WorldWideScience

Sample records for test site ground

  1. Definitive design status of the SP-100 Ground Engineering System Test Site

    International Nuclear Information System (INIS)

    Renkey, E.J. Jr.; Bazinet, G.D.; Bitten, E.J.; Brackenbury, P.J.; Carlson, W.F.; Irwin, J.J.; Edwards, P.A.; Shen, E.J.; Titzler, P.A.

    1989-05-01

    The SP-100 reactor will be ground tested at the SP-100 Ground Engineering System (GES) Test Site on the US Department of Energy (DOE) Hanford Site near Richland, Washington. Project direction and the flight system design evolution have resulted in a smaller reactor size and the consequential revision to Test Site features to accommodate the design changes and reduce Test Site costs. The significant design events since the completion of the Conceptual Design are discussed in this paper

  2. Definitive design status of the SP-100 Ground Engineering System Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Renkey, E.J. Jr.; Bazinet, G.D.; Bitten, E.J.; Brackenbury, P.J.; Carlson, W.F.; Irwin, J.J.; Edwards, P.A.; Shen, E.J.; Titzler, P.A.

    1989-05-01

    The SP-100 reactor will be ground tested at the SP-100 Ground Engineering System (GES) Test Site on the US Department of Energy (DOE) Hanford Site near Richland, Washington. Project direction and the flight system design evolution have resulted in a smaller reactor size and the consequential revision to Test Site features to accommodate the design changes and reduce Test Site costs. The significant design events since the completion of the Conceptual Design are discussed in this paper.

  3. Environmental assessment of SP-100 ground engineering system test site: Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    The US Department of Energy (DOE) proposes to modify an existing reactor containment building (decommissioned Plutonium Recycle Test Reactor (PRTR) 309 Building) to provide ground test capability for the prototype SP-100 reactor. The 309 Building (Figure 1.1) is located in the 300 Area on the Hanford Site in Washington State. The National Environmental Policy Act (NEPA) requires that Federal agencies assess the potential impacts that their actions may have on the environment. This Environmental Assessment describes the consideration given to environmental impacts during reactor concept and test site selection, examines the environmental effects of the DOE proposal to ground test the nuclear subsystem, describes alternatives to the proposed action, and examines radiological risks of potential SP-100 use in space. 73 refs., 19 figs., 7 tabs.

  4. Ground-water data for the Nevada Test Site and selected other areas in South-Central Nevada, 1992--1993

    International Nuclear Information System (INIS)

    1995-01-01

    The US Geological Survey, in support of the US Department of Energy Environmental Restoration and Hydrologic Resources Management Programs, collects and compiles hydrogeologic data to aid in characterizing the regional and local ground-water flow systems underlying the Nevada Test Site and vicinity. This report presents selected ground-water data collected from wells and test holes at and in the vicinity of the Nevada Test Site. Depth-to-water measurements were made during water year 1993 at 55 sites at the Nevada Test Site and 43 regional sites in the vicinity of the Nevada Test Site. Depth to water ranged from 87.7 to 674.6 meters below land surface at the Nevada Test Site and from 6.0 to 444.7 meters below land surface at sites in the vicinity of the Nevada Test Site. Depth-to-water measurements were obtained using the wire-line, electric-tape, air-line, and steel-tape devices. Total measured ground-water withdrawal from the Nevada Test Site during the 1993 calendar year was 1,888.04 million liters. Annual ground-water withdrawals from 14 wells ranged from 0.80 million to 417.20 million liters. Tritium concentrations from four samples at the Nevada Test Site and from three samples in the vicinity of the Nevada Test Site collected during water year 1993 ranged from near 0 to 27,676.0 becquerels per liter and from near 0 to 3.9 becquerels per liter, respectively

  5. GES [Ground Engineering System] test site preparation

    International Nuclear Information System (INIS)

    Cox, C.M.; Mahaffey, M.K.; Miller, W.C.; Schade, A.R.; Toyoda, K.G.

    1987-10-01

    Activities are under way at Hanford to convert the 309 containment building and its associated service wing to a nuclear test facility for the Ground Engineering System (GES) test. Conceptual design is about 80% complete, encompassing facility modifications, a secondary heat transport system, a large vacuum system, a test article cell and handing system, control and data handling systems, and safety andl auxiliary systems. The design makes extensive use of existing equipment to minimize technical risk and cost. Refurbishment of this equipment is 25% complete. Cleanout of some 1000 m 3 of equipment from the earlier reactor test in the facility is 85% complete. An Environmental Assessment was prepared and revised to incorporate Department of Energy (DOE) comments. It is now in the DOE approval chain, where a Finding of No Significant Impact is expected. During the next year, definite design will be well advanced, long-lead procurements will be initiated, construction planning will be completed, an operator training plan will be prepared, and the site (preliminary) safety analysis report will be drafted

  6. Construction management at the SP-100 ground engineering system test site

    International Nuclear Information System (INIS)

    Burchell, G.P.; Wilson, L.R.

    1991-01-01

    Contractors under the U.S. Department of Energy management have implemented a comprehensive approach to the management of design and construction of the complex facility modifications at the SP-100 Ground Engineering System Test Site on the Hanford Reservation. The SP-100 Test Site employs a multi-organizational integrated management approach with clearly defined responsibilities to assure success. This approach allows for thorough planning and analysis before the project kick off, thus minimizing the number and magnitude of problems which arise during the course of the project. When combined with a comprehensive cost and schedule/project management reporting system the problems which do occur are recognized early enough to assure timely intervention and resolution

  7. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    International Nuclear Information System (INIS)

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository

  8. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    Energy Technology Data Exchange (ETDEWEB)

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository.

  9. Variations in radon-222 in soil and ground water at the Nevada Test Site

    International Nuclear Information System (INIS)

    Wollenberg, H.; Straume, T.; Smith, A.; King, C.Y.

    1977-01-01

    To help evaluate the applicability of variations of radon-222 in ground water and soil gas as a possible earthquake predictor, measurements were conducted in conjunction with underground explosions at the Nevada Test Site (NTS). Radon fluctuations in ground water have been observed during a sequence of aftershocks following the Oroville, California earthquake of 1 August 1975. The NTS measurements were designed to show if these fluctuations were in response to ground shaking; if not, they could be attributed to changes in earth strain prior to the aftershocks. Well waters were periodically sampled and soil-gas 222 Rn monitored prior to and following seven underground explosions of varying strength and distance from sampling and detector locations. Soil-gas 222 Rn contents were measured by the alpha-track method; well water 222 Rn by gamma-ray spectrometry. There was no clearly identifiable correlation between well-water radon fluctuations and individual underground tests. One prominent variation in soil-gas radon corresponded to ground shaking from a pair of underground tests in alluvium; otherwise, there was no apparent correlation between radon emanation and other explosions. Markedly lower soil-gas radon contents following the tests were probably caused by consolidation of alluvium in response to ground shaking

  10. Ground-water data for the Nevada Test Site 1992, and for selected other areas in South-Central Nevada, 1952--1992

    International Nuclear Information System (INIS)

    1992-01-01

    Ground-water data collected from wells and test holes at and in the vicinity of the Nevada Test Site have been compiled in a recently released report. These data were collected by the US Geological Survey, Department of the Interior, in support of the US Department of Energy, Environmental Restoration and Hydrologic Resources Management Programs. Depth-to-water measurements were made at 53 sites at the Nevada Test Site from October 1, 1991, to September 30, 1992, and at 60 sites in the vicinity of the Nevada Test Site from 1952 to September 30, 1992. For water year 1992, depth to water ranged from 288 to 2,213 feet below land surface at the Nevada Test Site and from 22 to 1,460 feet below land surface at sites in the vicinity of the Nevada Test Site. Total ground-water withdrawal data compiled for 12 wells at the Nevada Test Site during calendar year 1992 was more than 400 million gallons. Tritium concentrations in water samples collected from five test holes at the Nevada Test Site in water year 1992 did not exceed the US Environmental Protection Agency drinking, water limit

  11. History of ground motion programs at the Nevada Test Site

    International Nuclear Information System (INIS)

    Banister, J.R.

    1984-01-01

    Some measurements were made in the atmospheric testing era, but the study of ground motion from nuclear tests became of wider interest after the instigation of underground testing. The ground motion generated by underground nuclear test has been investigated for a number of reasons including understanding basic phenomena, operational and safety concerns, yield determination, stimulation of earthquake concerns, and developing methods to aid in treaty verifications. This history of ground motion programs will include discussing early studies, high yield programs, Peaceful Nuclear Explosions tests, and some more recent developments. 6 references, 10 figures

  12. Seismic Data for Evaluation of Ground Motion Hazards in Las Vegas in Support of Test Site Readiness Ground Motion

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, A

    2008-01-16

    In this report we describe the data sets used to evaluate ground motion hazards in Las Vegas from nuclear tests at the Nevada Test Site. This analysis is presented in Rodgers et al. (2005, 2006) and includes 13 nuclear explosions recorded at the John Blume and Associates network, the Little Skull Mountain earthquake and a temporary deployment of broadband station in Las Vegas. The data are available in SAC format on CD-ROM as an appendix to this report.

  13. Radiological Situation at the Bomb Test Sites

    International Nuclear Information System (INIS)

    Valkovic, V.

    1998-01-01

    An overview of radiological situation at the selected bomb test sites is presented. The report is based on the reports and measurements performed by IAEA while the author was a head of its Physics-Chemistry-Instrumentation Laboratory. Radiological conditions at Bikini Atoll (USA testing ground), Mururoa and Fangataufa Atolls (French testing ground) and Semipalatinsk (SSSR testing ground) have been discussed in some details. (author)

  14. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    Science.gov (United States)

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-01-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the U.S. Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts supported through the U.S. Department of Energy program will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Test-generated contaminants have been introduced over large areas and at variable depths above and below the water table throughout NTS. Evaluating the risks associated with these byproducts of underground testing presupposes a knowledge of the source, transport, and potential receptors of these contaminants. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. Any assessment of the risk must rely in part on the current understanding of ground-water flow, and the assessment will be only as good as the understanding

  15. Initial site characterization and evaluation of radionuclide contaminated soil waste burial grounds

    International Nuclear Information System (INIS)

    Phillips, S.J.; Reisenauer, A.E.; Rickard, W.H.; Sandness, G.A.

    1977-02-01

    A survey of historical records and literature containing information on the contents of 300 Area and North Burial Grounds was completed. Existing records of radioactive waste location, type, and quantity within each burial ground facility were obtained and distributed to cooperating investigators. A study was then initiated to evaluate geophysical exploration techniques for mapping buried waste materials, waste containers, and trench boundaries. Results indicate that a combination of ground penetrating radar, magnetometer, metal detector, and acoustic measurements will be effective but will require further study, hardware development, and field testing. Drilling techniques for recovering radionuclide-contaminated materials and sediment cores were developed and tested. Laboratory sediment characterization and fluid transport and monitoring analyses were begun by installation of in situ transducers at the 300 North Burial Ground site. Biological transport mechanisms that control radionuclide movement at contaminated sites were also studied. Flora and fauna presently inhabiting specific burial ground areas were identified and analyzed. Future monitoring of specific mammal populations will permit determination of dose rate and pathways of contaminated materials contained in and adjacent to burial ground sites

  16. Hanford Site ground-water monitoring for 1990

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-06-01

    The Pacific Northwest Laboratory monitors ground-water quality across the Hanford Site for the US Department of Energy (DOE) to assess the impact of Site operations on the environment. Monitoring activities were conducted to determine the distribution of mobile radionuclides and identify chemicals present in ground water as a result of Site operations and whenever possible, relate the distribution of these constituents to Site operations. To comply with the Resource Conservation and Recovery Act, additional monitoring was conducted at individual waste sites by the Site Operating Contractor, Westinghouse Hanford Company (WHC), to assess the impact that specific facilities have had on ground-water quality. Six hundred and twenty-nine wells were sampled during 1990 by all Hanford ground-water monitoring activities

  17. Hanford Site ground-water monitoring for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  18. Ground Truth Collections at the MTI Core Sites

    International Nuclear Information System (INIS)

    Garrett, A.J.

    2001-01-01

    The Savannah River Technology Center (SRTC) selected 13 sites across the continental US and one site in the western Pacific to serve as the primary or core site for collection of ground truth data for validation of MTI science algorithms. Imagery and ground truth data from several of these sites are presented in this paper. These sites are the Comanche Peak, Pilgrim and Turkey Point power plants, Ivanpah playas, Crater Lake, Stennis Space Center and the Tropical Western Pacific ARM site on the island of Nauru. Ground truth data includes water temperatures (bulk and skin), radiometric data, meteorological data and plant operating data. The organizations that manage these sites assist SRTC with its ground truth data collections and also give the MTI project a variety of ground truth measurements that they make for their own purposes. Collectively, the ground truth data from the 14 core sites constitute a comprehensive database for science algorithm validation

  19. Site Release Report for C-Well Pipeline, UE-25 Large Rocks Test Site, and 29 GSF Test Pits

    International Nuclear Information System (INIS)

    K.E. Rasmuson

    2002-01-01

    The U.S. Department of Energy has implemented a program to reclaim lands disturbed by site characterization at Yucca Mountain. Long term goals of the program are to re-establish processes on disturbed sites that will lead to self-sustaining plant communities. The Biological Opinion for Yucca Mountain Site Characterization Studies required that the U.S. Department of Energy develop a Reclamation Standards and Monitoring Plan to evaluate the success of reclamation efforts. According to the Reclamation Standards and Monitoring Plan, reclaimed sites will be monitored periodically, remediated if necessary, and eventually compared to an appropriate reference area to determine whether reclamation goals have been achieved and the site can be released from further monitoring. Plant cover, density, and species richness (success parameters) on reclaimed sites are compared to 60 percent of the values (success criteria) for the same parameters on the reference area. Small sites (less than 0.1 ha) are evaluated for release using qualitative methods while large sites (greater than 0.1 ha) are evaluated using quantitative methods. In the summer of 2000, 31 small sites reclaimed in 1993 and 1994 were evaluated for reclamation success and potential release from further monitoring. Plant density, cover, and species richness were estimated on the C-Well Pipeline, UE-25 Large Rocks test site, and 29 ground surface facility test pits. Evidence of erosion, reproduction and natural recruitment, exotic species abundance, and animal use (key attributes) also were recorded for each site and used in success evaluations. The C-Well Pipeline and ground surface facility test pits were located in a ''Larrea tridentata - Ephedra nevadensis'' vegetation association while the UE-25 Large Rocks test site was located in an area dominated by ''Coleogyne ramosissima and Ephedra nevadensis''. Reference areas in the same vegetation associations with similar slope and aspect were chosen for comparison to

  20. Site Release Reports for C-Well Pipeline, UE-25 Large Rocks Test Site, and 29 GSF Test Pits

    Energy Technology Data Exchange (ETDEWEB)

    K.E. Rasmuson

    2002-04-02

    The U.S. Department of Energy has implemented a program to reclaim lands disturbed by site characterization at Yucca Mountain. Long term goals of the program are to re-establish processes on disturbed sites that will lead to self-sustaining plant communities. The Biological Opinion for Yucca Mountain Site Characterization Studies required that the U.S. Department of Energy develop a Reclamation Standards and Monitoring Plan to evaluate the success of reclamation efforts. According to the Reclamation Standards and Monitoring Plan, reclaimed sites will be monitored periodically, remediated if necessary, and eventually compared to an appropriate reference area to determine whether reclamation goals have been achieved and the site can be released from further monitoring. Plant cover, density, and species richness (success parameters) on reclaimed sites are compared to 60 percent of the values (success criteria) for the same parameters on the reference area. Small sites (less than 0.1 ha) are evaluated for release using qualitative methods while large sites (greater than 0.1 ha) are evaluated using quantitative methods. In the summer of 2000, 31 small sites reclaimed in 1993 and 1994 were evaluated for reclamation success and potential release from further monitoring. Plant density, cover, and species richness were estimated on the C-Well Pipeline, UE-25 Large Rocks test site, and 29 ground surface facility test pits. Evidence of erosion, reproduction and natural recruitment, exotic species abundance, and animal use (key attributes) also were recorded for each site and used in success evaluations. The C-Well Pipeline and ground surface facility test pits were located in a ''Larrea tridentata - Ephedra nevadensis'' vegetation association while the UE-25 Large Rocks test site was located in an area dominated by ''Coleogyne ramosissima and Ephedra nevadensis''. Reference areas in the same vegetation associations with similar slope

  1. Hanford Site ground-water monitoring for 1994

    International Nuclear Information System (INIS)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal

  2. Preliminary site design for the SP-100 ground engineering test

    International Nuclear Information System (INIS)

    Cox, C.M.; Miller, W.C.; Mahaffey, M.K.

    1986-04-01

    In November, 1985, Hanford was selected by the Department of Energy (DOE) as the preferred site for a full-scale test of the integrated nuclear subsystem for SP-100. The Hanford Engineering Development Laboratory, operated by Westinghouse Hanford Company, was assigned as the lead contractor for the Test Site. The nuclear subsystem, which includes the reactor and its primary heat transport system, will be provided by the System Developer, another contractor to be selected by DOE in late FY-1986. In addition to reactor operations, test site responsibilities include preparation of the facility plus design, procurement and installation of a vacuum chamber to house the reactor, a secondary heat transport system to dispose of the reactor heat, a facility control system, and postirradiation examination. At the conclusion of the test program, waste disposal and facility decommissioning are required. The test site must also prepare appropriate environmental and safety evaluations. This paper summarizes the preliminary design requirements, the status of design, and plans to achieve full power operation of the test reactor in September, 1990

  3. Measurement of ground motion in various sites

    International Nuclear Information System (INIS)

    Bialowons, W.; Amirikas, R.; Bertolini, A.; Kruecker, D.

    2007-04-01

    Ground vibrations may affect low emittance beam transport in linear colliders, Free Electron Lasers (FEL) and synchrotron radiation facilities. This paper is an overview of a study program to measure ground vibrations in various sites which can be used for site characterization in relation to accelerator design. Commercial broadband seismometers have been used to measure ground vibrations and the resultant database is available to the scientific community. The methodology employed is to use the same equipment and data analysis tools for ease of comparison. This database of ground vibrations taken in 19 sites around the world is first of its kind. (orig.)

  4. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Volume 2. Special test cases

    International Nuclear Information System (INIS)

    Simmons, C.S.; Cole, C.R.

    1985-08-01

    This document was written for the National Low-Level Waste Management Program to provide guidance for managers and site operators who need to select ground-water transport codes for assessing shallow-land burial site performance. The guidance given in this report also serves the needs of applications-oriented users who work under the direction of a manager or site operator. The guidelines are published in two volumes designed to support the needs of users having different technical backgrounds. An executive summary, published separately, gives managers and site operators an overview of the main guideline report. Volume 1, titled ''Guideline Approach,'' consists of Chapters 1 through 5 and a glossary. Chapters 2 through 5 provide the more detailed discussions about the code selection approach. This volume, Volume 2, consists of four appendices reporting on the technical evaluation test cases designed to help verify the accuracy of ground-water transport codes. 20 refs

  5. EPA True NO2 ground site measurements – multiple sites, TCEQ ground site measurements of meteorological and air pollution parameters – multiple sites ,GeoTASO NO2 Vertical Column

    Data.gov (United States)

    U.S. Environmental Protection Agency — EPA True NO2 ground site measurements – multiple sites - http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.tx-2013; TCEQ ground site measurements of...

  6. Hanford site ground water protection management plan

    International Nuclear Information System (INIS)

    1994-10-01

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities

  7. Hanford Site ground-water monitoring for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  8. Contamination and UV ageing of diffuser targets used in satellite inflight and ground reference test site calibrations

    Science.gov (United States)

    Vaskuri, Anna; Greenwell, Claire; Hessey, Isabel; Tompkins, Jordan; Woolliams, Emma

    2018-02-01

    Diffuser reflectance targets are key components in in-orbit calibrations and for verifying ground reference test sites. In this work, Spectralon, Diffusil, and Heraeus diffusers were exposed to exhaust gases and ultraviolet (UV) radiation in the ambient air conditions and their degradations were monitored by measuring changes in spectral reflectances. Spectralon is a state-of-the-art diffuser made of polytetrafluoroethylene, and Diffusil and Heraeus diffusers are made of fused silica with gas bubbles inside. Based on the contamination tests, Spectralon degrades faster than fused silica diffusers. For the samples exposed to contamination for 20 minutes, the 250 nm - 400 nm total diffuse spectral reflectance of Spectralon degraded 3-5 times more when exposed to petrol-like emission and 16-23 times more when exposed to diesel-like emission, compared with Diffusil. When the reflectance changes of Spectralon were compared with those of Heraeus, Spectralon degraded 3-4 times more when exposed to petrol-like emission for 20 minutes and 5-7 times more when exposed to diesel-like emission for 7.5 minutes. When the samples contaminated were exposed to UV radiation in the ambient air, their reflectance gradually restored back to the original level. In conclusion, fused silica diffusers are more resistant to hydrocarbon contaminants present in ground reference test sites, and thus more stable under UV radiation in the air.

  9. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-01-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the US Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. This report summarizes what is known and inferred about ground-water flow throughout the NTS region. The report identifies and updates what is known about some of the major controls on ground-water flow, highlights some of the uncertainties in the current understanding, and prioritizes some of the technical needs as related to the Environmental Restoration Program. 113 refs

  10. Risk-based screening analysis of ground water contaminated by radionuclides introduced at the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Daniels, J.I.; Anspaugh, L.R.; Andricevic, R.; Jacobson, R.L.

    1993-06-01

    The Nevada Test Site (NTS) is located in the southwestern part of Nevada, about 105 km (65 mi) northwest of the city of Las Vegas. Underground tests of nuclear weapons devices have been conducted at the NTS since late 1962 and ground water beneath the NTS has been contaminated with radionuclides produced by these tests. This concern prompted this examination of the potential health risk to these individuals from drinking the contaminated ground water either at a location on the NTS (assuming loss of institutional control after 100 y) or at one offsite (considering groundwater migration). For the purpose of this assessment, a representative mix of the radionuclides of importance and their concentrations in ground water beneath the NTS were identified from measurements of radionuclide concentrations in groundwater samples-of-opportunity collected at the NTS. Transport of radionuclide-contaminated ground water offsite was evaluated using a travel-time-transport approach. At both locations of interest, potential human-health risk was calculated for an individual ingesting radionuclide-contaminated ground water over the course of a 70-y lifetime. Uncertainties about human physiological attributes, as well as about estimates of physical detriment per unit of radioactive material, were quantified and incorporated into the estimates of risk. The maximum potential excess lifetime risk of cancer mortality estimated for an individual at the offsite location ranges from 7 x 10 -7 to 1 x 10 -5 , and at the onsite location ranges from 3 x 10 -3 to 2 x 10 -2 . Both the offsite and the onsite estimates of risk are dominated by the lifetime doses from tritium. For the assessment of radionuclides in ground water, the critical uncertainty is their concentration today under the entire NTS

  11. Hanford Site ground-water monitoring for 1993

    International Nuclear Information System (INIS)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices

  12. Valuation of potential hazards to ground water from abandoned sites

    International Nuclear Information System (INIS)

    Kerndorff, H.; Schleyer, R.; Dieter, H.H.

    1993-01-01

    With a view to obtaining, for the large number of abandoned sites suspected of pollution, necessary information regarding the type and extent of possible ground water contamination with a minimum of effort and cost, a hierarchical investigation strategy was developed and successfully tested in more than 100 cases in Germany. As a decisive advantage, already the well-defined and simple investigation steps ''preliminary prospecting'' and ''screening'' permit to recognize polluted sites posing a hazard to ground water. The more specific and demanding investigation steps ''pollutant analysis'' and ''detailed investigations'' may be carried through if necessary. (orig./BBR). 27 figs., 36 tabs [de

  13. Ground testing of an SP-100 prototypic reactor

    International Nuclear Information System (INIS)

    Motwani, K.; Pflasterer, G.R.; Upton, H.; Lazarus, J.D.; Gluck, R.

    1988-01-01

    SP-100 is a space power system which is being developed by GE to meet future space electrical power requirements. The ground testing of an SP-100 prototypic reactor system will be conducted at the Westinghouse Hanford Company site located at Richland, Washington. The objective of this test is to demonstrate the performance of a full scale prototypic reactor system, including the reactor, control system and flight shield. The ground test system is designed to simulate the flight operating conditions while meeting all the necessary nuclear safety requirements in a gravity environment. The goal of the reactor ground test system is to establish confidence in the design maturity of the SP-100 space reactor power system and resolve the technical issues necessary for the development of a flight mission design

  14. Hanford Site ground-water monitoring for 1991

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-10-01

    The Pacific Northwest Laboratory (PNL) monitors the distribution of radionuclides and other hazardous materials in ground water at the Hanford Site for the US Department of Energy (DOE). This work is performed through the Ground-Water Surveillance Project and is designed to meet the requirements of DOE Order 5400.1 that apply to environmental surveillance and ground-water monitoring (DOE 1988). This annual report discusses results of ground-water monitoring at the Hanford Site during 1991. In addition to the general discussion, the following topics are discussed in detail: (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and the 200-West areas; (3) hexavalent chromium contamination in the 100, 200, and 600 areas; (4) trichloroethylene in the vicinity of the Solid Waste Landfill, 100-F Area, and 300 Area; (5) nitrate across the Site; (6) tritium across the Site; and (7) other radionuclide contamination throughout the Site, including gross alpha, gross beta, cobalt-60, strontium-90, technetium-99, iodine-129, cesium-137, uranium, and plutonium

  15. Hanford Site ground-water surveillance for 1989

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.; Kemner, M.L.

    1990-06-01

    This annual report of ground-water surveillance activities provides discussions and listings of results for ground-water monitoring at the Hanford Site during 1989. The Pacific Northwest Laboratory (PNL) assesses the impacts of Hanford operations on the environment for the US Department of Energy (DOE). The impact Hanford operations has on ground water is evaluated through the Hanford Site Ground-Water Surveillance program. Five hundred and sixty-seven wells were sampled during 1989 for Hanford ground-water monitoring activities. This report contains a listing of analytical results for calendar year (CY) 1989 for species of importance as potential contaminants. 30 refs., 29 figs,. 4 tabs

  16. About condition of soil ground at locations of the former Azgir nuclear test site

    International Nuclear Information System (INIS)

    Akhmetov, E.Z.; Adymov, Zh.I.; Ermatov, A.S.

    2003-01-01

    Full text: Soil condition after underground nuclear explosions at locations of the test sites is considered. The region is situated in the zone of northern deserts and characterized by prevalence of greyish-brown soils in conditions of sharply continental climate and presence of salt in soil-formative complex including tertiary clays, loess-like loam, loam sands and sands. There are small quantity of humus in such soil. During investigation of soil characteristics and ability of soil particles to form conglomerates, possessing of different properties, it is necessary to know both element and phase composition, determining, in the most extent, such physical and mechanical macro-characteristics as: density, stickiness, air and water penetrability, solubility, chemical resistance, granulometric set and others. Phase composition of soil samples can be, to a sufficient extent, determined by the X-ray diffractometry methods using ordinary X-ray experimental facilities. Phase composition of soil includes gypsum, quartz, calcium, potash feldspar hematite, kaolin, peach and mica in different quantities. Data on element composition of soil samples were obtained from the territory of technological locations of test site using the method of X-ray-fluorescent analysis. Granulometric composition of soil ground has been investigated using the methods of dry sieving and wet sieving for determination of radionuclide distribution in different fractions of soil particles. By the method of the dry sieving of soil ground samples there are taken place a sticking the small together of fine fractions and an adhesion of stuck-together particles to more large ones. Therefore, fine fractions cannot be separate completely at dry sieving. As distinct from the dry sieving an use of water jet in the sieving allows to overcome defects of the dry method and, by a sufficiently effective separation of granulometric fractions, to obtain more precise results of investigations of granulometric

  17. Radioactive contamination of former Semipalatinsk test site area

    International Nuclear Information System (INIS)

    Artem'ev, O.I.; Akhmetov, M.A.; Ptitskaya, L.D.

    2001-01-01

    The nuclear weapon infrastructure elimination activities and related surveys of radioactive contamination are virtually accomplished at the Semipalatinsk test site (STS). The radioecological surveys accompanied closure of tunnels which were used for underground nuclear testing at Degelen technical field and elimination of intercontinental ballistic missile silo launchers at Balapan technical field. At the same time a ground-based route survey was carried out at the Experimental Field where aboveground tests were conducted and a ground-based area survey was performed in the south of the test site where there are permanent and temporary inhabited settlements. People dwelling these settlements are mainly farmers. The paper presents basic results of radiological work conducted in the course of elimination activities. (author)

  18. BUSTED BUTTE TEST FACILITY GROUND SUPPORT CONFIRMATION ANALYSIS

    International Nuclear Information System (INIS)

    Bonabian, S.

    1998-01-01

    The main purpose and objective of this analysis is to confirm the validity of the ground support design for Busted Butte Test Facility (BBTF). The highwall stability and adequacy of highwall and tunnel ground support is addressed in this analysis. The design of the BBTF including the ground support system was performed in a separate document (Reference 5.3). Both in situ and seismic loads are considered in the evaluation of the highwall and the tunnel ground support system. In this analysis only the ground support designed in Reference 5.3 is addressed. The additional ground support installed (still work in progress) by the constructor is not addressed in this analysis. This additional ground support was evaluated by the A/E during a site visit and its findings and recommendations are addressed in this analysis

  19. Site Selection for Hvdc Ground Electrodes

    Science.gov (United States)

    Freire, P. F.; Pereira, S. Y.

    2014-12-01

    High-Voltage Direct Current (HVDC) transmission systems are composed of a bipole transmission line with a converter substation at each end. Each substation may be equipped with a HVDC ground electrode, which is a wide area (up to 1 km Ø) and deep (from 3 to 100m) electrical grounding. When in normal operation, the ground electrode will dissipate in the soil the unbalance of the bipole (~1.5% of the rated current). When in monopolar operation with ground return, the HVDC electrode will inject in the soil the nominal pole continuous current, of about 2000 to 3000 Amperes, continuously for a period up to a few hours. HVDC ground electrodes site selection is a work based on extensive geophysical and geological surveys, in order to attend the desired design requirements established for the electrodes, considering both its operational conditions (maximum soil temperature, working life, local soil voltage gradients etc.) and the interference effects on the installations located up to 50 km away. This poster presents the geophysical investigations conducted primarily for the electrodes site selection, and subsequently for the development of the crust resistivity model, which will be used for the interference studies. A preliminary site selection is conducted, based on general geographical and geological criteria. Subsequently, the geology of each chosen area is surveyed in detail, by means of electromagnetic/electrical geophysical techniques, such as magnetotelluric (deep), TDEM (near-surface) and electroresistivity (shallow). Other complementary geologic and geotechnical surveys are conducted, such as wells drilling (for geotechnical characterization, measurement of the water table depth and water flow, and electromagnetic profiling), and soil and water sampling (for measurement of thermal parameters and evaluation of electrosmosis risk). The site evaluation is a dynamic process along the surveys, and some sites will be discarded. For the two or three final sites, the

  20. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used to evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  1. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used ito evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  2. Quaternary ground siting technology of nuclear power plants

    International Nuclear Information System (INIS)

    Nishi, K.; Kokusho, T.; Iwatate, Y.; Ishida, K.; Honsho, S.; Okamoto, T.; Tohma, J.; Tanaka, Y.; Kanatani, M.

    1992-01-01

    A seismic stability evaluation method for a nuclear power plant to be located on Quaternary sandy/gravelly ground is discussed herein in terms of a geological and geotechnical survey, a design earthquake motion evaluation and geotechnical seismic stability analyses. The geological and geotechnical exploration tunnel in the rock foundation siting will be difficult in the Quaternary ground siting. Boring, geophysical surveys and soil sampling will play a major role in this case. A design earthquake input spectrum for this siting is proposed to take in account the significant effect of longer period motion on ground stability. Equivalent and non-linear analyses demonstrate the seismic stability of the foundation ground so long as the soil density is high. (author)

  3. TC-13 Mod 0 and Mod 2 Steam Catapult Test Site

    Data.gov (United States)

    Federal Laboratory Consortium — Located on 11,000 feet of test runway, the TC-13 Mod 0 and Mod 2 Steam Catapult Test Site has in-ground catapults identical to those aboard carriers. This test site...

  4. A system to test the ground surface conditions of construction sites--for safe and efficient work without physical strain.

    Science.gov (United States)

    Koningsveld, Ernst; van der Grinten, Maarten; van der Molen, Henk; Krause, Frank

    2005-07-01

    Ground surface conditions on construction sites have an important influence on the health and safety of workers and their productivity. The development of an expert-based "working conditions evaluation" system is described, intended to assist site managers in recognising unsatisfactory ground conditions and remedying these. The system was evaluated in the period 2002-2003. The evaluation shows that companies recognize poor soil/ground conditions as problematic, but are not aware of the specific physical workload hazards. The developed methods allow assessment of the ground surface quality and selection of appropriate measures for improvement. However, barriers exist at present to wide implementation of the system across the industry. Most significant of these is that responsibility for a site's condition is not clearly located within contracting arrangements, nor is it a topic of serious negotiation.

  5. Dissolved oxygen mapping: A powerful tool for site assessments and ground water monitoring

    International Nuclear Information System (INIS)

    Newman, W.A.; Kimball, G.

    1992-01-01

    Dissolved oxygen concentration profiles often provide an excellent indication of the natural biological activity of microorganisms in ground water. The analysis of dissolved oxygen in ground water also provides a rapid, inexpensive method for determining the areal extent of contaminant plumes containing aerobically degraded compounds such as petroleum hydrocarbons. Indigenous hydrocarbon degrading organisms are present at most petroleum product spills giving this technique an almost universal application for dissolved hydrocarbons in ground water. Data from several sites will be presented to demonstrate the relationship between oxygen and dissolved contaminant concentrations. The inverse relationship between oxygen concentrations and dissolved contaminants can be used in many ways. During the initial site assessment, rapid on-site testing of ground water can provide real time data to direct drilling by identification of potentially contaminated locations. Several analytical techniques are available that allow field analysis to be performed in less than five minutes. Dissolved oxygen testing also provides an inexpensive way to monitor hydrocarbon migration without expensive gas chromatography. Often a plume of oxygen depleted ground water extends farther downgradient than the dissolved hydrocarbon plume. The depletion of oxygen in a well can provide an early warning system that detects upgradient contamination before the well is impacted by detectable levels of contaminants. Another application is the measurement of the natural degradation potential for aerobic remediation. If an aerobic in-situ remediation is used, dissolved oxygen monitoring provides an inexpensive method to monitor the progress of the remediation

  6. Ground Characterization Studies in Canakkale Pilot Site of LIQUEFACT Project

    Science.gov (United States)

    Ozcep, F.; Oztoprak, S.; Aysal, N.; Bozbey, I.; Tezel, O.; Ozer, C.; Sargin, S.; Bekin, E.; Almasraf, M.; Cengiz Cinku, M.; Ozdemir, K.

    2017-12-01

    The our aim is to outline the ground characterisation studies in Canakkale test site. Study is based on the EU H2020 LIQUEFACT project entitled "Liquefact: Assessment and mitigation of liquefaction potential across Europe: a holistic approach to protect structures / infrastructures for improved resilience to earthquake-induced liquefaction disasters". Objectives and extent of ground characterization for Canakkale test site includes pre-existing soil investigation studies and complementary field studies. There were several SPT and geophysical tests carried out in the study area. Within the context of the complementary tests, six (6) study areas in the test site were chosen and complementary tests were carried out in these areas. In these areas, additional boreholes were opened and SPT tests were performed. It was decided that additional CPT (CPTU and SCPT) and Marchetti Dilatometer (DMT) tests should be carried out within the scope of the complementary testing. Seismic refraction, MASW and micro tremor measurements had been carried out in pre-existing studies. Shear wave velocities obtained from MASW measurements were evaluated to the most rigorous level. These tests were downhole seismic, PS-logging, seismic refraction, 2D-ReMi, MASW, micro tremor (H/V Nakamura method), 2D resistivity and resonance acoustic profiling (RAP). RAP is a new technique which will be explained briefly in the relevant section. Dynamic soil properties had not been measured in pre-existing studies, therefore these properties were investigated within the scope of the complementary tests. Selection of specific experimental tests of the complementary campaign was based on cost-benefit considerations Within the context of complementary field studies, dynamic soil properties were measured using resonant column and cyclic direct shear tests. Several sieve analyses and Atterberg Limits tests which were documented in the pre-existing studies were evaluated. In the complementary study carried out

  7. Analysis Methodology for Optimal Selection of Ground Station Site in Space Missions

    Science.gov (United States)

    Nieves-Chinchilla, J.; Farjas, M.; Martínez, R.

    2013-12-01

    ). To check/test the spatial proposal of the ground station site, this analysis methodology uses mission simulation software of spatial vehicles to analyze and quantify how the geographic accuracy of the position of the spatial vehicles along the horizon visible from the antenna, increases communication time with the ground station. Experimental results that have been obtained from a ground station located at ETSIT-UPM in Spain (QBito Nanosatellite, UPM spacecraft mission within the QB50 project) show that selection of the optimal site increases the field of view from the antenna and hence helps to meet mission requirements.

  8. Large Payload Ground Transportation and Test Considerations

    Science.gov (United States)

    Rucker, Michelle A.

    2016-01-01

    Many spacecraft concepts under consideration by the National Aeronautics and Space Administration’s (NASA’s) Evolvable Mars Campaign take advantage of a Space Launch System payload shroud that may be 8 to 10 meters in diameter. Large payloads can theoretically save cost by reducing the number of launches needed--but only if it is possible to build, test, and transport a large payload to the launch site in the first place. Analysis performed previously for the Altair project identified several transportation and test issues with an 8.973 meters diameter payload. Although the entire Constellation Program—including Altair—has since been canceled, these issues serve as important lessons learned for spacecraft designers and program managers considering large payloads for future programs. A transportation feasibility study found that, even broken up into an Ascent and Descent Module, the Altair spacecraft would not fit inside available aircraft. Ground transportation of such large payloads over extended distances is not generally permitted, so overland transportation alone would not be an option. Limited ground transportation to the nearest waterway may be possible, but water transportation could take as long as 67 days per production unit, depending on point of origin and acceptance test facility; transportation from the western United States would require transit through the Panama Canal to access the Kennedy Space Center launch site. Large payloads also pose acceptance test and ground processing challenges. Although propulsion, mechanical vibration, and reverberant acoustic test facilities at NASA’s Plum Brook Station have been designed to accommodate large spacecraft, special handling and test work-arounds may be necessary, which could increase cost, schedule, and technical risk. Once at the launch site, there are no facilities currently capable of accommodating the combination of large payload size and hazardous processing such as hypergolic fuels

  9. Site Specific Ground Response Analysis for Quantifying Site Amplification at A Regolith Site

    Directory of Open Access Journals (Sweden)

    Bambang Setiawan

    2017-08-01

    Full Text Available DOI: 10.17014/ijog.4.3.159-167A numerical model has demonstrated that it can simulate reasonably well earthquake motions at the ground level during a seismic event. The most widely used model is an equivalent linear approach. The equivalent linear model was used to compute the free-field response of Adelaide regolith during the 1997 Burra earthquake. The aim of this study is to quantify the amplification at the investigated site. The model computed the ground response of horizontally layered soil deposits subjected to transient and vertically propagating shear waves through a one-dimensional-soil column. Each soil layer was assumed to be homogeneous, visco-elastic, and infinite in the horizontal extent. The results of this study were compared to other studies and forward computation of the geotechnical dynamic parameters of the investigated site. The amplification triggered by the 1997 Burra seismic event was deduced. This study reveals the amplification factor up to 3.6 at the studied site.

  10. Evaluation of site effects on ground motions based on equivalent linear site response analysis and liquefaction potential in Chennai, south India

    Science.gov (United States)

    Nampally, Subhadra; Padhy, Simanchal; Trupti, S.; Prabhakar Prasad, P.; Seshunarayana, T.

    2018-05-01

    We study local site effects with detailed geotechnical and geophysical site characterization to evaluate the site-specific seismic hazard for the seismic microzonation of the Chennai city in South India. A Maximum Credible Earthquake (MCE) of magnitude 6.0 is considered based on the available seismotectonic and geological information of the study area. We synthesized strong ground motion records for this target event using stochastic finite-fault technique, based on a dynamic corner frequency approach, at different sites in the city, with the model parameters for the source, site, and path (attenuation) most appropriately selected for this region. We tested the influence of several model parameters on the characteristics of ground motion through simulations and found that stress drop largely influences both the amplitude and frequency of ground motion. To minimize its influence, we estimated stress drop after finite bandwidth correction, as expected from an M6 earthquake in Indian peninsula shield for accurately predicting the level of ground motion. Estimates of shear wave velocity averaged over the top 30 m of soil (V S30) are obtained from multichannel analysis of surface wave (MASW) at 210 sites at depths of 30 to 60 m below the ground surface. Using these V S30 values, along with the available geotechnical information and synthetic ground motion database obtained, equivalent linear one-dimensional site response analysis that approximates the nonlinear soil behavior within the linear analysis framework was performed using the computer program SHAKE2000. Fundamental natural frequency, Peak Ground Acceleration (PGA) at surface and rock levels, response spectrum at surface level for different damping coefficients, and amplification factors are presented at different sites of the city. Liquefaction study was done based on the V S30 and PGA values obtained. The major findings suggest show that the northeast part of the city is characterized by (i) low V S30 values

  11. Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes

    KAUST Repository

    Nath, Sankar Kumar; Thingbaijam, Kiran Kumar; Adhikari, M. D.; Nayak, Avinash; Devaraj, N.; Ghosh, Soumalya K.; Mahajan, Arun K.

    2013-01-01

    We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.

  12. Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes

    KAUST Repository

    Nath, Sankar Kumar

    2013-12-01

    We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.

  13. Ground-water hydrology and radioactive waste disposal at the Hanford Site

    International Nuclear Information System (INIS)

    Law, A.G.

    1979-02-01

    This paper is a summary of the hydrologic activities conducted at the Hanford Site as a part of the environmental protection effort. The Site encompasses 1,480 square kilometers in the arid, southeastern part of Washington State. Precipitation averages about 160 millimeters per year with a negligible amount, if any, recharging the water table, which is from 50 to 100 meters below the ground surface. An unconfined aquifer occurs in the upper and middle Ringold Formations. The lower Ringold Formation along with interbed and interflow zones in the Saddle Mountain and Wanapum basalts forms a confined aquifer system. A potential exists for the interconnection of the unconfined and confined aquifer systems, especially near Gable Mountain where the anticlinal ridge was eroded by the catastrophic floods of the ancestral Columbia River system. Liquid wastes from chemical processing operations have resulted in large quantities of processing and cooling water disposed to ground via ponds, cribs, and ditches. The ground-water hydrology program at Hanford is designed: (1) to define and quantify the ground-water flow systems, (2) to evaluate the impact of the liquid waste discharges on these flow systems, and (3) to predict the impact on the ground-water systems of changes in system inputs. This work is conducted through a drilling, sampling, testing, and modeling program

  14. Study on Quaternary ground siting of nuclear power plant, (1)

    International Nuclear Information System (INIS)

    Kokusho, Takaji; Nishi, Koichi; Honsho, Shizumitsu

    1991-01-01

    A seismic stability evaluation method for a nuclear power plant to be located on a Quaternary sandy/gravelly ground is discussed herein in terms of the geological and geotechnical survey, design earthquake motion evaluation and geotechnical seismic stability analyses. The geological and geotechnical exploration tunnel in the rock-foundation siting will be difficult in the Quaternary ground siting. Boring, geophysical surveys and soil samplings will play a major role in this case. The design earthquake input spectrum for this siting is proposed so as to take account the significant effect of longer period motion on the ground stability. Equivalent and non-linear analyses demonstrate the seismic stability of the foundation ground so long as the soil density is high. (author)

  15. Evaluation of dynamic properties, local site effects and design ground motions: recent advances

    International Nuclear Information System (INIS)

    Sitharam, T.G.; Vipin, K.S.; James, Naveen

    2011-01-01

    Evidences from past earthquakes clearly shows that the damages due to an earthquake and its severity at a site are controlled mainly by three factors i.e., earthquake source and path characteristics, local geological and geotechnical characteristics, structural design and quality of the construction. Seismic ground response at a site is strongly influenced by local geological and soil conditions. The exact information of the geological, geomorphological and geotechnical data along with seismotectonic details are necessary to evaluate the ground response. The geometry of the subsoil structure, the soil type, the lateral discontinuities and the surface topography will also influence the site response at a particular location. In the case of a nuclear power plant, the details obtained from the site investigation will have multiple objectives: (i) for the effective design of the foundation (ii) assessment of site amplification (iii) for liquefaction potential evaluation. Since the seismic effects on the structure depend fully on the site conditions and assessment of site amplification. The first input required in evaluation of geotechnical aspect of seismic hazard is the rock level peak horizontal acceleration (PHA) values. The surface level acceleration values need to be calculated based on the site conditions and site amplification values. This paper discusses various methods for evaluating the site amplification values, dynamic soil properties, different field and laboratory tests required and various site classification schemes. In addition to these aspects, the evaluation of liquefaction potential of the site is also presented. The paper highlights on the latest testing methods to evaluate dynamic properties (shear modulus and damping ratio) of soils and techniques for estimating local site effects. (author)

  16. First observations of tritium in ground water outside chimneys of underground nuclear explosions, Yucca Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Crow, N.B.

    1976-01-01

    Abnormal levels of radionuclides had not been detected in ground water at the Nevada Test Site beyond the immediate vicinity of underground nuclear explosions until April 1974, when above-background tritium activity levels were detected in ground-water inflow from the tuff beneath Yucca Flat to an emplacement chamber being mined in hole U2aw in the east-central part of Area 2. No other radionuclides were detected in a sample of water from the chamber. In comparison with the amount of tritium estimated to be present in the ground water in nearby nuclear chimneys, the activity level at U2aw is very low. To put the tritium activity levels at U2aw into proper perspective, the maximum tritium activity level observed was significantly less than the maximum permissible concentration (MPC) for a restricted area, though from mid-April 1974 until the emplacement chamber was expended in September 1974, the tritium activity exceeded the MPC for the general public. Above-background tritium activity was also detected in ground water from the adjacent exploratory hole, Ue2aw. The nearest underground nuclear explosion detonated beneath the water table, believed to be the source of the tritium observed, is Commodore (U2am), located 465 m southeast of the emplacement chamber in U2aw. Commodore was detonated in May 1967. In May 1975, tritium activity May significantly higher than regional background. was detected in ground water from hole Ue2ar, 980 m south of the emplacement chamber in U2aw and 361 m from a second underground nuclear explosion, Agile (U2v), also detonated below the water table, in February 1967. This paper describes these occurrences of tritium in the ground water. A mechanism to account for the movement of tritium is postulated

  17. Ground-water quality beneath solid-waste disposal sites at anchorage, Alaska

    Science.gov (United States)

    Zenone, Chester; Donaldson, D.E.; Grunwaldt, J.J.

    1975-01-01

    Studies at three solid-waste disposal sites in the Anchorage area suggest that differences in local geohydrologic conditions influence ground-water quality. A leachate was detected in ground water within and beneath two sites where the water table is very near land surface and refuse is deposited either at or below the water table in some parts of the filled areas. No leachate was detected in ground water beneath a third site where waste disposal is well above the local water table.

  18. Methodological aspects of creating a radiological 'passport' of the former Semipalatinsk nuclear test site

    International Nuclear Information System (INIS)

    Dubasov, Yu.V.; Smagulov, S.G.; Tukhvatulin, Sh.T.

    2002-01-01

    During its existence, 456 nuclear tests were carried out at the Semipalatinsk Test Site - 30 at the ground surface, 86 in the atmosphere and 340 underground. Radioactive fallout from ground surface tests is responsible for the present radiation conditions within the 'Test Field'. The radiation situation in the Degelen Mountains is caused by 209 underground tests carried out in local tunnels. Within the former Test Site there are three large and several small zones to which general access is prohibited for public health reasons: the 'Test Field', the Degelen Mountains, lake Shagan, the rim of the lake, and the adjacent land to the north. The information and characteristics, which have to be included in radiological passport of the former Semipalatinsk Test Site, are discussed along with general information about the Semipalatinsk site, its administrative status, the population distribution throughout the territory, all the economic activities taking place within the territory, the zones and structures representing a radiation hazard, and radiohydrogeological conditions of the test site and the adjacent regions, biogenic conditions (topography, soil, vegetation), wildlife, fauna monitoring, etc. (author)

  19. Large scale seismic test research at Hualien site in Taiwan. Results of site investigation and characterization of the foundation ground

    International Nuclear Information System (INIS)

    Okamoto, Toshiro; Kokusho, Takeharu; Nishi, Koichi

    1998-01-01

    An international joint research program called ''HLSST'' is under way. Large-Scale Seismic Test (LSST) is to be conducted to investigate Soil-Structure Interaction (SSI) during large earthquakes in the field in Hualien, a high seismic region in Taiwan. A 1/4-scale model building was constructed on the excavated gravelly ground, and the backfill material of crushed stones was placed around the model plant. The model building and the foundation ground were extensively instrumented to monitor structure and ground response. To accurately evaluate SSI during earthquakes, geotechnical investigation and forced vibration test were performed during construction process namely before/after the base excavation, after the structure construction and after the backfilling. Main results are as follows. (1) The distribution of the mechanical properties of the gravelly soil are measured by various techniques including penetration tests and PS-logging and it found that the shear wave velocities (Vs) change clearly and it depends on changing overburden pressures during the construction process. (2) Measuring Vs in the surrounding soils, it found that the Vs is smaller than that at almost same depth in the farther location. Discussion is made further on the numerical soil model for SSI analysis. (author)

  20. Seismic Hazard Assessment in Site Evaluation for Nuclear Installations: Ground Motion Prediction Equations and Site Response

    International Nuclear Information System (INIS)

    2016-07-01

    The objective of this publication is to provide the state-of-the-art practice and detailed technical elements related to ground motion evaluation by ground motion prediction equations (GMPEs) and site response in the context of seismic hazard assessments as recommended in IAEA Safety Standards Series No. SSG-9, Seismic Hazards in Site Evaluation for Nuclear Installations. The publication includes the basics of GMPEs, ground motion simulation, selection and adjustment of GMPEs, site characterization, and modelling of site response in order to improve seismic hazard assessment. The text aims at delineating the most important aspects of these topics (including current practices, criticalities and open problems) within a coherent framework. In particular, attention has been devoted to filling conceptual gaps. It is written as a reference text for trained users who are responsible for planning preparatory seismic hazard analyses for siting of all nuclear installations and/or providing constraints for anti-seismic design and retrofitting of existing structures

  1. Integrated ground-water monitoring strategy for NRC-licensed facilities and sites: Case study applications

    Science.gov (United States)

    Price, V.; Temples, T.; Hodges, R.; Dai, Z.; Watkins, D.; Imrich, J.

    2007-01-01

    This document discusses results of applying the Integrated Ground-Water Monitoring Strategy (the Strategy) to actual waste sites using existing field characterization and monitoring data. The Strategy is a systematic approach to dealing with complex sites. Application of such a systematic approach will reduce uncertainty associated with site analysis, and therefore uncertainty associated with management decisions about a site. The Strategy can be used to guide the development of a ground-water monitoring program or to review an existing one. The sites selected for study fall within a wide range of geologic and climatic settings, waste compositions, and site design characteristics and represent realistic cases that might be encountered by the NRC. No one case study illustrates a comprehensive application of the Strategy using all available site data. Rather, within each case study we focus on certain aspects of the Strategy, to illustrate concepts that can be applied generically to all sites. The test sites selected include:Charleston, South Carolina, Naval Weapons Station,Brookhaven National Laboratory on Long Island, New York,The USGS Amargosa Desert Research Site in Nevada,Rocky Flats in Colorado,C-Area at the Savannah River Site in South Carolina, andThe Hanford 300 Area.A Data Analysis section provides examples of detailed data analysis of monitoring data.

  2. Ground water monitoring strategies at the Weldon Spring Site, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    Meyer, K.A. Jr.

    1988-01-01

    This paper presents ground water monitoring strategies at the Weldon Spring Site in east-central Missouri. The Weldon Spring Site is a former ordnance works and uranium processing facility. In 1987, elevated levels of inorganic anions and nitroaromatics were detected in ground water beneath the site. Studies are currently underway to characterize the hydrogeologic regime and to define ground water contamination. The complex hydrogeology at the Weldon Spring Site requires innovative monitoring strategies. Combinations of fracture and conduit flow exist in the limestone bedrock. Perched zones are also present near surface impoundments. Losing streams and springs surround the site. Solving this complex combination of hydrogeologic conditions is especially challenging

  3. [Prediction of 137Cs accumulation in animal products in the territory of Semipalatinsk test site].

    Science.gov (United States)

    Spiridonov, S I; Gontarenko, I A; Mukusheva, M K; Fesenko, S V; Semioshkina, N A

    2005-01-01

    The paper describes mathematical models for 137Cs behavior in the organism of horses and sheep pasturing on the bording area to the testing area "Ground Zero" of the Semipalatinsk Test Site. The models are parameterized on the base of the data from an experiment with the breeds of animals now commonly encountered within the Semipalatinsk Test Site. The predictive calculations with the models devised have shown that 137Cs concentrations in milk of horses and sheep pasturingon the testing area to "Ground Zero" can exceed the adopted standards during a long period of time.

  4. Analysis of ground response data at Lotung large-scale soil- structure interaction experiment site

    International Nuclear Information System (INIS)

    Chang, C.Y.; Mok, C.M.; Power, M.S.

    1991-12-01

    The Electric Power Research Institute (EPRI), in cooperation with the Taiwan Power Company (TPC), constructed two models (1/4-scale and 1/2-scale) of a nuclear plant containment structure at a site in Lotung (Tang, 1987), a seismically active region in northeast Taiwan. The models were constructed to gather data for the evaluation and validation of soil-structure interaction (SSI) analysis methodologies. Extensive instrumentation was deployed to record both structural and ground responses at the site during earthquakes. The experiment is generally referred to as the Lotung Large-Scale Seismic Test (LSST). As part of the LSST, two downhole arrays were installed at the site to record ground motions at depths as well as at the ground surface. Structural response and ground response have been recorded for a number of earthquakes (i.e. a total of 18 earthquakes in the period of October 1985 through November 1986) at the LSST site since the completion of the installation of the downhole instruments in October 1985. These data include those from earthquakes having magnitudes ranging from M L 4.5 to M L 7.0 and epicentral distances range from 4.7 km to 77.7 km. Peak ground surface accelerations range from 0.03 g to 0.21 g for the horizontal component and from 0.01 g to 0.20 g for the vertical component. The objectives of the study were: (1) to obtain empirical data on variations of earthquake ground motion with depth; (2) to examine field evidence of nonlinear soil response due to earthquake shaking and to determine the degree of soil nonlinearity; (3) to assess the ability of ground response analysis techniques including techniques to approximate nonlinear soil response to estimate ground motions due to earthquake shaking; and (4) to analyze earth pressures recorded beneath the basemat and on the side wall of the 1/4 scale model structure during selected earthquakes

  5. Verification test for three WindCube WLS7 LiDARs at the Høvsøre test site

    DEFF Research Database (Denmark)

    Gottschall, Julia; Courtney, Michael

    The report describes the procedure of testing ground-based WindCube lidars (manufactured by the French company Leosphere) at the Høvsøre test site in comparison to reference sensors mounted at a meteorological mast. Results are presented for three tested units – in detail for unit WLS7-0062, and ......-0062, and in a summary for units WLS7-0064 and WLS7-0066. The verification test covers the evaluation of measured mean wind speeds, wind directions and wind speed standard deviations. The data analysis is basically performed in terms of different kinds of regression analyses.......The report describes the procedure of testing ground-based WindCube lidars (manufactured by the French company Leosphere) at the Høvsøre test site in comparison to reference sensors mounted at a meteorological mast. Results are presented for three tested units – in detail for unit WLS7...

  6. Development and Testing of Techniques for In-Ground Stabilization, Size Reduction and Safe Removal of Radioactive Wastes Stored in Large Containments in Burial Grounds - 13591

    International Nuclear Information System (INIS)

    Halliwell, Stephen

    2013-01-01

    Radioactive waste materials, including Transuranic (TRU) wastes from laboratories have been stored below ground in large containments at a number of sites in the US DOE Complex, and at nuclear sites in Europe. These containments are generally referred to as caissons or shafts. The containments are in a range of sizes and depths below grade. The caissons at the DOE's Hanford site are cylindrical, of the order of 2,500 mm in diameter, 3,050 mm in height and are buried about 6,000 mm below grade. One type of caisson is made out of corrugated pipe, whereas others are made of concrete with standard re-bar. However, the larger shafts in the UK are of the order of 4,600 mm in diameter, 53,500 mm deep, and 12,000 below grade. This paper describes the R and D work and testing activities performed to date to evaluate the concept of in-ground size reduction and stabilization of the contents of large containments similar to those at Hanford. In practice, the height of the Test Facility provided for a test cell that was approximately 22' deep. That prevented a 'full scale mockup' test in the sense that the Hanford Caisson configuration would be an identical replication. Therefore, the project was conducted in two phases. The first phase tested a simulated Caisson with surrogate contents, and part of a Chute section, and the second phase tested a full chute section. These tests were performed at VJ Technologies Test Facility located in East Haven, CT, as part of the Proof of Design Concept program for studying the feasibility of an in-situ grout/grind/mix/stabilize technology for the remediation of four caissons at the 618-11 Burial Ground at US Department of Energy Hanford Site. The test site was constructed such that multiple testing areas were provided for the evaluation of various tools, equipment and procedures under conditions that simulated the Hanford site, with representative soils and layout dimensions. (authors)

  7. Development and Testing of Techniques for In-Ground Stabilization, Size Reduction and Safe Removal of Radioactive Wastes Stored in Large Containments in Burial Grounds - 13591

    Energy Technology Data Exchange (ETDEWEB)

    Halliwell, Stephen [VJ Technologies Inc, 89 Carlough Road, Bohemia, NY (United States)

    2013-07-01

    Radioactive waste materials, including Transuranic (TRU) wastes from laboratories have been stored below ground in large containments at a number of sites in the US DOE Complex, and at nuclear sites in Europe. These containments are generally referred to as caissons or shafts. The containments are in a range of sizes and depths below grade. The caissons at the DOE's Hanford site are cylindrical, of the order of 2,500 mm in diameter, 3,050 mm in height and are buried about 6,000 mm below grade. One type of caisson is made out of corrugated pipe, whereas others are made of concrete with standard re-bar. However, the larger shafts in the UK are of the order of 4,600 mm in diameter, 53,500 mm deep, and 12,000 below grade. This paper describes the R and D work and testing activities performed to date to evaluate the concept of in-ground size reduction and stabilization of the contents of large containments similar to those at Hanford. In practice, the height of the Test Facility provided for a test cell that was approximately 22' deep. That prevented a 'full scale mockup' test in the sense that the Hanford Caisson configuration would be an identical replication. Therefore, the project was conducted in two phases. The first phase tested a simulated Caisson with surrogate contents, and part of a Chute section, and the second phase tested a full chute section. These tests were performed at VJ Technologies Test Facility located in East Haven, CT, as part of the Proof of Design Concept program for studying the feasibility of an in-situ grout/grind/mix/stabilize technology for the remediation of four caissons at the 618-11 Burial Ground at US Department of Energy Hanford Site. The test site was constructed such that multiple testing areas were provided for the evaluation of various tools, equipment and procedures under conditions that simulated the Hanford site, with representative soils and layout dimensions. (authors)

  8. Hot Ground Vibration Tests

    Data.gov (United States)

    National Aeronautics and Space Administration — Ground vibration tests or modal surveys are routinely conducted to support flutter analysis for subsonic and supersonic vehicles. However, vibration testing...

  9. Peculiarities of radionuclide contamination of different Semipalatinsk nuclear test site (SNTS) zones

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.; Khazhekber, S.; Lukashenko, S.N.; Solodukhin, V.P.; Kazachevskij, I.V.; Poznyak, V.L.; Knyazev, B.B.; Rofer, Ch.

    2002-01-01

    The Semipalatinsk Nuclear Test Site occupies about 18500 km 2 . There are 3 basic test zones in this territory including various test platforms where different character nuclear explosions were carried out. On the test platforms of the 'Opytnoe Pole' zone air and ground tests were performed, including nuclear and hydronuclear (without nuclear reaction) explosions. On the other zones (the Degelen mountains and Balapan valley) the underground tests including camouflaged and excavation nuclear explosions were carried out. Each kind of these tests can be characterised by the quantity and composition of radionuclides which were formed during the nuclear explosion, by the area of their distribution, localisation of the radionuclides at various sites, radionuclide species in soil. Transfer of the products of the air and the ground nuclear explosions by air flows and their sedimentation on the ground surfaces have caused broadband radioactive plumes extending over hundreds of kilometres. As a result of hydronuclear experiments, plenty of alpha-active radionuclides, consisting of a nuclear device is thrown locally out. Besides the ground and the air explosions, radiation conditions of the territory of the SNTS were influenced by excavation explosions with ground throwing out. Such tests resulted in an intensive local pollution. Other zone of an original pollution is the Degelen mountains. Although an basic mass of the nuclear explosion products is obviously concentrated in basin cavities of the tunnels, the radionuclides are taken out on a day time surface together with waters acting in the basin cavity of the tunnels. The results of investigation of radionuclide pollution on the various platforms of the SNTS territory are presented. The results characterise the radionuclide pollution by specificity of spent tests

  10. Siting and constructing very deep monitoring wells on the US Department of Energy's Nevada Test Site

    International Nuclear Information System (INIS)

    Cullen, J.J.; Jacobson, R.L.; Russell, C.E.

    1991-01-01

    Many aspects of the Nevada Test Site's (NTS) hydrogeologic setting restrict the use of traditional methods for the siting and construction of ground-water characterization and monitoring wells. The size of the NTS precludes establishing high-density networks of characterization wells, as are typically used at smaller sites. The geologic complexity and variability of the NTS requires that the wells be criticality situated. The hydrogeologic complexity requires that each well provide access to many aquifers. Depths to ground water on the NTS require the construction of wells averaging approximately 1000 meters in depth. Wells meeting these criteria are uncommon in the ground-water industry, therefore techniques used by petroleum engineers are being employed to solve certain siting-, design- and installation-related problems. To date, one focus has been on developing completion strings that facilitate routine and efficient ground-water sampling from multiple intervals in a single well. The method currently advocated employs a new design of sliding side door sleeve that is actuated by an electrically operated hydraulic shifting tool. Stemming of the wells is being accomplished with standard materials (cement based grouts and sands); however, new stemming methods are being developed, to accommodate the greater depths, to minimize pH-related problems caused by the use of cements, to enhance the integrity of the inter-zone seals, and to improve the representativeness of radionuclide analyses performed on ground-water samples. Bench-scale experiments have been used to investigate the properties of more than a dozen epoxy-aggregate grout mixtures -- materials that are commonly used in underwater sealing applications

  11. Assessment of acid mine drainage remediation schemes on ground water flow regimes at a reclaimed mine site

    International Nuclear Information System (INIS)

    Gabr, M.A.; Bowders, J.J.

    1994-01-01

    Ground water modeling and a field monitoring program were conducted for a 35-acre reclaimed surface mine site that continues to produce acid mine drainage (AMD). The modeling effort was focused on predicting the effectiveness of various remedial measures implemented at the site for the abatement of AMD on predicting the effectiveness of various remedial measures implemented at the site for the abatement of AMD production. The field work included surface surveys and monitoring of ground water levels with time, seepage areas, and sedimentation ponds located on the site. The surveys provided the physical and topographic characteristics of the site. Pump tests conducted at the site provided general hydraulic conductivities (k) for two major areas of the site; undisturbed area (k ≅ 2.9 x 10 -5 ft/s) and disturbed area (k ≅ 3.3 x 10 -4 ft/s to 2.0 x 10 -3 ft/s). The monitored ground water data indicated rapid change in ground water levels during recharge events. Such behavior is indicative of flow regime that is dominated by fracture flow. Modeling of an approximately 700 ft by 1,500 ft area of the site was achieved using the US GS code MODFLOW, and ground water field measurements were used to calibrate the model. A hydraulic conductivity of about 1.15 x 10 -3 ft/s was estimated for the undisturbed area and 1.15 x 10 -2 ft/s for the reclaimed area. Remedial measures for diverting the ground water away from the areas of spoil included the use of a subsurface seepage cutoff wall and discrete sealing techniques. Modeling results indicated that the most effective remedial technique for this site is the use of a subsurface seepage cutoff wall installed at the interface (highwall) between the disturbed and undisturbed zones. Using this scheme caused a dewatering effect in the reclaimed area and therefore reduction in the volume of the AMD generated at the site

  12. Radionuclide migration in ground water at a low-level waste disposal site: a comparison of predicted radionuclide transport modeling versus field observations

    International Nuclear Information System (INIS)

    Bergeron, M.P.; Robertson, D.E.; Champ, D.R.; Killey, R.W.D.; Moltyaner, G.L.

    1987-01-01

    At the Chalk River Nuclear Laboratories (CRNL), in Ontario, Canada, a number of LLW shallow-land burial facilities have existed for 25-30 years. These facilities are useful for testing the concept of site modelability. In 1984, CRNL and the Pacific Northwest Laboratory (PNL) established a cooperative research program to examine two disposal sites having plumes of slightly contaminated ground water for study. This report addresses the LLW Nitrate Disposal Pit site, which received liquid wastes containing approximately 1000-1500 curies of mixed fission products during 1953-54. The objective of this study is to test the regulatory requirement that a site be modeled and to use the Nitrate Disposal Pit site as a field site for testing the reliability of models in predicting radionuclide movement in ground water. The study plan was to approach this site as though it were to be licensed under the requirements of 10 CFR 61. Under the assumption that little was known about this site, a characterization plan was prepared describing the geologic, hydrologic, and geochemical information needed to assess site performance. After completion of the plan, site data generated by CRNL were selected to fill the plan data requirements. This paper describes the site hydrogeology, modeling of ground water flow, the comparison of observed and predicted radionuclide movement, and summarizes the conclusions and recommendations. 3 references, 10 figures

  13. Bioremediation of ground water contaminants at a uranium mill tailings site

    International Nuclear Information System (INIS)

    Barton, L.L.; Nuttall, H.E.; Thomson, B.M.; Lutze, W.

    1995-01-01

    Ground water contaminated with uranium from milling operations must be remediated to reduce the migration of soluble toxic compounds. At the mill tailings site near Tuba City, Arizona (USA) the approach is to employ bioremediation for in situ immobilization of uranium by bacterial reduction of uranyl, U(VI), compounds to uraninite, U(IV). In this initial phase of remediation, details are provided to indicate the magnitude of the contamination problem and to present preliminary evidence supporting the proposition that bacterial immobilization of uranium is possible. Additionally, consideration is given to contaminating cations and anions that may be at toxic levels in ground water at this uranium mill tailing site and detoxification strategies using bacteria are addressed. A model concept is employed so that results obtained at the Tuba City site could contribute to bioremediation of ground water at other uranium mill tailings sites

  14. Ground motion measurements at the LBL Light Source site, the Bevatron and at SLAC

    International Nuclear Information System (INIS)

    Green, M.A.; Majer, E.I.; More, V.D.; O'Connell, D.R.; Shilling, R.C.

    1986-12-01

    This report describes the technique for measuring ground motion at the site of the 1.0 to 2.0 GeV Synchrotron Radiation Facility which was known as the Advanced Light Source (in 1983 when the measurements were taken). The results of ground motion measurements at the Light Source site at Building 6 at LBL are presented. As comparison, ground motion measurements were made at the Byerly Tunnel, the Bevatron, Blackberry Canyon, and SLAC at the Spear Ring. Ground Motion at the Light Source site was measured in a band from 4 to 100 Hz. The measured noise is primarily local in origin and is not easily transported through LBL soils. The background ground motion is for the most part less than 0.1 microns. Localized truck traffic near Building 6 and the operation of the cranes in the building can result in local ground motions of a micron or more for short periods of time. The background motion at Building 6 is between 1 and 2 orders of magnitude higher than ground motion in a quiet seismic tunnel, which is representative of quiet sites worldwide. The magnitude of the ground motions at SLAC and the Bevatron are comparable to ground motions measured at the Building 6 Light Source site. However, the frequency signature of each site is very different

  15. [Study on Tritium Content in Soil at Sites of Nuclear Explosions on the Territory of Semipalatinsk Test Site].

    Science.gov (United States)

    Timonova, L V; Lyakhova, O N; Lukashenko, S N; Aidarkhanov, A O

    2015-01-01

    As a result of investigations carried out on the territory of Semipalatinsk Test Site, tritium was found in different environmental objects--surface and ground waters, vegetation, air environment, and snow cover. The analysis of the data obtained has shown that contamination of environmental objects at the Semipalatinsk Test Site with tritium is associated with the places where underground nuclear tests were performed. Since tritium can originate from an activation reaction and be trapped by pock particles during a test, it was decided to examine the soil in the sites where surface and excavation tests took place. It was found that the concentration of tritium in soil correlates with the concentration of europium. Probably, the concentration of tritium in the soil depends on the character and yield of the tests performed. Findings of the study have revealed that tritium can be found in soil in significant amounts not only in sites where underground nuclear tests took place but also in sites where surface and excavation nuclear tests were carried out.

  16. Large scale vibration tests on pile-group effects using blast-induced ground motion

    International Nuclear Information System (INIS)

    Katsuichirou Hijikata; Hideo Tanaka; Takayuki Hashimoto; Kazushige Fujiwara; Yuji Miyamoto; Osamu Kontani

    2005-01-01

    Extensive vibration tests have been performed on pile-supported structures at a large-scale mining site. Ground motions induced by large-scale blasting operations were used as excitation forces for vibration tests. The main objective of this research is to investigate the dynamic behavior of pile-supported structures, in particular, pile-group effects. Two test structures were constructed in an excavated 4 m deep pit. Their test-structures were exactly the same. One structure had 25 steel piles and the other had 4 piles. The test pit was backfilled with sand of appropriate grain size distributions to obtain good compaction, especially between the 25 piles. Accelerations were measured at the structures, in the test pit and in the adjacent free field, and pile strains were measured. Dynamic modal tests of the pile-supported structures and PS measurements of the test pit were performed before and after the vibration tests to detect changes in the natural frequencies of the soil-pile-structure systems and the soil stiffness. The vibration tests were performed six times with different levels of input motions. The maximum horizontal acceleration recorded at the adjacent ground surface varied from 57 cm/s 2 to 1,683 cm/s 2 according to the distances between the test site and the blast areas. (authors)

  17. Ground-Penetrating Radar Prospecting in the Peinan Archaeological Site, Taiwan

    Directory of Open Access Journals (Sweden)

    Lun-Tao Tong

    2013-01-01

    Full Text Available The Peinan archaeological site is the largest prehistoric village in Taiwan. Only small-scale pits are allowed for research purposes because the Peinan site is protected by the Cultural Heritage Preservation Act. Careful selection of the pit locations is crucial for future archaeological research at this site. In this study, a ground-penetrating radar (GPR survey was applied near the stone pillar to understand the GPR signatures of the subsurface remains. Seven GPR signatures were categorized based on the radar characters shown on the GPR image. A detailed GPR survey with dense parallel survey lines was subsequently conducted in the area of northern extent of the onsite exhibition to map the subsurface ancient buildings. The results were verified by two test pits, which indicate that the distribution of the subsurface building structures can be well recognized from GPR depth slices. It will be very helpful for setting proper pits priorities for future archaeological research, and for making proper design of the new onsite exhibition.

  18. Geologic surface effects of underground nuclear testing, Yucca Flat, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    Grasso, D.N.

    2000-01-01

    This report presents a new Geographic Information System composite map of the geologic surface effects caused by underground nuclear testing in the Yucca Flat Physiographic Area of the Nevada Test Site, Nye County, Nevada. The Nevada Test Site (NTS) was established in 1951 as a continental location for testing nuclear devices (Allen and others, 1997, p.3). Originally known as the ''Nevada Proving Ground'', the NTS hosted a total of 928 nuclear detonations, of which 828 were conducted underground (U.S. Department of Energy, 1994). Three principal testing areas of the NTS were used: (1) Yucca Flat, (2) Pahute Mesa, and (3) Rainier Mesa including Aqueduct Mesa. Underground detonations at Yucca Flat and Pahute Mesa were typically emplaced in vertical drill holes, while others were tunnel emplacements. Of the three testing areas, Yucca Flat was the most extensively used, hosting 658 underground tests (747 detonations) located at 719 individual sites (Allen and others, 1997, p.3-4). Figure 1 shows the location of Yucca Flat and other testing areas of the NTS. Figure 2 shows the locations of underground nuclear detonation sites at Yucca Flat. Table 1 lists the number of underground nuclear detonations conducted, the number of borehole sites utilized, and the number of detonations mapped for surface effects at Yucca Flat by NTS Operational Area

  19. Ground penetrating radar and direct current resistivity evaluation of the desiccation test cap, Savannah River Site

    International Nuclear Information System (INIS)

    Wyatt, D.E.; Cumbest, R.J.

    1996-04-01

    The Savannah River Site (SRS) has a variety of waste units that may be temporarily or permanently stabilized by closure using an impermeable cover to prevent groundwater infiltration. The placement of an engineered kaolin clay layer over a waste unit is an accepted and economical technique for providing an impermeable cover but the long term stability and integrity of the clay in non-arid conditions is unknown. A simulated kaolin cap has been constructed at the SRA adjacent to the Burial Ground Complex. The cap is designed to evaluate the effects of desiccation on clay integrity, therefore half of the cap is covered with native soil to prevent drying, while the remainder of the cap is exposed. Measurements of the continuing impermeability of a clay cap are difficult because intrusive techniques may locally compromise the structure. Point measurements made to evaluate clay integrity, such as those from grid sampling or coring and made through a soil cover, may miss cracks, joints or fissures, and may not allow for mapping of the lateral extent of elongate features. Because of these problems, a non-invasive technique is needed to map clay integrity, below a soil or vegetation cover, which is capable of moderate to rapid investigation speeds. Two non-intrusive geophysical techniques, direct current resistivity and ground penetrating radar (GPR), have been successful at the SRS in geologically mapping shallow subsurface clay layers. The applicability of each technique in detecting the clay layer in the desiccation test cap and associated anomalies was investigated

  20. Effect of site conditions on ground motion and damage

    Science.gov (United States)

    Borcherdt, R.; Glassmoyer, G.; Andrews, M.; Cranswick, E.

    1989-01-01

    Results of seismologic studies conducted by the U.S. reconnaissance team in conjunction with Soviet colleagues following the tragic earthquakes of December 7, 1988, suggest that site conditions may have been a major factor in contributing to increased damage levels in Leninakan. As the potential severity of these effects in Leninakan had not been previously identified, this chapter presents results intended to provide a preliminary quantification of these effects on both damage and levels of ground motion observed in Leninakan. The article describes the damage distribution geologic setting, ground motion amplification in Leninakan, including analog amplifications and spectral amplifications. Preliminary model estimates for site response are presented. It is concluded that ground motion amplification in the 0.5-2.5-second period range was a major contributing factor to increased damage in Leninakan as compared with Kirovakan. Leninakan is located on thick water saturated alluvial deposits.

  1. Enhanced Site Characterization of the 618-4 Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Christopher J.; Last, George V.; Chien, Yi-Ju

    2001-09-25

    This report describes the results obtained from deployment of the Enhanced Site Characterization System (ESCS) at the Hanford Site's 618-4 Burial Ground. The objective of this deployment was to use advanced geostatistical methods to integrate and interpret geophysical and ground truth data, to map the physical types of waste materials present in unexcavated portions of the burial ground. One issue of particularly interest was the number of drums (containing depleted uranium metal shavings or uranium-oxide powder) remaining in the burial ground and still requiring removal.Fuzzy adaptive resonance theory (ART), a neural network classification method, was used to cluster the study area into 3 classes based on their geophysical signatures. Multivariate statistical analyses and discriminant function analysis (DFA) indicated that the drum area as well as a second area (the SW anomaly) had similar geophysical signatures that were different from the rest of the burial ground. Further analysis of the drum area suggested that as many as 770 drums to 850 drums may remain in that area. Similarities between the geophysical signatures of the drum area and the SW anomaly suggested that excavation of the SW anomaly area also proceed with caution.Deployment of the ESCS technology was successful in integrating multiple geophysical variables and grouping these observations into clusters that are relevant for planning further excavation of the buried ground. However, the success of the technology could not be fully evaluated because reliable ground truth data were not available to enable calibration of the different geophysical signatures against actual waste types.

  2. Preparatory research to develop an operational method to calibrate airborne sensor data using a network of ground calibration sites

    International Nuclear Information System (INIS)

    Milton, E.J.; Smith, G.M.; Lawless, K.P.

    1996-01-01

    The objective of the research is to develop an operational method to convert airborne spectral radiance data to reflectance using a number of well-characterized ground calibration sites located around the UK. The study is in three phases. First, a pilot study has been conducted at a disused airfield in southern England to test the feasibility of the open-quote empirical line close-quote method of sensor calibration. The second phase is developing methods to predict temporal changes in the bidirectional reflectance of ground calibration sites. The final phase of the project will look at methods to extend such calibrations spatially. This paper presents some results from the first phase of this study. The viability of the empirical line method of correction is shown to depend upon the use of ground targets whose in-band reflectance encompasses that of the targets of interest in the spectral band(s) concerned. The experimental design for the second phase of the study, in which methods to predict temporal trends in the bidirectional reflectance of these sites will be developed, is discussed. Finally, it is planned to develop an automated method of searching through Landsat TM data for the UK to identify a number of candidate ground calibration sites for which the model can be tested. 11 refs., 5 figs., 5 tabs

  3. Advanced Testing Method for Ground Thermal Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [ORNL; Clemenzi, Rick [Geothermal Design Center Inc.; Liu, Su [University of Tennessee (UT)

    2017-04-01

    A new method is developed that can quickly and more accurately determine the effective ground thermal conductivity (GTC) based on thermal response test (TRT) results. Ground thermal conductivity is an important parameter for sizing ground heat exchangers (GHEXs) used by geothermal heat pump systems. The conventional GTC test method usually requires a TRT for 48 hours with a very stable electric power supply throughout the entire test. In contrast, the new method reduces the required test time by 40%–60% or more, and it can determine GTC even with an unstable or intermittent power supply. Consequently, it can significantly reduce the cost of GTC testing and increase its use, which will enable optimal design of geothermal heat pump systems. Further, this new method provides more information about the thermal properties of the GHEX and the ground than previous techniques. It can verify the installation quality of GHEXs and has the potential, if developed, to characterize the heterogeneous thermal properties of the ground formation surrounding the GHEXs.

  4. Regular monitoring, analysis and forecast of radioecological environment of Azgir test site

    International Nuclear Information System (INIS)

    Akhmetov, E.; Agymov, I.; Gilmanov, Zh.; Ermanov, A.; Zhetbaev, A.

    1996-01-01

    The objective of investigations: basing on the results of regular annual measurements of radiation conditions on the sites of underground nuclear cavities of the Azgir test site, specific concentrations of radionuclides and heavy metals in soil and underground aquifers on the test site and adjacent territories to obtain data on migration and transfer of radionuclides and heavy metals. This will give a real possibility to make probability predictions of ways and qualitative characteristics of spreading of radionuclides and heavy metals in the region of the northern Pricaspian lowland. The Essence of the Problem The Azgir test site is located in the arid zone of the Great Azgir salt cupola near the Azgir village of Kurmangazinskiy rayon, Atyrau region. This cupola is located in the western periphery of Pricaspian salt-bearing province situated to the north of the Caspian sea between the Volga and Emba rivers. Major Tasks: - Development of technical requirements for carrying out regular examination of radionuclide and heavy metal contamination of the Azgir test site. - Preparation of material and technical base for field works on the Azgir test site. - Radiometric measurements on the sites and around them. - Taking of soil, soil and ground waters samples both on the test site and on the adjacent territories. - Spectrometric and radiochemical investigations of soil, soil and ground water samples. - Analysis and generalization of the results creating premises for forecasting of the radioecological conditions. - Investigation of the possibility of radioactive waste disposal in underground cavities. Expected Results: - Detection and outlining of local areas of radioactive contamination on the site and adjacent territories. - Data on real structure of spreading and concentration of artificial and natural radionuclides and heavy metals in soil layer of the test site region. - Results of analytic investigations of water samples of underground sources of the site and adjacent

  5. Respiration testing for bioventing and biosparging remediation of petroleum contaminated soil and ground water

    International Nuclear Information System (INIS)

    Gray, A.L.; Brown, A.; Moore, B.J.; Payne, R.E.

    1996-01-01

    Respiration tests were performed to measure the effect of subsurface aeration on the biodegradation rates of petroleum hydrocarbon contamination in vadose zone soils (bioventing) and ground water (biosparging). The aerobic biodegradation of petroleum contamination is typically limited by the absence of oxygen in the soil and ground water. Therefore, the goal of these bioremediation technologies is to increase the oxygen concentration in the subsurface and thereby enhance the natural aerobic biodegradation of the organic contamination. One case study for biosparging bioremediation testing is presented. At this site atmospheric air was injected into the ground water to increase the dissolved oxygen concentration in the ground water surrounding a well, and to aerate the smear zone above the ground water table. Aeration flow rates of 3 to 8 cfm (0.09 to 0.23 m 3 /min) were sufficient to increase the dissolved oxygen concentration. Petroleum hydrocarbon biodegradation rates of 32 to 47 microg/l/hour were calculated based on measurements of dissolved oxygen concentration in ground water. The results of this test have demonstrated that biosparging enhances the biodegradation of petroleum hydrocarbons, but the results as they apply to remediation are not known. Two case studies for bioventing respiration testing are presented

  6. Visibility Analysis of Domestic Satellites on Proposed Ground Sites for Optical Surveillance

    Directory of Open Access Journals (Sweden)

    Jung Hyun Jo1

    2011-12-01

    Full Text Available The objectives of this study are to analyze the satellite visibility at the randomly established ground sites, to determine the five optimal ground sites to perform the optical surveillance and tracking of domestic satellites, and to verify the acquisition of the optical observation time sufficient to maintain the precise ephemeris at optimal ground sites that have been already determined. In order to accomplish these objectives, we analyzed the visibility for sun-synchronous orbit satellites, low earth orbit satellites, middle earth orbit satellites and domestic satellites as well as the continuous visibility along with the fictitious satellite ground track, and calculate the effective visibility. For the analysis, we carried out a series of repetitive process using the satellite tool kit simulation software developed by Analytical Graphics Incorporated. The lighting states of the penumbra and direct sun were set as the key constraints of the optical observation. The minimum of the observation satellite elevation angle was set to be 20 degree, whereas the maximum of the sun elevation angle was set to be -10 degree which is within the range of the nautical twilight. To select the candidates for the optimal optical observation, the entire globe was divided into 84 sectors in a constant interval, the visibility characteristics of the individual sectors were analyzed, and 17 ground sites were arbitrarily selected and analyzed further. Finally, five optimal ground sites (Khurel Togoot Observatory, Assy-Turgen Observatory, Tubitak National Observatory, Bisdee Tier Optical Astronomy Observatory, and South Africa Astronomical Observatory were determined. The total observation period was decided as one year. To examine the seasonal variation, the simulation was performed for the period of three days or less with respect to spring, summer, fall and winter. In conclusion, we decided the optimal ground sites to perform the optical surveillance and tracking

  7. Options for clean-up of the Maralinga test site

    International Nuclear Information System (INIS)

    1985-06-01

    This report examines the limit of contamination of the soil and ground cover by 239 Pu, 235 U and 241 Am which may be considered as permitting the unrestricted land use of the former nuclear weapon test sites at Emu and Maralinga by Aboriginal groups. It reports on the options available to achieve this objective and their cost

  8. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania

    International Nuclear Information System (INIS)

    1994-09-01

    This baseline risk assessment evaluates potential impacts to public health and the environment resulting from ground water contamination from past activities at the former uranium processing site in Canonsburg, Pennsylvania. The US Department of Energy Uranium Mill Tailings Remedial Action (UMTRA) Project has placed contaminated material from this site in an on-site disposal cell. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the UMTRA Ground Water Project. Currently, no domestic or drinking water well tap into contaminated ground water of the two distinct ground water units: the unconsolidated materials and the bedrock. Because there is no access, no current health or environmental risks are associated with the direct use of the contaminated ground water. However, humans and ecological organisms could be exposed to contaminated ground water if a domestic well were to be installed in the unconsolidated materials in that part of the site being considered for public use (Area C). The first step is evaluating ground water data collected from monitor wells at the site. For the Canonsburg site, this evaluation showed the contaminants in ground water exceeding background in the unconsolidated materials in Area C are ammonia, boron, calcium, manganese, molybdenum, potassium, strontium, and uranium

  9. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This baseline risk assessment evaluates potential impacts to public health and the environment resulting from ground water contamination from past activities at the former uranium processing site in Canonsburg, Pennsylvania. The US Department of Energy Uranium Mill Tailings Remedial Action (UMTRA) Project has placed contaminated material from this site in an on-site disposal cell. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the UMTRA Ground Water Project. Currently, no domestic or drinking water well tap into contaminated ground water of the two distinct ground water units: the unconsolidated materials and the bedrock. Because there is no access, no current health or environmental risks are associated with the direct use of the contaminated ground water. However, humans and ecological organisms could be exposed to contaminated ground water if a domestic well were to be installed in the unconsolidated materials in that part of the site being considered for public use (Area C). The first step is evaluating ground water data collected from monitor wells at the site. For the Canonsburg site, this evaluation showed the contaminants in ground water exceeding background in the unconsolidated materials in Area C are ammonia, boron, calcium, manganese, molybdenum, potassium, strontium, and uranium.

  10. Seismic-reflection and ground penetrating radar for environmental site characterization. 1998 annual progress report

    International Nuclear Information System (INIS)

    Plumb, R.; Steeples, D.W.

    1998-01-01

    'The project''s goals are threefold: (1) to examine the complementary site-characterization capabilities of modern, three-component shallow-seismic techniques and ground-penetrating radar (GPR) methods at depths ranging from 2 to 8 m at an existing test site; (2) to demonstrate the usefulness of the two methods when used in concert to characterize, in three-dimensions, the cone of depression of a pumping well, which will serve as a proxy site for fluid-flow at an actual, polluted site; and (3) to use the site as an outdoor mesoscale laboratory to validate existing three-dimensional ground-penetrating radar and seismic-reflection computer models developed at the Univ. of Kansas. To do this, useful seismic and GPR data are being collected along the same line(s) and within the same depth range. The principal investigators selected a site in central Kansas as a primary location and, although the site itself is not environmentally sensitive, the location chosen offers particularly useful attributes for this research and will serve as a proxy site for areas that are contaminated. As part of an effort to evaluate the strengths of each method, the authors will repeat the seismic and GPR surveys on a seasonal basis to establish how the complementary information obtained varies over time. Because the water table fluctuates at this site on a seasonal basis, variations in the two types of data over time also can be observed. Such noninvasive in-situ methods of identifying and characterizing the hydrologic flow regimes at contaminated sites support the prospect of developing effective, cost-conscious cleanup strategies in the near future. As of the end of May 1998, the project is on schedule. The first field work was conducted using both of the geophysical survey methods in October of 1997, and the second field survey employed both methods in March of 1998. One of the stated tasks is to reoccupy the same survey line on a quarterly basis for two years to examine change in both

  11. Procedures for evaluation of vibratory ground motions of soil deposits at nuclear power plant sites

    International Nuclear Information System (INIS)

    1975-06-01

    According to USNRC requirements set forth in Appendix A, 10 CFR, Part 100, vibratory ground motion criteria for a nuclear plant must be based on local soil conditions, as well as on the seismicity, geology, and tectonics of the region. This report describes how such criteria can be developed by applying the latest technology associated with analytical predictions of site-dependent ground motions and with the use of composite spectra obtained from the current library of strong motion records. Recommended procedures for defining vibratory ground motion criteria contain the following steps: (1) geologic and seismologic studies; (2) site soils investigations; (3) site response sensitivity studies; (4) evaluation of local site response characteristics; (5) selection of site-matched records; and (6) appraisal and selection of seismic input criteria. An in-depth discussion of the engineering characteristics of earthquake ground motions including parameters used to characterize earthquakes and strong motion records, geologic factors that influence ground shaking, the current strong motion data base, and case histories of the effects of past earthquake events is presented. Next, geotechnical investigations of the seismologic, geologic, and site soil conditions required to develop vibratory motion criteria are briefly summarized. The current technology for establishing vibratory ground motion criteria at nuclear plant sites, including site-independent and site-dependent procedures that use data from strong motion records and from soil response analyses is described. (auth)

  12. Space-Borne and Ground-Based InSAR Data Integration: The Åknes Test Site

    Directory of Open Access Journals (Sweden)

    Federica Bardi

    2016-03-01

    Full Text Available This work concerns a proposal of the integration of InSAR (Interferometric Synthetic Aperture Radar data acquired by ground-based (GB and satellite platforms. The selected test site is the Åknes rockslide, which affects the western Norwegian coast. The availability of GB-InSAR and satellite InSAR data and the accessibility of a wide literature make the landslide suitable for testing the proposed procedure. The first step consists of the organization of a geodatabase, performed in the GIS environment, containing all of the available data. The second step concerns the analysis of satellite and GB-InSAR data, separately. Two datasets, acquired by RADARSAT-2 (related to a period between October 2008 and August 2013 and by a combination of TerraSAR-X and TanDEM-X (acquired between July 2010 and October 2012, both of them in ascending orbit, processed applying SBAS (Small BAseline Subset method, are available. GB-InSAR data related to five different campaigns of measurements, referred to the summer seasons of 2006, 2008, 2009, 2010 and 2012, are available, as well. The third step relies on data integration, performed firstly from a qualitative point of view and later from a semi-quantitative point of view. The results of the proposed procedure have been validated by comparing them to GPS (Global Positioning System data. The proposed procedure allowed us to better define landslide sectors in terms of different ranges of displacements. From a qualitative point of view, stable and unstable areas have been distinguished. In the sector concerning movement, two different sectors have been defined thanks to the results of the semi-quantitative integration step: the first sector, concerning displacement values higher than 10 mm, and the 2nd sector, where the displacements did not exceed a 10-mm value of displacement in the analyzed period.

  13. Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Theodore H. Asch; Donald Sweetkind; Bethany L. Burton; Erin L. Wallin

    2009-02-10

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the

  14. Modeling Nonlinear Site Response Uncertainty in Broadband Ground Motion Simulations for the Los Angeles Basin

    Science.gov (United States)

    Assimaki, D.; Li, W.; Steidl, J. M.; Schmedes, J.

    2007-12-01

    The assessment of strong motion site response is of great significance, both for mitigating seismic hazard and for performing detailed analyses of earthquake source characteristics. There currently exists, however, large degree of uncertainty concerning the mathematical model to be employed for the computationally efficient evaluation of local site effects, and the site investigation program necessary to evaluate the nonlinear input model parameters and ensure cost-effective predictions; and while site response observations may provide critical constraints on interpretation methods, the lack of a statistically significant number of in-situ strong motion records prohibits statistical analyses to be conducted and uncertainties to be quantified based entirely on field data. In this paper, we combine downhole observations and broadband ground motion synthetics for characteristic site conditions the Los Angeles Basin, and investigate the variability in ground motion estimation introduced by the site response assessment methodology. In particular, site-specific regional velocity and attenuation structures are initially compiled using near-surface geotechnical data collected at downhole geotechnical arrays, inverse low-strain velocity and attenuation profiles at these sites obtained by inversion of weak motion records and the crustal velocity structure at the corresponding locations obtained from the Southern California Earthquake Centre Community Velocity Model. Successively, broadband ground motions are simulated by means of a hybrid low/high-frequency finite source model with correlated random parameters for rupture scenaria of weak, medium and large magnitude events (M =3.5-7.5). Observed estimates of site response at the stations of interest are first compared to the ensemble of approximate and incremental nonlinear site response models. Parametric studies are next conducted for each fixed magnitude (fault geometry) scenario by varying the source-to-site distance and

  15. Seismic hazard analysis for the NTS spent reactor fuel test site

    International Nuclear Information System (INIS)

    Campbell, K.W.

    1980-01-01

    An experiment is being directed at the Nevada Test Site to test the feasibility for storage of spent fuel from nuclear reactors in geologic media. As part of this project, an analysis of the earthquake hazard was prepared. This report presents the results of this seismic hazard assessment. Two distinct components of the seismic hazard were addressed: vibratory ground motion and surface displacement

  16. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  17. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado

    International Nuclear Information System (INIS)

    1995-08-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation's Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment

  18. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Shiprock, New Mexico

    International Nuclear Information System (INIS)

    1994-04-01

    This baseline risk assessment at the former uranium mill tailings site near Shiprock, New Mexico, evaluates the potential impact to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an on-site disposal cell in 1986 through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. There are no domestic or drinking water wells in the contaminated ground water of the two distinct ground water units: the contaminated ground water in the San Juan River floodplain alluvium below the site and the contaminated ground water in the terrace alluvium area where the disposal cell is located. Because no one is drinking the affected ground water, there are currently no health or environmental risks directly associated with the contaminated ground water. However, there is a potential for humans, domestic animals, and wildlife to the exposed to surface expressions of ground water in the seeps and pools in the area of the San Juan River floodplain below the site. For these reasons, this risk assessment evaluates potential exposure to contaminated surface water and seeps as well as potential future use of contaminated ground water

  19. Investigation of Nonlinear Site Response and Seismic Compression from Case History Analysis and Laboratory Testing

    Science.gov (United States)

    Yee, Eric

    In this thesis I address a series of issues related to ground failure and ground motions during earthquakes. A major component is the evaluation of cyclic volumetric strain behavior of unsaturated soils, more commonly known as seismic compression, from advanced laboratory testing. Another major component is the application of nonlinear and equivalent linear ground response analyses to large-strain problems involving highly nonlinear dynamic soil behavior. These two components are merged in the analysis of a truly unique and crucial field case history of nonlinear site response and seismic compression. My first topic concerns dynamic soil testing for relatively small strain dynamic soil properties such as threshold strains, gammatv. Such testing is often conducted using specialized devices such as dual-specimen simple-shear, as devices configured for large strain testing produce noisy signals in the small strain range. Working with a simple shear device originally developed for large-strain testing, I extend its low-strain capabilities by characterizing noisy signals and utilizing several statistical methods to extract meaningful responses in the small strain range. I utilize linear regression of a transformed variable to estimate the cyclic shear strain from a noisy signal and the confidence interval on its amplitude. I utilize Kernel regression with the Nadaraya-Watson estimator and a Gaussian kernel to evaluate vertical strain response. A practical utilization of these techniques is illustrated by evaluating threshold shear strains for volume change with a procedure that takes into account uncertainties in the measured shear and vertical strains. My second topic concerns the seismic compression characteristics of non-plastic and low-plasticity silty sands with varying fines content (10 ≤ FC ≤ 60%). Simple shear testing was performed on various sand-fines mixtures at a range of modified Proctor relative compaction levels ( RC) and degrees-of-saturation (S

  20. Environmental Assessment of Ground Water Compliance at the Gunnison, Colorado, UMTRA Project Site

    International Nuclear Information System (INIS)

    2002-01-01

    The U.S. Department of Energy (DOE) is in the process of selecting a ground water compliance strategy for the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. This Environmental Assessment (EA) discusses two alternatives and the effects associated with each. The two alternatives are (1) natural flushing coupled with institutional controls and continued monitoring and (2) no action. The compliance strategy must meet U.S. Environmental Protection Agency (EPA) ground water standards defined in Title 40 ''Code of Federal Regulations'' Part 192, Subpart B, in areas where ground water beneath and around the site is contaminated as a result of past milling operations. It has been determined that contamination in the ground water at the Gunnison site consists of soluble residual radioactive material (RRM) as defined in the Uranium Mill Tailings Radiation Control Act (UMTRCA)

  1. Calculated concentrations of any radionuclide deposited on the ground by release from underground nuclear detonations, tests of nuclear rockets, and tests of nuclear ramjet engines

    International Nuclear Information System (INIS)

    Hicks, H.G.

    1981-11-01

    This report presents calculated gamma radiation exposure rates and ground deposition of related radionuclides resulting from three types of event that deposited detectable radioactivity outside the Nevada Test Site complex, namely, underground nuclear detonations, tests of nuclear rocket engines and tests of nuclear ramjet engines

  2. Prediction of Pseudo relative velocity response spectra at Yucca Mountain for underground nuclear explosions conducted in the Pahute Mesa testing area at the Nevada testing site; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J.S.

    1991-12-01

    The Yucca Mountain Site Characterization Project (YMP), managed by the Office of Geologic Disposal of the Office of Civilian Radioactive Waste Management of the US Department of Energy, is examining the feasibility of siting a repository for commercial, high-level nuclear wastes at Yucca Mountain on and adjacent to the Nevada Test Site (NTS). This work, intended to extend our understanding of the ground motion at Yucca Mountain resulting from testing of nuclear weapons on the NTS, was funded by the Yucca Mountain project and the Military Applications Weapons Test Program. This report summarizes one aspect of the weapons test seismic investigations conducted in FY88. Pseudo relative velocity response spectra (PSRV) have been calculated for a large body of surface ground motions generated by underground nuclear explosions. These spectra have been analyzed and fit using multiple linear regression techniques to develop a credible prediction technique for surface PSRVs. In addition, a technique for estimating downhole PSRVs at specific stations is included. A data summary, data analysis, prediction development, prediction evaluation, software summary and FORTRAN listing of the prediction technique are included in this report.

  3. Environmental assessment of ground-water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming

    International Nuclear Information System (INIS)

    1997-02-01

    This report assesses the environmental impacts of the Uranium Mill Tailings Site at Spook, Wyoming on ground water. DOE previously characterized the site and monitoring data were collected during the surface remediation. The ground water compliance strategy is to perform no further remediation at the site since the ground water in the aquifer is neither a current nor potential source of drinking water. Under the no-action alternative, certain regulatory requirements would not be met

  4. Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    This baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota, evaluates the potential impacts to public health or the environment from contaminated ground water at this site. This contamination is a result of the uraniferous lignite ashing process, when coal containing uranium was burned to produce uranium. Potential risk is quantified only for constituents introduced by the processing activities and not for the constituents naturally occurring in background ground water in the site vicinity. Background ground water, separate from any site-related contamination, imposes a percentage of the overall risk from ground water ingestion in the Bowman site vicinity. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is developing plans to address soil and ground water contamination at the site. The UMTRA Surface Project involves the determination of the extent of soil contamination and design of an engineered disposal cell for long-term storage of contaminated materials. The UMTRA Ground Water Project evaluates ground water contamination. Based on results from future site monitoring activities as defined in the site observational work plan and results from this risk assessment, the DOE will propose an approach for managing contaminated ground water at the Bowman site.

  5. Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota

    International Nuclear Information System (INIS)

    1994-11-01

    This baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota, evaluates the potential impacts to public health or the environment from contaminated ground water at this site. This contamination is a result of the uraniferous lignite ashing process, when coal containing uranium was burned to produce uranium. Potential risk is quantified only for constituents introduced by the processing activities and not for the constituents naturally occurring in background ground water in the site vicinity. Background ground water, separate from any site-related contamination, imposes a percentage of the overall risk from ground water ingestion in the Bowman site vicinity. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is developing plans to address soil and ground water contamination at the site. The UMTRA Surface Project involves the determination of the extent of soil contamination and design of an engineered disposal cell for long-term storage of contaminated materials. The UMTRA Ground Water Project evaluates ground water contamination. Based on results from future site monitoring activities as defined in the site observational work plan and results from this risk assessment, the DOE will propose an approach for managing contaminated ground water at the Bowman site

  6. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    1993-01-01

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical ampersand Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties

  7. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Riverton, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This Risk Assessment evaluated potential impacts to public health or the environment caused by ground water contamination at the former uranium mill processing site. In the first phase of the U.S. Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project, the tailing and other contaminated material at this site were placed in a disposal cell near the Gas Hills Plant in 1990. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document to evaluate potential health and environmental risks for the Riverton site under the Ground Water Project; it will help determine whether remedial actions are needed for contaminated ground water at the site.

  8. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Riverton, Wyoming

    International Nuclear Information System (INIS)

    1994-09-01

    This Risk Assessment evaluated potential impacts to public health or the environment caused by ground water contamination at the former uranium mill processing site. In the first phase of the U.S. Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project, the tailing and other contaminated material at this site were placed in a disposal cell near the Gas Hills Plant in 1990. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document to evaluate potential health and environmental risks for the Riverton site under the Ground Water Project; it will help determine whether remedial actions are needed for contaminated ground water at the site

  9. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site.

  10. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1994-06-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site

  11. Modelling of the ground motion at Russe site (NE Bulgaria) due to the Vrancea earthquakes

    International Nuclear Information System (INIS)

    Kouteva, Mihaela; Panza, Giuliano F.; Paskaleva, Ivanka; Romanelli, Fabio

    2001-11-01

    An approach, capable of synthesising strong ground motion from a basic understanding of fault mechanism and of seismic wave propagation in the Earth, is applied to model the seismic input at a set of 25 sites along a chosen profile at Russe, NE Bulgaria, due to two intermediate-depth Vrancea events (August 30, 1986, Mw=7.2, and May 30, 1990, Mw=6.9). According to our results, once a strong ground motion parameter has been selected to characterise the ground motion, it is necessary to investigate the relationships between its values and the features of the earthquake source, the path to the site and the nature of the site. Therefore, a proper seismic hazard assessment requires an appropriate parametric study to define the different ground shaking scenarios corresponding to the relevant seismogenic zones affecting the given site. Site response assessment is provided simultaneously in frequency and space domains, and thus the applied procedure differs from the traditional engineering approach that discusses the site as a single point. The applied procedure can be efficiently used to estimate the ground motion for different purposes like microzonation, urban planning, retrofitting or insurance of the built environment. (author)

  12. Depleted uranium risk assessment for Jefferson Proving Ground using data from environmental monitoring and site characterization. Final report

    International Nuclear Information System (INIS)

    Ebinger, M.H.; Hansen, W.R.

    1996-10-01

    This report documents the third risk assessment completed for the depleted uranium (DU) munitions testing range at Jefferson Proving Ground (JPG), Indiana, for the U.S. Army Test and Evaluation command. Jefferson Proving Ground was closed in 1995 under the Base Realignment and Closure Act and the testing mission was moved to Yuma Proving Ground. As part of the closure of JPG, assessments of potential adverse health effects to humans and the ecosystem were conducted. This report integrates recent information obtained from site characterization surveys at JPG with environmental monitoring data collected from 1983 through 1994 during DU testing. Three exposure scenarios were evaluated for potential adverse effects to human health: an occasional use scenario and two farming scenarios. Human exposure was minimal from occasional use, but significant risk were predicted from the farming scenarios when contaminated groundwater was used by site occupants. The human health risk assessments do not consider the significant risk posed by accidents with unexploded ordnance. Exposures of white-tailed deer to DU were also estimated in this study, and exposure rates result in no significant increase in either toxicological or radiological risks. The results of this study indicate that remediation of the DU impact area would not substantially reduce already low risks to humans and the ecosystem, and that managed access to JPG is a reasonable model for future land use options

  13. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Tuba City, Arizona

    International Nuclear Information System (INIS)

    1994-06-01

    This document evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium mill site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1990 by the US Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine what remedial actions are necessary for contaminated ground water at the site

  14. Evaluation of vibratory ground motion at nuclear power plant sites

    International Nuclear Information System (INIS)

    Hofmann, R.B.; Greeves, J.T.

    1978-01-01

    The evaluation of vibratory ground motion at nuclear power plant sites requires the cooperative effort of scientists and engineers in several disciplines. These include seismology, geology, geotechnical engineering and structural engineering. The Geosciences Branch of the NRC Division of Site Safety and Environmental Analysis includes two sections, the Geology/Seismology Section and the Geotechnical Engineering Section

  15. Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site.

  16. Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah

    International Nuclear Information System (INIS)

    1994-09-01

    This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site

  17. Ground test for vibration control demonstrator

    Science.gov (United States)

    Meyer, C.; Prodigue, J.; Broux, G.; Cantinaud, O.; Poussot-Vassal, C.

    2016-09-01

    In the objective of maximizing comfort in Falcon jets, Dassault Aviation is developing an innovative vibration control technology. Vibrations of the structure are measured at several locations and sent to a dedicated high performance vibration control computer. Control laws are implemented in this computer to analyse the vibrations in real time, and then elaborate orders sent to the existing control surfaces to counteract vibrations. After detailing the technology principles, this paper focuses on the vibration control ground demonstration that was performed by Dassault Aviation in May 2015 on Falcon 7X business jet. The goal of this test was to attenuate vibrations resulting from fixed forced excitation delivered by shakers. The ground test demonstrated the capability to implement an efficient closed-loop vibration control with a significant vibration level reduction and validated the vibration control law design methodology. This successful ground test was a prerequisite before the flight test demonstration that is now being prepared. This study has been partly supported by the JTI CleanSky SFWA-ITD.

  18. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania. Revision 1

    International Nuclear Information System (INIS)

    1995-11-01

    For the UMTRA Project site located near Canonsburg, Pennsylvania (the Canonsburg site), the Surface Project cleanup occurred from 1983 to 1985, and involved removing the uranium processing mill tailings and radioactively contaminated soils and materials from their original locations and placing them in a disposal cell located on the former Canonsburg uranium mill site. This disposal cell is designed to minimize radiation emissions and further contamination of ground water beneath the site. The Ground Water Project will evaluate the nature and the extent of ground water contamination resulting from uranium processing at the former Canonsburg uranium mill site, and will determine a ground water strategy for complying with the US Environmental Protection Agency's (EPA) ground water standards established for the UMTRA Project. For the Canonsburg site, an evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people's health. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Canonsburg site. The results of this report and further site characterization of the Canonsburg site will be used to determine how to protect public health and the environment, and how to comply with the EPA standards

  19. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    For the UMTRA Project site located near Canonsburg, Pennsylvania (the Canonsburg site), the Surface Project cleanup occurred from 1983 to 1985, and involved removing the uranium processing mill tailings and radioactively contaminated soils and materials from their original locations and placing them in a disposal cell located on the former Canonsburg uranium mill site. This disposal cell is designed to minimize radiation emissions and further contamination of ground water beneath the site. The Ground Water Project will evaluate the nature and the extent of ground water contamination resulting from uranium processing at the former Canonsburg uranium mill site, and will determine a ground water strategy for complying with the US Environmental Protection Agency`s (EPA) ground water standards established for the UMTRA Project. For the Canonsburg site, an evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Canonsburg site. The results of this report and further site characterization of the Canonsburg site will be used to determine how to protect public health and the environment, and how to comply with the EPA standards.

  20. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1994-11-01

    This baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado, evaluates potential public health and environmental impacts resulting from ground water contamination at the former North Continent (NC) and Union Carbide (UC) uranium mill processing sites. The tailings at these sites will be placed in a disposal cell at the proposed Burro Canyon, Colorado, site. The US Department of Energy (DOE) anticipates the start of the first phase remedial action by the spring of 1995 under the direction of the DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project will evaluate ground water contamination. This baseline risk assessment is the first site-specific document for these sites under the Ground Water Project. It will help determine the compliance strategy for contaminated ground water at the site. In addition, surface water and sediment are qualitatively evaluated in this report

  1. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    This baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado, evaluates potential public health and environmental impacts resulting from ground water contamination at the former North Continent (NC) and Union Carbide (UC) uranium mill processing sites. The tailings at these sites will be placed in a disposal cell at the proposed Burro Canyon, Colorado, site. The US Department of Energy (DOE) anticipates the start of the first phase remedial action by the spring of 1995 under the direction of the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project will evaluate ground water contamination. This baseline risk assessment is the first site-specific document for these sites under the Ground Water Project. It will help determine the compliance strategy for contaminated ground water at the site. In addition, surface water and sediment are qualitatively evaluated in this report.

  2. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project, and the Ground Water Project. For the UMTRA Project site located near Naturita, Colorado, phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado. The surface cleanup will reduce radon and other radiation emissions from the former uranium processing site and prevent further site-related contamination of ground water. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health and the environment, and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water or surface water that has mixed with contaminated ground water. Therefore, a risk assessment was conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  3. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1995-11-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project, and the Ground Water Project. For the UMTRA Project site located near Naturita, Colorado, phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation's Upper Burbank Repository at Uravan, Colorado. The surface cleanup will reduce radon and other radiation emissions from the former uranium processing site and prevent further site-related contamination of ground water. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health and the environment, and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water or surface water that has mixed with contaminated ground water. Therefore, a risk assessment was conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment

  4. A reconnaissance assessment of probabilistic earthquake accelerations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Perkins, D.M.; Thenhaus, P.C.; Hanson, S.L.; Algermissen, S.T.

    1986-01-01

    We have made two interim assessments of the probabilistic ground-motion hazard for the potential nuclear-waste disposal facility at the Nevada Test Site (NTS). The first assessment used historical seismicity and generalized source zones and source faults in the immediate vicinity of the facility. This model produced relatively high probabilistic ground motions, comparable to the higher of two earlier estimates, which was obtained by averaging seismicity in a 400-km-radius circle around the site. The high ground-motion values appear to be caused in part by nuclear-explosion aftershocks remaining in the catalog even after the explosions themselves have been removed. The second assessment used particularized source zones and source faults in a region substantially larger than NTS to provide a broad context of probabilistic ground motion estimates at other locations of the study region. Source faults are mapped or inferred faults having lengths of 5 km or more. Source zones are defined by boundaries separating fault groups on the basis of direction and density. For this assessment, earthquake recurrence has been estimated primarily from historic seismicity prior to nuclear testing. Long-term recurrence for large-magnitude events is constrained by geological estimates of recurrence in a regime in which the large-magnitude earthquakes would occur with predominately normal mechanisms. 4 refs., 10 figs

  5. Investigation of the dynamics of radiation pollution at the former Semipalatinsk nuclear test site

    International Nuclear Information System (INIS)

    Belyashov, L.; Yushkov, A.; Grinshtein, Yu.; Makarenko, N.

    1996-01-01

    Main Tasks: - To perform aerial gamma-spectrometric shooting of the whole territory of the Semipalatinsk test site in a scale 1:200,000 with registration of the total spectrum; - The same in a scale 1:10,000 for the Balapan region; - To construct the physical-mathematical forecasting models of the dynamics of radionuclide contamination at the STS area. Scientific and Technical Means, Methods, Approaches - Aerial gamma-spectroscopy on a base of the crystals of Iodine Sodium, activated by Thallium, volume 25 I, with registration of the total spectrum; - A set of the software and computational means along with the data bases; - The aerial gamma-spectrometric standard testing site 'irtysh' - for Cesium-137 and the testing sites 'Kora' and 'Aidarly' - for natural radio-nuclides; - Software and computational means for development of physical-mathematical models; - Expedition equipment for ground testing in the points of the most prominent radiation anomalies. Expected Results - The second temporal point, with an interval of five years, on a state of radiation fields at the STS in two scales. Forecasting models for space-time evolution of radiation fields at the STS. - The results of comparison between the aerial and ground measurements

  6. Distribution of ground rigidity and ground model for seismic response analysis in Hualian project of large scale seismic test

    International Nuclear Information System (INIS)

    Kokusho, T.; Nishi, K.; Okamoto, T.; Tanaka, Y.; Ueshima, T.; Kudo, K.; Kataoka, T.; Ikemi, M.; Kawai, T.; Sawada, Y.; Suzuki, K.; Yajima, K.; Higashi, S.

    1997-01-01

    An international joint research program called HLSST is proceeding. HLSST is large-scale seismic test (LSST) to investigate soil-structure interaction (SSI) during large earthquake in the field in Hualien, a high seismic region in Taiwan. A 1/4-scale model building was constructed on the gravelly soil in this site, and the backfill material of crushed stone was placed around the model plant after excavation for the construction. Also the model building and the foundation ground were extensively instrumental to monitor structure and ground response. To accurately evaluate SSI during earthquakes, geotechnical investigation and forced vibration test were performed during construction process namely before/after base excavation, after structure construction and after backfilling. And the distribution of the mechanical properties of the gravelly soil and the backfill are measured after the completion of the construction by penetration test and PS-logging etc. This paper describes the distribution and the change of the shear wave velocity (V s ) measured by the field test. Discussion is made on the effect of overburden pressure during the construction process on V s in the neighbouring soil and, further on the numerical soil model for SSI analysis. (orig.)

  7. Single-event effect ground test issues

    International Nuclear Information System (INIS)

    Koga, R.

    1996-01-01

    Ground-based single event effect (SEE) testing of microcircuits permits characterization of device susceptibility to various radiation induced disturbances, including: (1) single event upset (SEU) and single event latchup (SEL) in digital microcircuits; (2) single event gate rupture (SEGR), and single event burnout (SEB) in power transistors; and (3) bit errors in photonic devices. These characterizations can then be used to generate predictions of device performance in the space radiation environment. This paper provides a general overview of ground-based SEE testing and examines in critical depth several underlying conceptual constructs relevant to the conduct of such tests and to the proper interpretation of results. These more traditional issues are contrasted with emerging concerns related to the testing of modern, advanced microcircuits

  8. Comparison of constant-rate pumping test and slug interference test results at the Hanford Site B pond multilevel test facility

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.; Thorne, P.D.

    1995-10-01

    Pacific Northwest Laboratory (PNL), as part of the Hanford Site Ground-Water Surveillance Project, is responsible for monitoring the movement and fate of contamination within the unconfined aquifer to ensure that public health and the environment are protected. To support the monitoring and assessment of contamination migration on the Hanford Site, a sitewide 3-dimensional groundwater flow model is being developed. Providing quantitative hydrologic property data is instrumental in development of the 3-dimensional model. Multilevel monitoring facilities have been installed to provide detailed, vertically distributed hydrologic characterization information for the Hanford Site unconfined aquifer. In previous reports, vertically distributed water-level and hydrochemical data obtained over time from these multi-level monitoring facilities have been evaluated and reported. This report describes the B pond facility in Section 2.0. It also provides analysis results for a constant-rate pumping test (Section 3.0) and slug interference test (Section 4.0) that were conducted at a multilevel test facility located near B Pond (see Figure 1. 1) in the central part of the Hanford Site. A hydraulic test summary (Section 5.0) that focuses on the comparison of hydraulic property estimates obtained using the two test methods is also presented. Reference materials are listed in Section 6.0

  9. Prediction of ground motion from underground nuclear weapons tests as it relates to siting of a nuclear waste storage facility at NTS and compatibility with the weapons test program

    International Nuclear Information System (INIS)

    Vortman, L.J. IV.

    1980-04-01

    This report assumes reasonable criteria for NRC licensing of a nuclear waste storage facility at the Nevada Test Site where it would be exposed to ground motion from underground nuclear weapons tests. Prediction equations and their standard deviations have been determined from measurements on a number of nuclear weapons tests. The effect of various independent parameters on standard deviation is discussed. That the data sample is sufficiently large is shown by the fact that additional data have little effect on the standard deviation. It is also shown that coupling effects can be separated out of the other contributions to the standard deviation. An example, based on certain licensing assumptions, shows that it should be possible to have a nuclear waste storage facility in the vicinity of Timber Mountain which would be compatible with a 700 kt weapons test in the Buckboard Area if the facility were designed to withstand a peak vector acceleration of 0.75 g. The prediction equation is a log-log linear equation which predicts acceleration as a function of yield of an explosion and the distance from it

  10. Evaluation of the radionuclide tracer test conducted at the project Gnome Underground Nuclear Test Site, New Mexico

    International Nuclear Information System (INIS)

    Pohll, G.; Pohlmann, K.

    1996-08-01

    A radionuclide tracer test was conducted in 1963 by the U.S. Geological Survey at the Project Gnome underground nuclear test site, approximately 40 km southeast of Carlsbad, New Mexico. The tracer study was carried out under the auspices of the U.S. Atomic Energy Commission (AEC) to study the transport behavior of radionuclides in fractured rock aquifers. The Culebra Dolomite was chosen for the test because it was considered to be a reasonable analogue of the fractured carbonate aquifer at the Nevada Test Site (NTS), the principal location of U.S. underground nuclear tests. Project Gnome was one of a small number of underground nuclear tests conducted by the AEC at sites distant from the NTS. The Gnome device was detonated on December 10, 1961 in an evaporate unit at a depth of 360 m below ground surface. Recently, the U.S. Department of Energy (DOE) implemented an environmental restoration program to characterize, remediate, and close these offsite nuclear test areas. An early step in this process is performance of a preliminary risk analysis of the hazard posed by each site. The Desert Research Institute has performed preliminary hydrologic risk evaluations for the groundwater transport pathway at Gnome. That evaluation included the radioactive tracer test as a possible source because the test introduced radionuclides directly into the Culebra Dolomite, which is the only aquifer at the site. This report presents a preliminary evaluation of the radionuclide tracer test as a source for radionuclide migration in the Culebra Dolomite. The results of this study will assist in planning site characterization activities and refining estimates of the radionuclide source for comprehensive models of groundwater transport st the Gnome site

  11. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    International Nuclear Information System (INIS)

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs

  12. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Shiprock, New Mexico. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This baseline risk assessment at the former uranium mill tailings site near Shiprock, New Mexico, evaluates the potential impact to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an on-site disposal cell in 1986 through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. There are no domestic or drinking water wells in the contaminated ground water of the two distinct ground water units: the contaminated ground water in the San Juan River floodplain alluvium below the site and the contaminated ground water in the terrace alluvium area where the disposal cell is located. Because no one is drinking the affected ground water, there are currently no health or environmental risks directly associated with the contaminated ground water. However, there is a potential for humans, domestic animals, and wildlife to the exposed to surface expressions of ground water in the seeps and pools in the area of the San Juan River floodplain below the site. For these reasons, this risk assessment evaluates potential exposure to contaminated surface water and seeps as well as potential future use of contaminated ground water.

  13. An assessment of testing requirement impacts on nuclear thermal propulsion ground test facility design

    International Nuclear Information System (INIS)

    Shipers, L.R.; Ottinger, C.A.; Sanchez, L.C.

    1993-01-01

    Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed

  14. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    For the UMTRA Project site located near Durango, Colorado (the Durango site), the Surface Project cleanup occurred from 1986 to 1991. An evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people's health. Exposure could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. In addition, environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has mixed with contaminated ground water. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Durango site. The results of this report and further site characterization of the Durango site will be used to determine what is necessary to protect public health and the environment, and to comply with the EPA standards

  15. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    For the UMTRA Project site located near Durango, Colorado (the Durango site), the Surface Project cleanup occurred from 1986 to 1991. An evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. Exposure could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. In addition, environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has mixed with contaminated ground water. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Durango site. The results of this report and further site characterization of the Durango site will be used to determine what is necessary to protect public health and the environment, and to comply with the EPA standards.

  16. Baseline risk assessment of ground water contamination at the inactive uriniferous lignite ashing site near Belfield, North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-08-01

    This Baseline Risk Assessment of Ground Water Contamination at the Inactive Uraniferous Lignite Ashing Site Near Belfield, North Dakota, evaluates potential impacts to public health or the environment resulting from ground water contamination at the site where coal containing uranium was burned to produce uranium. The US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project is evaluating plans to remedy soil and ground water contamination at the site. Phase I of the UMTRA Project consists of determining the extent of soil contamination. Phase II of the UMTRA Project consists of evaluating ground water contamination. Under Phase II, results of this risk assessment will help determine what remedial actions may be necessary for contaminated ground water at the site. This risk assessment evaluates the potential risks to human health and the environment resulting from exposure to contaminated ground water as it relates to historic processing activities at the site. Potential risk is quantified for constituents introduced from the processing activities, and not for those constituents naturally occurring in water quality in the site vicinity. Background ground water quality has the potential to cause adverse health effects from exposure through drinking. Any risks associated with contaminants attributable to site activities are incremental to these risks from background ground water quality. This incremental risk from site-related contaminants is quantified in this risk assessment. The baseline risk from background water quality is incorporated only into the assessment of potential chemical interactions and the definition of the overall site condition.

  17. Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Belfield, North Dakota

    International Nuclear Information System (INIS)

    1994-08-01

    This Baseline Risk Assessment of Ground Water Contamination at the Inactive Uraniferous Lignite Ashing Site Near Belfield, North Dakota, evaluates potential impacts to public health or the environment resulting from ground water contamination at the site where coal containing uranium was burned to produce uranium. The US Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project is evaluating plans to remedy soil and ground water contamination at the site. Phase I of the UMTRA Project consists of determining the extent of soil contamination. Phase II of the UMTRA Project consists of evaluating ground water contamination. Under Phase II, results of this risk assessment will help determine what remedial actions may be necessary for contaminated ground water at the site. This risk assessment evaluates the potential risks to human health and the environment resulting from exposure to contaminated ground water as it relates to historic processing activities at the site. Potential risk is quantified for constituents introduced from the processing activities, and not for those constituents naturally occurring in water quality in the site vicinity. Background ground water quality has the potential to cause adverse health effects from exposure through drinking. Any risks associated with contaminants attributable to site activities are incremental to these risks from background ground water quality. This incremental risk from site-related contaminants is quantified in this risk assessment. The baseline risk from background water quality is incorporated only into the assessment of potential chemical interactions and the definition of the overall site condition

  18. Meteorological data for four sites at surface-disruption features in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1985--1986

    International Nuclear Information System (INIS)

    Carman, R.L.

    1994-01-01

    Surface-disruption features, or craters, resulting from underground nuclear testing at the Nevada Test Site may increase the potential for ground-water recharge in an area that would normally produce little, if any, recharge. This report presents selected meteorological data resulting from a study of two surface-disruption features during May 1985 through June 1986. The data were collected at four adjacent sites in Yucca Flat, about 56 kilometers north of Mercury, Nevada. Three sites (one in each of two craters and one at an undisturbed site at the original land surface) were instrumented to collect meteorological data for calculating bare-soil evaporation. These data include (1) long-wave radiation, (2) short-wave radiation, (3) net radiation, (4) air temperature, and (5) soil surface temperature. Meteorological data also were collected at a weather station at an undisturbed site near the study craters. Data collected at this site include (1) air temperature, (2) relative humidity, (3) wind velocity, and (4) wind direction

  19. DOUBLE TRACKS Test Site interim corrective action plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The DOUBLE TRACKS site is located on Range 71 north of the Nellis Air Force Range, northwest of the Nevada Test Site (NTS). DOUBLE TRACKS was the first of four experiments that constituted Operation ROLLER COASTER. On May 15, 1963, weapons-grade plutonium and depleted uranium were dispersed using 54 kilograms of trinitrotoluene (TNT) explosive. The explosion occurred in the open, 0.3 m above the steel plate. No fission yield was detected from the test, and the total amount of plutonium deposited on the ground surface was estimated to be between 980 and 1,600 grams. The test device was composed primarily of uranium-238 and plutonium-239. The mass ratio of uranium to plutonium was 4.35. The objective of the corrective action is to reduce the potential risk to human health and the environment and to demonstrate technically viable and cost-effective excavation, transportation, and disposal. To achieve these objectives, Bechtel Nevada (BN) will remove soil with a total transuranic activity greater then 200 pCI/g, containerize the soil in ``supersacks,`` transport the filled ``supersacks`` to the NTS, and dispose of them in the Area 3 Radioactive Waste Management Site. During this interim corrective action, BN will also conduct a limited demonstration of an alternative method for excavation of radioactive near-surface soil contamination.

  20. Ground-dwelling ant fauna of sites with high levels of copper.

    Science.gov (United States)

    Diehl, E; Sanhudo, C E; Diehl-Fleig, Ed

    2004-02-01

    Richness and diversity of ant species are related to environmental factors such as vegetation, soil, presence of heavy metals, and insecticides, which allow the use of the assemblage members as terrestrial indicators of environmental conservation status. This study presents the results of ground ants surveyed in Minas do Camaquã in the municipality of Cacapava do Sul (Camaquã Basin), State of Rio Grande do Sul. Collections were performed in four sites, which high levels of copper in the soil, three of which--a mine, a liquid reject, and a solid reject-, had sparse or no plant cover, and one site where Pinus has been used for rehabilitation. Parque das Guaritas was the control site, since it presented normal levels of copper and a dense savanna cover. For each site, three transect lines extending 100 m were draw, and at each 10 m sardine baits were distributed; after two hours the ants present were collected. Hand collections in all five sites were performed during one hour (capture effort). A total of 51 species belonging to 17 genera were collected. The control site was the richest in ant species (r = 45). Sites with high level of copper and poor plant cover presented the lowest richness: mine (r = 14), solid reject (r = 15), and liquid reject (r = 16). In contrast, the site planted with Pinus presented an increment in richness (r = 24) of ground-dwelling ants, suggesting a reahabilitation process.

  1. Ground-dwelling ant fauna of sites with high levels of copper

    Directory of Open Access Journals (Sweden)

    E. Diehl

    Full Text Available Richness and diversity of ant species are related to environmental factors such as vegetation, soil, presence of heavy metals, and insecticides, which allow the use of the assemblage members as terrestrial indicators of environmental conservation status. This study presents the results of ground ants surveyed in Minas do Camaquã in the municipality of Caçapava do Sul (Camaquã Basin, State of Rio Grande do Sul. Collections were performed in four sites, with high levels of copper in the soil, three of which - a mine, a liquid reject, and a solid reject -, had sparse or no plant cover, and one site where Pinus has been used for rehabilitation. Parque das Guaritas was the control site, since it presented normal levels of copper and a dense savanna cover. For each site, three transect lines extending 100 m were draw, and at each 10 m sardine baits were distributed; after two hours the ants present were collected. Hand collections in all five sites were performed during one hour (capture effort. A total of 51 species belonging to 17 genera were collected. The control site was the richest in ant species (r = 45. Sites with high level of copper and poor plant cover presented the lowest richness: mine (r = 14, solid reject (r = 15, and liquid reject (r = 16. In contrast, the site planted with Pinus presented an increment in richness (r = 24 of ground-dwelling ants, suggesting a reahabilitation process.

  2. Ground penetrating radar for determining volumetric soil water content ; results of comparative measurements at two test sites

    NARCIS (Netherlands)

    Overmeeren, R.A. van; Sariowan, S.V.; Gehrels, J.C.

    1997-01-01

    Ground penetrating radar (GPR) can provide information on the soil water content of the unsaturated zone in sandy deposits via measurements from the surface, and so avoids drilling. Proof of this was found from measurements of radar wave velocities carried out ten times over 13 months at two test

  3. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site in Lakeview, Oregon

    International Nuclear Information System (INIS)

    1994-10-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site

  4. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site in Lakeview, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site.

  5. HEAVY METALS IN THE ECOSYSTEM COMPONENTS AT "DEGELEN" TESTING GROUND OF THE FORMER SEMIPALATINSK TEST SITE

    Directory of Open Access Journals (Sweden)

    A.B. Yankauskas

    2012-06-01

    Full Text Available The ecological situation in the former Semipalatinsk test site is characterized by a combination of both radiative and "nonradiative" factors. There were investigated near-portal areas of the tunnels with water seepage at "Degelen" site. All the tunnel waters are characterized by higher concentrations of uranium, beryllium, and molybdenum. The watercourse of the tunnel # 504 is unique for its elemental composition, in particular, the content of rare earth elements, whose concentration in the water is in the range n*10-5 – n*10-7 %. Of all the rare earth elements in the samples were found 13, the concentrations of aluminum, manganese, zinc are comparable to the concentrations of macro-components. Concentration of 238U in the studied waters lie in the range of n*10-4 – n*10-6 %, which suggests the influence of uranium, not only as a toxic element, but its significance as the radiation factor.

  6. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase 1) and the Ground Water Project (phase 2). For the UMTRA Project site located near Green River, Utah, the Surface Project cleanup occurred from 1988 to 1989. The tailings and radioactively contaminated soils and materials were removed from their original locations and placed into a disposal cell on the site. The disposal cell is designed to minimize radiation emissions and minimize further contamination of ground water beneath the site. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. For the Green River site, the risk assessment helps determine whether human health risks result from exposure to ground water contaminated by uranium processing. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Green River site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

  7. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase 1) and the Ground Water Project (phase 2). For the UMTRA Project site located near Green River, Utah, the Surface Project cleanup occurred from 1988 to 1989. The tailings and radioactively contaminated soils and materials were removed from their original locations and placed into a disposal cell on the site. The disposal cell is designed to minimize radiation emissions and minimize further contamination of ground water beneath the site. The UMTRA Project's second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. For the Green River site, the risk assessment helps determine whether human health risks result from exposure to ground water contaminated by uranium processing. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Green River site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards

  8. SITE-94. Geochemical characterization of Simpevarp ground waters near the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Glynn, P.D.; Voss, C.I.

    1999-09-01

    The present report analyzes the geochemical data in order to evaluate collection and interpretation techniques that will be used to site the repository and to assess its safety. Ground waters near the Aespoe Hard Rock Laboratory (HRL) may be grouped into five chemically and isotopically distinct water types, on the basis of their deuterium and chloride contents: 1) recent waters, 2) 5 g/L chloride waters, 3) deep waters, 4) seawater imprint waters, and 5) glacial melt waters. The sampled ground waters show a progressive change from a predominantly NaHCO 3 composition at shallow depth to a CaCl 2 -rich composition at depth. Despite the proximity of the Baltic, relatively few of the sampled ground waters contain any evidence of a seawater component. This finding, together with the rather shallow depths at which saline waters were found, indicates that Aespoe island is presently in a regional ground-water discharge area. The chemical and isotopic composition of the sampled waters also indicates that local recharge of dilute recent waters occurs only down to shallow depths (generally less than 100 in). The Aespoe ground waters are sulfidic and do not presently contain any dissolved oxygen. Measured E H values are generally near -300 mV, and on average are only about 50 mV lower than E H values calculated from the sulfide/sulfate couple. Maintenance of reducing conditions, such as presently found at the Aespoe HRL, is an important consideration in assessing the performance of nuclear waste disposal sites. Measurements of dissolved radon and of uranium concentrations in fracture-fill materials were used to calculate an average effective flow-wetted surface area of 3.1 m 2 per liter of water for the Aespoe site. Estimation of flow-wetted surface areas is essential in determining the importance of matrix diffusion and surface sorption processes for radionuclide release calculations. The Rn calculation technique shows promise in helping narrow the possible range of values

  9. Long-term ground-water monitoring program and performance-evaluation plan for the extraction system at the former Nike Missile Battery Site, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Senus, Michael P.; Tenbus, Frederick J.

    2000-01-01

    This report presents lithologic and ground-water-quality data collected during April and May 2000 in the remote areas of the tidal wetland of West Branch Canal Creek, Aberdeen Proving Ground, Maryland. Contamination of the Canal Creek aquifer with volatile organic compounds has been documented in previous investigations of the area. This study was conducted to investigate areas that were previously inaccessible because of deep mud and shallow water, and to support ongoing investigations of the fate and transport of volatile organic compounds in the Canal Creek aquifer. A unique vibracore drill rig mounted on a hovercraft was used for drilling and ground-water sampling. Continuous cores of the wetland sediment and of the Canal Creek aquifer were collected at five sites. Attempts to sample ground water were made by use of a continuous profiler at 12 sites, without well installation, at a total of 81 depths within the aquifer. Of those 81 attempts, only 34 sampling depths produced enough water to collect samples. Ground-water samples from two sites had the highest concentrations of volatile organic compounds?with total volatile organic compound concentrations in the upper part of the aquifer ranging from about 15,000 to 50,000 micrograms per liter. Ground-water samples from five sites had much lower total volatile organic compound concentrations (95 to 2,100 micrograms per liter), whereas two sites were essentially not contaminated, with total volatile organic compound concentrations less than or equal to 5 micrograms per liter.

  10. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Attachment 3, Ground water hydrology report: Preliminary final

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-04

    The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent ground water contamination resulting from processing activities at inactive uranium milling sites (52 FR 36000 (1987)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, 42 USC {section}7901 et seq., the US Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has determined that for Slick Rock, this assessment shall include hydrogeologic site characterization for two separate uranium processing sites, the Union Carbide (UC) site and the North Continent (NC) site, and for the proposed Burro Canyon disposal site. The water resources protection strategy that describes how the proposed action will comply with the EPA ground water protection standards is presented in Attachment 4. The following site characterization activities are discussed in this attachment: Characterization of the hydrogeologic environment, including hydrostratigraphy, ground water occurrence, aquifer parameters, and areas of recharge and discharge. Characterization of existing ground water quality by comparison with background water quality and the maximum concentration limits (MCL) of the proposed EPA ground water protection standards. Definition of physical and chemical characteristics of the potential contaminant source, including concentration and leachability of the source in relation to migration in ground water and hydraulically connected surface water. Description of local water resources, including current and future use, availability, and alternative supplies.

  11. Open-field test site

    Science.gov (United States)

    Gyoda, Koichi; Shinozuka, Takashi

    1995-06-01

    An open-field test site with measurement equipment, a turn table, antenna positioners, and measurement auxiliary equipment was remodelled at the CRL north-site. This paper introduces the configuration, specifications and characteristics of this new open-field test site. Measured 3-m and 10-m site attenuations are in good agreement with theoretical values, and this means that this site is suitable for using 3-m and 10-m method EMI/EMC measurements. The site is expected to be effective for antenna measurement, antenna calibration, and studies on EMI/EMC measurement methods.

  12. Ground-penetrating radar and electromagnetic surveys at the Monroe Crossroads battlefield site, Fort Bragg, North Carolina

    Science.gov (United States)

    Kessler, Richard; Strain, R.E.; Marlowe, J. I.; Currin, K.B.

    1996-01-01

    A ground-penetrating radar survey was conducted at the Monroe Crossroads Battlefield site at Fort Bragg, North Carolina, to determine possible locations of subsurface archaeological features. An electromagnetic survey also was conducted at the site to verify and augment the ground-penetrating radar data. The surveys were conducted over a 67,200-square-foot grid with a grid point spacing of 20 feet. During the ground-penetrating radar survey, 87 subsurface anomalies were detected based on visual inspection of the field records. These anomalies were flagged in the field as they appeared on the ground-penetrating radar records and were located by a land survey. The electromagnetic survey produced two significant readings at ground-penetrating radar anomaly locations. The National Park Service excavated 44 of the 87 anomaly locations at the Civil War battlefield site. Four of these excavations produced significant archaeological features, including one at an abandoned well.

  13. Peculiarities and opportunities of restoration of vegetation of experimental ground 'Experimental field' of Semipalatinsk Test Site

    International Nuclear Information System (INIS)

    Plisak, R.P.; Plisak, S. V.

    2003-01-01

    Full text: Geo-botanical researches at experimental ground 'Experimental field' of Semipalatinsk Test Site were conducted out in 1994-2000. 26 ground and 87 air nuclear tests were conducted out at the territory in 1949-1962. It is found that for deluvial-proluvial plain: High level of radiation pollution of soils in the epicentre of nuclear explosions is limiting factor for vegetation rehabilitation. Under level of PED of γ-irradiation 14,000-16,000 μR/h vegetation restoration has not begun until now. Only single individuals of Artemisia frigida appear under PED of γ-irradiation 10,000-13,000 μR/h. Rarefied plant aggregations constituted by annual-biennial weed species appear under PED of γ-irradiation 3,600-8,000 μR/h. Natural rehabilitation of vegetation occurs more intensively under PED of γ-irradiation of 60-200 μR/h. Vegetation aggregations close to initial zonal coenosis develop in these conditions. It is found that for tumulose: Vegetation restoration on the tops of hills starts with invasion of weed species. Plant aggregations with predominance of Caragana pumila, tyhedra distachya develop on accumulations of fine earth in cracks of mountain rocks. Lichens and mosses assimilate outcrops of mountain rocks. 2. Plant aggregations with predominance of Spiraea hypericifoia, Caragana pumila, Artemisia frigida develop on the upper parts of slopes of hills. Craters of nuclear explosions have not been assimilated by higher plants yet. Rarefied plant aggregations constituted by Psathyrostachys juncea, Artemisia frigida appear in the lower parts of slopes of hills. Single individuals of Medicago falcata, Galium ruthenicum, Melilotus dentatus are found on sides of explosion craters. Vegetation rehabilitates slowly trenches on gentle slopes of hills. Following measures are necessary for intensification of the process of restoration of vegetation destroyed and damaged by nuclear explosions: To clean slopes of hills from numerous fragment of metallic and plastic

  14. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Falls City, Texas: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This baseline risk assessment of ground water contamination of the uranium mill tailings site near Falls City, Texas, evaluates potential impact to public health and the environment resulting from ground water contamination at the former Susquehanna Western, Inc. (SWI), uranium mill processing site. This document fulfills the following objectives: determine if the site presents immediate or potential future health risks, determine the need for interim institutional controls, serve as a key input to project planning and prioritization, and recommend future data collection efforts to more fully characterize risk. The Uranium Mill Tailings Remedial Action (UMTRA) Project has begun its evaluation of ground water contamination at the Falls City site. This risk assessment is one of the first documents specific to this site for the Ground Water Project. The first step is to evaluate ground water data collected from monitor wells at or near the site. Evaluation of these data show the main contaminants in the Dilworth ground water are cadmium, cobalt, fluoride, iron, nickel, sulfate, and uranium. The data also show high levels of arsenic and manganese occur naturally in some areas.

  15. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Falls City, Texas: Revision 1

    International Nuclear Information System (INIS)

    1994-09-01

    This baseline risk assessment of ground water contamination of the uranium mill tailings site near Falls City, Texas, evaluates potential impact to public health and the environment resulting from ground water contamination at the former Susquehanna Western, Inc. (SWI), uranium mill processing site. This document fulfills the following objectives: determine if the site presents immediate or potential future health risks, determine the need for interim institutional controls, serve as a key input to project planning and prioritization, and recommend future data collection efforts to more fully characterize risk. The Uranium Mill Tailings Remedial Action (UMTRA) Project has begun its evaluation of ground water contamination at the Falls City site. This risk assessment is one of the first documents specific to this site for the Ground Water Project. The first step is to evaluate ground water data collected from monitor wells at or near the site. Evaluation of these data show the main contaminants in the Dilworth ground water are cadmium, cobalt, fluoride, iron, nickel, sulfate, and uranium. The data also show high levels of arsenic and manganese occur naturally in some areas

  16. Environmental Assessment of Ground Water Compliance at the Naturita, Colorado, UMTRA Project Site

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-04-23

    This Environmental Assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Naturita, Colorado, Uranium Mill Tailings Remedial Action Project site. In 1998, the U.S. Department of Energy (DOE) completed surface cleanup at the site and encapsulated the tailings in a disposal cell 15 miles northwest near the former town of Uravan, Colorado. Ground water contaminants of potential concern at the Naturita site are uranium and vanadium. Uranium concentrations exceed the maximum concentration limit (MCL) of 0.044 milligram per liter (mg/L). Vanadium has no MCL; however, vanadium concentrations exceed the EPA Region III residential risk-based concentration of 0.33 mg/L (EPA 2002). The proposed compliance strategy for uranium and vanadium at the Naturita site is no further remediation in conjunction with the application of alternate concentration limits. Institutional controls with ground water and surface water monitoring will be implemented for these constituents as part of the compliance strategy. This compliance strategy will be protective of human health and the environment. The proposed monitoring program will begin upon regulatory concurrence with the Ground Water Compliance Action Plan (DOE 2002a). Monitoring will consist of verifying that institutional controls remain in place, collecting ground water samples to verify that concentrations of uranium and vanadium are decreasing, and collecting surface water samples to verify that contaminant concentrations do not exceed a regulatory limit or risk-based concentration. If these criteria are not met, DOE would reevaluate the proposed action and determine the need for further National Environmental Policy Act documentation. No comments were received from the public during the public comment period. Two public meetings were held during this period. Minutes of these meetings are included as

  17. Environmental Assessment of Ground Water Compliance at the Naturita, Colorado, UMTRA Project Site

    International Nuclear Information System (INIS)

    2003-01-01

    This Environmental Assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Naturita, Colorado, Uranium Mill Tailings Remedial Action Project site. In 1998, the U.S. Department of Energy (DOE) completed surface cleanup at the site and encapsulated the tailings in a disposal cell 15 miles northwest near the former town of Uravan, Colorado. Ground water contaminants of potential concern at the Naturita site are uranium and vanadium. Uranium concentrations exceed the maximum concentration limit (MCL) of 0.044 milligram per liter (mg/L). Vanadium has no MCL; however, vanadium concentrations exceed the EPA Region III residential risk-based concentration of 0.33 mg/L (EPA 2002). The proposed compliance strategy for uranium and vanadium at the Naturita site is no further remediation in conjunction with the application of alternate concentration limits. Institutional controls with ground water and surface water monitoring will be implemented for these constituents as part of the compliance strategy. This compliance strategy will be protective of human health and the environment. The proposed monitoring program will begin upon regulatory concurrence with the Ground Water Compliance Action Plan (DOE 2002a). Monitoring will consist of verifying that institutional controls remain in place, collecting ground water samples to verify that concentrations of uranium and vanadium are decreasing, and collecting surface water samples to verify that contaminant concentrations do not exceed a regulatory limit or risk-based concentration. If these criteria are not met, DOE would reevaluate the proposed action and determine the need for further National Environmental Policy Act documentation. No comments were received from the public during the public comment period. Two public meetings were held during this period. Minutes of these meetings are included as

  18. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2

    International Nuclear Information System (INIS)

    1996-02-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water

  19. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water.

  20. Ground beetles (Coleoptera, Carabidae of the Hanford Nuclear Site in south-central Washington State

    Directory of Open Access Journals (Sweden)

    Chris Looney

    2014-04-01

    Full Text Available In this paper we report on ground beetles (Coleoptera: Carabidae collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site, which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte, and Stenolophus lineola (Fabricius. Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity.

  1. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1995-08-01

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment

  2. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment.

  3. Current plans to characterize the design basis ground motion at the Yucca Mountain, Nevada Site

    International Nuclear Information System (INIS)

    Simecka, W.B.; Grant, T.A.; Voegele, M.D.; Cline, K.M.

    1992-01-01

    A site at Yucca Mountain Nevada is currently being studied to assess its suitability as a potential host site for the nation's first commercial high level waste repository. The DOE has proposed a new methodology for determining design-basis ground motions that uses both deterministic and probabilistic methods. The role of the deterministic approach is primary. It provides the level of detail needed by design engineers in the characterization of ground motions. The probabilistic approach provides a logical structured procedure for integrating the range of possible earthquakes that contribute to the ground motion hazard at the site. In addition, probabilistic methods will be used as needed to provide input for the assessment of long-term repository performance. This paper discusses the local tectonic environment, potential seismic sources and their associated displacements and ground motions. It also discusses the approach to assessing the design basis earthquake for the surface and underground facilities, as well as selected examples of the use of this type of information in design activities

  4. A new ground-penetrating radar system for remote site characterization

    International Nuclear Information System (INIS)

    Davis, K.C.; Sandness, G.A.

    1994-08-01

    The cleanup of waste burial sites and military bombing ranges involves the risk of exposing field personnel to toxic chemicals, radioactive materials, or unexploded munitions. Time-consuming and costly measures are required to provide protection from those hazards. Therefore, there is a growing interest in developing remotely controlled sensors and sensor platforms that can be employed in site characterization surveys. A specialized ground-penetrating radar has been developed to operate on a remotely controlled vehicle for the non-intrusive subsurface characterization of buried waste sites. Improved radar circuits provide enhanced performance, and an embedded microprocessor dynamically optimizes operation. The radar unit is packaged to survive chemical contamination and decontamination

  5. Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Belfield, North Dakota. Revision 1

    International Nuclear Information System (INIS)

    1994-09-01

    This risk assessment evaluates the potential for impacts to public health or the environment from contaminated ground water at this site caused by the burning of coal containing uranium to produce uranium. Potential risk is quantified for constituents introduced from the processing activities and not for those constituents naturally occurring in background ground water in the site vicinity. Because background ground water quality has the potential to cause adverse health effects from exposure through drinking, any risks associated with contaminants attributable to site activities are incremental to these risks from background. The incremental risk from site-related contaminants is quantified in this risk assessment. The baseline risk from background water quality is incorporated only into the assessment of potential chemical interactions and the definition of the overall site condition. The US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is developing plans to remedy soil and ground water contamination at the site. The UMTRA Surface Project consists of determining the extent of soil contamination and disposing of the contaminated soils in an engineered disposal cell. The UMTRA Ground Water Project consists of evaluating ground water contamination. Under the UMTRA Ground Water Project, results of this risk assessment will help determine what ground water compliance strategy may be applied at the site

  6. Ground-water surveillance at the Hanford Site for CY 1982

    International Nuclear Information System (INIS)

    Eddy, P.A.; Prater, L.S.; Rieger, J.T.

    1983-06-01

    Operations at the Hanford Site since 1944 have resulted in the discharge of large volumes of process cooling water and other waste waters to the ground. These effluents, which have reached the unconfined ground water, contain low levels of radioactive and chemical substances. The movement of these constituents in the unconfined ground water is monitored as part of the Ground-Water Surveillance Program. During 1982, 324 monitoring wells were sampled at various times for radioactive and chemical constituents. Tritium are the primary ones used to monitor the movement of the ground water. This report describes recent changes in the configuration of the tritium and nitrate plumes. The tritium plume continues to show increasing concentrations near the Columbia River. While it is mapped as having reached the Columbia River, its contribution to the river has not been distinguished from other sources at this time. The general plume configuration is much the same as in 1978, 1979, 1980, and 1981. The size of the nitrate plume appears stable. Concentrations of nitrate in the vicinity of the 100-H Area continue to be high as a result of past leaks from an evaporation facility

  7. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This risk assessment evaluates the possibility of health and environmental risks from contaminated ground water at the uranium mill tailings site near Durango, Colorado. The former uranium processing site`s contaminated soil and material were removed and placed at a disposal site located in Body Canyon, Colorado, during 1986--1991 by the US Departments of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating the nature and extent of ground water contamination at the site. This risk assessment follows an approach similar to that used by the US Environmental Protection Agency. The first step is to determine what site-related contaminants are found in ground water samples. The next step in the risk assessment is to determine how much of these contaminants people might ingest if they got their drinking water from a well on the site. In accordance with standard practice for this type of risk assessment, the highest contaminant concentrations from the most contaminated wells are used. The risk assessment then explains the possible health problems that could result from this amount of contamination.

  8. Monitoring of natural revegetation of Semipalatinsk nuclear testing ground

    International Nuclear Information System (INIS)

    Sultanova, B.M.

    2002-01-01

    It is well known, that monitoring of natural revegetation of Semipalatinsk test site (STS) was carried out during period 1994-2002 at test areas (Experimental field, Balapan, Degelen). In this paper the peculiarities of vegetation cover of these test areas are observed. Thus, vegetation cover of Experimental field ground in the epicentre is completely destroyed. At present there are different stages of zonal steppe communities rehabilitation: in zones with γ-irradiation 11000-14000 μR/h the revegetation is not found; on the plots with γ-irradiation 8200-10000 μR/h rare species of Artemisia frigida are found; aggregation of plant (managed from 6000-7000 μR/h is observed; At the γ-irradiation 80-200 μR/h rarefied groups of bunch grass communities similar to the zonal steppe are formed and zonal bunch grass communities developed with 18-25 μR/h. Vegetation cover of Degelen hill tops and near-mouth ground in the results of underground nuclear expulsions are completely destroyed. Here there are three main kinds of vegetation: very stony gallery areas don't almost overgrow; at technogen tops near galleries the single plants, rare field groups and unclosed micro-phyto-biocenoses of weed and adventive species (Amaranthus retroflexus, Artemisia dracunculus, Laxctuca serriola, Chorispora sibirica etc.). On the Balapan are the revegetation is limited by high radiation pollution rate. Here cenose rehabilitation is presented by Artemisia marshalliana, Spita sareptana, Festuca valresiaca). In their paper florostic and phyrocoenitic diversity of STS's flora transformation is studied. Pattern distribution and migration of radionuclides in soils and vegetation cover is represented

  9. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Riverton, Wyoming. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the Surface Project and the Ground Water Project. At the UMTRA Project site near Riverton, Wyoming, Surface Project cleanup occurred from 1988 to 1990. Tailings and radioactively contaminated soils and materials were taken from the Riverton site to a disposal cell in the Gas Hills area, about 60 road miles (100 kilometers) to the east. The surface cleanup reduces radon and other radiation emissions and minimizes further ground water contamination. The UMTRA Project`s second phase, the Ground Water Project, will evaluate the nature and extent of ground water contamination at the Riverton site that has resulted from the uranium ore processing activities. Such evaluations are used at each site to determine a strategy for complying with UMTRA ground water standards established by the US Environmental Protection Agency (EPA) and if human health risks could result from exposure to ground water contaminated by uranium ore processing. Exposure could hypothetically occur if drinking water were pumped from a well drilled in an area where ground water contamination might have occurred. Human health and environmental risks may also result if people, plants, or animals are exposed to surface water that has mixed with contaminated ground water.

  10. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Riverton, Wyoming. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the Surface Project and the Ground Water Project. At the UMTRA Project site near Riverton, Wyoming, Surface Project cleanup occurred from 1988 to 1990. Tailings and radioactively contaminated soils and materials were taken from the Riverton site to a disposal cell in the Gas Hills area, about 60 road miles (100 kilometers) to the east. The surface cleanup reduces radon and other radiation emissions and minimizes further ground water contamination. The UMTRA Project's second phase, the Ground Water Project, will evaluate the nature and extent of ground water contamination at the Riverton site that has resulted from the uranium ore processing activities. Such evaluations are used at each site to determine a strategy for complying with UMTRA ground water standards established by the US Environmental Protection Agency (EPA) and if human health risks could result from exposure to ground water contaminated by uranium ore processing. Exposure could hypothetically occur if drinking water were pumped from a well drilled in an area where ground water contamination might have occurred. Human health and environmental risks may also result if people, plants, or animals are exposed to surface water that has mixed with contaminated ground water

  11. SITE-94. Geochemical characterization of Simpevarp ground waters near the Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Glynn, P D; Voss, C I [US Geological Survey, Reston, VA (United States)

    1999-09-01

    evidence remains to be found to prove or to disprove that deep penetration of oxygenated ground waters occurred during the last Pleistocene glaciation. Amorphous Fe-oxyhydroxides and goethites have been observed at great depths at several SKB sites in Sweden. These phases may have formed as a result of the intrusion of oxygenated glacial melt waters. The recommendations for future geochemical characterization of potential nuclear waste disposal sites made by the present report generally complement recommendations made earlier by Andrews based on the international program of hydrochemical work at the Stripa mine. In addition to better sampling techniques and protocols, future characterization efforts should place greater emphasis on the measurement of conservative constituents (Cl, Br, {sup 2}H, {sup 18}O) that may provide information on the origin of ground waters and also on the hydrologic disturbances induced by sampling, testing and excavation activities. (abstract truncated)

  12. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Slick Rock, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    Two UMTRA (Uranium Mill Tailings Remedial Action) Project sites are near Slick Rock, Colorado: the North Continent site and the Union Carbide site. Currently, no one uses the contaminated ground water at either site for domestic or agricultural purposes. However, there may be future land development. This risk assessment evaluates possible future health problems associated with exposure to contaminated ground water. Since some health problems could occur, it is recommended that the contaminated ground water not be used as drinking water

  13. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Slick Rock, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Two UMTRA (Uranium Mill Tailings Remedial Action) Project sites are near Slick Rock, Colorado: the North Continent site and the Union Carbide site. Currently, no one uses the contaminated ground water at either site for domestic or agricultural purposes. However, there may be future land development. This risk assessment evaluates possible future health problems associated with exposure to contaminated ground water. Since some health problems could occur, it is recommended that the contaminated ground water not be used as drinking water.

  14. Ground-penetrating radar in characterizing and monitoring waste-burial sites

    International Nuclear Information System (INIS)

    Sandness, G.A.; Kimball, C.S.

    1982-02-01

    Potential environmental hazards are associated with buried chemical and nuclear wastes because of the possibilities of inadvertent excavation or migration of toxic chemicals or radionuclides into groundwater or surface water bodies. Concern is often related to the fact that many existing waste burial sites have been found to be inadequately designed and/or poorly documented. New technology and innovative applications of current technology are needed to locate, characterize, and monitor the wastes contained in such sites. The work described in this paper is focused on the use of ground-penetrating radar (GPR) for those purposes

  15. Heavy metals in the ecosystem components at 'Degelen' testing ground of the former Semipalatinsk test site

    International Nuclear Information System (INIS)

    Yankauskas, A.B.; Lukashenko, S.N.; Amirov, A.A.; Govenko, P.V.

    2012-01-01

    The ecological situation in the former Semipalatinsk test site is characterized by a combination of both radiative and nonradiative factors. There were investigated near-portal areas of the tunnels with water seepage at 'Degelen' site. All the tunnel waters are characterized by higher concentrations of uranium, beryllium, and molybdenum. The watercourse of the tunnel number 504 is unique for its elemental composition, in particular, the content of rare earth elements, whose concentration in the water is in the range n*10 -5 -n*10 -7 %. Of all the rare earth elements in the samples were found 13, the concentrations of aluminum, manganese, zinc are comparable to the concentrations of macro-components. Concentration of 238 U in the studied waters lie in the range of n*10 -4 - n*10 -6 %, which suggests the influence of uranium, not only as a toxic element, but its significance as the radiation factor. The analysis of complex data obtained showed that the elevated concentrations of heavy metals in the soils of the areas under study, as a rule, are a consequence of the carry-over of these metals by water flows and their subsequent deposition in the sediments. (authors)

  16. Report of ground water monitoring for expansion of the golf course, Salt Lake City, Utah, vitro processing site

    International Nuclear Information System (INIS)

    1995-06-01

    To determine the potential impacts of the proposed golf course expansion on the south side of the Vitro site, ground water data from the UMTRA Vitro processing site were evaluated in response to the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project Office request. Golf in the Round, Inc., has proposed an expansion of the present driving range to include a 9-hole golf course on the UMTRA Vitro processing site, which is owned by the Central Valley Water Reclamation Facility (CVWRF). An expanded golf course would increase irrigation and increase the amount of water that could infiltrate the soil, recharging the unconfined aquifer. Increased water levels in the aquifer could alter the ground water flow regime; contaminants in the shallow ground water could then migrate off the site or discharge to surface water in the area. Dewatering of the unconfined aquifer on CVWRF property could also impact site contaminant migration; a significant amount of ground water extraction at CVWRF could reduce the amount of contaminant migration off the site. Since 1978, data have been collected at the site to determine the distribution of tailings materials (removed from the site from 1985 to 1987) and to characterize the presence and migration of contaminants in sediments, soils, surface water, and ground water at the former Vitro processing site. Available data suggest that irrigating an expanded golf course may cause contamination to spread more rapidly within the unconfined aquifer. The public is not at risk from current Vitro processing site activities, nor is risk expected due to golf course expansion. However, ecological risk could increase with increased surface water contamination and the development of ground water seeps

  17. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site at Grand Junction, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This risk assessment evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site.

  18. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site at Grand Junction, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1994-09-01

    This risk assessment evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site

  19. Site Classification using Multichannel Channel Analysis of Surface Wave (MASW) method on Soft and Hard Ground

    Science.gov (United States)

    Ashraf, M. A. M.; Kumar, N. S.; Yusoh, R.; Hazreek, Z. A. M.; Aziman, M.

    2018-04-01

    Site classification utilizing average shear wave velocity (Vs(30) up to 30 meters depth is a typical parameter. Numerous geophysical methods have been proposed for estimation of shear wave velocity by utilizing assortment of testing configuration, processing method, and inversion algorithm. Multichannel Analysis of Surface Wave (MASW) method is been rehearsed by numerous specialist and professional to geotechnical engineering for local site characterization and classification. This study aims to determine the site classification on soft and hard ground using MASW method. The subsurface classification was made utilizing National Earthquake Hazards Reduction Program (NERHP) and international Building Code (IBC) classification. Two sites are chosen to acquire the shear wave velocity which is in the state of Pulau Pinang for soft soil and Perlis for hard rock. Results recommend that MASW technique can be utilized to spatially calculate the distribution of shear wave velocity (Vs(30)) in soil and rock to characterize areas.

  20. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado

    International Nuclear Information System (INIS)

    1995-02-01

    This risk assessment evaluates the possibility of health and environmental risks from contaminated ground water at the uranium mill tailings site near Durango, Colorado. The former uranium processing site's contaminated soil and material were removed and placed at a disposal site located in Body Canyon, Colorado, during 1986--1991 by the US Departments of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating the nature and extent of ground water contamination at the site. This risk assessment follows an approach similar to that used by the US Environmental Protection Agency. The first step is to determine what site-related contaminants are found in ground water samples. The next step in the risk assessment is to determine how much of these contaminants people might ingest if they got their drinking water from a well on the site. In accordance with standard practice for this type of risk assessment, the highest contaminant concentrations from the most contaminated wells are used. The risk assessment then explains the possible health problems that could result from this amount of contamination

  1. Hydrogeologic investigations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hawkins, W.L.; Trudeau, D.A.; Drellack, S.L.

    1992-01-01

    The Nevada Test Site was established in 1950 as a continental area for testing nuclear devices and, since 1963, all nuclear detonations there have been underground. Most tests are conducted in vertical shafts with a small percentage conducted in tunnels. The majority of detonation points are above the water table, primarily in volcanic rocks or alluvium. In the testing areas the water table is 450--700 m below the surface. Pre- and post- event geologic investigations are conducted for each test location and long-term studies assess the impact of underground testing on a more regional scale. Studies in progress have not identified any impact on the regional ground water system from testing, but some local effects have been recognized. In some areas where several large tests have been conducted below the water table, water levels hundreds of meters above the regional water table have been measured and radioactivity has been discovered associated with fractures in a few holes. Flow-through and straddle packer testing has revealed unexpectedly high hydraulic pressures at depth. Recently, a multiple completion monitoring well installed to study three zones has confirmed the existence of a significant upward hydraulic gradient. These observations of local pressurization and fracture flow are being further explored to determine the influence of underground nuclear testing on the regional hydrogeologic system

  2. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This document evaluates potential impacts to public health and the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1989 by the US DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, UMTRA Project is evaluating ground water contamination in this risk assessment.

  3. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah

    International Nuclear Information System (INIS)

    1994-09-01

    This document evaluates potential impacts to public health and the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1989 by the US DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, UMTRA Project is evaluating ground water contamination in this risk assessment

  4. Status of the ground water flow model for the UMTRA Project, Shiprock, New Mexico, site

    International Nuclear Information System (INIS)

    1995-01-01

    A two-dimensional numerical model was constructed for the alluvial aquifer in the area of the Uranium Mill Tailings Remedial Action (UMTRA) Project Shiprock, New Mexico, site. This model was used to investigate the effects of various hydrologic parameters on the evolution of the ground water flow field. Results of the model are useful for defining uncertainties in the site conceptual model and suggesting data collection efforts to reduce these uncertainties. The computer code MODFLOW was used to simulate the two-dimensional flow of ground water in the alluvium. The escarpment was represented as a no-flow boundary. The San Juan River was represented with the MODFLOW river package. A uniform hydraulic conductivity distribution with the value estimated by the UMTRA Project Technical Assistance Contractor (TAC) and a uniform recharge distribution was used. Infiltration from the flowing artesian well was represented using the well package. The ground water flow model was calibrated to ground water levels observed in April 1993. Inspection of hydrographs shows that these levels are representative of typical conditions at the site

  5. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions. Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-18

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical & Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties.

  6. Plutonium Particle Migration in the Shallow Vadose Zone: The Nevada Test Site as an Analog Site

    Science.gov (United States)

    Hunt, J. R.; Smith, D. K.

    2004-12-01

    The upper meter of the vadose zone in desert environments is the horizon where wastes have been released and human exposure is determined through dermal, inhalation, and food uptake pathways. This region is also characterized by numerous coupled processes that determine contaminant transport, including precipitation infiltration, evapotranspiration, daily and annual temperature cycling, dust resuspension, animal burrowing, and geochemical weathering reactions. While there is considerable interest in colloidal transport of minerals, pathogenic organisms, and contaminants in the vadose zone, there are limited field sites where the actual occurrence of contaminant migration can be quantified over the appropriate spatial and temporal scales of interest. At the US Department of Energy Nevada Test Site, there have been numerous releases of radionuclides since the 1950's that have become field-scale tracer tests. One series of tests was the four safety shots conducted in an alluvial valley of Area 11 in the 1950's. These experiments tested the ability of nuclear materials to survive chemical explosions without initiating fission reactions. Four above-ground tests were conducted and they released plutonium and uranium on the desert valley floor with only one of the tests undergoing some fission. Shortly after the tests, the sites were surveyed for radionuclide distribution on the land surface using aerial surveys and with depth. Additional studies were conducted in the 1970's to better understand the fate of plutonium in the desert that included studies of depth distribution and dust resuspension. More recently, plutonium particle distribution in the soil profile was detected using autoradiography. The results to date demonstrate the vertical migration of plutonium particles to depths in excess of 30 cm in this arid vadose zone. While plutonium migration at the Nevada Test Site has been and continues to be a concern, these field experiments have become analog sites for the

  7. Classification of groundwater at the Nevada Test Site

    International Nuclear Information System (INIS)

    Chapman, J.B.

    1994-08-01

    Groundwater occurring at the Nevada Test Site (NTS) has been classified according to the ''Guidelines for Ground-Water Classification Under the US Environmental Protection Agency (EPA) Ground-Water Protection Strategy'' (June 1988). All of the groundwater units at the NTS are Class II, groundwater currently (IIA) or potentially (IIB) a source of drinking water. The Classification Review Area (CRA) for the NTS is defined as the standard two-mile distance from the facility boundary recommended by EPA. The possibility of expanding the CRA was evaluated, but the two-mile distance encompasses the area expected to be impacted by contaminant transport during a 10-year period (EPA,s suggested limit), should a release occur. The CRA is very large as a consequence of the large size of the NTS and the decision to classify the entire site, not individual areas of activity. Because most activities are located many miles hydraulically upgradient of the NTS boundary, the CRA generally provides much more than the usual two-mile buffer required by EPA. The CRA is considered sufficiently large to allow confident determination of the use and value of groundwater and identification of potentially affected users. The size and complex hydrogeology of the NTS are inconsistent with the EPA guideline assumption of a high degree of hydrologic interconnection throughout the review area. To more realistically depict the site hydrogeology, the CRA is subdivided into eight groundwater units. Two main aquifer systems are recognized: the lower carbonate aquifer system and the Cenozoic aquifer system (consisting of aquifers in Quaternary valley fill and Tertiary volcanics). These aquifer systems are further divided geographically based on the location of low permeability boundaries

  8. Ground-water monitoring at the Hanford Site, January-December 1984

    Energy Technology Data Exchange (ETDEWEB)

    Cline, C.S.; Rieger, J.T.; Raymond, J.R.

    1985-09-01

    This program is designed to evaluate existing and potential pathways of exposure to radioactivity and hazardous chemicals from site operations. This document contains an evaluation of data collected during CY 1984. During 1984, 339 monitoring wells were sampled at various times for radioactive and nonradioactive constituents. Two of these constituents, specifically, tritium and nitrate, have been selected for detailed discussion in this report. Tritium and nitrate in the primary plumes originating from the 200 Areas continue to move generally eastward toward the Columbia River in the direction of ground-water flow. The movement within these plumes is indicated by changes in trends within the analytical data from the monitoring wells. No discernible impact on ground water has yet been observed from the start-up of the PUREX plant in December 1983. The shape of the present tritium plume is similar to those described in previous ground-water monitoring reports, although slight changes on the outer edges have been noted. Radiological impacts from two potential pathways for radionuclide transport in ground water to the environment are discussed in this report. The pathways are: (1) human consumption of ground water from onsite wells, and (2) seepage of ground water into the Columbia River. Concentrations of tritium in spring samples that were collected and analyzed in 1983, and in wells sampled adjacent to the Columbia River in 1984 confirmed that constituents in the ground water are entering the river via springs and subsurface flow. The primary areas where radionuclides enter the Columbia River via ground-water flow are the 100-N and 300 Areas and the shoreline adjacent to the Hanford Townsite. 44 refs., 25 figs., 11 tabs.

  9. Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site`s tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site.

  10. Computer-Based Testing: Test Site Security.

    Science.gov (United States)

    Rosen, Gerald A.

    Computer-based testing places great burdens on all involved parties to ensure test security. A task analysis of test site security might identify the areas of protecting the test, protecting the data, and protecting the environment as essential issues in test security. Protecting the test involves transmission of the examinations, identifying the…

  11. Development of a three-dimensional ground-water model of the Hanford Site unconfined aquifer system: FY 1995 status report

    International Nuclear Information System (INIS)

    Wurstner, S.K.; Thorne, P.D.; Chamness, M.A.; Freshley, M.D.; Williams, M.D.

    1995-12-01

    A three-dimensional numerical model of ground-water flow was developed for the uppermost unconfined aquifer at the Hanford Site in south-central Washington. Development of the model is supported by the Hanford Site Ground-Water Surveillance Project, managed by the Pacific Northwest National Laboratory, which is responsible for monitoring the sitewide movement of contaminants in ground water beneath the Hanford Site. Two objectives of the Ground-Water Surveillance Project are to (1) identify and quantify existing, emerging, or potential ground-water quality problems, and (2) assess the potential for contaminants to migrate from the Hanford Site through the ground-water pathway. Numerical models of the ground-water flow system are important tools for estimating future aquifer conditions and predicting the movement of contaminants through ground water. The Ground-Water Surveillance Project has supported development and maintenance of a two-dimensional model of the unconfined aquifer. This report describes upgrade of the two-dimensional model to a three-dimensional model. The numerical model is based on a three-dimensional conceptual model that will be continually refined and updated as additional information becomes available. This report presents a description of the three-dimensional conceptual model of ground-water flow in the unconfined aquifer system and then discusses the cur-rent state of the three-dimensional numerical model

  12. Prediction of Pseudo relative velocity response spectra at Yucca Mountain for underground nuclear explosions conducted in the Pahute Mesa testing area at the Nevada testing site

    International Nuclear Information System (INIS)

    Phillips, J.S.

    1991-12-01

    The Yucca Mountain Site Characterization Project (YMP), managed by the Office of Geologic Disposal of the Office of Civilian Radioactive Waste Management of the US Department of Energy, is examining the feasibility of siting a repository for commercial, high-level nuclear wastes at Yucca Mountain on and adjacent to the Nevada Test Site (NTS). This work, intended to extend our understanding of the ground motion at Yucca Mountain resulting from testing of nuclear weapons on the NTS, was funded by the Yucca Mountain project and the Military Applications Weapons Test Program. This report summarizes one aspect of the weapons test seismic investigations conducted in FY88. Pseudo relative velocity response spectra (PSRV) have been calculated for a large body of surface ground motions generated by underground nuclear explosions. These spectra have been analyzed and fit using multiple linear regression techniques to develop a credible prediction technique for surface PSRVs. In addition, a technique for estimating downhole PSRVs at specific stations is included. A data summary, data analysis, prediction development, prediction evaluation, software summary and FORTRAN listing of the prediction technique are included in this report

  13. Geohydrology and ground-water quality beneath the 300 Area, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Lindberg, J.W.; Bond, F.W.

    1979-06-01

    Ground water enters the 300 Area from the northwest, west, and southwest. However, throughout most of the 300 Area, the flow is to the east and southeast. Ground water flows to the northeast only in the southern portion of the 300 Area. Variations in level of the Columbia River affected the ground-water system by altering the level and shape of the 300 Area watertable. Large quantities of process waste water, when warmed during summer months by solar radiation or cooled during winter months by ambient air temperature, influenced the temperature of the ground water. Leaking pipes and the intentional discharge of waste water (or withdrawal of ground water) affected the ground-water system in the 300 Area. Water quality tests of Hanford ground water in and adjacent to the 300 Area showed that in the area of the Process Water Trenches and Sanitary Leaching Trenches, calcium, magnesium, sodium, bicarbonate, and sulfate ions are more dilute, and nitrate and chloride ions are more concentrated than in surrounding areas. Fluoride, uranium, and beta emitters are more concentrated in ground water along the bank of the Columbia River in the central and southern portions of the 300 Area and near the 340 Building. Test wells and routine ground-water sampling are adequate to point out contamination. The variable Thickness Transient (VTT) Model of ground-water flow in the unconfined aquifer underlying the 300 Area has been set up, calibrated, and verified. The Multicomponent Mass Transfer (MMT) Model of distribution of contaminants in the saturated regime under the 300 Area has been set up, calibrated, and tested

  14. Hydraulic Characterization of Overpressured Tuffs in Central Yucca Flat, Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K.J. Halford; R.J. Laczniak; D.L. Galloway

    2005-10-07

    A sequence of buried, bedded, air-fall tuffs has been used extensively as a host medium for underground nuclear tests detonated in the central part of Yucca Flat at the Nevada Test Site. Water levels within these bedded tuffs have been elevated hundreds of meters in areas where underground nuclear tests were detonated below the water table. Changes in the ground-water levels within these tuffs and changes in the rate and distribution of land-surface subsidence above these tuffs indicate that pore-fluid pressures have been slowly depressurizing since the cessation of nuclear testing in 1992. Declines in ground-water levels concurrent with regional land subsidence are explained by poroelastic deformation accompanying ground-water flow as fluids pressurized by underground nuclear detonations drain from the host tuffs into the overlying water table and underlying regional carbonate aquifer. A hydraulic conductivity of about 3 x 10-6 m/d and a specific storage of 9 x 10-6 m-1 are estimated using ground-water flow models. Cross-sectional and three-dimensional ground-water flow models were calibrated to measured water levels and to land-subsidence rates measured using Interferometric Synthetic Aperture Radar. Model results are consistent and indicate that about 2 million m3 of ground water flowed from the tuffs to the carbonate rock as a result of pressurization caused by underground nuclear testing. The annual rate of inflow into the carbonate rock averaged about 0.008 m/yr between 1962 and 2005, and declined from 0.005 m/yr in 2005 to 0.0005 m/yr by 2300.

  15. Assessment of hydrologic transport of radionuclides from the Rulison Underground Nuclear Test Site, Colorado

    International Nuclear Information System (INIS)

    Earman, S.; Chapman, J.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Rulison site in west-central Colorado was the location of an underground detonation of a 40-kiloton nuclear device in 1969. The test took place 2,568 m below ground surface in the Mesaverde Formation. Though located below the regional water table, none of the bedrock formations at the site yielded water during hydraulic tests, indicating extremely low permeability conditions. The scenario evaluated was the migration of radionuclides from the blast-created cavity through the Mesaverde Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. The transport calculations are most sensitive to changes in the mean groundwater velocity and the correlation scale of hydraulic conductivity, with transport of strontium and cesium also sensitive to the sorption coefficient

  16. Acoustic-Seismic Coupling in Porous Ground - Measurements and Analysis for On-Site-Inspection Support

    Science.gov (United States)

    Liebsch, Mattes; Gorschlüter, Felix; Altmann, Jürgen

    2014-05-01

    During on-site inspections (OSI) of the Comprehensive Nuclear Test Ban Treaty Organisation (CTBTO) a local seismic network can be installed to measure seismic aftershock signals of an assumed underground nuclear explosion. These signals are caused by relaxation processes in and near the cavity created by the explosion and when detected can lead to a localisation of the cavity. This localisation is necessary to take gas samples from the ground which are analysed for radioactive noble gas isotopes to confirm or dismiss the suspicion of a nuclear test. The aftershock signals are of very low magnitude so they can be masked by different sources, in particular periodic disturbances caused by vehicles and aircraft in the inspection area. Vehicles and aircraft (mainly helicopters) will be used for the inspection activities themselves, e.g. for overhead imagery or magnetic-anomaly sensing. While vehicles in contact with the ground can excite soil vibrations directly, aircraft and vehicles alike emit acoustic waves which excite soil vibrations when hitting the ground. These disturbing signals are of periodic nature while the seismic aftershock signals are pulse-shaped, so their separation is possible. The understanding of the coupling of acoustic waves to the ground is yet incomplete, a better understanding is necessary to improve the performance of an OSI, e.g. to address potential consequences for the sensor placement, the helicopter trajectories etc. In a project funded by the Young Scientist Research Award of the CTBTO to one of us (ML), we investigated the acoustic-seismic coupling of airborne signals of jet aircraft and artificially induced ones by a speaker. During a measurement campaign several acoustic and seismic sensors were placed below the take-off trajectory of an airport at 4 km distance. Therefore taking off and landing jet aircraft passed nearly straightly above the setup. Microphones were placed close to the ground to record the sound pressure of incident

  17. Fiber optic utilization at the Nevada Test Site

    International Nuclear Information System (INIS)

    Lyons, P.B.; Golob, J.E.; Looney, L.D.; Robichaud, R.E.; Nelson, M.A.; Davies, T.J.

    1978-11-01

    Optical fiber cables have been successfully used for 100-MHz analog data transmission during an underground nuclear test at the Nevada Test Site. Two 700-m Corning Corguide cables were used to provide thirteen single fiber data channels from the vicinity of the underground detonation, 350 meters below ground level, to recording instrumentation, 350 meters from the downhole shaft. No fiber performance degradation was observed during the extensive procedures used to seal the shaft. These procedures included backfilling the shaft with layers of sand and gravel, as well as poured epoxy plugs. Techniques were developed for internal sealing of the Corguide cable to prevent any possible radioactive gas flow through voids within the cable. The effects on optical fibers of intense, pulsed neutron and gamma irradiation were studied. Specialized tools, including a system for location of faults or breaks in the optical fibers, were developed. The success of this first test will allow consideration of fiber optic cables for future nuclear tests as well as for other applications involving extremely rough handling in field environments

  18. Performance Assessment Monitoring Plan for the Hanford Site Low-Level Burial Grounds

    International Nuclear Information System (INIS)

    2006-01-01

    The U.S. Department of Energy Order 435.1, Radioactive Waste Management, requires a disposal authorization statement authorizing operation (or continued operation) for low-level waste disposal facilities. In fulfillment of these requirements, a disposal authorization statement was issued on October 25, 1999, authorizing the Hanford Site to transfer, receive, possess, and dispose of low-level radioactive waste at the 200 East Area burial grounds and the 200 West Area burial grounds. One of the conditions is that monitoring plans for the 200 East Area and 200 West Area low-level burial grounds be written and approved by the Richland Operations Office. As a result of a record of decision for the Hanford Site Solid Waste Program and acceptance of the Hanford Site Solid Waste Environmental Impact Statement, the use of the low-level burial ground (LLBG) as a disposal facility for low-level and mixed low-level wastes has been restricted to lined trenches and the Navy reactor-compartment trench only. Hence, as of July 2004, only the two lined trenches in burial ground 218-W-5 (trenches 31 and 34, see Appendix A) and the Navy reactor-compartment trench in burial ground 218 E 12B (trench 94) are allowed to receive waste. When the two lined trenches are filled, the LLBG will cease to operate except for reactor compartment disposal at trench 94. Remaining operational lifetime of the LLBG is dependent on waste volume disposal rates. Existing programs for air sampling and analyses and subsidence monitoring are currently adequate for performance assessment at the LLBG. The waste disposal authorization for the Hanford Site is based (in part) on the post-closure performance assessments for the LLBG. In order to maintain a useful link between operational monitoring (e.g., Resource Conservation and Recovery Act [RCRA], Comprehensive Environmental Response, Compensation, and Liability Act, and State Waste Discharge Permits), constituents, monitoring frequencies, and boundaries require

  19. Bibliography of reports on studies of the geology, hydrogeology and hydrology at the Nevada Test Site, Nye County, Nevada, from 1951--1996

    Energy Technology Data Exchange (ETDEWEB)

    Seaber, P.R.; Stowers, E.D.; Pearl, R.H.

    1997-04-01

    The Nevada Test Site (NTS) was established in 1951 as a proving ground for nuclear weapons. The site had formerly been part of an Air Force bombing and gunnery range during World War II. Sponsor-directed studies of the geology, hydrogeology, and hydrology of the NTS began about 1956 and were broad based in nature, but were related mainly to the effects of the detonation of nuclear weapons. These effects included recommending acceptable media and areas for underground tests, the possibility of off-site contamination of groundwater, air blast and surface contamination in the event of venting, ground-shock damage that could result from underground blasts, and studies in support of drilling and emplacement. The studies were both of a pure scientific nature and of a practical applied nature. The NTS was the site of 828 underground nuclear tests and 100 above-ground tests conducted between 1951 and 1992 (U.S. Department of Energy, 1994a). After July 1962, all nuclear tests conducted in the United States were underground, most of them at the NTS. The first contained underground nuclear explosion was detonated on September 19, 1957, following extensive study of the underground effect of chemical explosives. The tests were performed by U.S. Department of Energy (DOE) and its predecessors, the U.S. Atomic Energy Commission and the Energy Research and Development Administration. As part of a nationwide complex for nuclear weapons design, testing and manufacturing, the NTS was the location for continental testing of new and stockpiled nuclear devices. Other tests, including Project {open_quotes}Plowshare{close_quotes} experiments to test the peaceful application of nuclear explosives, were conducted on several parts of the site. In addition, the Defense Nuclear Agency tested the effect of nuclear detonations on military hardware.

  20. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    1993-01-01

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. Therefore, empirically based approaches that are used for other regions, such as Western North America, are not appropriate for Eastern North America. Moreover, recent advances in science and technology have now made it possible to combine theoretical and empirical methods to develop new procedures and models for estimating ground motion. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. Specifically considered are magnitudes M from 5 to 8, distances from 0 to 500 km, and frequencies from 1 to 35 Hz. This document, Volume IV, provides Appendix 8.B, Laboratory Investigations of Dynamic Properties of Reference Sites

  1. A summary of ecological investigations at the burial ground complex, Savannah River Site - 1994

    Energy Technology Data Exchange (ETDEWEB)

    Friday, G.P.; Hartman, G.D.; Mackey, H.E. Jr.; Riley, R.S.; Roach, J.L.; Specht, W.L.; Westbury, H.M.; Wike, L.D.

    1994-11-01

    This report summarizes the results of three ecological investigations that were conducted in 1994 at the Burial Ground Complex (BGC) at the Savannah River Site (SRS). The three topics of study included remote sensing, aquatic toxicity testing, and qualitative surveys of herpetofauna and small mammals. Interim reports from each investigation are included in the appendices (A, B, and C). The objectives of the remote sensing effort were to compile historical aerial photography of the BGC and to develop a land use/cover map of the complex using recent aerial imagery. The goal of the aquatic toxicity testing was to determine if surface waters were toxic to aquatic biota whereas the objectives of the vertebrate surveys were to identify the species diversity and relative abundances of amphibians, reptiles, and small mammals inhabiting the study area.

  2. A summary of ecological investigations at the burial ground complex, Savannah River Site - 1994

    International Nuclear Information System (INIS)

    Friday, G.P.; Hartman, G.D.; Mackey, H.E. Jr.; Riley, R.S.; Roach, J.L.; Specht, W.L.; Westbury, H.M.; Wike, L.D.

    1994-11-01

    This report summarizes the results of three ecological investigations that were conducted in 1994 at the Burial Ground Complex (BGC) at the Savannah River Site (SRS). The three topics of study included remote sensing, aquatic toxicity testing, and qualitative surveys of herpetofauna and small mammals. Interim reports from each investigation are included in the appendices (A, B, and C). The objectives of the remote sensing effort were to compile historical aerial photography of the BGC and to develop a land use/cover map of the complex using recent aerial imagery. The goal of the aquatic toxicity testing was to determine if surface waters were toxic to aquatic biota whereas the objectives of the vertebrate surveys were to identify the species diversity and relative abundances of amphibians, reptiles, and small mammals inhabiting the study area

  3. Management of Ground and Groundwater Contamination on a Compact Site Constrained by Ongoing Activities

    International Nuclear Information System (INIS)

    Eilbeck, K.E.; Reeve, P.

    2009-01-01

    Sellafield Site is a compact and complex site which since the 1940's has been home to a range of facilities associated with the production and reprocessing of fissile material. The site contains the UK equivalent of the Chicago Pile-1 reactor, Hanford B Reactor, Rocky Flats Buildings 771 and 774, West Valley Main Process Plant Building, Savannah River Vitrification Plant, Savannah River MOX Plant, Savannah River F Canyon, Hanford 222 Analytical Laboratory, Savannah River K-, L-, and P-Basins, and the Fort St. Vrain Reactor all in an area of approximately 1000 acres. Spent fuel reprocessing is still undertaken on site; however waste management and decommissioning activities are of increasing importance. These include the emptying and removal of fragile ponds and silos containing significant radioactive inventories, the decommissioning of reactors (including the world's first commercial reactor for power generation and the Windscale Piles, the site of a reactor fire in the late 1950's) and the construction of a new generation of vitrification and encapsulation plants. Leaks, spills and on-site disposals during the site's industrial lifetime have resulted in a legacy of fission products and other radionuclides in the ground and groundwater. Volumes of contaminated ground have been estimated as being as much as 18 million m 3 and an estimated below ground inventory of approximately 1.8 E16 Bq. These have all occurred within close proximity to a range of receptors including farm land and the sea. The cramped nature of the facilities on site, overlapping source terms and ongoing decommissioning, waste management and operating activities all raise significant challenges in the management and remediation of contaminated land and groundwater. The strategy to address these challenges includes: 1. Data collection, management and interpretation. The congested nature of the site and the age of some of the monitoring facilities has resulted in particular difficulties. For

  4. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  5. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    International Nuclear Information System (INIS)

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards

  6. Ground test facility for nuclear testing of space reactor subsystems

    International Nuclear Information System (INIS)

    Quapp, W.J.; Watts, K.D.

    1985-01-01

    Two major reactor facilities at the INEL have been identified as easily adaptable for supporting the nuclear testing of the SP-100 reactor subsystem. They are the Engineering Test Reactor (ETR) and the Loss of Fluid Test Reactor (LOFT). In addition, there are machine shops, analytical laboratories, hot cells, and the supporting services (fire protection, safety, security, medical, waste management, etc.) necessary to conducting a nuclear test program. This paper presents the conceptual approach for modifying these reactor facilities for the ground engineering test facility for the SP-100 nuclear subsystem. 4 figs

  7. Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1

    International Nuclear Information System (INIS)

    1994-08-01

    This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site's tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site

  8. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Salt Lake City, Utah. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the first is the Surface Project, and the second is the Ground Water Project. For the UMTRA Project site known as the Vitro site, near Salt Lake City, Utah, Surface Project cleanup occurred from 1985 to 1987. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. A risk assessment is the process of describing a source of contamination and showing how that contamination may reach people and the environment. The amount of contamination people or the environment may be exposed to is calculated and used to characterize the possible health or environmental effects that may result from this exposure. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Vitro site. The results of this report and further site characterization of the Vitro site will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

  9. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Salt Lake City, Utah. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the first is the Surface Project, and the second is the Ground Water Project. For the UMTRA Project site known as the Vitro site, near Salt Lake City, Utah, Surface Project cleanup occurred from 1985 to 1987. The UMTRA Project's second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. A risk assessment is the process of describing a source of contamination and showing how that contamination may reach people and the environment. The amount of contamination people or the environment may be exposed to is calculated and used to characterize the possible health or environmental effects that may result from this exposure. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Vitro site. The results of this report and further site characterization of the Vitro site will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards

  10. Underground Nuclear Testing Program, Nevada Test Site

    International Nuclear Information System (INIS)

    1975-09-01

    The Energy Research and Development Administration (ERDA) continues to conduct an underground nuclear testing program which includes tests for nuclear weapons development and other tests for development of nuclear explosives and methods for their application for peaceful uses. ERDA also continues to provide nuclear explosive and test site support for nuclear effects tests sponsored by the Department of Defense. This Supplement extends the Environmental Statement (WASH-1526) to cover all underground nuclear tests and preparations for tests of one megaton (1 MT) or less at the Nevada Test Site (NTS) during Fiscal Year 1976. The test activities covered include numerous continuing programs, both nuclear and non-nuclear, which can best be conducted in a remote area. However, if nuclear excavation tests or tests of yields above 1 MT or tests away from NTS should be planned, these will be covered by separate environmental statements

  11. Ground beetles (Coleoptera, Carabidae) of the Hanford Nuclear Site in south-central Washington State.

    Science.gov (United States)

    Looney, Chris; Zack, Richard S; Labonte, James R

    2014-01-01

    Carabidae) collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site), which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte), and Stenolophus lineola (Fabricius). Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity.

  12. Implications of next generation attenuation ground motion prediction equations for site coefficients used in earthquake resistant design

    Science.gov (United States)

    Borcherdt, Roger D.

    2014-01-01

    Proposals are developed to update Tables 11.4-1 and 11.4-2 of Minimum Design Loads for Buildings and Other Structures published as American Society of Civil Engineers Structural Engineering Institute standard 7-10 (ASCE/SEI 7–10). The updates are mean next generation attenuation (NGA) site coefficients inferred directly from the four NGA ground motion prediction equations used to derive the maximum considered earthquake response maps adopted in ASCE/SEI 7–10. Proposals include the recommendation to use straight-line interpolation to infer site coefficients at intermediate values of (average shear velocity to 30-m depth). The NGA coefficients are shown to agree well with adopted site coefficients at low levels of input motion (0.1 g) and those observed from the Loma Prieta earthquake. For higher levels of input motion, the majority of the adopted values are within the 95% epistemic-uncertainty limits implied by the NGA estimates with the exceptions being the mid-period site coefficient, Fv, for site class D and the short-period coefficient, Fa, for site class C, both of which are slightly less than the corresponding 95% limit. The NGA data base shows that the median value  of 913 m/s for site class B is more typical than 760 m/s as a value to characterize firm to hard rock sites as the uniform ground condition for future maximum considered earthquake response ground motion estimates. Future updates of NGA ground motion prediction equations can be incorporated easily into future adjustments of adopted site coefficients using procedures presented herein. 

  13. Mitigative techniques and analysis of generic site conditions for ground-water contamination associated with severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, J.M.; Oberlander, P.L.; Skaggs, R.L.

    1984-04-01

    The purpose of this study is to evaluate the feasibility of using ground-water contaminant mitigation techniques to control radionuclide migration following a severe commercial nuclear power reactor accident. The two types of severe commercial reactor accidents investigated are: (1) containment basemat penetration of core melt debris which slowly cools and leaches radionuclides to the subsurface environment, and (2) containment basemat penetration of sump water without full penetration of the core mass. Six generic hydrogeologic site classifications are developed from an evaluation of reported data pertaining to the hydrogeologic properties of all existing and proposed commercial reactor sites. One-dimensional radionuclide transport analyses are conducted on each of the individual reactor sites to determine the generic characteristics of a radionuclide discharge to an accessible environment. Ground-water contaminant mitigation techniques that may be suitable, depending on specific site and accident conditions, for severe power plant accidents are identified and evaluated. Feasible mitigative techniques and associated constraints on feasibility are determined for each of the six hydrogeologic site classifications. The first of three case studies is conducted on a site located on the Texas Gulf Coastal Plain. Mitigative strategies are evaluated for their impact on contaminant transport and results show that the techniques evaluated significantly increased ground-water travel times. 31 references, 118 figures, 62 tables.

  14. Mitigative techniques and analysis of generic site conditions for ground-water contamination associated with severe accidents

    International Nuclear Information System (INIS)

    Shafer, J.M.; Oberlander, P.L.; Skaggs, R.L.

    1984-04-01

    The purpose of this study is to evaluate the feasibility of using ground-water contaminant mitigation techniques to control radionuclide migration following a severe commercial nuclear power reactor accident. The two types of severe commercial reactor accidents investigated are: (1) containment basemat penetration of core melt debris which slowly cools and leaches radionuclides to the subsurface environment, and (2) containment basemat penetration of sump water without full penetration of the core mass. Six generic hydrogeologic site classifications are developed from an evaluation of reported data pertaining to the hydrogeologic properties of all existing and proposed commercial reactor sites. One-dimensional radionuclide transport analyses are conducted on each of the individual reactor sites to determine the generic characteristics of a radionuclide discharge to an accessible environment. Ground-water contaminant mitigation techniques that may be suitable, depending on specific site and accident conditions, for severe power plant accidents are identified and evaluated. Feasible mitigative techniques and associated constraints on feasibility are determined for each of the six hydrogeologic site classifications. The first of three case studies is conducted on a site located on the Texas Gulf Coastal Plain. Mitigative strategies are evaluated for their impact on contaminant transport and results show that the techniques evaluated significantly increased ground-water travel times. 31 references, 118 figures, 62 tables

  15. Ground motion for the design basis earthquake at the Savannah River Site, South Carolina based on a deterministic approach

    International Nuclear Information System (INIS)

    Youngs, R.R.; Coppersmith, K.J.; Silva, W.J.; Stephenson, D.E.

    1991-01-01

    Ground motion assessments are presented for evaluation of the seismic safety of K-Reactor at the Savannah River Site. Two earthquake sources were identified as the most significant to seismic hazard at the site, a M 7.5 earthquake occurring at Charleston, South Carolina, and a M 5 event occurring in the site vicinity. These events control the low frequency and high frequency portions of the spectrum, respectively. Three major issues were identified in the assessment of ground motions for the Savannah River site; specification of the appropriate stress drop for the Charleston source earthquake, specification of the appropriate levels of soil damping at large depths for site response analyses, and the appropriateness of western US recordings for specification of ground motions in the eastern US

  16. Effects of Permafrost and Seasonally Frozen Ground on the Seismic Response of Transportation Infrastructure Sites

    Science.gov (United States)

    2010-02-01

    This interdisciplinary project combined seismic data recorded at bridge sites with computer models to identify how highway bridges built on permanently and seasonally frozen ground behave during an earthquake. Two sites one in Anchorage and one in...

  17. Space Shuttle Boundary Layer Transition Flight Experiment Ground Testing Overview

    Science.gov (United States)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.

    2014-01-01

    In support of the Boundary Layer Transition (BLT) Flight Experiment (FE) Project in which a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS- 128, STS-131 and STS-133 as well as Space Shuttle Orbiter Endeavour for STS-134, a significant ground test campaign was completed. The primary goals of the test campaign were to provide ground test data to support the planning and safety certification efforts required to fly the flight experiment as well as validation for the collected flight data. These test included Arcjet testing of the tile protuberance, aerothermal testing to determine the boundary layer transition behavior and resultant surface heating and planar laser induced fluorescence (PLIF) testing in order to gain a better understanding of the flow field characteristics associated with the flight experiment. This paper provides an overview of the BLT FE Project ground testing. High-level overviews of the facilities, models, test techniques and data are presented, along with a summary of the insights gained from each test.

  18. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Grant Evenson

    2006-01-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139

  19. An Aerial Radiological Survey of Selected Areas of Area 18 - Nevada Test Site

    International Nuclear Information System (INIS)

    Lyons, Craig

    2009-01-01

    As part of the proficiency training for the Radiological Mapping mission of the Aerial Measuring System (AMS), a survey team from the Remote Sensing Laboratory-Nellis (RSL-Nellis) conducted an aerial radiological survey of selected areas of Area 18 of the Nevada Test Site (NTS) for the purpose of mapping man-made radiation deposited as a result of the Johnnie Boy and Little Feller I tests. The survey area centered over the Johnnie Boy ground zero but also included the ground zero and deposition area of the Little Feller I test, approximately 7,000 feet (2133 meters) southeast of the Johnnie Boy site. The survey was conducted in one flight. The completed survey covered a total of 4.0 square miles. The flight lines (with the turns) over the surveyed areas are presented in Figure 1. One 2.5-hour-long flight was performed at an altitude of 100 ft above ground level (AGL) with 200 foot flight-line spacing. A test-line flight was conducted near the Desert Rock Airstrip to ensure quality control of the data. The test line is not shown in Figure 1. However, Figure 1 does include the flight lines for a ''perimeter'' flight. The path traced by the helicopter flying over distinct roads within the survey area can be used to overlay the survey data on a base map or image. The flight survey lines were flown in an east-west orientation perpendicular to the deposition patterns for both sites. This technique provides better spatial resolution when contouring the data. The data were collected by the AMS data acquisition system (REDAR V) using an array of twelve 2-inch x 4-inch x 16-inch sodium iodide (NaI) detectors flown on-board a twin-engine Bell 412 helicopter. Data, in the form of gamma energy spectra, were collected every second over the course of the survey and were geo-referenced using a differential Global Positioning System. Spectral data allows the system to distinguish between ordinary fluctuations in natural background radiation levels and the signature produced by man

  20. Review of analytical results from the proposed agent disposal facility site, Aberdeen Proving Ground

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, K.L.; Reed, L.L.; Myers, S.W.; Shepard, L.T.; Sydelko, T.G.

    1997-09-01

    Argonne National Laboratory reviewed the analytical results from 57 composite soil samples collected in the Bush River area of Aberdeen Proving Ground, Maryland. A suite of 16 analytical tests involving 11 different SW-846 methods was used to detect a wide range of organic and inorganic contaminants. One method (BTEX) was considered redundant, and two {open_quotes}single-number{close_quotes} methods (TPH and TOX) were found to lack the required specificity to yield unambiguous results, especially in a preliminary investigation. Volatile analytes detected at the site include 1, 1,2,2-tetrachloroethane, trichloroethylene, and tetrachloroethylene, all of which probably represent residual site contamination from past activities. Other volatile analytes detected include toluene, tridecane, methylene chloride, and trichlorofluoromethane. These compounds are probably not associated with site contamination but likely represent cross-contamination or, in the case of tridecane, a naturally occurring material. Semivolatile analytes detected include three different phthalates and low part-per-billion amounts of the pesticide DDT and its degradation product DDE. The pesticide could represent residual site contamination from past activities, and the phthalates are likely due, in part, to cross-contamination during sample handling. A number of high-molecular-weight hydrocarbons and hydrocarbon derivatives were detected and were probably naturally occurring compounds. 4 refs., 1 fig., 8 tabs.

  1. Microzonation and site-specific ground motion modelling for Delhi city

    International Nuclear Information System (INIS)

    Parvez, Imtiyaz A.; Vaccari, F.; Panza, G.F.

    2002-11-01

    Delhi - the capital of India - lies on a severe earthquake hazard threats not only from the local earthquakes but also from Himalayan events just 200-250 km apart. The seismic ground motion in a part of Delhi City is computed with a hybrid technique based (on the based) on the modal summation and the finite difference scheme for site-specific strong ground motion modelling. Complete realistic SH and P-SV wave seismograms are computed along two geological cross-sections, (1) North-South, from Inter State Bus Terminal (ISBT) to Sewanagar and (2) East- West, from Tilak Bridge to Punjabi Bagh. Two real earthquake sources of July 15, 1720 (MMI=IX, M=7.4) and August 27, 1960 (M=6.0) have been used in the modelling. The response spectra ratio (RSR), i.e. the response spectra computed from the signals synthesized along the laterally varying section normalized by the response spectra computed from the corresponding signals, synthesized for the bedrock reference regional model, have been determined. As expected, the sedimentary cover causes an increase of the signal amplitude particularly in the radial and transverse components. To further check the site-effects, we reversed the source location to the other side of the cross-section and re-computed the site amplifications. There are only a few sites where a large amplification is invariant with respect to the two source locations considered. The RSR ranges between 5 to 10 in the frequency range from 2.8 to 3.7 Hz, for the radial and transverse components of motion along the NS cross-section. Along the EW cross-section RSR varies between 3.5 to 7.5 in the frequency range from 3.5 to 4.1 Hz. The amplification of the vertical component is large at high frequency (>4 Hz) whereas it is negligible in lower frequency range. (author)

  2. An aerial radiological survey of the Nevada Test Site

    International Nuclear Information System (INIS)

    Hendricks, T.J.; Riedhauser, S.R.

    1999-01-01

    A team from the Remote Sensing Laboratory conducted an aerial radiological survey of the US Department of Energy's Nevada Test Site including three neighboring areas during August and September 1994. The survey team measured the terrestrial gamma radiation at the Nevada Test Site to determine the levels of natural and man-made radiation. This survey included the areas covered by previous surveys conducted from 1962 through 1993. The results of the aerial survey showed a terrestrial background exposure rate that varied from less than 6 microroentgens per hour (mR/h) to 50 mR/h plus a cosmic-ray contribution that varied from 4.5 mR/h at an elevation of 900 meters (3,000 feet) to 8.5 mR/h at 2,400 meters (8,000 feet). In addition to the principal gamma-emitting, naturally occurring isotopes (potassium-40, thallium-208, bismuth-214, and actinium-228), the man-made radioactive isotopes found in this survey were cobalt-60, cesium-137, europium-152, protactinium-234m an indicator of depleted uranium, and americium-241, which are due to human actions in the survey area. Individual, site-wide plots of gross terrestrial exposure rate, man-made exposure rate, and americium-241 activity (approximating the distribution of all transuranic material) are presented. In addition, expanded plots of individual areas exhibiting these man-made contaminations are given. A comparison is made between the data from this survey and previous aerial radiological surveys of the Nevada Test Site. Some previous ground-based measurements are discussed and related to the aerial data. In regions away from man-made activity, the exposure rates inferred from the gamma-ray measurements collected during this survey agreed very well with the exposure rates inferred from previous aerial surveys

  3. Simulation analyses of vibration tests on pile-group effects using blast-induced ground motions

    International Nuclear Information System (INIS)

    Takayuki Hashimoto; Kazushige Fujiwara; Katsuichirou Hijikata; Hideo Tanaka; Kohji Koyamada; Atsushi Suzuki; Osamu Kontani

    2005-01-01

    Extensive vibration tests have been performed on pile-supported structures at a large-scale mining site to promote better understanding of the dynamic behavior of pile-supported structures, especially pile-group effects. Two test structures were constructed in an excavated pit. One structure was supported on 25 tubular steel piles and the other on 4. The test pit was backfilled with sand of an appropriate grain size distribution to ensure good compaction. Ground motions induced by large-scale blasting operations were used as excitation forces for the tests. The 3D Finite Element Method (3D FEM)and a Genetic Algorithm (GA) were employed to identify the shear wave velocities and damping factors of the compacted sand, especially of the surface layer. A beam-interaction spring model was employed to simulate the test results of the piles and the pile-supported structures. The superstructure and pile foundation were modeled by a one-stick model comprising lumped masses and beam elements. The pile foundations were modeled just as they were, with lumped masses and beam elements to simulate the test results showing that, for the 25-pile structure, piles at different locations showed different responses. It was confirmed that the analysis methods employed were very useful for evaluating the nonlinear behavior of the soil-pile-structure system, even under severe ground motions. (authors)

  4. Ground Testing a Nuclear Thermal Rocket: Design of a sub-scale demonstration experiment

    Energy Technology Data Exchange (ETDEWEB)

    David Bedsun; Debra Lee; Margaret Townsend; Clay A. Cooper; Jennifer Chapman; Ronald Samborsky; Mel Bulman; Daniel Brasuell; Stanley K. Borowski

    2012-07-01

    In 2008, the NASA Mars Architecture Team found that the Nuclear Thermal Rocket (NTR) was the preferred propulsion system out of all the combinations of chemical propulsion, solar electric, nuclear electric, aerobrake, and NTR studied. Recently, the National Research Council committee reviewing the NASA Technology Roadmaps recommended the NTR as one of the top 16 technologies that should be pursued by NASA. One of the main issues with developing a NTR for future missions is the ability to economically test the full system on the ground. In the late 1990s, the Sub-surface Active Filtering of Exhaust (SAFE) concept was first proposed by Howe as a method to test NTRs at full power and full duration. The concept relied on firing the NTR into one of the test holes at the Nevada Test Site which had been constructed to test nuclear weapons. In 2011, the cost of testing a NTR and the cost of performing a proof of concept experiment were evaluated.

  5. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Lakeview, Oregon. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the UMTRA Project site near Lakeview, Oregon, was completed in 1989. The mill operated from February 1958 to November 1960. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  6. Environmental radiation measurements at the former Soviet Union's Semipalatinsk nuclear test site and surrounding villages

    International Nuclear Information System (INIS)

    Shebell, P.; Hutter, A.R.

    1996-07-01

    Two scientists from the U.S. Department of Energy's Environmental Measurements Laboratory served as scientific experts to the International Atomic Energy Agency's (IAEA) Mission to Kazakhstan: Strengthening Radiation and Nuclear Safety Infrastructures in Countries of the former USSR, Special Task - Preassessment of the radiological situation in the Semipalatinsk and western areas of Kazakhstan. The former Soviet Union's largest nuclear test site was located near Semipalatinsk, Kazakhstan, and following Kazakhstan's independence, the IAEA committed to studying the environmental contamination and the resulting radiation exposure risk to the population due to 346 underground, 87 atmospheric and 26 surface nuclear detonations performed at the site between 1949 and 1989. As part of an 11-member team, environmental radiation measurements were performed during 2 weeks in July 1994. Approximately 30 sites were visited both within the boundaries of the Semipalatinsk nuclear test site as well as in and around surrounding villages. Specifically, the objectives of the EML team were to apply independent methods and equipment to assess potential current radiation exposures to the population. Towards this end, the EML scientists collected in-situ gamma-ray spectra, performed external gamma dose rate measurements using pressurized ionization chambers, and collected soil samples in order to estimate the inventory and to determine the depth distribution of radionuclides of interest. With the exception of an area near an open-quotes atomic lakeclose quotes and a 1 km 2 area encompassing ground zero, all the areas visited by the team had external dose rates that were within typical environmental levels. The measurements taken within a 15 km radius of ground zero had elevated levels of 137 Cs as well as the activation products 152 Eu and 60 Co, The dose rate within a 1 km radius of ground zero ranged from 500 to 30000 nGy h -1

  7. Site investigations for repositories for solid radioactive wastes in shallow ground

    International Nuclear Information System (INIS)

    1982-01-01

    This report provides an overview and technical guidelines for investigations on a national level for the selection and confirmation of a repository site that will provide adequately safe performance for disposal of solid radioactive wastes that are low- or intermediate-level and short-lived. It also provides basic information on technical activities to be undertaken and on techniques that are available for such investigations in the various steps in selecting suitable sites. The report supplements the information given in Shallow Ground Disposal of Radioactive Wastes: A Guidebook, IAEA Safety Series No. 53 (1981). This report focuses mainly on different aspects of earth sciences and the various investigative techniques relative to earth sciences that may be necessary for site investigations. Some major related studies in other fields are discussed briefly. It is assumed that no previous investigations have been undertaken, and the report proceeds through area site selection to the stage when the site is confirmed as suitable for a waste repository

  8. Site investigations for repositories for solid radioactive wastes in shallow ground

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This report provides an overview and technical guidelines for investigations on a national level for the selection and confirmation of a repository site that will provide adequately safe performance for disposal of solid radioactive wastes that are low- or intermediate-level and short-lived. It also provides basic information on technical activities to be undertaken and on techniques that are available for such investigations in the various steps in selecting suitable sites. The report supplements the information given in Shallow Ground Disposal of Radioactive Wastes: A Guidebook, IAEA Safety Series No. 53 (1981). This report focuses mainly on different aspects of earth sciences and the various investigative techniques relative to earth sciences that may be necessary for site investigations. Some major related studies in other fields are discussed briefly. It is assumed that no previous investigations have been undertaken, and the report proceeds through area site selection to the stage when the site is confirmed as suitable for a waste repository.

  9. Ground motion predictions

    Energy Technology Data Exchange (ETDEWEB)

    Loux, P C [Environmental Research Corporation, Alexandria, VA (United States)

    1969-07-01

    Nuclear generated ground motion is defined and then related to the physical parameters that cause it. Techniques employed for prediction of ground motion peak amplitude, frequency spectra and response spectra are explored, with initial emphasis on the analysis of data collected at the Nevada Test Site (NTS). NTS postshot measurements are compared with pre-shot predictions. Applicability of these techniques to new areas, for example, Plowshare sites, must be questioned. Fortunately, the Atomic Energy Commission is sponsoring complementary studies to improve prediction capabilities primarily in new locations outside the NTS region. Some of these are discussed in the light of anomalous seismic behavior, and comparisons are given showing theoretical versus experimental results. In conclusion, current ground motion prediction techniques are applied to events off the NTS. Predictions are compared with measurements for the event Faultless and for the Plowshare events, Gasbuggy, Cabriolet, and Buggy I. (author)

  10. Ground motion predictions

    International Nuclear Information System (INIS)

    Loux, P.C.

    1969-01-01

    Nuclear generated ground motion is defined and then related to the physical parameters that cause it. Techniques employed for prediction of ground motion peak amplitude, frequency spectra and response spectra are explored, with initial emphasis on the analysis of data collected at the Nevada Test Site (NTS). NTS postshot measurements are compared with pre-shot predictions. Applicability of these techniques to new areas, for example, Plowshare sites, must be questioned. Fortunately, the Atomic Energy Commission is sponsoring complementary studies to improve prediction capabilities primarily in new locations outside the NTS region. Some of these are discussed in the light of anomalous seismic behavior, and comparisons are given showing theoretical versus experimental results. In conclusion, current ground motion prediction techniques are applied to events off the NTS. Predictions are compared with measurements for the event Faultless and for the Plowshare events, Gasbuggy, Cabriolet, and Buggy I. (author)

  11. V S30, slope, H 800 and f 0: performance of various site-condition proxies in reducing ground-motion aleatory variability and predicting nonlinear site response

    Science.gov (United States)

    Derras, Boumédiène; Bard, Pierre-Yves; Cotton, Fabrice

    2017-09-01

    The aim of this paper is to investigate the ability of various site-condition proxies (SCPs) to reduce ground-motion aleatory variability and evaluate how SCPs capture nonlinearity site effects. The SCPs used here are time-averaged shear-wave velocity in the top 30 m ( V S30), the topographical slope (slope), the fundamental resonance frequency ( f 0) and the depth beyond which V s exceeds 800 m/s ( H 800). We considered first the performance of each SCP taken alone and then the combined performance of the 6 SCP pairs [ V S30- f 0], [ V S30- H 800], [ f 0-slope], [ H 800-slope], [ V S30-slope] and [ f 0- H 800]. This analysis is performed using a neural network approach including a random effect applied on a KiK-net subset for derivation of ground-motion prediction equations setting the relationship between various ground-motion parameters such as peak ground acceleration, peak ground velocity and pseudo-spectral acceleration PSA ( T), and M w, R JB, focal depth and SCPs. While the choice of SCP is found to have almost no impact on the median ground-motion prediction, it does impact the level of aleatory uncertainty. V S30 is found to perform the best of single proxies at short periods ( T < 0.6 s), while f 0 and H 800 perform better at longer periods; considering SCP pairs leads to significant improvements, with particular emphasis on [ V S30- H 800] and [ f 0-slope] pairs. The results also indicate significant nonlinearity on the site terms for soft sites and that the most relevant loading parameter for characterising nonlinear site response is the "stiff" spectral ordinate at the considered period.[Figure not available: see fulltext.

  12. High Resolution Geological Site Characterization Utilizing Ground Motion Data

    Science.gov (United States)

    1992-06-26

    rough near a service road, in low velocity, unsaturated, unconsolidated 7 sands. Other than native grass, there was no significant vegetation . Surface...literature, demonstrate slll kale field tests. Similar degrees of spatial variability in ground that these stochastic geologic effects pose a potentially

  13. Preliminary assessment of using tree-tissue analysis and passive-diffusion samplers to evaluate trichloroethene contamination of ground water at Site SS-34N, McChord Air Force Base, Washington, 2001

    Science.gov (United States)

    Cox, S.E.

    2002-01-01

    Two low-cost innovative sampling procedures for characterizing trichloroethene (TCE) contamination in ground water were evaluated for use at McChord Air Force Base (AFB) by the U.S. Geological Survey, in cooperation with the U.S. Air Force McChord Air Force Base Installation Restoration Program, in 2001. Previous attempts to characterize the source of ground-water contamination in the heterogeneous glacial outwash aquifer at McChord site SS-34N using soil-gas surveys, direct-push exploration, and more than a dozen ground-water monitoring wells have had limited success. The procedures assessed in this study involved analysis of tree-tissue samples to map underlying ground-water contamination and deploying passive-diffusion samplers to measure TCE concentrations in existing monitoring wells. These procedures have been used successfully at other U.S. Department of Defense sites and have resulted in cost avoidance and accelerated site characterization. Despite the presence of TCE in ground water at site SS-34N, TCE was not detected in any of the 20 trees sampled at the site during either early spring or late summer sampling. The reason the tree tissue procedure was not successful at the McChord AFB site SS-34N may have been due to an inability of tree roots to extract moisture from a water table 30 feet below the land surface, or that concentrations of TCE in ground water were not large enough to be detectable in the tree tissue at the sampling point. Passive-diffusion samplers were placed near the top, middle, and bottom of screened intervals in three monitoring wells and TCE was observed in all samplers. Concentrations of TCE from the passive-diffusion samplers were generally similar to concentrations found in samples collected in the same wells using conventional pumping methods. In contrast to conventional pumping methods, the collection of ground-water samples using the passive-diffusion samples did not generate waste purge water that would require hazardous

  14. Nevada Test Site Environmental Report 2004

    International Nuclear Information System (INIS)

    BECHTEL NEVADA

    2005-01-01

    The ''Nevada Test Site Environmental Report 2004'' was prepared by Bechtel Nevada (BN) to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of non-radiological releases, implementation status of the NTS Environmental Management System, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled ''Nevada Test Site Environmental Report Summary 2004''. It was produced this year to provide a more cost-effective and wider distribution of a hardcopy summary of the ''Nevada Test Site Environmental Report 2004'' to interested DOE stakeholders

  15. TREATABILITY TEST PLAN FOR DEEP VADOSE ZONE REMEDIATION AT THE HANFORD'S SITE CENTRAL PLATEAU

    International Nuclear Information System (INIS)

    PETERSEN SW; MORSE JG; TRUEX MJ; LAST GV

    2007-01-01

    A treatability test plan has been prepared to address options for remediating portions of the deep vadose zone beneath a portion of the U.S. Department of Energy's (DOE's) Hanford Site. The vadose zone is the region of the subsurface that extends from the ground surface to the water table. The overriding objective of the treatability test plan is to recommend specific remediation technologies and laboratory and field tests to support the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 and Resource Conservation and Recovery Act of 1976 remedial decision-making process in the Central Plateau of the Hanford Site. Most of the technologies considered involve removing water from the vadose zone or immobilizing the contaminants to reduce the risk of contaminating groundwater. A multi-element approach to initial treatability testing is recommended, with the goal of providing the information needed to evaluate candidate technologies. The proposed tests focus on mitigating two contaminants--uranium and technetium. Specific technologies are recommended for testing at areas that may affect groundwater in the future, but a strategy to test other technologies is also presented

  16. Present radiological situation at the Semipalatinsk nuclear test site

    International Nuclear Information System (INIS)

    Stegar, P.

    1996-01-01

    The corroboration of environmental contamination levels obtained by independent equipment and measurements of the team was generally good, the best being with recent Russian and Kazakh data using gamma dose rate measurements. Acceptable corroboration was observed for gamma emitting radionuclides in food and environmental samples. The preliminary results on plutonium levels in soil samples from contaminated sites in the polygon showed values comparable with the data reported by Russian scientists.The major sites selected for field work by the team were the settlements around the polygon of Kainar(population of about 10,000) in the south, Sharzhal (2000) and Karaul (5000) in the east, and Dolon (2000 just north of the Irtysh. Akzhar, within the polygon just south of the river, was used as a reference site. Inside the polygon the efforts were concentrated in the Lake Balapan area including the semipermanent farm around Ground Zero, and a selection of sampling sites along the plume paths of atmospheric and above ground explosions. The operations carried out in the field included: gamma dose rate measurements; in situ gamma spectrometry; and the collection of samples of grass, meat, milk, offal, vegetables and soil, as well as biological indicators such as animal bones, mushrooms and moss. The levels of contamination in the soil at the locations specified are shown. The contamination by ' S r in milk, drinking water and the lake water was also measured, together with results for 137 Cs in meat. The external gamma dose rates in settlements and in the polygon, excluding the Lake Balapan and Ground Zero areas, were around 0.1 uGy per hour, against rates of up to 40 uGy per hour around Lake Balapan and Ground Zero. The dose assessment included consideration of all relevant pathways, of which the most important were external gamma exposure from material on or in the ground, inhalation of material resuspended from the ground and consumption of contaminated foods. These

  17. Peculiarity of rock massif deformation under explosion impact (by the example of Zarechie area of the Semipalatinsk Test Site)

    International Nuclear Information System (INIS)

    Gorbunova, Eh.M.

    2003-01-01

    The paper systematize the results of study of man-caused situation formed outside the central zone of underground nuclear explosion (CZ UNE), at a testing area of the Semipalatinsk Test Site (STS) - Zarechie. The consequence effects of nuclear testing appeared in the rock massif and on the ground surface in the radius of 0.3-5 km from event epicenter are described. (author)

  18. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Lakeview, Oregon. Revision 1

    International Nuclear Information System (INIS)

    1995-12-01

    Surface cleanup at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lakeview, Oregon was completed in 1989. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment

  19. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Lakeview, Oregon. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Surface cleanup at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lakeview, Oregon was completed in 1989. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  20. Ground Motions Simulations and Site Effects in the Quito Basin (Ecuador)

    Science.gov (United States)

    Courboulex, F.; Castro-Cruz, D.; Laurendeau, A.; Bonilla, L. F.; Bertrand, E.; Mercerat, D.; Alvarado, A. P.

    2017-12-01

    The city of Quito (3M inhabitants), capital of Ecuador has been damaged several times in the past by large earthquakes. It is built on the hanging-wall of an active reverse fault, constituting a piggy-back basin. The deep structure of this basin and its seismic response remains badly known. We first use the recordings of 170 events on 18 accelerometers from the Quito permanent network and perform spectral ratio analysis. We find that the southern part of Quito shows strong site amplification at low frequency ( 0.35 Hz). Yet, high frequency ( 5 Hz) amplifications also exist, but exhibit a complex spatial variability. We then propose a new calibrated method based on empirical Green's functions (EGF) to simulate the ground motions due to a future earthquake in Quito. The idea is to use the results of a global database of source time functions (i.e., the SCARDEC database, Vallée and Douet, 2016; Courboulex et al., 2016) to define the average values and the variability of the stress-drop ratio parameter, which strongly affects the resulting simulations. We test the method on a Mw 7.8 event, similar in location and focal mechanism to the Pedernales earthquake that occurred on April 16th 2016 on the subduction zone. For this aim, we use the recordings of 6 aftershocks of magnitude 5.6 to 6.2 as EGF's. The predicted Fourier spectra, peak values and response spectra we obtain are in good agreement with real data from the 2016 event recorded on the Quito network. With the constraints we impose on stress-drop ratios, we expect that the simulated ground motions be representative of the variability of other Pedernales-type events that could occur in the future. Our results also well reproduce the low frequency site effects amplification in the south of the basin. This amplification could be particularly dangerous in the case of a mega subduction earthquake, like the one that struck Ecuador in 1906.

  1. Double tracks test site characterization report

    International Nuclear Information System (INIS)

    1996-05-01

    This report presents the results of site characterization activities performed at the Double Tracks Test Site, located on Range 71 North, of the Nellis Air Force Range (NAFR) in southern Nevada. Site characterization activities included reviewing historical data from the Double Tracks experiment, previous site investigation efforts, and recent site characterization data. The most recent site characterization activities were conducted in support of an interim corrective action to remediate the Double Tracks Test Site to an acceptable risk to human health and the environment. Site characterization was performed using a phased approach. First, previously collected data and historical records sere compiled and reviewed. Generalized scopes of work were then prepared to fill known data gaps. Field activities were conducted and the collected data were then reviewed to determine whether data gaps were filled and whether other areas needed to be investigated. Additional field efforts were then conducted, as required, to adequately characterize the site. Characterization of the Double Tracks Test Site was conducted in accordance with the US Department of Energy's (DOE) Streamlined Approach for Environmental Restoration (SAFER)

  2. Measurement of flow and direction of ground water by radioactive tracers: hydrological evaluation of a waste disposal site at 'Instituto de Pesquisas Energeticas e Nucleares (IPEN)'

    International Nuclear Information System (INIS)

    Chandra, U.; Aoki, P.E.; Ramos e Silva, J.A.; Castagnet, A.C.G.

    1981-05-01

    The method of determining flow and drection of ground water by using radioactive tracers in ground water borings is described. Various parameters controlling the measurements are discussed in detail. Application of the method in studying a variety of geohydrological problems, in view of the hydrological evaluation of the waste disposal site at IPEN, is indicated. Comparison of the method with conventional pumping tests is made. (I.C.R.) [pt

  3. Nevada Test Site Environmental Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA

    2005-10-01

    The ''Nevada Test Site Environmental Report 2004'' was prepared by Bechtel Nevada (BN) to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of non-radiological releases, implementation status of the NTS Environmental Management System, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled ''Nevada Test Site Environmental Report Summary 2004''. It was produced this year to provide a more cost-effective and wider distribution of a hardcopy summary of the ''Nevada Test Site Environmental Report 2004'' to interested DOE stakeholders.

  4. CHEMISTRY OF PLANTS AND RECLAIMED GROUNDS ON SODA WASTE SITE AT JANIKOWO

    Directory of Open Access Journals (Sweden)

    Jan Siuta

    2014-10-01

    Full Text Available The paper presents the state of soda waste dumping site prior to reclamation, including the initial vegetation and properties of local grounds, the chemistry of plants colonizing the alkaline grounds in 2013 as well as the comparison of mineral element contents in leaves of trees spontaneously growing on the soda waste site in the years 2000 and 2013. The paper consists an integral part of a wider work concerning the effectiveness of sewage sludge application for bioremediation of highly saline and alkaline waste at the Janikowo Soda Plant. The spontaneous vegetation on soda waste in 2000 was scarce and patchy, its development conditioned by local microrelief where depressions provided water for plant establishment. The main species entering the site included grasses (Lolium perenne, Calamagrostis epigeios and herbs (Reseda lutea, Tussilago farfara and Picris hieracioides. The physico-chemical properties of waste grounds varied widely both horizontally and spatially. In 2013, the reclaimed dumping site was covered by a well-established meadow-likevegetation and the soil top layer (0–5 cm contained 9.2–13.9% Ca and 15–161 mg Cl/kg, at pH 7.6–7.8. The underlying 10–20 cm layer contained 21.1–63.3% Ca and 204–3110 mg Cl/kg, at pH 7.93–9.04. In the deeper 40-60 cm layer there was found 30.0-37.5% Ca and 9 920-16 320 mg Cl/kg, at pH 11.5–12.1. The vegetation growing in the vicinity of soil profiles contained: 1.65–3.36% N; 0.25–0.43% P; 1.38–2.95% K; 0.33–1.10 % Ca and 0.13–0.54% Mg. The contents of heavy metals in plants approximated the average amounts found in meadow clippings in Poland. The contents of main nutrients in leaves of trees spontaneously growing on the waste site were significantly higher in 2013 (2.70–3.21% N; 0.25–0.34% P and 0.98–1.75% K than in the year 2000 (1.70–2.04% N; 0.11–0.21% P and 0.54–0.80% K. The application of sewage sludge and subsequent fertilization of vegetation on waste

  5. GIS Modelling of Radionuclide Transport from the Semipalatinsk Test Site

    Science.gov (United States)

    Balakay, L.; Zakarin, E.; Mahura, A.; Baklanov, A.; Sorensen, J. H.

    2009-04-01

    In this study, the software complex GIS-project MigRad (Migration of Radionuclide) was developed, tested and applied for the territory of the Semipalatinsk test site/ polygon (Republic of Kazakhstan), where since 1961, in total 348 underground nuclear explosions were conducted. The MigRad is oriented on integration of large volumes of different information (mapping, ground-based, and satellite-based survey): and also includes modeling on its base local redistribution of radionuclides by precipitation and surface waters and by long-range transport of radioactive aerosols. The existing thermal anomaly on territory of the polygon was investigated in details, and the object-oriented analysis was applied for the studied area. Employing the RUNOFF model, the simulation of radionuclides migration with surface waters was performed. Employing the DERMA model, the simulation of long-term atmospheric transport, dispersion and deposition patterns for cesium was conducted from 3 selected locations (Balapan, Delegen, and Experimental Field). Employing geoinformation technology, the mapping of the of the high temperature zones and epicenters of radioactive aerosols transport for the territory of the test site was carried out with post-processing and integration of modelling results into GIS environment. Contamination levels of pollution due to former nuclear explosions for population and environment of the surrounding polygon territories of Kazakhstan as well as adjacent countries were analyzed and evaluated. The MigRad was designed as instrument for comprehensive analysis of complex territorial processes influenced by former nuclear explosions on the territory of Semipalatinsk test site. It provides possibilities in detailed analyses for (i) extensive cartographic material, remote sensing, and field measurements data collected in different level databases; (ii) radionuclide migration with flows using accumulation and redistribution of soil particles; (iii) thermal anomalies

  6. Guidance on the Stand Down, Mothball, and Reactivation of Ground Test Facilities

    Science.gov (United States)

    Volkman, Gregrey T.; Dunn, Steven C.

    2013-01-01

    The development of aerospace and aeronautics products typically requires three distinct types of testing resources across research, development, test, and evaluation: experimental ground testing, computational "testing" and development, and flight testing. Over the last twenty plus years, computational methods have replaced some physical experiments and this trend is continuing. The result is decreased utilization of ground test capabilities and, along with market forces, industry consolidation, and other factors, has resulted in the stand down and oftentimes closure of many ground test facilities. Ground test capabilities are (and very likely will continue to be for many years) required to verify computational results and to provide information for regimes where computational methods remain immature. Ground test capabilities are very costly to build and to maintain, so once constructed and operational it may be desirable to retain access to those capabilities even if not currently needed. One means of doing this while reducing ongoing sustainment costs is to stand down the facility into a "mothball" status - keeping it alive to bring it back when needed. Both NASA and the US Department of Defense have policies to accomplish the mothball of a facility, but with little detail. This paper offers a generic process to follow that can be tailored based on the needs of the owner and the applicable facility.

  7. Review of Nuclear Thermal Propulsion Ground Test Options

    Science.gov (United States)

    Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen

    2015-01-01

    High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.

  8. Comparison of equivalent linear and non linear methods on ground response analysis: case study at West Bangka site

    International Nuclear Information System (INIS)

    Eko Rudi Iswanto; Eric Yee

    2016-01-01

    Within the framework of identifying NPP sites, site surveys are performed in West Bangka (WB), Bangka-Belitung Island Province. Ground response analysis of a potential site has been carried out using peak strain profiles and peak ground acceleration. The objective of this research is to compare Equivalent Linear (EQL) and Non Linear (NL) methods of ground response analysis on the selected NPP site (West Bangka) using Deep Soil software. Equivalent linear method is widely used because requires soil data in simple way and short time of computational process. On the other hand, non linear method is capable of representing the actual soil behaviour by considering non linear soil parameter. The results showed that EQL method has similar trends to NL method. At surface layer, the acceleration values for EQL and NL methods are resulted as 0.425 g and 0.375 g respectively. NL method is more reliable in capturing higher frequencies of spectral acceleration compared to EQL method. (author)

  9. Guide to ground water remediation at CERCLA response action and RCRA corrective action sites

    International Nuclear Information System (INIS)

    1995-10-01

    This Guide contains the regulatory and policy requirements governing remediation of ground water contaminated with hazardous waste [including radioactive mixed waste (RMW)], hazardous substances, or pollutants/contaminants that present (or may present) an imminent and substantial danger. It was prepared by the Office of Environmental Policy and Assistance, RCRA/CERCLA Division (EH-413), to assist Environmental Program Managers (ERPMs) who often encounter contaminated ground water during the performance of either response actions under CERCLA or corrective actions under Subtitle C of RCRA. The Guide begins with coverage of the regulatory and technical issues that are encountered by ERPM's after a CERCLA Preliminary Assessment/Site Investigation (PA/SI) or the RCRA Facility Assessment (RFA) have been completed and releases into the environment have been confirmed. It is based on the assumption that ground water contamination is present at the site, operable unit, solid waste management unit, or facility. The Guide's scope concludes with completion of the final RAs/corrective measures and a determination by the appropriate regulatory agencies that no further response action is necessary

  10. Remedial action plan and site design for stabilization of the inactive Uranium Mill Tailing site Maybell, Colorado. Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final report

    International Nuclear Information System (INIS)

    1994-06-01

    The U.S. Environmental Protection Agency (EPA) has established health and environmental regulations to correct and prevent ground water contamination resulting from former uranium processing activities at inactive uranium processing sites (40 CFR Part 192 (1993)) (52 FR 36000 (1978)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (42 USC section 7901 et seq.), the U.S. Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has decided that each assessment will include information on hydrogeologic site characterization. The water resources protection strategy that describes the proposed action compliance with the EPA ground water protection standards is presented in Attachment 4, Water Resources Protection Strategy. Site characterization activities discussed in this section include the following: (1) Definition of the hydrogeologic characteristics of the environment, including hydrostratigraphy, aquifer parameters, areas of aquifer recharge and discharge, potentiometric surfaces, and ground water velocities. (2) Definition of background ground water quality and comparison with proposed EPA ground water protection standards. (3) Evaluation of the physical and chemical characteristics of the contaminant source and/or residual radioactive materials. (4) Definition of existing ground water contamination by comparison with the EPA ground water protection standards. (5) Description of the geochemical processes that affect the migration of the source contaminants at the processing site. (6) Description of water resource use, including availability, current and future use and value, and alternate water supplies

  11. Hydrologic investigations to evaluate a potential site for a nuclear-waste repository, Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Wilson, W.E.

    1985-01-01

    Yucca Mountain, Nevada Test Site, is being evaluated by the U.S. Department of Energy for its suitability as a site for a mined geologic respository for high-level nuclear wastes. The repository facility would be constructed in densely welded tuffs in the unsaturated zone. In support of the evaluation, the U.S. Geological Survey is conducting hydrologic investigations of both the saturated and unsaturated zones, as well as paleohydrologic studies. Investigation in saturated-zone hydrology will help define one component of ground-water flow paths and travel times to the accessible environment. A two-dimensional, steady-state, finite-element model was developed to describe the regional hydrogeologic framework. The unsaturated zone is 450 to 700 meters thick at Yucca Mountain; precipitation averages about 150 millimeters per year. A conceptual hydrologic model of the unsaturated zone incorporates the following features: minimal net infiltration, variable distribution of flux, lateral flow, potential for perched-water zones, fracture and matrix flow, and flow along faults. The conceptual model is being tested primarily by specialized test drilling; plans also are being developed for in-situ testing in a proposed exploratory shaft. Quaternary climatic and hydrologic conditions are being evaluated to develop estimates of the hydrologic effects of potential climatic changes during the next 10,000 years. Evaluation approaches include analysis of plant macrofossils in packrat middens, evaluation of lake and playa sediments, infiltration tests, and modeling effects of potential increased recharge on the potentiometric surface

  12. [Radiobiological effects on plants and animals within Semipalatinsk Test Site (Kazakhstan)].

    Science.gov (United States)

    Mozolin, E M; Geras'kin, S A; Minkenova, K S

    2008-01-01

    The Semipalatinsk Test Site (STS) was the main place of nuclear devices tests in the former Soviet Union. From 1949 to 1989 about 460 nuclear explosions have been carried out at STS. Radioactive contamination of STS territory has the extremely non-uniform character. The main dose-forming radionuclides are 137Cs, 90Sr, 152Eu, as well as 154Eu, 60CO, 239,240Pu and 241Am. The greatest specific activity of 137Cs and 239,240Pu in ground are n x 10(3) kBk/kg, 152Eu - 96 kBk/kg, 154Eu - 10.4 kBk/kg, 60Co - 20.5 kBk/kg, 241Am - 15 kBk/kg. However, up to now, within STS sites exists where gamma-dose rate comes to 60 microGy/h, that is enough for induction reliable biological effects in animals and plants. Inhabiting territory of STS plants and animals are characterized by increased level of mutagenesis, changes of morpho-anatomic indices and parameters of peripheral blood, by the increase of asymmetry bilateral indices, change of composition and structure of communities.

  13. Development of LiDAR measurements for the German offshore test site

    International Nuclear Information System (INIS)

    Rettenmeier, A; Kuehn, M; Waechter, M; Rahm, S; Mellinghoff, H; Siegmeier, B; Reeder, L

    2008-01-01

    The paper introduces the content of the recently started joint research project 'Development of LiDAR measurements for the German Offshore Test Site' which has the objective to support other research projects at the German offshore test site 'alpha ventus'. The project has started before the erection of the offshore wind farm and one aim is to give recommendations concerning LiDAR technology useable for offshore measurement campaigns and data analysis. The work is organized in four work packages. The work package LiDAR technology deals with the specification, acquisition and calibration of a commercial LiDAR system for the measurement campaigns. Power curve measurements are dedicated to power curve assessment with ground-based LiDAR using standard statistical methods. Additionally, it deals with the development of new methods for the measurement of non-steady short-term power curves. Wind field research aims at the development of wake loading simulation methods of wind turbines and the exploration of loading control strategies and nacelle-based wind field measurement techniques. Finally, dissemination of results to the industry takes place in work package Technology transfer

  14. Numerical modeling of ground-water flow systems in the vicinity of the reference repository location, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Davis, P.; Beyeler, W.; Logsdon, M.; Coleman, N.; Brinster, K.

    1989-04-01

    This report documents south-central Washington State's Pasco Basin ground-water modeling studies. This work was done to support the NRC's review of hydrogeologic studies under the Department of Energy's (DOE) Basalt Waste Isolation Project. The report provides a brief overview of the geology, hydrology, and hydrochemistry of the Pasco Basin as a basis for the evaluation of previous conceptual and numerical ground-water flow models of the region. Numerical models were developed to test new conceptual models of the site and to provide a means of evaluating the Department of Energy's performance assessments and proposed hydrologic testing. Regional ground-water flow modeling of an area larger than the Pasco Basin revealed that current concepts on the existence and behavior of a hydrologic barrier west of the proposed repository location are inconsistent with available data. This modeling also demonstrated that the measured pattern of hydraulic heads cannot be produced with a model that (1) has uniform layer properties over the entire domain; (2) has zones of large conductivity associated with anticlinal structures; or (3) includes recharge from the industrial disposal ponds. Adequate representation of the measured hydraulic heads was obtained with a model that contained regions of larger hydraulic conductivity that corresponded to the presence of sedimentary interbeds. In addition, a detailed model of a region smaller than the Pasco Basin was constructed to provide the NRC staff with the ability to analyze proposed Department of Energy hydrologic tests. 62 refs., 145 figs., 18 tabs

  15. Perspectives of investigation and development of Semipalatinsk Test Site

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.; Lukashenko, S.N.

    2008-01-01

    Full text: Since the Semipalatinsk Test Site has been stopped and up until now, National Nuclear Center of the Republic of Kazakhstan (NNC RK) in cooperation with other specialist from Kazakhstan and international scientific community have accumulated large scope of information about current radiological situation at Semipalatinsk Nuclear Test Site (SNTS) and adjacent territories. There were revealed all important spots of radioactive contamination, identified main pathways and mechanisms for present and potential proliferation of radioactive substances. Obtained data assure us that present-day SNTS provides no negative impact on population on adjacent to the Site territories excluding people in the water basin of the river Shagan. Compliance with regulatory requirements and special rules for SNTS territory assures radiation safety at commercial activities on the Site. At the same time, the radiological situation does not remain stable; there were revealed the processes of radionuclide migration what requires regular monitoring of radiological situation at SNTS. Taking into account the scale of the Site and the variety of tests performed there, the information available about SNTS can not be completely exhaustive but enables us to propose a scientifically grounded plan for further research and practical measures aimed at remediation and reclamation of lands. implementation of such measures should return up to 80% of the lands to commercial use. SNTS is one of the world largest nuclear test sites with decisive contribution to creation and development of nuclear weapon. To considerable extent, these were works at SNTS which established nuclear parity between the superpowers one of the crucial factors in the history of human civilization in the 20 century. Also taking into account the interest to SNTS paid by international organizations, it is reasonable to initiate a procedure and recognize SNTS as a landmark including it in the UNESCO List of Cultural and Nature

  16. The microelectronics and photonics test bed (MPTB) space, ground test and modeling experiments

    International Nuclear Information System (INIS)

    Campbell, A.

    1999-01-01

    This paper is an overview of the MPTB (microelectronics and photonics test bed) experiment, a combination of a space experiment, ground test and modeling programs looking at the response of advanced electronic and photonic technologies to the natural radiation environment of space. (author)

  17. Examination of the geology and seismology associated with area 410 at the Nevada test site

    International Nuclear Information System (INIS)

    Hannon, W.J.; McKague, H.L.

    1975-01-01

    This report summarizes regional and local geology at the Nevada Test Site and identifies major tectonic features and active faults. Sufficient information is given to perform seismic safety analyses of present and future critical construction at the Super Kukla Site and Sites A and B in Area 410. However, examination of local minor faults and joints and soil thickness studies should be undertaken at construction time. The Cane Spring Fault is identified as the most significant geologic feature from the viewpoint of the potential seismic risk. Predictions of the peak ground acceleration (0.9 g), the response spectra for the Safe Shutdown Earthquake, and the maximum displacement across the Cane Spring Fault are made. (U.S.)

  18. Evaluation of soil radioactivity data from the Nevada Test Site

    International Nuclear Information System (INIS)

    1995-03-01

    Since 1951, 933 nuclear tests have been conducted at the Nevada Test Site (NTS) and test areas on the adjacent Tonopah Test Range (TTR) and Nellis Air Force Range (NAFR). Until the early 1960s. the majority of tests were atmospheric, involving detonation of nuclear explosive devices on the ground or on a tower, suspended from a balloon or dropped from an airplane. Since the signing of the Limited Test Ban Treaty in 1963, most tests have been conducted underground, although several shallow subsurface tests took place between 1962 and 1968. As a result of the aboveground and near-surface nuclear explosions, as well as ventings of underground tests, destruction of nuclear devices with conventional explosives, and nuclear-rocket engine tests, the surface soil on portions of the NTS has been contaminated with radionuclides. Relatively little consideration was given to the environmental effects of nuclear testing during the first two decades of operations at the NTS. Since the early 1970s, however, increasingly strict environmental regulations have forced greater attention to be given to contamination problems at the site and how to remediate them. One key element in the current environmental restoration program at the NTS is determining the amount and extent of radioactivity in the surface soil. The general distribution of soil radioactivity on the NTS is already well known as a result of several programs carried out in the 1970s and 1980s. However, questions have been raised as to whether the data from those earlier studies are suitable for use in the current environmental assessments and risk analyses. The primary purpose of this preliminary data review is to determine to what extent the historical data collected at the NTS can be used in the characterization/remediation process

  19. Evaluation of ground deformations induced by the 1999 Kocaeli earthquake (Turkey) at selected sites on shorelines

    Science.gov (United States)

    Aydan, Ömer; Ulusay, Reşat; Atak, Veysel Okan

    2008-03-01

    The Kocaeli earthquake ( M w = 7.4) of 17 August 1999 occurred in the Eastern Marmara Region of Turkey along the North Anadolu Fault and resulted in a very serious loss of life and property. One of the most important geotechnical issues of this event was the permanent ground deformations because of both liquefaction and faulting. These deformations occurred particularly along the southern shores of İzmit Bay and Sapanca Lake between the cities of Yalova and Adapazarı in the west and east, respectively. In this study, three sites founded on delta fans, namely Değirmendere Nose, Yeniköy tea garden at Seymen on the coast of İzmit Bay, and Vakıf Hotel site on the coast of Sapanca Lake were selected as typical cases. The main causes of the ground deformations at these sites were then investigated. Geotechnical characterization of the ground, derivation of displacement vectors from the pre- and post-earthquake aerial photographs, liquefaction assessments based on field performance data, and analyses carried out using the sliding body method have been fundamental in this study. The displacement vectors determined from photogrammetric evaluations conducted at Değirmendere and Seymen showed a combined movement of faulting and liquefaction. But except the movements in the close vicinity of shorelines, the dominant factor in this movement was faulting. The results obtained from the analyses suggested that the ground failure at Değirmendere was a submarine landslide mainly because of earthquake shaking rather than liquefaction. On the other hand, the ground failures at the Yeniköy tea garden on the coast of Seymen and the hotel area in Sapanca town resulted from liquefaction-induced lateral spreading. It was also obtained that the ground deformations estimated from the sliding body method were quite close to those measured by aerial photogrammetry technique.

  20. Combining ground penetrating radar and electromagnetic induction for industrial site characterization

    Science.gov (United States)

    Van De Vijver, Ellen; Van Meirvenne, Marc; Saey, Timothy; De Smedt, Philippe; Delefortrie, Samuël; Seuntjens, Piet

    2014-05-01

    Industrial sites pose specific challenges to the conventional way of characterizing soil and groundwater properties through borehole drilling and well monitoring. The subsurface of old industrial sites typically exhibits a large heterogeneity resulting from various anthropogenic interventions, such as the dumping of construction and demolition debris and industrial waste. Also larger buried structures such as foundations, utility infrastructure and underground storage tanks are frequently present. Spills and leaks from industrial activities and leaching of buried waste may have caused additional soil and groundwater contamination. Trying to characterize such a spatially heterogeneous medium with a limited number of localized observations is often problematic. The deployment of mobile proximal soil sensors may be a useful tool to fill up the gaps in between the conventional observations, as these enable measuring soil properties in a non-destructive way. However, because the output of most soil sensors is affected by more than one soil property, the application of only one sensor is generally insufficient to discriminate between all contributing factors. To test a multi-sensor approach, we selected a study area which was part of a former manufactured gas plant site located in one of the seaport areas of Belgium. It has a surface area of 3400 m² and was the location of a phosphate production unit that was demolished at the end of the 1980s. Considering the long and complex history of the site we expected to find a typical "industrial" soil. Furthermore, the studied area was located between buildings of the present industry, entailing additional practical challenges such as the presence of active utilities and aboveground obstacles. The area was surveyed using two proximal soil sensors based on two different geophysical methods: ground penetrating radar (GPR), to image contrasts in dielectric permittivity, and electromagnetic induction (EMI), to measure the apparent

  1. Generation of Earthquake Ground Motion Considering Local Site Effects and Soil-Structure Interaction Analysis of Ancient Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Kwan; Lee, J. S.; Yang, T. S.; Cho, J. R.; R, H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-09-01

    In order to establish a correct correlation between them, mechanical characteristics of the ancient structures need to be investigated. Since sedimentary basins are preferred dwelling sites in ancient times, it is necessary to perform SSI analysis to derive correct correlation between the damage and ground motion intensity. Contents of Project are as follows: (1) Generation of stochastic earthquake ground motion considering source mechanism and site effects. (2) Analysis of seismic response of sedimentary basin. (3) Soil-structure interaction analysis of ancient structures (4) Investigation of dynamic response characteristics of ancient structure considering soil-structure interaction effects. A procedure is presented for generation of stochastic earthquake ground motion considering source mechanism and site effects. The simulation method proposed by Boore is used to generate the outcropping rock motion. The free field motion at the soil site is obtained by a convolution analysis. And for the study of wood structures, a nonlinear SDOF model is developed. The effects of soil-structure interaction on the behavior of the wood structures are found to be very minor. But the response can be significantly affected due to the intensity and frequency contents of the input motion. 13 refs., 6 tabs., 31 figs. (author)

  2. Description of ground motion data processing codes: Volume 3

    International Nuclear Information System (INIS)

    Sanders, M.L.

    1988-02-01

    Data processing codes developed to process ground motion at the Nevada Test Site for the Weapons Test Seismic Investigations Project are used today as part of the program to process ground motion records for the Nevada Nuclear Waste Storage Investigations Project. The work contained in this report documents and lists codes and verifies the ''PSRV'' code. 39 figs

  3. Ground water elevation monitoring at the Uranium Mill Tailings Remedial Action Salt Lake City, Utah, Vitro processing site

    International Nuclear Information System (INIS)

    1995-04-01

    In February 1994, a ground water level monitoring program was begun at the Vitro processing site. The purpose of the program was to evaluate how irrigating the new golf driving range affected ground water elevations in the unconfined aquifer. The program also evaluated potential impacts of a 9-hole golf course planned as an expansion of the driving range. The planned golf course expansion would increase the area to be irrigated and, thus, the water that could infiltrate the processing site soil to recharge the unconfined aquifer. Increased water levels in the aquifer could alter the ground water flow regime; contaminants in ground water could migrate off the site or could discharge to bodies of surface water in the area. The potential effects of expanding the golf course have been evaluated, and a report is being prepared. Water level data obtained during this monitoring program indicate that minor seasonal mounding may be occurring in response to irrigation of the driving range. However, the effects of irrigation appear small in comparison to the effects of precipitation. There are no monitor wells in the area that irrigation would affect most; that data limitation makes interpretations of water levels and the possibility of ground water mounding uncertain. Limitations of available data are discussed in the conclusion

  4. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The ground water project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. This report is a site specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. Currently, no one is using the ground water and therefore, no one is at risk. However, the land will probably be developed in the future and so the possibility of people using the ground water does exist. This report examines the future possibility of health hazards resulting from the ingestion of contaminated drinking water, skin contact, fish ingestion, or contact with surface waters and sediments.

  5. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado

    International Nuclear Information System (INIS)

    1995-05-01

    The ground water project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. This report is a site specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. Currently, no one is using the ground water and therefore, no one is at risk. However, the land will probably be developed in the future and so the possibility of people using the ground water does exist. This report examines the future possibility of health hazards resulting from the ingestion of contaminated drinking water, skin contact, fish ingestion, or contact with surface waters and sediments

  6. CRYogenic Orbital TEstbed Ground Test Article Thermal Analysis

    Science.gov (United States)

    Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark

    2012-01-01

    The purpose of this study was to anchor thermal and fluid system models to CRYOTE ground test data. The CRYOTE ground test artide was jointly developed by Innovative Engineering Solutions, United Launch Alliance and NASA KSC. The test article was constructed out of a titanium alloy tank, Sapphire 77 composite skin (similar to G10), an external secondary payload adapter ring, thermal vent system, multi layer insulation and various data acquisition instrumentation. In efforts to understand heat loads throughout this system, the GTA (filled with liquid nitrogen for safety purposes) was subjected to a series of tests in a vacuum chamber at Marshall Space Flight Center. By anchoring analytical models against test data, higher fidelity thermal environment predictions can be made for future flight articles which would eventually demonstrate critical cryogenic fluid management technologies such as system chilldown, transfer, pressure control and long term storage. Significant factors that influenced heat loads included radiative environments, multi-layer insulation performance, tank fill levels and pressures and even contact conductance coefficients. This report demonstrates how analytical thermal/fluid networks were established and includes supporting rationale for specific thermal responses.

  7. Radiation exposure of inhabitants around Semipalatinsk nuclear weapon test site

    International Nuclear Information System (INIS)

    Takada, Jun; Hoshi, Masaharu

    1997-01-01

    This paper described and reviewed the data reported by Russia and Kazakhstan and authors' studies on the exposed doses as follows. History of nuclear explosion tests in Semipalatinsk: From 1949 to 1989 in old Russia, 459 explosion tests involving 26 on the ground, 87 in the air and 346 in underground were performed, of which TNT equivalence was 0.6 Mt, 6 Mt and 11 Mt, respectively. A mystery in the reports of radiation doses by Russia and Kazakhstan. Present status of the regions after the end of nuclear weapon tests: Environment radiation doses in μSv/h in following regions were 0.06 in Mostik, 0.1 in Dolon and Semipalatinsk, 0.07 in Izvyestka and Znamenka, 0.08 in Tchagan and 21 in Atomic Lake. Evaluation of external exposure dose of the living regions with thermoluminescence method: External exposure dose was estimated to be about 90 cGy in a certain village and 40 cGy in Semipalatinsk which being 150 km far from the test site. (K.H.)

  8. Earthquake Strong Ground Motion Scenario at the 2008 Olympic Games Sites, Beijing, China

    Science.gov (United States)

    Liu, L.; Rohrbach, E. A.; Chen, Q.; Chen, Y.

    2006-12-01

    Historic earthquake record indicates mediate to strong earthquakes have been frequently hit greater Beijing metropolitan area where is going to host the 2008 summer Olympic Games. For the readiness preparation of emergency response to the earthquake shaking for a mega event in a mega city like Beijing in summer 2008, this paper tries to construct the strong ground motion scenario at a number of gymnasium sites for the 2008 Olympic Games. During the last 500 years (the Ming and Qing Dynasties) in which the historic earthquake record are thorough and complete, there are at least 12 earthquake events with the maximum intensity of VI or greater occurred within 100 km radius centered at the Tiananmen Square, the center of Beijing City. Numerical simulation of the seismic wave propagation and surface strong ground motion is carried out by the pseudospectral time domain methods with viscoelastic material properties. To improve the modeling efficiency and accuracy, a multi-scale approach is adapted: the seismic wave propagation originated from an earthquake rupture source is first simulated by a model with larger physical domain with coarser grids. Then the wavefield at a given plane is taken as the source input for the small-scale, fine grid model for the strong ground motion study at the sites. The earthquake source rupture scenario is based on two particular historic earthquake events: One is the Great 1679 Sanhe-Pinggu Earthquake (M~8, Maximum Intensity XI at the epicenter and Intensity VIII in city center)) whose epicenter is about 60 km ENE of the city center. The other one is the 1730 Haidian Earthquake (M~6, Maximum Intensity IX at the epicenter and Intensity VIII in city center) with the epicentral distance less than 20 km away from the city center in the NW Haidian District. The exist of the thick Tertiary-Quaternary sediments (maximum thickness ~ 2 km) in Beijing area plays a critical role on estimating the surface ground motion at the Olympic Games sites, which

  9. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    U.S. Department of Energy, Nevada Operations Office, Waste Acceptance Criteria

    1999-01-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the Nevada Test Site

  10. Environmental assessment for double tracks test site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1996-04-01

    The U.S. Department of Energy, Nevada Operations Office (DOE/NV), with appropriate approvals from the U.S. Air Force (USAF), proposes to conduct environmental restoration operations at the Double Tracks test site located on the Nellis Air Force Range (NAFR) in Nye County, Nevada. This environmental assessment (EA) evaluates the potential environmental consequences of four alternative actions for conducting the restoration operation and of the no action alternative. The EA also identifies mitigation measures, where appropriate, designed to protect natural and cultural resources and reduce impacts to human health and safety. The environmental restoration operation at the Double Tracks test site would serve two primary objectives. First, the proposed work would evaluate the effectiveness of future restoration operations involving contamination over larger areas. The project would implement remediation technology options and evaluate how these technologies could be applied to the larger areas of contaminated soils on the Nevada Test Site (NTS), the Tonopah Test Range (TTR), and the NAFR. Second, the remediation would provide for the removal of plutonium contamination down to or below a predetermined level which would require cleanup of 1 hectare (ha) (2.5 acres), for the most likely case, or up to 3.0 ha (7.4 acres) of contaminated soil, for the upper bounding case

  11. SP-100 Test Site

    International Nuclear Information System (INIS)

    Cox, C.M.; Mahaffey, M.K.; Miller, W.C.

    1988-01-01

    Preparatory activities are well under way at Hanford to convert the 309 Containment Building and its associated service wing to a 2.5 MWt nuclear test facility for the SP-100 Ground Engineering System (GES) test. Preliminary design is complete, encompassing facility modifications, a secondary heat transport system, a large vacuum system to enclose the high temperature reactor, a test assembly cell and handling system, control and data processing systems, and safety and auxiliary systems. The design makes extensive use of existing equipment to minimize technical risk and cost. Refurbishment of this equipment is 75% complete. The facility has been cleared of obstructing equipment from its earlier reactor test. Current activities are focusing on definitive design and preparation of the Preliminary Safety Analysis Report (PSAR) aimed at procurement and construction approvals and schedules to achieve reactor criticality by January 1992. 6 refs

  12. Common data about region of the former Semipalatinsk test site. Chapter 2

    International Nuclear Information System (INIS)

    1998-01-01

    Region of the Semipalatinsk test site is situated on left bank shore of the Irtysh river, on joining of three regions (East Kazakstan region, Pavlodar, Karaganda) and is extended from the river to south-western direction on 180 km. Total square of the site is amount 18.5 thousand sq.km. The territory is presented by flat landscape of dry steppe and semi-desert type passing in south-western direction into hill valley changing by small hill land. There are 5 test sites on territory of the region where places of nuclear explosions were carried out. For all territory is typically presence of river valleys and lake hollows (mainly salty). Today global background from cesium-137 and strontium-90 radionuclides near Semipalatinsk city amounts in average 0,11 Ci/sq.km. By the data of ground gamma-survey radiation background is oscillating within limits of 11-25 μR/h. In the same time on the site region there are local sections of radiation contamination with very high background, in particular, in epicenter of the 'Opytnoe Pole' area is up to 15000 μR/h, on disposal area of the Balapan lake is 11000 μR/h, near dam of the Shagan reservoir is up to 7000 μR/h, near portals of some galleries of the Degelen test site is up to 20000-250000 μR/h and others. Geobotanic status of the site territory is extremely heterogeneous and it is insufficiently studied because of inaccessibility of the region for researches during long time of its activity. The 302 types higher vascular plants were defined during last four seasons of field studies, as well as 800 descriptions of biocenoses are made, 1000 herbarium specimens are gathered

  13. Assessment of the Nevada Test Site as a Site for Distributed Resource Testing and Project Plan: March 2002

    Energy Technology Data Exchange (ETDEWEB)

    Horgan, S.; Iannucci, J.; Whitaker, C.; Cibulka, L.; Erdman, W.

    2002-05-01

    The objective of this project was to evaluate the Nevada Test Site (NTS) as a location for performing dedicated, in-depth testing of distributed resources (DR) integrated with the electric distribution system. In this large scale testing, it is desired to operate multiple DRs and loads in an actual operating environment, in a series of controlled tests to concentrate on issues of interest to the DR community. This report includes an inventory of existing facilities at NTS, an assessment of site attributes in relation to DR testing requirements, and an evaluation of the feasibility and cost of upgrades to the site that would make it a fully qualified DR testing facility.

  14. Handling effluent from nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Allen, G.C.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests

  15. Effect of electrode shape on grounding resistances - Part 2

    DEFF Research Database (Denmark)

    Tomaskovicova, Sonia; Ingeman-Nielsen, Thomas; Christiansen, Anders V.

    2016-01-01

    Although electric resistivity tomography (ERT) is now regarded as a standard tool in permafrost monitoring, high grounding resistances continue to limit the acquisition of time series over complete freeze-thaw cycles. In an attempt to alleviate the grounding resistance problem, we have tested three...... electrode designs featuring increasing sizes and surface area, in the laboratory and at three different field sites in Greenland. Grounding resistance measurements showed that changing the electrode shape (using plates instead of rods) reduced the grounding resistances at all sites by 28%-69% during...... unfrozen and frozen ground conditions. Using meshes instead of plates (the same rectangular shape and a larger effective surface area) further improved the grounding resistances by 29%-37% in winter. Replacement of rod electrodes of one entire permanent permafrost monitoring array by meshes resulted...

  16. Ground test facilities for evaluating nuclear thermal propulsion engines and fuel elements

    International Nuclear Information System (INIS)

    Allen, G.C.; Beck, D.F.; Harmon, C.D.; Shipers, L.R.

    1992-01-01

    Interagency panels evaluating nuclear thermal propulsion development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and design issues of a proposed ground test complex for evaluating nuclear thermal propulsion engines and fuel elements being developed for the Space Nuclear Thermal Propulsion (SNTP) program. 2 refs

  17. Pilot study risk assessment for selected problems at the Nevada Test Site (NTS)

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, J.I. [ed.; Anspaugh, L.R.; Bogen, K.T.; Daniels, J.I.; Layton, D.W.; Straume, T. [Lawrence Livermore National Lab., CA (United States); Andricevic, R.; Jacobson, R.L. [Nevada Univ., Las Vegas, NV (United States). Water Resources Center; Meinhold, A.F.; Holtzman, S.; Morris, S.C.; Hamilton, L.D. [Brookhaven National Lab., Upton, NY (United States)

    1993-06-01

    The Nevada Test Site (NTS) is located in southwestern Nevada, about 105 km (65 mi) northwest of the city of Las Vegas. A series of tests was conducted in the late 1950s and early 1960s at or near the NTS to study issues involving plutonium-bearing devices. These tests resulted in the dispersal of about 5 TBq of {sup 239,24O}Pu on the surficial soils at the test locations. Additionally, underground tests of nuclear weapons devices have been conducted at the NTS since late 1962; ground water beneath the NTS has been contaminated with radionuclides produced by these tests. These two important problems have been selected for assessment. Regarding the plutonium contamination, because the residual {sup 239}Pu decays slowly (half-life of 24,110 y), these sites could represent a long-term hazard if they are not remediated and if institutional controls are lost. To investigate the magnitude of the potential health risks for this no-remediation case, three basic exposure scenarios were defined that could bring individuals in contact with {sup 239,24O}Pu at the sites: (1) a resident living in a subdivision, (2) a resident farmer, and (3) a worker at a commercial facility -- all located at a test site. The predicted cancer risks for the resident farmer were more than a factor of three times higher than the suburban resident at the median risk level, and about a factor of ten greater than the reference worker at a commercial facility. At 100 y from the present, the 5, 50, and 95th percentile risks for the resident farmer at the most contaminated site were 4 x 10{sup {minus}6}, 6 x 10{sup {minus}5}, and 5 x 10{sup {minus}4}, respectively. For the assessment of Pu in surface soil, the principal sources of uncertainty in the estimated risks were population mobility, the relationship between indoor and outdoor contaminant levels, and the dose and risk factors for bone, liver, and lung.

  18. Pilot study risk assessment for selected problems at the Nevada Test Site (NTS)

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, J.I. (ed.)

    1993-06-01

    The Nevada Test Site (NTS) is located in southwestern Nevada, about 105 km (65 mi) northwest of the city of Las Vegas. A series of tests was conducted in the late 1950s and early 1960s at or near the NTS to study issues involving plutonium-bearing devices. These tests resulted in the dispersal of about 5 TBq of [sup 239,24O]Pu on the surficial soils at the test locations. Additionally, underground tests of nuclear weapons devices have been conducted at the NTS since late 1962; ground water beneath the NTS has been contaminated with radionuclides produced by these tests. These two important problems have been selected for assessment. Regarding the plutonium contamination, because the residual [sup 239]Pu decays slowly (half-life of 24,110 y), these sites could represent a long-term hazard if they are not remediated and if institutional controls are lost. To investigate the magnitude of the potential health risks for this no-remediation case, three basic exposure scenarios were defined that could bring individuals in contact with [sup 239,24O]Pu at the sites: (1) a resident living in a subdivision, (2) a resident farmer, and (3) a worker at a commercial facility -- all located at a test site. The predicted cancer risks for the resident farmer were more than a factor of three times higher than the suburban resident at the median risk level, and about a factor of ten greater than the reference worker at a commercial facility. At 100 y from the present, the 5, 50, and 95th percentile risks for the resident farmer at the most contaminated site were 4 x 10[sup [minus]6], 6 x 10[sup [minus]5], and 5 x 10[sup [minus]4], respectively. For the assessment of Pu in surface soil, the principal sources of uncertainty in the estimated risks were population mobility, the relationship between indoor and outdoor contaminant levels, and the dose and risk factors for bone, liver, and lung.

  19. Pilot study risk assessment for selected problems at the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Daniels, J.I.; Andricevic, R.; Jacobson, R.L.

    1993-06-01

    The Nevada Test Site (NTS) is located in southwestern Nevada, about 105 km (65 mi) northwest of the city of Las Vegas. A series of tests was conducted in the late 1950s and early 1960s at or near the NTS to study issues involving plutonium-bearing devices. These tests resulted in the dispersal of about 5 TBq of 239,24O Pu on the surficial soils at the test locations. Additionally, underground tests of nuclear weapons devices have been conducted at the NTS since late 1962; ground water beneath the NTS has been contaminated with radionuclides produced by these tests. These two important problems have been selected for assessment. Regarding the plutonium contamination, because the residual 239 Pu decays slowly (half-life of 24,110 y), these sites could represent a long-term hazard if they are not remediated and if institutional controls are lost. To investigate the magnitude of the potential health risks for this no-remediation case, three basic exposure scenarios were defined that could bring individuals in contact with 239,24O Pu at the sites: (1) a resident living in a subdivision, (2) a resident farmer, and (3) a worker at a commercial facility -- all located at a test site. The predicted cancer risks for the resident farmer were more than a factor of three times higher than the suburban resident at the median risk level, and about a factor of ten greater than the reference worker at a commercial facility. At 100 y from the present, the 5, 50, and 95th percentile risks for the resident farmer at the most contaminated site were 4 x 10 -6 , 6 x 10 -5 , and 5 x 10 -4 , respectively. For the assessment of Pu in surface soil, the principal sources of uncertainty in the estimated risks were population mobility, the relationship between indoor and outdoor contaminant levels, and the dose and risk factors for bone, liver, and lung

  20. Source, propagation and site effects: impact on mapping strong ground motion in Bucharest area

    International Nuclear Information System (INIS)

    Radulian, R.; Kuznetsov, I.; Panza, G.F.

    2004-01-01

    Achievements in the framework of the NATO SfP project 972266 focused on the impact of Vrancea earthquakes on the security of Bucharest urban area are presented. The problem of Bucharest city security to Vrancea earthquakes is discussed in terms of numerical modelling of seismic motion and intermediate term earthquake prediction. A hybrid numerical scheme developed by Faeh et al. (1990; 1993) for frequencies up to 1 Hz is applied for the realistic modelling of the seismic ground motion in Bucharest. The method combines the modal summation for the 1D bedrock model and the finite differences for the 2D local structure model. All the factors controlling the ground motion at the site are considered: source, propagation and site effects, respectively. The input data includes the recent records provided by the digital accelerometer network developed within the Romanian-German CRC461 cooperation programme and CALIXTO'99, VRANCEA'99, VRANCEA2001 experiments. The numerical simulation proves to be a powerful tool in mapping the strong ground motion for realistic structures, reproducing acceptably from engineering point of view the observations. A new model of the Vrancea earthquake scaling is obtained and implications for the determination of the seismic motion parameters are analyzed. The role of the focal mechanism and attenuation properties upon the amplitude and spectral content of the ground motion are outlined. CN algorithm is applied for predicting Vrancea earthquakes. Finally, implications for the disaster management strategy are discussed. (authors)

  1. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2006-04-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139.

  2. Streamlined approach for environmental restoration closure report for Corrective Action Unit 454: Historical underground storage tank release sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    This report addresses the characterization of three historical underground storage tank (UST) petroleum hydrocarbon release sites identified as 12-B-1, 12-B-3, and 12-COMM-1. The sites are located within the Nevada Test Site in Area 12 at B Tunnel and a former Communications/Power Maintenance Shop. Release Site 12-B-1 was not able to be clean-closed as proposed in the SAFER Plan. However, hydrocarbon impacted soils were excavated down to bedrock. Release Site 12-B-3 was evaluated to verify that the identified release was not associated with the UST removed from the site. Analytical results support the assumption that wood or possibly a roof sealant used as part of the bunker construction could have been the source of hydrocarbons detected. Release Site 12-COMM-1 was not clean closed as proposed in the SAFER Plan. The vertical extent of impacted soils was determined not to extend below a depth of 2.7 m (9 ft) below ground surface (bgs). The lateral extent could not be defined due to the presence of a discontinuous lens of hydrocarbon-impacted soil

  3. Streamlined approach for environmental restoration closure report for Corrective Action Unit 454: Historical underground storage tank release sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report addresses the characterization of three historical underground storage tank (UST) petroleum hydrocarbon release sites identified as 12-B-1, 12-B-3, and 12-COMM-1. The sites are located within the Nevada Test Site in Area 12 at B Tunnel and a former Communications/Power Maintenance Shop. Release Site 12-B-1 was not able to be clean-closed as proposed in the SAFER Plan. However, hydrocarbon impacted soils were excavated down to bedrock. Release Site 12-B-3 was evaluated to verify that the identified release was not associated with the UST removed from the site. Analytical results support the assumption that wood or possibly a roof sealant used as part of the bunker construction could have been the source of hydrocarbons detected. Release Site 12-COMM-1 was not clean closed as proposed in the SAFER Plan. The vertical extent of impacted soils was determined not to extend below a depth of 2.7 m (9 ft) below ground surface (bgs). The lateral extent could not be defined due to the presence of a discontinuous lens of hydrocarbon-impacted soil.

  4. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    International Nuclear Information System (INIS)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    2005-01-01

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal

  5. Development and testing of techniques for in-ground stabilization, size reduction, and safe removal of radioactive wastes stored in containments buried in ground

    International Nuclear Information System (INIS)

    Halliwell, Stephen; Christodoulou, Apostolos

    2013-01-01

    Since the 1950's radioactive wastes from a number of laboratories have been stored below ground at the Hanford site, Washington State, USA, in vertical pipe units (VPUs) made of five 200 litre drums without tops or bottoms, and in caissons, made out of corrugated pipe, or concrete and typically 2,500 mm in diameter. The VPU's are buried of the order of 2,100 mm below grade, and the caissons are buried of the order of 6,000 mm below grade. The waste contains fuel pieces, fission products, and a range of chemicals used in the laboratory processes. This can include various energetic reactants such as un-reacted sodium potassium (NaK), potassium superoxide (KO 2 ), and picric acid, as well as quantities of other liquids. The integrity of the containments is considered to present unacceptable risks from leakage of radioactivity to the environment. This paper describes the successful development and full scale testing of in-ground augering equipment, grouting systems and removal equipment for remediation and removal of the VPUs, and the initial development work to test the utilization of the same basic augering and grouting techniques for the stabilization, size reduction and removal of caissons. (authors)

  6. Nevada Test Site annual site environmental report, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Wruble, D T; McDowell, E M [eds.

    1990-11-01

    Prior to 1989 annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the US Department of Energy, Nevada Operations Office (DOE/NV). Results of the offsite radiological surveillance program conducted by the US Environmental Protection Agency (EPA), Environmental Monitoring Systems Laboratory, Las Vegas, Nevada, were reported separately by that Agency. Beginning with this 1989 annual Site environmental report for the NTS, these two documents are being combined into a single report to provide a more comprehensive annual documentation of the environmental protection program conducted for the nuclear testing program and other nuclear and non-nuclear activities at the Site. The two agencies have coordinated preparation of this combined onsite and offsite report through sharing of information on environmental releases and meteorological, hydrological, and other supporting data used in dose-estimate calculations. 57 refs., 52 figs., 65 tabs.

  7. Ground Operations Demonstration Unit for Liquid Hydrogen Initial Test Results

    Science.gov (United States)

    Notardonato, W. U.; Johnson, W. L.; Swanger, A. M.; Tomsik, T.

    2015-01-01

    NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project has designed, assembled, and started testing of a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The system is unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. This paper will present and discuss the results of the initial phase of testing of the GODU LH2 system.

  8. Assessment of hydrologic transport of radionuclides from the Rio Blanco underground nuclear test site, Colorado

    International Nuclear Information System (INIS)

    Chapman, J.; Earman, S.; Andricevic, R.

    1996-10-01

    DOE is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations used for nuclear testing. Evaluation of radionuclide transport by groundwater is part of preliminary risk analysis. These evaluations allow prioritization of test areas in terms of risk, provide a basis for discussions with regulators and the public about future work, and provide a framework for assessing site characterization data needs. The Rio Blanco site in Colorado was the location of the simultaneous detonation of three 30-kiloton nuclear devices. The devices were located 1780, 1899, and 2039 below ground surface in the Fort Union and Mesaverde formations. Although all the bedrock formations at the site are thought to contain water, those below the Green River Formation (below 1000 in depth) are also gas-bearing, and have very low permeabilities. The transport scenario evaluated was the migration of radionuclides from the blast-created cavity through the Fort Union Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. This modeling was performed to investigate how the uncertainty in various physical parameters affect radionuclide transport at the site, and to serve as a starting point for discussion regarding further investigation; it was not intended to be a definitive simulation of migration pathways or radionuclide concentration values. Given the sparse data, the modeling results may differ significantly from reality. Confidence in transport predictions can be increased by obtaining more site data, including the amount of radionuclides which would have been available for transport (i.e., not trapped in melt glass or vented during gas flow testing), and the hydraulic properties of the formation. 38 refs., 6 figs., 1 tab

  9. An Iterative Approach to Ground Penetrating Radar at the Maya Site of Pacbitun, Belize

    Directory of Open Access Journals (Sweden)

    Sheldon Skaggs

    2016-09-01

    Full Text Available Ground penetrating radar (GPR surveys provide distinct advantages for archaeological prospection in ancient, complex, urban Maya sites, particularly where dense foliage or modern debris may preclude other remote sensing or geophysical techniques. Unidirectional GPR surveys using a 500 MHz shielded antenna were performed at the Middle Preclassic Maya site of Pacbitun, Belize. The survey in 2012 identified numerous linear and circular anomalies between 1 m and 2 m deep. Based on these anomalies, one 1 m × 4 m unit and three smaller units were excavated in 2013. These test units revealed a curved plaster surface not previously found at Pacbitun. Post-excavation, GPR data were reprocessed to best match the true nature of excavated features. Additional GPR surveys oriented perpendicular to the original survey confirmed previously detected anomalies and identified new anomalies. The excavations provided information on the sediment layers in the survey area, which allowed better identification of weak radar reflections of the surfaces of a burnt, Middle Preclassic temple in the northern end of the survey area. Additional excavations of the area in 2014 and 2015 revealed it to be a large square structure, which was named El Quemado.

  10. Nevada Test Site Environmental Report 2006 and Site Description (Volume 1)

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2007-10-01

    The Nevada Test Site Environmental Report 2006 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2006 produced to be a more cost-effective means of distributing information contained in the NTSER to interested DOE stakeholders.

  11. Nevada Test Site Environmental Report 2006 and Site Description (Volume 1)

    International Nuclear Information System (INIS)

    Cathy Wills

    2007-01-01

    The Nevada Test Site Environmental Report 2006 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2006 produced to be a more cost-effective means of distributing information contained in the NTSER to interested DOE stakeholders

  12. Assessment of radioactive contaminations of the ground in Hanover-List with scales and methods of the German Federal Ordinance on Soil Protection and Contaminated Sites (BBodSchV). Pt. 1. Derivation of test thresholds

    International Nuclear Information System (INIS)

    Gellermann, Rainer; Guenther, Petra; Evers, Burkhard

    2010-01-01

    Background, aim, and scope: In the district List of Hanover (Lower Saxony) radioactive contaminations of the ground were detected at a site of a former chemical plant. Due to the lack of an ordinance regarding intervention regulations in the case of radioactive contaminations in Germany this situation had to be assessed on the basis of scales and methods of the German regulations concerning soil protection and contaminated sites. In particular it was necessary to develop methods and levels for the assessment of radioactive contaminations. Materials and methods: Because radioactivity can be considered as a carcinogenic substance the methodical approaches of the BBodSchV for this group of substances were used in order to derive test thresholds for radioactive contaminations at children's play areas, residential areas as well as parks and recreation facilities. Results: For the assessment of radioactive soil contaminations with naturally occurring radionuclides at children's play areas and residential areas the ingestion of soil is the decisive pathway of exposure. For children's play areas a threshold level of 0.2 Bq/g for the sum U-238,max + Th-232,max was obtained. At areas with only impacts of ambient radiation from the contaminated ground test thresholds of 0.5 μSv/h are recommended. A special pathway is the migration of radon from the contaminated soil into basement floors of buildings. Taking into account the natural background levels of radon a concentration of 260 Bq/m 3 is suggested as a test threshold in the framework of soil protection benchmarks. Discussion and conclusions will be described in Part 2 of the paper.

  13. Work plan for preliminary investigation of organic constituents in ground water at the New Rifle site, Rifle, Colorado. Revision 2

    International Nuclear Information System (INIS)

    1996-01-01

    A special study screening for Appendix 9 (40 CFR Part 264) analytes identified the New Rifle site as a target for additional screening for organic constituents. Because of this recommendation and the findings in a recent independent technical review, the US Department of Energy (DOE) has requested that the Technical Assistance Contractor (TAC) perform a preliminary investigation of the potential presence of organic compounds in the ground water at the New Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project site, Rifle, Colorado. From 1958 to 1972, organic chemicals were used in large quantities during ore processing at the New Rifle site, and it is possible that some fraction was released to the environment. Therefore, the primary objective of this investigation is to determine whether organic chemicals used at the milling facility are present in the ground water. The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water well points at the New Rifle site. The selection of analytes and the procedures for collecting ground water samples for analysis of organic constituents are also described

  14. Nevada Test Site Environmental Report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada

    2004-10-01

    The Nevada Test Site Environmental Report 2003 was prepared by Bechtel Nevada to meet the requirements and guidelines of the U.S. Department of Energy and the information needs of the public. This report is meant to be useful to members of the public, public officials, regulators, and Nevada Test Site contractors. The Executive Summary strives to present in a concise format the purpose of the document, the NTS mission and major programs, a summary of radiological releases and doses to the public resulting from site operations, a summary of non-radiological releases, and an overview of the Nevada Test Site Environmental Management System. The Executive Summary, combined with the following Compliance Summary, are written to meet all the objectives of the report and to be stand-alone sections for those who choose not to read the entire document.

  15. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    1993-01-01

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. Therefore, empirically based approaches that are used for other regions, such as Western North America, are not appropriate for Eastern North America. Moreover, recent advances in science and technology have now made it possible to combine theoretical and empirical methods to develop new procedures and models for estimating ground motion. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. Specifically considered are magnitudes M from 5 to 8, distances from 0 to 500 km, and frequencies from 1 to 35 Hz

  16. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NSO Waste Management Project

    2008-06-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  17. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    International Nuclear Information System (INIS)

    NNSA/NSO Waste Management Project

    2008-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal

  18. Ground state properties of a spin chain within Heisenberg model with a single lacking spin site

    International Nuclear Information System (INIS)

    Mebrouki, M.

    2011-01-01

    The ground state and first excited state energies of an antiferromagnetic spin-1/2 chain with and without a single lacking spin site are computed using exact diagonalization method, within the Heisenberg model. In order to keep both parts of a spin chain with a lacking site connected, next nearest neighbors interactions are then introduced. Also, the Density Matrix Renormalization Group (DMRG) method is used, to investigate ground state energies of large system sizes; which permits us to inquire about the effect of large system sizes on energies. Other quantum quantities such as fidelity and correlation functions are also studied and compared in both cases. - Research highlights: → In this paper we compute ground state and first excited state energies of a spin chain with and without a lacking spin site. The next nearest neighbors are introduced with the antiferromagnetic Heisenberg spin-half. → Exact diagonalization is used for small systems, where DMRG method is used to compute energies for large systems. Other quantities like quantum fidelity and correlation are also computed. → Results are presented in figures with comments. → E 0 /N is computed in a function of N for several values of J 2 and for both systems. First excited energies are also investigated.

  19. Australia - a nuclear weapons testing ground

    International Nuclear Information System (INIS)

    Dobbs, Michael.

    1993-01-01

    Between 1952 and 1958 Britain conducted five separate nuclear weapons trials in Australia. Australia had the uninhabited wide open spaces and the facilities which such tests need and Britain was able to use its special relationship with Australia to get agreement to conduct atomic tests in Australia and establish a permanent test site at Maralinga. Other non-nuclear tests were conducted between 1953-1963. The story of Britain's involvement in atomic weapons testing in Australia is told through its postal history. Both official and private covers are used to show how the postal communications were established and maintained throughout the test years. (UK)

  20. Applied field test procedures on petroleum release sites

    International Nuclear Information System (INIS)

    Gilbert, G.; Nichols, L.

    1995-01-01

    The effective remediation of petroleum contaminated soils and ground water is a significant issue for Williams Pipe Line Co. (Williams): costing $6.8 million in 1994. It is in the best interest, then, for Williams to adopt approaches and apply technologies that will be both cost-effective and comply with regulations. Williams has found the use of soil vapor extraction (SVE) and air sparging (AS) field test procedures at the onset of a petroleum release investigation/remediation accomplish these goals. This paper focuses on the application of AS/SVE as the preferred technology to a specific type of remediation: refined petroleum products. In situ field tests are used prior to designing a full-scale remedial system to first validate or disprove initial assumptions on applicability of the technology. During the field test, remedial system design parameters are also collected to tailor the design and operation of a full-scale system to site specific conditions: minimizing cost and optimizing effectiveness. In situ field tests should be designed and operated to simulate as close as possible the operation of a full-scale remedial system. The procedures of an in situ field test will be presented. The results of numerous field tests and the associated costs will also be evaluated and compared to full-scale remedial systems and total project costs to demonstrate overall effectiveness. There are many advantages of As/SVE technologies over conventional fluid extraction or SVE systems alone. However, the primary advantage is the ability to simultaneously reduce volatile and biodegradable compound concentrations in the phreatic, capillary fringe, and unsaturated zones

  1. Nevada Test Site Environmental Report 2005, Attachment A - Site Description

    International Nuclear Information System (INIS)

    Cathy A. Wills

    2006-01-01

    This appendix to the ''Nevada Test Site Environmental Report 2005'', dated October 2006 (DOE/NV/11718--1214; DOE/NV/25946--007) expands on the general description of the Nevada Test Site (NTS) presented in the Introduction. Included are subsections that summarize the site?s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This appendix complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report

  2. Nevada Test Site Environmental Report 2005, Attachment A - Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2006-10-01

    This appendix to the ''Nevada Test Site Environmental Report 2005'', dated October 2006 (DOE/NV/11718--1214; DOE/NV/25946--007) expands on the general description of the Nevada Test Site (NTS) presented in the Introduction. Included are subsections that summarize the site?s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This appendix complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  3. Colloid research for the Nevada Test Site

    International Nuclear Information System (INIS)

    Bryant, E.A.

    1992-05-01

    Research is needed to understand the role of particulates in the migration of radionuclides away from the sites of nuclear tests at the Nevada Test Site. The process of testing itself may produce a reservoir of particles to serve as vectors for the transport of long-lived radionuclides in groundwater. Exploratory experiments indicate the presence of numerous particulates in the vicinity of the Cambric test but a much lower loading in a nearby well that has been pumped continuously for 15 years. Recent groundwater colloid research is briefly reviewed to identify sampling and characterization methods that may be applicable at the Nevada Test Site

  4. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This document is the first volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of an introduction, summary/conclusion, site description and assessment, description of facility, and description of operation.

  5. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada and Inyo County, California

    International Nuclear Information System (INIS)

    James B. Paces; Zell E. Peterman; Kiyoto Futa; Thomas A. Oliver; Brian D. Marshall.

    2007-01-01

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values

  6. Classification of matrix-product ground states corresponding to one-dimensional chains of two-state sites of nearest neighbor interactions

    International Nuclear Information System (INIS)

    Fatollahi, Amir H.; Khorrami, Mohammad; Shariati, Ahmad; Aghamohammadi, Amir

    2011-01-01

    A complete classification is given for one-dimensional chains with nearest-neighbor interactions having two states in each site, for which a matrix product ground state exists. The Hamiltonians and their corresponding matrix product ground states are explicitly obtained.

  7. Site Effect Assessment of Earthquake Ground Motion Based on Advanced Data Processing of Microtremor Array Measurements

    Science.gov (United States)

    Liu, L.; He, K.; Mehl, R.; Wang, W.; Chen, Q.

    2008-12-01

    High-resolution near-surface geologic information is essential for earthquake ground motion prediction. The near-surface geology forms the critical constituent to influence seismic wave propagation, which is known as the local site effects. We have collected microtremor data over 1000 sites in Beijing area for extracting the much needed earthquake engineering parameters (primarily sediment thickness, with the shear wave velocity profiling at a few important control points) in this heavily populated urban area. Advanced data processing algorithms are employed in various stages in assessing the local site effect on earthquake ground motion. First, we used the empirical mode decomposition (EMD), also known as the Hilbert-Huang transform (HHT), to enhance the microtremor data analysis by excluding the local transients and continuous monochromic industrial noises. With this enhancement we have significantly increased the number of data points to be useful in delineating sediment thickness in this area. Second, we have used the cross-correlation of microtremor data acquired for the pairs of two adjacent sites to generate a 'pseudo-reflection' record, which can be treated as the Green function of the 1D layered earth model at the site. The sediment thickness information obtained this way is also consistent with the results obtained by the horizontal to vertical spectral ratio method (HVSR). For most sites in this area, we can achieve 'self consistent' results among different processing skechems regarding to the sediment thickness - the fundamental information to be used in assessing the local site effect. Finally, the pseudo-spectral time domain method was used to simulate the seismic wave propagation caused by a scenario earthquake in this area - the 1679 M8 Sanhe-pinggu earthquake. The characteristics of the simulated earthquake ground motion have found a general correlation with the thickness of the sediments in this area. And more importantly, it is also in agreement

  8. A review and assessment of variable density ground water flow effects on plume formation at UMTRA project sites

    International Nuclear Information System (INIS)

    1995-01-01

    A standard assumption when evaluating the migration of plumes in ground water is that the impacted ground water has the same density as the native ground water. Thus density is assumed to be constant, and does not influence plume migration. This assumption is valid only for water with relatively low total dissolved solids (TDS) or a low difference in TDS between water introduced from milling processes and native ground water. Analyses in the literature suggest that relatively minor density differences can significantly affect plume migration. Density differences as small as 0.3 percent are known to cause noticeable effects on the plume migration path. The primary effect of density on plume migration is deeper migration than would be expected in the arid environments typically present at Uranium Mill Tailings Remedial Action (UMTRA) Project sites, where little or no natural recharge is available to drive the plume into the aquifer. It is also possible that at some UMTRA Project sites, a synergistic affect occurred during milling operations, where the mounding created by tailings drainage (which created a downward vertical gradient) and the density contrast between the process water and native ground water acted together, driving constituents deeper into the aquifer than either process would alone. Numerical experiments were performed with the U.S. Geological Survey saturated unsaturated transport (SUTRA) model. This is a finite-element model capable of simulating the effects of variable fluid density on ground water flow and solute transport. The simulated aquifer parameters generally are representative of the Shiprock, New Mexico, UMTRA Project site where some of the highest TDS water from processing has been observed

  9. Ground-water travel time calculations for the potential nuclear repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Younker, J.L.; Wilson, W.E.; Sinnock, S.

    1986-01-01

    In support of the US Department of Energy Nevada Nuclear Waste Storage Investigations Project, ground-water travel times were calculated for flow paths in both the saturated and unsaturated zones at Yucca Mountain, a potential site for a high-level radioactive waste repository in southern Nevada. The calculations were made through a combined effort by Science Applications International Corporation, Sandia National Laboratories, and the US Geological Survey. Travel times in the unsaturated zone were estimated by dividing the flow path length by the ground-water velocity, where velocities were obtained by dividing the vertical flux by the effective porosity of the rock types along assumed vertical flow paths. Saturated zone velocities were obtained by dividing the product of the bulk hydraulic conductivity and hydraulic gradient by the effective porosity. Total travel time over an EPA-established 5-km flow path was then calculated to be the sum of the travel times in the two parts of the flow path. Estimates of ground water fluxes and travel times are critical for evaluating the favorability of the Yucca Mountain site because they provide the basis for estimating the potential for radionuclides to reach the accessible environment within certain time limits

  10. Status of the flora and fauna on the Nevada Test Site, 1989--1991

    International Nuclear Information System (INIS)

    Hunter, R.B.

    1994-03-01

    This volume includes six reports of monitoring work to determine the status of and trends in flora and fauna populations on the Nevada Test Site (NTS) from 1989 through 1991. The Nevada Operations Office of the US Department of Energy supported monitoring under its Basic Environmental Compliance and Monitoring Program (BECAMP) since 1987. Under this program several undisturbed baseline plots, and numerous plots in disturbed areas, are sampled on annual or three-year cycles. Perennial plant populations, ephemeral plants, small mammals, reptiles, birds, and large mammals were monitored. Monitoring results are reported for five baseline sites, one from each major landform on the NTS (Jackass Flats, Frenchman Flat, Yucca Flat, Pahute Mesa, and Rainier Mesa), and for areas cleared of vegetation by fires, atmospheric nuclear weapons tests, construction, and gophers. Roadside flora and fauna were studied at two locations, and several historical study plots around the NTS were recensused to determine vegetation changes over long time spans. Three subsidence craters resulting from below-ground nuclear weapons tests were also studied. A major influence on plants and animals during the report period was a severe drought during 1989 and 1990, followed by more moderate drought in 1991

  11. Status of the flora and fauna on the Nevada Test Site, 1989--1991

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, R.B. [comp.

    1994-03-01

    This volume includes six reports of monitoring work to determine the status of and trends in flora and fauna populations on the Nevada Test Site (NTS) from 1989 through 1991. The Nevada Operations Office of the US Department of Energy supported monitoring under its Basic Environmental Compliance and Monitoring Program (BECAMP) since 1987. Under this program several undisturbed baseline plots, and numerous plots in disturbed areas, are sampled on annual or three-year cycles. Perennial plant populations, ephemeral plants, small mammals, reptiles, birds, and large mammals were monitored. Monitoring results are reported for five baseline sites, one from each major landform on the NTS (Jackass Flats, Frenchman Flat, Yucca Flat, Pahute Mesa, and Rainier Mesa), and for areas cleared of vegetation by fires, atmospheric nuclear weapons tests, construction, and gophers. Roadside flora and fauna were studied at two locations, and several historical study plots around the NTS were recensused to determine vegetation changes over long time spans. Three subsidence craters resulting from below-ground nuclear weapons tests were also studied. A major influence on plants and animals during the report period was a severe drought during 1989 and 1990, followed by more moderate drought in 1991.

  12. Remedial Action Plan and Site Design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Appendix C to Attachment 3, Calculations. Final

    International Nuclear Information System (INIS)

    1995-09-01

    This volume contains calculations for: Slick Rock processing sites background ground water quality; Slick Rock processing sites lysimeter water quality; Slick Rock processing sites on-site and downgradient ground water quality; Slick Rock disposal site background water quality; Burro Canyon disposal site, Slick Rock, Colorado, average hydraulic gradients and average liner ground water velocities in the upper, middle, and lower sandstone units of the Burro Canyon formation; Slick Rock--Burro Canyon disposal site, Burro Canyon pumping and slug tests--analyses; water balance and surface contours--Burro Canyon disposal cell; and analytical calculation of drawdown in a hypothetical well completed in the upper sandstone unit of the Burro Canyon formation

  13. 2011 Ground Testing Highlights Article

    Science.gov (United States)

    Ross, James C.; Buchholz, Steven J.

    2011-01-01

    Two tests supporting development of the launch abort system for the Orion MultiPurpose Crew Vehicle were run in the NASA Ames Unitary Plan wind tunnel last year. The first test used a fully metric model to examine the stability and controllability of the Launch Abort Vehicle during potential abort scenarios for Mach numbers ranging from 0.3 to 2.5. The aerodynamic effects of the Abort Motor and Attitude Control Motor plumes were simulated using high-pressure air flowing through independent paths. The aerodynamic effects of the proximity to the launch vehicle during the early moments of an abort were simulated with a remotely actuated Service Module that allowed the position relative to the Crew Module to be varied appropriately. The second test simulated the acoustic environment around the Launch Abort Vehicle caused by the plumes from the 400,000-pound thrust, solid-fueled Abort Motor. To obtain the proper acoustic characteristics of the hot rocket plumes for the flight vehicle, heated Helium was used. A custom Helium supply system was developed for the test consisting of 2 jumbo high-pressure Helium trailers, a twelve-tube accumulator, and a 13MW gas-fired heater borrowed from the Propulsion Simulation Laboratory at NASA Glenn Research Center. The test provided fluctuating surface pressure measurements at over 200 points on the vehicle surface that have now been used to define the ground-testing requirements for the Orion Launch Abort Vehicle.

  14. Nevada Test Site Environmental Report 2007 Attachment A: Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2008-09-01

    This appendix expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2007 (U.S. Department of Energy [DOE], 2008). Included are subsections that summarize the site's geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  15. Summary of accidental releases of radioactivity detected off the Nevada Test Site, 1963--1986

    International Nuclear Information System (INIS)

    Patzer, R.G.; Phillips, W.G.; Grossman, R.F.; Black, S.C.; Costa, C.F.

    1988-08-01

    Of the more than 450 underground nuclear explosives tests conducted at the Nevada Test Site from August 1963 (signing of the Limited Test Ban Treaty) through the end of 1986, only 23 accidentally released radioactivity that was detectable beyond the boundary of the NTS. Of these 23, 4 were detectable off the NTS only by aircraft while the remainder were detectable by ground monitoring instruments. Since the Baneberry venting of December 1970, only two tests released radioactivity that was detectable off the NTS, and this was a seepage of radioactive noble gases. None of these releases from underground tests designed for complete containment caused exposure of the population living in the area that exceeded standards recommended by national and international radiation protection agencies. This report summarizes the releases from each of the tests, describes the monitoring that was conducted, and lists the location of the maximum exposure

  16. Anechoic Chamber test of the Electromagnetic Measurement System ground test unit

    Science.gov (United States)

    Stevenson, L. E.; Scott, L. D.; Oakes, E. T.

    1987-04-01

    The Electromagnetic Measurement System (EMMS) will acquire data on electromagnetic (EM) environments at key weapon locations on various aircraft certified for nuclear weapons. The high-frequency ground unit of the EMMS consists of an instrumented B61 bomb case that will measure (with current probes) the localized current density resulting from an applied EM field. For this portion of the EMMS, the first system test was performed in the Anechoic Chamber Facility at Sandia National Laboratories, Albuquerque, New Mexico. The EMMS pod was subjected to EM radiation at microwave frequencies of 1, 3, and 10 GHz. At each frequency, the EMMS pod was rotated at many positions relative to the microwave source so that the individual current probes were exposed to a direct line-of-sight illumination. The variations between the measured and calculated electric fields for the current probes with direct illumination by the EM source are within a few db. The results obtained from the anechoic test were better than expected and verify that the high frequency ground portion of the EMMS will accurately measure the EM environments for which it was designed.

  17. Effluent treatment options for nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Brockmann, J.E.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests

  18. RATES OF IRON OXIDATION AND ARSENIC SORPTION DURING GROUND WATER-SURFACE WATER MIXING AT A HAZARDOUS WASTE SITE

    Science.gov (United States)

    The fate of arsenic discharged from contaminated ground water to a pond at a hazardous waste site is controlled, in part, by the rate of ferrous iron oxidation-precipitation and arsenic sorption. Laboratory experiments were conducted using site-derived water to assess the impact...

  19. External quality control in ground-water sampling and analysis at the Hanford Site

    International Nuclear Information System (INIS)

    Hall, S.H.; Juracich, S.P.

    1991-11-01

    At the US Department of Energy's Hanford Site, external Quality Control (QC) for ground-water monitoring is extensive and has included routine submittal of intra- and interlaboratory duplicate samples, blind samples, and several kinds of blank samples. Examination of the resulting QC data for nine of the constituents found in ground water at the Hanford Site shows that the quality of analysis has generally been within the expectations of precision and accuracy that have been established by the US Environmental Protection Agency (EPA). The constituents subjected to review were nitrate, chromium, sodium, fluoride, carbon tetrachloride, tritium, ammonium, trichloroethylene, and cyanide. Of these, the fluoride measurements were notable exceptions and were poor by EPA standards. The review has shown that interlaboratory analysis of duplicate samples yields the most useful QC data for evaluating laboratory performance in determining commonly encountered constituents. For rarely encountered constituents, interlaboratory comparisons may be augmented with blind samples (synthetic samples of known composition). Intralaboratory comparisons, blanks, and spikes should be generally restricted to studies of suspected or known sample contamination and to studies of the adequacy of sampling and analytical procedures

  20. Radiation consequences of the nuclear tests on the Semipalatinsk test site

    International Nuclear Information System (INIS)

    Logachev, V.A.; Logacheva, L.A.

    2001-01-01

    In the paper the results of retrospective evaluation for radiation situation and radiation doses of population in the zones of the Semipalatinsk test site activity influence are presented. For the measurements the data obtained during analysis, study and summarizing of the archival materials including information on nuclear tests on this site and results of radiation surveys, those were carried out after each test were used. The information testifying most substantial environment contamination taking place after four surface explosions (29.08.1949, 24.09.1951, 12.08.1953, 24.08.1956) is presented as well. After these dose-forming explosions the irradiation doses of the population inhabiting out the regime zone have been exceeded the maximum permissible levels. Results of analysis of archival materials were used for assessment of doses of internal and external irradiation of residents of inhabited points situated on the both the territory of the Republic of Kazakhstan - mainly close to the test site - and the territories of a number of regions of the Russian Federation are locating on the little distance from the tests site

  1. Ground vibration test results of a JetStar airplane using impulsive sine excitation

    Science.gov (United States)

    Kehoe, Michael W.; Voracek, David F.

    1989-01-01

    Structural excitation is important for both ground vibration and flight flutter testing. The structural responses caused by this excitation are analyzed to determine frequency, damping, and mode shape information. Many excitation waveforms have been used throughout the years. The use of impulsive sine (sin omega t)/omega t as an excitation waveform for ground vibration testing and the advantages of using this waveform for flight flutter testing are discussed. The ground vibration test results of a modified JetStar airplane using impulsive sine as an excitation waveform are compared with the test results of the same airplane using multiple-input random excitation. The results indicated that the structure was sufficiently excited using the impulsive sine waveform. Comparisons of input force spectrums, mode shape plots, and frequency and damping values for the two methods of excitation are presented.

  2. Testing contamination risk assessment methods for toxic elements from mine waste sites

    Science.gov (United States)

    Abdaal, A.; Jordan, G.; Szilassi, P.; Kiss, J.; Detzky, G.

    2012-04-01

    Major incidents involving mine waste facilities and poor environmental management practices have left a legacy of thousands of contaminated sites like in the historic mining areas in the Carpathian Basin. Associated environmental risks have triggered the development of new EU environmental legislation to prevent and minimize the effects of such incidents. The Mine Waste Directive requires the risk-based inventory of all mine waste sites in Europe by May 2012. In order to address the mining problems a standard risk-based Pre-selection protocol has been developed by the EU Commission. This paper discusses the heavy metal contamination in acid mine drainage (AMD) for risk assessment (RA) along the Source-Pathway-Receptor chain using decision support methods which are intended to aid national and regional organizations in the inventory and assessment of potentially contaminated mine waste sites. Several recognized methods such as the European Environmental Agency (EEA) standard PRAMS model for soil contamination, US EPA-based AIMSS and Irish HMS-IRC models for RA of abandoned sites are reviewed, compared and tested for the mining waste environment. In total 145 ore mine waste sites have been selected for scientific testing using the EU Pre-selection protocol as a case study from Hungary. The proportion of uncertain to certain responses for a site and for the total number of sites may give an insight of specific and overall uncertainty in the data we use. The Pre-selection questions are efficiently linked to a GIS system as database inquiries using digital spatial data to directly generate answers. Key parameters such as distance to the nearest surface and ground water bodies, to settlements and protected areas are calculated and statistically evaluated using STATGRAPHICS® in order to calibrate the RA models. According to our scientific research results, of the 145 sites 11 sites are the most risky having foundation slope >20o, 57 sites are within distance 66 (class VI

  3. Evaluation of geologic structure guiding ground water flow south and west of Frenchman Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    McKee, E.H.

    1998-01-01

    Ground water flow through the region south and west of Frenchman Flat, in the Ash Meadows subbasin of the Death Valley ground water flow system, is controlled mostly by the distribution of permeable and impermeable rocks. Geologic structures such as faults are instrumental in arranging the distribution of the aquifer and aquitard rock units. Most permeability is in fractures caused by faulting in carbonate rocks. Large faults are more likely to reach the potentiometric surface about 325 meters below the ground surface and are more likely to effect the flow path than small faults. Thus field work concentrated on identifying large faults, especially where they cut carbonate rocks. Small faults, however, may develop as much permeability as large faults. Faults that are penetrative and are part of an anastomosing fault zone are particularly important. The overall pattern of faults and joints at the ground surface in the Spotted and Specter Ranges is an indication of the fracture system at the depth of the water table. Most of the faults in these ranges are west-southwest-striking, high-angle faults, 100 to 3500 meters long, with 10 to 300 /meters of displacement. Many of them, such as those in the Spotted Range and Rock Valley are left-lateral strike-slip faults that are conjugate to the NW-striking right-lateral faults of the Las Vegas Valley shear zone. These faults control the ground water flow path, which runs west-southwest beneath the Spotted Range, Mercury Valley and the Specter Range. The Specter Range thrust is a significant geologic structure with respect to ground water flow. This regional thrust fault emplaces siliceous clastic strata into the north central and western parts of the Specter Range

  4. Nevada Test Site Environmental Report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills, ed.

    2010-09-13

    The Nevada Test Site Environmental Report 2009 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ Nevada Test Site Environmental Reports (NTSERs) are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx. This NTSER was prepared to satisfy DOE Order DOE O 231.1A, “Environment, Safety and Health Reporting.” Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NNSA/NSO Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This NTSER summarizes data and compliance status for calendar year 2009 at the Nevada Test Site (NTS) and its two support facilities, the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory (RSL)-Nellis. It also addresses environmental restoration (ER) projects conducted at the Tonopah Test Range (TTR). Through a Memorandum of Agreement, NNSA/NSO is responsible for the oversight of TTR ER projects, and the Sandia Site Office of NNSA (NNSA/SSO) has oversight of all other TTR activities. NNSA/SSO produces the TTR annual environmental report available at http://www.sandia.gov/news/publications/environmental/index.html.

  5. Testing a ground-based canopy model using the wind river canopy crane

    Science.gov (United States)

    Robert Van Pelt; Malcolm P. North

    1999-01-01

    A ground-based canopy model that estimates the volume of occupied space in forest canopies was tested using the Wind River Canopy Crane. A total of 126 trees in a 0.25 ha area were measured from the ground and directly from a gondola suspended from the crane. The trees were located in a low elevation, old-growth forest in the southern Washington Cascades. The ground-...

  6. Supplement to the site observational work plan for the UMTRA project site at Ambrosia Lake, New Mexico

    International Nuclear Information System (INIS)

    1995-11-01

    The purpose of this document is to provide additional and more detailed information to supplement review of the site observational work plan (SOWP) (DOE, 1995) for the Ambrosia Lake, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project site. This document includes a discussion of the average linear velocity of the ground water in the alluvium and a discussion of the ground water quality of the alluvium, weathered Mancos Shale, and the Tres Hermanos-C Member of the Mancos Shale. The data from a 1989 aquifer test were analyzed using the curve-matching software AQTESOLV and then compared with the original results. A hydrograph of the ground water elevations in monitoring wells screened in the alluvium is presented to show how the ground water elevations change with time. Stiff and Piper diagrams were created to describe the changes in ground water geochemistry in the alluvium/weathered Mancos Sahel unit, the Tres Hermanos-C Sandstone unit, the Tres Hermanos-B Sandstone unit, and the Dakota Sandstone. Background information on other related topics such as site history, cell construction, soil characteristics, and well construction are presented in the SOWP. A geologic cross section depicts the conceptual model of the hydrostratigraphy and ground water chemistry of the Ambrosia Lake site. Hydrogeologic information of each hydrostratigraphic unit is presented

  7. SOAC - State-of-the-Art Car Engineering Tests at Department of Transportation High Speed Ground Test Center : Volume 2. Performance Tests.

    Science.gov (United States)

    1975-01-01

    The six-volume report presents the technical methodology, data samples, and results of tests conducted on the SOAC on the Rail Transit Test Track at the High Speed Ground Test Center in Pueblo, Colorado during the period April to July 1973. The Test ...

  8. A ground-based magnetic survey of Frenchman Flat, Nevada National Security Site and Nevada Test and Training Range, Nevada: data release and preliminary interpretation

    Science.gov (United States)

    Phillips, Jeffrey D.; Burton, Bethany L.; Curry-Elrod, Erika; Drellack, Sigmund

    2014-01-01

    The Nevada National Security Site (NNSS, formerly the Nevada Test Site) is located in southern Nevada approximately 105 kilometers (km) (65 miles) northwest of Las Vegas. Frenchman Flat is a sedimentary basin located on the eastern edge of NNSS and extending eastward into the adjacent Nevada Test and Training Range (NTTR).

  9. Application of Distributed Optical Fiber Sensing Technique in Monitoring the Ground Deformation

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2017-01-01

    Full Text Available The monitoring of ground deformation is important for the prevention and control of geological disaster including land subsidence, ground fissure, surface collapse, and landslides. In this study, a distributed optical fiber sensing technique based on Brillouin Optical Time-Domain Analysis (BOTDA was used to monitor the ground deformation. The principle behind the BOTDA is first introduced, and then laboratory calibration test and physical model test were carried out. Finally, BOTDA-based monitoring of ground fissure was carried out in a test site. Experimental results show that the distributed optical fiber can measure the soil strain during ground deformation process, and the strain curve responded to the soil compression and tension region clearly. During field test in Wuxi City, China, the ground fissures deformation area was monitored accurately and the trend of deformation can also be achieved to forecast and warn against the ground fissure hazards.

  10. About the nature of regional thermal anomaly in the Semipalatinsk Test Site region revealed basing on remote space sensing data

    International Nuclear Information System (INIS)

    Melent'ev, M.I.; Velikanov, A.E.

    2003-01-01

    A thermal anomaly, (more than 20,000 sq. km) discovered in the Semipalatinsk Test Site region in the pictures from space, is observed every year on certain days mainly in winter-spring season. Appearance of the thermal anomaly often coincides with days of intensive fall of atmospheric precipitation and possible thawing of snow cover together with decreasing of ozone concentration in atmosphere. The explanation of thermal anomaly in the Semipalatinsk Test Site region due to nuclear reaction caused by the energy of radionuclide radioactive decay deposited in a soil layer after ground and air nuclear explosions and radiolysis processes in soil solutions is given in this article. (author)

  11. From Regional Hazard Assessment to Nuclear-Test-Ban Treaty Support - InSAR Ground Motion Services

    Science.gov (United States)

    Lege, T.; Kalia, A.; Gruenberg, I.; Frei, M.

    2016-12-01

    There are numerous scientific applications of InSAR methods in tectonics, earthquake analysis and other geologic and geophysical fields. Ground motion on local and regional scale measured and monitored via the application of the InSAR techniques provide scientists and engineers with plenty of new insights and further understanding of subsurface processes. However, the operational use of InSAR is not yet very widespread. To foster the operational utilization of the Copernicus Sentinel Satellites in the day-to-day business of federal, state and municipal work and planning BGR (Federal Institute for Geosciences and Natural Resources) initiated workshops with potential user groups. Through extensive reconcilement of interests and demands with scientific, technical, economic and governmental stakeholders (e.g. Ministries, Mining Authorities, Geological Surveys, Geodetic Surveys and Environmental Agencies on federal and state level, SMEs, German Aerospace Center) BGR developed the concept of the InSAR based German National Ground Motion Service. One important backbone for the nationwide ground motion service is the so-called Persistent Scatterer Interferometry Wide Area Product (WAP) approach developed with grants of European research funds. The presentation shows the implementation of the ground motion service and examples for product developments for operational supervision of mining, water resources management and spatial planning. Furthermore the contributions of Copernicus Sentinel 1 radar data in the context of CTBT are discussed. The DInSAR processing of Sentinel 1 IW (Interferometric Wide Swath) SAR acquisitions from January 1st and 13th Jan. 2016 allow for the first time a near real time ground motion measurement of the North Korean nuclear test site. The measured ground displacements show a strong spatio-temporal correlation to the calculated epicenter measured by teleseismic stations. We are convinced this way another space technique will soon contribute even

  12. Nevada Test Site Environmental Report 2009, Attachment A: Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills, ed.

    2010-09-13

    This attachment expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2009. Included are subsections that summarize the site’s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site’s environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  13. PSP SAR interferometry monitoring of ground and structure deformations in the archeological site of Pompeii

    Science.gov (United States)

    Costantini, Mario; Francioni, Elena; Paglia, Luca; Minati, Federico; Margottini, Claudio; Spizzichino, Daniele; Trigila, Alessandro; Iadanza, Carla; De Nigris, Bruno

    2016-04-01

    The "Major Project Pompeii" (MPP) is a great collective commitment of different institututions and people to set about solving the serious problem of conservation of the largest archeological sites in the world. The ancient city of Pompeii with its 66 hectares, 44 of which are excaveted, is divided into 9 regiones (district), subdivided in 118 insulae (blocks) and almost 1500 domus (houses), and is Unesco site since 1996. The Italian Ministry for Heritage and Cultural Activities and Tourism (MiBACT) and Finmeccanica Group have sealed an agreement whereby the Finmeccanica Group will donate innovative technologies and services for monitoring and protecting the archaeological site of Pompeii. Moreover, the Italian Institute for Environment Protection and Research (ISPRA) - Geological Survey of Italy, was also involved to support the ground based analysis and interpretation of the measurements provided by the industrial team, in order to promote an interdisciplinary approach. In this work, we will focus on ground deformation measurements obtained by satellite SAR interferometry and on their interpretation. The satellite monitoring service is based on the processing of COSMO-SkyMed Himage data by the e-Geos proprietary Persistent Scatterer Pair (PSP) SAR interferometry technology. The PSP technique is a proven SAR interferometry method characterized by the fact of exploiting in the processing only the relative properties between close points (pairs) in order to overcome atmospheric artifacts (which are one of the main problems of SAR interferometry). Validations analyses showed that this technique applied to COSMO-SkyMed Himage data is able to retrieve very dense (except of course on vegetated or cultivated areas) millimetric deformation measurements with sub-metric localization. By means of the COSMO-SkyMed PSP SAR interferometry processing, a historical analysis of the ground and structure deformations occurred over the entire archaeological site of Pompeii in the

  14. Conversion of Semipalatinsk test site

    International Nuclear Information System (INIS)

    Cherepnin, Yu. S.

    1997-01-01

    The conversion of the former defense enterprises of STS (Semipalatinsk Test Sate) started under very difficult conditions, when not only research and production activity, but all social life of Kurchatov city were conversed which was caused by a fast curtailment and restationing of Russian military units from the test site. A real risk of a complete destruction of the whole research and production structure of the city existed. From this point of view, the decision of the Republic of Kazakhstan Government to create the National Nuclear Center on the base of the test site research enterprises was actual and timely. During 1993, three research institutes of NNC RK - Institute of Atomic Energy, Institute of Geophysics Research and Institute of Radiation Safety and Environment were established. This decision, under conditions of the Ussr disintegration and liquidation of the test site military divisions, allowed to preserve the qualified personnel, to provide and follow-up the operation of nuclear dangerous facilities, to develop and start the realization of the full scale conversion program.At present time, directions and structure of basic research work in NNC RK are as follows: - liquidation of nuclear explosions consequences; - liquidation of technological infrastructure used for preparation and conduction of nuclear weapon testing; - creation of technology, equipment and places for acceptance and storage of radioactive wastes; - working out of atomic energy development conception in Kazakhstan; - study of reactor core melt behavior under severe accidents in NPP; - development of methods and means of nuclear testing detection, continuous monitoring of nuclear explosions; - experimental work on a study of structure materials behavior of ITER thermonuclear reactor; - creation of industries requiring a lage implementation of science

  15. Database on radioecological situation in Semipalatinsk nuclear test site

    International Nuclear Information System (INIS)

    Turkebaev, T.Eh.; Kislitsin, S.B.; Lopuga, A.D.; Kuketaev, A.T.; Kikkarin, S.M.

    1999-01-01

    One of the main objectives of the National Nuclear Center of the Republic of Kazakstan is to define radioecological situation in details, conduct a continuous monitoring and eliminate consequences of nuclear explosions at Semipalatinsk nuclear test site. Investigations of Semipalatinsk nuclear test site area contamination by radioactive substances and vindication activity are the reasons for development of computer database on radioecological situation of the test site area, which will allow arranging and processing the available and entering information about the radioecological situation, assessing the effect of different testing factors on the environment and health of the Semipalatinsk nuclear test site area population.The described conception of database on radioecological situation of the Semipalatinsk nuclear test site area cannot be considered as the final one. As new information arrives, structure and content of the database is updated and optimized. New capabilities and structural elements may be provided if new aspects in Semipalatinsk nuclear test site area contamination study (air environment study, radionuclides migration) arise

  16. Cryogenic actuator testing for the SAFARI ground calibration setup

    Science.gov (United States)

    de Jonge, C.; Eggens, M.; Nieuwenhuizen, A. C. T.; Detrain, A.; Smit, H.; Dieleman, P.

    2012-09-01

    For the on-ground calibration setup of the SAFARI instrument cryogenic mechanisms are being developed at SRON Netherlands Institute for Space Research, including a filter wheel, XYZ-scanner and a flipmirror mechanism. Due to the extremely low background radiation requirement of the SAFARI instrument, all of these mechanisms will have to perform their work at 4.5 Kelvin and low-dissipative cryogenic actuators are required to drive these mechanisms. In this paper, the performance of stepper motors, piezoelectric actuators and brushless DC-motors as cryogenic actuators are compared. We tested stepper motor mechanical performance and electrical dissipation at 4K. The actuator requirements, test setup and test results are presented. Furthermore, design considerations and early performance tests of the flipmirror mechanism are discussed. This flipmirror features a 102 x 72 mm aluminum mirror that can be rotated 45°. A Phytron stepper motor with reduction gearbox has been chosen to drive the flipmirror. Testing showed that this motor has a dissipation of 49mW at 4K with a torque of 60Nmm at 100rpm. Thermal modeling of the flipmirror mechanism predicts that with proper thermal strapping the peak temperature of the flipmirror after a single action will be within the background level requirements of the SAFARI instrument. Early tests confirm this result. For low-duty cycle operations commercial stepper motors appear suitable as actuators for test equipment in the SAFARI on ground calibration setup.

  17. Electrical Ground System Design of PEFP

    International Nuclear Information System (INIS)

    Mun, Kyeong Jun; Jeon, Gye Po; Park, Sung Sik; Min, Yi Sub; Nam, Jung Min; Cho, Jang Hyung; Kim, Jun Yeon

    2010-01-01

    Since host site host site was selected Gyeong-ju city in January, 2006. we need design revision of Proton Accelerator research center to reflect on host site characteristics and several conditions. In this paper, electrical grounding and lightning protection design scheme is introduced. In electrical grounding system design of PEFP, we classified electrical facilities into 4 groups; equipment grounding (type A), instrument grounding (Type A), high frequency instrument grounding (Type C) and lightning arrestor grounding (Type D). Lightning protection system is designed in all buildings of proton accelerator research center of PEFP, including switchyard

  18. Electrical Ground System Design of PEFP

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Kyeong Jun; Jeon, Gye Po; Park, Sung Sik; Min, Yi Sub; Nam, Jung Min; Cho, Jang Hyung; Kim, Jun Yeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Since host site host site was selected Gyeong-ju city in January, 2006. we need design revision of Proton Accelerator research center to reflect on host site characteristics and several conditions. In this paper, electrical grounding and lightning protection design scheme is introduced. In electrical grounding system design of PEFP, we classified electrical facilities into 4 groups; equipment grounding (type A), instrument grounding (Type A), high frequency instrument grounding (Type C) and lightning arrestor grounding (Type D). Lightning protection system is designed in all buildings of proton accelerator research center of PEFP, including switchyard

  19. Site Response Analysis Using DeepSoil: Case Study of Bangka Site, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Iswanto, Eko Rudi; Yee, Eric [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    Logging Test (Downhole Seismic Method) and Standard Penetration Test results. The soil profiles consist of a 34 m layer of silty clay, and granite thereafter. The shear wave velocity varies each layer. The groundwater is known at depth of about 4 m. The EQL and NL ground response method was modelled with DeepSoil using dynamic soil properties and Sukai2 input motion was subjected to WB site.

  20. Test site experiments with a reconfigurable stepped frequency GPR

    Science.gov (United States)

    Persico, Raffaele; Matera, Loredana; Piro, Salvatore; Rizzo, Enzo; Capozzoli, Luigi

    2016-04-01

    In this contribution, some new possibilities offered by a reconfigurable stepped frequency GPR system are exposed. In particular, results achieved from a prototypal system achieved in two scientific test sites will be shown together with the results achieved in the same test sites with traditional systems. Moreover a novel technique for the rejection of undesired interferences is shown, with the use of interferences caused on purpose. Key words GPR, reconfigurable stepped frequency. Introduction A reconfigurable GPR system is meant as a GPR where some parameter can be changed vs. the frequency (if the system is stepped frequency) or vs. the time (if the system is pulsed) in a programmable way. The programming should then account for the conditions met in the scenario at hand [1]. Within the research project AITECH (http://www.aitechnet.com/ibam.html), the Institute for Archaeological and Monumental Heritage, together with the University of Florence and the IDS corporation have implemented a prototype, that has been used in sites of cultural interest in Italy [2], but also abroad in Norway and Malta. The system is a stepped frequency GPR working in the frequency range 50-1000 MHz, and its reconfigurability consists in three properties. The first one is the fact that the length of the antennas can be modulated by the aperture and closure of two electronic switches present along the arms of the antennas, so that the antennas can become electrically (and electronically) longer or shorter, so becoming more suitable to radiate some frequencies rather than some other. In particular, the system can radiate three different bands in the comprehensive range between 50-1000 MHz, so being suitable for different depth range of the buried targets, and the three bands are gathered in a unique "going through" because for each measurement point the system can sweep the entire frequency range trhee times, one for each configuration of the switchres on the arms. The second property is

  1. Proposed ground water protection strategy for the Uranium Mill Tailings Site at Green River, Utah. Final report

    International Nuclear Information System (INIS)

    1994-11-01

    This document presents the US DOE water resources protection strategy for the Green River, Utah mill tailings disposal site. The modifications in the original plan are based on new information, including ground water quality data collected after remedial action was completed, and on a revised assessment of disposal cell design features, surface conditions, and site hydrogeology. All aspects are discussed in this report

  2. Forced vibration tests of a model foundation on rock ground

    International Nuclear Information System (INIS)

    Kisaki, N.; Siota, M.; Yamada, M.; Ikeda, A.; Tsuchiya, H.; Kitazawa, K.; Kuwabara, Y.; Ogiwara, Y.

    1983-01-01

    The response of very stiff structures, such as nuclear reactor buildings, to earthquake ground motion is significantly affected by radiation damping due to the soil-structure interaction. The radiation damping can be computed by vibration admittance theory or dynamical ground compliance theory. In order to apply the values derived from these theories to the practical problems, comparative studies between theoretical results and experimental results concerning the soil-structure interaction, especially if the ground is rock, are urgently needed. However, experimental results for rock are less easily obtained than theoretical ones. The purpose of this paper is to describe the harmonic excitation tests of a model foundation on rock and to describe the results of comparative studies. (orig./HP)

  3. Ground-water quality at the site of a proposed deep-well injection system for treated wastewater, West Palm Beach, Florida

    Science.gov (United States)

    Pitt, William A.; Meyer, Frederick W.

    1976-01-01

    The U.S. Geological Survey collected scientific and technical information before, during, and after construction of a deep test well at the location of a future regional waste-water treatment plant to be built for the city of West Palm Beach, Florida. Data from the test well will be used by the city in the design of a proposed deep-well injection system for disposal of effluent from the treatment plant. Shallow wells in the vicinity of the drilling site were inventoried and sampled to provide a data base for detecting changes in ground water quality during construction and later operation of the deep wells. In addition, 16 small-diameter monitor wells, ranging in depth from 10 to 162 feet, were drilled at the test site. During the drilling of the deep test well, water samples were collected weekly from the 16 monitor wells for determination of chloride content and specific conductance. Evidence of small spills of salt water were found in monitor wells ranging in depth from 10 to 40 feet. Efforts to remove the salt water from the shallow unconfined aquifer by pumping were undertaken by the drilling contractor at the request of the city of West Palm Beach. The affected area is small and there has been a reduction of chloride concentration.

  4. Investigation of the performance of cement-bentonite cut-off walls in aggressive ground at a disused gasworks site

    International Nuclear Information System (INIS)

    Tedd, P.; Holton, I.R.; Butcher, A.P.; Wallace, S.

    1997-01-01

    There has been an increased use of cement-bentonite slurry trench cut-off walls to control the lateral migration of pollution in the UK. Concerns inevitably exist about their performance in chemically aggressive ground particularly in the long term. To address some of the uncertainties a programme of field and laboratory research is being undertaken at a disused gasworks in the UK. Elevated levels of sulphate and other contaminants are present on the site and could potentially change the properties of the cement-bentonite. Two boxes, 10m square in plan, by 5m deep have been constructed, one with and one without an HDPE membrane, to isolate parts of the site. Local hydraulic gradients across the walls have been created by pumping from within the boxes. Isolated lengths of wall have been constructed which are being used to assess and develop in-situ testing techniques such as the piezocone for measuring permeability, strength and overall integrity of the wall

  5. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Executive summary

    International Nuclear Information System (INIS)

    Simmons, C.S.; Cole, C.R.

    1985-05-01

    This document was written to provide guidance to managers and site operators on how ground-water transport codes should be selected for assessing burial site performance. There is a need for a formal approach to selecting appropriate codes from the multitude of potentially useful ground-water transport codes that are currently available. Code selection is a problem that requires more than merely considering mathematical equation-solving methods. These guidelines are very general and flexible and are also meant for developing systems simulation models to be used to assess the environmental safety of low-level waste burial facilities. Code selection is only a single aspect of the overall objective of developing a systems simulation model for a burial site. The guidance given here is mainly directed toward applications-oriented users, but managers and site operators need to be familiar with this information to direct the development of scientifically credible and defensible transport assessment models. Some specific advice for managers and site operators on how to direct a modeling exercise is based on the following five steps: identify specific questions and study objectives; establish costs and schedules for achieving answers; enlist the aid of professional model applications group; decide on approach with applications group and guide code selection; and facilitate the availability of site-specific data. These five steps for managers/site operators are discussed in detail following an explanation of the nine systems model development steps, which are presented first to clarify what code selection entails

  6. Waste migration studies at the Savannah River Plant burial ground

    International Nuclear Information System (INIS)

    Stone, J.A.; Oblath, S.B.; Hawkins, R.H.; Grant, M.W.; Hoeffner, S.L.; King, C.M.

    1985-01-01

    The low-level radioactive waste burial ground at the Savannah River Plant is a typical shallow-land-burial disposal site in a humid region. Studies of waste migration at this site provide generic data for designing other disposal facilities. A program of field, laboratory, and modeling studies for the SRP burial ground has been conducted for several years. Recent results of lysimeter tests, soil-water chemistry studies, and transport modeling are reported. The lysimeter experiments include ongoing tests with 40 lysimeters containing a variety of defense wastes, and recently concluded lysimeter tests with tritium and plutonium waste forms. The tritium lysimeter operated 12 years. In chemistry studies, measurements of soil-water distribution coefficients (K/sub d/) were concluded. Current emphasis is on identification of trace organic compounds in groundwater from the burial site. Development of the dose-to-man model was completed, and the computer code is available for routine use. 16 refs., 2 figs., 2 tabs

  7. Genetic effects of radiation and prediction of hereditary pathology of population of areas around the former Semipalatinsk test site

    International Nuclear Information System (INIS)

    Bigaliev, A.B.

    1998-01-01

    Epidemiological analysis of diseases and mortality of the population living in areas around Semipalatinsk test site is not only theoretically interesting in terms of the human being genetics, but is important for the health-care in practice, since it allows correct planning the score of medical social aid to the sick people and their families, including measures. Assessment of posterior consequences of low dose radiation effect on health of the population of the areas around the former Semipalatinsk nuclear test site is of special interest. Many underground, atmospheric and above-ground tests of nuclear weapon resulted in a significant increase of the oncologic and blood diseases rate among several generations of the effected people. Moreover, consequences of the above-ground and atmospheric tests of nuclear and hydrogen weapon will show up in the next century, taking into account the fact that the 'open' tests were ceased only at the middle of 60-th. The birth rate of children with the inherent intelligence defects was determined according to the accounting records of the new-born children within 1986-1992 years. Analysis of perinatal mortality was carried out based on the records on autopsy within 1985-1992 years. The two-fold increase of the onco diseases rate was revealed among children. The rate of spontaneous aborts in the Eginbulak district was 9.99% and exceeded the average rate in the region and indexes of other regions

  8. Minisatellite mutations and retrospective biodosimetry of population living close to the Semipalatinsk nuclear test site

    International Nuclear Information System (INIS)

    Lindholm, C.; Bersimbaev, R.I.; Dubrova, Y.E. EI KAUP; EI MAATA

    2003-01-01

    During the period between 1949 and 1989 nuclear weapon testing carried out at the Semipalatinsk Nuclear Test Site (STS) resulted in local fallout affecting the residents of Semipalatinsk, East Kazakhstan and Pavlodar districts of Kazakhstan and Altai region of Russia. The Semipalatinsk nuclear polygon in Kazakhstan has been the site for 470 nuclear tests, including 26 tests performed on the ground and 87 in the atmosphere. More than 1.5 million people living in the vicinity of the test site were repeatedly exposed to ionizing radiation. The paper reviews the study where the main objectives are: (1) to establish a biosample database of blood samples of families in three generations living close to the STS and control families in three generations from clean areas, (2) to determine the minisatellite mutation rates in the three generations of exposed people and the control families of the same ethinic origin living in non-contaminated areas, and (3) to determine the chromosomal translocation frequencies by FISH chromosome painting in the lymphocytes of the exposed and the control people in order to determine the radiation exposure. The aim of the study was to select the population living near to the STS and subjected to the greatest radiation exposure. Of particular interest was the first test of 29th of August 1949, as this was reported to have caused heavy fallout along a narrow trajectory extending north-east from Polygon, also covering parts of the Altai region of Russia and parts of Pavlodar and Karaganda regions in Kazakhstan

  9. Nevada Test Site Environmental Report 2008 Attachment A: Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2009-09-01

    This attachment expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2008 (National Security Technologies, LLC [NSTec], 2009a). Included are subsections that summarize the site’s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site’s environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  10. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...

  11. Hanford Site Emergency Alerting System siren testing report

    International Nuclear Information System (INIS)

    Weidner, L.B.

    1997-01-01

    The purpose of the test was to determine the effective coverage of the proposed upgrades to the existing Hanford Site Emergency Alerting System (HSEAS). The upgrades are to enhance the existing HSEAS along the Columbia River from the Vernita Bridge to the White Bluffs Boat Launch as well as install a new alerting system in the 400 Area on the Hanford Site. Five siren sites along the Columbia River and two sites in the 400 Area were tested to determine the site locations that will provide the desired coverage

  12. Component design challenges for the ground-based SP-100 nuclear assembly test

    International Nuclear Information System (INIS)

    Markley, R.A.; Disney, R.K.; Brown, G.B.

    1989-01-01

    The SP-100 ground engineering system (GES) program involves a ground test of the nuclear subsystems to demonstrate their design. The GES nuclear assembly test (NAT) will be performed in a simulated space environment within a vessel maintained at ultrahigh vacuum. The NAT employs a radiation shielding system that is comprised of both prototypical and nonprototypical shield subsystems to attenuate the reactor radiation leakage and also nonprototypical heat transport subsystems to remove the heat generated by the reactor. The reactor is cooled by liquid lithium, which will operate at temperatures prototypical of the flight system. In designing the components for these systems, a number of design challenges were encountered in meeting the operational requirements of the simulated space environment (and where necessary, prototypical requirements) while also accommodating the restrictions of a ground-based test facility with its limited available space. This paper presents a discussion of the design challenges associated with the radiation shield subsystem components and key components of the heat transport systems

  13. Site characterization and construction of a controlled shallow test site in central Mexico for archaeological and engineering applications

    Science.gov (United States)

    Rosado-Fuentes, A.; Arango-Galvan, C.; Arciniega-Ceballos, A.; Hernández-Quintero, J. E.; Mendo-Perez, G.

    2017-12-01

    A controlled shallow test site (CSTS) has been constructed at the UNAM Geomagnetic Observatory in Teoloyucan, central Mexico. The objective of the CSTS is to have a controlled place to test new developments and arrays that can be used for archaeological and engineering exploration, as well as to calibrate instruments, train students and for future research. The CSTS was built far enough not to influence the geomagnetic sensors and not be affected by noise sources. Special attention was given to the distribution and geometry of buried materials as well as the instruments used. Before the CSTS was built, a combination of near-surface, non-invasive geophysical techniques was performed to characterize the area of 20 by 32 meters. The methods include magnetometry, electromagnetic induction, ground penetrating radar (GPR), electrical resistivity tomography (ERT) and seismic refraction tomography (SRT). The GPR, SRT and ERT results show relatively flat interfaces. In general, the vertical gradient of the total magnetic field and the electric conductivity have very small variations, showing only one strong magnetic dipole associated to a shallow anomaly. These results indicate that the area is ideal for the construction of the test site. The CSTS consists on buried structures made with different materials and geometries (cubes, cylinders and tubes) commonly used as construction materials in Mexico since Pre-Hispanic times. These materials include concrete, reinforced concrete, wood, brick, adobe, basalt, tezontle and also empty space for controlling responses. The CSTS is versatile enough to be reshaped considering new geometries or materials and to conduct further investigations.

  14. Nevada Test Site Resource Management Plan: Annual summary, January 2000

    International Nuclear Information System (INIS)

    2000-01-01

    The Nevada Test Site Resource Management Plan published in December of 1998 (DOE/NV--518) describes the Nevada Test Site stewardship mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. As part of the Nevada Test Site Resource Management Plan, DOE Nevada Operations Office has committed to perform and publish an annual summary review of DOE Nevada Operations' stewardship of the Nevada Test Site. This annual summary includes a description of progress made toward the goals of the Nevada Test Site Resource Management Plan, pertinent monitoring data, actions that were taken to adapt to changing conditions, and any other changes to the Nevada Test Site Resource Management Plan

  15. Nevada Test Site Resource Management Plan: Annual summary, January 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-01

    The Nevada Test Site Resource Management Plan published in December of 1998 (DOE/NV--518) describes the Nevada Test Site stewardship mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. As part of the Nevada Test Site Resource Management Plan, DOE Nevada Operations Office has committed to perform and publish an annual summary review of DOE Nevada Operations' stewardship of the Nevada Test Site. This annual summary includes a description of progress made toward the goals of the Nevada Test Site Resource Management Plan, pertinent monitoring data, actions that were taken to adapt to changing conditions, and any other changes to the Nevada Test Site Resource Management Plan.

  16. Information pertinent to the migration of radionuclides in ground water at the Nevada Test Site. Part 2: annotated bibliography

    International Nuclear Information System (INIS)

    Borg, I.Y.; Stone, R.; Levy, H.B.; Ramspott, L.D.

    1976-01-01

    Part 2 of UCRL-52078 consists of the bibliography and abstracts that were compiled in the course of searching the literature for information on the migration of radionuclides in groundwater at the Nevada Test Site. The bibliography also includes numerous references to work done at foreign nuclear centers or contracted to outside agencies by these same centers

  17. Nevada Test Site Environmental Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2008-09-01

    The Nevada Test Site Environmental Report 2007 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2007. This NTSER was prepared to satisfy DOE Order 231.1A, Environment, Safety and Health Reporting. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This report meets these objectives for the NTS and three offsite Nevada facilities mentioned in this report.

  18. Nevada Test Site Environmental Report 2007

    International Nuclear Information System (INIS)

    Cathy Wills

    2008-01-01

    The Nevada Test Site Environmental Report 2007 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2007. This NTSER was prepared to satisfy DOE Order 231.1A, Environment, Safety and Health Reporting. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This report meets these objectives for the NTS and three offsite Nevada facilities mentioned in this report

  19. An SINS/GNSS Ground Vehicle Gravimetry Test Based on SGA-WZ02

    Directory of Open Access Journals (Sweden)

    Ruihang Yu

    2015-09-01

    Full Text Available In March 2015, a ground vehicle gravimetry test was implemented in eastern Changsha to assess the repeatability and accuracy of ground vehicle SINS/GNSS gravimeter—SGA-WZ02. The gravity system developed by NUDT consisted of a Strapdown Inertial Navigation System (SINS, a Global Navigation Satellite System (GNSS remote station on test vehicle, a GNSS static master station on the ground, and a data logging subsystem. A south-north profile of 35 km along the highway in eastern Changsha was chosen and four repeated available measure lines were obtained. The average speed of a vehicle is 40 km/h. To assess the external ground gravity disturbances, precise ground gravity data was built by CG-5 precise gravimeter as the reference. Under relative smooth conditions, internal accuracy among repeated lines shows an average agreement at the level of 1.86 mGal for half wavelengths about 1.1 km, and 1.22 mGal for 1.7 km. The root-mean-square (RMS of difference between calculated gravity data and reference data is about 2.27 mGal/1.1 km, and 1.74 mGal/1.7 km. Not all of the noises caused by vehicle itself and experiments environments were eliminated in the primary results. By means of selecting reasonable filters and improving the GNSS observation conditions, further developments in ground vehicle gravimetry are promising.

  20. Bridge Testing With Ground-Based Interferometric Radar: Experimental Results

    International Nuclear Information System (INIS)

    Chiara, P.; Morelli, A.

    2010-01-01

    The research of innovative non-contact techniques aimed at the vibration measurement of civil engineering structures (also for damage detection and structural health monitoring) is continuously directed to the optimization of measures and methods. Ground-Based Radar Interferometry (GBRI) represents the more recent technique available for static and dynamic control of structures and ground movements.Dynamic testing of bridges and buildings in operational conditions are currently performed: (a) to assess the conformity of the structure to the project design at the end of construction; (b) to identify the modal parameters (i.e. natural frequencies, mode shapes and damping ratios) and to check the variation of any modal parameters over the years; (c) to evaluate the amplitude of the structural response to special load conditions (i.e. strong winds, earthquakes, heavy railway or roadway loads). If such tests are carried out by using a non-contact technique (like GBRI), the classical issues of contact sensors (like accelerometers) are easily overtaken.This paper presents and discusses the results of various tests carried out on full-scale bridges by using a Stepped Frequency-Continuous Wave radar system.

  1. Bridge Testing With Ground-Based Interferometric Radar: Experimental Results

    Science.gov (United States)

    Chiara, P.; Morelli, A.

    2010-05-01

    The research of innovative non-contact techniques aimed at the vibration measurement of civil engineering structures (also for damage detection and structural health monitoring) is continuously directed to the optimization of measures and methods. Ground-Based Radar Interferometry (GBRI) represents the more recent technique available for static and dynamic control of structures and ground movements. Dynamic testing of bridges and buildings in operational conditions are currently performed: (a) to assess the conformity of the structure to the project design at the end of construction; (b) to identify the modal parameters (i.e. natural frequencies, mode shapes and damping ratios) and to check the variation of any modal parameters over the years; (c) to evaluate the amplitude of the structural response to special load conditions (i.e. strong winds, earthquakes, heavy railway or roadway loads). If such tests are carried out by using a non-contact technique (like GBRI), the classical issues of contact sensors (like accelerometers) are easily overtaken. This paper presents and discusses the results of various tests carried out on full-scale bridges by using a Stepped Frequency-Continuous Wave radar system.

  2. Site-specific strong ground motion prediction using 2.5-D modelling

    Science.gov (United States)

    Narayan, J. P.

    2001-08-01

    An algorithm was developed using the 2.5-D elastodynamic wave equation, based on the displacement-stress relation. One of the most significant advantages of the 2.5-D simulation is that the 3-D radiation pattern can be generated using double-couple point shear-dislocation sources in the 2-D numerical grid. A parsimonious staggered grid scheme was adopted instead of the standard staggered grid scheme, since this is the only scheme suitable for computing the dislocation. This new 2.5-D numerical modelling avoids the extensive computational cost of 3-D modelling. The significance of this exercise is that it makes it possible to simulate the strong ground motion (SGM), taking into account the energy released, 3-D radiation pattern, path effects and local site conditions at any location around the epicentre. The slowness vector (py) was used in the supersonic region for each layer, so that all the components of the inertia coefficient are positive. The double-couple point shear-dislocation source was implemented in the numerical grid using the moment tensor components as the body-force couples. The moment per unit volume was used in both the 3-D and 2.5-D modelling. A good agreement in the 3-D and 2.5-D responses for different grid sizes was obtained when the moment per unit volume was further reduced by a factor equal to the finite-difference grid size in the case of the 2.5-D modelling. The components of the radiation pattern were computed in the xz-plane using 3-D and 2.5-D algorithms for various focal mechanisms, and the results were in good agreement. A comparative study of the amplitude behaviour of the 3-D and 2.5-D wavefronts in a layered medium reveals the spatial and temporal damped nature of the 2.5-D elastodynamic wave equation. 3-D and 2.5-D simulated responses at a site using a different strike direction reveal that strong ground motion (SGM) can be predicted just by rotating the strike of the fault counter-clockwise by the same amount as the azimuth of

  3. Ground test program for a full-size solar dynamic heat receiver

    Science.gov (United States)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.

    1991-01-01

    Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.

  4. Grid site testing for ATLAS with HammerCloud

    International Nuclear Information System (INIS)

    Elmsheuser, J; Hönig, F; Legger, F; LLamas, R Medrano; Sciacca, F G; Ster, D van der

    2014-01-01

    With the exponential growth of LHC (Large Hadron Collider) data in 2012, distributed computing has become the established way to analyze collider data. The ATLAS grid infrastructure includes more than 130 sites worldwide, ranging from large national computing centers to smaller university clusters. HammerCloud was previously introduced with the goals of enabling virtual organisations (VO) and site-administrators to run validation tests of the site and software infrastructure in an automated or on-demand manner. The HammerCloud infrastructure has been constantly improved to support the addition of new test workflows. These new workflows comprise e.g. tests of the ATLAS nightly build system, ATLAS Monte Carlo production system, XRootD federation (FAX) and new site stress test workflows. We report on the development, optimization and results of the various components in the HammerCloud framework.

  5. Grid Site Testing for ATLAS with HammerCloud

    CERN Document Server

    Elmsheuser, J; The ATLAS collaboration; Legger, F; Medrano LLamas, R; Sciacca, G; van der Ster, D

    2014-01-01

    With the exponential growth of LHC (Large Hadron Collider) data in 2012, distributed computing has become the established way to analyze collider data. The ATLAS grid infrastructure includes more than 130 sites worldwide, ranging from large national computing centers to smaller university clusters. HammerCloud was previously introduced with the goals of enabling VO- and site-administrators to run validation tests of the site and software infrastructure in an automated or on-demand manner. The HammerCloud infrastructure has been constantly improved to support the addition of new test work-flows. These new work-flows comprise e.g. tests of the ATLAS nightly build system, ATLAS MC production system, XRootD federation FAX and new site stress test work-flows. We report on the development, optimization and results of the various components in the HammerCloud framework.

  6. Grid Site Testing for ATLAS with HammerCloud

    CERN Document Server

    Elmsheuser, J; The ATLAS collaboration; Legger, F; Medrano LLamas, R; Sciacca, G; van der Ster, D

    2013-01-01

    With the exponential growth of LHC (Large Hadron Collider) data in 2012, distributed computing has become the established way to analyze collider data. The ATLAS grid infrastructure includes more than 130 sites worldwide, ranging from large national computing centers to smaller university clusters. HammerCloud was previously introduced with the goals of enabling VO- and site-administrators to run validation tests of the site and software infrastructure in an automated or on-demand manner. The HammerCloud infrastructure has been constantly improved to support the addition of new test work-flows. These new work-flows comprise e.g. tests of the ATLAS nightly build system, ATLAS MC production system, XRootD federation FAX and new site stress test work-flows. We report on the development, optimization and results of the various components in the HammerCloud framework.

  7. Site observational work plan for the UMTRA Project site at Spook, Wyoming

    International Nuclear Information System (INIS)

    1995-05-01

    The Spook, Wyoming, site observational work plan proposes site-specific activities to achieve compliance with Subpart B of 40 CFR Part 192 (1994) of the final US Environmental Protection Agency (EPA) ground water protection standards 60 FR 2854 (1995) at this Uranium Mill Tailing Remedial Action (UMTRA) Project site. This draft SOWP presents a comprehensive summary of existing site characterization data, a conceptual site model of the nature and extent of ground water contamination, exposure pathways, and potential impact to human health and the environment. Section 2.0 describes the requirements for meeting ground water standards at UMTRA Project sites. Section 3.0 defines past and current conditions, describes potential environmental and human health risks, and provides site-specific data that supports the selection of a proposed ground water compliance strategy. Section 4.0 provides the justification for selecting the proposed ground water compliance strategy based on the framework defined in the ground water programmatic environmental impact statement (PEIS)

  8. Simulation of Local Seismic Ground Motions from the FLASK Underground Nuclear Explosion near the Source Physics Experiment Dry Alluvium Geology Site

    Science.gov (United States)

    Rodgers, A. J.; Pitarka, A.; Wagoner, J. L.; Helmberger, D. V.

    2017-12-01

    The FLASK underground nuclear explosion (UNE) was conducted in Area 2 of Yucca Flat at the Nevada Test Site on May 26, 1970. The yield was 105 kilotons (DOE/NV-209-Rev 16) and the working point was 529 m below the surface. This test was detonated in faulted Tertiary volcanic rocks of Yucca Flat. Coincidently, the FLASK UNE ground zero (GZ) is close (earth structure, including surface topography. SW4 includes vertical mesh refinement which greatly reduces the computational resources needed to run a specific problem. Simulations are performed on high-performance computers with grid spacing as small as 10 meters and resolution to 6 Hz. We are testing various subsurface models to identify the role of 3D structure on path propagation effects from the source. We are also testing 3D models to constrain structure for the upcoming DAG experiments in 2018.

  9. Further development of the methodical instruments to calculate ground water movements at repository sites

    International Nuclear Information System (INIS)

    Arens, G.; Clauser, C.; Fein, E.; Karpinski, P.; Storck, R.

    1990-06-01

    In addition to the subsequent requirements concerning the Konrad plan approval procedure, other ground water and propagation calculations were also made. All available programs were used. Simple one- and two-dimensional models were considered for which an analytical solution exists. In some cases such analytical solutions are only approximate under certain conditions. By calculating such simple problems, the programs used were tested and verified, and the use of those programs was reviewed and documented. In addition to the finite-difference program SWIFT and the finite-element program CFEST, two other ground water and propagation programs were applied: 1) Finite-difference program MOL, two-dimensional propagation program for ground water flow; 2) SUTRA, two-dimensional hybrid finite-element and integrated finite-difference model for ground water flow and radionuclide migration. (orig./HP) [de

  10. Evaluation of health risks associated with proposed ground water standards at selected inactive uranium mill-tailings sites

    International Nuclear Information System (INIS)

    Hamilton, L.D.; Medeiros, W.H.; Meinhold, A.; Morris, S.C.; Moskowitz, P.D.; Nagy, J.; Lackey, K.

    1989-04-01

    The US Environmental Protection Agency (EPA) has proposed ground water standards applicable to all inactive uranium mill-tailings sites. The proposed standards include maximum concentration limits (MCL) for currently regulated drinking water contaminants, as well as the addition of standards for molybdenum, uranium, nitrate, and radium-226 plus radium-228. The proposed standards define the point of compliance to be everywhere downgradient of the tailings pile, and require ground water remediation to drinking water standards if MCLs are exceeded. This document presents a preliminary description of the Phase 2 efforts. The potential risks and hazards at Gunnison, Colorado and Lakeview, Oregon were estimated to demonstrate the need for a risk assessment and the usefulness of a cost-benefit approach in setting supplemental standards and determining the need for and level of restoration at UMTRA sites. 8 refs., 12 tabs

  11. Evaluation of health risks associated with proposed ground water standards at selected inactive uranium mill-tailings sites

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, L.D.; Medeiros, W.H.; Meinhold, A.; Morris, S.C.; Moskowitz, P.D.; Nagy, J.; Lackey, K.

    1989-04-01

    The US Environmental Protection Agency (EPA) has proposed ground water standards applicable to all inactive uranium mill-tailings sites. The proposed standards include maximum concentration limits (MCL) for currently regulated drinking water contaminants, as well as the addition of standards for molybdenum, uranium, nitrate, and radium-226 plus radium-228. The proposed standards define the point of compliance to be everywhere downgradient of the tailings pile, and require ground water remediation to drinking water standards if MCLs are exceeded. This document presents a preliminary description of the Phase 2 efforts. The potential risks and hazards at Gunnison, Colorado and Lakeview, Oregon were estimated to demonstrate the need for a risk assessment and the usefulness of a cost-benefit approach in setting supplemental standards and determining the need for and level of restoration at UMTRA sites. 8 refs., 12 tabs.

  12. Closure Report for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 107 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Low Impact Soil Sites' and consists of the following 15 Corrective Action Sites (CASs), located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site: CAS 01-23-02, Atmospheric Test Site - High Alt; CAS 02-23-02, Contaminated Areas (2); CAS 02-23-03, Contaminated Berm; CAS 02-23-10, Gourd-Amber Contamination Area; CAS 02-23-11, Sappho Contamination Area; CAS 02-23-12, Scuttle Contamination Area; CAS 03-23-24, Seaweed B Contamination Area; CAS 03-23-27, Adze Contamination Area; CAS 03-23-28, Manzanas Contamination Area; CAS 03-23-29, Truchas-Chamisal Contamination Area; CAS 04-23-02, Atmospheric Test Site T4-a; CAS 05-23-06, Atmospheric Test Site; CAS 09-23-06, Mound of Contaminated Soil; CAS 10-23-04, Atmospheric Test Site M-10; and CAS 18-23-02, U-18d Crater (Sulky). Closure activities were conducted from February through April 2009 according to the FFACO (1996; as amended February 2008) and Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 107 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2009). The corrective action alternatives included No Further Action and Closure in Place with Administrative Controls. Closure activities are summarized.

  13. Nevada Test Site closure program

    International Nuclear Information System (INIS)

    Shenk, D.P.

    1994-08-01

    This report is a summary of the history, design and development, procurement, fabrication, installation and operation of the closures used as containment devices on underground nuclear tests at the Nevada Test Site. It also addresses the closure program mothball and start-up procedures. The Closure Program Document Index and equipment inventories, included as appendices, serve as location directories for future document reference and equipment use

  14. Nevada Test Site Environmental Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2009-09-01

    The Nevada Test Site Environmental Report (NTSER) 2008 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ NTSERs are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx.

  15. BIOMETRICAL CHARACTERIZATION OF TEST SITES FOR MAIZE BREEDING

    Directory of Open Access Journals (Sweden)

    Domagoj Šimić

    2003-12-01

    Full Text Available Yield stability of genotypes and analysis of genotype×environment interaction (GEI as important objects in analyses of multienvironment trials are well documented in Croatia. However, little is known about suitability and biometrical characters of the sites where genotypes should be tested. Objectives of this study were in combined analysis of balanced maize trials i to compare test sites in joint linear regression analysis and ii to compare several stability models by clustering test sites in order to assess biometrical suitability of particular test sites. Partitioning of GEI sum of squares according to the symmetrical joint linear regression analysis revealed highly significant Tukey's test, heterogeneity of environmental regressions and residual deviations. Mean grain yields, within-macroenvironment error mean squares, and stability parameters varied considerably among 16 macroenvironments. The highest grain yields were recorded in Osijek in both years and in Varaždin in 1996, with more than 11 t ha-1 . It seems that Feričanci would be optimum test site with relatively high and consistent yield and high values of entry mean squares indicating satisfactory differentiation among cultivars. However, four clustering methods generally did not correspond. According to three out of four clustering methods, two macroenvironments of Feričanci provide similar results. Employing other methods such as shifted multiplicative models, which effectively eliminate significant rank-change interaction, appears to be more reasonable.

  16. On-site cell field test support program

    Science.gov (United States)

    Staniunas, J. W.; Merten, G. P.

    1982-09-01

    Utility sites for data monitoring were reviewed and selected. Each of these sites will be instrumented and its energy requirements monitored and analyzed for one year prior to the selection of 40 Kilowatt fuel cell field test sites. Analyses in support of the selection of sites for instrumentation shows that many building sectors offered considerable market potential. These sectors include nursing home, health club, restaurant, industrial, hotel/motel and apartment.

  17. Corrective Action Decision Document/Closure Report for Corrective Action Unit 370: T-4 Atmospheric Test Site, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2009-05-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 370, T-4 Atmospheric Test Site, located in Area 4 at the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 370 is comprised of Corrective Action Site (CAS) 04-23-01, Atmospheric Test Site T-4. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 370 due to the implementation of the corrective action of closure in place with administrative controls. To achieve this, corrective action investigation (CAI) activities were performed from June 25, 2008, through April 2, 2009, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 370: T-4 Atmospheric Test Site and Record of Technical Change No. 1.

  18. SIR-C/X-SAR data calibration and ground truth campaign over the NASA-CB1 test-site

    International Nuclear Information System (INIS)

    Notarnicola, C.; Posa, F.; Refice, A.; Sergi, R.; Smacchia, P.; Casarano, D.; De Carolis, G.; Mattia, F.; Schena, V.D.

    2001-01-01

    During the Space Shuttle Endeavour mission in October 1994, a remote-sensing campaign was carried out with the objectives of both radiometric and polarimetric calibration and ground truth data acquisition of bare soils. This paper presents the results obtained in the experiment. Polarimetric cross-talk and channel imbalance values, as well as radiometric calibration parameters, have been found to be within the science requirements for SAR images. Regarding ground truth measurements, a wide spread in the height rms values and correlation lengths has been observed, which was motivated a critical revisiting of surface parameters descriptors

  19. Reassessment of Ground-Water Recharge and Simulated Ground-Water Availability for the Hawi Area of North Kohala, Hawaii

    Science.gov (United States)

    Oki, Delwyn S.

    2002-01-01

    least an additional 20 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 200 feet near the withdrawal sites. Other well-field configurations than the ones considered potentially could be used to develop more fresh ground water than indicated by the scenarios tested in this study. Depth, spacing, and withdrawal rates of individual wells are important considerations in determining ground-water availability. The regional models developed for this study cannot predict whether local saltwater intrusion problems may occur at individual withdrawal sites. Results of this study underscore the importance of collecting new information to better constrain the recharge estimates.

  20. An equivalent ground thermal test method for single-phase fluid loop space radiator

    Directory of Open Access Journals (Sweden)

    Xianwen Ning

    2015-02-01

    Full Text Available Thermal vacuum test is widely used for the ground validation of spacecraft thermal control system. However, the conduction and convection can be simulated in normal ground pressure environment completely. By the employment of pumped fluid loops’ thermal control technology on spacecraft, conduction and convection become the main heat transfer behavior between radiator and inside cabin. As long as the heat transfer behavior between radiator and outer space can be equivalently simulated in normal pressure, the thermal vacuum test can be substituted by the normal ground pressure thermal test. In this paper, an equivalent normal pressure thermal test method for the spacecraft single-phase fluid loop radiator is proposed. The heat radiation between radiator and outer space has been equivalently simulated by combination of a group of refrigerators and thermal electrical cooler (TEC array. By adjusting the heat rejection of each device, the relationship between heat flux and surface temperature of the radiator can be maintained. To verify this method, a validating system has been built up and the experiments have been carried out. The results indicate that the proposed equivalent ground thermal test method can simulate the heat rejection performance of radiator correctly and the temperature error between in-orbit theory value and experiment result of the radiator is less than 0.5 °C, except for the equipment startup period. This provides a potential method for the thermal test of space systems especially for extra-large spacecraft which employs single-phase fluid loop radiator as thermal control approach.

  1. Ground-based self-gravity tests for LISA Pathfinder and LISA

    International Nuclear Information System (INIS)

    Trenkel, C; Warren, C; Wealthy, D

    2009-01-01

    Gravitational coupling between the free-falling test masses and the surrounding spacecraft is one of the dominant noise sources for both LISA Pathfinder and LISA. At present, there are no plans to verify any of the self-gravity requirements by test, on the ground. Here, we explore the possibilities of conducting such tests, using a customised torsion balance. We discuss the main sources of systematic and statistical uncertainty present in such a set-up. Our preliminary assessment indicates that the sensitivity is sufficient to carry out meaningful self-gravity tests.

  2. Supplement to the site observational work plan for the UMTRA Project Site at Ambrosia Lake, New Mexico

    International Nuclear Information System (INIS)

    1996-02-01

    The purpose of this document is to provide additional and more detailed information to supplement review of the site observational work plan (SOWP) for the Ambrosia Lake, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project site. This document includes a discussion of (1) the average linear velocity of the ground water in the alluvium; (2) the ground water quality of the alluvium, weathered Mancos Shale, and the Tres Hermanos-C Member of the Mancos Shale; and (3) the fate and transport of contaminants from the uppermost aquifer to the Westwater Canyon Member of the Morrison Formation. The data from a 1989 aquifer test were analyzed using the curve-matching software AQTESOLV and then compared with the original results. A hydrograph of the ground water elevations in monitoring wells screened in the alluvium is presented to show how the ground water elevations change with time. Stiff and Piper diagrams were created to describe the changes in ground water geochemistry in the alluvium/weathered Mancos Shale unit, the Tres Hermanos-C Sandstone unit, the Tres Hermanos-B Sandstone unit, and the Dakota Sandstone. Background information on other related topics such as site history, cell construction, soil characteristics, and well construction are presented in the SOWP. Figure 1 is a geologic cross section depicting the conceptual model of the hydrostratigraphy and ground water chemistry of the Ambrosia Lake site. Table 1 presents hydrogeologic information of each hydrostratigraphic unit

  3. Ground-water monitoring compliance projects for Hanford Site facilities: Annual progress report for 1987

    International Nuclear Information System (INIS)

    Hall, S.H.

    1988-09-01

    This report describes progress during 1987 of five Hanford Site ground water monitoring projects. Four of these projects are being conducted according to regulations based on the federal Resource Conservation and Recovery Act of 1976 and the state Hazardous Waste Management Act. The fifth project is being conducted according to regulations based on the state Solid Waste Management Act. The five projects discussed herein are: 300 Area Process Trenches; 183-H Solar Evaporation Basins; 200 Areas Low-Level Burial Grounds; Nonradioactive Dangerous Waste Landfill; Solid Waste Landfill. For each of the projects, there are included, as applicable, discussions of monitoring well installations, water-table measurements, background and/or downgradient water quality and results of chemical analysis, and extent and rate of movement of contaminant plumes. 14 refs., 30 figs., 13 tabs

  4. Ground-penetrating radar investigations conducted in the 100 areas, Hanford Site: Fiscal Year 1992

    International Nuclear Information System (INIS)

    Bergstrom, K.A.

    1994-01-01

    During Fiscal Year 1992, the Geophysics Group conducted forty- five Ground-Penetrating Radar (GPR) surveys in the 100 Areas (Figure 1) - Objectives for the investigations varied, from locating cribs, trenches and septic systems to helping site boreholes. The results of each investigation were delivered to clients in the form of a map that summarized the interpretation of a given site. No formal reports were prepared. The purpose of this document is to show where and why each of the surveys was conducted. The data and interpretation of each survey are available by contacting the Westinghouse Hanford Company, Geophysics Group. A map showing the location and basic parameters of each survey can be found in the Appendices of this report

  5. Predicted impacts of future water level decline on monitoring wells using a ground-water model of the Hanford Site

    International Nuclear Information System (INIS)

    Wurstner, S.K.; Freshley, M.D.

    1994-12-01

    A ground-water flow model was used to predict water level decline in selected wells in the operating areas (100, 200, 300, and 400 Areas) and the 600 Area. To predict future water levels, the unconfined aquifer system was stimulated with the two-dimensional version of a ground-water model of the Hanford Site, which is based on the Coupled Fluid, Energy, and Solute Transport (CFEST) Code in conjunction with the Geographic Information Systems (GIS) software package. The model was developed using the assumption that artificial recharge to the unconfined aquifer system from Site operations was much greater than any natural recharge from precipitation or from the basalt aquifers below. However, artificial recharge is presently decreasing and projected to decrease even more in the future. Wells currently used for monitoring at the Hanford Site are beginning to go dry or are difficult to sample, and as the water table declines over the next 5 to 10 years, a larger number of wells is expected to be impacted. The water levels predicted by the ground-water model were compared with monitoring well completion intervals to determine which wells will become dry in the future. Predictions of wells that will go dry within the next 5 years have less uncertainty than predictions for wells that will become dry within 5 to 10 years. Each prediction is an estimate based on assumed future Hanford Site operating conditions and model assumptions

  6. Methods of Usability Testing in Libraries Web Sites

    Directory of Open Access Journals (Sweden)

    Eman Fawzy

    2006-03-01

    Full Text Available A Study about libraries' web sites evaluation, that is the Usability, the study talking about methods of usability testing and define it, and its important in web sites evaluation, then details the methods of usability: questionnaire, core groups, testing experimental model, cards arrangement, and composed evaluation.

  7. Site observational work plan for the UMTRA Project site at Falls City, Texas

    International Nuclear Information System (INIS)

    1995-06-01

    Produced by the US Department of Energy (DOE), this site observational work plan (SOWP) will be used to determine site-specific activities to comply with the US Environmental Protection Agency (EPA) ground water standards at this Uranium Mill Tailings Remedial Action (UMTRA) Project site. The purpose of the SOWP is to recommend a site-specific ground water compliance strategy at the Falls City UMTRA Project site. The Falls City SOWP presents a comprehensive summary of site hydrogeological data, delineates a conceptual model of the aquifer system, and discusses the origins of milling-related ground water contamination. It also defines the magnitude of ground water contamination, potential environmental and health risks associated with ground water contamination and data gaps, and targets a proposed compliance strategy

  8. Sensitivity of ground motion parameters to local site effects for areas characterised by a thick buried low-velocity layer.

    Science.gov (United States)

    Farrugia, Daniela; Galea, Pauline; D'Amico, Sebastiano; Paolucci, Enrico

    2016-04-01

    It is well known that earthquake damage at a particular site depends on the source, the path that the waves travel through and the local geology. The latter is capable of amplifying and changing the frequency content of the incoming seismic waves. In regions of sparse or no strong ground motion records, like Malta (Central Mediterranean), ground motion simulations are used to obtain parameters for purposes of seismic design and analysis. As an input to ground motion simulations, amplification functions related to the shallow subsurface are required. Shear-wave velocity profiles of several sites on the Maltese islands were obtained using the Horizontal-to-Vertical Spectral Ratio (H/V), the Extended Spatial Auto-Correlation (ESAC) technique and the Genetic Algorithm. The sites chosen were all characterised by a layer of Blue Clay, which can be up to 75 m thick, underlying the Upper Coralline Limestone, a fossiliferous coarse grained limestone. This situation gives rise to a velocity inversion. Available borehole data generally extends down till the top of the Blue Clay layer therefore the only way to check the validity of the modelled shear-wave velocity profile is through the thickness of the topmost layer. Surface wave methods are characterised by uncertainties related to the measurements and the model used for interpretation. Moreover the inversion procedure is also highly non-unique. Such uncertainties are not commonly included in site response analysis. Yet, the propagation of uncertainties from the extracted dispersion curves to inversion solutions can lead to significant differences in the simulations (Boaga et al., 2011). In this study, a series of sensitivity analyses will be presented with the aim of better identifying those stratigraphic properties which can perturb the ground motion simulation results. The stochastic one-dimensional site response analysis algorithm, Extended Source Simulation (EXSIM; Motazedian and Atkinson, 2005), was used to perform

  9. Work plan for ground water elevation data recorder/monitor well installation at the New Rifle Site, Rifle, Colorado

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water monitor wells and ground water elevation data recorders (data loggers) at the New Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project site, Rifle, Colorado. The monitor wells and data loggers will be used to gather required time-dependent data to investigate the interaction between the shallow aquifer and the Colorado River

  10. Design, modeling, and current interpretations of the H-19 and H-11 tracer tests at the WIPP site

    International Nuclear Information System (INIS)

    Meigs, L.C.; Beauheim, R.L.; McCord, J.T.; Tsang, Y.W.; Haggerty, R.

    1996-01-01

    Site-characterization studies at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico, US identified ground-water flow in the Culebra Dolomite Member of the Rustler Formation as the most likely geologic pathway for radionuclide transport to the accessible environment in the event of a breach of the WIPP repository through inadvertent human intrusion. The results of recent tracer tests, as well as hydraulic tests, laboratory measurements, and re-examination of Culebra geology and stratigraphy, have led to a significant refinement of the conceptual model for transport in the Culebra. Tracer test results and geologic observations suggest that flow occurs within fractures, and to some extent within interparticle porosity and vugs connected by microfractures. Diffusion occurs within all connected porosity. Numerical simulations suggest that the data from the tracer tests cannot be simulated with heterogeneous single-porosity models; significant matrix diffusion appears to be required. The low permeability and lack of significant tracer recovery from tracers injected into the upper Culebra suggest that transport primarily occurs in the lower Culebra

  11. Effluent Containment System for space thermal nuclear propulsion ground test facilities

    International Nuclear Information System (INIS)

    1995-08-01

    This report presents the research and development study work performed for the Space Reactor Power System Division of the U.S. Department of Energy on an innovative ECS that would be used during ground testing of a space nuclear thermal rocket engine. A significant portion of the ground test facilities for a space nuclear thermal propulsion engine are the effluent treatment and containment systems. The proposed ECS configuration developed recycles all engine coolant media and does not impact the environment by venting radioactive material. All coolant media, hydrogen and water, are collected, treated for removal of radioactive particulates, and recycled for use in subsequent tests until the end of the facility life. Radioactive materials removed by the treatment systems are recovered, stored for decay of short-lived isotopes, or packaged for disposal as waste. At the end of the useful life, the facility will be decontaminated and dismantled for disposal

  12. Information pertinent to the migration of radionuclides in ground water at the Nevada Test Site. Part 1. Review and analysis of existing information

    International Nuclear Information System (INIS)

    Borg, I.Y.; Stone, R.; Levy, H.B.; Ramspott, L.D.

    1976-01-01

    A history of NTS is given, the geologic and hydrologic setting is described, and the amount of radioactivity deposited within and near the main aquifers is estimated. The conclusions include: information currently available is insufficient to state categorically that radioactivity will never be carried off the Nevada Test Site by ground water movement; nonetheless, such a migration at levels above the maximum permissible concentration to existing wells and springs is considered unlikely; if offsite migration occurs, it will probably be from the southwestern margins of Pahute Mesa, where there is only a small chance of contaminating existing public water supplies; tritium is the most mobile radionuclide and may be the only long-lived isotope of concern. Highest priority is assigned to measurement of tritium and other radionuclides in large water samples taken from nuclear chimneys that water has re-entered after an explosion; expansion of the existing groundwater monitoring program at NTS to include wells with a higher probability of intersecting flow of contaminated water; measurement of groundwater flow velocities and other associated hydrologic parameters. High priority is assigned to production of an inventory of radionuclides deposited near NTS borders, especially beneath Pahute Mesa; determination of amounts of radioactivity deposited directly into the Lower Carbonate Aquifer; a sensitivity analysis of the many parameters that enter into transport calculations; a study of the many unplugged holes that penetrate the Tuff Aquitard; testing of the assumption that radionuclides deposited in the unsaturated zone are isolated from the saturated zone because of limited precipitation and downward movement of moisture; and determination of distribution coefficients for NTS alluvium, carbonate, and rhyolitic rocks, which are lacking or poorly represented in the literature. Twelve other recommendations of lesser priority are also given

  13. Streamlined Approach for Environmental Restoration Work Plan for Corrective Action Unit 461: Joint Test Assembly Sites and Corrective Action Unit 495: Unconfirmed Joint Test Assembly Sites Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Smith

    1998-08-01

    This Streamlined Approach for Environmental Restoration plan addresses the action necessary for the clean closure of Corrective Action Unit 461 (Test Area Joint Test Assembly Sites) and Corrective Action Unit 495 (Unconfirmed Joint Test Assembly Sites). The Corrective Action Units are located at the Tonopah Test Range in south central Nevada. Closure for these sites will be completed by excavating and evaluating the condition of each artillery round (if found); detonating the rounds (if necessary); excavating the impacted soil and debris; collecting verification samples; backfilling the excavations; disposing of the impacted soil and debris at an approved low-level waste repository at the Nevada Test Site

  14. Radiation consequences of combatant radioactive substances tests on the Semipalatinsk Test Site

    International Nuclear Information System (INIS)

    Strilchuk, Yu.G.; Osintsev, A.Yu.; Kuzin, D.E.; Bryantseva, N.V.; Bozhko, V.V.; Tonevitskaya, O.V.; Panitskaya, D.S.; Lukashenko, S.N.; Georgievskij, V.; Murley, R.; Wells, D.

    2008-01-01

    Nuclear explosions were not the only type of tests carried out on the STS territory. In 1953 - 1957 the STS territory was the area of testing of combatant radioactive substances (CRS). Combatant radioactive substances were liquid or powder-like combatment radioactive mixtures manufactured either from the wastes of radiochemical industry or by neutron irradiation of specally selected substances in nuclear reactor. Their specific activity ranged from tenths of Curie to several Curie per liter. CRS tests were made on testing grounds ''4'' and ''4A'' situated near northern outpost beyond the Opytnoye Pole (Experimental field). Dispersion of CRS was achieved by blasting of individual shells, bombardment of the area by mortar shells, bombardment from aircraft bombers or dispersion of CRS from airplanes. Investigations carried out in the past years on the territory of the testing grounds discovered fragments of metal products used in the CRS tests and over 30 areas of local radioactive contamination. 90 Sr was the main radioactive pollutant, whose specific activity in upper soil is as high as 5*10 8 Bq/kg; other radionuclides are presented by isotopes: 239+240 Pu, 152 Eu, 154 Eu, 137 Cs, 241 Am, 60 Co. The areas of radioactively-contaminated soil range from hundreds to hundreds of thousands of square meters with some of them expanding to distances of several kilometers. Concentration of radionuclides in soil and vegetation may be compared with that of radioactive waste

  15. Prototype Environmental Assessment of the impacts of siting and construction of an SPS ground receiving station

    Science.gov (United States)

    Hill, J.

    1980-01-01

    A prototype assessment of the environmental impacts of siting and constructing a Satellite Power System (SPS) Ground Receiving Station (GRS) is reported. The objectives of the study were: (1) to develop an assessment of the nonmicrowave related impacts of the reference system SPS GRS on the natural environment; (2) to assess the impacts of GRS construction and operations in the context of actual baseline data for a site in the California desert; and (3) to identify critical GRS characteristics or parameters that are most significant in terms of the natural environment.

  16. Grounding of SNS Accelerator Structure

    CERN Document Server

    Holik, Paul S

    2005-01-01

    Description of site general grounding network. RF grounding network enhancement underneath the klystron gallery building. Grounding network of the Ring Systems with ground breaks in the Ring Tunnel. Grounding and Bonding of R&D accelerator equipment. SNS Building lightning protection.

  17. Assessment of trace ground-water contaminants release from south Texas in-situ uranium solution-mining sites

    Energy Technology Data Exchange (ETDEWEB)

    Kidwell, J.R.; Humenick, M.J.

    1981-01-01

    The future of uranium solution mining in south Texas depends heavily on the industry's ability to restore production zone ground water to acceptable standards. This study investigated the extent of trace contaminant solubilization during mining and subsequent restoration attempts, first through a literature search centered on uranium control mechanisms, and then by laboratory experiments simulating the mining process. The literature search indicated the complexity of the situation. The number of possible interactions between indigenous elements and materials pointed on the site specificity of the problem. The column studies evaluated three different production area ores. Uranium, molybdenum, arsenic, vanadium, and selenium were analyzed in column effluents. After simulated mining operations were completed, uranium was found to be the most persistent trace element. However, subsequent ground water flushing of the columns could restore in-situ water to EPA recommended drinking water concentrations. Limited data indicated that ground water flowing through mined areas may solubilize molybdenum present in down gradient areas adjacent to the production zone due to increased oxidation potential of ground water if adequate restoration procedures are not followed.

  18. The Homecourt coke plant site: a successful redeveloped brown field case

    International Nuclear Information System (INIS)

    Charbonnier, P.; Piguet, O.; Lereboullet, L.

    2006-01-01

    The environmental diagnosis of the coke plant site in Homecourt has been carried out over the last 15 years. Bail Industrie has selected two zones on the site for a remediation program in view of their further redevelopment. The weakly polluted grounds were submitted to a bio treatment, while the more polluted grounds were treated by thermal desorption. Tars have been incinerated off site. To assess the effectiveness of the treatment, percolation tests are carried out. (authors)

  19. Nevada Test Site Waste Acceptance Criteria, December 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal.

  20. Nevada Test Site Waste Acceptance Criteria, December 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal

  1. Integrated Vehicle Ground Vibration Testing of Manned Spacecraft: Historical Precedent

    Science.gov (United States)

    Lemke, Paul R.; Tuma, Margaret L.; Askins, Bruce R.

    2008-01-01

    For the first time in nearly 30 years, NASA is developing a new manned space flight launch system. The Ares I will carry crew and cargo to not only the International Space Station, but onward for the future exploration of the Moon and Mars. The Ares I control system and structural designs use complex computer models for their development. An Integrated Vehicle Ground Vibration Test (IVGVT) will validate the efficacy of these computer models. The IVGVT will reduce the technical risk of unexpected conditions that could place the vehicle or crew in jeopardy. The Ares Project Office's Flight and Integrated Test Office commissioned a study to determine how historical programs, such as Saturn and Space Shuttle, validated the structural dynamics of an integrated flight vehicle. The study methodology was to examine the historical record and seek out members of the engineering community who recall the development of historic manned launch vehicles. These records and interviews provided insight into the best practices and lessons learned from these historic development programs. The information that was gathered allowed the creation of timelines of the historic development programs. The timelines trace the programs from the development of test articles through test preparation, test operations, and test data reduction efforts. These timelines also demonstrate how the historical tests fit within their overall vehicle development programs. Finally, the study was able to quantify approximate staffing levels during historic development programs. Using this study, the Flight and Integrated Test Office was able to evaluate the Ares I Integrated Vehicle Ground Vibration Test schedule and workforce budgets in light of the historical precedents to determine if the test had schedule or cost risks associated with it.

  2. A contribution to the development of an economic atlas of the Houston Area Test Site

    Science.gov (United States)

    1972-01-01

    An outine description of the Houston Area Test Site was prepared, in the form of an atlas-catalog of Universal Transverse Mercator grid coordinate locations, building on the manufacturing sector and expanding along agreed lines as far as possible. It was concluded that (1) the effort expended in securing and verifying the locations of larger manufacturing plants yielded 5,000-plus usable entries, in addition to certain valuable conclusions about the general feasibility of obtaining ground information by economic sector; (2) on the basis of the number and the quality of the usable entries obtained, the resources expended on nonmanufacturing sectors and on historical data cannot be wholly justified; and (3) even without the 5,000-odd locations of completely satisfactory quality, the relatively modest cost of this pilot study secured enough data to provide a sound basis for obtaining feasibly and systematically some appropriate ground information on almost any economic or social activity, together with some indication of their relative areal and economic significance.

  3. Guidelines of the Design of Electropyrotechnic Firing Circuit for Unmanned Flight and Ground Test Projects

    Science.gov (United States)

    Gonzalez, Guillermo A.; Lucy, Melvin H.; Massie, Jeffrey J.

    2013-01-01

    The NASA Langley Research Center, Engineering Directorate, Electronic System Branch, is responsible for providing pyrotechnic support capabilities to Langley Research Center unmanned flight and ground test projects. These capabilities include device selection, procurement, testing, problem solving, firing system design, fabrication and testing; ground support equipment design, fabrication and testing; checkout procedures and procedure?s training to pyro technicians. This technical memorandum will serve as a guideline for the design, fabrication and testing of electropyrotechnic firing systems. The guidelines will discuss the entire process beginning with requirements definition and ending with development and execution.

  4. SISMA (Site of Italian Strong Motion Accelerograms): a Web-Database of Ground Motion Recordings for Engineering Applications

    International Nuclear Information System (INIS)

    Scasserra, Giuseppe; Lanzo, Giuseppe; D'Elia, Beniamino; Stewart, Jonathan P.

    2008-01-01

    The paper describes a new website called SISMA, i.e. Site of Italian Strong Motion Accelerograms, which is an Internet portal intended to provide natural records for use in engineering applications for dynamic analyses of structural and geotechnical systems. SISMA contains 247 three-component corrected motions recorded at 101 stations from 89 earthquakes that occurred in Italy in the period 1972-2002. The database of strong motion accelerograms was developed in the framework of a joint project between Sapienza University of Rome and University of California at Los Angeles (USA) and is described elsewhere. Acceleration histories and pseudo-acceleration response spectra (5% damping) are available for download from the website. Recordings can be located using simple search parameters related to seismic source and the recording station (e.g., magnitude, V s30 , etc) as well as ground motion characteristics (e.g. peak ground acceleration, peak ground velocity, peak ground displacement, Arias intensity, etc.)

  5. Orion Ground Test Article Water Impact Tests: Photogrammetric Evaluation of Impact Conditions

    Science.gov (United States)

    Vassilakos, Gregory J.; Mark, Stephen D.

    2018-01-01

    The Ground Test Article (GTA) is an early production version of the Orion Crew Module (CM). The structural design of the Orion CM is being developed based on LS-DYNA water landing simulations. As part of the process of confirming the accuracy of LS-DYNA water landing simulations, the GTA water impact test series was conducted at NASA Langley Research Center (LaRC) to gather data for comparison with simulations. The simulation of the GTA water impact tests requires the accurate determination of the impact conditions. To accomplish this, the GTA was outfitted with an array of photogrammetry targets. The photogrammetry system utilizes images from two cameras with a specialized tracking software to determine time histories for the 3-D coordinates of each target. The impact conditions can then be determined from the target location data.

  6. Semipalatinsk nuclear test site: History of building and function

    International Nuclear Information System (INIS)

    Sergazina, G.M.; Balmukhanov, S.B.

    1999-01-01

    A vast materials on history of Semipalatinsk nuclear test site creation and it building and function are presented. Authors with big reliability report one page of Kazakhstan's history. In steppe on naked place thousands of soldiers and officers, construct and military specialists have built the nuclear site on which during 40 years were conducting nuclear tests . Prolonged chronic radiation on population living near by site results to tragedy which is confessed by General Assembly of United Nations. In the book aspects of test site conversion and rehabilitation of injured population are considered. The book consists of introduction, three chapters and conclusion. The book is intended to wide circle of readers. (author)

  7. Standard Test Methods for Insulation Integrity and Ground Path Continuity of Photovoltaic Modules

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 These test methods cover procedures for (1) testing for current leakage between the electrical circuit of a photovoltaic module and its external components while a user-specified voltage is applied and (2) for testing for possible module insulation breakdown (dielectric voltage withstand test). 1.2 A procedure is described for measuring the insulation resistance between the electrical circuit of a photovoltaic module and its external components (insulation resistance test). 1.3 A procedure is provided for verifying that electrical continuity exists between the exposed external conductive surfaces of the module, such as the frame, structural members, or edge closures, and its grounding point (ground path continuity test). 1.4 This test method does not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of this test method. 1.5 There is no similar or equivalent ISO standard. This standard does not purport to address all of the safety concerns, if a...

  8. Evaluation of stability of foundation ground during earthquake, (5)

    International Nuclear Information System (INIS)

    Nishi, Koh-ichi; Kanatani, Mamoru

    1987-01-01

    The Central Research Institute of Electric Power Industry advances the research on the method of evaluating foundation grounds from the standpoint of developing in-situ ground survey testing method and the method of evaluating mechanical properties in the studies on the technology for siting nuclear power stations on Quaternary grounds. The newly developed analytical technique on ground stability by the results of the analytical method for equivalent linear response was already reported. In this paper, the analytical method for nonlinear response to investigate into the more detailed behavior of ground due to strong earthquake motion is reported. In particular, the constitutive relation based on elastoplasticity was newly proposed in order to represent the deformation behavior during cyclic loading, and the examples of its application to the response of horizontally leveled sandy ground to earthquake are described. The dialatancy characteristics of soil are constituted by yield function, plastic potential functioin and hardening function. The material constants in proposed constitutive relation are easily determined by laboratory tests. One-dimensional response analysis was conducted, using the constitutive relation. (Kako, I.)

  9. Wave Resource Characterization at US Wave Energy Converter (WEC) Test Sites

    Science.gov (United States)

    Dallman, A.; Neary, V. S.

    2016-02-01

    The US Department of Energy's (DOE) Marine and Hydrokinetic energy (MHK) Program is supporting a diverse research and development portfolio intended to accelerate commercialization of the marine renewable industry by improving technology performance, reducing market barriers, and lowering the cost of energy. Wave resource characterization at potential and existing wave energy converter (WEC) test sites and deployment locations contributes to this DOE goal by providing a catalogue of wave energy resource characteristics, met-ocean data, and site infrastructure information, developed utilizing a consistent methodology. The purpose of the catalogue is to enable the comparison of resource characteristics among sites to facilitate the selection of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives. It also provides inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and operations and maintenance. The first edition included three sites: the Pacific Marine Energy Center (PMEC) North Energy Test Site (NETS) offshore of Newport, Oregon, the Kaneohe Bay Naval Wave Energy Test Site (WETS) offshore of Oahu, HI, and a potential site offshore of Humboldt Bay, CA (Eureka, CA). The second edition was recently finished, which includes five additional sites: the Jennette's Pier Wave Energy Converter Test Site in North Carolina, the US Army Corps of Engineers (USACE) Field Research Facility (FRF), the PMEC Lake Washington site, the proposed PMEC South Energy Test Site (SETS), and the proposed CalWave Central Coast WEC Test Site. The operational sea states are included according to the IEC Technical Specification on wave energy resource assessment and characterization, with additional information on extreme sea states, weather windows, and representative spectra. The methodology and a summary of results will be discussed.

  10. Political aspects of nuclear test effects at Semipalatinsk nuclear test site

    International Nuclear Information System (INIS)

    Sydykov, E.B.; Panin, M.S.

    2003-01-01

    The paper describes tense struggle of Kazakhstan people for closure of the Semipalatinsk Nuclear Test Site. It reveals major foreign policy aspects and nuclear test effects for both Kazakhstan and the world community. (author)

  11. Site study plan for Upper Aquifer Hydrology Clusters, Deaf Smith County Site, Texas: Surface-based geotechnical field program: Preliminary draft

    International Nuclear Information System (INIS)

    1988-01-01

    As part of site characterization studies, at the Deaf Smith County site, Texas, 15 wells at 5 locations will be completed in the Ogallala Formation and Dockum Group. The purposes of the wells, which are called Upper Aquifer (2) establish background hydrologic and water quality conditions, (3) provide analysis, (4) monitor responses of the shallow hydrologic system to site activities and nearby pumpage for irrigation, (5) collect water samples from both saturated and unsaturated materials to help define recharge rates and ground-water flow patterns, (6) monitor variations on water quality, and (7) define ground-water resources near the site. The test wells will be installed during a 14-month period starting about 1-1/2 years after site characterization activities begin. The Technical Field Services Contractor is responsible for conducting the field program of drilling and testing. Samples and data will be handled and reported in accordance with established Salt Repository Project procedures. A quality assurance program will assure that activities affecting quality are performed correctly and that the appropriate documentation is maintained. 44 refs., 19 figs., 5 tabs

  12. ANAEROBIC DEGRADATION OF MTBE TO TBA IN GROUND WATER AT GASOLINE SPILL SITES IN ORANGE COUNTY, CALIFORNIA

    Science.gov (United States)

    Although tert-Butyl Alcohol (TBA) has not been used as a fuel oxygenate in Orange County, California, the concentrations of TBA in ground water at gasoline spill sites are high compared to the concentrations of the conventional fuel oxygenate Methyl tert-Butyl Ether (MTBE). In t...

  13. Study of the man-caused destabilization consequences to the Semipalatinsk test site subsurface

    International Nuclear Information System (INIS)

    Gorbunova, Eh.M.

    2004-01-01

    Conduction of underground nuclear explosions (UNE) at the territory of the Semipalatinsk Test Site (STS) has led to irreversible deformation of the geological environment. The carried out experimental researches on study of the UNE effect on the rocks massif allowed to ascertain the basic mechanisms of man-caused subsurface destabilization, which is a change in the physic-mechanical characteristics and filtering structure of the background medium, hydrogeodynamic and radiation situation. The consequences of the post-explosion deformations detected in the massif conjugate not only with the epicenter zone of UNE, but are also related to the structural boundaries of various range (to faults, lithologic contacts, boundaries of inhomogeneous media). The consequences were partially detected on the ground surface as well. (author)

  14. Monitoring of active layer dynamics at a permafrost site on Svalbard using multi-channel ground-penetrating radar

    Directory of Open Access Journals (Sweden)

    S. Westermann

    2010-11-01

    Full Text Available Multi-channel ground-penetrating radar is used to investigate the late-summer evolution of the thaw depth and the average soil water content of the thawed active layer at a high-arctic continuous permafrost site on Svalbard, Norway. Between mid of August and mid of September 2008, five surveys have been conducted in gravelly soil over transect lengths of 130 and 175 m each. The maximum thaw depths range from 1.6 m to 2.0 m, so that they are among the deepest thaw depths recorded in sediments on Svalbard so far. The thaw depths increase by approximately 0.2 m between mid of August and beginning of September and subsequently remain constant until mid of September. The thaw rates are approximately constant over the entire length of the transects within the measurement accuracy of about 5 to 10 cm. The average volumetric soil water content of the thawed soil varies between 0.18 and 0.27 along the investigated transects. While the measurements do not show significant changes in soil water content over the first four weeks of the study, strong precipitation causes an increase in average soil water content of up to 0.04 during the last week. These values are in good agreement with evapotranspiration and precipitation rates measured in the vicinity of the the study site. While we cannot provide conclusive reasons for the detected spatial variability of the thaw depth at the study site, our measurements show that thaw depth and average soil water content are not directly correlated.

    The study demonstrates the potential of multi-channel ground-penetrating radar for mapping thaw depth in permafrost areas. The novel non-invasive technique is particularly useful when the thaw depth exceeds 1.5 m, so that it is hardly accessible by manual probing. In addition, multi-channel ground-penetrating radar holds potential for mapping the latent heat content of the active layer and for estimating weekly to monthly averages of the ground heat flux during the

  15. Assessment of natural attenuation of ground-water contamination at sites FT03, LF13, and WP14/LF15, Dover Air Force Base, Delaware

    Science.gov (United States)

    Barbaro, Jeffrey R.

    2002-01-01

    Water-quality, aquifer-sediment, and hydro-logic data were used to assess the effectiveness of natural attenuation of ground-water contamination at Fire Training Area Three, the Rubble Area Landfill, the Liquid Waste Disposal Landfill, and the Receiver Station Landfill in the East Management Unit of Dover Air Force Base, Delaware. These sites, which are contaminated with chlorinated solvents and fuel hydrocarbons, are under-going long-term monitoring to determine if natural attenuation continues to sufficiently reduce contaminant concentrations to meet regulatory requirements. This report is the first assessment of the effectiveness of natural attenuation at these sites since long-term monitoring began in 1999, and follows a preliminary investigation done in 1995?96. This assessment was done by the U.S. Geological Survey in cooperation with the U.S. Air Force.Since 1995?96, additional information has been collected and used in the current assessment. The conclusions in this report are based primarily on ground-water samples collected from January through March 2000. Previous analytical results from selected wells, available geologic and geo-physical well logs, and newly acquired information such as sediment organic-carbon measurements, hydraulic-conductivity measurements determined from slug tests on wells in the natural attenuation study area, and water-level measurements from surficial-aquifer wells also were used in this assessment. This information was used to: (1) calculate retardation factors and estimate contaminant migration velocities, (2) improve estimates of ground-water flow directions and inferred contaminant migration pathways, (3) better define the areal extent of contamination and the proximity of contaminants to discharge areas and the Base boundary, (4) develop a better under-standing of the vertical variability of contaminant concentrations and redox conditions, (5) evaluate the effects of temporal changes on concentrations in the plumes and

  16. A blind test of nondestructive underground void detection by ground penetrating radar (GPR)

    Science.gov (United States)

    Lai, Wallace W. L.; Chang, Ray K. W.; Sham, Janet F. C.

    2018-02-01

    Blind test/experiment is widely adopted in various scientific disciplines like medicine drug testing/clinical trials/psychology, but not popular in nondestructive testing and evaluation (NDTE) nor near-surface geophysics (NSG). This paper introduces a blind test of nondestructive underground void detection in highway/pavement using ground penetrating radar (GPR). Purpose of which is to help the Highways Department (HyD) of the Hong Kong Government to evaluate the feasibility of large-scale and nationwide application, and examine the ability of appropriate service providers to carry out such works. In the past failure case of such NDTE/NSG based on lowest bid price, it is not easy to know which part(s) in SWIMS (S - service provider, i.e. people; W - work procedure; I - instrumentation; M - materials in the complex underground; S - specifications by client) fails, and how it/they fail(s). This work attempts to carry out the blind test by burying fit balls (as voids) under a site with reinforced concrete road and paving block by PolyU team A. The blind test about the void centroid, spread and cover depth was then carried out by PolyU team B without prior information given. Then with this baseline, a marking scheme, acceptance criteria and passing mark were set to test six local commercial service providers, determine their scores and evaluate the performance. A pass is a prerequisite of the award of a service contract of similar nature. In this first attempt of the blind test, results were not satisfactory and it is concluded that 'S-service provider' and 'W-work procedure' amongst SWIMS contributed to most part of the unsatisfactory performance.+

  17. Radiation doses to local populations near nuclear weapons test sites worldwide.

    Science.gov (United States)

    Simon, Steven L; Bouville, André

    2002-05-01

    Nuclear weapons testing was conducted in the atmosphere at numerous sites worldwide between 1946 and 1980, which resulted in exposures to local populations as a consequence of fallout of radioactive debris. The nuclear tests were conducted by five nations (United States, Soviet Union, United Kingdom, France, and China) primarily at 16 sites. The 16 testing sites, located in nine different countries on five continents (plus Oceania) contributed nearly all of the radioactive materials released to the environment by atmospheric testing; only small amounts were released at a fewother minor testing sites. The 16 sites discussed here are Nevada Test Site, USA (North American continent), Bikini and Enewetak, Marshall Islands (Oceania); Johnston Island, USA (Oceania), Christmas and Malden Island, Kiribati (Oceania); Emu Field, Maralinga, and Monte Bello Islands, Australia (Australian continent); Mururoa and Fangataufa, French Polynesia (Oceania), Reggane, Algeria (Africa), Novaya Zemlya and Kapustin Yar, Russia (Europe), Semipalatinsk, Kazakhstan (Asia), and Lop Nor, China (Asia). There were large differences in the numbers of tests conducted at each location and in the total explosive yields. Those factors, as well as differences in population density, lifestyle, environment, and climate at each site, led to large differences in the doses received by local populations. In general, the tests conducted earliest led to the highest individual and population exposures, although the amount of information available for a few of these sites is insufficient to provide any detailed evaluation of radiation exposures. The most comprehensive information for any site is for the Nevada Test Site. The disparities in available information add difficulty to determining the radiation exposures of local populations at each site. It is the goal of this paper to summarize the available information on external and internal doses received by the public living in the regions near each of the

  18. Confirmation test on the dynamic interaction between a model reactor-building foundation and ground in the Sendai Nuclear Power Station

    International Nuclear Information System (INIS)

    Umezu, Hideo; Kisaki, Noboru; Shiota, Mutsumi

    1982-01-01

    On the site of unit 2 (planned) in the Sendai Nuclear Power Station, a model reactor-building foundation of reinforced concrete with diameter of 12 m and height of 5 m was installed. With a vibration generator, its forced vibration tests were carried out in October to December, 1980. Valuable data were able to be obtained on the dynamic interaction between the model foundation and the ground, and also the outlook for the application of theories in hard base rock was obtained. (1) The resonance frequency of the model foundation in horizontal vibration was 35 Hz in both NS and EW directions. (2) Remarkable difference was not observed in the horizontal vibration behavior between NS and EW directions, so that there is not anisotropy in the ground. (3) The model foundation was deformed nearly as a rigid body. (J.P.N.)

  19. Controlled Archaeological Test Site (CATS) Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CATS facility is at the Construction Engineering Research Laboratory (CERL), Champaign, IL. This 1-acre test site includes a variety of subsurface features carefully...

  20. Test of ground-based Lidar instrument WLS7-106

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula

    This report presents the result of the test performed for the given Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. The test aims at establishing a relation between the reference wind measurements and corresponding lidar wind indications, and evaluating a set of quality...

  1. Test of ground-based lidar instrument WLS7-159

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Wagner, Rozenn

    This report presents the result of the test performed for the given Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. The test aims at establishing a relation between the reference wind measurements and corresponding lidar wind indications, and evaluating a set of quality...

  2. HIV/AIDS testing sites and locator services

    Data.gov (United States)

    U.S. Department of Health & Human Services — The HIV Testing Sites & Care Services Locator is a first-of-its-kind, location-based search tool that allows you to search for testing services, housing...

  3. Monitoring ground deformation of cultural heritage sites using UAVs and geodetic techniques: the case study of Choirokoitia, JPI PROTHEGO project

    Science.gov (United States)

    Themistocleous, Kyriacos; Danezis, Chris; Mendonidis, Evangelos; Lymperopoulou, Efstathia

    2017-10-01

    This paper presents the integrated methods using UAVs and geodetic techniques to monitor ground deformation within the Choirokoitia UNESCO World Heritage Site in Cyprus. The Neolithic settlement of Choirokoitia, occupied from the 7th to the 4th millennium B.C., is one of the most important prehistoric sites in the eastern Mediterranean. The study is conducted under the PROTHEGO (PROTection of European Cultural HEritage from GeO-hazards) project, which is a collaborative research project funded in the framework of the Joint Programming Initiative on Cultural Heritage and Global Change (JPICH) - Heritage Plus in 2015-2018 (www.prothego.eu) and through the Cyprus Research Promotion Foundation. PROTHEGO aims to make an innovative contribution towards the analysis of geo-hazards in areas of cultural heritage, and uses novel space technology based on radar interferometry to retrieve information on ground stability and motion in the 400+ UNESCO's World Heritage List monuments and sites of Europe. The field measurements collected at the Choirokoitia site will be later compared with SAR data to verify micro-movements in the area to monitor potential geo-hazards. The site is located on a steep hill, which makes it vulnerable to rock falls and landslides.

  4. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 398: Area 25 Spill Sites, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    K. B. Campbell

    2001-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) plan addresses the activities necessary to close Corrective Action Unit (CAU) 398: Area 25 Spill Sites. CAU 398, located in Area 25 of the Nevada Test Site, is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996), and consists of the following 13 Corrective Action Sites (CASs) (Figure 1): (1) CAS 25-44-01 , a fuel spill on soil that covers a concrete pad. The origins and use of the spill material are unknown, but the spill is suspected to be railroad bedding material. (2) CAS 25-44-02, a spill of liquid to the soil from leaking drums. (3) CAS 25-44-03, a spill of oil from two leaking drums onto a concrete pad and surrounding soil. (4) CAS 25-44-04, a spill from two tanks containing sulfuric acid and sodium hydroxide used for a water demineralization process. (5) CAS 25-25-02, a fuel or oil spill from leaking drums that were removed in 1992. (6) CAS 25-25-03, an oil spill adjacent to a tipped-over drum. The source of the drum is not listed, although it is noted that the drum was removed in 1991. (7) CAS 25-25-04, an area on the north side of the Engine-Maintenance, Assembly, and Disassembly (E-MAD) facility, where oils and cooling fluids from metal machining operations were poured directly onto the ground. (8) CAS 25-25-05, an area of oil and/or hydraulic fluid spills beneath the heavy equipment once stored there. (9) CAS 25-25-06, an area of diesel fuel staining beneath two generators that have since been removed. (10) CAS 25-25-07, an area of hydraulic oil spills associated with a tunnel-boring machine abandoned inside X-Tunnel. (11) CAS 25-25-08, an area of hydraulic fluid spills associated with a tunnel-boring machine abandoned inside Y-Tunnel. (12) CAS 25-25-16, a diesel fuel spill from an above-ground storage tank located near Building 3320 at Engine Test Stand-1 (ETS-1) that was removed in 1998. (13) CAS 25-25-17, a hydraulic oil spill

  5. Site observational work plan for the UMTRA project site at Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1996-01-01

    This site observational work plan (SOWP) is one of the first Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project documents developed to select a compliance strategy that meets the UMTRA ground water standards for the Grand Junction site. This SOWP applies information about the Grand Junction site to the compliance strategy selection framework developed in the UMTRA Ground Water Project draft programmatic environmental impact statement. This risk-based, decision-making framework identifies the decision logic for selecting compliance strategies that could be used to meet the ground water standards. The US Department of Energy (DOE) goal is to implement a cost-effective site strategy that complies with the ground water standards and protects human health and the environment. Based on an evaluation of the site characterization and risk assessment data available for the preparation of this SOWP, DOE proposes that the most likely compliance strategy for the Grand Junction site is no remediation with the application of supplemental standards. This proposed strategy is based on a conceptual site model that indicates site-related contamination is confined to a limited-use aquifer as defined in the ground water standards. The conceptual model demonstrates that the uranium processing-related contamination at the site has affected the unconfined alluvial aquifer, but not the deeper confined aquifer

  6. Structural geology of the French Peak accommodation zone, Nevada Test Site, southwestern Nevada

    International Nuclear Information System (INIS)

    Hudson, M.R.

    1997-01-01

    The French Peak accommodation zone (FPAZ) forms an east-trending bedrock structural high in the Nevada Test Site region of southwestern Nevada that formed during Cenozoic Basin and Range extension. The zone separates areas of opposing directions of tilt and downthrow on faults in the Yucca Flat and Frenchman Flat areas. Paleomagnetic data show that rocks within the accommodation zone adjacent to Yucca Flat were not strongly affected by vertical-axis rotation and thus that the transverse strikes of fault and strata formed near their present orientation. Both normal- and oblique strike-slip faulting in the FPAZ largely occurred under a normal-fault stress regime, with least principal stress oriented west-northwest. The normal and sinistral faults in the Puddle Peka segment transfers extension between the Plutonium Valley normal fault zone and the Cane Spring sinistral fault. Recognition of sinistral shear across the Puddle Peak segment allows the Frenchman Flat basin to be interpreted as an asymmetric pull-apart basin developed between the FPAZ and a zone of east-northeast-striking faults to the south that include the Rock Valley fault. The FPAZ has the potential to influence ground-water flow in the region in several ways. Fracture density and thus probably fracture conductivity is high within the FPAZ due to the abundant fault splays present. Moreover,, fractures oriented transversely to the general southward flow of ground water through Yucca Flat area are significant and have potential to laterally divert ground water. Finally, the FPAZ forms a faulted structural high whose northern and southern flanks may permit intermixing of ground waters from different aquifer levels, namely the lower carbonate, welded tuff, and alluvial aquifers. 42 refs

  7. Intrusive sampling and testing of ferrocyanide tanks, Hanford Site, Richland, Washington: Environmental Assessment

    International Nuclear Information System (INIS)

    1992-02-01

    The proposed action involves intrusive sampling and testing of 24 Hanford Site single-shell waste tanks that contain ferrocyanide-nitrate/nitrite mixtures to determine the physical and chemical properties of the waste material. The Department of Energy (DOE) needs to take this action to help define the required controls to prevent or mitigate the potential for an accident during future characterization and monitoring of these tanks. Given the Unreviewed Safety Question associated with the consequences of a potential ferrocyanide nitrate/nitrite reaction, two safety assessments and this environmental assessment (EA) have been prepared to help ensure that the proposed action is conducted in a safe and environmentally sound manner. Standard operating procedures for sampling high-level waste tanks have been revised to reflect the potential presence of flammable or explosive mixtures in the waste. The proposed action would be conducted using nonsparking materials, spark resistant tools, and a portable containment enclosure (greenhouse) and plastic ground cover. The proposed activities involving Hanford Site ferrocyanide-containing tanks would be on land dedicated to DOE waste management

  8. Nevada Test Site Environmental Report 2007 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2008-09-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) directs the management and operation of the Nevada Test Site (NTS). The NTS is the nation's historical testing site for nuclear weapons from 1951 through 1992 and is currently the nation's unique site for ongoing national-security related missions and high-risk operations. NNSA/NSO strives to provide to the public an understanding of the current activities on the NTS, including environmental monitoring and compliance activities aimed at protecting the public and the environment from radiation hazards and from nonradiological impacts. This document is a summary of the Nevada Test Site Environmental Report (NTSER) for calendar year 2007 (see attached compact disc on inside back cover). The NTSER is a comprehensive report of environmental activities performed at the NTS and offsite facilities over the previous calendar year. It is prepared annually to meet the requirements and guidelines of the U.S. Department of Energy (DOE) and the information needs of NNSA/NSO stakeholders. To provide an abbreviated and more readable version of the NTSER, this summary report is produced. This summary does not include detailed data tables, monitoring methods or design, a description of the NTS environment, or a discussion of all environmental program activities performed throughout the year. The reader may obtain a hard copy of the full NTSER as directed on the inside front cover of this summary report.

  9. Investigation of ground water aquifer at Tlogorejo Site Karangawen District, Demak Regency, Central Java

    International Nuclear Information System (INIS)

    Lilik Subiantoro; Priyo Sularto; Slamet Sudarto

    2009-01-01

    Demak is one of regency are placed at north beach central Java. Some part of this area especially Tlogorejo site Karangawen have the problem of fresh water availability. Conditions of insufficient Standard Water have been recognized in some part of the region, those are Karangrowo area, Undaan District. The problem of clean water in this area is caused by sea water trapped in sedimentary material during sedimentation process, so the trapped ground water character is brine or brackish. One of the alternatives to overcome water problem is election or delineated of the prospect area for exploiting of ground water. Referring to those problems Pusbang Geologi Nuklir BATAN means to conduct investigation of ground water in some location which has problem of clean water. The ground investigation activity is to get information about the geology, hydrogeology and sub surface geophysical characteristic, which is needed to identification of ground water aquifer. To obtain those targets, conducted by topographic measurement in 1:5000 scale maps, measurement of soil radioactivity, geology and hydrogeology mapping, geo-electrical 2-D image measurement Base on observation, analysis, evaluation and discussion was identified the existence of potential confined aquifer that happened at the layer sand that is trapped in the in impermeable layer of clay, which is potential for confined aquifer. Potency of aquifer with the best condition from bad, there are placed on geophysical measurement is ''Sand Aquifer Layer-1'' are located at RB 1 (TLG-5), RB 2 (TLG-4) and RB 3 (TLG-22). Physical characterized of aquifer: resistivity 22-46 Ωm, the depth of surface water 110 to 146 meter. (author)

  10. Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    1993-11-01

    This report develops and applies a method for estimating strong earthquake ground motion. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Specifically considered are ground motions resulting from earthquakes with magnitudes from 5 to 8, fault distances from 0 to 500 km, and frequencies from 1 to 35 Hz. The two main objectives were: (1) to develop generic relations for estimating ground motion appropriate for site screening; and (2) to develop a guideline for conducting a thorough site investigation needed to define the seismic design basis. For the first objective, an engineering model was developed to predict the expected ground motion on rock sites, with an additional set of amplification factors to account for the response of the soil column over rock at soil sites. The results incorporate best estimates of ground motion as well as the randomness and uncertainty associated with those estimates. For the second objective, guidelines were developed for gathering geotechnical information at a site and using this information in calculating site response. As a part of this development, an extensive set of geotechnical and seismic investigations was conducted at three reference sites. Together, the engineering model and guidelines provide the means to select and assess the seismic suitability of a site

  11. Nuclear test at Semipalatinsk test site and their environmental impacts

    International Nuclear Information System (INIS)

    Logachev, V.A.

    2000-01-01

    This paper present classification of nuclear tests conducted at the Semipalatinsk test site by tier radiation hazards. The Institute of Biophysics of the Russian Ministry of Health established a data base the archival data on radiation situation parameters and compiled an album of radioactive plum footprints. The paper states that external and internal exposure doses received by population lived in the test vicinity can sufficiently reliably assesses using archival data. (author)

  12. Evaluation of chemical sensors for in situ ground-water monitoring at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E.M.; Hostetler, D.D.

    1989-03-01

    This report documents a preliminary review and evaluation of instrument systems and sensors that may be used to detect ground-water contaminants in situ at the Hanford Site. Three topics are covered in this report: (1) identification of a group of priority contaminants at Hanford that could be monitored in situ, (2) a review of current instrument systems and sensors for environmental monitoring, and (3) an evaluation of instrument systems that could be used to monitor Hanford contaminants. Thirteen priority contaminants were identified in Hanford ground water, including carbon tetrachloride and six related chlorinated hydrocarbons, cyanide, methyl ethyl ketone, chromium (VI), fluoride, nitrate, and uranium. Based on transduction principles, chemical sensors were divided into four classes, ten specific types of instrument systems were considered: fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), spark excitation-fiber optic spectrochemical emission sensor (FOSES), chemical optrodes, stripping voltammetry, catalytic surface-modified ion electrode immunoassay sensors, resistance/capacitance, quartz piezobalance and surface acoustic wave devices. Because the flow of heat is difficult to control, there are currently no environmental chemical sensors based on thermal transduction. The ability of these ten instrument systems to detect the thirteen priority contaminants at the Hanford Site at the required sensitivity was evaluated. In addition, all ten instrument systems were qualitatively evaluated for general selectivity, response time, reliability, and field operability. 45 refs., 23 figs., 7 tabs.

  13. Evaluation of chemical sensors for in situ ground-water monitoring at the Hanford Site

    International Nuclear Information System (INIS)

    Murphy, E.M.; Hostetler, D.D.

    1989-03-01

    This report documents a preliminary review and evaluation of instrument systems and sensors that may be used to detect ground-water contaminants in situ at the Hanford Site. Three topics are covered in this report: (1) identification of a group of priority contaminants at Hanford that could be monitored in situ, (2) a review of current instrument systems and sensors for environmental monitoring, and (3) an evaluation of instrument systems that could be used to monitor Hanford contaminants. Thirteen priority contaminants were identified in Hanford ground water, including carbon tetrachloride and six related chlorinated hydrocarbons, cyanide, methyl ethyl ketone, chromium (VI), fluoride, nitrate, and uranium. Based on transduction principles, chemical sensors were divided into four classes, ten specific types of instrument systems were considered: fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), spark excitation-fiber optic spectrochemical emission sensor (FOSES), chemical optrodes, stripping voltammetry, catalytic surface-modified ion electrode immunoassay sensors, resistance/capacitance, quartz piezobalance and surface acoustic wave devices. Because the flow of heat is difficult to control, there are currently no environmental chemical sensors based on thermal transduction. The ability of these ten instrument systems to detect the thirteen priority contaminants at the Hanford Site at the required sensitivity was evaluated. In addition, all ten instrument systems were qualitatively evaluated for general selectivity, response time, reliability, and field operability. 45 refs., 23 figs., 7 tabs

  14. Effect of Mehmood Booti dumping site in Lahore on ground water quality

    International Nuclear Information System (INIS)

    Haydar, S.

    2012-01-01

    A study was carried out to elucidate the effects of Mehmood Booti dumping site in Lahore on the quality of groundwater in conterminous areas and recommend improvement measures. For this purpose, five tube wells were selected for collection of water samples. One of these was located within the premises of Mahmood Booti dumping site while another tube well at a distance of 8 km near Mall Road was selected as the control point to compare the test results. Three samples from each sampling point were collected before monsoon and three after monsoon with a total of thirty (30) samples for statistical significance. To find out the effect of leachate on groundwater quality, five parameters i.e. turbidity, pH, hardness, total dissolved solids and fecal coliform were tested. Mean value of test results was compared with the World Health Organization (WHO) guidelines for drinking water. It was indicated by the test results that physico-chemical quality of all sources (tube wells) was satisfactory. The test results indicated that 20% of water samples collected from the tube wells before monsoon contained fecal contaminant and that percentage rose to 60% after monsoon. The analysis of results showed that Mehmood Booti dumping site has no significant effect on the selected water quality parameters. (author)

  15. Analysis of reinjection problems at the Stony Brook ATES field test site

    Science.gov (United States)

    Supkow, D. J.; Shultz, J. A.

    1982-12-01

    Aquifer Thermal Energy Storage (ATES) is one of several energy storage technologies being investigated by the DOE to determine the feasibility of reducing energy consumption by means of energy management systems. The State University of New York, (SUNY) Stony Brook, Long Island, New York site was selected by Battelle PNL for a Phase 1 investigation to determine the feasibility of an ATES demonstration to seasonally store chill energy by injecting chilled water in the winter and recovering it at a maximum rate of 100 MBTU/hr (30 MW) in the summer. The Phase 1 study was performed during 1981 by Dames & Moore under subcontract to Batelle PLN. The pumping and injection tests were performed using two wells in a doublet configuration. Well PI-1 is a previously existing well and PI-2 was installed specifically for this investigation. Both wells are screened in the Upper Magothy aquifer from approximately 300 to 350 feet below ground surface. Nine observation wells were also installed as a portion of the investigation to monitor water level and aquifer temperature changes during the test.

  16. Joint ACE ground penetrating radar antenna test facility at the Technical University of Denmark

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter; Sarri, A.

    2005-01-01

    A ground penetrating radar (GPR) antenna test facility, established within the ACE network at the Technical University of Denmark (DTU), is described. Examples of results from the facility obtained from measurements of eight different GPR antennas are presented.......A ground penetrating radar (GPR) antenna test facility, established within the ACE network at the Technical University of Denmark (DTU), is described. Examples of results from the facility obtained from measurements of eight different GPR antennas are presented....

  17. Ground assessment methods for nuclear power plant

    International Nuclear Information System (INIS)

    1985-01-01

    It is needless to say that nuclear power plant must be constructed on the most stable and safe ground. Reliable assessment method is required for the purpose. The Ground Integrity Sub-committee of the Committee of Civil Engineering of Nuclear Power Plant started five working groups, the purpose of which is to systematize the assessment procedures including geological survey, ground examination and construction design. The works of working groups are to establishing assessment method of activities of faults, standardizing the rock classification method, standardizing assessment and indication method of ground properties, standardizing test methods and establishing the application standard for design and construction. Flow diagrams for the procedures of geological survey, for the investigation on fault activities and ground properties of area where nuclear reactor and important outdoor equipments are scheduled to construct, were established. And further, flow diagrams for applying investigated results to design and construction of plant, and for determining procedure of liquidification nature of ground etc. were also established. These systematized and standardized methods of investigation are expected to yield reliable data for assessment of construction site of nuclear power plant and lead to the safety of construction and operation in the future. In addition, the execution of these systematized and detailed preliminary investigation for determining the construction site of nuclear power plant will make much contribution for obtaining nation-wide understanding and faith for the project. (Ishimitsu, A.)

  18. About rehabilitation of vegetation of disturbed ecosystems of the Semipalatinsk test sites

    International Nuclear Information System (INIS)

    Plisak, R.P.; Plisak, S.V.

    2005-01-01

    areas is characterized by: 1. slight influence of zonal conditions and steppe vegetation on primary stages of restorative succession; 2. under PED of γ-irradiation of 20-200 μR/h vegetation rehabilitation begins with invasion of weed species; 3. under high levels of chronic ionizing irradiation (PED of γ-irradiation 800-5000 μR/h and higher) vegetation rehabilitation is limited by level of radiation pollution; 4. on primary stages of vegetation rehabilitation leading role belongs to annuals, biennials, perennial rhizome herbs and cespitosehemi chrysophyte; 5. besides eurytopic weed plants species of local flora (xerophyte-steppe cespitose grasses, shrubs-petrophytes, in valleys of rivers and springs-mesophytes) participate in restoration of vegetation of technogene ecotopes; 6. great importance in the process of vegetation restoration belongs to herbs, role of shrubs is insignificant; 7. radiation pollution of damaged areas provokes decrease of specie diversity. 8. For restoration of vegetation of Semipalatinsk Test Sites it is necessary to conduct out; 9. rehabilitation of its territory (remove poured polluted material, remains of debris, fragments of military and technical objects, surface layer of polluted soils); 10. technical preparation of ground of the dumps (laying out, terracing), its biological re-cultivation (restoration of soils, fixing of fine earth on slopes of the dumps) and phyto melioration; 11. phyto remediation of soils of polluted areas

  19. Ground-water sample collection and analysis plan for the ground-water surveillance project

    International Nuclear Information System (INIS)

    Bryce, R.W.; Evans, J.C.; Olsen, K.B.

    1991-12-01

    The Pacific Northwest Laboratory performs ground-water sampling activities at the US Department of Energy's (DOE's) Hanford Site in support of DOE's environmental surveillance responsibilities. The purpose of this document is to translate DOE's General Environmental Protection Program (DOE Order 5400.1) into a comprehensive ground-water sample collection and analysis plan for the Hanford Site. This sample collection and analysis plan sets forth the environmental surveillance objectives applicable to ground water, identifies the strategy for selecting sample collection locations, and lists the analyses to be performed to meet those objectives

  20. Flow Quality Analysis of Shape Morphing Structures for Hypersonic Ground Testing Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Background: Shape morphing, high temperature, ceramic structural materials are now becoming available and can revolutionize ground testing by providing dynamic flow...

  1. Penetration Testing Model for Web sites Hosted in Nuclear Malaysia

    International Nuclear Information System (INIS)

    Mohd Dzul Aiman Aslan; Mohamad Safuan Sulaiman; Siti Nurbahyah Hamdan; Saaidi Ismail; Mohd Fauzi Haris; Norzalina Nasiruddin; Raja Murzaferi Mokhtar

    2012-01-01

    Nuclear Malaysia web sites has been very crucial in providing important and useful information and services to the clients as well as the users worldwide. Furthermore, a web site is important as it reflects the organisation image. To ensure the integrity of the content of web site, a study has been made and a penetration testing model has been implemented to test the security of several web sites hosted at Nuclear Malaysia for malicious attempts. This study will explain how the security was tested in the detailed condition and measured. The result determined the security level and the vulnerability of several web sites. This result is important for improving and hardening the security of web sites in Nuclear Malaysia. (author)

  2. Site Observational Work Plan for the UMTRA Project Site at Shiprock, New Mexico. Revision

    International Nuclear Information System (INIS)

    1995-07-01

    The site observational work plan (SOWP) for the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project Site is one of the first documents for developing an approach for achieving ground water compliance at the site. This SOWP applies Shiprock site information to a regulatory compliance framework, which identifies strategies for meeting ground water compliance at the site. The compliance framework was developed in the UMTRA ground water programmatic environmental impact statement

  3. Thermal and Fluid Modeling of the CRYogenic Orbital TEstbed (CRYOTE) Ground Test Article (GTA)

    Science.gov (United States)

    Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark

    2012-01-01

    The purpose of this study was to anchor thermal and fluid system models to data acquired from a ground test article (GTA) for the CRYogenic Orbital TEstbed - CRYOTE. To accomplish this analysis, it was broken into four primary tasks. These included model development, pre-test predictions, testing support at Marshall Space Flight Center (MSFC} and post-test correlations. Information from MSFC facilitated the task of refining and correlating the initial models. The primary goal of the modeling/testing/correlating efforts was to characterize heat loads throughout the ground test article. Significant factors impacting the heat loads included radiative environments, multi-layer insulation (MLI) performance, tank fill levels, tank pressures, and even contact conductance coefficients. This paper demonstrates how analytical thermal/fluid networks were established, and it includes supporting rationale for specific thermal responses seen during testing.

  4. Hydrogeology of the 200 Areas low-level burial grounds

    International Nuclear Information System (INIS)

    Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.

    1989-01-01

    This report presents information derived from the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. This volume contains the main text. Volume 2 contains the appendixes, including data and supporting information that verify content and results found in the main text. This report documents information collected by the Pacific Northwest Laboratory at the request of Westinghouse Hanford Company. Presented in this report are the preliminary interpretations of the hydrogeologic environment of six low-level burial grounds, which comprise four waste management areas (WMAs) located in the 200 Areas of the Hanford Site. This information and its accompanying interpretations were derived from sampling and testing activities associated with the construction of 35 ground-water monitoring wells as well as a multitude of previously existing boreholes. The new monitoring wells were installed as part of a ground-water monitoring program initiated in 1986. This ground-water monitoring program is based on requirements for interim status facilities in compliance with the Resource Conservation and Recovery Act (1976)

  5. TESTING GROUND BASED GEOPHYSICAL TECHNIQUES TO REFINE ELECTROMAGNETIC SURVEYS NORTH OF THE 300 AREA, HANFORD, WASHINGTON

    International Nuclear Information System (INIS)

    Petersen, S.W.

    2010-01-01

    Airborne electromagnetic (AEM) surveys were flown during fiscal year (FY) 2008 within the 600 Area in an attempt to characterize the underlying subsurface and to aid in the closure and remediation design study goals for the 200-PO-1 Groundwater Operable Unit (OU). The rationale for using the AEM surveys was that airborne surveys can cover large areas rapidly at relatively low costs with minimal cultural impact, and observed geo-electrical anomalies could be correlated with important subsurface geologic and hydrogeologic features. Initial interpretation of the AEM surveys indicated a tenuous correlation with the underlying geology, from which several anomalous zones likely associated with channels/erosional features incised into the Ringold units were identified near the River Corridor. Preliminary modeling resulted in a slightly improved correlation but revealed that more information was required to constrain the modeling (SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site). Both time-and frequency domain AEM surveys were collected with the densest coverage occurring adjacent to the Columbia River Corridor. Time domain surveys targeted deeper subsurface features (e.g., top-of-basalt) and were acquired using the HeliGEOTEM(reg s ign) system along north-south flight lines with a nominal 400 m (1,312 ft) spacing. The frequency domain RESOLVE system acquired electromagnetic (EM) data along tighter spaced (100 m (328 ft) and 200 m (656 ft)) north-south profiles in the eastern fifth of the 200-PO-1 Groundwater OU (immediately adjacent to the River Corridor). The overall goal of this study is to provide further quantification of the AEM survey results, using ground based geophysical methods, and to link results to the underlying geology and/or hydrogeology. Specific goals of this project are as follows: (1) Test ground based geophysical techniques for the efficacy in delineating underlying geology; (2) Use ground

  6. TESTING GROUND BASED GEOPHYSICAL TECHNIQUES TO REFINE ELECTROMAGNETIC SURVEYS NORTH OF THE 300 AREA HANFORD WASHINGTON

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN SW

    2010-12-02

    Airborne electromagnetic (AEM) surveys were flown during fiscal year (FY) 2008 within the 600 Area in an attempt to characterize the underlying subsurface and to aid in the closure and remediation design study goals for the 200-PO-1 Groundwater Operable Unit (OU). The rationale for using the AEM surveys was that airborne surveys can cover large areas rapidly at relatively low costs with minimal cultural impact, and observed geo-electrical anomalies could be correlated with important subsurface geologic and hydrogeologic features. Initial interpretation of the AEM surveys indicated a tenuous correlation with the underlying geology, from which several anomalous zones likely associated with channels/erosional features incised into the Ringold units were identified near the River Corridor. Preliminary modeling resulted in a slightly improved correlation but revealed that more information was required to constrain the modeling (SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site). Both time-and frequency domain AEM surveys were collected with the densest coverage occurring adjacent to the Columbia River Corridor. Time domain surveys targeted deeper subsurface features (e.g., top-of-basalt) and were acquired using the HeliGEOTEM{reg_sign} system along north-south flight lines with a nominal 400 m (1,312 ft) spacing. The frequency domain RESOLVE system acquired electromagnetic (EM) data along tighter spaced (100 m [328 ft] and 200 m [656 ft]) north-south profiles in the eastern fifth of the 200-PO-1 Groundwater OU (immediately adjacent to the River Corridor). The overall goal of this study is to provide further quantification of the AEM survey results, using ground based geophysical methods, and to link results to the underlying geology and/or hydrogeology. Specific goals of this project are as follows: (1) Test ground based geophysical techniques for the efficacy in delineating underlying geology; (2) Use ground

  7. Advanced stellar compass deep space navigation, ground testing results

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Jørgensen, Peter Siegbjørn

    2006-01-01

    Deep space exploration is in the agenda of the major space agencies worldwide and at least the European Space Agency (SMART & Aurora Programs) and the American NASA (New Millennium Program) have set up programs to allow the development and the demonstration of technologies that can reduce the risks...... and the costs of the deep space missions. Navigation is the Achilles' heel of deep space. Being performed on ground, it imposes considerable constraints on the system and the operations, it is very expensive to execute, especially when the mission lasts several years and, above all, it is not failure tolerant...... to determine the orbit of a spacecraft autonomously, on-board and without any a priori knowledge of any kind. The solution is robust, elegant and fast. This paper presents the preliminary performances obtained during the ground tests. The results are very positive and encouraging....

  8. Analysis of dissolved benzene plumes and methyl tertiary butyl ether (MTBE) plumes in ground water at leaking underground fuel tank (LUFT) sites

    International Nuclear Information System (INIS)

    Happel, A.M.; Rice, D.; Beckenbach, E.; Savalin, L.; Temko, H.; Rempel, R.; Dooher, B.

    1996-11-01

    The 1990 Clean Air Act Amendments mandate the addition of oxygenates to gasoline products to abate air pollution. Currently, many areas of the country utilize oxygenated or reformulated fuel containing 15- percent and I I-percent MTBE by volume, respectively. This increased use of MTBE in gasoline products has resulted in accidental point source releases of MTBE containing gasoline products to ground water. Recent studies have shown MTBE to be frequently detected in samples of shallow ground water from urban areas throughout the United States (Squillace et al., 1995). Knowledge of the subsurface fate and transport of MTBE in ground water at leaking underground fuel tank (LUFT) sites and the spatial extent of MTBE plumes is needed to address these releases. The goal of this research is to utilize data from a large number of LUFT sites to gain insights into the fate, transport, and spatial extent of MTBE plumes. Specific goals include defining the spatial configuration of dissolved MTBE plumes, evaluating plume stability or degradation over time, evaluating the impact of point source releases of MTBE to ground water, and attempting to identify the controlling factors influencing the magnitude and extent of the MTBE plumes. We are examining the relationships between dissolved TPH, BTEX, and MTBE plumes at LUFT sites using parallel approaches of best professional judgment and a computer-aided plume model fitting procedure to determine plume parameters. Here we present our initial results comparing dissolved benzene and MTBE plumes lengths, the statistical significance of these results, and configuration of benzene and MTBE plumes at individual LUFT sites

  9. Stable isotopes of hydrogen and oxygen in surface water and ground water at selected sites on or near the Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Ott, D.S.; Cecil, L.D.; Knobel, L.L.

    1994-01-01

    Relative stable isotopic ratios for hydrogen and oxygen compared to standard mean ocean water are presented for water from 4 surface-water sites and 38 ground-water sites on or near the Idaho National Engineering Laboratory (INEL). The surface-water samples were collected monthly from March 1991 through April 1992 and after a storm event on June 18, 1992. The ground-water samples either were collected during 1991 or 1992. These data were collected as part of the US Geological Survey's continuing hydrogeological investigations at the INEL. The relative isotopic ratios of hydrogen and oxygen are reported as delta 2 H (δ 2 H) and as delta 18 O (δ 18 O), respectively. The values of δ 2 H and δ 18 O in water from the four surface-water sites ranged from -143.0 to -122 and from -18.75 to -15.55, respectively. The values of δ 2 H and δ 18 O in water from the 38 ground-water sites ranged from -141.0 to -120.0 and from -18.55 to -14.95, respectively

  10. Site observational work plan for the UMTRA Project Site at Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1996-03-01

    The U.S. Department of Energy (DOE) has prepared this initial site observational work plan (SOWP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project site in Grand Junction, Colorado. This SOWP is one of the first UMTRA Ground Water Project documents developed to select a compliance strategy that meets the UMTRA ground water standards (40 CFR Part 192, as amended by 60 FR 2854) for the Grand Junction site. This SOWP applies information about the Grand Junction site to the compliance strategy selection framework developed in the UMTRA Ground Water Project draft programmatic environmental impact statement (PEIS). This risk-based, decision-making framework identifies the decision logic for selecting compliance strategies that could be used to meet the ground water standards. The DOE goal is to use the observational method to implement a cost-effective site strategy that complies with the ground water standards and protects human health and the environment. Based on an evaluation of the site characterization and risk assessment data available for the preparation of this SOWP, DOE proposes that the most likely compliance strategy for the Grand Junction site is no remediation based on the application of supplemental standards. This proposed strategy is based on a conceptual site model that indicates site-related contamination is confined to a limited-use aquifer as defined in the ground water standards

  11. HIV testing sites' communication about adolescent confidentiality: potential barriers and facilitators to testing.

    Science.gov (United States)

    Hyden, Christel; Allegrante, John P; Cohall, Alwyn T

    2014-03-01

    This study sought to evaluate HIV testing locations in New York City in terms of staff communication of confidentiality policies for adolescent clients. Using the New York State Directory of HIV Counseling and Testing Resources as a sampling frame, this study made telephone contact with 164 public HIV testing locations in New York City and used a semistructured interview to ask questions about confidentiality, parental permission, and parent access to test results. At 48% of locations, either HIV testing was not offered or we were unable to reach a staff member to ask questions about testing options and confidentiality. At the remaining sites, information provided regarding confidentiality, parental consent, and privacy of test results was correct only 69% to 85% of the time. Additionally, 23% of sites successfully contacted offered testing exclusively between 9:00 a.m. and 3:00 p.m. weekdays, when most adolescents are in school. Our findings point to a need for increased training and quality control at the clinical level to ensure that consumers in need of HIV testing are provided with accurate information and accessible services. Furthermore, these results highlight the need for more "patient-centric" sites with enhanced accessibility for potential clients, particularly youth.

  12. Searching for the IRA "disappeared": ground-penetrating radar investigation of a churchyard burial site, Northern Ireland.

    Science.gov (United States)

    Ruffell, Alastair

    2005-11-01

    A search for the body of a victim of terrorist abduction and murder was made in a graveyard on the periphery of a major conurbation in Northern Ireland. The area is politically sensitive and the case of high profile. This required non-invasive, completely non-destructive and rapid assessment of the scene. A MALA RAMAC ground-penetrating radar system was used to achieve these objectives. Unprocessed and processed 400 MHz data show the presence of a collapse feature above and around a known 1970s burial with no similar collapse above the suspect location. In the saturated, clay-rich sediments of the site, 200 MHz data offered no advantage over 400 MHz data. Unprocessed 100 MHz data shows a series of multiples in the known burial with no similar features in the suspect location. Processed 100 MHz lines defined the shape of the collapse around the known burial to 2 m depth, together with the geometry of the platform (1 m depth) the gravedigger used in the 1970s to construct the site. In addition, processed 100 MHz data showed both the dielectric contrast in and internal reflection geometry of the soil imported above the known grave. Thus the sequence, geometry, difference in infill and infill direction of the grave was reconstructed 30 years after burial. The suspect site showed no evidence of shallow or deep inhumation. Subsequently, the missing person's body was found some distance from this site, vindicating the results and interpretation from ground-penetrating radar. The acquisition, processing, collapse feature and sequence stratigraphic interpretation of the known burial and empty (suspect) burial site may be useful proxies for other, similar investigations. GPR was used to evaluate this site within 3 h of the survey commencing, using unprocessed data. An additional day of processing established that the suspect body did not reside here, which was counter to police and community intelligence.

  13. {sup 137}Cs, {sup 90}Sr, {sup 241}Am and {sup 239+240}Pu radionuclides speciation in soils of the former Semipalatinsk test site

    Energy Technology Data Exchange (ETDEWEB)

    Kabdyrakova, A.M.; Kunduzbaeva, A.Y.; Lukashenko, S.N.; Magasheva, R.Y. [Institute of radiation safety and ecology (Kazakhstan)

    2014-07-01

    The paper presents results of studies into {sup 137}Cs and {sup 90}Sr, {sup 241}Am and {sup 239+240}Pu techno-genic radionuclides speciation in soils of ecosystems at different topography of the Semipalatinsk Test Site (STS), exposed to different nuclear testing. The data were obtained for radionuclides speciation in soils of the following STS ecosystems: - grassland ecosystems within near-portal areas of tunnels - horizontal adits constructed for nuclear testing, affected by radioactive-contaminated water flows from the tunnels of Degelen Site; - steppe ecosystems, exposed to ground radioactive contamination resulted from above-ground and aerial nuclear testing of different yield, as well as simulation (hydrodynamic and hydro-nuclear) experiments at 'Experimental Field' testing site. - steppe ecosystems, exposed to ground radioactive contamination caused by testing of liquid and powdery radiological warfare weapon (RWW) at Site '4 a'; - 'Northern' and 'Western' areas of STS, where concentration level of artificial radionuclides in soil is comparable with the level of global fall-outs ('background' areas). To study the radionuclides speciation, method of sequential extraction was applied, and water-soluble, exchange, organic mobile and tightly bound forms were separated. Feature of the studied grassland ecosystems is that they are developed solely along the bed of water streams flowing from tunnels and are located at small area of 1-2 m{sup 2}. Radioactive contamination of soil is caused by radioactive contaminant sorption by sediments. Despite the significant space limitation of the ecosystems content of radionuclides speciation in soil greatly varies, particularly readily-soluble and mobile forms. The variation may be explained by high humidity which makes possible both sorption and desorption processes. If basic radionuclides contributing to radioactive contamination of grassland soils at Degelen Site are {sup

  14. Test Area for Remedial Actions (TARA) site characterization and dynamic compaction of low-level radioactive waste trenches. FY 1988 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, E. C.; Spalding, B. P.; Lee, S. Y.; Hyder, L. K.

    1989-01-01

    As part of a low-level radioactive waste burial ground stabilization and closure technology demonstration project, a group of five burial trenches in Oak Ridge National Laboratory (ORNL) Solid Waste Storage Area (SWSA) 6 was selected as a demonstration site for testing trench compaction, trench grouting, and trench cap installation and performance. This report focuses on site characterization, trench compaction, and grout-trench leachate compatibility. Trench grouting and cap design and construction will be the subject of future reports. The five trenches, known as the Test Area for Remedial Actions (TARA) site, are contained within a hydrologically isolated area of SWSA 6; for that reason, any effects of stabilization activities on site performance and groundwater quality will be separable from the influence of other waste disposal units in SWSA 6. To obviate the chronic problem of burial trench subsidence and to provide support for an infiltration barrier cap, these five trenches were dynamically compacted by repeated dropping of a 4-ton weight onto each trench from heights of approximately 7 m.

  15. Development of a Ground Test and Analysis Protocol for NASA's NextSTEP Phase 2 Habitation Concepts

    Science.gov (United States)

    Gernhardt, Michael L.; Beaton, Kara H.; Chappell, Steven P.; Bekdash, Omar S.; Abercromby, Andrew F. J.

    2018-01-01

    The NASA Next Space Technologies for Exploration Partnerships (NextSTEP) program is a public-private partnership model that seeks commercial development of deep space exploration capabilities to support human spaceflight missions around and beyond cislunar space. NASA first issued the Phase 1 NextSTEP Broad Agency Announcement to U.S. industries in 2014, which called for innovative cislunar habitation concepts that leveraged commercialization plans for low-Earth orbit. These habitats will be part of the Deep Space Gateway (DSG), the cislunar space station planned by NASA for construction in the 2020s. In 2016, Phase 2 of the NextSTEP program selected five commercial partners to develop ground prototypes. A team of NASA research engineers and subject matter experts (SMEs) have been tasked with developing the ground-test protocol that will serve as the primary means by which these Phase 2 prototypes will be evaluated. Since 2008, this core test team has successfully conducted multiple spaceflight analog mission evaluations utilizing a consistent set of operational tools, methods, and metrics to enable the iterative development, testing, analysis, and validation of evolving exploration architectures, operations concepts, and vehicle designs. The purpose of implementing a similar evaluation process for the Phase 2 Habitation Concepts is to consistently evaluate different commercial partner ground prototypes to provide data-driven, actionable recommendations for Phase 3. This paper describes the process by which the ground test protocol was developed and the objectives, methods, and metrics by which the NextSTEP Phase 2 Habitation Concepts will be rigorously and systematically evaluated. The protocol has been developed using both a top-down and bottom-up approach. Top-down development began with the Human Exploration and Operations Mission Directorate (HEOMD) exploration objectives and ISS Exploration Capability Study Team (IECST) candidate flight objectives. Strategic

  16. Comparison of the inelastic response of steel building frames to strong earthquake and underground nuclear explosion ground motion

    International Nuclear Information System (INIS)

    Murray, R.C.; Tokarz, F.J.

    1976-01-01

    Analytic studies were made of the adequacy of simulating earthquake effects at the Nevada Test Site for structural testing purposes. It is concluded that underground nuclear explosion ground motion will produce inelastic behavior and damage comparable to that produced by strong earthquakes. The generally longer duration of earthquakes compared with underground nuclear explosions does not appear to significantly affect the structural behavior of the building frames considered. A comparison of maximum ductility ratios, maximum story drifts, and maximum displacement indicate similar structural behavior for both types of ground motion. Low yield (10 - kt) underground nuclear explosions are capable of producing inelastic behavior in large structures. Ground motion produced by underground nuclear explosions can produce inelastic earthquake-like effects in large structures and could be used for testing large structures in the inelastic response regime. The Nevada Test Site is a feasible earthquake simulator for testing large structures

  17. Ground motion effects of underground nuclear testing on perennial vegetation at Nevada Test Site

    International Nuclear Information System (INIS)

    Rhoads, W.A.

    1976-07-01

    In this study to estimate the potential injury to vegetation from earth movement caused by underground nuclear detonations and to estimate the extent to which this may have occurred at NTS, two explosions in the megaton range on Pahute Mesa were studied in some detail: Boxcar, which caused a surface subsidence, and Benham, which did not. Because of the subsidence phenomenology, shock propagation through the earth and along the surface, and the resulting fractures, shrubs were killed at Boxcar around the perimeter of the subsidence crater. Both trees and shrubs were killed along tectonic faults, which became the path for earth fractures, and along fractures and rock falls elsewhere. There was also evidence at Boxcar of tree damage which antedated the nuclear testing program, presumably from natural earthquakes. With the possible exception of damage to aged junipers this investigation did not reveal any good evidence of immediate effects from underground testing on vegetation beyond that recognized earlier as the edge effect

  18. Development of Ground Test System For RKX-200EB

    Science.gov (United States)

    Yudhi Irwanto, Herma

    2018-04-01

    After being postponed for seven years, the development of RKX-200EB now restarts by initiating a ground test, preceding the real flight test. The series of the development starts from simulation test using the real vehicle and its components, focusing on a flight sequence test using hardware in the loop simulation. The result of the simulation shows that the autonomous control system in development is able to control the X tail fin vehicle, since take off using booster, separating booster-sustainer, making flight maneuver using sustainer with average cruise speed of 1000 km/h, and doing bank to maneuver up to ±40 deg heading to the target. The simulation result also shows that the presence of sustainer in vehicle control can expand the distance range by 162% (12.6 km) from its ballistic range using only a booster.

  19. Nevada Test Site Environmental Report 2008 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2009-09-01

    The Nevada Test Site Environmental Report (NTSER) 2008 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ NTSERs are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx.

  20. Composite liners protect ground water

    Energy Technology Data Exchange (ETDEWEB)

    Tatzky, R; August, H

    1987-12-01

    For about 10 years flexible membrane liners (FMLs) have been used as bottom liners to protect ground water in the vicinity of waste sites. But a permeation (absorption, diffusion, desorption) of chemical liquids, e.g. hydrocarbons (HC) and chlorinated hydrocarbons (CHC) will generally occur. The rates of permeation depend, first of all, on the chemical affinity, the thickness of the FML and the boundary conditions. In order to improve the barrier quality of polymeric membranes, it is necessary to study the transport processes of HC and CHC through the polymeric materials. Long-term tests with composite liners are additionally carried out. These are liners which consist of two components, flexible membrane and natural soil liner (recompacted clay, bentonite-soil mixtures). Laboratory studies show that with composite liners a perfect sealing of waste sites may be possible. Test methods for measuring permeation rates of HC and CHC through polymeric membranes and methods of testing for the development of composite liner systems are presented. (orig.)

  1. Interdisciplinary hydrogeologic site characterization at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hawkins, W.L.; Wagoner, J.L.; Drellack, S.L.

    1992-01-01

    The Nevada Test Site was established in 1950 as a continental area for testing nuclear devices. Hydrogeologic investigations began in earnest with the US Geological Survey mapping much of the area from 1960 to 1965. Since 1963, all nuclear detonations have been underground. Most tests are conducted in vertical shafts, but a small percentage are conducted in tunnels. The majority of detonation points are above the water table, primarily in volcanic rocks, but sometimes in alluvium. Hydrogeologic investigations began in earnest with the US Geological Survey's mapping of much of the NTS region from 1960 to 1965. Following the BANEBERRY test in December 1970, which produced an accidental release of radioactivity to the atmosphere, the US Department of Energy (then the Atomic Energy Commission) established the Containment Evaluation Panel (CEP). Results of interdisciplinary hydrogeologic investigations for each test location are included in a Containment Prospectus which is thoroughly reviewed by the CEP

  2. Siting study for Test Area North potable water deep well project

    International Nuclear Information System (INIS)

    Hubbell, J.M.; Wylie, A.H.

    1993-05-01

    This study was conducted to evaluate the suitability of various locations for a new potable ground water well at Test Area North (TAN). The new well is proposed to replace two existing wells located within a trichloroethylene (TCE) plume. Several locations were evaluated using computer simulations based on the hydrogeology of the site. The modeling effort involved: (1) producing a water table map, (2) superimposing the effects of pumping the proposed new production well on the water table map using the model CAPZONE, and (3) calculating the capture zone for these wells using the GWPATH model. A three dimensional contaminant transport model was used to evaluate siting a well in a deeper horizon of the aquifer. The following scenarios were investigated: (1) placing a new well 500 ft north of the existing wells; (2) locating a well 3,000 ft northwest of the existing wells; (3) deepening one of the existing wells 100 to 150 ft to produce water from beneath an interbed that acts as a hydraulic barrier; and (4) drilling a new well about 500 ft northwest of the existing wells to produce water from beneath the interbed. The recommended new well site (fourth scenario) is northwest of the existing wells, with the well completed from 500 to 600 ft below land surface to produce water from beneath the Q-R interbed. Locating the well northwest of the existing wells places the new well out of the TCE plume and reduces the possibility of transporting contaminated water across the interbed

  3. Simulation of ground water contamination by tritium: Application to a Moroccan Site

    International Nuclear Information System (INIS)

    Qassoud, D.; Soufi, I.; Nacir, B.; Ziagos, J.; Demir, Z.; Hajjani, A.

    2006-01-01

    Tritium is a radioactive element. Its movement in the environment depends on the chemical forms that it takes. Tritiated water is one of this forms. The infiltration of tritiated water can causes contamination of the environment and the underground water. In this context, we have taken into account a waste contaminated by Tritium and stored in the surface of the soil. We studied the impact of an infiltration of a unit activity of this radioelement in the Moroccan site of Maamora localized in the Rharb region. The principal objective of the work presented in this paper is to give necessary information for the site environmental surveillance program establishment. The assessment is based on the characteristics of the site considered. It is carried out using the methodology taken into account in the Lawrence Livermore National Laboratory (LLNL) for the pollutant transport simulation in the unsaturated zone (between the soil and underground water). This methodology is based on the mathematical model called NUFT[1,2] witch is a unified suite of multiphase, multicomponent models for numerical solution of non-isothermal flow and transport in porous media with application to subsurface contaminant transport problems. NUFT have been developed in LLNL (Livermore-USA). Considering a quantity of one Curie of Tritium and considering the assumptions of impact assessments of the radioactivity on the Maamora ground water, the concentration of this radionuclide in water, will be lower than 0,4% of the acceptable Tritium limit in water. Taking in to account the physical and hydrogeological characteristics of the site studied and in the basis of the site radiological baseline, the environmental impact of the tritium infiltration into the underground water is negligible for the case studied

  4. Lightning vulnerability of nuclear explosive test systems at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hasbrouck, R.T.

    1985-01-01

    A task force chartered to evaluate the effects of lightning on nuclear explosives at the Nevada Test Site has made several recommendations intended to provide lightning-invulnerable test device systems. When these recommendations have been implemented, the systems will be tested using full-threat-level simulated lightning

  5. A study on the nondestructive test optimum design for a ground tracked combat vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Kim Byeong Ho; Seo, Jae Hyun; Gil, Hyeon Jun [Defence Agency for Technology and Quality, Seoul (Korea, Republic of); Kim, Seon Hyeong [Hanwha Techwin Co.,Ltd., Changwon (Korea, Republic of); Seo, Sang Chul [Changwon National University, Changwon (Korea, Republic of)

    2015-10-15

    In this study, a nondestructive test (NDT) is performed to inspect the optimal design of a ground tracked combat vehicle for self-propelled artillery, tank, and armored vehicles. The minimum qualification required for personnel performing the NDT of a ground tracked combat vehicle was initially established in US military standards, and then applied to the Korean defense specifications to develop a ground tracked combat vehicle. However, the qualification standards of an NDT inspector have been integrated into NAS410 through the military and commercial specifications unification project that were applied in the existing aerospace/defense industry public standard. The design method for this study was verified by applying the optimal design to the liquid penetrant testing Al forging used in self-propelled artillery. This confirmed the reliability and soundness of the product.

  6. Fruit and vegetable radioactivity survey, Nevada Test Site environs

    International Nuclear Information System (INIS)

    Andrews, V.E.; Vandervort, J.C.

    1978-04-01

    During the 1974 growing season, the Environmental Monitoring and Support Laboratory-Las Vegas, of the U.S. Environmental Protection Agency, collected samples of fruits and vegetables grown in the off-site area surrounding the Nevada Test Site. The objective was to estimate the potential radiological dose to off-site residents from consumption of locally grown foodstuffs. Irrigation water and soil were collected from the gardens and orchards sampled. Soil concentrations of cesium-137 and plutonium-239 reflected the effects of close-in fallout from nuclear testing at the Nevada Test Site. The only radionuclide measured in fruit and vegetable samples which might be related to such fallout was strontium-90, for which the first year estimated dose to bone marrow of an adult with an assumed rate of consumption of the food would be 0.14 millirad

  7. Hydrologic test plans for large-scale, multiple-well tests in support of site characterization at Hanford, Washington

    International Nuclear Information System (INIS)

    Rogers, P.M.; Stone, R.; Lu, A.H.

    1985-01-01

    The Basalt Waste Isolation Project is preparing plans for tests and has begun work on some tests that will provide the data necessary for the hydrogeologic characterization of a site located on a United States government reservation at Hanford, Washington. This site is being considered for the Nation's first geologic repository of high level nuclear waste. Hydrogeologic characterization of this site requires several lines of investigation which include: surface-based small-scale tests, testing performed at depth from an exploratory shaft, geochemistry investigations, regional studies, and site-specific investigations using large-scale, multiple-well hydraulic tests. The large-scale multiple-well tests are planned for several locations in and around the site. These tests are being designed to provide estimates of hydraulic parameter values of the geologic media, chemical properties of the groundwater, and hydrogeologic boundary conditions at a scale appropriate for evaluating repository performance with respect to potential radionuclide transport

  8. Field testing a soil site field guide for Allegheny hardwoods

    Science.gov (United States)

    S.B. Jones

    1991-01-01

    A site quality evaluation decision model, developed for Allegheny hardwoods on the non-glaciated Allegheny Plateau of Pennsylvania and New York, was field tested by International Paper (IP) foresters and the author, on sites within the region of derivation and on glaciated sites north and west of the Wisconsin drift line. Results from the field testing are presented...

  9. Benchmark problems for repository siting models

    International Nuclear Information System (INIS)

    Ross, B.; Mercer, J.W.; Thomas, S.D.; Lester, B.H.

    1982-12-01

    This report describes benchmark problems to test computer codes used in siting nuclear waste repositories. Analytical solutions, field problems, and hypothetical problems are included. Problems are included for the following types of codes: ground-water flow in saturated porous media, heat transport in saturated media, ground-water flow in saturated fractured media, heat and solute transport in saturated porous media, solute transport in saturated porous media, solute transport in saturated fractured media, and solute transport in unsaturated porous media

  10. Interpreting Results from the Standardized UXO Test Sites

    National Research Council Canada - National Science Library

    May, Michael; Tuley, Michael

    2007-01-01

    ...) and the Environmental Security Technology Certification Program (ESCTP) to complete a detailed analysis of the results of testing carried out at the Standardized Unexploded Ordnance (UXO) Test Sites...

  11. Tritium activities in selected wells on the Nevada Test Site

    International Nuclear Information System (INIS)

    Lyles, B.F.

    1993-05-01

    Literature and data were reviewed related to radionuclides in groundwater on and near the Nevada Test Site. No elevated tritium activities have been reported outside of the major testing regions of the Nevada Test Site. Three wells were identified as having water with above-background (>50 pCi/l) tritium activities: UE-15d Water Well; USGS Water Well A; and USGS Test Well B Ex. Although none of these wells have tritium activities greater than the Nevada State Drinking Water standard (20,000 pCi/l), their time-series tritium trends may be indicative to potential on-site radionuclide migration

  12. Tritium in the burial ground of the Savannah River Site

    International Nuclear Information System (INIS)

    Hyder, M.L.

    1993-06-01

    This memorandum reviews the available information on tritium-contaminated material discarded to burial grounds. Tritium was the first isotope studied because it represents the most immediate concern with regard to release to the environment. Substantial amounts of tritium are known to be present in the ground water underneath the area, and outcropping of this ground water in springs and seeps has been observed. The response to this release of tritium from the burial ground is a current concern. The amount of tritium emplaced in the burial ground facilities is very uncertain, however, some general conclusions can be made. In particular, most of the tritium buried is associated with spent equipment and other waste, rather than spent melts. Correspondingly, most of the tritium in the ground water seems to be associated with burials of this type, rather than the spent melts. Maps are presented showing the location of burials of tritiated waste by type, and the location of the largest individual burials according to COBRA records

  13. Improving ATLAS grid site reliability with functional tests using HammerCloud

    Science.gov (United States)

    Elmsheuser, Johannes; Legger, Federica; Medrano Llamas, Ramon; Sciacca, Gianfranco; van der Ster, Dan

    2012-12-01

    With the exponential growth of LHC (Large Hadron Collider) data in 2011, and more coming in 2012, distributed computing has become the established way to analyse collider data. The ATLAS grid infrastructure includes almost 100 sites worldwide, ranging from large national computing centers to smaller university clusters. These facilities are used for data reconstruction and simulation, which are centrally managed by the ATLAS production system, and for distributed user analysis. To ensure the smooth operation of such a complex system, regular tests of all sites are necessary to validate the site capability of successfully executing user and production jobs. We report on the development, optimization and results of an automated functional testing suite using the HammerCloud framework. Functional tests are short lightweight applications covering typical user analysis and production schemes, which are periodically submitted to all ATLAS grid sites. Results from those tests are collected and used to evaluate site performances. Sites that fail or are unable to run the tests are automatically excluded from the PanDA brokerage system, therefore avoiding user or production jobs to be sent to problematic sites.

  14. Assessment of the facilities on Jackass Flats and other Nevada Test Site facilities for the new nuclear rocket program

    International Nuclear Information System (INIS)

    Chandler, G.; Collins, D.; Dye, K.; Eberhart, C.; Hynes, M.; Kovach, R.; Ortiz, R.; Perea, J.; Sherman, D.

    1992-01-01

    Recent NASA/DOE studies for the Space Exploration Initiative have demonstrated a critical need for the ground-based testing of nuclear rocket engines. Experience in the ROVER/NERVA Program, experience in the Nuclear Weapons Testing Program, and involvement in the new nuclear rocket program has motivated our detailed assessment of the facilities used for the ROVER/NERVA Program and other facilities located at the Nevada Test Site (NTS). The ROVER/NERVA facilities are located in the Nevada Research L, Development Area (NRDA) on Jackass Flats at NTS, approximately 85 miles northwest of Las Vegas. To guide our assessment of facilities for an engine testing program we have defined a program goal, scope, and process. To execute this program scope and process will require ten facilities. We considered the use of all relevant facilities at NTS including existing and new tunnels as well as the facilities at NRDA. Aside from the facilities located at remote sites and the inter-site transportation system, all of the required facilities are available at NRDA. In particular we have studied the refurbishment of E-MAD, ETS-1, R-MAD, and the interconnecting railroad. The total cost for such a refurbishment we estimate to be about $253M which includes additional contractor fees related to indirect, construction management, profit, contingency, and management reserves. This figure also includes the cost of the required NEPA, safety, and security documentation

  15. Ecological survey of M-Field, Edgewood Area Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Downs, J.L.; Eberhardt, L.E.; Fitzner, R.E.; Rogers, L.E.

    1991-12-01

    An ecological survey was conducted on M-Field, at the Edgewood Area, Aberdeen Proving Ground, Maryland. M-Field is used routinely to test army smokes and obscurants, including brass flakes, carbon fibers, and fog oils. The field has been used for testing purposes for the past 40 years, but little documented history is available. Under current environmental regulations, the test field must be assessed periodically to document the presence or potential use of the area by threatened and endangered species. The M-Field area is approximately 370 acres and is part of the US Army's Edgewood Area at Aberdeen Proving Ground in Harford County, Maryland. The grass-covered field is primarily lowlands with elevations from about 1.0 to 8 m above sea level, and several buildings and structures are present on the field. The ecological assessment of M-Field was conducted in three stages, beginning with a preliminary site visit in May to assess sampling requirements. Two field site visits were made June 3--7, and August 12--15, 1991, to identify the biota existing on the site. Data were gathered on vegetation, small mammals, invertebrates, birds, large mammals, amphibians, and reptiles.

  16. Ecological survey of M-Field, Edgewood Area Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Downs, J.L.; Eberhardt, L.E.; Fitzner, R.E.; Rogers, L.E.

    1991-12-01

    An ecological survey was conducted on M-Field, at the Edgewood Area, Aberdeen Proving Ground, Maryland. M-Field is used routinely to test army smokes and obscurants, including brass flakes, carbon fibers, and fog oils. The field has been used for testing purposes for the past 40 years, but little documented history is available. Under current environmental regulations, the test field must be assessed periodically to document the presence or potential use of the area by threatened and endangered species. The M-Field area is approximately 370 acres and is part of the US Army`s Edgewood Area at Aberdeen Proving Ground in Harford County, Maryland. The grass-covered field is primarily lowlands with elevations from about 1.0 to 8 m above sea level, and several buildings and structures are present on the field. The ecological assessment of M-Field was conducted in three stages, beginning with a preliminary site visit in May to assess sampling requirements. Two field site visits were made June 3--7, and August 12--15, 1991, to identify the biota existing on the site. Data were gathered on vegetation, small mammals, invertebrates, birds, large mammals, amphibians, and reptiles.

  17. Compression of ground-motion data

    International Nuclear Information System (INIS)

    Long, J.W.

    1981-04-01

    Ground motion data has been recorded for many years at Nevada Test Site and is now stored on thousands of digital tapes. The recording format is very inefficient in terms of space on tape. This report outlines a method to compress the data onto a few hundred tapes while maintaining the accuracy of the recording and allowing restoration of any file to the original format for future use. For future digitizing a more efficient format is described and suggested

  18. Use of Ground Penetrating Radar at the FAA's National Airport Pavement Test Facility

    Science.gov (United States)

    Injun, Song

    2015-04-01

    The Federal Aviation Administration (FAA) in the United States has used a ground-coupled Ground Penetrating Radar (GPR) at the National Airport Pavement Test Facility (NAPTF) since 2005. One of the primary objectives of the testing at the facility is to provide full-scale pavement response and failure information for use in airplane landing gear design and configuration studies. During the traffic testing at the facility, a GSSI GPR system was used to develop new procedures for monitoring Hot Mix Asphalt (HMA) pavement density changes that is directly related to pavement failure. After reviewing current setups for data acquisition software and procedures for identifying different pavement layers, dielectric constant and pavement thickness were selected as dominant parameters controlling HMA properties provided by GPR. A new methodology showing HMA density changes in terms of dielectric constant variations, called dielectric sweep test, was developed and applied in full-scale pavement test. The dielectric constant changes were successfully monitored with increasing airplane traffic numbers. The changes were compared to pavement performance data (permanent deformation). The measured dielectric constants based on the known HMA thicknesses were also compared with computed dielectric constants using an equation from ASTM D4748-98 Standard Test Method for Determining the Thickness of Bound Pavement Layers Using Short-Pulse Radar. Six inches diameter cylindrical cores were taken after construction and traffic testing for the HMA layer bulk specific gravity. The measured bulk specific gravity was also compared to monitor HMA density changes caused by aircraft traffic conditions. Additionally this presentation will review the applications of the FAA's ground-coupled GPR on embedded rebar identification in concrete pavement, sewer pipes in soil, and gage identifications in 3D plots.

  19. Corrective Action Investigation Plan for Corrective Action Unit 252: Area 25 Engine Test Stand 1 Decontamination Pad, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Nevada Operations Office

    1999-08-20

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit 252 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 252 consists of Corrective Action Site (CAS) 25-07-02, Engine Test Stand-1 (ETS-1) Decontamination Pad. Located in Area 25 at the intersection of Road H and Road K at the Nevada Test Site, ETS-1 was designed for use as a mobile radiation checkpoint and for vehicle decontamination. The CAS consists of a concrete decontamination pad with a drain, a gravel-filled sump, two concrete trailer pads, and utility boxes. Constructed in 1966, the ETS-1 facility was part of the Nuclear Rocket Development Station (NRDS) complex and used to test nuclear rockets. The ETS-1 Decontamination Pad and mobile radiation check point was built in 1968. The NRDS complex ceased primary operations in 1973. Based on site history, the focus of the field investigation activities will be to determine if any primary contaminants of potential concern (COPCs) (including radionuclides, total volatile organic compounds, total semivolatile organic compounds, total petroleum hydrocarbons as diesel-range organics, Resource Conservation and Recovery Act metals, total pesticides, and polychlorinated biphenyls) are present at this site. Vertical extent of migration of suspected vehicle decontamination effluent COPCs is expected to be less than 12 feet below ground surface. Lateral extent of migration of COPCs is expected to be limited to the sump area or near the northeast corner of the decontamination pad. Using a biased sampling approach, near-surface and subsurface sampling will be conducted at the suspected worst-case areas including the sump and soil near the northeast corner of the decontamination pad. The results of this field investigation will support a defensible e

  20. Draft Underground Test Plan for site characterization and testing in an exploratory shaft facility in salt

    International Nuclear Information System (INIS)

    1987-05-01

    An exploratory shaft facility (ESF) at the Deaf Smith County, Texas is a potential candidate repository site in salt. This program of underground testing constitutes part of the effort to determine site suitability, provide data for repository design and performance assessment, and prepare licensing documentation. This program was developed by defining the information needs, as derived from the governing regulatory requirements and associated performance issues; evaluating the efficacy of available tests in satisfying the information needs; and selecting the suite of underground tests that are most cost-effective and timely, considering the other surface-based, surface borehole, and laboratory test programs. Tests are described conceptually, categorized in terms of geology, geomechanics, thermomechanics, geohydrology, or geochemistry, and range in scope from site characterization to site/engineered system interactions. The testing involves construction testing, conducted in the shafts during construction, and in situ testing at depth, conducted in the shafts and in the at-depth test facility at the repository horizon after shaft connection. 41 refs., 67 figs., 16 tabs

  1. Performance Assessment Monitoring Plan for the Hanford Site Low-Level Waste Burial Grounds

    International Nuclear Information System (INIS)

    SONNICHSEN, J.C.

    2000-01-01

    As directed by the U.S. Department of Energy (DOE), Richland Operations Office (DOE-RL), Fluor Hanford, Inc. will implement the requirements of DOE Order 435.1, Radioactive Waste Management, as the requirements relate to the continued operation of the low-level waste disposal facilities on the Hanford Site. DOE Order 435.1 requires a disposal authorization statement authorizing operation (or continued operation) of a low-level waste disposal facility. The objective of this Order is to ensure that all DOE radioactive waste is managed in a manner that protects the environment and personnel and public health and safety. The manual (DOE Order 435.1 Manual) implementing the Order states that a disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980 documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility. Failure to obtain a disposal authorization statement shall result in shutdown of an operational disposal facility. In fulfillment of the requirements of DOE Order 435.1, a disposal authorization statement was issued on October 25, 1999, authorizing the Hanford Site to transfer, receive, possess, and dispose of low-level radioactive waste at the 200 East Area and the 200 West Area Low-Level Burial Grounds. The disposal authorization statement constitutes approval of the performance assessment and composite analysis, authorizes operation of the facility, and includes conditions that the disposal facility must meet. One of the conditions is that monitoring plans for the 200 East Area and 200 West Area Low-Level Burial Grounds be written and approved by the DOE-RL. The monitoring plan is to be updated and implemented within 1 year following issuance of the disposal authorization statement to

  2. Ground motion estimation for the elevated bridges of the Kyushu Shinkansen derailment caused by the foreshock of the 2016 Kumamoto earthquake based on the site-effect substitution method

    Science.gov (United States)

    Hata, Yoshiya; Yabe, Masaaki; Kasai, Akira; Matsuzaki, Hiroshi; Takahashi, Yoshikazu; Akiyama, Mitsuyoshi

    2016-12-01

    An earthquake of JMA magnitude 6.5 (first event) hit Kumamoto Prefecture, Japan, at 21:26 JST, April 14, 2016. Subsequently, an earthquake of JMA magnitude 7.3 (second event) hit Kumamoto and Oita Prefectures at 01:46 JST, April 16, 2016. An out-of-service Kyushu Shinkansen train carrying no passengers traveling on elevated bridges was derailed by the first event. This was the third derailment caused by an earthquake in the history of the Japanese Shinkansen, after one caused by the 2004 Mid-Niigata Prefecture Earthquake and another triggered by the 2011 Tohoku Earthquake. To analyze the mechanism of this third derailment, it is crucial to evaluate the strong ground motion at the derailment site with high accuracy. For this study, temporary earthquake observations were first carried out at a location near the bridge site; these observations were conducted because although the JMA Kumamoto Station site and the derailment site are closely located, the ground response characteristics at these sites differ. Next, empirical site amplification and phase effects were evaluated based on the obtained observation records. Finally, seismic waveforms during the first event at the bridge site of interest were estimated based on the site-effect substitution method. The resulting estimated acceleration and velocity waveforms for the derailment site include much larger amplitudes than the waveforms recorded at the JMA Kumamoto and MLIT Kumamoto station sites. The reliability of these estimates is confirmed by the finding that the same methods reproduce strong ground motions at the MLIT Kumamoto Station site accurately. These estimated ground motions will be useful for reasonable safety assessment of anti-derailment devices on elevated railway bridges.[Figure not available: see fulltext.

  3. Non-Invasive Seismic Methods for Earthquake Site Classification Applied to Ontario Bridge Sites

    Science.gov (United States)

    Bilson Darko, A.; Molnar, S.; Sadrekarimi, A.

    2017-12-01

    How a site responds to earthquake shaking and its corresponding damage is largely influenced by the underlying ground conditions through which it propagates. The effects of site conditions on propagating seismic waves can be predicted from measurements of the shear wave velocity (Vs) of the soil layer(s) and the impedance ratio between bedrock and soil. Currently the seismic design of new buildings and bridges (2015 Canadian building and bridge codes) requires determination of the time-averaged shear-wave velocity of the upper 30 metres (Vs30) of a given site. In this study, two in situ Vs profiling methods; Multichannel Analysis of Surface Waves (MASW) and Ambient Vibration Array (AVA) methods are used to determine Vs30 at chosen bridge sites in Ontario, Canada. Both active-source (MASW) and passive-source (AVA) surface wave methods are used at each bridge site to obtain Rayleigh-wave phase velocities over a wide frequency bandwidth. The dispersion curve is jointly inverted with each site's amplification function (microtremor horizontal-to-vertical spectral ratio) to obtain shear-wave velocity profile(s). We apply our non-invasive testing at three major infrastructure projects, e.g., five bridge sites along the Rt. Hon. Herb Gray Parkway in Windsor, Ontario. Our non-invasive testing is co-located with previous invasive testing, including Standard Penetration Test (SPT), Cone Penetration Test and downhole Vs data. Correlations between SPT blowcount and Vs are developed for the different soil types sampled at our Ontario bridge sites. A robust earthquake site classification procedure (reliable Vs30 estimates) for bridge sites across Ontario is evaluated from available combinations of invasive and non-invasive site characterization methods.

  4. Release of Radioactive Scrap Metal/Scrap Metal (RSM/SM) at Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    1993-01-01

    Reynolds Electrical and Engineering Company, Inc. (REECo) is the prime contractor to the US Department of Energy (DOE) in providing service and support for NTS operations. Mercury Base Camp is the main control point for the many forward areas at NTS, which covers 1,350 square miles. The forward areas are where above-ground and underground nuclear tests have been performed over the last 41 years. No metal (or other material) is returned to Mercury without first being tested for radioactivity. No radioactive metals are allowed to reenter Mercury from the forward areas, other than testing equipment. RAMATROL is the monitor check point. They check material in various ways, including swipe tests, and have a large assortment of equipment for testing. Scrap metal is also checked to address Resource Conservation and Recovery Act concerns. After addressing these issues, the scrap metals are categorized. Federal Property Management Regulations (FPMR) are followed by REECo. The nonradioactive scrap material is sold through the GSA on a scheduled basis. Radioactive scrap metal are presently held in forward areas where they were used. REECo has gained approval of their Nevada Test Site Defense Waste Acceptance Criteria, Certification, and Transfer Requirements, NVO-325 application, which will allow disposal on site, when RSM is declared a waste. The guideline that REECo uses for release limits is DOE Order 5480.11, Radiation Protection for Occupational Works, Attachment 2, Surface Radioactivity Guides, of this order, give release limits for radioactive materials. However, the removal of radioactive materials from NTS require approval by DOE Nevada Operations Office (DOE/NV) on a case-by-case basis. Requirements to consider before removal are found in DOE Order 5820.2A, Radioactive Waste Management

  5. Corrective Action Investigation Plan for Corrective Action Unit 528: Polychlorinated Biphenyls Contamination, Nevada Test Site, Nevada, Rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-05-08

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 528, Polychlorinated Biphenyls Contamination (PCBs), Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in the southwestern portion of Area 25 on the NTS in Jackass Flats (adjacent to Test Cell C [TCC]), CAU 528 consists of Corrective Action Site 25-27-03, Polychlorinated Biphenyls Surface Contamination. Test Cell C was built to support the Nuclear Rocket Development Station (operational between 1959 and 1973) activities including conducting ground tests and static firings of nuclear engine reactors. Although CAU 528 was not considered as a direct potential source of PCBs and petroleum contamination, two potential sources of contamination have nevertheless been identified from an unknown source in concentrations that could potentially pose an unacceptable risk to human health and/or the environment. This CAU's close proximity to TCC prompted Shaw to collect surface soil samples, which have indicated the presence of PCBs extending throughout the area to the north, east, south, and even to the edge of the western boundary. Based on this information, more extensive field investigation activities are being planned, the results of which are to be used to support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  6. Nevada Test Site Radiation Protection Program

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers' Council, Nevada Test Site

    2007-08-09

    Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

  7. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal

  8. Practical Guidelines for Water Percolation Capacity Determination of the Ground

    Directory of Open Access Journals (Sweden)

    Mihael Brenčič

    2011-06-01

    Full Text Available Determination of water infiltration capacity of ground soils and rocks represents important part of design and construction procedures of the facilities for the infiltration of clean precipitation water. With their help percolation capacity of ground as well as response of the infiltration facilities to the inflowing precipitation water is estimated.Comparing to other in situ hydrogeological tests they can be understood as simple. However, in every day’s practiceseveral problems during their on site application and desk interpretation can arise. Paper represents review of existingpractical engineering procedures during the performance of percolation tests. Procedures are described for the borehole and shaft percolation tests execution and calculation theory for stationary and non‑stationary percolation tests are given. Theory is illustrated with practical exercises. Interpretations of typical departures from theoretical presumptions according to Hvorslev test of non-stationary test are illustrated.

  9. Meteorological modeling of arrival and deposition of fallout at intermediate distances downwind of the Nevada Test Site

    International Nuclear Information System (INIS)

    Cederwall, R.T.; Peterson, K.R.

    1990-01-01

    A three-dimensional atmospheric transport and diffusion model is used to calculate the arrival and deposition of fallout from 13 selected nuclear tests at the Nevada Test Site (NTS) in the 1950s. Results are used to extend NTS fallout patterns to intermediate downwind distances (300 to 1200 km). The radioactive cloud is represented in the model by a population of Lagrangian marker particles, with concentrations calculated on an Eulerian grid. Use of marker particles, with fall velocities dependent on particle size, provides a realistic simulation of fallout as the debris cloud travels downwind. The three-dimensional wind field is derived from observed data, adjusted for mass consistency. Terrain is represented in the grid, which extends up to 1200 km downwind of NTS and has 32-km horizontal resolution and 1-km vertical resolution. Ground deposition is calculated by a deposition-velocity approach. Source terms and relationships between deposition and exposure rate are based on work by Hicks. Uncertainty in particle size and vertical distributions within the debris cloud (and stem) allow for some model tuning to better match measured ground-deposition values. Particle trajectories representing different sizes and starting heights above ground zero are used to guide source specification. An hourly time history of the modeled fallout pattern as the debris cloud moves downwind provides estimates of fallout arrival times. Results for event HARRY illustrate the methodology. The composite deposition pattern for all 13 tests is characterized by two lobes extending out to the north-northeast and east-northeast, respectively, at intermediate distances from NTS. Arrival estimates, along with modeled deposition values, augment measured deposition data in the development of data bases at the county level

  10. Site selection report basalt waste isolation program near-surface test facility

    International Nuclear Information System (INIS)

    Sharpe, S.D.

    1978-01-01

    A site selection committee was established to review the information gathered on potential sites and to select a site for the Near-Surface Test Facility Phase I. A decision was made to use a site on the north face of Gable Mountain located on the Hanford Site. This site provided convenient access to the Pomona Basalt Flow. This flow was selected for use at this site because it exhibited the characteristics established in the primary criteria. These criteria were: the flows thickness; its dryness; its nearness to the surface; and, its similarities to basalt units which are candidates for the repository. After the selection of the Near-Surface Test Facility Phase I Site, the need arose for an additional facility to demonstrate safe handling, storage techniques, and the physical effects of radioactive materials on an in situ basalt formation. The committee reviewed the sites selected for Phase I and chose the same site for locating Phase II of the Near-Surface Test Facility

  11. The SKI SITE-94 project approach to analyzing confidence in site-specific data

    International Nuclear Information System (INIS)

    Dverstorp, B.; Andersson, J.

    1995-01-01

    The ongoing SKI SITE-94 project is a fully integrated performance assessment based on a hypothetical repository at 500 m depth in crystalline rock. One main objective of the project is to develop a methodology for incorporating data from a site characterization into the performance assessment. The hypothetical repository is located at SKB's Hard Rock Laboratory at Aspo in south-eastern Sweden. The site evaluation in SITE-94 uses data from the pre-excavation phase that comprised measurements performed on the ground and in boreholes, including cross-hole hydraulic and tracer experiments. Uncertainties related to measurement technique, equipment and methods for interpretation were evaluated through a critical review of geohydraulic measurement methods and a complete re-evaluation of the hydraulic packer tests using the generalised radial flow (GRF) theory. Groundwater chemistry samples were analyzed for representativeness and sampling errors. A wide range of site models within geology, hydrogeology, geochemistry and rock mechanics has been developed and tested with the site characterization data. (authors). 10 refs., 3 figs., 2 tabs

  12. Well installation, single-well testing, and particle-size analysis for selected sites in and near the Lost Creek Designated Ground Water Basin, north-central Colorado, 2003-2004

    Science.gov (United States)

    Beck, Jennifer A.; Paschke, Suzanne S.; Arnold, L. Rick

    2011-01-01

    This report describes results from a groundwater data-collection program completed in 2003-2004 by the U.S. Geological Survey in support of the South Platte Decision Support System and in cooperation with the Colorado Water Conservation Board. Two monitoring wells were installed adjacent to existing water-table monitoring wells. These wells were installed as well pairs with existing wells to characterize the hydraulic properties of the alluvial aquifer and shallow Denver Formation sandstone aquifer in and near the Lost Creek Designated Ground Water Basin. Single-well tests were performed in the 2 newly installed wells and 12 selected existing monitoring wells. Sediment particle size was analyzed for samples collected from the screened interval depths of each of the 14 wells. Hydraulic-conductivity and transmissivity values were calculated after the completion of single-well tests on each of the selected wells. Recovering water-level data from the single-well tests were analyzed using the Bouwer and Rice method because test data most closely resembled those obtained from traditional slug tests. Results from the single-well test analyses for the alluvial aquifer indicate a median hydraulic-conductivity value of 3.8 x 10-5 feet per second and geometric mean hydraulic-conductivity value of 3.4 x 10-5 feet per second. Median and geometric mean transmissivity values in the alluvial aquifer were 8.6 x 10-4 feet squared per second and 4.9 x 10-4 feet squared per second, respectively. Single-well test results for the shallow Denver Formation sandstone aquifer indicate a median hydraulic-conductivity value of 5.4 x 10-6 feet per second and geometric mean value of 4.9 x 10-6 feet per second. Median and geometric mean transmissivity values for the shallow Denver Formation sandstone aquifer were 4.0 x 10-5 feet squared per second and 5.9 x 10-5 feet squared per second, respectively. Hydraulic-conductivity values for the alluvial aquifer in and near the Lost Creek Designated

  13. Baseline ecological risk assessment Salmon Site, Lamar County, Mississippi

    International Nuclear Information System (INIS)

    1995-04-01

    The Salmon Site (SS), formerly the Tatum Dome Test Site, located in Mississippi was the site of two nuclear and two gas explosion tests conducted between 1964 and 1970. A consequence of these testing activities is that radionuclides were released into the salt dome, where they are presently contained. During reentry drilling and other site activities, incidental liquid and solid wastes that contained radioactivity were generated, resulting in some soil, ground water and equipment contamination. As part of the remedial investigation effort, a Baseline Ecological Risk Assessment was conducted at the SS. The purpose is to gauge ecological and other environmental impacts attributable to past activities at the former test facility. The results of this facility-specific baseline risk assessment are presented in this document

  14. Baseline ecological risk assessment Salmon Site, Lamar County, Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Salmon Site (SS), formerly the Tatum Dome Test Site, located in Mississippi was the site of two nuclear and two gas explosion tests conducted between 1964 and 1970. A consequence of these testing activities is that radionuclides were released into the salt dome, where they are presently contained. During reentry drilling and other site activities, incidental liquid and solid wastes that contained radioactivity were generated, resulting in some soil, ground water and equipment contamination. As part of the remedial investigation effort, a Baseline Ecological Risk Assessment was conducted at the SS. The purpose is to gauge ecological and other environmental impacts attributable to past activities at the former test facility. The results of this facility-specific baseline risk assessment are presented in this document.

  15. New Reactor Siting in Finland, Hanhikivi Site in Pyhaejoki - STUK preliminary safety assessment

    International Nuclear Information System (INIS)

    Nevalainen, Janne

    2013-01-01

    STUK has performed a preliminary assessment of the Decision-in-Principle on the Fennovoima application. A variety of factors must be considered in the selection of a site, including effects of the site on the plant design and the effects of the plant on the site environment. These include external hazards, both natural and human-induced. Since this is a new site, an extensive siting process is followed, that can include an EIA. A site survey is performed to identify candidate sites, after investigating a large region and rejecting unsuitable sites. The remaining sites are then screened and compared on the basis of safety and other considerations to select one or more preferred sites. Natural hazards include geology, seismology, hydrology and meteorology. Offshore ice will be a particular hazard for this plant, since the site is on average only 1.5 m above sea level. The design basis earthquake corresponds to a return frequency of 100,000 years, with 50 % confidence. The existing sites in southern Finland used a design peak ground acceleration of 0.1 g with the ground response spectrum maximum at 10 Hz. The candidate sites in northern Finland will require a peak ground acceleration of 0.2 g with the ground response spectrum maximum at 25 Hz

  16. Hanford Site physical separations CERCLA treatability test plan

    International Nuclear Information System (INIS)

    1992-03-01

    This test plan describes specifications, responsibilities, and general procedures to be followed to conduct a physical separations soil treatability test in the North Process Pond of the 300-FF-1 Operable Unit at the Hanford Site, Washington. The objective of this test is to evaluate the use of physical separation systems as a means of concentrating chemical and radioactive contaminants into fine soil fractions and thereby minimizing waste volumes. If successful the technology could be applied to clean up millions of cubic meters of contaminated soils in waste sites at Hanford and other sites. It is not the intent of this test to remove contaminated materials from the fine soils. Physical separation is a simple and comparatively low cost technology to potentially achieve a significant reduction in the volume of contaminated soils. Organic contaminants are expected to be insignificant for the 300-FF-I Operable Unit test, and further removal of metals and radioactive contaminants from the fine fraction of soils will require secondary treatment such as chemical extraction, electromagnetic separation, or other technologies. Additional investigations/testing are recommended to assess the economic and technical feasibility of applying secondary treatment technologies, but are not within the scope of this test. This plan provides guidance and specifications for the treatability test to be conducted as a service contract. More detailed instructions and procedures will be provided as part of the vendors (sellers) proposal. The procedures will be approved by Westinghouse Hanford Company (Westinghouse Hanford) and finalized by the seller prior to initiating the test

  17. Electromagnetic survey of the K1070A burial ground at the Oak Ridge K-25 Site, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Nyquist, J.E.; Emery, M.S.

    1993-01-01

    The K1070A burial ground, located at the K-25 Site on the Oak Ridge Reservation, received chemical and radioactive wastes from the late 1940s until 1975. Analysis of water samples collected from nearby monitoring wells indicates that contamination is migrating offsite. In November 1991, Oak Ridge National Laboratory (ORNL) personnel collected high-resolution electrical terrain conductivity data at the K1070A burial ground. A Model EM31 terrain conductivity meter manufactured by Geonics Limited was used in conjunction with the ORNL-developed Ultrasonic Ranging and Data System (USRADS) to perform the survey. The purposeof the survey was to provide Environmental Restoration (ER) staff with a detailed map of the spatial variation of the apparent electrical conductivity of the shallow subsurface (upper 3 m) to assist them in siting future monitoring wells closer to the waste area without drilling into the buried waste

  18. Hydrogeologic testing plan for Deep Hydronest Test Wells, Deaf Smith County site, Texas

    International Nuclear Information System (INIS)

    1987-12-01

    This report discusses methods of hydraulic testing which are recommended for use in the Deep Hydronest Test Wells at the proposed high level nuclear waste repository site in Deaf Smith County, Texas. The deep hydronest wells are intended to provide geologic, geophysical and hydrologic information on the interval from the Upper San Andres Formation to the base of the Pennsylvanian system at the site. Following the period of drilling and testing, the wells will be converted into permanent monitoring installations through which fluid pressures and water quality can be monitored at various depths in the section. 19 refs., 17 figs., 2 tabs

  19. Comparison between SAR Soil Moisture Estimates and Hydrological Model Simulations over the Scrivia Test Site

    Directory of Open Access Journals (Sweden)

    Alberto Pistocchi

    2013-10-01

    Full Text Available In this paper, the results of a comparison between the soil moisture content (SMC estimated from C-band SAR, the SMC simulated by a hydrological model, and the SMC measured on ground are presented. The study was carried out in an agricultural test site located in North-west Italy, in the Scrivia river basin. The hydrological model used for the simulations consists of a one-layer soil water balance model, which was found to be able to partially reproduce the soil moisture variability, retaining at the same time simplicity and effectiveness in describing the topsoil. SMC estimates were derived from the application of a retrieval algorithm, based on an Artificial Neural Network approach, to a time series of ENVISAT/ASAR images acquired over the Scrivia test site. The core of the algorithm was represented by a set of ANNs able to deal with the different SAR configurations in terms of polarizations and available ancillary data. In case of crop covered soils, the effect of vegetation was accounted for using NDVI information, or, if available, for the cross-polarized channel. The algorithm results showed some ability in retrieving SMC with RMSE generally <0.04 m3/m3 and very low bias (i.e., <0.01 m3/m3, except for the case of VV polarized SAR images: in this case, the obtained RMSE was somewhat higher than 0.04 m3/m3 (≤0.058 m3/m3. The algorithm was implemented within the framework of an ESA project concerning the development of an operative algorithm for the SMC retrieval from Sentinel-1 data. The algorithm should take into account the GMES requirements of SMC accuracy (≤5% in volume, spatial resolution (≤1 km and timeliness (3 h from observation. The SMC estimated by the SAR algorithm, the SMC estimated by the hydrological model, and the SMC measured on ground were found to be in good agreement. The hydrological model simulations were performed at two soil depths: 30 and 5 cm and showed that the 30 cm simulations indicated, as expected, SMC

  20. Draft site characterization analysis of the site characterization report for the Basalt Waste Isolation Project, Hanford, Washington site. Appendices E through W

    International Nuclear Information System (INIS)

    1983-03-01

    Volume 2 contains Appendices E through W: potential for large-scale pump tests in the Grande Ronde; review of hydrochemical characterization related to flow system interpretation in Hanford basalts; limitations of packer-testing for head evaluation in Hanford basalts; hydrogeologic data integration for conceptual groundwater flow models; drilling mud effects on hydrogeologic testing; site issue analyses related to the nature at the present groundwater system at the Hanford site, Washington; structural and stratigraphic characteristics related to groundwater flow at the Hanford site, Washington; seismic hazard and some examples of hazard studies at Hanford; earthquake swarms in the Columbia Plateau; seismic ground motion at depth; failure modes for the metallic waste package component; degradation mechanisms of borosilicate glass; transport and retardation of radionuclides in the waste package; determination and interpretation of redox conditions and changes in underground high-level repositories; determination and interpretation of sorption data applied to radionuclide migration in underground repositories; solubility of radionuclide compounds presented in the BWIP site characterization report; and release rate from engineered system