarizes the compliance status to environmental regulations applicable at the site including those statutes that govern air and water quality, waste management, clean-up of contaminated areas, control of toxic substances, and adherence to requirements as related to the National Environmental Policy Act (NEPA). In compliance with DOE Orders, SNL also conducts environmental surveillance for radiological and nonradiological contaminants. SNL's responsibility for environmentals surveillance for radiological and nonradiological contaminants. SNL's responsibility for environmental surveillance extends only to those activities performed by SNL or under its direction. Annual radiological and nonradiological routine releases and unplanned releases (occurrences) are also summarized herein

  12. Biodiversity Analysis of Vegetation on the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    W. K. Ostler; D. J. Hansen

    2001-06-01

    The Nevada Test Site (NTS) located in south central Nevada encompasses approximately 3,561 square kilometers and straddles two major North American deserts, Mojave and Great Basin. Transitional areas between the two desert types have been created by gradients in elevation, precipitation, temperature, and soils. From 1996-1998, more than 1,500 ecological landform units were sampled at the NTS for numerous biotic and abiotic parameters. These data provide a basis for spatial evaluations of biodiversity over landscape scales at the NTS. Species diversity maps (species richness vs. species abundance) have been produced. Differences in ecosystem diversity at the ecoregion, alliance, association, and ecological landform unit levels are presented. Spatial distribution maps of species presence and abundance provide evidence of where transition zones occur and the resulting impact on biodiversity. The influences of abiotic factors (elevation, soil, precipitation) and anthropogenic disturbance on biodiversity are assessed.

  13. Environmental Monitoring Plan, Nevada Test Site and support facilities

    International Nuclear Information System (INIS)

    1991-11-01

    This Operational Area Monitoring Plan for environmental monitoring, is for EG ampersand G Energy Measurements, Inc. (EG ampersand G/EM) which operates several offsite facilities in support of activities at the Nevada Test Site (NTS). These facilities include: (1) Amador Valley Operations (AVO), Pleasanton, California; (2) Kirtland Operations (KO), Kirtland Air Force base, Albuquerque, New Mexico (KAFB); (3) Las Vegas Area Operations (LVAO), Remote Sensing Laboratory (RSL), and North Las Vegas (NLV) Complex at Nellis Air Force Base (NAFB), North Las Vegas, Nevada; (4) Los Alamos Operations (LAO), Los Alamos, New Mexico; (5) Santa Barbara Operations (SBO), Goleta, California; (6) Special Technologies Laboratory (STL), Santa Barbara, California; (7) Washington Aerial Measurements Department (WAMD), Andrews Air Force Base, Maryland; and, (8) Woburn Cathode Ray Tube Operations (WCO), Woburn, Massachusetts. Each of these facilities has an individual Operational Area Monitoring Plan, but they have been consolidated herein to reduce redundancy

  14. ERDA test facilities, East Mesa Test Site. Geothermal resource investigations, Imperial Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Detailed specifications which must be complied with in the construction of the ERDA Test Facilities at the East Mesa Site for geothermal resource investigations in Imperial Valley, California are presented for use by prospective bidders for the construction contract. The principle construction work includes a 700 gpm cooling tower with its associated supports and equipment, pipelines from wells, electrical equipment, and all earthwork. (LCL)

  15. Reactivity to patch tests with nickel sulfate and fragrance mix in infants

    DEFF Research Database (Denmark)

    Jøhnke, H; Norberg, L A; Vach, W

    2004-01-01

    The pattern of patch test reactivity to nickel sulfate and fragrance mix was studied with respect to patch test performance, reproducibility and clinical relevance in a population of unselected infants followed prospectively from birth to 18 months of age. TRUE Testtrade mark patches with nickel...... sulfate in 3 concentrations, 200, 66 and 22 microg/cm(2), and fragrance mix 430 microg/cm(2) were used. A likely case of nickel sensitivity was defined as a reproducible positive reaction with at least homogeneous erythema and palpable infiltration occurring at least 2x and present at both the 12 and 18...... sensitivity was found in only 1 child. No reproducible positive reaction to fragrance mix was found. The high proportion of transient patch test reactivity to nickel sulfate 200 microg/cm(2) indicates that this standard concentration used for adults cannot be applied to infants. The interpretation of a single...

  16. Proposed mixed-mode dynamic fracture toughness testing method using a new specimen

    Energy Technology Data Exchange (ETDEWEB)

    Wada, H.; Hinoshita, A. [Daido Institute of Technology, Nagoya (Japan); Calder, C.A.; Kennedy, T.C. [Oregon State Univ., Corvallis, OR (United States)

    1996-12-31

    To find a simple and highly accurate testing method for determining the mixed-mode dynamic fracture toughness in a wide range of ratio of opening and sliding modes, the authors applied a combination technique using an electrical resistance strain gage method and a dynamic finite element method (FEM) to determine the mixed-mode dynamic fracture toughness. They used measuring and recording devices associated with an impact fracture apparatus based on an air gun. The impact fracture test was conducted to assess the mixed-mode dynamic fracture toughness testing method under single-point bending for three specimens of polymethyl methacrylate (PMMA). The ratio of the opening mode deformation to the sliding mode can be changed by adjusting the hitting point. To measure a dynamic stress intensity factors (SIF) K{sub 1}(t) and a crack initiation time, a single axis strain gage was mounted in the vicinity of the crack tip.

  17. Closure Report for Corrective Action Unit 121: Storage Tanks and Miscellaneous Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2008-09-01

    Corrective Action Unit (CAU) 121 is identified in the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended February 2008) as Storage Tanks and Miscellaneous Sites. CAU 121 consists of the following three Corrective Action Sites (CASs) located in Area 12 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada: (1) CAS 12-01-01, Aboveground Storage Tank; (2) CAS 12-01-02, Aboveground Storage Tank; and (3) CAS 12-22-26, Drums; 2 AST's. CAU 121 closure activities were conducted according to the FFACO and the Streamlined Approach for Environmental Restoration Plan for CAU 121 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007). Field work took place from February through September 2008. Samples were collected to determine the path forward to close each site. Closure activities were completed as defined in the plan based on sample analytical results and site conditions. No contaminants of concern (COCs) were present at CAS 12-01-01; therefore, no further action was chosen as the corrective action alternative. As a best management practice (BMP), the empty aboveground storage tank (AST) was removed and disposed as sanitary waste. At CAS 12-01-02, polychlorinated biphenyls (PCBs) were present above the preliminary action level (PAL) in the soil beneath the AST that could possibly have originated from the AST contents. Therefore, PCBs were considered COCs, and the site was clean closed by excavating and disposing of soil containing PCBs. Approximately 5 cubic yards (yd{sup 3}) of soil were excavated and disposed as petroleum hydrocarbon PCB remediation waste, and approximately 13 yd3 of soil were excavated and disposed as PCB remediation waste. Cleanup samples were collected to confirm that the remaining soil did not contain PCBs above the PAL. Other compounds detected in the soil above PALs (i.e., total petroleum hydrocarbons [TPH] and semi-volatile organic compounds [SVOCs

  18. Environmental assessment for liquid waste treatment at the Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This environmental assessment (EA) examines the potential impacts to the environment from treatment of low-level radioactive liquid and low-level mixed liquid and semi-solid wastes generated at the Nevada Test Site (NTS). The potential impacts of the proposed action and alternative actions are discussed herein in accordance with the National Environmental Policy Act (NEPA) of 1969, as amended in Title 42 U.S.C. (4321), and the US Department of Energy (DOE) policies and procedures set forth in Title 10 Code of Federal Regulations (CFR) Part 1021 and DOE Order 451.1, ``NEPA Compliance Program.`` The potential environmental impacts of the proposed action, construction and operation of a centralized liquid waste treatment facility, were addressed in the Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada. However, DOE is reevaluating the need for a centralized facility and is considering other alternative treatment options. This EA retains a centralized treatment facility as the proposed action but also considers other feasible alternatives.

  19. Environmental assessment for liquid waste treatment at the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1997-01-01

    This environmental assessment (EA) examines the potential impacts to the environment from treatment of low-level radioactive liquid and low-level mixed liquid and semi-solid wastes generated at the Nevada Test Site (NTS). The potential impacts of the proposed action and alternative actions are discussed herein in accordance with the National Environmental Policy Act (NEPA) of 1969, as amended in Title 42 U.S.C. (4321), and the US Department of Energy (DOE) policies and procedures set forth in Title 10 Code of Federal Regulations (CFR) Part 1021 and DOE Order 451.1, ''NEPA Compliance Program.'' The potential environmental impacts of the proposed action, construction and operation of a centralized liquid waste treatment facility, were addressed in the Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada. However, DOE is reevaluating the need for a centralized facility and is considering other alternative treatment options. This EA retains a centralized treatment facility as the proposed action but also considers other feasible alternatives

  20. Near-field modeling in Frenchman Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Pohlmann, K.; Shirley, C.; Andricevic, R.

    1996-12-01

    The US Department of Energy (DOE) is investigating the effects of nuclear testing in underground test areas (the UGTA program) at the Nevada Test Site. The principal focus of the UGTA program is to better understand and define subsurface radionuclide migration. The study described in this report focuses on the development of tools for generating maps of hydrogeologic characteristics of subsurface Tertiary volcanic units at the Frenchman Flat corrective Action Unit (CAU). The process includes three steps. The first step involves generation of three-dimensional maps of the geologic structure of subsurface volcanic units using geophysical logs to distinguish between two classes: densely welded tuff and nonwelded tuff. The second step generates three-dimensional maps of hydraulic conductivity utilizing the spatial distribution of the two geologic classes obtained in the first step. Each class is described by a correlation structure based on existing data on hydraulic conductivity, and conditioned on the generated spatial location of each class. The final step demonstrates the use of the maps of hydraulic conductivity for modeling groundwater flow and radionuclide transport in volcanic tuffs from an underground nuclear test at the Frenchman Flat CAU. The results indicate that the majority of groundwater flow through the volcanic section occurs through zones of densely welded tuff where connected fractures provide the transport pathway. Migration rates range between near zero to approximately four m/yr, with a mean rate of 0.68 m/yr. This report presents the results of work under the FY96 Near-Field Modeling task of the UGTA program

  1. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site, Fiscal Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    DOE/NNSA NSO

    2007-01-01

    In February 1997, the U.S. Department of Energy, Nevada Operations Office issued the Mitigation Action Plan which addressed potential impacts described in the “Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada” (DOE/EIS 0243). The U.S. Department of Energy, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Sites (RWMS) at Area 3 and Area 5. This document satisfies requirements with regard to low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during fiscal year (FY) 2006.

  2. Annual Report - FY 2001, Radioactive Waste Shipments To and From the Nevada Test Site (NTIS), February 2002

    International Nuclear Information System (INIS)

    U.S. Department of Energy, National Nuclear Security Administration, Nevada Operations Office

    2002-01-01

    In February 1997, the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office (NNSA/NV) issued the Mitigation Action Plan which addressed potential impacts described in the ''Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada'' (DOE/EIS 0243). NNSA/NV committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Sites (RWMSs) at Area 3 and Area 5. This document satisfies requirements with regard to low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during fiscal year (FY 2001)

  3. Methods for Quantifying the Uncertainties of LSIT Test Parameters, Test Results, and Full-Scale Mixing Performance Using Models Developed from Scaled Test Data

    International Nuclear Information System (INIS)

    Piepel, Gregory F.; Cooley, Scott K.; Kuhn, William L.; Rector, David R.; Heredia-Langner, Alejandro

    2015-01-01

    This report discusses the statistical methods for quantifying uncertainties in 1) test responses and other parameters in the Large Scale Integrated Testing (LSIT), and 2) estimates of coefficients and predictions of mixing performance from models that relate test responses to test parameters. Testing at a larger scale has been committed to by Bechtel National, Inc. and the U.S. Department of Energy (DOE) to ''address uncertainties and increase confidence in the projected, full-scale mixing performance and operations'' in the Waste Treatment and Immobilization Plant (WTP).

  4. Methods for Quantifying the Uncertainties of LSIT Test Parameters, Test Results, and Full-Scale Mixing Performance Using Models Developed from Scaled Test Data

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cooley, Scott K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kuhn, William L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rector, David R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Heredia-Langner, Alejandro [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-01

    This report discusses the statistical methods for quantifying uncertainties in 1) test responses and other parameters in the Large Scale Integrated Testing (LSIT), and 2) estimates of coefficients and predictions of mixing performance from models that relate test responses to test parameters. Testing at a larger scale has been committed to by Bechtel National, Inc. and the U.S. Department of Energy (DOE) to “address uncertainties and increase confidence in the projected, full-scale mixing performance and operations” in the Waste Treatment and Immobilization Plant (WTP).

  5. Environmental Assessment for the LGF Spill Test Facility at Frenchman Flat, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Patton, S.E.; Novo, M.G.; Shinn, J.H.

    1986-04-01

    The LGF Spill Test Facility at Frenchman Flat, Nevada Test Site, is being constructed by the United States Department of Energy (DOE). In this Environmental Assessment, environmental consequences of spilling hazardous materials in the Frenchman Flat basin are evaluated and mitigations and recommendations are stated in order to protect natural resources and reduce land-use impacts. Guidelines and restrictions concerning spill-test procedures will be determined by the LGF Test Facility Operations Manager and DOE based on toxicity documentation for the test material, provided by the user, and mitigations imposed by the Environmental Assessment. In addition to Spill Test Facility operational procedures, certain assumptions have been made in preparation of this document: no materials will be considered for testing that have cumulative, long-term persistence in the environment; spill tests will consist of releases of 15 min or less; and sufficient time will be allowed between tests for recovery of natural resources. Geographic limits to downwind concentrations of spill materials were primarily determined from meteorological data, human occupational exposure standards to hazardous materials and previous spill tests. These limits were established using maximum spill scenarios and environmental impacts are discussed as worst case scenarios; however, spill-test series will begin with smaller spills, gradually increasing in size after the impacts of the initial tests have been evaluated.

  6. Environmental Assessment for the LGF Spill Test Facility at Frenchman Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Patton, S.E.; Novo, M.G.; Shinn, J.H.

    1986-04-01

    The LGF Spill Test Facility at Frenchman Flat, Nevada Test Site, is being constructed by the United States Department of Energy (DOE). In this Environmental Assessment, environmental consequences of spilling hazardous materials in the Frenchman Flat basin are evaluated and mitigations and recommendations are stated in order to protect natural resources and reduce land-use impacts. Guidelines and restrictions concerning spill-test procedures will be determined by the LGF Test Facility Operations Manager and DOE based on toxicity documentation for the test material, provided by the user, and mitigations imposed by the Environmental Assessment. In addition to Spill Test Facility operational procedures, certain assumptions have been made in preparation of this document: no materials will be considered for testing that have cumulative, long-term persistence in the environment; spill tests will consist of releases of 15 min or less; and sufficient time will be allowed between tests for recovery of natural resources. Geographic limits to downwind concentrations of spill materials were primarily determined from meteorological data, human occupational exposure standards to hazardous materials and previous spill tests. These limits were established using maximum spill scenarios and environmental impacts are discussed as worst case scenarios; however, spill-test series will begin with smaller spills, gradually increasing in size after the impacts of the initial tests have been evaluated

  7. Social Networking Sites as Virtual Communities of Practice: A Mixed Method Study

    Science.gov (United States)

    Davis, Lorretta J.

    2010-01-01

    Membership in social networking sites is increasing rapidly. Social networking sites serve many purposes including networking, communication, recruitment, and sharing knowledge. Social networking sites, public or private, may be hosted on applications such as Facebook and LinkedIn. As individuals begin to follow and participate in social…

  8. How can male rates of HIV testing be increased? Recommendations from a mixed methods study in southern Malawi.

    Science.gov (United States)

    Rankin-Williams, Amy C; Geoffroy, Elizabeth M; Schell, Ellen S; Mguntha, Andrew M

    2017-11-01

    In southern Malawi, 12.8% of adults are HIV positive. Men are less likely to have been tested than women. We investigated men's HIV knowledge and the attitudes, influencers, facilitators and barriers affecting HIV testing. We conducted an explanatory mixed-methods study with analysis of secondary quantitative data from 425 rural men collected in January 2014 (time 1) and April 2015 (time 2) and qualitative interviews with 50 men in September 2015. All respondents lived in villages receiving HIV education and testing. Quantitative data revealed that comprehensive HIV knowledge increased and was associated with having been tested by time 2. Educational level was positively associated with having been tested. Men's reasons for not getting tested were fear of learning their HIV status, fear of rejection by partners and wives and fear of discrimination. Wives influenced men's opinions about healthcare. The qualitative results demonstrated that men feared being seen at test sites and feared discrimination. Wives had the greatest reported influence on male testing. Men perceived services as female-oriented and stigmatizing. They preferred door-to-door testing. Providers can improve uptake by increasing men's HIV knowledge, leveraging the influence of spouses and offering door-to-door testing with male health workers. © The Author(s) 2017. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Land surface cleanup of plutonium at the Nevada Test Site

    International Nuclear Information System (INIS)

    Ebeling, L.L.; Evans, R.B.; Walsh, E.J.

    1991-01-01

    The Nevada Test Site (NTS) covers approximately 3300 km 2 of high desert and is located approximately 100 km northwest of Las Vegas, Nevada. Soil contaminated by plutonium exists on the NTS and surrounding areas from safety tests conducted in the 1950s and 1960s. About 150 curies of contamination have been measured over 1200 hectares of land surface. Most contamination is found in the top 5 cm of soil but may be found deep as 25 cm. The cost of conventional removal and disposal of the full soil volume has been estimated at over $500,000,000. This study is directed toward minimizing the volume of waste which must be further processed and disposed of by precisely controlling soil removal depth. The following soil removal machines were demonstrated at the NTS: (1) a CMI Corporation Model PR-500FL pavement profiler, (2) a CMI Corporation Model Tr-225B trimmer reclaimer, (3) a Caterpillar Model 623 elevating scraper equipped with laser depth control, (4) a Caterpillar Model 14G motor grader equipped with laser depth control, (5) a Caterpillar Model 637 auger scraper, and (6) a XCR Series Guzzler vacuum truck. 5 refs., 5 figs

  10. Nevada Test Site experience with greater confinement disposal

    International Nuclear Information System (INIS)

    Dickman, P.T.; Boland, J.R.

    1987-01-01

    In 1980, the Nevada Test Site (NTS) began a project to develop an improved disposal method for high specific activity (HSA) low-level wastes (LLW), e.g. tritium wastes. Past experience with the shallow land burial (SLB) of tritium wastes showed detectable concentrations appearing at trench surfaces. In 1981, the Greater Confinement Disposal Test (GCDT) was initiated to demonstrate the disposal of HSA wastes considered unsuitable for SLB. The project had two specific goals: (1) develop and demonstrate the operational technology for use of large-diameter boreholes for greater confinement disposal (GCD), and (2) conduct research necessary to quantify the effective improvement provided by GCD over SLB. While the long-term impacts may be insignificant for short-lived nuclides, the operational impacts may be a major limiting factor. For example, under 10 CFR 61 up to 700 Ci/m 3 of cobalt-60 may be disposed in SLB as Class A wastes; however, an unshielded waste package containing this amount of cobalt-60 would have an external radiation level of over 5000 R/h making it impossible to dispose of without use of a remote handling systems. In developing the GCDT, the authors decided that greater confinement disposal was not to be strictly limited to a category of wastes between low- and high-level, but a variety of problem wastes that could not, or should not, be disposed of by conventional SLB methods. The paper discusses NTS waste disposal history, hazards reduction, and waste management philosophy. 3 tables

  11. On site inspection for nuclear test ban verirication

    Directory of Open Access Journals (Sweden)

    P. D. Marschall

    1994-06-01

    Full Text Available The problem of verifying compliance with a nuclear test ban treaty is mainly a technical one. However the problem of detecting, locating and identifying nuclear explosions has, since the late 1950s, been intimately involved with the political problems associated with negotiating a treaty. In fact there are few other areas in which policy, diplomacy and science have been so interwoven. This paper attempts to illustrate how technology can. be applied to solve some of the political problems which arise when considering the role of an On Site Inspection (OSI to determine whether or not a nuclear explosion, in violation of a treaty, has occurred or not. It is hoped that the reader, with a scientific background, but with little or no experience of treaty negotiations, will gain an. insight as to how technical matters can interact with political requirements. The demands made on scientists to provide technical support for negotiating and rnonitoring compliance of a treaty have increased significanfly over the last 40 years. This is a period in which a number of major treaties have contained a significant technical component e.g. the Limited Test Ban Treaty (Threshold Treaty and the Chemical Weapon Convention. This paper gives an indication of some of the political decisions which will have to be made and suggests some of the technical methods which are of value in the identification of a clandestine nuclear explosion.

  12. Determination of mixing quality in biogas plant digesters using tracer tests and computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    Luděk Kamarád

    2013-01-01

    Full Text Available The total electricity demand of investigated biogas plants (BGP makes up 7–8 % of the total electricity produced. Nearly 40 % of this energy is consumed just for mixing in digesters and the energy demand for mixing in some biogas plants can be even higher. Therefore, optimal mixing in anaerobic digesters is a basic condition for efficient plant operation and biogas production. The use of problematic substrates (e.g. grass silage or other fibrous substrates, installation of unsuitable mixing systems or inconvenient mixing intervals may lead to mixing problems. Knowledge about mixing in biogas digesters is still insufficient, so the objective of this study was to fill the information gaps in the literature by determining the minimal retention time of substrates fed into anaerobic digesters and to describe substrate distribution and washing out rates from investigated digesters. Two full-scale biogas plant digesters (2000 m3 and 1500 m3 using different mixing systems and substrates were investigated. To characterize the substrate distribution, lithium hydroxide monohydrate solutions were used for tracer tests at concentrations of 47.1 mg Li+ / kg TS and 46.6 mg Li+ / kg TS in digester. The tracer concentration in the digester effluents was measured during two hydraulic retention times and compared. Although the tracer was detected in the digester effluent at nearly the same time in both cases, the tracer tests showed very different distribution curves. The tracer concentration in effluent B grew much slower than in effluent A and no significant short circuiting streams were detected. Although the data calculated by computational fluid dynamics methods (CFD showed a very good agreement with the full scale results, full comparison was not possible.

  13. Patch testing with a new fragrance mix detects additional patients sensitive to perfumes and missed by the current fragrance mix

    DEFF Research Database (Denmark)

    Frosch, Peter J; Pirker, Claudia; Rastogi, Suresh C

    2005-01-01

    The currently used 8% fragrance mix (FM I) does not identify all patients with a positive history of adverse reactions to fragrances. A new FM II with 6 frequently used chemicals was evaluated in 1701 consecutive patients patch tested in 6 dermatological centres in Europe. FM II was tested in 3...... regarding a history of adverse reactions to fragrances: certain, probable, questionable, none. Positive reactions to FM I occurred in 6.5% of the patients. Positive reactions to FM II were dose-dependent and increased from 1.3% (2.8% FM II), through 2.9% (14% FM II) to 4.1% (28% FM II). Reactions classified...... as doubtful or irritant varied considerably between the 6 centres, with a mean value of 7.2% for FM I and means ranging from 1.8% to 10.6% for FM II. 8.7% of the tested patients had a certain fragrance history. Of these, 25.2% were positive to FM I; reactivity to FM II was again dose-dependent and ranged from...

  14. Nevada Test Site annual site environmental report for calendar year 1997

    International Nuclear Information System (INIS)

    Black, S.C.; Townsend, Y.E.

    1998-10-01

    Monitoring and surveillance, on and around the Nevada Test Site, (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1997, indicated that operations on the NTS were conducted in compliance with applicable DOE, state, and federal regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of liquid effluents, or resuspension of soil was not detectable offsite, and exposure above existing background to members of the offsite population was not measured by the offsite monitoring program. Using the US Environmental Protection Agency's (EPA's) Clean Air Package 1988 (CAP88)-PC model and NTS radionuclide emissions and environmental monitoring data, the calculated effective dose equivalent (EDE) to the maximally exposed individual offsite would have been 0.089 mrem. Hazardous wastes were shipped offsite to approved disposal facilities

  15. Classification Accuracy of Mixed Format Tests: A Bi-Factor Item Response Theory Approach.

    Science.gov (United States)

    Wang, Wei; Drasgow, Fritz; Liu, Liwen

    2016-01-01

    Mixed format tests (e.g., a test consisting of multiple-choice [MC] items and constructed response [CR] items) have become increasingly popular. However, the latent structure of item pools consisting of the two formats is still equivocal. Moreover, the implications of this latent structure are unclear: For example, do constructed response items tap reasoning skills that cannot be assessed with multiple choice items? This study explored the dimensionality of mixed format tests by applying bi-factor models to 10 tests of various subjects from the College Board's Advanced Placement (AP) Program and compared the accuracy of scores based on the bi-factor analysis with scores derived from a unidimensional analysis. More importantly, this study focused on a practical and important question-classification accuracy of the overall grade on a mixed format test. Our findings revealed that the degree of multidimensionality resulting from the mixed item format varied from subject to subject, depending on the disattenuated correlation between scores from MC and CR subtests. Moreover, remarkably small decrements in classification accuracy were found for the unidimensional analysis when the disattenuated correlations exceeded 0.90.

  16. Environmental Assessment and Finding of No Significant Impact: On-Site Treatment of Low Level Mixed Waste

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-03-22

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1292) to evaluate the proposed treatment of low level mixed waste (LLMW) at the Rocky Flats Environmental Technology Site (Site). The purpose of the action is to treat LLMW in order to meet the Land Disposal Restrictions specified by the Resource Conservation and Recovery Act and the waste acceptance criteria of the planned disposal site(s). Approximately 17,000 cubic meters (m{sup 3}) of LLMW are currently stored at the Site. Another 65,000 m{sup 3}of LLMW are likely to be generated by Site closure activities (a total of 82,000 m{sup 3} of LLMW). About 35,000 m{sup 3} can be directly disposed of off-site without treatment, and most of the remaining 47,000 m{sup 3} of LLMW can be treated at off-site treatment, storage, and disposal facilities. However, some LLMW will require treatment on-site, either because it does not meet shipping requirements or because off-site treatment is not available for these particular types of LLMW. Currently, this LLMW is stored at the Site pending the development and implementation of effective treatment processes. The Site needs to treat this LLMW on-site prior to shipment to off-site disposal facilities, in order to meet the DOE long-term objective of clean up and closure of the Site. All on-site treatment of LLMW would comply with applicable Federal and State laws designed to protect public health and safety and to enhance protection of the environment. The EA describes and analyzes the environmental effects of the proposed action (using ten mobile treatment processes to treat waste on-site), and the alternatives of treating waste onsite (using two fixed treatment processes), and of taking no action. The EA was the subject of a public comment period from February 3 to 24, 1999. No written or other comments regarding the EA were received.

  17. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    International Nuclear Information System (INIS)

    2010-01-01

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles (mi)) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan

  18. Asteroseismic test of rotational mixing in low-mass white dwarfs

    Science.gov (United States)

    Istrate, A. G.; Fontaine, G.; Gianninas, A.; Grassitelli, L.; Marchant, P.; Tauris, T. M.; Langer, N.

    2016-11-01

    We exploit the recent discovery of pulsations in mixed-atmosphere (He/H), extremely low-mass white dwarf precursors (ELM proto-WDs) to test the proposition that rotational mixing is a fundamental process in the formation and evolution of low-mass helium core white dwarfs. Rotational mixing has been shown to be a mechanism able to compete efficiently against gravitational settling, thus accounting naturally for the presence of He, as well as traces of metals such as Mg and Ca, typically found in the atmospheres of ELM proto-WDs. Here we investigate whether rotational mixing can maintain a sufficient amount of He in the deeper driving region of the star, such that it can fuel, through Heii-Heiii ionization, the observed pulsations in this type of stars. Using state-of-the-art evolutionary models computed with MESA, we show that rotational mixing can indeed explain qualitatively the very existence and general properties of the known pulsating, mixed-atmosphere ELM proto-WDs. Moreover, such objects are very likely to pulsate again during their final WD cooling phase.

  19. Environmental assessment for the Groundwater Characterization Project, Nevada Test Site, Nye County, Nevada; Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-08-01

    The US Department of Energy (DOE) proposes to conduct a program to characterize groundwater at the Nevada Test Site (NTS), Nye County, Nevada, in accordance with a 1987 DOE memorandum stating that all past, present, and future nuclear test sites would be treated as Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites (Memorandum from Bruce Green, Weapons Design and Testing Division, June 6, 1987). DOE has prepared an environmental assessment (DOE/EA-0532) to evaluate the environmental consequences associated with the proposed action, referred to as the Groundwater Characterization Project (GCP). This proposed action includes constructing access roads and drill pads, drilling and testing wells, and monitoring these wells for the purpose of characterizing groundwater at the NTS. Long-term monitoring and possible use of these wells in support of CERCLA, as amended by the Superfund Amendments and Reauthorization Act, is also proposed. The GCP includes measures to mitigate potential impacts on sensitive biological, cultural and historical resources, and to protect workers and the environment from exposure to any radioactive or mixed waste materials that may be encountered. DOE considers those mitigation measures related to sensitive biological, cultural and historic resources as essential to render the impacts of the proposed action not significant, and DOE has prepared a Mitigation Action Plan (MAP) that explains how such mitigations will be planned and implemented. Based on the analyses presented in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not required and the Department is issuing this FONSI.

  20. Environmental assessment for the Groundwater Characterization Project, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1992-08-01

    The US Department of Energy (DOE) proposes to conduct a program to characterize groundwater at the Nevada Test Site (NTS), Nye County, Nevada, in accordance with a 1987 DOE memorandum stating that all past, present, and future nuclear test sites would be treated as Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites (Memorandum from Bruce Green, Weapons Design and Testing Division, June 6, 1987). DOE has prepared an environmental assessment (DOE/EA-0532) to evaluate the environmental consequences associated with the proposed action, referred to as the Groundwater Characterization Project (GCP). This proposed action includes constructing access roads and drill pads, drilling and testing wells, and monitoring these wells for the purpose of characterizing groundwater at the NTS. Long-term monitoring and possible use of these wells in support of CERCLA, as amended by the Superfund Amendments and Reauthorization Act, is also proposed. The GCP includes measures to mitigate potential impacts on sensitive biological, cultural and historical resources, and to protect workers and the environment from exposure to any radioactive or mixed waste materials that may be encountered. DOE considers those mitigation measures related to sensitive biological, cultural and historic resources as essential to render the impacts of the proposed action not significant, and DOE has prepared a Mitigation Action Plan (MAP) that explains how such mitigations will be planned and implemented. Based on the analyses presented in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not required and the Department is issuing this FONSI

  1. Diagnostic Limitations of 13C-Mixed Triglyceride Breath Test in Patients after Cholecystectomy

    Directory of Open Access Journals (Sweden)

    V.I. Rusyn

    2014-09-01

    Full Text Available The results of a comprehensive examination of 136 patients after cholecystectomy are provided. High efficiency and informativeness of the 13C-mixed triglyceride breath test for determining exocrine pancreatic insufficiency at its early stages was noted in patients after cholecystectomy.

  2. Psychometric Properties of Raw and Scale Scores on Mixed-Format Tests

    Science.gov (United States)

    Kolen, Michael J.; Lee, Won-Chan

    2011-01-01

    This paper illustrates that the psychometric properties of scores and scales that are used with mixed-format educational tests can impact the use and interpretation of the scores that are reported to examinees. Psychometric properties that include reliability and conditional standard errors of measurement are considered in this paper. The focus is…

  3. 1998 report on Hanford Site land disposal restrictions for mixed waste

    International Nuclear Information System (INIS)

    Black, D.G.

    1998-01-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-01H. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility. The US Department of Energy, its predecessors, and contractors on the Hanford Facility were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid mixed waste. This waste is regulated under authority of both the Resource Conservation and Recovery Act of l976 and the Atomic Energy Act of 1954. This report covers only mixed waste. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into the Tri-Party Agreement to bring the Hanford Facility operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for mixed waste. This report is the eighth update of the plan first issued in 1990. The Tri-Party Agreement requires and the baseline plan and annual update reports provide the following information: (1) Waste Characterization Information -- Provides information about characterizing each LDR mixed waste stream. The sampling and analysis methods and protocols, past characterization results, and, where available, a schedule for providing the characterization information are discussed. (2) Storage Data -- Identifies and describes the mixed waste on the Hanford Facility. Storage data include the Resource Conservation and Recovery Act of 1976 dangerous waste codes, generator process knowledge needed to identify the waste and to make LDR determinations, quantities

  4. 1998 report on Hanford Site land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1998-04-10

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-01H. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility. The US Department of Energy, its predecessors, and contractors on the Hanford Facility were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid mixed waste. This waste is regulated under authority of both the Resource Conservation and Recovery Act of l976 and the Atomic Energy Act of 1954. This report covers only mixed waste. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into the Tri-Party Agreement to bring the Hanford Facility operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for mixed waste. This report is the eighth update of the plan first issued in 1990. The Tri-Party Agreement requires and the baseline plan and annual update reports provide the following information: (1) Waste Characterization Information -- Provides information about characterizing each LDR mixed waste stream. The sampling and analysis methods and protocols, past characterization results, and, where available, a schedule for providing the characterization information are discussed. (2) Storage Data -- Identifies and describes the mixed waste on the Hanford Facility. Storage data include the Resource Conservation and Recovery Act of 1976 dangerous waste codes, generator process knowledge needed to identify the waste and to make LDR determinations, quantities

  5. Preoperational test report, cross-site transfer system integrated test (POTR-007)

    Energy Technology Data Exchange (ETDEWEB)

    Pacquet, E.A.

    1998-04-02

    This report documents the results obtained during the performance of Preoperational Test POTP-007, from December 12, 1997 to March 27, 1998. The main objectives were to demonstrate the operation of the following Cross-Site Transfer System components: Booster pumps P-3125A and P-3125B interlocks and controls, both local and remote; Booster pump P-3125A and P-3125B and associated variable speed drives VSD-1 and VSD-2 performance in both manual and automatic modes; and Water filling, circulation, venting and draining of the transfer headers (supernate and slurry line). As described in reference 1, the following components of the Cross-Site Transfer System that would normally be used during an actual waste transfer, are not used in this specific test: Water Flush System; Valving and instrumentation associated with the 241-SY-A valve pit jumpers; and Valving and instrumentation associated with the 244-A lift station.

  6. Preoperational test report, cross-site transfer system integrated test (POTR-007)

    International Nuclear Information System (INIS)

    Pacquet, E.A.

    1998-01-01

    This report documents the results obtained during the performance of Preoperational Test POTP-007, from December 12, 1997 to March 27, 1998. The main objectives were to demonstrate the operation of the following Cross-Site Transfer System components: Booster pumps P-3125A and P-3125B interlocks and controls, both local and remote; Booster pump P-3125A and P-3125B and associated variable speed drives VSD-1 and VSD-2 performance in both manual and automatic modes; and Water filling, circulation, venting and draining of the transfer headers (supernate and slurry line). As described in reference 1, the following components of the Cross-Site Transfer System that would normally be used during an actual waste transfer, are not used in this specific test: Water Flush System; Valving and instrumentation associated with the 241-SY-A valve pit jumpers; and Valving and instrumentation associated with the 244-A lift station

  7. Heater experiments in the Climax Stock, Nevada Test Site

    International Nuclear Information System (INIS)

    Ramspott, L.; Ballou, L.

    1977-01-01

    The Climax Stock is a composite granitic intrusive at the Nevada Test Site, with an existing shaft and an open drift about 1400 ft. below the surface. In September 1977, the Lawrence Livermore Laboratory plans to operate three in-situ heater experiments in this area. The first experiment consists of a single heater surrounded by thermocouples at distances of from 1/10 to 5 meters. The close spacing will scale down the time required for useful thermal measurements. The heater, which is 3 meters long and capable of about 3 kW, will be energized for a month, turned off for a month, and the cycle repeated. The rock surface temperature in the heater hole is not expected to exceed 500 to 600 0 C, and the temperature beyond 0.1 m into the rock is not expected to exceed 400 0 C. Measurements will be taken during all four months. These measurements will be compared with numerical simulations to determine the thermal properties of the medium. The second experiment, also involving only a single heater, will be more completely instrumented to include the measurement of permeability, rock displacement, stress/strain, and possibly acoustic emission measurements. The scale of the experiment will be larger, and the heater will be energized continuously for about 4 months. The third test in the series is envisioned to be a scale-up of the second, except that multiple heaters will be used. These heaters will be energized for about a year. They will be arranged around a pillar structure left in the room to obtain information on mine stability in the presence of multiple heaters

  8. Selection of analytical methods for mixed waste analysis at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Morant, P.M.

    1994-09-01

    This document describes the process that the US Department of Energy (DOE), Richland Operations Office (RL) and contractor laboratories use to select appropriate or develop new or modified analytical methods. These methods are needed to provide reliable mixed waste characterization data that meet project-specific quality assurance (QA) requirements while also meeting health and safety standards for handling radioactive materials. This process will provide the technical basis for DOE`s analysis of mixed waste and support requests for regulatory approval of these new methods when they are used to satisfy the regulatory requirements of the Hanford Federal Facility Agreement and Consent Order (Tri-party Agreement) (Ecology et al. 1992).

  9. Population distribution around the Nevada Test Site, 1984

    International Nuclear Information System (INIS)

    Smith, D.D.; Coogan, J.S.

    1984-08-01

    The Environmental Monitoring Systems Laboratory (EMSL-LV) conducts an offsite radiological safety program outside the boundaries of the Nevada Test Site. As part of this program, the EMSL-LV maintains a comprehensive and current listing of all rural offsite residents and dairy animals within the controllable sectors (areas where the EMSL-LV could implement protective or remedial actions that would assure public safety). This report was produced to give a brief overview of the population distribution and information on the activities within the controllable sectors. Obviously the numbers of people in a sector change dependent upon the season of the year, and such diverse information as the price of minerals which relates to the opening and closing of mining operations. Currently, the controllable sectors out to 200 kilometers from the Control Point on the NTS are considered to be the entire northeast, north-northeast, north, north-northwest, west-northwest sectors and portions of the east and east-northeast sectors. The west-southwest and south-southwest sections are considered controllable out to 40 to 80 kilometers. No major population centers or dairy farms lie within these sectors. 7 references, 5 figures, 2 tables

  10. Nevada Test Site-Directed Research, Development, and Demonstration

    International Nuclear Information System (INIS)

    Will Lewis, Compiler

    2006-01-01

    The Nevada Test Site-Directed Research, Development, and Demonstration (SDRD) program completed a very successful year of research and development activities in FY 2005. Fifty new projects were selected for funding this year, and five FY 2004 projects were brought to conclusion. The total funds expended by the SDRD program were $5.4 million, for an average per project cost of just under $100,000. Two external audits of SDRD accounting practices were conducted in FY 2005. Both audits found the program's accounting practices consistent with the requirements of DOE Order 413.2A, and one included the observation that the NTS contractor ''did an exceptional job in planning and executing year-start activities.'' Highlights for the year included: the filing of 18 invention disclosures for intellectual property generated by FY 2005 projects; programmatic adoption of 17 FY 2004 SDRD-developed technologies; participation in the tri-lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2005 projects; and the successful completion of 55 R and D projects, as presented in this report

  11. Technical safety appraisal of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-12-01

    This report presents the results of one of a series of Technical Safety Appraisals (TSAs) being conducted of Department of Energy (DOE) operations (nuclear and non-nuclear) by the Assistant Secretary of Environment, Safety and Health (ES&H), Office of Safety Appraisals. These TSAs are one of the initiatives announced by the Secretary of Energy on September 18, 1985, to enhance the DOE`s environment, safety, and health program. This TSA report focuses on the safety and health operations of the Nevada Operations Office (NV) at the Nevada Test Site (NTS), which was conducted concurrently, with and supporting a Tiger Team Assessment. The total effort of all the Tiger Team assessment, including environmental and manager evaluations, is reported in the Tiger Team Report, issued January 1990. The assessment of the NTS began November 5, 1989 with the briefing of the Tiger Team in Las Vegas at the Nevada Operations Office. The TSA team evaluation was conducted November 6--17, and November 26--December 1, 1989 at the NTS.

  12. Organic contaminant release from a mixed waste disposal site: A computer simulation study of transport through the vadose zone and site remediation

    International Nuclear Information System (INIS)

    Baca, R.G.; Walton, J.C.; Rood, A.S.; Otis, M.D.

    1988-01-01

    Migration of organic contaminants from mixed waste disposal sites is emerging as a increasingly significant environmental problem. Organic contaminants, particularly in the vapor phase, can pose a health hazard to workers in the vicinity of the disposal site and can cause contamination of the underlying aquifer. Volatile organic chemicals such as carbon tetrachloride, chloroform, and trichloroethylene are frequently encountered at waste sites. These chlorinated hydrocarbons are relatively common chemicals and widely used as industrial solvents. Problems with organic vapors have been noted at waste disposal sites at a number of US Department of Energy (DOE) facilities. At the Idaho National Engineering Laboratory, for example, problems with organic vapors (Laney, et al., 1988) have occurred at the Radioactive Waste Management Complex (RWMC). Analyses of soil-gas samples and groundwater samples indicate that organic vapors are being emitted from disposal pits in the Subsurface Disposal Area (SDA) of the RWMC. The primary source of the organic vapor has been determined to be organic wastes that were disposed at the site in the mid-1960's. To address the organic problems at the RWMC, a multi-task activity was initiated. The first task involved a records search to determine the quantities and distribution of organic wastes. The second task consisted of a detailed soil-gas survey to identify the specific disposal areas that are producing the organic vapors

  13. Closure Report for Corrective Action Unit 356: Mud Pits and Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2002-01-01

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 356, Mud Pits and Disposal Sites, in accordance with the Federal Facility Agreement and Consent Order. This CAU is located in Areas 3 and 20 of the Nevada Test Site (NTS) approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 356 consists of seven Corrective Action Sites (CASs): 03-04-01, Area 3 Change House Septic System; 03-09-01, Mud Pit Spill Over; 03-09-03, Mud Pit; 03-09-04, Mud Pit; 03-09-05, Mud Pit; 20-16-01, Landfill; and 20-22-21, Drums. This CR identifies and rationalizes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office's (NNSA/NV's) recommendation that no further corrective action and closure in place is deemed necessary for CAU 356. This recommendation is based on the results of field investigation/closure activities conducted November 20, 2001, through January 3, 2002, and March 11 to 14, 2002. These activities were conducted in accordance with the Streamlined Approach for Environmental Restoration Plan (SAFER) for CAU 356. For CASs 03-09-01, 03-09-03, 20-16-01, and 22-20-21, analytes detected in soil during the corrective action investigation were evaluated against Preliminary Action Levels (PALs) and it was determined that no Contaminants of Concern (COCs) were present. Therefore, no further action is necessary for the soil at these CASs. For CASs 03-04-01, 03-09-04, and 03-09-05, analytes detected in soil during the corrective action investigation were evaluated against PALs and identifies total petroleum hydrocarbons (TPHs) and radionuclides (i.e., americium-241 and/or plutonium 239/240) as COCs. The nature, extent, and concentration of the TPH and radionuclide COCs were bounded by sampling and shown to be relatively immobile. Therefore, closure in place is recommended for these CASs in CAU 356. Further, use restrictions are not required at this CAU beyond the NTS use restrictions identified in

  14. Definitive design status of the SP-100 Ground Engineering System Test Site

    International Nuclear Information System (INIS)

    Renkey, E.J. Jr.; Bazinet, G.D.; Bitten, E.J.; Brackenbury, P.J.; Carlson, W.F.; Irwin, J.J.; Edwards, P.A.; Shen, E.J.; Titzler, P.A.

    1989-05-01

    The SP-100 reactor will be ground tested at the SP-100 Ground Engineering System (GES) Test Site on the US Department of Energy (DOE) Hanford Site near Richland, Washington. Project direction and the flight system design evolution have resulted in a smaller reactor size and the consequential revision to Test Site features to accommodate the design changes and reduce Test Site costs. The significant design events since the completion of the Conceptual Design are discussed in this paper

  15. Definitive design status of the SP-100 Ground Engineering System Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Renkey, E.J. Jr.; Bazinet, G.D.; Bitten, E.J.; Brackenbury, P.J.; Carlson, W.F.; Irwin, J.J.; Edwards, P.A.; Shen, E.J.; Titzler, P.A.

    1989-05-01

    The SP-100 reactor will be ground tested at the SP-100 Ground Engineering System (GES) Test Site on the US Department of Energy (DOE) Hanford Site near Richland, Washington. Project direction and the flight system design evolution have resulted in a smaller reactor size and the consequential revision to Test Site features to accommodate the design changes and reduce Test Site costs. The significant design events since the completion of the Conceptual Design are discussed in this paper.

  16. AIChe equipment testing procedure centrifugal compressors : a guide to performance evaluation and site testing

    CERN Document Server

    AIChE

    2013-01-01

    With its engineer-tested procedures and thorough explanations, Centrifugal Compressors is an essential text for anyone engaged in implementing new technology in equipment design, identifying process problems, and optimizing equipment performance.  This condensed book presents a step by step approach to preparing for, planning, executing, and analyzing tests of centrifugal compressors, with an emphasis on methods that can be conducted on-site and with an acknowledgement of the strengths and limitations of these methods. The book opens with an extensive and detailed section offering definitions

  17. Studies of Health Effects from Nuclear Testing near the Semipalatinsk Nuclear Test Site, Kazakhstan

    Directory of Open Access Journals (Sweden)

    Bernd Grosche

    2015-05-01

    Full Text Available The nuclear bomb testing conducted at the Semipalatinsk nuclear test site in Kazakhstan is of great importance for today’s radiation protection research, particularly in the area of low dose exposures. This type of radiation is of particular interest due to the lack of research in this field and how it impacts population health. In order to understand the possible health effects of nuclear bomb testing, it is important to determine what studies have been conducted on the effects of low dose exposure and dosimetry, and evaluate new epidemiologic data and biological material collected from populations living in proximity to the test site. With time, new epidemiological data has been made available, and it is possible that these data may be linked to biological samples. Next to linking existing and newly available data to examine health effects, the existing dosimetry system needs to be expanded and further developed to include residential areas, which have not yet been taken into account. The aim of this paper is to provide an overview of previous studies evaluating the health effects of nuclear testing, including some information on dosimetry efforts, and pointing out directions for future epidemiologic studies.

  18. Field tests of 2- and 40-tube condensers at the East Mesa Geothermal Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, R.W.; Domingo, N.

    1982-05-01

    Two water-cooled isobutane condensers, one with 2 tubes and one with 40 tubes, were subjected to field tests at the East Mesa Geothermal Test Site to assess relative heat transfer performance in both surface evaporator and direct-contact evaporator modes. The five groups of tests established that field performance was below earlier laboratory-determined levels and that direct-contact evaporator mode performance was poorer than that for the surface evaporator mode. In all test situations, fluted condenser tubes performed better than smooth condenser tubes. Cooling water quality had no significant effect on performance, but brine preflash in the direct-contact mode did promote some relative performance improvement. Important implications of these results for binary geothermal power plants are that (1) working-fluid-side impurities can significantly degrade heat transfer performance of the power plant condensers and (2) provisions for minimizing such impurities may be required.

  19. 1999 Report on Hanford Site land disposal restriction for mixed waste

    International Nuclear Information System (INIS)

    BLACK, D.G.

    1999-01-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-011. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility

  20. 1999 Report on Hanford Site land disposal restriction for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    BLACK, D.G.

    1999-03-25

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-011. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility.

  1. Geology Report: Area 3 Radioactive Waste Management Site DOE/Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2006-01-01

    Surficial geologic studies near the Area 3 Radioactive Waste Management Site (RWMS) were conducted as part of a site characterization program. Studies included evaluation of the potential for future volcanism and Area 3 fault activity that could impact waste disposal operations at the Area 3 RWMS. Future volcanic activity could lead to disruption of the Area 3 RWMS. Local and regional studies of volcanic risk indicate that major changes in regional volcanic activity within the next 1,000 years are not likely. Mapped basalts of Paiute Ridge, Nye Canyon, and nearby Scarp Canyon are Miocene in age. There is a lack of evidence for post-Miocene volcanism in the subsurface of Yucca Flat, and the hazard of basaltic volcanism at the Area 3 RWMS, within the 1,000-year regulatory period, is very low and not a forseeable future event. Studies included a literature review and data analysis to evaluate unclassified published and unpublished information regarding the Area 3 and East Branch Area 3 faults mapped in Area 3 and southern Area 7. Two trenches were excavated along the Area 3 fault to search for evidence of near-surface movement prior to nuclear testing. Allostratigraphic units and fractures were mapped in Trenches ST02 and ST03. The Area 3 fault is a plane of weakness that has undergone strain resulting from stress imposed by natural events and underground nuclear testing. No major vertical displacement on the Area 3 fault since the Early Holocene, and probably since the Middle Pleistocene, can be demonstrated. The lack of major displacement within this time frame and minimal vertical extent of minor fractures suggest that waste disposal operations at the Area 3 RWMS will not be impacted substantially by the Area 3 fault, within the regulatory compliance period. A geomorphic surface map of Yucca Flat utilizes the recent geomorphology and soil characterization work done in adjacent northern Frenchman Flat. The approach taken was to adopt the map unit boundaries (line

  2. Geology Report: Area 3 Radioactive Waste Management Site DOE/Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2006-07-01

    Surficial geologic studies near the Area 3 Radioactive Waste Management Site (RWMS) were conducted as part of a site characterization program. Studies included evaluation of the potential for future volcanism and Area 3 fault activity that could impact waste disposal operations at the Area 3 RWMS. Future volcanic activity could lead to disruption of the Area 3 RWMS. Local and regional studies of volcanic risk indicate that major changes in regional volcanic activity within the next 1,000 years are not likely. Mapped basalts of Paiute Ridge, Nye Canyon, and nearby Scarp Canyon are Miocene in age. There is a lack of evidence for post-Miocene volcanism in the subsurface of Yucca Flat, and the hazard of basaltic volcanism at the Area 3 RWMS, within the 1,000-year regulatory period, is very low and not a forseeable future event. Studies included a literature review and data analysis to evaluate unclassified published and unpublished information regarding the Area 3 and East Branch Area 3 faults mapped in Area 3 and southern Area 7. Two trenches were excavated along the Area 3 fault to search for evidence of near-surface movement prior to nuclear testing. Allostratigraphic units and fractures were mapped in Trenches ST02 and ST03. The Area 3 fault is a plane of weakness that has undergone strain resulting from stress imposed by natural events and underground nuclear testing. No major vertical displacement on the Area 3 fault since the Early Holocene, and probably since the Middle Pleistocene, can be demonstrated. The lack of major displacement within this time frame and minimal vertical extent of minor fractures suggest that waste disposal operations at the Area 3 RWMS will not be impacted substantially by the Area 3 fault, within the regulatory compliance period. A geomorphic surface map of Yucca Flat utilizes the recent geomorphology and soil characterization work done in adjacent northern Frenchman Flat. The approach taken was to adopt the map unit boundaries (line

  3. Integrated Mapping and Imaging at a Legacy Test Site (Invited)

    Science.gov (United States)

    Sussman, A. J.; Schultz-Fellenz, E. S.; Kelley, R. E.; Sweeney, J. J.; Vigil, S.; DiBenedetto, J.; Chipman, V.

    2013-12-01

    A team of multi-disciplinary geoscientists was tasked to characterize and evaluate a legacy nuclear detonation site in order to develop research locations with the long-term goal of improving treaty monitoring, verification, and other national security applications. There was a test at the site of interest that was detonated on June 12, 1985 in a vertical emplacement borehole at a depth of 608m below the surface in rhyolites. With announced yield of 20-150 kt, the event did not collapse to the surface and form a crater, but rather experienced a subsurface collapse with more subtle surface expressions of deformation. This result provides the team with an opportunity to evaluate a number of surface and subsurface inspection technologies in a broad context. The team collected ground-based visual observation, ground penetrating radar, electromagnetic, ground-based and airborne LiDAR, ground-based and airborne hyperspectral, gravity and magnetics, dc and induction electrical methods, and active seismic data during field campaigns in the summers of 2012 and 2013. Detection of features was performed using various approaches that were assessed for accuracy, efficiency and diversity of target features. For example, whereas the primary target of the ground-based visual observation survey was to map the surface features, the target of the gravity survey was to attempt the detection of a possible subsurface collapse zone which might be located as little as 200 meters below the surface. The datasets from surveys described above are integrated into a geographical information system (GIS) database for analysis and visualization. Other presentations during this session provide further details as to some of the work conducted. Work by Los Alamos National Laboratory and Lawrence Livermore National Laboratory was sponsored by the National Nuclear Security Administration Award No. DE-AC52-06NA25946/NST10-NCNS-PD00. Work by National Security Technologies, LLC, was performed under

  4. Evaluating the effects of compaction of hot mix asphalt on selected laboratory tests

    CSIR Research Space (South Africa)

    Kekana, SL

    2008-07-01

    Full Text Available Binder content 5 % Bulk Relative Density 2.582 Maximum Theoretical Density 2.690 % Voids-in-Mix 4.3% % V.M.A 15% Figure 1: Grading Analysis of asphalt aggregate. Sample Preparation A standard mix design was used for the preparation...). The following compaction methods were used in preparation of the samples: • Gyratory compaction; • Marshall compaction; • Slab compaction, and • Field compaction (smooth drum roller). 4 Data Analysis Transportek Wheel Tracking Test (TWTT) Short...

  5. Grimsel test site. Excavation disturbed zone experiment (EDZ)

    Energy Technology Data Exchange (ETDEWEB)

    Frieg, B. (ed.); Albert, W. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Blaser, P. C. [ed., PetraConsult AG, Arni (Switzerland); Adams, J. [Solexperts AG, Schwerzenbach (Switzerland); Dollinger, H. [Geotechnisches Institut AG, Bern (Switzerland); Kuhlmann, U. [TK Consult AG, Zürich, (Switzerland); Lanyon, G. W. [GeoScience Ltd., Falmouth, (United Kingdom)

    2012-07-15

    The ‘Excavation Disturbed Zone (EDZ) Experiment’ was conducted at the Grimsel Test Site (GTS) in the framework of safety analysis of deep geological repositories for radioactive wastes. It concentrated on investigating the hydraulic regime of the near-field of drilled tunnel sections under fully saturated conditions, with the aim of contributing to the development of methods for measuring and modelling axial water flow along tunnels and caverns. The studies focused on the mechanical and hydraulic properties of the rock mass in the direct vicinity of the tunnel wall. The EDZ is defined as the zone around the tunnel where excavation has altered the rock properties. The selected test location was a tunnel section where mechanical stressing of the rock and some breakouts had been observed. In-situ stress measurements were performed in order to record the actual stress redistribution in the tunnel near-field induced by excavation of the tunnel. A small stress increase and microfissures could be identified in the tunnel near-field. The stress measurements and the results of the geological mapping formed the basis for the rock mechanical modelling of the EDZ. Two different models of the development and geometry of the EDZ were used: (a) the regional 3D stress field modelling indicated that the topography has a significant influence on the primary stress field; a good agreement between the measured and calculated stresses in the GTS was achieved by applying an additional far-field tectonic stress component; (b) with the local 2D numerical disturbed zone modelling of the tunnel section itself, stress redistributions, possible plastifications and joint behaviour were investigated; all displacements of the rock matrix and the shear displacements of the discontinuities seem to be the result of the tunnel excavation; maximum shear deformations of 2 - 5 mm occur at the tunnel wall. Prior to the hydraulic test phase, the test location was decoupled from the normal GTS tunnel

  6. Grimsel test site. Excavation disturbed zone experiment (EDZ)

    International Nuclear Information System (INIS)

    Frieg, B.; Blaser, P. C.; Adams, J.; Dollinger, H.; Kuhlmann, U.; Lanyon, G. W.

    2012-07-01

    The ‘Excavation Disturbed Zone (EDZ) Experiment’ was conducted at the Grimsel Test Site (GTS) in the framework of safety analysis of deep geological repositories for radioactive wastes. It concentrated on investigating the hydraulic regime of the near-field of drilled tunnel sections under fully saturated conditions, with the aim of contributing to the development of methods for measuring and modelling axial water flow along tunnels and caverns. The studies focused on the mechanical and hydraulic properties of the rock mass in the direct vicinity of the tunnel wall. The EDZ is defined as the zone around the tunnel where excavation has altered the rock properties. The selected test location was a tunnel section where mechanical stressing of the rock and some breakouts had been observed. In-situ stress measurements were performed in order to record the actual stress redistribution in the tunnel near-field induced by excavation of the tunnel. A small stress increase and microfissures could be identified in the tunnel near-field. The stress measurements and the results of the geological mapping formed the basis for the rock mechanical modelling of the EDZ. Two different models of the development and geometry of the EDZ were used: (a) the regional 3D stress field modelling indicated that the topography has a significant influence on the primary stress field; a good agreement between the measured and calculated stresses in the GTS was achieved by applying an additional far-field tectonic stress component; (b) with the local 2D numerical disturbed zone modelling of the tunnel section itself, stress redistributions, possible plastifications and joint behaviour were investigated; all displacements of the rock matrix and the shear displacements of the discontinuities seem to be the result of the tunnel excavation; maximum shear deformations of 2 - 5 mm occur at the tunnel wall. Prior to the hydraulic test phase, the test location was decoupled from the normal GTS tunnel

  7. Test report for run-in acceptance testing of Project W-151 300 HP mixing pumps

    International Nuclear Information System (INIS)

    Berglin, B.G.

    1998-01-01

    This report documents the results of a performance demonstration and operational checkout of three 300 HP mixer pumps in accordance with WHC-SD-WI51-TS-001 ''Mixer Pump Test Specification for Project W-151'' and Statement of Work 8K520-EMN-95-004 ''Mixer Pump Performance Demonstration at MASF'' in the 400 Area Maintenance and Storage Facility (MASF) building. Testing of the pumps was performed by Fast Flux Test Facility (FFTF) Engineering and funded by the Tank Waste Remediation System (TWRS) Project W-151. Testing began with the first pump on 04-01-95 and ended with the third pump on 11-01-96. Prior to testing, the MASF was modified and prepared to meet the pump testing requirements set forth by the Test Specification and the Statement of Work

  8. An exposure assessment of radionuclide emissions associated with potential mixed-low level waste disposal facilities at fifteen DOE sites

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, D.A.; Socolof, M.L.

    1996-05-01

    A screening method was developed to compare the doses received via the atmospheric pathway at 15 potential DOE MLLW (mixed low-level waste) sites. Permissible waste concentrations were back calculated using the radioactivity NESHAP (National Emissions Standards for Hazardous Air Pollutants) in 40 FR 61 (DOE Order 5820.2A performance objective). Site-specific soil and meteorological data were used to determine permissible waste concentrations (PORK). For a particular radionuclide, perks for each site do not vary by more than one order of magnitude. perks of {sup 14}C are about six orders of magnitude more restrictive than perks of {sup 3}H because of differences in liquid/vapor partitioning, decay, and exposure dose. When comparing results from the atmospheric pathway to the water and intruder pathways, {sup 14}C disposal concentrations were limited by the atmospheric pathway for most arid sites; for {sup 3}H, the atmospheric pathway was not limiting at any of the sites. Results of this performance evaluation process are to be used for planning for siting of disposal facilities.

  9. An exposure assessment of radionuclide emissions associated with potential mixed-low level waste disposal facilities at fifteen DOE sites

    International Nuclear Information System (INIS)

    Lombardi, D.A.; Socolof, M.L.

    1996-01-01

    A screening method was developed to compare the doses received via the atmospheric pathway at 15 potential DOE MLLW (mixed low-level waste) sites. Permissible waste concentrations were back calculated using the radioactivity NESHAP (National Emissions Standards for Hazardous Air Pollutants) in 40 FR 61 (DOE Order 5820.2A performance objective). Site-specific soil and meteorological data were used to determine permissible waste concentrations (PORK). For a particular radionuclide, perks for each site do not vary by more than one order of magnitude. perks of 14 C are about six orders of magnitude more restrictive than perks of 3 H because of differences in liquid/vapor partitioning, decay, and exposure dose. When comparing results from the atmospheric pathway to the water and intruder pathways, 14 C disposal concentrations were limited by the atmospheric pathway for most arid sites; for 3 H, the atmospheric pathway was not limiting at any of the sites. Results of this performance evaluation process are to be used for planning for siting of disposal facilities

  10. Nevada test site annual site environmental report for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    Monitoring and surveillance on and around the Nevada Test Site (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1995 indicated that operations on the NTS were conducted in compliance with applicable federal and DOE regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of effluents, or resuspension was not detectable offsite, and no measurable net exposure to members of the offsite population was detected through the offsite dosimetry program. There were no nonradiological releases to the offsite area. Hazardous wastes were shipped offsite to approved disposal facilities. Compliance with the various regulations stemming from the National Environmental Policy Act (NEPA) is being achieved and, where mandated, permits for air and water effluents and waste management have been obtained from the appropriate agencies. Cooperation with other agencies has resulted in seven different consent orders and agreements. Support facilities at off-NTS locations complied with the requirements of air quality permits and state or local wastewater discharge and hazardous waste permits.

  11. Nevada Test Site annual site environmental report for calendar year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Black, S.C.; Townsend, Y.E. [eds.

    1998-10-01

    Monitoring and surveillance, on and around the Nevada Test Site, (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1997, indicated that operations on the NTS were conducted in compliance with applicable DOE, state, and federal regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of liquid effluents, or resuspension of soil was not detectable offsite, and exposure above existing background to members of the offsite population was not measured by the offsite monitoring program. Using the US Environmental Protection Agency`s (EPA`s) Clean Air Package 1988 (CAP88)-PC model and NTS radionuclide emissions and environmental monitoring data, the calculated effective dose equivalent (EDE) to the maximally exposed individual offsite would have been 0.089 mrem. Hazardous wastes were shipped offsite to approved disposal facilities.

  12. The Yucca Mountain Project prototype air-coring test, U12g tunnel, Nevada test site

    International Nuclear Information System (INIS)

    Ray, J.M.; Newsom, J.C.

    1994-12-01

    The Prototype Air-Coring Test was conducted at the Nevada Test Site (NTS) G-Tunnel facility to evaluate standard coring techniques, modified slightly for air circulation, for use in testing at a prospective nuclear waste repository at Yucca Mountain, Nevada. Air-coring technology allows sampling of subsurface lithology with minimal perturbation to ambient characteristic such as that required for exploratory holes near aquifers, environmental applications, and site characterization work. Two horizontal holes were cored, one 50 ft long and the other 150 ft long, in densely welded fractured tuff to simulate the difficult drilling conditions anticipated at Yucca Mountain. Drilling data from seven holes on three other prototype tests in nonwelded tuff were also collected for comparison. The test was used to establish preliminary standards of performance for drilling and dust collection equipment and to assess procedural efficiencies. The Longyear-38 drill achieved 97% recovery for HQ-size core (-2.5 in.), and the Atlas Copco dust collector (DCT-90) captured 1500 lb of fugitive dust in a mine environment with only minor modifications. Average hole production rates were 6-8 ft per 6-h shift in welded tuff and almost 20 ft per shift on deeper holes in nonwelded tuff. Lexan liners were successfully used to encapsulate core samples during the coring process and protect core properties effectively. The Prototype Air-Coring Test demonstrated that horizontal air coring in fractured welded tuff (to at least 150 ft) can be safely accomplished by proper selection, integration, and minor modification of standard drilling equipment, using appropriate procedures and engineering controls. The test also indicated that rig logistics, equipment, and methods need improvement before attempting a large-scale dry drilling program at Yucca Mountain

  13. The Field Lysimeter Test Facility (FLTF) at the Hanford Site: Installation and initial tests

    International Nuclear Information System (INIS)

    Gee, G.W.; Kirkham, R.R.; Downs, J.L.; Campbell, M.D.

    1989-02-01

    The objectives of this program are to test barrier design concepts and to demonstrate a barrier design that meets established performance criteria for use in isolating wastes disposed of near-surface at the Hanford Site. Specifically, the program is designed to assess how well the barriers perform in controlling biointrusion, water infiltration, and erosion, as well as evaluating interactions between environmental variables and design factors of the barriers. To assess barrier performance and design with respect to infiltration control, field lysimeters and small- and large-scale field plots are planned to test the performance of specific barrier designs under actual and modified (enhanced precipitation) climatic conditions. The Field Lysimeter Test Facility (FLTF) is located in the 600 Area of the Hanford Site just east of the 200 West Area and adjacent to the Hanford Meteorological Station. The FLTF data will be used to assess the effectiveness of selected protective barrier configurations in controlling water infiltration. The facility consists of 14 drainage lysimeters (2 m dia x 3 m deep) and four precision weighing lysimeters (1.5 m x 1.5 m x 1.7 m deep). The lysimeters are buried at grade and aligned in a parallel configuration, with nine lysimeters on each side of an underground instrument chamber. The lysimeters were filled with materials to simulate a multilayer protective barrier system. Data gathered from the FLTF will be used to compare key barrier components and to calibrate and test models for predicting long-term barrier performance

  14. Testing the methodology for site descriptive modelling. Application for the Laxemar area

    International Nuclear Information System (INIS)

    Andersson, Johan; Berglund, Johan; Follin, Sven; Hakami, Eva; Halvarson, Jan; Hermanson, Jan; Laaksoharju, Marcus; Rhen, Ingvar; Wahlgren, C.H.

    2002-08-01

    compared to check for potential inconsistencies. The processed data are used for three-dimensional modelling. The geological modelling provides the geometrical framework for the modelling in other disciplines and results in descriptions of geometry and properties of deformation zones of sizes down to 'local major zones' Q-10 km) and geometry and properties of rock domains. Two descriptions have been derived; the Base Geological Model and the Alternative Geological Model. Given the limited amount of data, regions of the model domain still have quite uncertain descriptions. The geometry is represented using a 3D CAD software (RVS), which is also used as an active interpretation tool for the geometric modelling. The base for the hydrogeological modelling is the Geological Model with its identified volumetric objects. Essential hydrogeological evaluation tools include: assessment of single hole hydraulic tests, interpretation of interference tests and numerical modelling of groundwater flow tests and other observations. The resulting hydrogeological description comprises hydraulic properties for defined geometrical units and boundary conditions for the present day conditions for the rock volume defined by the Base Geological Model. The major tasks for the hydrogeochemical evaluation include: (i) characterisation of undisturbed groundwater chemistry including the origin, depth/lateral distribution and the turnover time; (ii) focusing on data of importance for the safety evaluation such as pH, Eh, chloride, sulphide, colloids and microbes; (iii) identification of possible dissolved oxygen at repository depth. The hydrogeochemical description concerns distribution of the major water types, the water type mixing proportions and lists the major type of chemical reactions occurring at the site. Even if much of the modelling can be done in parallel with other disciplines, consistency checks with hydrogeology can and have been made. These comparisons enhance the confidence in the

  15. Development of thermal mixing enhancement method for lower plenum of the High Temperature Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gradecka, Malwina Joanna, E-mail: malgrad@gmail.com; Woods, Brian G., E-mail: brian.woods@oregonstate.edu

    2016-08-15

    Highlights: • Coolant mixing in lower plenum might be insufficient and pose operational issues. • Two mixing methods were developed to lower the coolant temperature variation. • The methods resulted with reduction of the temperature variation by 60% and 71%. - Abstract: The High Temperature Gas-cooled Reactor (HTGR) is one of the most mature Gen IV reactor concepts under development today. The High Temperature Test Facility (HTTF) at Oregon State University is a test facility that supports the R&D needs for HTGRs. This study focuses on the issue of helium mixing after the core section in the HTTF, the results of which are generally applicable in HTGRs. In the HTTF, hot helium jets at different temperatures are supposed to uniformly mix in the lower plenum (LP) chamber. However, the level of mixing is not sufficient to reduce the peak helium temperature before the hot jet impinges the LP structure, which can cause issues with structural materials and operational issues in the heat exchanger downstream. The maximum allowable temperature variation in the outlet duct connected to the lower plenum is defined as 40 K (±20 K from the average temperature), while the CFD simulations of this study indicate that the reference design suffers temperature variations in the duct as high as 100 K. To solve this issue, the installation of mixing-enhancing structures within the outlet duct were proposed and analyzed using CFD modeling. We show that using either an optimized “Kwiat” structure (developed in this study) or a motionless mixer installed in the outlet duct, the temperature variations can be brought dramatically, with acceptable increases in pressure drop. The optimal solution appears to be to install double motionless mixers with long blades in the outlet duct, which brings the temperature variation into the acceptable range (from 100 K down to 18 K), with a resulting pressure drop increase in the HTTF loop of 0.73 kPa (6% of total pressure drop).

  16. Accelerated cleanup of mixed waste units on the Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    Patterson, J.K.; Johnson, W.L.; Downey, H.D.

    1993-09-01

    This report provides a status of the expedited response action (ERA) projects currently being implemented at the Hanford Site. A detailed review of the accomplishments to date, the technologies employed, the problems encountered, and an analysis of the lessons learned are included. A total of nine ERAs have been initiated at the Hanford Site and are presented in a case study format with emphasis on the progress being made and the challenges ahead

  17. Test plan for immobilization of salt-containing surrogate mixed wastes using polyester resins

    International Nuclear Information System (INIS)

    Biyani, R.K.; Douglas, J.C.; Hendrickson, D.W.

    1997-01-01

    Past operations at many Department of Energy (DOE) sites have resulted in the generation of several waste streams with high salt content. These wastes contain listed and characteristic hazardous constituents and are radioactive. The salts contained in the wastes are primarily chloride, sulfate, nitrate, metal oxides, and hydroxides. DOE has placed these types of wastes under the purview of the Mixed Waste Focus Area (MWFA). The MWFA has been tasked with developing and facilitating the implementation of technologies to treat these wastes in support of customer needs and requirements. The MWFA has developed a Technology Development Requirements Document (TDRD), which specifies performance requirements for technology owners and developers to use as a framework in developing effective waste treatment solutions. This project will demonstrate the use of polyester resins in encapsulating and solidifying DOE's mixed wastes containing salts, as an alternative to conventional and other emerging immobilization technologies

  18. Testing temperature on interfacial shear strength measurements of epoxy resins at different mixing ratios

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Thomason, James L.; Minty, Ross

    2015-01-01

    The interfacial properties as Interfacial Shear Stress (IFSS) in fibre reinforced polymers are essential for further understanding of the mechanical properties of the composite. In this work a single fibre testing method is used in combination with an epoxy matrix made from Araldite 506 epoxy resin...... and triethylenetetramine (TETA) hardener. The IFSS was measured by a microbond test developed for a Thermal Mechanical Analyzer. The preliminary results indicate that IFSS has an inverse dependency of both testing temperature and the mixing ratio of hardener and epoxy resin. Especially interesting was the decreasing...

  19. Emission testing of jatropha and pongamia mixed bio diesel fuel in a diesel engine

    International Nuclear Information System (INIS)

    Ali, M.; Shaikh, A.A.

    2012-01-01

    The present investigation is based on the emission characteristics of mixed bio diesel fuel in a four stroke single cylinder compression ignition engine at constant speed. Refined oils of jatropha and pongamia are converted into bio diesel by acid catalyzed esterification and base catalyzed transesterification reactions. The jatropha and pongamia bio diesel were mixed in equal proportions with conventional mineral diesel fuel. Four samples of fuel were tested namely, diesel fuel, B10, B20 and B40. The emission analysis showed B20 mixed bio diesel fuel blend having better results as compared to other samples. There is 60% and 35% lower emission of carbon monoxide and in sulphur dioxide observed while consuming B20 blended fuel respectively. The test result showed NOx emissions were 10% higher from bio diesel fuel, as compared to conventional diesel fuel. However, these emissions may be reduced by EGR (Exhaust Gas Recirculation) technology. Present research also revealed that that B20 mixed bio diesel fuel can be used, without any modification in a CI engine. (author)

  20. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2008-01-01

    This Streamlined Approach for Environmental Restoration Plan covers activities associated with Corrective Action Unit (CAU) 107 of the Federal Facility Agreement and Consent Order (FFACO, 1996 (as amended February 2008)). CAU 107 consists of the following Corrective Action Sites (CASs) located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site. (1) CAS 01-23-02, Atmospheric Test Site - High Alt; (2) CAS 02-23-02, Contaminated Areas (2); (3) CAS 02-23-03, Contaminated Berm; (4) CAS 02-23-10, Gourd-Amber Contamination Area; (5) CAS 02-23-11, Sappho Contamination Area; (6) CAS 02-23-12, Scuttle Contamination Area; (7) CAS 03-23-24, Seaweed B Contamination Area; (8) CAS 03-23-27, Adze Contamination Area; (9) CAS 03-23-28, Manzanas Contamination Area; (10) CAS 03-23-29, Truchas-Chamisal Contamination Area; (11) CAS 04-23-02, Atmospheric Test Site T4-a; (12) CAS 05-23-06, Atmospheric Test Site; (13) CAS 09-23-06, Mound of Contaminated Soil; (14) CAS 10-23-04, Atmospheric Test Site M-10; and (15) CAS 18-23-02, U-18d Crater (Sulky). Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, engineering drawings, field screening, analytical results, and the results of data quality objectives process (Section 3.0), closure in place with administrative controls or no further action will be implemented for CAU 107. CAU 107 closure activities will consist of verifying that the current postings required under Title 10 Code of Federal Regulations (CFR) Part 835 are in place and implementing use restrictions (URs) at two sites, CAS 03-23-29 and CAS 18-23-02. The current radiological postings combined with the URs are adequate administrative controls to limit site access and worker dose

  1. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2008-09-30

    This Streamlined Approach for Environmental Restoration Plan covers activities associated with Corrective Action Unit (CAU) 107 of the Federal Facility Agreement and Consent Order (FFACO, 1996 [as amended February 2008]). CAU 107 consists of the following Corrective Action Sites (CASs) located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site. (1) CAS 01-23-02, Atmospheric Test Site - High Alt; (2) CAS 02-23-02, Contaminated Areas (2); (3) CAS 02-23-03, Contaminated Berm; (4) CAS 02-23-10, Gourd-Amber Contamination Area; (5) CAS 02-23-11, Sappho Contamination Area; (6) CAS 02-23-12, Scuttle Contamination Area; (7) CAS 03-23-24, Seaweed B Contamination Area; (8) CAS 03-23-27, Adze Contamination Area; (9) CAS 03-23-28, Manzanas Contamination Area; (10) CAS 03-23-29, Truchas-Chamisal Contamination Area; (11) CAS 04-23-02, Atmospheric Test Site T4-a; (12) CAS 05-23-06, Atmospheric Test Site; (13) CAS 09-23-06, Mound of Contaminated Soil; (14) CAS 10-23-04, Atmospheric Test Site M-10; and (15) CAS 18-23-02, U-18d Crater (Sulky). Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, engineering drawings, field screening, analytical results, and the results of data quality objectives process (Section 3.0), closure in place with administrative controls or no further action will be implemented for CAU 107. CAU 107 closure activities will consist of verifying that the current postings required under Title 10 Code of Federal Regulations (CFR) Part 835 are in place and implementing use restrictions (URs) at two sites, CAS 03-23-29 and CAS 18-23-02. The current radiological postings combined with the URs are adequate administrative controls to limit site access and worker dose.

  2. [Study on Tritium Content in Soil at Sites of Nuclear Explosions on the Territory of Semipalatinsk Test Site].

    Science.gov (United States)

    Timonova, L V; Lyakhova, O N; Lukashenko, S N; Aidarkhanov, A O

    2015-01-01

    As a result of investigations carried out on the territory of Semipalatinsk Test Site, tritium was found in different environmental objects--surface and ground waters, vegetation, air environment, and snow cover. The analysis of the data obtained has shown that contamination of environmental objects at the Semipalatinsk Test Site with tritium is associated with the places where underground nuclear tests were performed. Since tritium can originate from an activation reaction and be trapped by pock particles during a test, it was decided to examine the soil in the sites where surface and excavation tests took place. It was found that the concentration of tritium in soil correlates with the concentration of europium. Probably, the concentration of tritium in the soil depends on the character and yield of the tests performed. Findings of the study have revealed that tritium can be found in soil in significant amounts not only in sites where underground nuclear tests took place but also in sites where surface and excavation nuclear tests were carried out.

  3. 78 FR 68360 - Unmanned Aircraft System Test Site Program

    Science.gov (United States)

    2013-11-14

    ... variety of purposes--news helicopters, aerial surveys, film/television production, law enforcement, etc... to design the sites--including the creation of ``fake'' houses or businesses--to allow UAS operators...

  4. Long-term effect of infection prevention practices and case mix on cesarean surgical site infections.

    Science.gov (United States)

    Kittur, Nupur D; McMullen, Kathleen M; Russo, Anthony J; Ruhl, Loie; Kay, Helen H; Warren, David K

    2012-08-01

    To estimate trends in patient characteristics and obstetric complications in an 8-year cohort of patients undergoing cesarean delivery and to use time series analysis to estimate the effect of infection prevention interventions and secular trends in patient characteristics on postcesarean delivery surgical site infections. A multivariable autoregressive integrated moving average model was used to perform time series analysis on a 96-month retrospective cohort of patients who underwent cesarean delivery (January 2003-December 2010) in a U.S. tertiary care hospital. We identified 8,668 women who underwent cesarean delivery. Median age was 26 years (range 12-53 years), 3,093 (35.7%) of patients had body mass indexes (BMIs) of 35 or greater, 2,561 (29.5%) were of white race, and 303 (3.5%) had a surgical site infection. Over the study period, there was a significant increase in the proportion of patients who underwent cesarean delivery who had BMIs of 35 or higher, hypertension or mild preeclampsia, and severe preeclampsia or eclampsia. A nonseasonal autoregressive integrated moving average model with a linear trend and no autocorrelation was identified. In the multivariable autoregressive integrated moving average model of postcesarean surgical site infections, implementation of a policy to administer prophylactic antibiotics within 1 hour before incision, instead of at the time of cord clamp, led to a 48% reduction in cesarean delivery surgical site infections (Δ=-5.4 surgical site infections per 100 cesarean deliveries; Pinfections. III.

  5. Protection of ecological receptors exposed to tritium from the Nevada Test Site underground test area

    International Nuclear Information System (INIS)

    Meyers-Schoene, L.; Bowen, D.G.; Mayasich, S.A.; Bangerter, R.M.

    1995-01-01

    The Nevada Test Site Corrective Action Strategy includes an evaluation of risks to the environment that may be associated with underground nuclear test activities that occurred in the past. Phase 1 of the Underground Test Area (UGTA) Project focuses on tritium. Tritium in deep subsurface soil was modeled from soil to groundwater, and from groundwater to surface water discharge points using a hydrogeological model developed specifically for UGTA. Ecological pathways of concern are those related to the exposure of biota to contaminated surface water and groundwater. Surface water receptors selected were based on those key to the habitats of greatest concern at Ash meadows, nevada, an off-site discharge location. These receptors were algae, pupfish, and great blue heron. Groundwater receptors were microorganisms known to exist in water beneath Rainier Mesa. Acceptable tritium concentrations in surface and groundwater were estimated using models created by Pacific Northwest Laboratory and Oak Ridge National Laboratory, and radiation effects data from the literature. Based on this analysis, concentrations of tritium less than 9.3 x 10 7 pCi/L were predicted to be protective of aquatic and semi-aquatic populations, and of the endangered desert pupfish

  6. Corrective Action Decision Document/Closure Report for Corrective Action Unit 370: T-4 Atmospheric Test Site, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2009-05-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 370, T-4 Atmospheric Test Site, located in Area 4 at the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 370 is comprised of Corrective Action Site (CAS) 04-23-01, Atmospheric Test Site T-4. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 370 due to the implementation of the corrective action of closure in place with administrative controls. To achieve this, corrective action investigation (CAI) activities were performed from June 25, 2008, through April 2, 2009, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 370: T-4 Atmospheric Test Site and Record of Technical Change No. 1.

  7. Final environmental impact statement for the Nevada Test Site and off-site locations in the State of Nevada. Transportation study, Volume 1, Appendix I

    International Nuclear Information System (INIS)

    1996-08-01

    This report has been prepared to address local transportation issues concerning current and potential operations at the Nevada Test Site (NTS), to document the results of the NTS transportation risk analysis, and to provide information and supporting documentation for the Environmental Impact Statement (EIS) for the NTS and Off-Site Locations in the State of Nevada. Four alternatives are evaluated in the NTS EIS: Alternative 1, Continue Current Operations, (No Action); Alternative 2, Discontinue Operations; Alternative 3, Expanded Use; and Alternative 4, Alternate Use of Withdrawn Lands. The transportation risk analysis estimated the health risk from highway transportation of DOE-generated low-level waste, mixed waste, and defense-related nuclear materials for each of the four alternatives

  8. Patch testing with a new fragrance mix detects additional patients sensitive to perfumes and missed by the current fragrance mix.

    Science.gov (United States)

    Frosch, Peter J; Pirker, Claudia; Rastogi, Suresh C; Andersen, Klaus E; Bruze, Magnus; Svedman, Cecilia; Goossens, An; White, Ian R; Uter, Wolfgang; Arnau, Elena Giménez; Lepoittevin, Jean-Pierre; Menné, Torkil; Johansen, Jeanne Duus

    2005-04-01

    The currently used 8% fragrance mix (FM I) does not identify all patients with a positive history of adverse reactions to fragrances. A new FM II with 6 frequently used chemicals was evaluated in 1701 consecutive patients patch tested in 6 dermatological centres in Europe. FM II was tested in 3 concentrations - 28% FM II contained 5% hydroxyisohexyl 3-cyclohexene carboxaldehyde (Lyral), 2% citral, 5% farnesol, 5% coumarin, 1% citronellol and 10%alpha-hexyl-cinnamic aldehyde; in 14% FM II, the single constituents' concentration was lowered to 50% and in 2.8% FM II to 10%. Each patient was classified regarding a history of adverse reactions to fragrances: certain, probable, questionable, none. Positive reactions to FM I occurred in 6.5% of the patients. Positive reactions to FM II were dose-dependent and increased from 1.3% (2.8% FM II), through 2.9% (14% FM II) to 4.1% (28% FM II). Reactions classified as doubtful or irritant varied considerably between the 6 centres, with a mean value of 7.2% for FM I and means ranging from 1.8% to 10.6% for FM II. 8.7% of the tested patients had a certain fragrance history. Of these, 25.2% were positive to FM I; reactivity to FM II was again dose-dependent and ranged from 8.1% to 17.6% in this subgroup. Comparing 2 groups of history - certain and none - values for sensitivity and specificity were calculated: sensitivity: FM I, 25.2%; 2.8% FM II, 8.1%; 14% FM II, 13.5%; 28% FM II, 17.6%; specificity: FM I, 96.5%; 2.8% FM II, 99.5%; 14% FM II, 98.8%; 28% FM II, 98.1%. 31/70 patients (44.3%) positive to 28% FM II were negative to FM I, with 14% FM II this proportion being 16/50 (32%). In the group of patients with a certain history, a total of 7 patients were found reacting to FM II only. Conversely, in the group of patients without any fragrance history, there were significantly more positive reactions to FM I than to any concentration of FM II. In conclusion, the new FM II detects additional patients sensitive to fragrances missed

  9. Design and fuel fabrication processes for the AC-3 mixed-carbide irradiation test

    International Nuclear Information System (INIS)

    Latimer, T.W.; Chidester, K.M.; Stratton, R.W.; Ledergerber, G.; Ingold, F.

    1992-01-01

    The AC-3 test was a cooperative U.S./Swiss irradiation test of 91 wire-wrapped helium-bonded U-20% Pu carbide fuel pins irradiated to 8.3 at % peak burnup in the Fast Flux Test Facility. The test consisted of 25 pins that contained spherepac fuel fabricated by the Paul Scherrer Institute (PSI) and 66 pins that contained pelletized fuel fabricated by the Los Alamos National Laboratory. Design of AC-3 by LANL and PSI was begun in 1981, the fuel pins were fabricated from 1983 to 1985, and the test was irradiated from 1986 to 1988. The principal objective of the AC-3 test was to compare the irradiation performance of mixed-carbide fuel pins that contained either pelletized or sphere-pac fuel at prototypic fluence and burnup levels for a fast breeder reactor

  10. Nevada Test Site annual site environmental report for calendar year 1996

    International Nuclear Information System (INIS)

    Black, S.C.; Townsend, Y.E.

    1997-10-01

    Monitoring and surveillance on and around the Nevada Test Site (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1996 indicated that operations on the NTS were conducted in compliance with applicable DOE, state, and federal regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of liquid effluents, or resuspension of soil was not detectable offsite, and exposure above background to members of the offsite population was not measured by the offsite monitoring program. Using the US Environmental Protection Agency's (EPA) Clean Air Package 1988 (CAP88)PC model and NTS radionuclide emissions and environmental monitoring data, the calculated effective dose equivalent (EDE) to the maximally exposed individual offsite would have been 0.11 mrem. This value is less than 2 percent of the federal dose limit prescribed for radionuclide air emissions. Any person receiving this dose would also have received 144 mrem from natural background radiation. There were no nonradiological releases to the offsite area. Hazardous wastes were shipped offsite to approved disposal facilities. Compliance with the various regulations stemming from the National Environmental Policy Act (NEPA) is being achieved and, where mandated, permits for air and water effluents and waste management have been obtained from the appropriate agencies. Cooperation with other agencies has resulted in seven different consent orders and agreements. Support facilities at off-NTS locations have complied with the requirements of air quality permits and state or local wastewater discharge and hazardous waste permits as mandated for each location

  11. Nevada Test Site annual site environmental report for calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Black, S.C.; Townsend, Y.E. [eds.

    1997-10-01

    Monitoring and surveillance on and around the Nevada Test Site (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1996 indicated that operations on the NTS were conducted in compliance with applicable DOE, state, and federal regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of liquid effluents, or resuspension of soil was not detectable offsite, and exposure above background to members of the offsite population was not measured by the offsite monitoring program. Using the US Environmental Protection Agency`s (EPA) Clean Air Package 1988 (CAP88)PC model and NTS radionuclide emissions and environmental monitoring data, the calculated effective dose equivalent (EDE) to the maximally exposed individual offsite would have been 0.11 mrem. This value is less than 2 percent of the federal dose limit prescribed for radionuclide air emissions. Any person receiving this dose would also have received 144 mrem from natural background radiation. There were no nonradiological releases to the offsite area. Hazardous wastes were shipped offsite to approved disposal facilities. Compliance with the various regulations stemming from the National Environmental Policy Act (NEPA) is being achieved and, where mandated, permits for air and water effluents and waste management have been obtained from the appropriate agencies. Cooperation with other agencies has resulted in seven different consent orders and agreements. Support facilities at off-NTS locations have complied with the requirements of air quality permits and state or local wastewater discharge and hazardous waste permits as mandated for each location.

  12. Morphometric analyses of mixed Dactylorhiza colonies (Orchidaceae) on industrial waste sites in England

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, P.J.A. [Roehampton Institute, London (United Kingdom). Whitelands College, School of Life Sciences

    1998-12-01

    The study investigated morphometric data collected from Dactylorhiza growing on two types of industrial waste (pulverized fuel ash or PFA, and Leblanc process waste) during the summer of 1997. Three species grew on PFA (D. fuchsii, D. incarnata, D. praetermissa). The same species plus D purpurella grew on the Leblanc site, although on both substrates the majority of plants failed to correspond precisely with published descriptions, introducing an element of subjectivity into the field identifications. Principal Components Analysis and Detrended Correspondence Analysis ordinations confirmed that textbook species descriptions corresponded to extremes of multivariate space. Cluster Analysis failed to produce a useful resolution of the data. Discriminant Functions Analysis produced useful results after leaf spotting was removed the analysis. On PFA sites hybrids appeared to be mainly D. praetermissa x D. fuchsii (=D. grandis) or D. praetermissa x D. incarnata (=D. wintoni). The identity of hybrids on the Leblanc site was unclear.

  13. Closure report for housekeeping category, Corrective Action Unit 348, Nevada Test Site

    International Nuclear Information System (INIS)

    1998-01-01

    This Closure Report summarizes the corrective actions which were completed at twelve Corrective Action Sites within Corrective Action Unit 348 at the Nevada Test Site. Current site descriptions, observations and identification of wastes removed are included on FFACO Corrective Action Site housekeeping closure verification forms

  14. Closure report for housekeeping category, Corrective Action Unit 344, Nevada Test Site. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This Closure Report summarizes the corrective actions which were completed at the Corrective Action Sites within Corrective Action Unit 344 at the Nevada Test Site. Current site descriptions, observations and identification of wastes removed are included on FFACO Corrective Action Site housekeeping closure verification forms.

  15. Addendum 1 Composite Analysis for the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Vefa Yucel

    2001-01-01

    A disposal authorization statement (DAS) was issued by the U.S. Department of Energy/Headquarters (DOE/HQ) on December 5, 2000, authorizing the DOE's National Nuclear Security Administration Nevada Operations Office to continue the operation of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site for the disposal of low-level waste and mixed low-level waste. Prior to the issuance of the DAS, the Low-Level Waste Disposal Facility Federal Review Group (LFRG) had conducted reviews of the performance assessment (PA) and the composite analysis (CA) for the Area 5 RWMS, in accordance with the requirements of the DOE Radioactive Waste Management Order DOE O 435.1. A brief history of the reviews is as follows. (The reviews were conducted by independent review teams chartered by the LFRG; the review findings and recommendations were issued in review team reports to the LFRG.) The LFRG accepted the initial PA, with conditions, on August 30, 1996. Revision 2.1 to the PA was issued in January 1998, implementing the conditions of acceptance of the 1996 PA. The LFRG reviewed Revision 2.1 as part of the Area 5 RWMS CA review during 2000, and found it acceptable. The CA and the Supplemental Information provided in response to issues identified during the initial review of the CA were accepted by the LFRG. The Supplemental Information (including the responses to four key issues) is included in the Review Team Report to the LFRG, which recommends that it be incorporated into the CA and issued to all known holders of the CA. The Area 5 RWMS DAS requires that the Supplemental Information generated during the DOE/HQ review of the CA be incorporated into the CA within one year of the date of issuance of the DAS. This report, the first addendum to the Area 5 CA, is prepared to fulfill that requirement. The Supplemental Information includes the following: Issues Identified in the Review Team Report; Crosswalk Presentation; and Maintaining Doses As Low As Reasonably

  16. Scaled Testing to Evaluate Pulse Jet Mixer Performance in Waste Treatment Plant Mixing Vessels

    International Nuclear Information System (INIS)

    Fort, James A.; Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Scott, Paul A.; Minette, Michael J.; Gauglitz, Phillip A.

    2010-01-01

    The Waste Treatment and Immobilization Plant (WTP) at Hanford is being designed and built to pre-treat and vitrify the waste in Hanford's 177 underground waste storage tanks. Numerous process vessels will hold waste at various stages in the WTP. These vessels have pulse jet mixer (PJM) systems. A test program was developed to evaluate the adequacy of mixing system designs in the solids-containing vessels in the WTP. The program focused mainly on non-cohesive solids behavior. Specifically, the program addressed the effectiveness of the mixing systems to suspend settled solids off the vessel bottom, and distribute the solids vertically. Experiments were conducted at three scales using various particulate simulants. A range of solids loadings and operational parameters were evaluated, including jet velocity, pulse volume, and duty cycle. In place of actual PJMs, the tests used direct injection from tubes with suction at the top of the tank fluid. This gave better control over the discharge duration and duty cycle and simplified the facility requirements. The mixing system configurations represented in testing varied from 4 to 12 PJMs with various jet nozzle sizes. In this way the results collected could be applied to the broad range of WTP vessels with varying geometrical configurations and planned operating conditions. Data for 'just-suspended velocity', solids cloud height, and solids concentration vertical profile were collected, analyzed, and correlated. The correlations were successfully benchmarked against previous large-scale test results, then applied to the WTP vessels using reasonable assumptions of anticipated waste properties to evaluate adequacy of the existing mixing system designs.

  17. Laboratory Performance Testing of Warm-Mix Asphalt Technologies for Airfield Pavements

    Science.gov (United States)

    2013-12-01

    moisture damage and low-temperature cracking , durability, and workability. The use of high reclaimed asphalt pavement (RAP) contents was also evaluated...ER D C/ G SL T R -1 3 -4 1 Laboratory Performance Testing of Warm-Mix Asphalt Technologies for Airfield Pavements G eo te ch n ic al a... Pavements Jesse D. Doyle, John F. Rushing, Mariely Mejías-Santiago, Timothy J. McCaffrey, Lance C. Warnock, and M. Kevin Taylor Geotechnical and

  18. Opportunities for mixed oxide fuel testing in the advanced test reactor to support plutonium disposition

    International Nuclear Information System (INIS)

    Terry, W.K.; Ryskamp, J.M.; Sterbentz, J.W.

    1995-08-01

    Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification; (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania; (3) The effects of WGPu isotopic composition; (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight; (5) The effects of americium and gallium in WGPu; (6) Fission gas release from MOX fuel pellets made from WGPu; (7) Fuel/cladding gap closure; (8) The effects of power cycling and off-normal events on fuel integrity; (9) Development of radial distributions of burnup and fission products; (10) Power spiking near the interfaces of MOX and urania fuel assemblies; and (11) Fuel performance code validation. The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory possesses many advantages for performing tests to resolve most of the issues identified above. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified. The facilities at Argonne National Laboratory-West can meet all potential needs for pre- and post-irradiation examination that might arise in a MOX fuel qualification program

  19. Plutonium in the desert environment of the Nevada Test Site and the Tonopah Test Range

    International Nuclear Information System (INIS)

    Romney, E.M.; Essington, E.H.; Fowler, E.B.; Tamura, T.; Gilbert, R.O.

    1987-01-01

    Several safety shot tests were conducted in the desert environment of the Nevada Test Site and the Tonopah Test Range during the period 1955 to 1963. Follow-up studies were conducted in fallout areas resulting from these tests to investigate the distribution in soils and the availability to animals and plants of plutonium (and americium) after residence times of 10 to 20 years. Soil profile studies disclosed that more than 95% of the plutonium (and americium) dispersed as fallout to the environment had remained in the top 5 cm of soil in undisturbed areas. Significant amounts had been redistributed into blow-sand mounds formed underneath clumps of vegetation. That redistribution should be expected because the contaminant was associated primarily with the coarse silt and fine sand particle size fractions. Resuspension factors were calculated that varied from 9.1 x 10 -11 m -1 to 5.4 x 10 -9 m -1 with geometric mean and arithmetic averages of 2.9 x 10 -10 m -1 and 6.8 x 10 -10 m -1 , respectively; however, the plutonium essentially remained in place when the soil surface was left undisturbed. Vegetation in the fallout areas was contaminated primarily by resuspendable material deposited on the surface of plant foliage; plutonium concentration ratios ranged from 10 -3 to 10 0 . Carcass samples of small vertebrate animals collected from fallout areas contained only trace amounts of plutonium compared to the environmental exposure levels. Furthermore, only trace amounts of plutonium (and americium) were found in muscle and organ tissues of grazing cattle during a 3-year on-site residence experiment. 36 references, 4 figures

  20. Nevada Test Site 2000 Annual Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    International Nuclear Information System (INIS)

    Y. E.Townsend

    2001-01-01

    This report is a compilation of the calendar year 2000 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (IL) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure

  1. Nevada Test Site 2000 Annual Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Y. E.Townsend

    2001-02-01

    This report is a compilation of the calendar year 2000 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (IL) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure.

  2. Mixing Languages during Learning? Testing the One Subject—One Language Rule

    Science.gov (United States)

    2015-01-01

    In bilingual communities, mixing languages is avoided in formal schooling: even if two languages are used on a daily basis for teaching, only one language is used to teach each given academic subject. This tenet known as the one subject-one language rule avoids mixing languages in formal schooling because it may hinder learning. The aim of this study was to test the scientific ground of this assumption by investigating the consequences of acquiring new concepts using a method in which two languages are mixed as compared to a purely monolingual method. Native balanced bilingual speakers of Basque and Spanish—adults (Experiment 1) and children (Experiment 2)—learnt new concepts by associating two different features to novel objects. Half of the participants completed the learning process in a multilingual context (one feature was described in Basque and the other one in Spanish); while the other half completed the learning phase in a purely monolingual context (both features were described in Spanish). Different measures of learning were taken, as well as direct and indirect indicators of concept consolidation. We found no evidence in favor of the non-mixing method when comparing the results of two groups in either experiment, and thus failed to give scientific support for the educational premise of the one subject—one language rule. PMID:26107624

  3. Mixing Languages during Learning? Testing the One Subject-One Language Rule.

    Directory of Open Access Journals (Sweden)

    Eneko Antón

    Full Text Available In bilingual communities, mixing languages is avoided in formal schooling: even if two languages are used on a daily basis for teaching, only one language is used to teach each given academic subject. This tenet known as the one subject-one language rule avoids mixing languages in formal schooling because it may hinder learning. The aim of this study was to test the scientific ground of this assumption by investigating the consequences of acquiring new concepts using a method in which two languages are mixed as compared to a purely monolingual method. Native balanced bilingual speakers of Basque and Spanish-adults (Experiment 1 and children (Experiment 2-learnt new concepts by associating two different features to novel objects. Half of the participants completed the learning process in a multilingual context (one feature was described in Basque and the other one in Spanish; while the other half completed the learning phase in a purely monolingual context (both features were described in Spanish. Different measures of learning were taken, as well as direct and indirect indicators of concept consolidation. We found no evidence in favor of the non-mixing method when comparing the results of two groups in either experiment, and thus failed to give scientific support for the educational premise of the one subject-one language rule.

  4. Mixing Languages during Learning? Testing the One Subject-One Language Rule.

    Science.gov (United States)

    Antón, Eneko; Thierry, Guillaume; Duñabeitia, Jon Andoni

    2015-01-01

    In bilingual communities, mixing languages is avoided in formal schooling: even if two languages are used on a daily basis for teaching, only one language is used to teach each given academic subject. This tenet known as the one subject-one language rule avoids mixing languages in formal schooling because it may hinder learning. The aim of this study was to test the scientific ground of this assumption by investigating the consequences of acquiring new concepts using a method in which two languages are mixed as compared to a purely monolingual method. Native balanced bilingual speakers of Basque and Spanish-adults (Experiment 1) and children (Experiment 2)-learnt new concepts by associating two different features to novel objects. Half of the participants completed the learning process in a multilingual context (one feature was described in Basque and the other one in Spanish); while the other half completed the learning phase in a purely monolingual context (both features were described in Spanish). Different measures of learning were taken, as well as direct and indirect indicators of concept consolidation. We found no evidence in favor of the non-mixing method when comparing the results of two groups in either experiment, and thus failed to give scientific support for the educational premise of the one subject-one language rule.

  5. Mixed waste solidification testing on polymer and cement-based waste forms in support of Hanford's WRAP 2A facility

    International Nuclear Information System (INIS)

    Burbank, D.A. Jr.; Weingardt, K.M.

    1993-10-01

    A testing program has been conducted by the Westinghouse Hanford Company to confirm the baseline waste form selection for use in Waste Receiving and Processing (WRAP) Module 2A. WRAP Module 2A will provide treatment required to properly dispose of containerized contact-handled, mixed low-level waste at the US Department of Energy Hanford Site in south-central Washington State. Solidification/stabilization has been chosen as the appropriate treatment for this waste. This work is intended to test cement-based, thermosetting polymer, and thermoplastic polymer solidification media to substantiate the technology approach for WRAP Module 2A. Screening tests were performed using the major chemical constituent of each waste type to measure the gross compatibility with the immobilization media and to determine formulations for more detailed testing. Surrogate materials representing each of the eight waste types were prepared in the laboratory. These surrogates were then solidified with the selected immobilization media and subjected to a battery of standard performance tests. Detailed discussion of the laboratory work and results are contained in this report

  6. Testing the methodology for site descriptive modelling. Application for the Laxemar area

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Johan [JA Streamflow AB, Aelvsjoe (Sweden); Berglund, Johan [SwedPower AB, Stockholm (Sweden); Follin, Sven [SF Geologic AB, Stockholm (Sweden); Hakami, Eva [Itasca Geomekanik AB, Stockholm (Sweden); Halvarson, Jan [Swedish Nuclear Fuel and Waste Management Co, Stockholm (Sweden); Hermanson, Jan [Golder Associates AB, Stockholm (Sweden); Laaksoharju, Marcus [Geopoint (Sweden); Rhen, Ingvar [Sweco VBB/VIAK, Stockholm (Sweden); Wahlgren, C.H. [Sveriges Geologiska Undersoekning, Uppsala (Sweden)

    2002-08-01

    and after this compared to check for potential inconsistencies. The processed data are used for three-dimensional modelling. The geological modelling provides the geometrical framework for the modelling in other disciplines and results in descriptions of geometry and properties of deformation zones of sizes down to 'local major zones' Q-10 km) and geometry and properties of rock domains. Two descriptions have been derived; the Base Geological Model and the Alternative Geological Model. Given the limited amount of data, regions of the model domain still have quite uncertain descriptions. The geometry is represented using a 3D CAD software (RVS), which is also used as an active interpretation tool for the geometric modelling. The base for the hydrogeological modelling is the Geological Model with its identified volumetric objects. Essential hydrogeological evaluation tools include: assessment of single hole hydraulic tests, interpretation of interference tests and numerical modelling of groundwater flow tests and other observations. The resulting hydrogeological description comprises hydraulic properties for defined geometrical units and boundary conditions for the present day conditions for the rock volume defined by the Base Geological Model. The major tasks for the hydrogeochemical evaluation include: (i) characterisation of undisturbed groundwater chemistry including the origin, depth/lateral distribution and the turnover time; (ii) focusing on data of importance for the safety evaluation such as pH, Eh, chloride, sulphide, colloids and microbes; (iii) identification of possible dissolved oxygen at repository depth. The hydrogeochemical description concerns distribution of the major water types, the water type mixing proportions and lists the major type of chemical reactions occurring at the site. Even if much of the modelling can be done in parallel with other disciplines, consistency checks with hydrogeology can and have been made. These comparisons

  7. Corrective Action Investigation Plan for Corrective Action Unit 34: Area 3 Contaminated Waste Site, Nevada Test Site, Nevada (Rev. 0, March 2001)

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office

    2001-03-27

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 34 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 34 consists of four Corrective Action Sites (CASs). The CAU is located within the Area 3 Compound at the Nevada Test Site (NTS) in the vicinity of the Mud Plant Facility in Yucca Valley. Historically, CAS 03-09-07, Mud Pit, was used for disposal of excess mud from washing drilling equipment from 1968 to 1974, at which time it began to be used for excess mud disposal (currently inactive); CAS 03-44-01, Chromium Contamination Spill, was used to store additives used in the formulation of drilling mud from the early 1960s to the mid-1990s; CAS 03-47-02, Area 3 Mud Plant Pond, was used as a freshwater storage reservoir for the mud plant as well as supplied water for a number of activities including the mixing of mud, the rinsing and cleaning of tanks, and various washdowns from the 1960s through 1990s; and CAS 03-09-06, Mud Disposal Crater, was created in 1962 by an underground nuclear detonation (i.e., Chinchilla test) and was used to mix and store mud, dispose of receiving waste from the mud plant floor drains and excess drilling mud, and clean/flush mix tanks through the mid-1990s. Based on site history, the scope of this plan is to identify potentially contaminated ground soil at each of the four CASs and determine the quantity, nature, and extent of contaminants of potential concern (COPCs). The investigation will include systematic and biased surface and subsurface soil and mud sampling using hand-auguring and direct-push techniques; visual, video, and/or electromagnetic surveys of pipes; field screening for volatile organic compounds (VOCs) and alpha/beta-emitting radionuclides; and

  8. Field testing at the Climax Stock on the Nevada Test Site: spent fuel test and radionuclide migration experiments

    International Nuclear Information System (INIS)

    Ballou, L.B.; Isherwood, D.J.; Patrick, W.C.

    1982-01-01

    Two field tests in the Climax Stock are being conducted. The Climax Stock, a granitic instrusive, has been administratively excluded from consideration as a full-scale repository site. However, it provides a readily available facility for field testing with high-level radioactive materials at a depth (420 m) approaching that of a repository. The major test activity in the 1980 fiscal year has been initiation of the Spent Fuel Test-Climax (SFT-C). This test, which was authorized in June 1978, is designed to evaluate the generic feasibility of geologic storage and retrievability of commercial power reactor spent fuel assemblies in a granitic medium. In addition, the test is configured and instrumented to provide thermal and thermomechanical response data that will be relevant to the design of a repository in hard crystalline rock. The other field activity in the Climax Stock is a radionuclide migration test. It combines a series of field and laboratory migration experiments with the use of existing hydrologic models for pretest predictions and data interpretation. Goals of this project are to develop: (1) field measurement techniques for radionuclide migration studies in a hydrologic regime where the controlling mechanism is fracture permeability; (2) field test data on radionuclide migration; and (3) a comparison of laboratory- and field-measured retardation factors. This radionuclide migration test, which was authorized in the middle of the 1980 fiscal year, is in the preliminary design phase. The detailed program plan was prepared and subjected to formal peer review in August. In September/October researchers conducted preliminary flow tests with water in selected near-vertical fractures intersected by small horizontal boreholes. These tests were needed to establish the range of pressures, flow rates, and other operating parameters to be used in conducting the nuclide migration tests. 21 references, 14 figures, 1 table

  9. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting

  10. Species? and site?specific impacts of an invasive herbivore on tree survival in mixed forests

    OpenAIRE

    Holland, E. Penelope; Gormley, Andrew M.; Pech, Roger P.

    2016-01-01

    Abstract Invasive herbivores are often managed to limit their negative impact on plant populations, but herbivore density ? plant damage relationships are notoriously spatially and temporally variable. Site and species characteristics (both plant and herbivore) must be considered when assessing the potential for herbivore damage, making it difficult to set thresholds for efficient management. Using the invasive brushtail possum Trichosurus vulpecula in New Zealand as a case study, we paramete...

  11. In situ radiological characterization to support a test excavation at a liquid waste disposal site

    International Nuclear Information System (INIS)

    Keele, B.D.; Bauer, R.G.; Blewett, G.R.; Troyer, G.L.

    1994-05-01

    An in situ radiological detection system was developed to support a small test excavation at a liquid waste disposal site at the Hanford Site in Richland, Washington. Instrumentation, calibration and comparisons to samples are discussed

  12. Severe burning treatment tested on lowland pine sites

    Science.gov (United States)

    S. Little; E. B. Moore

    1953-01-01

    Since the prescribed use of fire is a fairly new silvicultural technique for preparing seedbeds for pine in the New Jersey pine region, it has been used rather cautiously. Burning treatments have been made in the winter, when periodic light fires can be easily controlled. The treatments have been used almost exclusively on upland sites.

  13. Ubiquinone binding site of yeast NADH dehydrogenase revealed by structures binding novel competitive- and mixed-type inhibitors.

    Science.gov (United States)

    Yamashita, Tetsuo; Inaoka, Daniel Ken; Shiba, Tomoo; Oohashi, Takumi; Iwata, So; Yagi, Takao; Kosaka, Hiroaki; Miyoshi, Hideto; Harada, Shigeharu; Kita, Kiyoshi; Hirano, Katsuya

    2018-02-05

    Yeast Ndi1 is a monotopic alternative NADH dehydrogenase. Its crystal structure in complex with the electron acceptor, ubiquinone, has been determined. However, there has been controversy regarding the ubiquinone binding site. To address these points, we identified the first competitive inhibitor of Ndi1, stigmatellin, along with new mixed-type inhibitors, AC0-12 and myxothiazol, and thereby determined the crystal structures of Ndi1 in complexes with the inhibitors. Two separate binding sites of stigmatellin, STG-1 and STG-2, were observed. The electron density at STG-1, located at the vicinity of the FAD cofactor, further demonstrated two binding modes: STG-1a and STG-1b. AC0-12 and myxothiazol are also located at the vicinity of FAD. The comparison of the binding modes among stigmatellin at STG-1, AC0-12, and myxothiazol revealed a unique position for the aliphatic tail of stigmatellin at STG-1a. Mutations of amino acid residues that interact with this aliphatic tail at STG-1a reduced the affinity of Ndi1 for ubiquinone. In conclusion, the position of the aliphatic tail of stigmatellin at STG-1a provides a structural basis for its competitive inhibition of Ndi1. The inherent binding site of ubiquinone is suggested to overlap with STG-1a that is distinct from the binding site for NADH.

  14. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-03-31

    This Streamlined Approach for Environmental Restoration Plan covers activities associated with Corrective Action Unit (CAU) 107 of the Federal Facility Agreement and Consent Order (1996 [as amended February 2008]). CAU 107 consists of the following Corrective Action Sites (CASs) located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site. {sm_bullet} CAS 01-23-02, Atmospheric Test Site - High Alt{sm_bullet} CAS 02-23-02, Contaminated Areas (2){sm_bullet} CAS 02-23-03, Contaminated Berm{sm_bullet} CAS 02-23-10, Gourd-Amber Contamination Area{sm_bullet} CAS 02-23-11, Sappho Contamination Area{sm_bullet} CAS 02-23-12, Scuttle Contamination Area{sm_bullet} CAS 03-23-24, Seaweed B Contamination Area{sm_bullet} CAS 03-23-27, Adze Contamination Area{sm_bullet} CAS 03-23-28, Manzanas Contamination Area{sm_bullet} CAS 03-23-29, Truchas-Chamisal Contamination Area{sm_bullet} CAS 04-23-02, Atmospheric Test Site T4-a{sm_bullet} CAS 05-23-06, Atmospheric Test Site{sm_bullet} CAS 09-23-06, Mound of Contaminated Soil{sm_bullet} CAS 10-23-04, Atmospheric Test Site M-10{sm_bullet} CAS 18-23-02, U-18d Crater (Sulky) Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, engineering drawings, field screening, analytical results, and the results of data quality objectives process (Section 3.0), closure in place with administrative controls or no further action will be implemented for CAU 107.

  15. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    This Streamlined Approach for Environmental Restoration Plan covers activities associated with Corrective Action Unit (CAU) 107 of the Federal Facility Agreement and Consent Order (1996 (as amended February 2008)). CAU 107 consists of the following Corrective Action Sites (CASs) located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site. (sm b ullet) CAS 01-23-02, Atmospheric Test Site - High Alt(sm b ullet) CAS 02-23-02, Contaminated Areas (2)(sm b ullet) CAS 02-23-03, Contaminated Berm(sm b ullet) CAS 02-23-10, Gourd-Amber Contamination Area(sm b ullet) CAS 02-23-11, Sappho Contamination Area(sm b ullet) CAS 02-23-12, Scuttle Contamination Area(sm b ullet) CAS 03-23-24, Seaweed B Contamination Area(sm b ullet) CAS 03-23-27, Adze Contamination Area(sm b ullet) CAS 03-23-28, Manzanas Contamination Area(sm b ullet) CAS 03-23-29, Truchas-Chamisal Contamination Area(sm b ullet) CAS 04-23-02, Atmospheric Test Site T4-a(sm b ullet) CAS 05-23-06, Atmospheric Test Site(sm b ullet) CAS 09-23-06, Mound of Contaminated Soil(sm b ullet) CAS 10-23-04, Atmospheric Test Site M-10(sm b ullet) CAS 18-23-02, U-18d Crater (Sulky) Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, engineering drawings, field screening, analytical results, and the results of data quality objectives process (Section 3.0), closure in place with administrative controls or no further action will be implemented for CAU 107.

  16. Evaluation of the Pavement Quality Indicator (PQI for the on-site density measurement of asphalt emulsion mixes

    Directory of Open Access Journals (Sweden)

    Martínez-Echevarría, M. J.

    2013-03-01

    Full Text Available The Pavement Quality Indicator (PQI is a non-nuclear gauge used for the on-site density measurement of asphalt pavements without the need to extract core samples. Previous studies of hot asphalt mixes found that PQI density readings were very similar to laboratory density measurements of pavement cores. This paper describes the first stage of a research project whose objective is to analyze PQI density measurements of mixes manufactured with an asphalt emulsion binder. The PQI density variability for such mixes was verified and compared with the results obtained with other on-site methods for measuring pavement density.

    El equipo Pavement Quality Indicator es un dispositivo para la determinación de densidad in situ en pavimentos asfálticos sin extracción de testigos. Las experiencias con este equipo en mezclas bituminosas en caliente, recogidas en diferentes fuentes bibliográficas, muestran que las densidades medidas in situ con el PQI son muy similares a las obtenidas mediante la extracción de testigos. En este artículo se expone la primera etapa de un proyecto de investigación que tiene por objeto analizar los resultados de mediciones efectuadas con PQI en mezclas bituminosas donde se utiliza emulsión asfáltica como ligante. Se comprueba la variabilidad de la densidad obtenida con el equipo para este tipo de mezclas, y se comparan los resultados con otros métodos de medida de densidad in situ.

  17. Development of Simulants to Support Mixing Tests for High Level Waste and Low Activity Waste

    International Nuclear Information System (INIS)

    EIBLING, RUSSELLE.

    2004-01-01

    The objectives of this study were to develop two different types of simulants to support vendor agitator design studies and mixing studies. The initial simulant development task was to develop rheologically-bounding physical simulants and the final portion was to develop a nominal chemical simulant which is designed to match, as closely as possible, the actual sludge from a tank. The physical simulants to be developed included a lower and upper rheologically bounded: pretreated low activity waste (LAW) physical simulant; LAW melter feed physical simulant; pretreated high level waste (HLW) physical simulant; HLW melter feed physical simulant. The nominal chemical simulant, hereafter referred to as the HLW Precipitated Hydroxide simulant, is designed to represent the chemical/physical composition of the actual washed and leached sludge sample. The objective was to produce a simulant which matches not only the chemical composition but also the physical properties of the actual waste sample. The HLW Precipitated Hydroxide simulant could then be used for mixing tests to validate mixing, homogeneity and representative sampling and transferring issues. The HLW Precipitated Hydroxide simulant may also be used for integrated nonradioactive testing of the WTP prior to radioactive operation

  18. Mitigation of Tank 241-SY-101 by pump mixing: Results of testing phases A and B

    Energy Technology Data Exchange (ETDEWEB)

    Allemann, R.T.; Antoniak, Z.I.; Chvala, W.D.; Friley, J.R.; Gregory, W.B.; Hudson, J.D.; Michener, T.E.; Panisko, F.E.; Stewart, C.W.; Wise, B.M. [Pacific Northwest Lab., Richland, WA (United States); Efferding, L.E.; Fadeff, J.G.; Irwin, J.J.; Kirch, N.W. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-03-01

    A spare mixing pump from the Hanford Grout Program was installed in Hanford double-shell waste Tank 241-SY-101 on July 3, 1993, after being modified to take advantage of waste stratification. It was anticipated that pump mixing would prevent large episodic flammable gas releases that had been occurring about every 100-150 days. A cautious initial test plan, called Phase A, was run to find how the pump and tank would behave in response to very brief and gentle pump operation. No large gas releases were triggered, and the pump performed well except for two incidents of nozzle plugging. On October 21, 1993, the next test series, Phase B, began, and the pump was applied more aggressively to mix the tank contents and mitigate uncontrolled gas releases. Orienting the pump in new directions released large volumes of gas and reduced the waste level to a near-record low. Results of the entire period from pump installation to the end of Phase B on December 17, 1993, are presented in detail in this document. Though long-term effects require further evaluation, we conclude from these data that the jet mixer pump is an effective means of controlling flammable gas release and that it has met the success criteria for mitigation in this tank.

  19. The environment of the nuclear test sites on Novaya Zemlya

    International Nuclear Information System (INIS)

    Skorve, J.

    1995-01-01

    A Norwegian study of the effects of Soviet nuclear testing on the arctic island of Novaya Zemlya is underway. The study has used aerial photographs and satellite images and has revealed major rockslides and crater features that may be attributable to testing. It has been claimed that underground testing carries little risk of post-explosion contaminant release, as the explosion vitrifies and seals the surrounding rock mass. Some experts doubt the validity of this claim, and elucidation of the hydrogeological aspects of such nuclear testing is one of the aims of the study

  20. African and Caribbean Nurses' Decisions about HIV Testing: A Mixed Methods Study.

    Science.gov (United States)

    Harrowing, Jean N; Edwards, Nancy; Richter, Solina; Minnie, Karin; Rae, Tania

    2018-02-01

    Nurses in Jamaica, Kenya, South Africa, and Uganda are at risk for occupational exposure to HIV. Little is known about the experiences and policy supports related to nurses having themselves tested for the virus. This article reports a mixed-methods study about contextual influences on nurses' decision-making about HIV testing. Individual and focus group interviews, as well as a questionnaire on workplace polices and quality assurance and a human resource management assessment tool provided data. Fear of a positive diagnosis and stigma and lack of confidentiality along with gaps in the policy environment contributed to indecision about testing. There were significant differences in policy supports among countries. Institutional support must be addressed if improvements in HIV testing for health care workers are going to be effectively implemented. Future work is required to better understand how HRM policies intersect to create conditions of perceived vulnerability for HIV positive staff.

  1. Technical specification: Mixed-oxide pellets for the light-water reactor irradiation demonstration test

    International Nuclear Information System (INIS)

    Cowell, B.S.

    1997-06-01

    This technical specification is a Level 2 Document as defined in the Fissile Materials Disposition Program Light-Water Reactor Mixed-oxide Fuel Irradiation Test Project Plan. It is patterned after the pellet specification that was prepared by Atomic Energy of Canada, Limited, for use by Los Alamos National Laboratory in fabrication of the test fuel for the Parallex Project, adjusted as necessary to reflect the differences between the Canadian uranium-deuterium reactor and light-water reactor fuels. This specification and the associated engineering drawing are to be utilized only for preparation of test fuel as outlined in the accompanying Request for Quotation and for additional testing as directed by Oak Ridge National Laboratory or the Department of Energy

  2. Waste immobilization demonstration program for the Hanford Site's Mixed Waste Facility

    International Nuclear Information System (INIS)

    Burbank, D.A.; Weingardt, K.M.

    1994-05-01

    This paper presents an overview of the Waste Receiving and Processing facility, Module 2A> waste immobilization demonstration program, focusing on the cooperation between Hanford Site, commercial, and international participants. Important highlights of the development and demonstration activities is discussed from the standpoint of findings that have had significant from the standpoint of findings that have had significant impact on the evolution of the facility design. A brief description of the future direction of the program is presented, with emphasis on the key aspects of the technologies that call for further detailed investigation

  3. On-site PD diagnostics of power cables using oscillating wave test system

    Energy Technology Data Exchange (ETDEWEB)

    Gulski, E.; Smit, J.J. [Delft University of Technology (Netherlands). High Voltage Laboratory; Seitz, P.N. [Seitz Instruments and Co., (Switzerland); Smit, J.C.; Turner, M. [Haefely Trench AG (Switzerland). Instruments Div.

    1999-07-01

    The paper discusses the results of partial discharge measurements in medium voltage power cables using oscillating test voltages. In particular, the sensitivity and the reproducibility of this new method for on-site testing are discussed. Based on laboratory and on-site tests the usefulness of this PD measuring technique for practical applications is presented. (author)

  4. 78 FR 77646 - Proposed Information Collection; Comment Request; 2014 Census Site Test

    Science.gov (United States)

    2013-12-24

    ... site test will include 192,500 Housing Units to be contacted for the census. This component includes an... locating housing units for enumeration activities. In addition, for follow-on to the 2014 Census Site Test... methodology. The objectives of this component of the test are to: Design and develop software solutions...

  5. Monitoring methods used at the Radioactive Waste Management Site at the Nevada Test Site

    International Nuclear Information System (INIS)

    Emer, D.F.; King, K.M.

    1988-01-01

    The state of Nevada has granted permission to dispose of mixed waste (MW) at the NTS. During interim status, MW must be disposed of in an existing pit (Pit 3); there will be no new pit excavated for the disposal of MW prior to state approval; and groundwater monitoring, pit liners, and a moisture monitoring system are not required. However, for the purposes of providing an alternative vadose zone monitoring system for future permitted operations, placement and development of monitoring capabilities is necessary before MW is placed. The preliminary MW monitoring system addresses three areas of concern: downward movement of moisture through the waste, migration of radioactive components, and migration of hazardous components

  6. Status of the flora and fauna on the Nevada Test Site, 1992

    International Nuclear Information System (INIS)

    Hunter, R.B.

    1994-03-01

    This report documents changes in the populations of plants and animals on the Nevada Test Site (NTS) for calendar year 1992. It is part of a Department of Energy (DOE) program (Basic Environmental Compliance and Monitoring Program -- BECAMP) that also includes monitoring DOE compliance with the Endangered Species Act, the Historic Preservation Act, and the American Indian Freedom of Religion Act. Ecological studies were to comply with the National Environmental Policy Act and DOE Order 5400.1, ''General Environmental Protection Program.'' These studies focused on the following: status of ephemeral plants on the Nevada Test Site, 1992; status of reptile and amphibian populations on the Nevada Test Site, 1992; trends in small mammal populations on the Nevada Test Site, 1992; status of large mammals and birds at Nevada Test Site, 1992; and status of perennial plants on the Nevada Test Site, 1992

  7. Closure Report for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2008-04-01

    Corrective Action Unit (CAU) 151 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Septic Systems and Discharge Area. CAU 151 consists of the following eight Corrective Action Sites (CASs), located in Areas 2, 12, and 18 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada: (1) CAS 02-05-01, UE-2ce Pond; (2) CAS 12-03-01, Sewage Lagoons (6); (3) CAS 12-04-01, Septic Tanks; (4) CAS 12-04-02, Septic Tanks; (5) CAS 12-04-03, Septic Tank; (6) CAS 12-47-01, Wastewater Pond; (7) CAS 18-03-01, Sewage Lagoon; and (8) CAS 18-99-09, Sewer Line (Exposed). CAU 151 closure activities were conducted according to the FFACO (FFACO, 1996; as amended February 2008) and the Corrective Action Plan for CAU 151 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007) from October 2007 to January 2008. The corrective action alternatives included no further action, clean closure, and closure in place with administrative controls. CAU 151 closure activities are summarized in Table 1. Closure activities generated liquid remediation waste, sanitary waste, hydrocarbon waste, and mixed waste. Waste generated was appropriately managed and disposed. Waste that is currently staged onsite is being appropriately managed and will be disposed under approved waste profiles in permitted landfills. Waste minimization activities included waste characterization sampling and segregation of waste streams. Some waste exceeded land disposal restriction limits and required offsite treatment prior to disposal. Other waste meeting land disposal restrictions was disposed of in appropriate onsite or offsite landfills. Waste disposition documentation is included as Appendix C.

  8. Closure Report for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2008-01-01

    Corrective Action Unit (CAU) 151 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Septic Systems and Discharge Area. CAU 151 consists of the following eight Corrective Action Sites (CASs), located in Areas 2, 12, and 18 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada: (1) CAS 02-05-01, UE-2ce Pond; (2) CAS 12-03-01, Sewage Lagoons (6); (3) CAS 12-04-01, Septic Tanks; (4) CAS 12-04-02, Septic Tanks; (5) CAS 12-04-03, Septic Tank; (6) CAS 12-47-01, Wastewater Pond; (7) CAS 18-03-01, Sewage Lagoon; and (8) CAS 18-99-09, Sewer Line (Exposed). CAU 151 closure activities were conducted according to the FFACO (FFACO, 1996; as amended February 2008) and the Corrective Action Plan for CAU 151 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007) from October 2007 to January 2008. The corrective action alternatives included no further action, clean closure, and closure in place with administrative controls. CAU 151 closure activities are summarized in Table 1. Closure activities generated liquid remediation waste, sanitary waste, hydrocarbon waste, and mixed waste. Waste generated was appropriately managed and disposed. Waste that is currently staged onsite is being appropriately managed and will be disposed under approved waste profiles in permitted landfills. Waste minimization activities included waste characterization sampling and segregation of waste streams. Some waste exceeded land disposal restriction limits and required offsite treatment prior to disposal. Other waste meeting land disposal restrictions was disposed of in appropriate onsite or offsite landfills. Waste disposition documentation is included as Appendix C

  9. On the Use of an Algebraic Signature Analyzer for Mixed-Signal Systems Testing

    Directory of Open Access Journals (Sweden)

    Vadim Geurkov

    2014-01-01

    Full Text Available We propose an approach to design of an algebraic signature analyzer that can be used for mixed-signal systems testing. The analyzer does not contain carry propagating circuitry, which improves its performance as well as fault tolerance. The common design technique of a signature analyzer for mixed-signal systems is based on the rules of an arithmetic finite field. The application of this technique to the systems with an arbitrary radix is a challenging task and the devices designed possess high hardware complexity. The proposed technique is simple and applicable to systems of any size and radix. The hardware complexity is low. The technique can also be used in arithmetic/algebraic coding and cryptography.

  10. Westinghouse-GOTHIC modeling of NUPEC's hydrogen mixing and distribution test M-4-3

    International Nuclear Information System (INIS)

    Ofstun, R.P.; Woodcock, J.; Paulsen, D.L.

    1994-01-01

    NUPEC (NUclear Power Engineering Corporation) ran a series of hydrogen mixing and distribution tests which were completed in April 1992. These tests were performed in a 1/4 linearly scaled model containment and were specifically designed to be used for computer code validation. The results of test M-4-3, along with predictions from several computer codes, were presented to the participants of ISP-35 (a blind test comparison of code calculated results with data from NUPEC test M-7-1) at a meeting in March 1993. Test M-4-3, which was similar to test M-7-1, released a mixture of steam and helium into a steam generator compartment located on the lower level of containment. The majority of codes did well at predicting the global pressure and temperature trends, however, some typical lumped parameter modeling problems were identified at that time. In particular, the models had difficulty predicting the temperature and helium concentrations in the so called 'dead ended volumes' (pressurizer compartment and in-core chase region). Modeling of the dead-ended compartments using a single lumped parameter volume did not yield the appropriate temperature and helium response within that volume. The Westinghouse-GOTHIC (WGOTHIC) computer code is capable of modeling in one, two or three dimensions (or any combination thereof). This paper describes the WGOTHIC modeling of the dead-ended compartments for NUPEC test M-4-3 and gives comparisons to the test data. 1 ref., 1 tab., 14 figs

  11. Thermal mixing tests in a semiannular downcomer with interacting flows from cold legs: International Agreement Report

    Energy Technology Data Exchange (ETDEWEB)

    Tuomisto, H; Mustonen, P

    1986-10-01

    This report describes the test facility and test program for studying thermal mixing of high-pressure injection (HPI) water in the two-fifths scale model of three cold legs, semiannular downcomer and lower plenum of a pressurized water reactor. This test series has been carried out by mutual agreement on the pressurized thermal shock (PTS) information exchange between the US Nuclear Regulation Commission and Imatran Voima Oy. The test facility was originally designed to model the Finnish Loviisa plant but it was redesigned and modified for this test program. The facility can be operated at atmospheric pressure with loop and HPI flows from different cold legs in the area of interest to PTS. Transparent materials were used to allow flow visualization during the tests. The choice of transparent materials limit the upper temperature to 75/sup 0/C. The full buoyancy effect was induced by salt addition and the HPI temperature was used as a tracer. The test matrix consists of 20 tests. The varied parameters were flow rates and the number and configuration of cold legs with HPI and loop flows. Four tests were done with decreasing loop flow temperature to simulate primary flows during steam line breaks.

  12. Surface Disturbances at the Punggye-ri Nuclear Test Site: Another Indicator of Nuclear Testing?

    Energy Technology Data Exchange (ETDEWEB)

    Pabian, Frank V. [Los Alamos National Laboratory; Coblentz, David [Los Alamos National Laboratory

    2017-02-03

    A review of available very high-resolution commercial satellite imagery (bracketing the time of North Korea’s most recent underground nuclear test on 9 September 2016 at the Punggye-ri Underground Nuclear Test Site) has led to the detection and identification of several minor surface disturbances on the southern flank of Mt. Mantap. These surface disturbances occur in the form of small landslides, either alone or together with small zones of disturbed bare rock that appear to have been vertically lofted (“spalled”) as a result of the most recent underground explosion. Typically, spall can be uniquely attributed to underground nuclear testing and is not a result of natural processes. However, given the time gap of up to three months between images (pre- and post-event), which was coincident with a period of heavy typhoon flooding in the area1, it is not possible to determine whether the small landslides were exclusively explosion induced, the consequence of heavy rainfall erosion, or some combination of the two.

  13. Geotechnical characteristics of bentonite/sandy silt mixes for use in waste disposal sites

    International Nuclear Information System (INIS)

    Abeele, W.V.

    1984-06-01

    The coefficient of consolidation for bentonite/sandy silt ratios of 0.04 to 0.14 decreases inversely proportional with the square of that ratio, whereas the compression index, the swelling index, and the permeability change index increase with increasing bentonite ratio. A strong relationship also exists between the void ratio and the logarithm of the applied stress for any given bentonite ratio. The empirical linear relationship between the void ratio and the logarithm of the applied stress, developed by Taylor, is excellent and enables us to limit the evaluation of conductivity at any void ratio to the measurement of the initial and the desired void ratio, the initial conductivity, and the permeability change index. This allows us to read directly, for a given bentonite ratio, the void ratio (or compaction) needed so that a required hydraulic conductivity will prevail. This is crucial in the choice of materials or mixes to be used in a wick system where an established differentiation in hydraulic conductivity is desirable

  14. Design, implementation and testing of extended and mixed precisionBLAS

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.S.; Demmel, J.W.; Bailey, D.H.; Henry, G.; Hida, Y.; Iskandar, J.; Kahan, W.; Kapur, A.; Martin, M.C.; Tung, T.; Yoo, D.J.

    2000-10-20

    This article describes the design rationale, a C implementation, and conformance testing of a subset of the new Standard for the BLAS (Basic Linear Algebra Subroutines): Extended and Mixed Precision BLAS. Permitting higher internal precision and mixed input/output types and precisions allows us to implement some algorithms that are simpler, more accurate, and sometimes faster than possible without these features. The new BLAS are challenging to implement and test because there are many more subroutines than in the existing Standard, and because we must be able to assess whether a higher precision is used for internal computations than is used for either input or output variables. We have therefore developed an automated process of generating and systematically testing these routines. Our methodology is applicable to languages besides C. In particular, our algorithms used in the testing code will be valuable to all other BLAS implementors. Our extra precision routines achieve excellent performance--close to half of the machine peak Megaflop rate even for the Level 2 BLAS, when the data access is stride one.

  15. Postprandial blood glucose response to a standard test meal in insulin-requiring patients with diabetes treated with insulin lispro mix 50 or human insulin mix 50

    Science.gov (United States)

    Gao, Y; Li, G; Li, Y; Guo, X; Yuan, G; Gong, Q; Yan, L; Zheng, Y; Zhang, J

    2008-01-01

    Aim To compare the 2-h postprandial blood glucose (PPBG) excursion following a standard test meal in insulin-requiring patients with diabetes treated twice daily with human insulin mix 50 vs. insulin lispro mix 50 (LM50). Methods This was a multicentre, randomised, open-label, crossover comparison of two insulin treatments for two 12-week treatment periods in 120 Chinese patients. One- and 2-h PPBG and excursion values were obtained following a standardised test meal. Fasting blood glucose (FBG), haemoglobin A1c (HbA1c), insulin dose, rate of hypoglycaemia and safety data were obtained. A crossover analysis using SAS Proc MIXED was employed. Results Mean 2-h PPBG excursion decreased from 6.32 ± 3.07 mmol/l at baseline to 3.47 ± 2.97 mmol/l at end-point in the LM50 group, and from 6.31 ± 2.88 at baseline to 5.02 ± 3.32 mmol/l at end-point in the human insulin mix 50 group (p < 0.001). Two-hour PPBG (p = 0.004) and 1-h PPBG excursion (p < 0.001) were significantly lower with LM50 as compared with human insulin mix 50. Both treatment groups were equivalent for HbA1c control, 1-h PPBG and insulin dose requirements. Mean FBG was higher with LM50 than with human insulin mix 50 (p = 0.023). The overall incidence of treatment-emergent adverse events and hypoglycaemia rate per 30 days were similar between treatment groups. Conclusions Insulin lispro mix 50 provided better postprandial glycaemic control compared with human insulin mix 50 while providing the convenience of injecting immediately before meals. Both treatments were generally well tolerated by all randomly assigned patients. PMID:18657196

  16. Overview of Low-Level Waste Disposal Operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    2007-01-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Environmental Management Program is charged with the responsibility to carry out the disposal of on-site and off-site generated low-level radioactive waste at the Nevada Test Site. Core elements of this mission are ensuring that disposal take place in a manner that is safe and cost-effective while protecting workers, the public, and the environment. This paper focuses on giving an overview of the Nevada Test Site facilities regarding currant design of disposal. In addition, technical attributes of the facilities established through the site characterization process will be further described. An update on current waste disposal volumes and capabilities will also be provided. This discussion leads to anticipated volume projections and disposal site requirements as the Nevada Test Site disposal operations look towards the future

  17. Wave Resource Characterization at US Wave Energy Converter (WEC) Test Sites

    Science.gov (United States)

    Dallman, A.; Neary, V. S.

    2016-02-01

    The US Department of Energy's (DOE) Marine and Hydrokinetic energy (MHK) Program is supporting a diverse research and development portfolio intended to accelerate commercialization of the marine renewable industry by improving technology performance, reducing market barriers, and lowering the cost of energy. Wave resource characterization at potential and existing wave energy converter (WEC) test sites and deployment locations contributes to this DOE goal by providing a catalogue of wave energy resource characteristics, met-ocean data, and site infrastructure information, developed utilizing a consistent methodology. The purpose of the catalogue is to enable the comparison of resource characteristics among sites to facilitate the selection of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives. It also provides inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and operations and maintenance. The first edition included three sites: the Pacific Marine Energy Center (PMEC) North Energy Test Site (NETS) offshore of Newport, Oregon, the Kaneohe Bay Naval Wave Energy Test Site (WETS) offshore of Oahu, HI, and a potential site offshore of Humboldt Bay, CA (Eureka, CA). The second edition was recently finished, which includes five additional sites: the Jennette's Pier Wave Energy Converter Test Site in North Carolina, the US Army Corps of Engineers (USACE) Field Research Facility (FRF), the PMEC Lake Washington site, the proposed PMEC South Energy Test Site (SETS), and the proposed CalWave Central Coast WEC Test Site. The operational sea states are included according to the IEC Technical Specification on wave energy resource assessment and characterization, with additional information on extreme sea states, weather windows, and representative spectra. The methodology and a summary of results will be discussed.

  18. Pre-test CFD simulations of a GIDROPRESS mixing facility experiment using ANSYS CFX

    International Nuclear Information System (INIS)

    Hoehne, T.; Rohde, U.; Melideo, D.; Moretti, F.; D'Auria, F.; Shishov, A.; Lisenkov, E.

    2007-01-01

    inhomogeneous, in fact high velocity values occur beside the loop positions, and not below the inlet nozzles, which indicates the presence of recirculation areas or stagnant zones. Regarding the flow field and mixing at the core inlet, it has been shown that the mass flow rate distribution is more or less homogenous over the core diameter due to the lower plenum internals, the perturbed sector covers more or less one fourth of the core; a sharp sector formation like in western 4-loop reactors appears, weak mixing zones appear (around 99.7% of the unperturbed concentration). In most cases, the sensitivity analyses performed did not show any appreciable dependence of the results with respect to the addressed parameters. A three loop operation was chosen to show the differences of the flow and mixing behavior compared to the four loop operation. An extensive experimental program is now running, aimed at studying different flow conditions in the reactor mock up, such as the start-up of the 1st coolant pump or natural circulation conditions with density differences of the primary coolant. Pre and post test CFD simulations are being carried out for code validation and for a deeper understanding of the flow and mixing behavior in the WWER-1000 reactor also in the future of the project (Authors)

  19. 77 FR 14319 - Unmanned Aircraft System Test Sites

    Science.gov (United States)

    2012-03-09

    ... submitted by interested government agencies, private institutions and organizations. In addition to... these new test ranges be held by local governments or should a private entity schedule and manage the...

  20. Properties important to mixing and simulant recommendations for WTP full-scale vessel testing

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-01

    Full Scale Vessel Testing (FSVT) is being planned by Bechtel National, Inc., to demonstrate the ability of the standard high solids vessel design (SHSVD) to meet mixing requirements over the range of fluid properties planned for processing in the Pretreatment Facility (PTF) of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. WTP personnel requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in FSVT. Among the tasks assigned to SRNL was to develop a list of waste properties that are important to pulse-jet mixer (PJM) performance in WTP vessels with elevated concentrations of solids.

  1. Corrective Action Plan for Corrective Action Unit 254: Area 25 R-MAD Decontamination Facility Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Obi, C.M.

    2000-01-01

    The Area 25 Reactor Maintenance, Assembly, and Disassembly Decontamination Facility is identified in the Federal Facility Agreement and Consent Order (FFACO) as Corrective Action Unit (CAU) 254. CAU 254 is located in Area 25 of the Nevada Test Site and consists of a single Corrective Action Site CAS 25-23-06. CAU 254 will be closed, in accordance with the FFACO of 1996. CAU 254 was used primarily to perform radiological decontamination and consists of Building 3126, two outdoor decontamination pads, and surrounding soil within an existing perimeter fence. The site was used to decontaminate nuclear rocket test-car hardware and tooling from the early 1960s through the early 1970s, and to decontaminate a military tank in the early 1980s. The site characterization results indicate that, in places, the surficial soil and building materials exceed clean-up criteria for organic compounds, metals, and radionuclides. Closure activities are expected to generate waste streams consisting of nonhazardous construction waste. petroleum hydrocarbon waste, hazardous waste, low-level radioactive waste, and mixed waste. Some of the wastes exceed land disposal restriction limits and will require off-site treatment before disposal. The recommended corrective action was revised to Alternative 3- ''Unrestricted Release Decontamination, Verification Survey, and Dismantle Building 3126,'' in an addendum to the Correction Action Decision Document

  2. How Well Do Neodymium Isotopes Trace AMOC Mixing? A Test in the Southwest Atlantic

    Science.gov (United States)

    Wu, Y.; Goldstein, S. L.; Pena, L.; Hartman, A. E.; Rijkenberg, M. J. A.; De Baar, H. J. W.

    2014-12-01

    Neodymium (Nd) isotope ratios are used to trace past AMOC circulation, based on observations that seawater Nd isotope ratios effectively "fingerprint" water masses, and that over long water mass transport distances in deep seawater they reflect values expected from water mass mixing. Over the past several years, studies have increasingly focused on the potential of external addition of Nd along water mass transport paths (for example through "boundary exchange" with particulates or addition from groundwaters), thus challenging the idea that Nd isotopes behave "quasi-conservatively" in the oceans. The SW Atlantic, with the major water masses involved in the AMOC (southward flowing NADW, northward flowing AAIW and AABW), is arguably the best place on Earth to evaluate how well Nd isotopes trace water mass mixing, in order to clarify its value for following the AMOC through time. We will report Nd isotope ratios of seawater collected on the SW Atlantic meridional transect of the NIOZ West Atlantic GEOTRACES Cruise Leg 3 (RRS James Cook 057), which sampled seawater profiles and the sediment surface at 18 stations between 0-50°S. Most stations are sampled in the open ocean, providing a test of whether Nd isotopes show quasi-conservative mixing systematics away from continental margins. The cruise section also provides several opportunities to test the potential effects of external Nd input. For example, it transects the continental shelf in the far south, the Rio Grande Rise, volcanic seamounts, and the major geological age boundaries of South America. It also crosses the major Southern Hemisphere wind zones, allowing us to test the impacts of aeolian input, and inputs from major rivers (Parana-Paraguay, Sao Francisco, Amazon). All of these features have the potential to modify the seawater Nd isotope ratios, allowing us to determine if they add significant external Nd.

  3. Patch Testing To a Textile Dye Mix by the International Contact Dermatitis Research Group

    DEFF Research Database (Denmark)

    Isaksson, Marléne; Ale, Iris; Andersen, Klaus E

    2015-01-01

    .2%. The most frequent dye allergen in the TDM-positive patients was D Orange 3. CONCLUSIONS: Over 30% of the TDM allergic patients had been missed if only the international baseline series was tested. Contact allergy to TDM could explain or contribute to dermatitis in over 20% of the patients. Textile dye mix......BACKGROUND: Disperse dyes are well-known contact sensitizers not included in the majority of commercially available baseline series. OBJECTIVE: To investigate the outcome of patch testing to a textile dye mix (TDM) consisting of 8 disperse dyes. METHODS: Two thousand four hundred ninety......-three consecutive dermatitis patients in 9 dermatology clinics were patch tested with a TDM 6.6%, consisting of Disperse (D) Blue 35, D Yellow 3, D Orange 1 and 3, D Red 1 and 17, all 1.0% each, and D Blue 106 and D Blue 124, each 0.3%. 90 reacted positively to the TDM. About 92.2% of the patients allergic...

  4. Effect of sweet yeast bread formula on evaluating rapid mix test

    Directory of Open Access Journals (Sweden)

    Petra Dvořáková

    2011-01-01

    Full Text Available The aim of this work was to detect how different sweet yeast bread formulas influence results of rapid mix test and by the help of sensory analysis to discover consumer preferences and possible benefit and use in bakery industry. Applied raw materials (ground wheat flour T 530, yeast, sugar, salt, oil, egg, improver Hit along with basic formula were taken from the Varmužova bakery in Boršice by Buchlovice. The basic formula served as a standard (I, other six formulas were then determined (II–VII. In each formula, the rate of yeast, sugar or oil was altered in the range of ± 10% compared with the standard. Flour bread-making quality – Hagberg Falling number [s], Sedimentation index [ml], wet gluten [%], ash [%], moisture [%], binding capacity [%], granulation [%], alveographic energy [10−4J] and alveographic rate P/L – was measured. Rapid mix test and parameters like pastry weight, volume, shape, dough yield, pastry yield, baking loss, penetration and sensory analysis were determined. To establish yeast fermentation activity, Engelke fermentation test was applied. The most evident differences among the samples appeared in the volume and shape. The results of sensory analysis showed that the samples with higher rate of altered raw materials were evaluated as the best.

  5. Analysis of distortion data from TF30-P-3 mixed compression inlet test

    Science.gov (United States)

    King, R. W.; Schuerman, J. A.; Muller, R. G.

    1976-01-01

    A program was conducted to reduce and analyze inlet and engine data obtained during testing of a TF30-P-3 engine operating behind a mixed compression inlet. Previously developed distortion analysis techniques were applied to the data to assist in the development of a new distortion methodology. Instantaneous distortion techniques were refined as part of the distortion methodology development. A technique for estimating maximum levels of instantaneous distortion from steady state and average turbulence data was also developed as part of the program.

  6. Level maintenance for Tank 101-SY mitigation-by-mixing test

    International Nuclear Information System (INIS)

    Sobocinski, R.G.

    1994-01-01

    This document provides the procedure to be followed to implement the requirements of the Mixer Pump Long-Term Operations Plan for Tank 241-SY-101 Mitigation, WHC-SD-WM-PLN-081. The test is divided into 2 distinct sequences, named Single Position Pump Run and Tank Sweep. Instructions for all sequences are defined within the procedure. All safety requirements as defined in LA-UR-92-3196, A Safety Assessment for Proposed Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-101-SY have been implemented into this procedure

  7. Performance assessment methods for mixed waste sites at the Savannah River Plant

    International Nuclear Information System (INIS)

    King, C.M.; Marter, W.L.; Looney, B.B.

    1987-01-01

    Risk assessment techniques were applied to Savannah River Plant (SRP) waste facilities as part of a program on waste site cleanup and groundwater protection. The components of risk assessment and the technical basis for application of the risk evaluation process to the principal pollutants at SRP (radionuclides, toxic chemicals, and carcinogenic compounds) are given. An extensive technical data base from the fields of radiation health physics, toxicology, and environmental sciences is required. Data are summarized for each class of contaminant and parameter values are provided for use in numerical analysis of risk. A review of risk assessment uncertainties and the limitations of predictive risk assessment are summarized. Risk estimators for each class of contaminants at the SRP were tabulated for radionuclides, toxic chemicals, and carcinogens from the technical literature. Estimation of human health risk is not an additive process for radiation effects and chemical carcinogensis since their respective dosimetric models are distinctly different - even though the induction of cancer is reported to be the common end result. Risk estimation for radionuclides and chemical carcinogens should be tabulated separately. Impacts due to toxic chemicals in the biosphere should also be estimated as a separate entity because toxic chemical risk estimators are uniquely different and do not reflect the probability of a detrimental health effect. 29 refs., 3 figs., 2 tabs

  8. Aggregate impact testing of selected granite samples from sites in ...

    African Journals Online (AJOL)

    The Aggregate Impact Testing machine was used to measure the resistance to fa ilure of Rocks from five (5) selected granite quarries to a suddenly applied force using S ingapore standard. The results obtained show that brittleness (S20) value of the rocks were between 2 - 10. These values are less than the stated ...

  9. Conceptual Evaluation for the Installation of Treatment Capability for Mixed Low-Level Waste at the Nevada National Security Site

    International Nuclear Information System (INIS)

    2010-01-01

    National Security Technologies, LLC, initiated an evaluation of treatment technologies that they would manage and operate as part of the mixed low-level waste (MLLW) disposal facilities at the Nevada National Security Site (NNSS). The NNSS Disposal Facility has been receiving radioactive waste from the U.S. Department of Energy (DOE) complex since the 1960s, and since 2005 the NNSS Disposal Facility has been receiving radioactive and MLLW for disposal only. In accordance with the Resource Conservation and Recovery Act (RCRA), all mixed waste must meet land disposal restrictions (LDRs) prior to disposal. Compliance with LDRs is attained through treatment of the waste to mitigate the characteristics of the listed waste hazard. Presently, most generators utilize commercial capacity for waste treatment prior to shipment to the NNSS Disposal Facility. The objectives of this evaluation are to provide a conceptual study of waste treatment needs (i.e., demand), identify potential waste treatment technologies to meet demand, and analyze implementation considerations for initiating MLLW treatment capacity at the NNSS Disposal Facility. A review of DOE complex waste generation forecast data indicates that current and future Departmental demand for mixed waste treatment capacity will remain steady and strong. Analysis and screening of over 30 treatment technologies narrowed the field of treatment technologies to four: (1) Macroencapsulation; (2) Stabilization/microencapsulation; (3) Sort and segregation; and (4) Bench-scale mercury amalgamation. The analysis of treatment technologies also considered existing permits, current the NNSS Disposal Facility infrastructure such as utilities and procedures, and past experiences such as green-light and red-light lessons learned. A schedule duration estimate has been developed for permitting, design, and construction of onsite treatment capability at the NNSS Disposal Facility. Treatment capability can be ready in 20 months.

  10. Conceptual Evaluation for the Installation of Treatment Capability for Mixed Low Level Waste at the Nevada National Security Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2010-11-24

    National Security Technologies, LLC, initiated an evaluation of treatment technologies that they would manage and operate as part of the mixed low-level waste (MLLW) disposal facilities at the Nevada National Security Site (NNSS). The NNSS Disposal Facility has been receiving radioactive waste from the U.S. Department of Energy (DOE) complex since the 1960s, and since 2005 the NNSS Disposal Facility has been receiving radioactive and MLLW for disposal only. In accordance with the Resource Conservation and Recovery Act (RCRA), all mixed waste must meet land disposal restrictions (LDRs) prior to disposal. Compliance with LDRs is attained through treatment of the waste to mitigate the characteristics of the listed waste hazard. Presently, most generators utilize commercial capacity for waste treatment prior to shipment to the NNSS Disposal Facility. The objectives of this evaluation are to provide a conceptual study of waste treatment needs (i.e., demand), identify potential waste treatment technologies to meet demand, and analyze implementation considerations for initiating MLLW treatment capacity at the NNSS Disposal Facility. A review of DOE complex waste generation forecast data indicates that current and future Departmental demand for mixed waste treatment capacity will remain steady and strong. Analysis and screening of over 30 treatment technologies narrowed the field of treatment technologies to four: • Macroencapsulation • Stabilization/microencapsulation • Sort and segregation • Bench-scale mercury amalgamation The analysis of treatment technologies also considered existing permits, current the NNSS Disposal Facility infrastructure such as utilities and procedures, and past experiences such as green-light and red-light lessons learned. A schedule duration estimate has been developed for permitting, design, and construction of onsite treatment capability at the NNSS Disposal Facility. Treatment capability can be ready in 20 months.

  11. Characterization Report for the 92-Acre Area of the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2006-06-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office manages two low-level Radioactive Waste Management Sites at the Nevada Test Site. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. This report summarizes characterization and monitoring work pertinent to the 92-Acre Area in the southeast part of the Area 5 Radioactive Waste Management Sites. The decades of characterization and assessment work at the Area 5 RWMS indicate that the access controls, waste operation practices, site design, final cover design, site setting, and arid natural environment contribute to a containment system that meets regulatory requirements and performance objectives for the short- and long-term protection of the environment and public. The available characterization and Performance Assessment information is adequate to support design of the final cover and development of closure plans. No further characterization is warranted to demonstrate regulatory compliance. U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is proceeding with the development of closure plans for the six closure units of the 92-Acre Area.

  12. Characterization Report for the 92-Acre Area of the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2006-01-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office manages two low-level Radioactive Waste Management Sites at the Nevada Test Site. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. This report summarizes characterization and monitoring work pertinent to the 92-Acre Area in the southeast part of the Area 5 Radioactive Waste Management Sites. The decades of characterization and assessment work at the Area 5 RWMS indicate that the access controls, waste operation practices, site design, final cover design, site setting, and arid natural environment contribute to a containment system that meets regulatory requirements and performance objectives for the short- and long-term protection of the environment and public. The available characterization and Performance Assessment information is adequate to support design of the final cover and development of closure plans. No further characterization is warranted to demonstrate regulatory compliance. U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is proceeding with the development of closure plans for the six closure units of the 92-Acre Area

  13. Neptunium Transport Behavior in the Vicinity of Underground Nuclear Tests at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, P; Tinnacher, R M; Zavarin, M; Williams, R W; Kersting, A B

    2010-12-03

    We used short lived {sup 239}Np as a yield tracer and state of the art magnetic sector ICP-MS to measure ultra low levels of {sup 237}Np in a number of 'hot wells' at the Nevada National Security Site (NNSS), formerly known as the Nevada Test Site (NTS). The results indicate that {sup 237}Np concentrations at the Almendro, Cambric, Dalhart, Cheshire and Chancellor sites, are in the range of 3 x 10{sup -5} to 7 x 10{sup -2} pCi/L and well below the MCL for alpha emitting radionuclides (15 pCi/L) (EPA, 2009). Thus, while Np transport is believed to occur at the NNSS, activities are expected to be well below the regulatory limits for alpha-emitting radionuclides. We also compared {sup 237}Np concentration data to other radionuclides, including tritium, {sup 14}C, {sup 36}Cl, {sup 99}Tc, {sup 129}I, and plutonium, to evaluate the relative {sup 237}Np transport behavior. Based on isotope ratios relative to published unclassified Radiologic Source Terms (Bowen et al., 1999) and taking into consideration radionuclide distribution between melt glass, rubble and groundwater (IAEA, 1998), {sup 237}Np appears to be substantially less mobile than tritium and other non-sorbing radionuclides, as expected. However, this analysis also suggests that {sup 237}Np mobility is surprisingly similar to that of plutonium. The similar transport behavior of Np and Pu can be explained by one of two possibilities: (1) Np(IV) and Pu(IV) oxidation states dominate under mildly reducing NNSS groundwater conditions resulting in similar transport behavior or (2) apparent Np transport is the result of transport of its parent {sup 241}Pu and {sup 241}Am isotopes and subsequent decay to {sup 237}Np. Finally, measured {sup 237}Np concentrations were compared to recent Hydrologic Source Term (HST) models. The 237Np data collected from three wells in Frenchman Flat (RNM-1, RNM-2S, and UE-5n) are in good agreement with recent HST transport model predictions (Carle et al., 2005). The agreement

  14. Aquifer recharge with reclaimed water in the Llobregat Delta. Laboratory batch experiments and field test site.

    Science.gov (United States)

    Tobella, J.

    2010-05-01

    advanced and costly treatments. Nevertheless, a number of studies are demonstrating that physical, chemical and biochemical processes associated with water movement within the subsoil represent a natural alternative way to reduce the presence of these contaminants. This processes are called Soil Aquifer Treatment (SAT). Aquifer recharge will become a source for indirect potable reuse purposes as long as the presence of pathogens and organic and inorganic pollutants is avoided. To this end, understanding the biogeochemical degradation processes occurring within the aquifer during infiltration is capital. 2. Laboratory batch experiments A set of laboratory batch experiments has been assembled to assess the behaviour of selected pesticides, drugs, estrogens, surfactant degradation products, biocides and phthalates under different redox conditions. The setup of the experiments consists of glass bottles containing 120 g of soil and 240 ml of synthetic water spiked with the mix of micropollutants. A source of easily degradable organic carbon and, depending on the type of test, electron acceptors are added in order to yield aerobic respiration and nitrate/iron/manganese/sulphate reduction conditions. The evolution of the processes is monitored by sacrificing duplicate bottles according to a defined schedule and analysing water for major and minor components as well as for micropollutants. Results from biotic tests are compared with abiotic ones in order to discern biodegradation from other chemical processes. The soil, the synthetic water and the micropollutants selected for the experiments are representative of a test site in the nearby of Barcelona (Spain) where artificial recharge of groundwater through ponds is going to be performed using river water or tertiary effluent from a waste water treatment plant. The results of the experiments improve the knowledge on the behaviour of the selected micropollutants under different redox conditions and provide with useful information

  15. Springs on the Nevada Test Site and their use by wildlife

    International Nuclear Information System (INIS)

    Giles, K.R.

    1976-04-01

    During August 1972, natural springs located on the Nevada Test Site were surveyed to determine the use by wildlife and the effort required for improving flow. Each spring is described and its use by wildlife noted. Methods of improving spring flow are suggested. It is believed that minimal effort at most of the springs would result in a significant improvement of waterflow with resulting benefits to wildlife. The intention of the recommendations in this report is to encourage development of the Nevada Test Site springs and to maintain the wildlife now at the Site. There is no recommendation to bring in or support wildlife outside the Nevada Test Site area

  16. Slope stability and bearing capacity of landfills and simple on-site test methods.

    Science.gov (United States)

    Yamawaki, Atsushi; Doi, Yoichi; Omine, Kiyoshi

    2017-07-01

    This study discusses strength characteristics (slope stability, bearing capacity, etc.) of waste landfills through on-site tests that were carried out at 29 locations in 19 sites in Japan and three other countries, and proposes simple methods to test and assess the mechanical strength of landfills on site. Also, the possibility of using a landfill site was investigated by a full-scale eccentric loading test. As a result of this, landfills containing more than about 10 cm long plastics or other fibrous materials were found to be resilient and hard to yield. An on-site full scale test proved that no differential settlement occurs. The repose angle test proposed as a simple on-site test method has been confirmed to be a good indicator for slope stability assessment. The repose angle test suggested that landfills which have high, near-saturation water content have considerably poorer slope stability. The results of our repose angle test and the impact acceleration test were related to the internal friction angle and the cohesion, respectively. In addition to this, it was found that the air pore volume ratio measured by an on-site air pore volume ratio test is likely to be related to various strength parameters.

  17. Scaling Relationships Based on Scaled Tank Mixing and Transfer Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Holmes, Aimee E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Heredia-Langner, Alejandro [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lee, Kearn P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kelly, Steven E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-01-01

    This report documents the statistical analyses performed (by Pacific Northwest National Laboratory for Washington River Protection Solutions) on data from 26 tests conducted using two scaled tanks (43 and 120 inches) in the Small Scale Mixing Demonstration platform. The 26 tests varied several test parameters, including mixer-jet nozzle velocity, base simulant, supernatant viscosity, and capture velocity. For each test, samples were taken pre-transfer and during five batch transfers. The samples were analyzed for the concentrations (lbs/gal slurry) of four primary components in the base simulants (gibbsite, stainless steel, sand, and ZrO2). The statistical analyses including modeling the component concentrations as functions of test parameters using stepwise regression with two different model forms. The resulting models were used in an equivalent performance approach to calculate values of scaling exponents (for a simple geometric scaling relationship) as functions of the parameters in the component concentration models. The resulting models and scaling exponents are displayed in tables and graphically. The sensitivities of component concentrations and scaling exponents to the test parameters are presented graphically. These results will serve as inputs to subsequent work by other researchers to develop scaling relationships that are applicable to full-scale tanks.

  18. Scaling Relationships Based on Scaled Tank Mixing and Transfer Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F.; Holmes, Aimee E.; Heredia-Langner, Alejandro

    2013-09-18

    This report documents the statistical analyses performed (by Pacific Northwest National Laboratory for Washington River Protection Solutions) on data from 26 tests conducted using two scaled tanks (43 and 120 inches) in the Small Scale Mixing Demonstration platform. The 26 tests varied several test parameters, including mixer-jet nozzle velocity, base simulant, supernatant viscosity, and capture velocity. For each test, samples were taken pre-transfer and during five batch transfers. The samples were analyzed for the concentrations (lbs/gal slurry) of four primary components in the base simulants (gibbsite, stainless steel, sand, and ZrO2). The statistical analyses including modeling the component concentrations as functions of test parameters using stepwise regression with two different model forms. The resulting models were used in an equivalent performance approach to calculate values of scaling exponents (for a simple geometric scaling relationship) as functions of the parameters in the component concentration models. The resulting models and scaling exponents are displayed in tables and graphically. The sensitivities of component concentrations and scaling exponents to the test parameters are presented graphically. These results will serve as inputs to subsequent work by other researchers to develop scaling relationships that are applicable to full-scale tanks.

  19. Analysis of the binder yield energy test as an indicator of fatigue behaviour of asphalt mixes

    Science.gov (United States)

    O'Connell, Johan; Mturi, Georges A. J.; Komba, Julius; Du Plessis, Louw

    2017-09-01

    Empirical binder testing has increasingly failed to predict pavement performance in South Africa, with fatigue cracking being one of the major forms of premature pavement distress. In response, it has become a national aspiration to incorporate a performance related fatigue test into the binder specifications for South Africa. The Binder Yield Energy Test (BYET) was the first in a series of tests analysed for its potential to predict the fatigue performance of the binder. The test is performed with the dynamic shear rheometer, giving two key parameters, namely, yield energy and shear strain at maximum shear stress (γτmax). The objective of the investigation was to perform a rudimentary evaluation of the BYET; followed by a more in-depth investigation should the initial BYET results prove promising. The paper discusses the results generated from the BYET under eight different conditions, using six different binders. The results are then correlated with four point bending beam fatigue test results obtained from asphalt mix samples that were manufactured from the same binders. Final results indicate that the BYET is not ideal as an indicator of fatigue performance.

  20. Testing with fragrance mix. Is the addition of sorbitan sesquioleate to the constituents useful?

    Science.gov (United States)

    Frosch, P J; Pilz, B; Burrows, D; Camarasa, J G; Lachapelle, J M; Lahti, A; Menné, T; Wilkinson, J D

    1995-05-01

    In a multicentre study, the value of adding sorbitan sesquioleate (SSO) to the constituents of the 8% fragrance mix (FM) was investigated. In 7 centres, 709 consecutive patients were tested with 2 types of FM from different sources, its 8 constituents with 1% SSO, its 8 constituents without SSO, and 20% SSO. 5 patients (0.71%) reacted to the emulsifier SSO itself, read as definitely allergic on day 3/4. 53 patients reacted to either one of the mixes with an allergic type of reaction. When tested with the constituents without SSO, 41.5% showed an allergic reaction versus 54.7% with SSO. If both types of reactions were considered (allergic and irritant) 38.3% of 73 patients showed a positive "breakdown" result without SSO, versus 54.8% with SSO. The differences were statistically significant. Reactivity to FM constituents was changed in a specific pattern by addition of SSO--irritant reactions increased, particularly for cinnamic alcohol, eugenol, geraniol, oak moss and hydroxycitronellal, whereas others showed only a slight change. Allergic reactions were also increased by SSO, but the rank order of the top 3 sensitizers (isoeugenol, oak moss and eugenol) did not change. Cinnamic alcohol was the only constituent with decreased reactivity after addition of SSO. A positive history of fragrance sensitivity (HFS) was clearly associated with a positive allergic reaction to either the mix or 1 of its constituents (51% versus 28.6% with a negative HFS). Irritant reactions were linked to a negative HFS in a high proportion (64.3%).(ABSTRACT TRUNCATED AT 250 WORDS)

  1. STREAMLINED APPROACH FOR ENVIRONMENTAL RESTORATION PLAN FOR CORRECTIVE ACTION UNIT 116: AREA 25 TEST CELL C FACILITYNEVADA TEST SITE, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This Streamlined Approach for Environmental Restoration Plan identifies the activities required for the closure of Corrective Action Unit 116, Area 25 Test Cell C Facility. The Test Cell C Facility is located in Area 25 of the Nevada Test Site approximately 25 miles northwest of Mercury, Nevada.

  2. The Dome C site testing from an atmospheric physicist view

    Science.gov (United States)

    Argentini, S.; Pietroni, I.

    Atmospheric field experiments were made at the French-Italian station of Concordia at Dome C during several years. These experiments were limited to the summer season. In 2005 Concordia has become a permanent base, this allowed to carry out STABLEDC (STudy of the Atmospheric Boundary Layer Environmental at Dome C plateau station) that is an atmospheric field experiment of the duration of one year. The aim of STABLEDC was to study the processes occurring in the long-lived stable and the weak convective atmospheric boundary layers, observed during winter and summer, respectively, and to collect the relevant parameters for the atmospheric models. Both in situ and ground based remote sensing instruments have been used to monitor the meteorological parameters. The first part of the paper gives a brief illustration of the objectives of the field experiment, and a description of site and instrumentation. The second part shows the behaviour of some micrometeorological parameters: temperature, wind speed, sensible heat flux. The surface radiation balance components are also shown. Finally some experimental activities are proposed.

  3. Effects of effluent spray irrigation on ground water at a test site near Tarpon Springs, Florida

    Science.gov (United States)

    Brown, D.P.

    1982-01-01

    Secondary-treated effluent was applied to a 7.2-acre test site near Tarpon Springs, Fla., for about 1 year at an average rate of 0.06 million gallons per day and 3 years at 0.11 million gallons per day. Chemical fertilizer was applied periodically to the test site and adjacent areas. Periodic mounding of the water table occurred due to effluent irrigation, inducing radial flow from the test site. Physical, geochemical, biochemical processes effectively reduced total nitrogen concentration 90% and total phosphorous concentration more than 95% in the ground water of the surficial aquifer about 300 feet downgradient from the test site from that of the applied effluent. Downgradient, total nitrogen averaged 2.4 milligrams per liter and total phosphorus averaged 0.17 milligrams per liter. Substantial increases in total phosphorus were observed when the pH of the ground water increased. Total coliform bacteria in the ground water of the surficial aquifer were generally less than 100 colonies per 100 milliliters. Fecal coliform bacteria were generally less than 25 colonies per 100 milliliters at the test site and were not detected downgradient or near the test site. Fecal streptococcal bacteria were generally less than 100 colonies per 100 milliliters at the test site, but were detected on three occasions near the test site. (USGS)

  4. Usability Testing of an Academic Library Web Site: A Case Study.

    Science.gov (United States)

    Battleson, Brenda; Booth, Austin; Weintrop, Jane

    2001-01-01

    Discusses usability testing as a tool for evaluating the effectiveness and ease of use of academic library Web sites; considers human-computer interaction; reviews major usability principles; and explores the application of formal usability testing to an existing site at the University at Buffalo (NY) libraries. (Author/LRW)

  5. Laboratory testing of ozone oxidation of Hanford Site waste from Tank 241-SY-101

    International Nuclear Information System (INIS)

    Delegard, C.H.; Stubbs, A.M.; Bolling, S.D.

    1993-01-01

    Ozone was investigated as a reagent to oxidize and destroy organic species present in simulated and genuine waste from Hanford Site Tank 241-SY-101 (Tank 101-SY). Two high-shear mixing apparatus were tested to perform the gas-to-solution mass transfer necessary to achieve efficient use of the ozone reagent. Oxidations of nitrite (to form nitrate) and organic species were observed. The organics oxidized to form carbonate and oxalate as well as nitrate and nitrogen gas from nitrogen associated with the organic. oxidations of metal species also were observed directly or inferred by solubilities. The chemical reaction stoichiometries were consistent with reduction of one oxygen atom per ozone molecule. Acetate, oxalate, and formate were found to comprise about 40% of the genuine waste's total organic carbon (TOC) concentration. Ozonation was found to be chemically feasible for destroying organic species (except oxalate) present in the wastes in Tank 101-SY. The simulated waste formulation used in these studies credibly modelled the ozonation behavior of the genuine waste

  6. Fourier grain shape analysis: a means for correlating alluvial deposits at the Nevada Test Site

    International Nuclear Information System (INIS)

    Grothaus, B.T.; Hage, G.L.

    1978-01-01

    Quartz sand derived from alluvial fans that drain different lithologies at the Nevada Test Site can be distinguished on the basis of grain shape as described by the Fourier series in closed form. Specifically, we examined tuff units from the Piapi Canyon and Indian Trail Formations as well as carbonate-bearing clastic units from the Eleana Formation. Discrimiation between rock types was accomplished by examining the mean harmonic amplitude spectra and the grain shape frequency distributions at those harmonics that exhibit significant chi-square values. The results of these analyses indicate that the tuffs can be easily distinguished from the clastics. However, differences between samples from genetically similar rock types are not as prominent. Grain shape frequency distributions of tuffs and clastics show such strong differences that they can be characterized by standardized distributions. By comparing the shape frequency distributions of mixed sediment samples, it is possible to determine the relative contribution of tuff and clastics to any sediment sample taken within the drainage network. The Piapi Canyon, Indian Trail, and Eleana Formations have produced the thick alluvium sequence in the Rainier Mesa region of Yucca Flat. We believe it is likely that these grain shape relationships can also be applied to subsurface samples. Not only would this extended application enable more accurate correlation of alluvial layers, but more precise determination of the clastic-tuff contact within the alluvium sequence might also be possible

  7. Microbiological analyses of samples from the H-Area injection well test site

    International Nuclear Information System (INIS)

    Wilde, E.W.; Franck, M.M.

    1997-01-01

    Microbial populations in well water from monitoring wells at the test site were one to three orders of magnitude higher than well water from the Cretaceous aquifer (used as dilution water for the tests) or from a control well adjacent to the test site facility. Coupons samples placed in monitoring and control wells demonstrated progressive adhesion by microbes to materials used in well construction. Samples of material scraped from test well components during abandonment of the test site project revealed the presence of a variety of attached microbes including iron bacteria. Although the injection wells at the actual remediation facility for the F- and H-Area seepage basins remediation project are expected to be subjected to somewhat different conditions (e.g. considerably lower iron concentrations) than was the case at the test site, the potential for microbiologically mediated clogging and fouling within the process should be considered. A sampling program that includes microbiological testing is highly recommended

  8. Disposal configuration options for future uses of greater confinement disposal at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Price, L. [Science Applications International Corp., Albuquerque, NM (United States)

    1994-09-01

    The US Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. The DOE`s Nevada Field Office contracted with Sandia National Laboratories to investigate the possibility of disposing of some of this special-case waste at the Nevada Test Site (NTS). As part of this investigation, a review of a near-surface and subsurface disposal options that was performed to develop alternative disposal configurations for special-case waste disposal at the NTS. The criteria for the review included (1) configurations appropriate for disposal at the NTS; (2) configurations for disposal of waste at least 100 ft below the ground surface; (3) configurations for which equipment and technology currently exist; and (4) configurations that meet the special requirements imposed by the nature of special-case waste. Four options for subsurface disposal of special-case waste are proposed: mined consolidated rock, mined alluvium, deep pits or trenches, and deep boreholes. Six different methods for near-surface disposal are also presented: earth-covered tumuli, above-grade concrete structures, trenches, below-grade concrete structures, shallow boreholes, and hydrofracture. Greater confinement disposal (GCD) in boreholes at least 100 ft deep, similar to that currently practiced at the GCD facility at the Area 5 Radioactive Waste Management Site at the NTS, was retained as the option that met the criteria for the review. Four borehole disposal configurations are proposed with engineered barriers that range from the native alluvium to a combination of gravel and concrete. The configurations identified will be used for system analysis that will be performed to determine the disposal configurations and wastes that may be suitable candidates for disposal of special-case wastes at the NTS.

  9. 1993 site environmental report Tonopah Test Range, Tonopah, Nevada

    International Nuclear Information System (INIS)

    Culp, T.; Howard, D.; McClellan, Y.

    1994-10-01

    This report summarizes the environmental surveillance activities conducted by Sandia National Laboratories, the US Environmental Protection Agency, and Reynolds Electrical and Engineering Company for the Tonopah Test Range operated by Sandia National Laboratories. Sandia National Laboratories' responsibility for environmental monitoring results extend to those activities performed by Sandia National Laboratories or under its direction. Results from other environmental monitoring activities are included to provide a measure of completeness in reporting. Other environmental compliance programs such as the National Environmental Policy Act of 1969, environmental permits, and environmental restoration and waste management programs are also included in this report, prepared for the US Department of Energy in compliance with DOE Order 5400.1

  10. 1994 site environmental report, Tonopah Test Range, Tonopah, Nevada

    International Nuclear Information System (INIS)

    Culp, T.; Forston, W.

    1995-09-01

    This report summarizes the environmental surveillance activities conducted by Sandia National Laboratories, the US Environmental Protection Agency, and Kirk-Mayer, Inc., for the Tonopah Test Range operated by Sandia National Laboratories. Sandia National Laboratories' responsibility for environmental surveillance results extends to those activities performed by Sandia National Laboratories or under its direction. Results from other environmental surveillance activities are included to provide a measure of completeness in reporting. Other environmental compliance programs such as the National Environmental Policy Act of 1969, environmental permits, and environmental restoration and waste management programs are also included in this report, prepared for the US Department of Energy (DOE) in compliance with DOE Order 5400. 1

  11. 1993 site environmental report Tonopah Test Range, Tonopah, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Culp, T.; Howard, D.; McClellan, Y.

    1994-10-01

    This report summarizes the environmental surveillance activities conducted by Sandia National Laboratories, the US Environmental Protection Agency, and Reynolds Electrical and Engineering Company for the Tonopah Test Range operated by Sandia National Laboratories. Sandia National Laboratories` responsibility for environmental monitoring results extend to those activities performed by Sandia National Laboratories or under its direction. Results from other environmental monitoring activities are included to provide a measure of completeness in reporting. Other environmental compliance programs such as the National Environmental Policy Act of 1969, environmental permits, and environmental restoration and waste management programs are also included in this report, prepared for the US Department of Energy in compliance with DOE Order 5400.1.

  12. 1994 site environmental report, Tonopah Test Range, Tonopah, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Culp, T. [Sandia National Labs., Albuquerque, NM (United States); Forston, W. [Kirk-Mayer, Inc., Albuquerque, NM (United States)

    1995-09-01

    This report summarizes the environmental surveillance activities conducted by Sandia National Laboratories, the US Environmental Protection Agency, and Kirk-Mayer, Inc., for the Tonopah Test Range operated by Sandia National Laboratories. Sandia National Laboratories` responsibility for environmental surveillance results extends to those activities performed by Sandia National Laboratories or under its direction. Results from other environmental surveillance activities are included to provide a measure of completeness in reporting. Other environmental compliance programs such as the National Environmental Policy Act of 1969, environmental permits, and environmental restoration and waste management programs are also included in this report, prepared for the US Department of Energy (DOE) in compliance with DOE Order 5400. 1.

  13. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2012-10-01

    CAU 104 comprises the following corrective action sites (CASs): • 07-23-03, Atmospheric Test Site T-7C • 07-23-04, Atmospheric Test Site T7-1 • 07-23-05, Atmospheric Test Site • 07-23-06, Atmospheric Test Site T7-5a • 07-23-07, Atmospheric Test Site - Dog (T-S) • 07-23-08, Atmospheric Test Site - Baker (T-S) • 07-23-09, Atmospheric Test Site - Charlie (T-S) • 07-23-10, Atmospheric Test Site - Dixie • 07-23-11, Atmospheric Test Site - Dixie • 07-23-12, Atmospheric Test Site - Charlie (Bus) • 07-23-13, Atmospheric Test Site - Baker (Buster) • 07-23-14, Atmospheric Test Site - Ruth • 07-23-15, Atmospheric Test Site T7-4 • 07-23-16, Atmospheric Test Site B7-b • 07-23-17, Atmospheric Test Site - Climax These 15 CASs include releases from 30 atmospheric tests conducted in the approximately 1 square mile of CAU 104. Because releases associated with the CASs included in this CAU overlap and are not separate and distinguishable, these CASs are addressed jointly at the CAU level. The purpose of this CADD/CAP is to evaluate potential corrective action alternatives (CAAs), provide the rationale for the selection of recommended CAAs, and provide the plan for implementation of the recommended CAA for CAU 104. Corrective action investigation (CAI) activities were performed from October 4, 2011, through May 3, 2012, as set forth in the CAU 104 Corrective Action Investigation Plan.

  14. Supporting documents for LLL area 27 (410 area) safety analysis reports, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Odell, B. N. [comp.

    1977-02-01

    The following appendices are common to the LLL Safety Analysis Reports Nevada Test Site and are included here as supporting documents to those reports: Environmental Monitoring Report for the Nevada Test Site and Other Test Areas Used for Underground Nuclear Detonations, U. S. Environmental Protection Agency, Las Vegas, Rept. EMSL-LV-539-4 (1976); Selected Census Information Around the Nevada Test Site, U. S. Environmental Protection Agency, Las Vegas, Rept. NERC-LV-539-8 (1973); W. J. Hannon and H. L. McKague, An Examination of the Geology and Seismology Associated with Area 410 at the Nevada Test Site, Lawrence Livermore Laboratory, Livermore, Rept. UCRL-51830 (1975); K. R. Peterson, Diffusion Climatology for Hypothetical Accidents in Area 410 of the Nevada Test Site, Lawrence Livermore Laboratory, Livermore, Rept. UCRL-52074 (1976); J. R. McDonald, J. E. Minor, and K. C. Mehta, Development of a Design Basis Tornado and Structural Design Criteria for the Nevada Test Site, Nevada, Lawrence Livermore Laboratory, Livermore, Rept. UCRL-13668 (1975); A. E. Stevenson, Impact Tests of Wind-Borne Wooden Missiles, Sandia Laboratories, Tonopah, Rept. SAND 76-0407 (1976); and Hydrology of the 410 Area (Area 27) at the Nevada Test Site.

  15. Evaluation of the radionuclide tracer test conducted at the project Gnome Underground Nuclear Test Site, New Mexico

    International Nuclear Information System (INIS)

    Pohll, G.; Pohlmann, K.

    1996-08-01

    A radionuclide tracer test was conducted in 1963 by the U.S. Geological Survey at the Project Gnome underground nuclear test site, approximately 40 km southeast of Carlsbad, New Mexico. The tracer study was carried out under the auspices of the U.S. Atomic Energy Commission (AEC) to study the transport behavior of radionuclides in fractured rock aquifers. The Culebra Dolomite was chosen for the test because it was considered to be a reasonable analogue of the fractured carbonate aquifer at the Nevada Test Site (NTS), the principal location of U.S. underground nuclear tests. Project Gnome was one of a small number of underground nuclear tests conducted by the AEC at sites distant from the NTS. The Gnome device was detonated on December 10, 1961 in an evaporate unit at a depth of 360 m below ground surface. Recently, the U.S. Department of Energy (DOE) implemented an environmental restoration program to characterize, remediate, and close these offsite nuclear test areas. An early step in this process is performance of a preliminary risk analysis of the hazard posed by each site. The Desert Research Institute has performed preliminary hydrologic risk evaluations for the groundwater transport pathway at Gnome. That evaluation included the radioactive tracer test as a possible source because the test introduced radionuclides directly into the Culebra Dolomite, which is the only aquifer at the site. This report presents a preliminary evaluation of the radionuclide tracer test as a source for radionuclide migration in the Culebra Dolomite. The results of this study will assist in planning site characterization activities and refining estimates of the radionuclide source for comprehensive models of groundwater transport st the Gnome site

  16. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2006-04-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139.

  17. Finding of no significant impact shipment of stabilized mixed waste from the K-25 Site to an off-site commercial disposal facility, Oak Ridge K-25 Site, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-01-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) for the shipment of stabilized mixed waste, removed from K-1407-B and -C ponds, to an off-site commercial disposal facility (Envirocare) for permanent land disposal. Based on the analysis in the EA, DOE has determined that the proposed action is not a major federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI)

  18. Final environmental impact statement for the Nevada Test Site and off-site locations in the State of Nevada. Summary

    International Nuclear Information System (INIS)

    1996-08-01

    This sitewide EIS evaluates the potential environmental impacts of four possible land-use alternatives being considered for the Nevada Test Site (NTS), the Tonopah Test Range, and the formerly operated DOE sites in the state of Nevada: the Project Shoal Area, the Central Nevada Test Area, and portions of the Nellis Air Force Range Complex. Three additional sites in Nevada-Eldorado Valley, Dry Lake Valley, and Coyote Spring Valley-are evaluated for collocation of solar energy production facilities. The four alternatives include Continue Current Operations (No Action, continue to operate at the level maintained for the past 3 to 5 years); Discontinue Operations 1 (discontinue operations and interagency programs); Expanded Use (increased use of NTS and its resources to support defense and nondefense programs); and Alternate Use of Withdrawn Lands (discontinue all defense-related activities at NTS; continue waste management operations in support of NTS environmental restoration efforts; expand nondefense research). Environmental impacts were assessed for each alternative by analyzing, to the extent possible, the discrete and cumulative environmental impacts associated with Defense Waste Management, Environmental Restoration, Nondefense Research and Development, and Work for Others Programs. A framework for a Resource Management Plan is included as Volume 2 of this EIS and represents the development of an ecosystem based planning process closely integrated with the National Environmental Policy Act process. This EIS, among other things, analyzed the impacts of transportation of low level waste, and site characterization activities related to the Yucca Mountain Project but did not analyze the suitability of the site as a repository. This EIS does not analyze the suitability of the Yucca Mountain site as a repository as this is an action beyond the scope of the EIS. Volume 3 of this EIS contains the public comments and the responses to the comments

  19. AGR steel corrosion monitoring schemes: progress on off-site testing of coupon specimens to end of 1985: Pt. 1

    International Nuclear Information System (INIS)

    Whittle, I.; Meredith, M.E.

    1988-03-01

    Off-site Advanced Gas-cooled Reactor steel corrosion monitoring through experiments on mild steel coupon specimens is reported. The appearance of all mild steel coupons oxidised over the temperature range 375 to 450 0 C is consistent with what is expected for the appropriate silicon content, temperature and in the gas mixes used. Likewise, weight gain data from the tests is as expected and where linear (breakaway) oxidation kinetics are in evidence, measured rates are within one standard deviation of the mean oxidation rates predicted by the 1/R model. Also, data relating mean breakaway oxide thickness to weight gain is in good agreement with the currently recommended relationship of 1 mg cm -2 weight gain = 6.72 μm oxide thickness. The observed oxidation behaviour of the off-site mild steel coupons is consistent with the most recent design data. (author)

  20. ISC origin times for announced and presumed underground nuclear explosions at several test sites

    International Nuclear Information System (INIS)

    Rodean, H.C.

    1979-01-01

    Announced data for US and French underground nuclear explosions indicate that nearly all detonations have occurred within one or two tenths of a second after the minute. This report contains ISC origin-time data for announced explosions at two US test sites and one French test site, and includes similar data for presumed underground nuclear explosions at five Soviet sites. Origin-time distributions for these sites are analyzed for those events that appeared to be detonated very close to the minute. Particular attention is given to the origin times for the principal US and Soviet test sites in Nevada and Eastern Kazakhstan. The mean origin times for events at the several test sites range from 0.4 s to 2.8 s before the minute, with the earlier mean times associated with the Soviet sites and the later times with the US and French sites. These times indicate lower seismic velocities beneath the US and French sites, and higher velocities beneath the sites in the USSR 9 figures, 8 tables