WorldWideScience

Sample records for test site ground

  1. GES [Ground Engineering System] test site preparation

    International Nuclear Information System (INIS)

    Cox, C.M.; Mahaffey, M.K.; Miller, W.C.; Schade, A.R.; Toyoda, K.G.

    1987-10-01

    Activities are under way at Hanford to convert the 309 containment building and its associated service wing to a nuclear test facility for the Ground Engineering System (GES) test. Conceptual design is about 80% complete, encompassing facility modifications, a secondary heat transport system, a large vacuum system, a test article cell and handing system, control and data handling systems, and safety andl auxiliary systems. The design makes extensive use of existing equipment to minimize technical risk and cost. Refurbishment of this equipment is 25% complete. Cleanout of some 1000 m 3 of equipment from the earlier reactor test in the facility is 85% complete. An Environmental Assessment was prepared and revised to incorporate Department of Energy (DOE) comments. It is now in the DOE approval chain, where a Finding of No Significant Impact is expected. During the next year, definite design will be well advanced, long-lead procurements will be initiated, construction planning will be completed, an operator training plan will be prepared, and the site (preliminary) safety analysis report will be drafted

  2. History of ground motion programs at the Nevada Test Site

    International Nuclear Information System (INIS)

    Banister, J.R.

    1984-01-01

    Some measurements were made in the atmospheric testing era, but the study of ground motion from nuclear tests became of wider interest after the instigation of underground testing. The ground motion generated by underground nuclear test has been investigated for a number of reasons including understanding basic phenomena, operational and safety concerns, yield determination, stimulation of earthquake concerns, and developing methods to aid in treaty verifications. This history of ground motion programs will include discussing early studies, high yield programs, Peaceful Nuclear Explosions tests, and some more recent developments. 6 references, 10 figures

  3. Environmental assessment of SP-100 ground engineering system test site: Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    The US Department of Energy (DOE) proposes to modify an existing reactor containment building (decommissioned Plutonium Recycle Test Reactor (PRTR) 309 Building) to provide ground test capability for the prototype SP-100 reactor. The 309 Building (Figure 1.1) is located in the 300 Area on the Hanford Site in Washington State. The National Environmental Policy Act (NEPA) requires that Federal agencies assess the potential impacts that their actions may have on the environment. This Environmental Assessment describes the consideration given to environmental impacts during reactor concept and test site selection, examines the environmental effects of the DOE proposal to ground test the nuclear subsystem, describes alternatives to the proposed action, and examines radiological risks of potential SP-100 use in space. 73 refs., 19 figs., 7 tabs.

  4. Definitive design status of the SP-100 Ground Engineering System Test Site

    International Nuclear Information System (INIS)

    Renkey, E.J. Jr.; Bazinet, G.D.; Bitten, E.J.; Brackenbury, P.J.; Carlson, W.F.; Irwin, J.J.; Edwards, P.A.; Shen, E.J.; Titzler, P.A.

    1989-05-01

    The SP-100 reactor will be ground tested at the SP-100 Ground Engineering System (GES) Test Site on the US Department of Energy (DOE) Hanford Site near Richland, Washington. Project direction and the flight system design evolution have resulted in a smaller reactor size and the consequential revision to Test Site features to accommodate the design changes and reduce Test Site costs. The significant design events since the completion of the Conceptual Design are discussed in this paper

  5. Definitive design status of the SP-100 Ground Engineering System Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Renkey, E.J. Jr.; Bazinet, G.D.; Bitten, E.J.; Brackenbury, P.J.; Carlson, W.F.; Irwin, J.J.; Edwards, P.A.; Shen, E.J.; Titzler, P.A.

    1989-05-01

    The SP-100 reactor will be ground tested at the SP-100 Ground Engineering System (GES) Test Site on the US Department of Energy (DOE) Hanford Site near Richland, Washington. Project direction and the flight system design evolution have resulted in a smaller reactor size and the consequential revision to Test Site features to accommodate the design changes and reduce Test Site costs. The significant design events since the completion of the Conceptual Design are discussed in this paper.

  6. Preliminary site design for the SP-100 ground engineering test

    International Nuclear Information System (INIS)

    Cox, C.M.; Miller, W.C.; Mahaffey, M.K.

    1986-04-01

    In November, 1985, Hanford was selected by the Department of Energy (DOE) as the preferred site for a full-scale test of the integrated nuclear subsystem for SP-100. The Hanford Engineering Development Laboratory, operated by Westinghouse Hanford Company, was assigned as the lead contractor for the Test Site. The nuclear subsystem, which includes the reactor and its primary heat transport system, will be provided by the System Developer, another contractor to be selected by DOE in late FY-1986. In addition to reactor operations, test site responsibilities include preparation of the facility plus design, procurement and installation of a vacuum chamber to house the reactor, a secondary heat transport system to dispose of the reactor heat, a facility control system, and postirradiation examination. At the conclusion of the test program, waste disposal and facility decommissioning are required. The test site must also prepare appropriate environmental and safety evaluations. This paper summarizes the preliminary design requirements, the status of design, and plans to achieve full power operation of the test reactor in September, 1990

  7. Seismic Data for Evaluation of Ground Motion Hazards in Las Vegas in Support of Test Site Readiness Ground Motion

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, A

    2008-01-16

    In this report we describe the data sets used to evaluate ground motion hazards in Las Vegas from nuclear tests at the Nevada Test Site. This analysis is presented in Rodgers et al. (2005, 2006) and includes 13 nuclear explosions recorded at the John Blume and Associates network, the Little Skull Mountain earthquake and a temporary deployment of broadband station in Las Vegas. The data are available in SAC format on CD-ROM as an appendix to this report.

  8. Variations in radon-222 in soil and ground water at the Nevada Test Site

    International Nuclear Information System (INIS)

    Wollenberg, H.; Straume, T.; Smith, A.; King, C.Y.

    1977-01-01

    To help evaluate the applicability of variations of radon-222 in ground water and soil gas as a possible earthquake predictor, measurements were conducted in conjunction with underground explosions at the Nevada Test Site (NTS). Radon fluctuations in ground water have been observed during a sequence of aftershocks following the Oroville, California earthquake of 1 August 1975. The NTS measurements were designed to show if these fluctuations were in response to ground shaking; if not, they could be attributed to changes in earth strain prior to the aftershocks. Well waters were periodically sampled and soil-gas 222 Rn monitored prior to and following seven underground explosions of varying strength and distance from sampling and detector locations. Soil-gas 222 Rn contents were measured by the alpha-track method; well water 222 Rn by gamma-ray spectrometry. There was no clearly identifiable correlation between well-water radon fluctuations and individual underground tests. One prominent variation in soil-gas radon corresponded to ground shaking from a pair of underground tests in alluvium; otherwise, there was no apparent correlation between radon emanation and other explosions. Markedly lower soil-gas radon contents following the tests were probably caused by consolidation of alluvium in response to ground shaking

  9. Construction management at the SP-100 ground engineering system test site

    International Nuclear Information System (INIS)

    Burchell, G.P.; Wilson, L.R.

    1991-01-01

    Contractors under the U.S. Department of Energy management have implemented a comprehensive approach to the management of design and construction of the complex facility modifications at the SP-100 Ground Engineering System Test Site on the Hanford Reservation. The SP-100 Test Site employs a multi-organizational integrated management approach with clearly defined responsibilities to assure success. This approach allows for thorough planning and analysis before the project kick off, thus minimizing the number and magnitude of problems which arise during the course of the project. When combined with a comprehensive cost and schedule/project management reporting system the problems which do occur are recognized early enough to assure timely intervention and resolution

  10. HEAVY METALS IN THE ECOSYSTEM COMPONENTS AT "DEGELEN" TESTING GROUND OF THE FORMER SEMIPALATINSK TEST SITE

    Directory of Open Access Journals (Sweden)

    A.B. Yankauskas

    2012-06-01

    Full Text Available The ecological situation in the former Semipalatinsk test site is characterized by a combination of both radiative and "nonradiative" factors. There were investigated near-portal areas of the tunnels with water seepage at "Degelen" site. All the tunnel waters are characterized by higher concentrations of uranium, beryllium, and molybdenum. The watercourse of the tunnel # 504 is unique for its elemental composition, in particular, the content of rare earth elements, whose concentration in the water is in the range n*10-5 – n*10-7 %. Of all the rare earth elements in the samples were found 13, the concentrations of aluminum, manganese, zinc are comparable to the concentrations of macro-components. Concentration of 238U in the studied waters lie in the range of n*10-4 – n*10-6 %, which suggests the influence of uranium, not only as a toxic element, but its significance as the radiation factor.

  11. Heavy metals in the ecosystem components at 'Degelen' testing ground of the former Semipalatinsk test site

    International Nuclear Information System (INIS)

    Yankauskas, A.B.; Lukashenko, S.N.; Amirov, A.A.; Govenko, P.V.

    2012-01-01

    The ecological situation in the former Semipalatinsk test site is characterized by a combination of both radiative and nonradiative factors. There were investigated near-portal areas of the tunnels with water seepage at 'Degelen' site. All the tunnel waters are characterized by higher concentrations of uranium, beryllium, and molybdenum. The watercourse of the tunnel number 504 is unique for its elemental composition, in particular, the content of rare earth elements, whose concentration in the water is in the range n*10 -5 -n*10 -7 %. Of all the rare earth elements in the samples were found 13, the concentrations of aluminum, manganese, zinc are comparable to the concentrations of macro-components. Concentration of 238 U in the studied waters lie in the range of n*10 -4 - n*10 -6 %, which suggests the influence of uranium, not only as a toxic element, but its significance as the radiation factor. The analysis of complex data obtained showed that the elevated concentrations of heavy metals in the soils of the areas under study, as a rule, are a consequence of the carry-over of these metals by water flows and their subsequent deposition in the sediments. (authors)

  12. Ground penetrating radar and direct current resistivity evaluation of the desiccation test cap, Savannah River Site

    International Nuclear Information System (INIS)

    Wyatt, D.E.; Cumbest, R.J.

    1996-04-01

    The Savannah River Site (SRS) has a variety of waste units that may be temporarily or permanently stabilized by closure using an impermeable cover to prevent groundwater infiltration. The placement of an engineered kaolin clay layer over a waste unit is an accepted and economical technique for providing an impermeable cover but the long term stability and integrity of the clay in non-arid conditions is unknown. A simulated kaolin cap has been constructed at the SRA adjacent to the Burial Ground Complex. The cap is designed to evaluate the effects of desiccation on clay integrity, therefore half of the cap is covered with native soil to prevent drying, while the remainder of the cap is exposed. Measurements of the continuing impermeability of a clay cap are difficult because intrusive techniques may locally compromise the structure. Point measurements made to evaluate clay integrity, such as those from grid sampling or coring and made through a soil cover, may miss cracks, joints or fissures, and may not allow for mapping of the lateral extent of elongate features. Because of these problems, a non-invasive technique is needed to map clay integrity, below a soil or vegetation cover, which is capable of moderate to rapid investigation speeds. Two non-intrusive geophysical techniques, direct current resistivity and ground penetrating radar (GPR), have been successful at the SRS in geologically mapping shallow subsurface clay layers. The applicability of each technique in detecting the clay layer in the desiccation test cap and associated anomalies was investigated

  13. About condition of soil ground at locations of the former Azgir nuclear test site

    International Nuclear Information System (INIS)

    Akhmetov, E.Z.; Adymov, Zh.I.; Ermatov, A.S.

    2003-01-01

    Full text: Soil condition after underground nuclear explosions at locations of the test sites is considered. The region is situated in the zone of northern deserts and characterized by prevalence of greyish-brown soils in conditions of sharply continental climate and presence of salt in soil-formative complex including tertiary clays, loess-like loam, loam sands and sands. There are small quantity of humus in such soil. During investigation of soil characteristics and ability of soil particles to form conglomerates, possessing of different properties, it is necessary to know both element and phase composition, determining, in the most extent, such physical and mechanical macro-characteristics as: density, stickiness, air and water penetrability, solubility, chemical resistance, granulometric set and others. Phase composition of soil samples can be, to a sufficient extent, determined by the X-ray diffractometry methods using ordinary X-ray experimental facilities. Phase composition of soil includes gypsum, quartz, calcium, potash feldspar hematite, kaolin, peach and mica in different quantities. Data on element composition of soil samples were obtained from the territory of technological locations of test site using the method of X-ray-fluorescent analysis. Granulometric composition of soil ground has been investigated using the methods of dry sieving and wet sieving for determination of radionuclide distribution in different fractions of soil particles. By the method of the dry sieving of soil ground samples there are taken place a sticking the small together of fine fractions and an adhesion of stuck-together particles to more large ones. Therefore, fine fractions cannot be separate completely at dry sieving. As distinct from the dry sieving an use of water jet in the sieving allows to overcome defects of the dry method and, by a sufficiently effective separation of granulometric fractions, to obtain more precise results of investigations of granulometric

  14. Ground motion effects of underground nuclear testing on perennial vegetation at Nevada Test Site

    International Nuclear Information System (INIS)

    Rhoads, W.A.

    1976-07-01

    In this study to estimate the potential injury to vegetation from earth movement caused by underground nuclear detonations and to estimate the extent to which this may have occurred at NTS, two explosions in the megaton range on Pahute Mesa were studied in some detail: Boxcar, which caused a surface subsidence, and Benham, which did not. Because of the subsidence phenomenology, shock propagation through the earth and along the surface, and the resulting fractures, shrubs were killed at Boxcar around the perimeter of the subsidence crater. Both trees and shrubs were killed along tectonic faults, which became the path for earth fractures, and along fractures and rock falls elsewhere. There was also evidence at Boxcar of tree damage which antedated the nuclear testing program, presumably from natural earthquakes. With the possible exception of damage to aged junipers this investigation did not reveal any good evidence of immediate effects from underground testing on vegetation beyond that recognized earlier as the edge effect

  15. Peculiarities and opportunities of restoration of vegetation of experimental ground 'Experimental field' of Semipalatinsk Test Site

    International Nuclear Information System (INIS)

    Plisak, R.P.; Plisak, S. V.

    2003-01-01

    Full text: Geo-botanical researches at experimental ground 'Experimental field' of Semipalatinsk Test Site were conducted out in 1994-2000. 26 ground and 87 air nuclear tests were conducted out at the territory in 1949-1962. It is found that for deluvial-proluvial plain: High level of radiation pollution of soils in the epicentre of nuclear explosions is limiting factor for vegetation rehabilitation. Under level of PED of γ-irradiation 14,000-16,000 μR/h vegetation restoration has not begun until now. Only single individuals of Artemisia frigida appear under PED of γ-irradiation 10,000-13,000 μR/h. Rarefied plant aggregations constituted by annual-biennial weed species appear under PED of γ-irradiation 3,600-8,000 μR/h. Natural rehabilitation of vegetation occurs more intensively under PED of γ-irradiation of 60-200 μR/h. Vegetation aggregations close to initial zonal coenosis develop in these conditions. It is found that for tumulose: Vegetation restoration on the tops of hills starts with invasion of weed species. Plant aggregations with predominance of Caragana pumila, tyhedra distachya develop on accumulations of fine earth in cracks of mountain rocks. Lichens and mosses assimilate outcrops of mountain rocks. 2. Plant aggregations with predominance of Spiraea hypericifoia, Caragana pumila, Artemisia frigida develop on the upper parts of slopes of hills. Craters of nuclear explosions have not been assimilated by higher plants yet. Rarefied plant aggregations constituted by Psathyrostachys juncea, Artemisia frigida appear in the lower parts of slopes of hills. Single individuals of Medicago falcata, Galium ruthenicum, Melilotus dentatus are found on sides of explosion craters. Vegetation rehabilitates slowly trenches on gentle slopes of hills. Following measures are necessary for intensification of the process of restoration of vegetation destroyed and damaged by nuclear explosions: To clean slopes of hills from numerous fragment of metallic and plastic

  16. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    International Nuclear Information System (INIS)

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository

  17. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    Energy Technology Data Exchange (ETDEWEB)

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository.

  18. Large scale seismic test research at Hualien site in Taiwan. Results of site investigation and characterization of the foundation ground

    International Nuclear Information System (INIS)

    Okamoto, Toshiro; Kokusho, Takeharu; Nishi, Koichi

    1998-01-01

    An international joint research program called ''HLSST'' is under way. Large-Scale Seismic Test (LSST) is to be conducted to investigate Soil-Structure Interaction (SSI) during large earthquakes in the field in Hualien, a high seismic region in Taiwan. A 1/4-scale model building was constructed on the excavated gravelly ground, and the backfill material of crushed stones was placed around the model plant. The model building and the foundation ground were extensively instrumented to monitor structure and ground response. To accurately evaluate SSI during earthquakes, geotechnical investigation and forced vibration test were performed during construction process namely before/after the base excavation, after the structure construction and after the backfilling. Main results are as follows. (1) The distribution of the mechanical properties of the gravelly soil are measured by various techniques including penetration tests and PS-logging and it found that the shear wave velocities (Vs) change clearly and it depends on changing overburden pressures during the construction process. (2) Measuring Vs in the surrounding soils, it found that the Vs is smaller than that at almost same depth in the farther location. Discussion is made further on the numerical soil model for SSI analysis. (author)

  19. Hot Ground Vibration Tests

    Data.gov (United States)

    National Aeronautics and Space Administration — Ground vibration tests or modal surveys are routinely conducted to support flutter analysis for subsonic and supersonic vehicles. However, vibration testing...

  20. Risk-based screening analysis of ground water contaminated by radionuclides introduced at the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Daniels, J.I.; Anspaugh, L.R.; Andricevic, R.; Jacobson, R.L.

    1993-06-01

    The Nevada Test Site (NTS) is located in the southwestern part of Nevada, about 105 km (65 mi) northwest of the city of Las Vegas. Underground tests of nuclear weapons devices have been conducted at the NTS since late 1962 and ground water beneath the NTS has been contaminated with radionuclides produced by these tests. This concern prompted this examination of the potential health risk to these individuals from drinking the contaminated ground water either at a location on the NTS (assuming loss of institutional control after 100 y) or at one offsite (considering groundwater migration). For the purpose of this assessment, a representative mix of the radionuclides of importance and their concentrations in ground water beneath the NTS were identified from measurements of radionuclide concentrations in groundwater samples-of-opportunity collected at the NTS. Transport of radionuclide-contaminated ground water offsite was evaluated using a travel-time-transport approach. At both locations of interest, potential human-health risk was calculated for an individual ingesting radionuclide-contaminated ground water over the course of a 70-y lifetime. Uncertainties about human physiological attributes, as well as about estimates of physical detriment per unit of radioactive material, were quantified and incorporated into the estimates of risk. The maximum potential excess lifetime risk of cancer mortality estimated for an individual at the offsite location ranges from 7 x 10 -7 to 1 x 10 -5 , and at the onsite location ranges from 3 x 10 -3 to 2 x 10 -2 . Both the offsite and the onsite estimates of risk are dominated by the lifetime doses from tritium. For the assessment of radionuclides in ground water, the critical uncertainty is their concentration today under the entire NTS

  1. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    Science.gov (United States)

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-01-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the U.S. Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts supported through the U.S. Department of Energy program will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Test-generated contaminants have been introduced over large areas and at variable depths above and below the water table throughout NTS. Evaluating the risks associated with these byproducts of underground testing presupposes a knowledge of the source, transport, and potential receptors of these contaminants. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. Any assessment of the risk must rely in part on the current understanding of ground-water flow, and the assessment will be only as good as the understanding

  2. First observations of tritium in ground water outside chimneys of underground nuclear explosions, Yucca Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Crow, N.B.

    1976-01-01

    Abnormal levels of radionuclides had not been detected in ground water at the Nevada Test Site beyond the immediate vicinity of underground nuclear explosions until April 1974, when above-background tritium activity levels were detected in ground-water inflow from the tuff beneath Yucca Flat to an emplacement chamber being mined in hole U2aw in the east-central part of Area 2. No other radionuclides were detected in a sample of water from the chamber. In comparison with the amount of tritium estimated to be present in the ground water in nearby nuclear chimneys, the activity level at U2aw is very low. To put the tritium activity levels at U2aw into proper perspective, the maximum tritium activity level observed was significantly less than the maximum permissible concentration (MPC) for a restricted area, though from mid-April 1974 until the emplacement chamber was expended in September 1974, the tritium activity exceeded the MPC for the general public. Above-background tritium activity was also detected in ground water from the adjacent exploratory hole, Ue2aw. The nearest underground nuclear explosion detonated beneath the water table, believed to be the source of the tritium observed, is Commodore (U2am), located 465 m southeast of the emplacement chamber in U2aw. Commodore was detonated in May 1967. In May 1975, tritium activity May significantly higher than regional background. was detected in ground water from hole Ue2ar, 980 m south of the emplacement chamber in U2aw and 361 m from a second underground nuclear explosion, Agile (U2v), also detonated below the water table, in February 1967. This paper describes these occurrences of tritium in the ground water. A mechanism to account for the movement of tritium is postulated

  3. Contamination and UV ageing of diffuser targets used in satellite inflight and ground reference test site calibrations

    Science.gov (United States)

    Vaskuri, Anna; Greenwell, Claire; Hessey, Isabel; Tompkins, Jordan; Woolliams, Emma

    2018-02-01

    Diffuser reflectance targets are key components in in-orbit calibrations and for verifying ground reference test sites. In this work, Spectralon, Diffusil, and Heraeus diffusers were exposed to exhaust gases and ultraviolet (UV) radiation in the ambient air conditions and their degradations were monitored by measuring changes in spectral reflectances. Spectralon is a state-of-the-art diffuser made of polytetrafluoroethylene, and Diffusil and Heraeus diffusers are made of fused silica with gas bubbles inside. Based on the contamination tests, Spectralon degrades faster than fused silica diffusers. For the samples exposed to contamination for 20 minutes, the 250 nm - 400 nm total diffuse spectral reflectance of Spectralon degraded 3-5 times more when exposed to petrol-like emission and 16-23 times more when exposed to diesel-like emission, compared with Diffusil. When the reflectance changes of Spectralon were compared with those of Heraeus, Spectralon degraded 3-4 times more when exposed to petrol-like emission for 20 minutes and 5-7 times more when exposed to diesel-like emission for 7.5 minutes. When the samples contaminated were exposed to UV radiation in the ambient air, their reflectance gradually restored back to the original level. In conclusion, fused silica diffusers are more resistant to hydrocarbon contaminants present in ground reference test sites, and thus more stable under UV radiation in the air.

  4. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-01-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the US Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. This report summarizes what is known and inferred about ground-water flow throughout the NTS region. The report identifies and updates what is known about some of the major controls on ground-water flow, highlights some of the uncertainties in the current understanding, and prioritizes some of the technical needs as related to the Environmental Restoration Program. 113 refs

  5. A system to test the ground surface conditions of construction sites--for safe and efficient work without physical strain.

    Science.gov (United States)

    Koningsveld, Ernst; van der Grinten, Maarten; van der Molen, Henk; Krause, Frank

    2005-07-01

    Ground surface conditions on construction sites have an important influence on the health and safety of workers and their productivity. The development of an expert-based "working conditions evaluation" system is described, intended to assist site managers in recognising unsatisfactory ground conditions and remedying these. The system was evaluated in the period 2002-2003. The evaluation shows that companies recognize poor soil/ground conditions as problematic, but are not aware of the specific physical workload hazards. The developed methods allow assessment of the ground surface quality and selection of appropriate measures for improvement. However, barriers exist at present to wide implementation of the system across the industry. Most significant of these is that responsibility for a site's condition is not clearly located within contracting arrangements, nor is it a topic of serious negotiation.

  6. Ground penetrating radar results at the Box Canyon Site - 1996 survey as part of infiltration test

    International Nuclear Information System (INIS)

    Peterson, J.E. Jr.; Williams, K.H.

    1997-08-01

    This data report presents a discussion of the borehole radar tomography experiment conducted at Box Canyon, Idaho. Discussion concentrates on the survey methodology, data acquisition procedures, and the resulting tomographic images and interpretations. The entire geophysics field effort for FY96 centered around the collection of the borehole radar data within the inclined boreholes R1, R2, R3, and R4 before, during, and after the ponded infiltration experiment. The well pairs R1-R2, R2-R4, and R3-R4 comprised the bulk of the field survey; however, additional data were collected between vertical boreholes within and around the infiltration basin. The intent of the inclined boreholes was to allow access beneath the infiltration basin and to enhance the ability of the radar method to image both vertical and horizontal features where flow may dominate. This data report will concentrate on the inclined borehole data and the resulting tomograms. The borehole radar method is one in which modified ground penetrating radar antennas are lowered into boreholes and high frequency electromagnetic signals are transmitted through subsurface material to a receiving antenna. The transmitted signals may be represented as multiple raypaths crossing through the zone of interest. If sufficient raypaths are recorded, a tomographic image may be obtained through computer processing. The data normally recorded are signal amplitude versus time. The information extracted from such data includes the following: (a) the transit time which depends on the wave velocity, (b) the amplitude which depends on the wave attenuation, the dispersion which indicates a change in velocity and attenuation with frequency

  7. Ground-water data for the Nevada Test Site and selected other areas in South-Central Nevada, 1992--1993

    International Nuclear Information System (INIS)

    1995-01-01

    The US Geological Survey, in support of the US Department of Energy Environmental Restoration and Hydrologic Resources Management Programs, collects and compiles hydrogeologic data to aid in characterizing the regional and local ground-water flow systems underlying the Nevada Test Site and vicinity. This report presents selected ground-water data collected from wells and test holes at and in the vicinity of the Nevada Test Site. Depth-to-water measurements were made during water year 1993 at 55 sites at the Nevada Test Site and 43 regional sites in the vicinity of the Nevada Test Site. Depth to water ranged from 87.7 to 674.6 meters below land surface at the Nevada Test Site and from 6.0 to 444.7 meters below land surface at sites in the vicinity of the Nevada Test Site. Depth-to-water measurements were obtained using the wire-line, electric-tape, air-line, and steel-tape devices. Total measured ground-water withdrawal from the Nevada Test Site during the 1993 calendar year was 1,888.04 million liters. Annual ground-water withdrawals from 14 wells ranged from 0.80 million to 417.20 million liters. Tritium concentrations from four samples at the Nevada Test Site and from three samples in the vicinity of the Nevada Test Site collected during water year 1993 ranged from near 0 to 27,676.0 becquerels per liter and from near 0 to 3.9 becquerels per liter, respectively

  8. Ground-water data for the Nevada Test Site 1992, and for selected other areas in South-Central Nevada, 1952--1992

    International Nuclear Information System (INIS)

    1992-01-01

    Ground-water data collected from wells and test holes at and in the vicinity of the Nevada Test Site have been compiled in a recently released report. These data were collected by the US Geological Survey, Department of the Interior, in support of the US Department of Energy, Environmental Restoration and Hydrologic Resources Management Programs. Depth-to-water measurements were made at 53 sites at the Nevada Test Site from October 1, 1991, to September 30, 1992, and at 60 sites in the vicinity of the Nevada Test Site from 1952 to September 30, 1992. For water year 1992, depth to water ranged from 288 to 2,213 feet below land surface at the Nevada Test Site and from 22 to 1,460 feet below land surface at sites in the vicinity of the Nevada Test Site. Total ground-water withdrawal data compiled for 12 wells at the Nevada Test Site during calendar year 1992 was more than 400 million gallons. Tritium concentrations in water samples collected from five test holes at the Nevada Test Site in water year 1992 did not exceed the US Environmental Protection Agency drinking, water limit

  9. Space-Borne and Ground-Based InSAR Data Integration: The Åknes Test Site

    Directory of Open Access Journals (Sweden)

    Federica Bardi

    2016-03-01

    Full Text Available This work concerns a proposal of the integration of InSAR (Interferometric Synthetic Aperture Radar data acquired by ground-based (GB and satellite platforms. The selected test site is the Åknes rockslide, which affects the western Norwegian coast. The availability of GB-InSAR and satellite InSAR data and the accessibility of a wide literature make the landslide suitable for testing the proposed procedure. The first step consists of the organization of a geodatabase, performed in the GIS environment, containing all of the available data. The second step concerns the analysis of satellite and GB-InSAR data, separately. Two datasets, acquired by RADARSAT-2 (related to a period between October 2008 and August 2013 and by a combination of TerraSAR-X and TanDEM-X (acquired between July 2010 and October 2012, both of them in ascending orbit, processed applying SBAS (Small BAseline Subset method, are available. GB-InSAR data related to five different campaigns of measurements, referred to the summer seasons of 2006, 2008, 2009, 2010 and 2012, are available, as well. The third step relies on data integration, performed firstly from a qualitative point of view and later from a semi-quantitative point of view. The results of the proposed procedure have been validated by comparing them to GPS (Global Positioning System data. The proposed procedure allowed us to better define landslide sectors in terms of different ranges of displacements. From a qualitative point of view, stable and unstable areas have been distinguished. In the sector concerning movement, two different sectors have been defined thanks to the results of the semi-quantitative integration step: the first sector, concerning displacement values higher than 10 mm, and the 2nd sector, where the displacements did not exceed a 10-mm value of displacement in the analyzed period.

  10. Ground penetrating radar for determining volumetric soil water content ; results of comparative measurements at two test sites

    NARCIS (Netherlands)

    Overmeeren, R.A. van; Sariowan, S.V.; Gehrels, J.C.

    1997-01-01

    Ground penetrating radar (GPR) can provide information on the soil water content of the unsaturated zone in sandy deposits via measurements from the surface, and so avoids drilling. Proof of this was found from measurements of radar wave velocities carried out ten times over 13 months at two test

  11. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Volume 2. Special test cases

    International Nuclear Information System (INIS)

    Simmons, C.S.; Cole, C.R.

    1985-08-01

    This document was written for the National Low-Level Waste Management Program to provide guidance for managers and site operators who need to select ground-water transport codes for assessing shallow-land burial site performance. The guidance given in this report also serves the needs of applications-oriented users who work under the direction of a manager or site operator. The guidelines are published in two volumes designed to support the needs of users having different technical backgrounds. An executive summary, published separately, gives managers and site operators an overview of the main guideline report. Volume 1, titled ''Guideline Approach,'' consists of Chapters 1 through 5 and a glossary. Chapters 2 through 5 provide the more detailed discussions about the code selection approach. This volume, Volume 2, consists of four appendices reporting on the technical evaluation test cases designed to help verify the accuracy of ground-water transport codes. 20 refs

  12. Information pertinent to the migration of radionuclides in ground water at the Nevada Test Site. Part 2: annotated bibliography

    International Nuclear Information System (INIS)

    Borg, I.Y.; Stone, R.; Levy, H.B.; Ramspott, L.D.

    1976-01-01

    Part 2 of UCRL-52078 consists of the bibliography and abstracts that were compiled in the course of searching the literature for information on the migration of radionuclides in groundwater at the Nevada Test Site. The bibliography also includes numerous references to work done at foreign nuclear centers or contracted to outside agencies by these same centers

  13. Measurement of ground motion in various sites

    International Nuclear Information System (INIS)

    Bialowons, W.; Amirikas, R.; Bertolini, A.; Kruecker, D.

    2007-04-01

    Ground vibrations may affect low emittance beam transport in linear colliders, Free Electron Lasers (FEL) and synchrotron radiation facilities. This paper is an overview of a study program to measure ground vibrations in various sites which can be used for site characterization in relation to accelerator design. Commercial broadband seismometers have been used to measure ground vibrations and the resultant database is available to the scientific community. The methodology employed is to use the same equipment and data analysis tools for ease of comparison. This database of ground vibrations taken in 19 sites around the world is first of its kind. (orig.)

  14. Evaluation of geologic structure guiding ground water flow south and west of Frenchman Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    McKee, E.H.

    1998-01-01

    Ground water flow through the region south and west of Frenchman Flat, in the Ash Meadows subbasin of the Death Valley ground water flow system, is controlled mostly by the distribution of permeable and impermeable rocks. Geologic structures such as faults are instrumental in arranging the distribution of the aquifer and aquitard rock units. Most permeability is in fractures caused by faulting in carbonate rocks. Large faults are more likely to reach the potentiometric surface about 325 meters below the ground surface and are more likely to effect the flow path than small faults. Thus field work concentrated on identifying large faults, especially where they cut carbonate rocks. Small faults, however, may develop as much permeability as large faults. Faults that are penetrative and are part of an anastomosing fault zone are particularly important. The overall pattern of faults and joints at the ground surface in the Spotted and Specter Ranges is an indication of the fracture system at the depth of the water table. Most of the faults in these ranges are west-southwest-striking, high-angle faults, 100 to 3500 meters long, with 10 to 300 /meters of displacement. Many of them, such as those in the Spotted Range and Rock Valley are left-lateral strike-slip faults that are conjugate to the NW-striking right-lateral faults of the Las Vegas Valley shear zone. These faults control the ground water flow path, which runs west-southwest beneath the Spotted Range, Mercury Valley and the Specter Range. The Specter Range thrust is a significant geologic structure with respect to ground water flow. This regional thrust fault emplaces siliceous clastic strata into the north central and western parts of the Specter Range

  15. SIR-C/X-SAR data calibration and ground truth campaign over the NASA-CB1 test-site

    International Nuclear Information System (INIS)

    Notarnicola, C.; Posa, F.; Refice, A.; Sergi, R.; Smacchia, P.; Casarano, D.; De Carolis, G.; Mattia, F.; Schena, V.D.

    2001-01-01

    During the Space Shuttle Endeavour mission in October 1994, a remote-sensing campaign was carried out with the objectives of both radiometric and polarimetric calibration and ground truth data acquisition of bare soils. This paper presents the results obtained in the experiment. Polarimetric cross-talk and channel imbalance values, as well as radiometric calibration parameters, have been found to be within the science requirements for SAR images. Regarding ground truth measurements, a wide spread in the height rms values and correlation lengths has been observed, which was motivated a critical revisiting of surface parameters descriptors

  16. Two-dimensional, steady-state model of ground-water flow, Nevada Test Site and vicinity, Nevada-California

    International Nuclear Information System (INIS)

    Waddell, R.K.

    1982-01-01

    Characteristics of the flow system are principally determined by locations of low-hydraulic-conductivity rocks (barriers); by amounts of recharge originating in the Spring Mountains, Pahranagat, Timpahute, and Sheep Ranges, and in Pahute Mesa; and by amount of flow into the study area from Gold Flat and Kawich Valley. Discharge areas (Ash Meadows, Oasis Valley, Alkali Flat, and Furnace Creek Ranch) are upgradient from barriers. Analyses of sensitivity of hydraulic head with respect to model-parameter variations indicate that the flux terms having the greatest impact on model output are recharge on Pahute Mesa, underflow from Gold Flat and Kawich Valley, and discharge at Ash Meadows. The most important transmissivity terms are those for rocks underlying the Amargosa Desert (exclusive of Amargosa Flat area), the Eleana Formation along the west side of Yucca Flat, and the Precambrian and Cambrian clastic rocks underlying the Groom Range. Sensitivities of fluxes derived from simulated heads and head sensitivities were used to determine the parameters that would most affect predictions of radionuclide transport from a hypothetical nuclear repository in the southwest quadrant of the Nevada Test Site. The important parameters for determining flux through western Jackass Flats and Yucca Mountain are recharge to and underflow beneath Pahute Mesa; and transmissivities of the Eleana Formation, clastic rocks underlying the Groom Range, tuffs underlying Fortymile Canyon, and tuffs beneath Yucca Mountain. In the eastern part of Jackass Flats, the important parameters are transmissivities of the Eleana Formation; clastic rocks underlying the Groom Range; transmissivity of tuffs beneath Fortymile Canyon; and recharge or discharge terms for Pahute Mesa, Ash Meadows, and the Sheep Range. Transmissivities of rocks beneath the Amargosa Desert are important for flux calculations there

  17. 2012 Ground Testing Highlights

    Science.gov (United States)

    Buchholz, Steven J.

    2012-01-01

    As part of the Fundamental Aeronautics Program and a collaborative effort with Boeing, and Lockheed Martin this past year a series of sonic boom test were completed in the NASA Ames Unitary Plan Wind Tunnel (UPWT). One of the goals was to develop new test techniques and hardware for measuring sonic boom signatures in the transonic and supersonic regimes. Data for various model designs and configurations were collected and will be used to validate CFD predictions of sonic boom signatures. Reactivation of the NASA Ames Mitsubishi compressor system was completed this past year. The compressor is intended to replace and augment the existing UPWT Clark Compressor as the primary Make Up Air (MUA) source. The MUA system provides air and vacuum pumping capability to the Ames UPWT. It will improve productivity and reliability of the UPWT as a vital testing and research facility for the U.S. aerospace industry and NASA. Funding for this task was provided from the American Recovery Investment Act (ARRA). Installation and validation of a Noncontact Stress Monitoring System (NSMS) for the 3-stage compressor was completed at the 11-foot Transonic Wind Tunnel. The system, originally developed at AEDC, consists of 36 pairs of LED light sources with optic beam send and receive probes along a 1-per rev signal. The new system allows for continuous monitoring and recording of compressor blade bending and torsion stress during normal test operations. A very unusual test was completed in the 11 FT TWT to acquire aerodynamic and flow field data for the Crew Exploration Vehicle (CEV) Parachute Assembly System (CPAS) to validate CFD methods and tools. Surface pressure distribution measurements and velocity measurements in the wake of the command module back to the drogues parachute location were acquired. Testing methods included Particle Image Velocimetry (PIV), Pressure Sensitive Paint (PSP), Schlieren Infrared Imaging (IR) and boundary layer survey and skin friction.

  18. Hanford site ground water protection management plan

    International Nuclear Information System (INIS)

    1994-10-01

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities

  19. Radiological Situation at the Bomb Test Sites

    International Nuclear Information System (INIS)

    Valkovic, V.

    1998-01-01

    An overview of radiological situation at the selected bomb test sites is presented. The report is based on the reports and measurements performed by IAEA while the author was a head of its Physics-Chemistry-Instrumentation Laboratory. Radiological conditions at Bikini Atoll (USA testing ground), Mururoa and Fangataufa Atolls (French testing ground) and Semipalatinsk (SSSR testing ground) have been discussed in some details. (author)

  20. Site Selection for Hvdc Ground Electrodes

    Science.gov (United States)

    Freire, P. F.; Pereira, S. Y.

    2014-12-01

    High-Voltage Direct Current (HVDC) transmission systems are composed of a bipole transmission line with a converter substation at each end. Each substation may be equipped with a HVDC ground electrode, which is a wide area (up to 1 km Ø) and deep (from 3 to 100m) electrical grounding. When in normal operation, the ground electrode will dissipate in the soil the unbalance of the bipole (~1.5% of the rated current). When in monopolar operation with ground return, the HVDC electrode will inject in the soil the nominal pole continuous current, of about 2000 to 3000 Amperes, continuously for a period up to a few hours. HVDC ground electrodes site selection is a work based on extensive geophysical and geological surveys, in order to attend the desired design requirements established for the electrodes, considering both its operational conditions (maximum soil temperature, working life, local soil voltage gradients etc.) and the interference effects on the installations located up to 50 km away. This poster presents the geophysical investigations conducted primarily for the electrodes site selection, and subsequently for the development of the crust resistivity model, which will be used for the interference studies. A preliminary site selection is conducted, based on general geographical and geological criteria. Subsequently, the geology of each chosen area is surveyed in detail, by means of electromagnetic/electrical geophysical techniques, such as magnetotelluric (deep), TDEM (near-surface) and electroresistivity (shallow). Other complementary geologic and geotechnical surveys are conducted, such as wells drilling (for geotechnical characterization, measurement of the water table depth and water flow, and electromagnetic profiling), and soil and water sampling (for measurement of thermal parameters and evaluation of electrosmosis risk). The site evaluation is a dynamic process along the surveys, and some sites will be discarded. For the two or three final sites, the

  1. A ground-based magnetic survey of Frenchman Flat, Nevada National Security Site and Nevada Test and Training Range, Nevada: data release and preliminary interpretation

    Science.gov (United States)

    Phillips, Jeffrey D.; Burton, Bethany L.; Curry-Elrod, Erika; Drellack, Sigmund

    2014-01-01

    The Nevada National Security Site (NNSS, formerly the Nevada Test Site) is located in southern Nevada approximately 105 kilometers (km) (65 miles) northwest of Las Vegas. Frenchman Flat is a sedimentary basin located on the eastern edge of NNSS and extending eastward into the adjacent Nevada Test and Training Range (NTTR).

  2. Information pertinent to the migration of radionuclides in ground water at the Nevada Test Site. Part 1. Review and analysis of existing information

    International Nuclear Information System (INIS)

    Borg, I.Y.; Stone, R.; Levy, H.B.; Ramspott, L.D.

    1976-01-01

    A history of NTS is given, the geologic and hydrologic setting is described, and the amount of radioactivity deposited within and near the main aquifers is estimated. The conclusions include: information currently available is insufficient to state categorically that radioactivity will never be carried off the Nevada Test Site by ground water movement; nonetheless, such a migration at levels above the maximum permissible concentration to existing wells and springs is considered unlikely; if offsite migration occurs, it will probably be from the southwestern margins of Pahute Mesa, where there is only a small chance of contaminating existing public water supplies; tritium is the most mobile radionuclide and may be the only long-lived isotope of concern. Highest priority is assigned to measurement of tritium and other radionuclides in large water samples taken from nuclear chimneys that water has re-entered after an explosion; expansion of the existing groundwater monitoring program at NTS to include wells with a higher probability of intersecting flow of contaminated water; measurement of groundwater flow velocities and other associated hydrologic parameters. High priority is assigned to production of an inventory of radionuclides deposited near NTS borders, especially beneath Pahute Mesa; determination of amounts of radioactivity deposited directly into the Lower Carbonate Aquifer; a sensitivity analysis of the many parameters that enter into transport calculations; a study of the many unplugged holes that penetrate the Tuff Aquitard; testing of the assumption that radionuclides deposited in the unsaturated zone are isolated from the saturated zone because of limited precipitation and downward movement of moisture; and determination of distribution coefficients for NTS alluvium, carbonate, and rhyolitic rocks, which are lacking or poorly represented in the literature. Twelve other recommendations of lesser priority are also given

  3. SP-100 Test Site

    International Nuclear Information System (INIS)

    Cox, C.M.; Mahaffey, M.K.; Miller, W.C.

    1988-01-01

    Preparatory activities are well under way at Hanford to convert the 309 Containment Building and its associated service wing to a 2.5 MWt nuclear test facility for the SP-100 Ground Engineering System (GES) test. Preliminary design is complete, encompassing facility modifications, a secondary heat transport system, a large vacuum system to enclose the high temperature reactor, a test assembly cell and handling system, control and data processing systems, and safety and auxiliary systems. The design makes extensive use of existing equipment to minimize technical risk and cost. Refurbishment of this equipment is 75% complete. The facility has been cleared of obstructing equipment from its earlier reactor test. Current activities are focusing on definitive design and preparation of the Preliminary Safety Analysis Report (PSAR) aimed at procurement and construction approvals and schedules to achieve reactor criticality by January 1992. 6 refs

  4. Valuation of potential hazards to ground water from abandoned sites

    International Nuclear Information System (INIS)

    Kerndorff, H.; Schleyer, R.; Dieter, H.H.

    1993-01-01

    With a view to obtaining, for the large number of abandoned sites suspected of pollution, necessary information regarding the type and extent of possible ground water contamination with a minimum of effort and cost, a hierarchical investigation strategy was developed and successfully tested in more than 100 cases in Germany. As a decisive advantage, already the well-defined and simple investigation steps ''preliminary prospecting'' and ''screening'' permit to recognize polluted sites posing a hazard to ground water. The more specific and demanding investigation steps ''pollutant analysis'' and ''detailed investigations'' may be carried through if necessary. (orig./BBR). 27 figs., 36 tabs [de

  5. 2011 Ground Testing Highlights Article

    Science.gov (United States)

    Ross, James C.; Buchholz, Steven J.

    2011-01-01

    Two tests supporting development of the launch abort system for the Orion MultiPurpose Crew Vehicle were run in the NASA Ames Unitary Plan wind tunnel last year. The first test used a fully metric model to examine the stability and controllability of the Launch Abort Vehicle during potential abort scenarios for Mach numbers ranging from 0.3 to 2.5. The aerodynamic effects of the Abort Motor and Attitude Control Motor plumes were simulated using high-pressure air flowing through independent paths. The aerodynamic effects of the proximity to the launch vehicle during the early moments of an abort were simulated with a remotely actuated Service Module that allowed the position relative to the Crew Module to be varied appropriately. The second test simulated the acoustic environment around the Launch Abort Vehicle caused by the plumes from the 400,000-pound thrust, solid-fueled Abort Motor. To obtain the proper acoustic characteristics of the hot rocket plumes for the flight vehicle, heated Helium was used. A custom Helium supply system was developed for the test consisting of 2 jumbo high-pressure Helium trailers, a twelve-tube accumulator, and a 13MW gas-fired heater borrowed from the Propulsion Simulation Laboratory at NASA Glenn Research Center. The test provided fluctuating surface pressure measurements at over 200 points on the vehicle surface that have now been used to define the ground-testing requirements for the Orion Launch Abort Vehicle.

  6. Large Payload Ground Transportation and Test Considerations

    Science.gov (United States)

    Rucker, Michelle A.

    2016-01-01

    Many spacecraft concepts under consideration by the National Aeronautics and Space Administration’s (NASA’s) Evolvable Mars Campaign take advantage of a Space Launch System payload shroud that may be 8 to 10 meters in diameter. Large payloads can theoretically save cost by reducing the number of launches needed--but only if it is possible to build, test, and transport a large payload to the launch site in the first place. Analysis performed previously for the Altair project identified several transportation and test issues with an 8.973 meters diameter payload. Although the entire Constellation Program—including Altair—has since been canceled, these issues serve as important lessons learned for spacecraft designers and program managers considering large payloads for future programs. A transportation feasibility study found that, even broken up into an Ascent and Descent Module, the Altair spacecraft would not fit inside available aircraft. Ground transportation of such large payloads over extended distances is not generally permitted, so overland transportation alone would not be an option. Limited ground transportation to the nearest waterway may be possible, but water transportation could take as long as 67 days per production unit, depending on point of origin and acceptance test facility; transportation from the western United States would require transit through the Panama Canal to access the Kennedy Space Center launch site. Large payloads also pose acceptance test and ground processing challenges. Although propulsion, mechanical vibration, and reverberant acoustic test facilities at NASA’s Plum Brook Station have been designed to accommodate large spacecraft, special handling and test work-arounds may be necessary, which could increase cost, schedule, and technical risk. Once at the launch site, there are no facilities currently capable of accommodating the combination of large payload size and hazardous processing such as hypergolic fuels

  7. Ground Truth Collections at the MTI Core Sites

    International Nuclear Information System (INIS)

    Garrett, A.J.

    2001-01-01

    The Savannah River Technology Center (SRTC) selected 13 sites across the continental US and one site in the western Pacific to serve as the primary or core site for collection of ground truth data for validation of MTI science algorithms. Imagery and ground truth data from several of these sites are presented in this paper. These sites are the Comanche Peak, Pilgrim and Turkey Point power plants, Ivanpah playas, Crater Lake, Stennis Space Center and the Tropical Western Pacific ARM site on the island of Nauru. Ground truth data includes water temperatures (bulk and skin), radiometric data, meteorological data and plant operating data. The organizations that manage these sites assist SRTC with its ground truth data collections and also give the MTI project a variety of ground truth measurements that they make for their own purposes. Collectively, the ground truth data from the 14 core sites constitute a comprehensive database for science algorithm validation

  8. Prediction of ground motion from underground nuclear weapons tests as it relates to siting of a nuclear waste storage facility at NTS and compatibility with the weapons test program

    International Nuclear Information System (INIS)

    Vortman, L.J. IV.

    1980-04-01

    This report assumes reasonable criteria for NRC licensing of a nuclear waste storage facility at the Nevada Test Site where it would be exposed to ground motion from underground nuclear weapons tests. Prediction equations and their standard deviations have been determined from measurements on a number of nuclear weapons tests. The effect of various independent parameters on standard deviation is discussed. That the data sample is sufficiently large is shown by the fact that additional data have little effect on the standard deviation. It is also shown that coupling effects can be separated out of the other contributions to the standard deviation. An example, based on certain licensing assumptions, shows that it should be possible to have a nuclear waste storage facility in the vicinity of Timber Mountain which would be compatible with a 700 kt weapons test in the Buckboard Area if the facility were designed to withstand a peak vector acceleration of 0.75 g. The prediction equation is a log-log linear equation which predicts acceleration as a function of yield of an explosion and the distance from it

  9. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used to evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  10. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used ito evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  11. BUSTED BUTTE TEST FACILITY GROUND SUPPORT CONFIRMATION ANALYSIS

    International Nuclear Information System (INIS)

    Bonabian, S.

    1998-01-01

    The main purpose and objective of this analysis is to confirm the validity of the ground support design for Busted Butte Test Facility (BBTF). The highwall stability and adequacy of highwall and tunnel ground support is addressed in this analysis. The design of the BBTF including the ground support system was performed in a separate document (Reference 5.3). Both in situ and seismic loads are considered in the evaluation of the highwall and the tunnel ground support system. In this analysis only the ground support designed in Reference 5.3 is addressed. The additional ground support installed (still work in progress) by the constructor is not addressed in this analysis. This additional ground support was evaluated by the A/E during a site visit and its findings and recommendations are addressed in this analysis

  12. Hanford Site ground-water surveillance for 1989

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.; Kemner, M.L.

    1990-06-01

    This annual report of ground-water surveillance activities provides discussions and listings of results for ground-water monitoring at the Hanford Site during 1989. The Pacific Northwest Laboratory (PNL) assesses the impacts of Hanford operations on the environment for the US Department of Energy (DOE). The impact Hanford operations has on ground water is evaluated through the Hanford Site Ground-Water Surveillance program. Five hundred and sixty-seven wells were sampled during 1989 for Hanford ground-water monitoring activities. This report contains a listing of analytical results for calendar year (CY) 1989 for species of importance as potential contaminants. 30 refs., 29 figs,. 4 tabs

  13. Computer-Based Testing: Test Site Security.

    Science.gov (United States)

    Rosen, Gerald A.

    Computer-based testing places great burdens on all involved parties to ensure test security. A task analysis of test site security might identify the areas of protecting the test, protecting the data, and protecting the environment as essential issues in test security. Protecting the test involves transmission of the examinations, identifying the…

  14. Ground Characterization Studies in Canakkale Pilot Site of LIQUEFACT Project

    Science.gov (United States)

    Ozcep, F.; Oztoprak, S.; Aysal, N.; Bozbey, I.; Tezel, O.; Ozer, C.; Sargin, S.; Bekin, E.; Almasraf, M.; Cengiz Cinku, M.; Ozdemir, K.

    2017-12-01

    The our aim is to outline the ground characterisation studies in Canakkale test site. Study is based on the EU H2020 LIQUEFACT project entitled "Liquefact: Assessment and mitigation of liquefaction potential across Europe: a holistic approach to protect structures / infrastructures for improved resilience to earthquake-induced liquefaction disasters". Objectives and extent of ground characterization for Canakkale test site includes pre-existing soil investigation studies and complementary field studies. There were several SPT and geophysical tests carried out in the study area. Within the context of the complementary tests, six (6) study areas in the test site were chosen and complementary tests were carried out in these areas. In these areas, additional boreholes were opened and SPT tests were performed. It was decided that additional CPT (CPTU and SCPT) and Marchetti Dilatometer (DMT) tests should be carried out within the scope of the complementary testing. Seismic refraction, MASW and micro tremor measurements had been carried out in pre-existing studies. Shear wave velocities obtained from MASW measurements were evaluated to the most rigorous level. These tests were downhole seismic, PS-logging, seismic refraction, 2D-ReMi, MASW, micro tremor (H/V Nakamura method), 2D resistivity and resonance acoustic profiling (RAP). RAP is a new technique which will be explained briefly in the relevant section. Dynamic soil properties had not been measured in pre-existing studies, therefore these properties were investigated within the scope of the complementary tests. Selection of specific experimental tests of the complementary campaign was based on cost-benefit considerations Within the context of complementary field studies, dynamic soil properties were measured using resonant column and cyclic direct shear tests. Several sieve analyses and Atterberg Limits tests which were documented in the pre-existing studies were evaluated. In the complementary study carried out

  15. Open-field test site

    Science.gov (United States)

    Gyoda, Koichi; Shinozuka, Takashi

    1995-06-01

    An open-field test site with measurement equipment, a turn table, antenna positioners, and measurement auxiliary equipment was remodelled at the CRL north-site. This paper introduces the configuration, specifications and characteristics of this new open-field test site. Measured 3-m and 10-m site attenuations are in good agreement with theoretical values, and this means that this site is suitable for using 3-m and 10-m method EMI/EMC measurements. The site is expected to be effective for antenna measurement, antenna calibration, and studies on EMI/EMC measurement methods.

  16. Analysis of Ground-Water Levels and Associated Trends in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1951-2003

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Fenelon

    2005-10-05

    depressurization following nuclear testing. The magnitude of the overall water-level change for wells with anthropogenic trends can be large, ranging from several feet to hundreds of feet. Vertical water-level differences at 27 sites in Yucca Flat with multiple open intervals were compared. Large vertical differences were noted in volcanic rocks and in boreholes where water levels were affected by nuclear tests. Small vertical differences were noted within the carbonate-rock and valley-fill aquifers. Vertical hydraulic gradients generally are downward in volcanic rocks and from pre-Tertiary clastic rocks toward volcanic- or carbonate-rock units.

  17. Hanford Site ground-water monitoring for 1990

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-06-01

    The Pacific Northwest Laboratory monitors ground-water quality across the Hanford Site for the US Department of Energy (DOE) to assess the impact of Site operations on the environment. Monitoring activities were conducted to determine the distribution of mobile radionuclides and identify chemicals present in ground water as a result of Site operations and whenever possible, relate the distribution of these constituents to Site operations. To comply with the Resource Conservation and Recovery Act, additional monitoring was conducted at individual waste sites by the Site Operating Contractor, Westinghouse Hanford Company (WHC), to assess the impact that specific facilities have had on ground-water quality. Six hundred and twenty-nine wells were sampled during 1990 by all Hanford ground-water monitoring activities

  18. Hanford Site ground-water monitoring for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  19. Hanford Site ground-water monitoring for 1994

    International Nuclear Information System (INIS)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal

  20. Underground Nuclear Testing Program, Nevada Test Site

    International Nuclear Information System (INIS)

    1975-09-01

    The Energy Research and Development Administration (ERDA) continues to conduct an underground nuclear testing program which includes tests for nuclear weapons development and other tests for development of nuclear explosives and methods for their application for peaceful uses. ERDA also continues to provide nuclear explosive and test site support for nuclear effects tests sponsored by the Department of Defense. This Supplement extends the Environmental Statement (WASH-1526) to cover all underground nuclear tests and preparations for tests of one megaton (1 MT) or less at the Nevada Test Site (NTS) during Fiscal Year 1976. The test activities covered include numerous continuing programs, both nuclear and non-nuclear, which can best be conducted in a remote area. However, if nuclear excavation tests or tests of yields above 1 MT or tests away from NTS should be planned, these will be covered by separate environmental statements

  1. Advanced Testing Method for Ground Thermal Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [ORNL; Clemenzi, Rick [Geothermal Design Center Inc.; Liu, Su [University of Tennessee (UT)

    2017-04-01

    A new method is developed that can quickly and more accurately determine the effective ground thermal conductivity (GTC) based on thermal response test (TRT) results. Ground thermal conductivity is an important parameter for sizing ground heat exchangers (GHEXs) used by geothermal heat pump systems. The conventional GTC test method usually requires a TRT for 48 hours with a very stable electric power supply throughout the entire test. In contrast, the new method reduces the required test time by 40%–60% or more, and it can determine GTC even with an unstable or intermittent power supply. Consequently, it can significantly reduce the cost of GTC testing and increase its use, which will enable optimal design of geothermal heat pump systems. Further, this new method provides more information about the thermal properties of the GHEX and the ground than previous techniques. It can verify the installation quality of GHEXs and has the potential, if developed, to characterize the heterogeneous thermal properties of the ground formation surrounding the GHEXs.

  2. Hanford Site ground-water monitoring for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  3. Study on Quaternary ground siting of nuclear power plant, (1)

    International Nuclear Information System (INIS)

    Kokusho, Takaji; Nishi, Koichi; Honsho, Shizumitsu

    1991-01-01

    A seismic stability evaluation method for a nuclear power plant to be located on a Quaternary sandy/gravelly ground is discussed herein in terms of the geological and geotechnical survey, design earthquake motion evaluation and geotechnical seismic stability analyses. The geological and geotechnical exploration tunnel in the rock-foundation siting will be difficult in the Quaternary ground siting. Boring, geophysical surveys and soil samplings will play a major role in this case. The design earthquake input spectrum for this siting is proposed so as to take account the significant effect of longer period motion on the ground stability. Equivalent and non-linear analyses demonstrate the seismic stability of the foundation ground so long as the soil density is high. (author)

  4. Quaternary ground siting technology of nuclear power plants

    International Nuclear Information System (INIS)

    Nishi, K.; Kokusho, T.; Iwatate, Y.; Ishida, K.; Honsho, S.; Okamoto, T.; Tohma, J.; Tanaka, Y.; Kanatani, M.

    1992-01-01

    A seismic stability evaluation method for a nuclear power plant to be located on Quaternary sandy/gravelly ground is discussed herein in terms of a geological and geotechnical survey, a design earthquake motion evaluation and geotechnical seismic stability analyses. The geological and geotechnical exploration tunnel in the rock foundation siting will be difficult in the Quaternary ground siting. Boring, geophysical surveys and soil sampling will play a major role in this case. A design earthquake input spectrum for this siting is proposed to take in account the significant effect of longer period motion on ground stability. Equivalent and non-linear analyses demonstrate the seismic stability of the foundation ground so long as the soil density is high. (author)

  5. Ground testing of an SP-100 prototypic reactor

    International Nuclear Information System (INIS)

    Motwani, K.; Pflasterer, G.R.; Upton, H.; Lazarus, J.D.; Gluck, R.

    1988-01-01

    SP-100 is a space power system which is being developed by GE to meet future space electrical power requirements. The ground testing of an SP-100 prototypic reactor system will be conducted at the Westinghouse Hanford Company site located at Richland, Washington. The objective of this test is to demonstrate the performance of a full scale prototypic reactor system, including the reactor, control system and flight shield. The ground test system is designed to simulate the flight operating conditions while meeting all the necessary nuclear safety requirements in a gravity environment. The goal of the reactor ground test system is to establish confidence in the design maturity of the SP-100 space reactor power system and resolve the technical issues necessary for the development of a flight mission design

  6. Evaluation of vibratory ground motion at nuclear power plant sites

    International Nuclear Information System (INIS)

    Hofmann, R.B.; Greeves, J.T.

    1978-01-01

    The evaluation of vibratory ground motion at nuclear power plant sites requires the cooperative effort of scientists and engineers in several disciplines. These include seismology, geology, geotechnical engineering and structural engineering. The Geosciences Branch of the NRC Division of Site Safety and Environmental Analysis includes two sections, the Geology/Seismology Section and the Geotechnical Engineering Section

  7. Assessment of radioactive contaminations of the ground in Hanover-List with scales and methods of the German Federal Ordinance on Soil Protection and Contaminated Sites (BBodSchV). Pt. 1. Derivation of test thresholds

    International Nuclear Information System (INIS)

    Gellermann, Rainer; Guenther, Petra; Evers, Burkhard

    2010-01-01

    Background, aim, and scope: In the district List of Hanover (Lower Saxony) radioactive contaminations of the ground were detected at a site of a former chemical plant. Due to the lack of an ordinance regarding intervention regulations in the case of radioactive contaminations in Germany this situation had to be assessed on the basis of scales and methods of the German regulations concerning soil protection and contaminated sites. In particular it was necessary to develop methods and levels for the assessment of radioactive contaminations. Materials and methods: Because radioactivity can be considered as a carcinogenic substance the methodical approaches of the BBodSchV for this group of substances were used in order to derive test thresholds for radioactive contaminations at children's play areas, residential areas as well as parks and recreation facilities. Results: For the assessment of radioactive soil contaminations with naturally occurring radionuclides at children's play areas and residential areas the ingestion of soil is the decisive pathway of exposure. For children's play areas a threshold level of 0.2 Bq/g for the sum U-238,max + Th-232,max was obtained. At areas with only impacts of ambient radiation from the contaminated ground test thresholds of 0.5 μSv/h are recommended. A special pathway is the migration of radon from the contaminated soil into basement floors of buildings. Taking into account the natural background levels of radon a concentration of 260 Bq/m 3 is suggested as a test threshold in the framework of soil protection benchmarks. Discussion and conclusions will be described in Part 2 of the paper.

  8. Hanford Site ground-water monitoring for 1993

    International Nuclear Information System (INIS)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices

  9. Single-event effect ground test issues

    International Nuclear Information System (INIS)

    Koga, R.

    1996-01-01

    Ground-based single event effect (SEE) testing of microcircuits permits characterization of device susceptibility to various radiation induced disturbances, including: (1) single event upset (SEU) and single event latchup (SEL) in digital microcircuits; (2) single event gate rupture (SEGR), and single event burnout (SEB) in power transistors; and (3) bit errors in photonic devices. These characterizations can then be used to generate predictions of device performance in the space radiation environment. This paper provides a general overview of ground-based SEE testing and examines in critical depth several underlying conceptual constructs relevant to the conduct of such tests and to the proper interpretation of results. These more traditional issues are contrasted with emerging concerns related to the testing of modern, advanced microcircuits

  10. Site Specific Ground Response Analysis for Quantifying Site Amplification at A Regolith Site

    Directory of Open Access Journals (Sweden)

    Bambang Setiawan

    2017-08-01

    Full Text Available DOI: 10.17014/ijog.4.3.159-167A numerical model has demonstrated that it can simulate reasonably well earthquake motions at the ground level during a seismic event. The most widely used model is an equivalent linear approach. The equivalent linear model was used to compute the free-field response of Adelaide regolith during the 1997 Burra earthquake. The aim of this study is to quantify the amplification at the investigated site. The model computed the ground response of horizontally layered soil deposits subjected to transient and vertically propagating shear waves through a one-dimensional-soil column. Each soil layer was assumed to be homogeneous, visco-elastic, and infinite in the horizontal extent. The results of this study were compared to other studies and forward computation of the geotechnical dynamic parameters of the investigated site. The amplification triggered by the 1997 Burra seismic event was deduced. This study reveals the amplification factor up to 3.6 at the studied site.

  11. EPA True NO2 ground site measurements – multiple sites, TCEQ ground site measurements of meteorological and air pollution parameters – multiple sites ,GeoTASO NO2 Vertical Column

    Data.gov (United States)

    U.S. Environmental Protection Agency — EPA True NO2 ground site measurements – multiple sites - http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.tx-2013; TCEQ ground site measurements of...

  12. Ground test for vibration control demonstrator

    Science.gov (United States)

    Meyer, C.; Prodigue, J.; Broux, G.; Cantinaud, O.; Poussot-Vassal, C.

    2016-09-01

    In the objective of maximizing comfort in Falcon jets, Dassault Aviation is developing an innovative vibration control technology. Vibrations of the structure are measured at several locations and sent to a dedicated high performance vibration control computer. Control laws are implemented in this computer to analyse the vibrations in real time, and then elaborate orders sent to the existing control surfaces to counteract vibrations. After detailing the technology principles, this paper focuses on the vibration control ground demonstration that was performed by Dassault Aviation in May 2015 on Falcon 7X business jet. The goal of this test was to attenuate vibrations resulting from fixed forced excitation delivered by shakers. The ground test demonstrated the capability to implement an efficient closed-loop vibration control with a significant vibration level reduction and validated the vibration control law design methodology. This successful ground test was a prerequisite before the flight test demonstration that is now being prepared. This study has been partly supported by the JTI CleanSky SFWA-ITD.

  13. Hanford Site ground-water monitoring for 1991

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-10-01

    The Pacific Northwest Laboratory (PNL) monitors the distribution of radionuclides and other hazardous materials in ground water at the Hanford Site for the US Department of Energy (DOE). This work is performed through the Ground-Water Surveillance Project and is designed to meet the requirements of DOE Order 5400.1 that apply to environmental surveillance and ground-water monitoring (DOE 1988). This annual report discusses results of ground-water monitoring at the Hanford Site during 1991. In addition to the general discussion, the following topics are discussed in detail: (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and the 200-West areas; (3) hexavalent chromium contamination in the 100, 200, and 600 areas; (4) trichloroethylene in the vicinity of the Solid Waste Landfill, 100-F Area, and 300 Area; (5) nitrate across the Site; (6) tritium across the Site; and (7) other radionuclide contamination throughout the Site, including gross alpha, gross beta, cobalt-60, strontium-90, technetium-99, iodine-129, cesium-137, uranium, and plutonium

  14. Australia - a nuclear weapons testing ground

    International Nuclear Information System (INIS)

    Dobbs, Michael.

    1993-01-01

    Between 1952 and 1958 Britain conducted five separate nuclear weapons trials in Australia. Australia had the uninhabited wide open spaces and the facilities which such tests need and Britain was able to use its special relationship with Australia to get agreement to conduct atomic tests in Australia and establish a permanent test site at Maralinga. Other non-nuclear tests were conducted between 1953-1963. The story of Britain's involvement in atomic weapons testing in Australia is told through its postal history. Both official and private covers are used to show how the postal communications were established and maintained throughout the test years. (UK)

  15. Nevada Test Site closure program

    International Nuclear Information System (INIS)

    Shenk, D.P.

    1994-08-01

    This report is a summary of the history, design and development, procurement, fabrication, installation and operation of the closures used as containment devices on underground nuclear tests at the Nevada Test Site. It also addresses the closure program mothball and start-up procedures. The Closure Program Document Index and equipment inventories, included as appendices, serve as location directories for future document reference and equipment use

  16. Effect of site conditions on ground motion and damage

    Science.gov (United States)

    Borcherdt, R.; Glassmoyer, G.; Andrews, M.; Cranswick, E.

    1989-01-01

    Results of seismologic studies conducted by the U.S. reconnaissance team in conjunction with Soviet colleagues following the tragic earthquakes of December 7, 1988, suggest that site conditions may have been a major factor in contributing to increased damage levels in Leninakan. As the potential severity of these effects in Leninakan had not been previously identified, this chapter presents results intended to provide a preliminary quantification of these effects on both damage and levels of ground motion observed in Leninakan. The article describes the damage distribution geologic setting, ground motion amplification in Leninakan, including analog amplifications and spectral amplifications. Preliminary model estimates for site response are presented. It is concluded that ground motion amplification in the 0.5-2.5-second period range was a major contributing factor to increased damage in Leninakan as compared with Kirovakan. Leninakan is located on thick water saturated alluvial deposits.

  17. Conversion of Semipalatinsk test site

    International Nuclear Information System (INIS)

    Cherepnin, Yu. S.

    1997-01-01

    The conversion of the former defense enterprises of STS (Semipalatinsk Test Sate) started under very difficult conditions, when not only research and production activity, but all social life of Kurchatov city were conversed which was caused by a fast curtailment and restationing of Russian military units from the test site. A real risk of a complete destruction of the whole research and production structure of the city existed. From this point of view, the decision of the Republic of Kazakhstan Government to create the National Nuclear Center on the base of the test site research enterprises was actual and timely. During 1993, three research institutes of NNC RK - Institute of Atomic Energy, Institute of Geophysics Research and Institute of Radiation Safety and Environment were established. This decision, under conditions of the Ussr disintegration and liquidation of the test site military divisions, allowed to preserve the qualified personnel, to provide and follow-up the operation of nuclear dangerous facilities, to develop and start the realization of the full scale conversion program.At present time, directions and structure of basic research work in NNC RK are as follows: - liquidation of nuclear explosions consequences; - liquidation of technological infrastructure used for preparation and conduction of nuclear weapon testing; - creation of technology, equipment and places for acceptance and storage of radioactive wastes; - working out of atomic energy development conception in Kazakhstan; - study of reactor core melt behavior under severe accidents in NPP; - development of methods and means of nuclear testing detection, continuous monitoring of nuclear explosions; - experimental work on a study of structure materials behavior of ITER thermonuclear reactor; - creation of industries requiring a lage implementation of science

  18. Enhanced Site Characterization of the 618-4 Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Christopher J.; Last, George V.; Chien, Yi-Ju

    2001-09-25

    This report describes the results obtained from deployment of the Enhanced Site Characterization System (ESCS) at the Hanford Site's 618-4 Burial Ground. The objective of this deployment was to use advanced geostatistical methods to integrate and interpret geophysical and ground truth data, to map the physical types of waste materials present in unexcavated portions of the burial ground. One issue of particularly interest was the number of drums (containing depleted uranium metal shavings or uranium-oxide powder) remaining in the burial ground and still requiring removal.Fuzzy adaptive resonance theory (ART), a neural network classification method, was used to cluster the study area into 3 classes based on their geophysical signatures. Multivariate statistical analyses and discriminant function analysis (DFA) indicated that the drum area as well as a second area (the SW anomaly) had similar geophysical signatures that were different from the rest of the burial ground. Further analysis of the drum area suggested that as many as 770 drums to 850 drums may remain in that area. Similarities between the geophysical signatures of the drum area and the SW anomaly suggested that excavation of the SW anomaly area also proceed with caution.Deployment of the ESCS technology was successful in integrating multiple geophysical variables and grouping these observations into clusters that are relevant for planning further excavation of the buried ground. However, the success of the technology could not be fully evaluated because reliable ground truth data were not available to enable calibration of the different geophysical signatures against actual waste types.

  19. TC-13 Mod 0 and Mod 2 Steam Catapult Test Site

    Data.gov (United States)

    Federal Laboratory Consortium — Located on 11,000 feet of test runway, the TC-13 Mod 0 and Mod 2 Steam Catapult Test Site has in-ground catapults identical to those aboard carriers. This test site...

  20. Ground test facility for nuclear testing of space reactor subsystems

    International Nuclear Information System (INIS)

    Quapp, W.J.; Watts, K.D.

    1985-01-01

    Two major reactor facilities at the INEL have been identified as easily adaptable for supporting the nuclear testing of the SP-100 reactor subsystem. They are the Engineering Test Reactor (ETR) and the Loss of Fluid Test Reactor (LOFT). In addition, there are machine shops, analytical laboratories, hot cells, and the supporting services (fire protection, safety, security, medical, waste management, etc.) necessary to conducting a nuclear test program. This paper presents the conceptual approach for modifying these reactor facilities for the ground engineering test facility for the SP-100 nuclear subsystem. 4 figs

  1. Seismic Hazard Assessment in Site Evaluation for Nuclear Installations: Ground Motion Prediction Equations and Site Response

    International Nuclear Information System (INIS)

    2016-07-01

    The objective of this publication is to provide the state-of-the-art practice and detailed technical elements related to ground motion evaluation by ground motion prediction equations (GMPEs) and site response in the context of seismic hazard assessments as recommended in IAEA Safety Standards Series No. SSG-9, Seismic Hazards in Site Evaluation for Nuclear Installations. The publication includes the basics of GMPEs, ground motion simulation, selection and adjustment of GMPEs, site characterization, and modelling of site response in order to improve seismic hazard assessment. The text aims at delineating the most important aspects of these topics (including current practices, criticalities and open problems) within a coherent framework. In particular, attention has been devoted to filling conceptual gaps. It is written as a reference text for trained users who are responsible for planning preparatory seismic hazard analyses for siting of all nuclear installations and/or providing constraints for anti-seismic design and retrofitting of existing structures

  2. Hydrogeologic investigations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hawkins, W.L.; Trudeau, D.A.; Drellack, S.L.

    1992-01-01

    The Nevada Test Site was established in 1950 as a continental area for testing nuclear devices and, since 1963, all nuclear detonations there have been underground. Most tests are conducted in vertical shafts with a small percentage conducted in tunnels. The majority of detonation points are above the water table, primarily in volcanic rocks or alluvium. In the testing areas the water table is 450--700 m below the surface. Pre- and post- event geologic investigations are conducted for each test location and long-term studies assess the impact of underground testing on a more regional scale. Studies in progress have not identified any impact on the regional ground water system from testing, but some local effects have been recognized. In some areas where several large tests have been conducted below the water table, water levels hundreds of meters above the regional water table have been measured and radioactivity has been discovered associated with fractures in a few holes. Flow-through and straddle packer testing has revealed unexpectedly high hydraulic pressures at depth. Recently, a multiple completion monitoring well installed to study three zones has confirmed the existence of a significant upward hydraulic gradient. These observations of local pressurization and fracture flow are being further explored to determine the influence of underground nuclear testing on the regional hydrogeologic system

  3. Buffer mass test - Site documentation

    International Nuclear Information System (INIS)

    Pusch, R.

    1983-10-01

    The purpose of this report is to compile test site data that are assumed to be of importance for the interpretation of the Buffer Mass Test. Since this test mainly concerns water uptake and migration processes in the integrated rock/backfill system and the development of temperature fields in this system, the work has been focused on the constitution and hydrology of the rock. The major constitutional rock feature of interest for the BMT is the frequency and distribution of joints and fractures. The development of models for water uptake into the highly compacted bentonite in the heater holes requires a very detailed fracture survey. The present investigation shows that two of the holes (no. 1 and 2) are located in richly fractured rock, while the others are located in fracture-poor to moderately fractured rock. The hydrological conditions of the rock in the BMT area are characterized by water pressures of as much as 100 m water head at a few meters distance from the test site. The average hydraulic conductivity of the rock that confines the BMT tunnel has been estimated at about 10 -10 m/s by Lawrence Laboratory. The actual distribution of the water that enters the tunnel has been estimated by observing the successive moistening after having switched off the ventilation, and this has offered basis of predicting the rate and uniformity of the water uptake in the tunnel backfill. As to the heater holes the detailed fracture patterns and various inflow measurements have yielded a similar basis. The report also gives major data on the rock temperature, gas conditions, mineralogy, rock mechanics, and groundwater chemistry for BMT purposes. (author)

  4. High Resolution Geological Site Characterization Utilizing Ground Motion Data

    Science.gov (United States)

    1992-06-26

    rough near a service road, in low velocity, unsaturated, unconsolidated 7 sands. Other than native grass, there was no significant vegetation . Surface...literature, demonstrate slll kale field tests. Similar degrees of spatial variability in ground that these stochastic geologic effects pose a potentially

  5. Commissioning of the Ground Test Accelerator RFQ

    International Nuclear Information System (INIS)

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Brown, S.; Connolly, R.; Garnett, R.; Gilpatrick, J.D.; Guy, F.W.; Ingalls, W.B.; Little, C.; Lohson, R.A.; Lloyd, S.; Neuschaefer, G.; Power, J.; Saadatmand, K.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1992-01-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H - beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on-line. The commissioning stages are the 35 key H - injector, the 2.5 MeV Radio Frequency Quadrupole (RFQ), the Intertank Matching Section (IMS), the 3.2 MeV first 2βγ Drift Tube Linac (DTL-1) module, the 8.7 MeV 2βγ DTL (modules 1--5), and the 24 MeV GTA; all 10 DTL modules. Commissioning results from the RFQ beam experiments will be presented along with comparisons to simulations

  6. Commissioning of the ground test accelerator RFQ

    International Nuclear Information System (INIS)

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Brown, S.; Garnott, R.; Gilpatrick, J.D.; Guy, F.W.; Ingalls, W.B.; Little, C.; Lohsen, R.A.; Lloyd, S.; Neuschaefer, G.; Power, J.; Sandoval, D.P.; Saadatmand, K.; Stevens, R.R.Jr.; Vaughn, G.; Wadlinger, E.A.; Yuan, V.; Connolly, R.; Weiss, R.

    1992-01-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H - beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on line. The commissioning stages are the 35-keV H - injector, the 2.5-MeV radio-frequency quadrupole (RFQ), the intertank matching section (IMS), the 3.2-MeV first 2-βλ drift tube linac (DTL-1) module, the 8.7-MeV 2-βλDTL (modules 1-5), and the 24-MeV GTA (all 10 DTL modules). Commissioning results from the RFQ beam experiments are presented along with comparisons with simulations. (Author) 8 refs., 9 figs

  7. Initial site characterization and evaluation of radionuclide contaminated soil waste burial grounds

    International Nuclear Information System (INIS)

    Phillips, S.J.; Reisenauer, A.E.; Rickard, W.H.; Sandness, G.A.

    1977-02-01

    A survey of historical records and literature containing information on the contents of 300 Area and North Burial Grounds was completed. Existing records of radioactive waste location, type, and quantity within each burial ground facility were obtained and distributed to cooperating investigators. A study was then initiated to evaluate geophysical exploration techniques for mapping buried waste materials, waste containers, and trench boundaries. Results indicate that a combination of ground penetrating radar, magnetometer, metal detector, and acoustic measurements will be effective but will require further study, hardware development, and field testing. Drilling techniques for recovering radionuclide-contaminated materials and sediment cores were developed and tested. Laboratory sediment characterization and fluid transport and monitoring analyses were begun by installation of in situ transducers at the 300 North Burial Ground site. Biological transport mechanisms that control radionuclide movement at contaminated sites were also studied. Flora and fauna presently inhabiting specific burial ground areas were identified and analyzed. Future monitoring of specific mammal populations will permit determination of dose rate and pathways of contaminated materials contained in and adjacent to burial ground sites

  8. Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes

    KAUST Repository

    Nath, Sankar Kumar; Thingbaijam, Kiran Kumar; Adhikari, M. D.; Nayak, Avinash; Devaraj, N.; Ghosh, Soumalya K.; Mahajan, Arun K.

    2013-01-01

    We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.

  9. Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes

    KAUST Repository

    Nath, Sankar Kumar

    2013-12-01

    We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.

  10. Atomic test site (south Australia)

    International Nuclear Information System (INIS)

    Godman, N.A.; Cousins, Jim; Hamilton, Archie.

    1993-01-01

    The debate, which lasted about half an hour, is reported verbatin. It was prompted by the campaign by the Maralinga people of South Australia to have their traditional lands restored to them. Between 1953 and 1957 the United Kingdom government carried out of atomic tests and several hundred minor trials on the lands. A clean-up programme had taken place in 1967 but further decontamination was needed before the area is safe for traditional aboriginal life and culture. A small area will remain contaminated with plutonium for thousands of years. The cost and who would pay, the Australian or UK government was being negotiated. The UK government's position was that the site is remote, the health risk is slight and the clean-up operation of 1967 was acknowledged as satisfactory by the Australian government. (UK)

  11. Integrated ground-water monitoring strategy for NRC-licensed facilities and sites: Case study applications

    Science.gov (United States)

    Price, V.; Temples, T.; Hodges, R.; Dai, Z.; Watkins, D.; Imrich, J.

    2007-01-01

    This document discusses results of applying the Integrated Ground-Water Monitoring Strategy (the Strategy) to actual waste sites using existing field characterization and monitoring data. The Strategy is a systematic approach to dealing with complex sites. Application of such a systematic approach will reduce uncertainty associated with site analysis, and therefore uncertainty associated with management decisions about a site. The Strategy can be used to guide the development of a ground-water monitoring program or to review an existing one. The sites selected for study fall within a wide range of geologic and climatic settings, waste compositions, and site design characteristics and represent realistic cases that might be encountered by the NRC. No one case study illustrates a comprehensive application of the Strategy using all available site data. Rather, within each case study we focus on certain aspects of the Strategy, to illustrate concepts that can be applied generically to all sites. The test sites selected include:Charleston, South Carolina, Naval Weapons Station,Brookhaven National Laboratory on Long Island, New York,The USGS Amargosa Desert Research Site in Nevada,Rocky Flats in Colorado,C-Area at the Savannah River Site in South Carolina, andThe Hanford 300 Area.A Data Analysis section provides examples of detailed data analysis of monitoring data.

  12. Analysis of ground response data at Lotung large-scale soil- structure interaction experiment site

    International Nuclear Information System (INIS)

    Chang, C.Y.; Mok, C.M.; Power, M.S.

    1991-12-01

    The Electric Power Research Institute (EPRI), in cooperation with the Taiwan Power Company (TPC), constructed two models (1/4-scale and 1/2-scale) of a nuclear plant containment structure at a site in Lotung (Tang, 1987), a seismically active region in northeast Taiwan. The models were constructed to gather data for the evaluation and validation of soil-structure interaction (SSI) analysis methodologies. Extensive instrumentation was deployed to record both structural and ground responses at the site during earthquakes. The experiment is generally referred to as the Lotung Large-Scale Seismic Test (LSST). As part of the LSST, two downhole arrays were installed at the site to record ground motions at depths as well as at the ground surface. Structural response and ground response have been recorded for a number of earthquakes (i.e. a total of 18 earthquakes in the period of October 1985 through November 1986) at the LSST site since the completion of the installation of the downhole instruments in October 1985. These data include those from earthquakes having magnitudes ranging from M L 4.5 to M L 7.0 and epicentral distances range from 4.7 km to 77.7 km. Peak ground surface accelerations range from 0.03 g to 0.21 g for the horizontal component and from 0.01 g to 0.20 g for the vertical component. The objectives of the study were: (1) to obtain empirical data on variations of earthquake ground motion with depth; (2) to examine field evidence of nonlinear soil response due to earthquake shaking and to determine the degree of soil nonlinearity; (3) to assess the ability of ground response analysis techniques including techniques to approximate nonlinear soil response to estimate ground motions due to earthquake shaking; and (4) to analyze earth pressures recorded beneath the basemat and on the side wall of the 1/4 scale model structure during selected earthquakes

  13. X-43A Vehicle During Ground Testing

    Science.gov (United States)

    1999-01-01

    The X-43A Hypersonic Experimental Vehicle, or 'Hyper-X' is seen here undergoing ground testing at NASA's Dryden Flight Research Center, Edwards, California in December 1999. The X-43A was developed to research a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only

  14. Dissolved oxygen mapping: A powerful tool for site assessments and ground water monitoring

    International Nuclear Information System (INIS)

    Newman, W.A.; Kimball, G.

    1992-01-01

    Dissolved oxygen concentration profiles often provide an excellent indication of the natural biological activity of microorganisms in ground water. The analysis of dissolved oxygen in ground water also provides a rapid, inexpensive method for determining the areal extent of contaminant plumes containing aerobically degraded compounds such as petroleum hydrocarbons. Indigenous hydrocarbon degrading organisms are present at most petroleum product spills giving this technique an almost universal application for dissolved hydrocarbons in ground water. Data from several sites will be presented to demonstrate the relationship between oxygen and dissolved contaminant concentrations. The inverse relationship between oxygen concentrations and dissolved contaminants can be used in many ways. During the initial site assessment, rapid on-site testing of ground water can provide real time data to direct drilling by identification of potentially contaminated locations. Several analytical techniques are available that allow field analysis to be performed in less than five minutes. Dissolved oxygen testing also provides an inexpensive way to monitor hydrocarbon migration without expensive gas chromatography. Often a plume of oxygen depleted ground water extends farther downgradient than the dissolved hydrocarbon plume. The depletion of oxygen in a well can provide an early warning system that detects upgradient contamination before the well is impacted by detectable levels of contaminants. Another application is the measurement of the natural degradation potential for aerobic remediation. If an aerobic in-situ remediation is used, dissolved oxygen monitoring provides an inexpensive method to monitor the progress of the remediation

  15. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site in Lakeview, Oregon

    International Nuclear Information System (INIS)

    1994-10-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site

  16. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site in Lakeview, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site.

  17. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    U.S. Department of Energy, Nevada Operations Office, Waste Acceptance Criteria

    1999-01-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the Nevada Test Site

  18. Nevada Test Site Wetlands Assessment

    Energy Technology Data Exchange (ETDEWEB)

    D. J. Hansen

    1997-05-01

    This report identifies 16 Nevada Test Site (NTS) natural water sources that may be classified by the U.S. Army Corps of Engineers (USACE) as jurisdictional wetlands and identifies eight water sources that may be classified as waters of the United States. These water sources are rare, localized habitats on the NTS that are important to regional wildlife and to isolated populations of water tolerant plants and aquatic organisms. No field investigations on the NTS have been conducted in the past to identify those natural water sources which would be protected as rare habitats and which may fall under regulatory authority of the Clean Water Act (CWA) of 1997. This report identifies and summarizes previous studies of NTS natural water sources, and identifies the current DOE management practices related to the protection of NTS wetlands. This report also presents management goals specific for NTS wetlands that incorporate the intent of existing wetlands legislation, the principles of ecosystem management, and the interests of regional land managers and other stakeholders.

  19. Evaluation of dynamic properties, local site effects and design ground motions: recent advances

    International Nuclear Information System (INIS)

    Sitharam, T.G.; Vipin, K.S.; James, Naveen

    2011-01-01

    Evidences from past earthquakes clearly shows that the damages due to an earthquake and its severity at a site are controlled mainly by three factors i.e., earthquake source and path characteristics, local geological and geotechnical characteristics, structural design and quality of the construction. Seismic ground response at a site is strongly influenced by local geological and soil conditions. The exact information of the geological, geomorphological and geotechnical data along with seismotectonic details are necessary to evaluate the ground response. The geometry of the subsoil structure, the soil type, the lateral discontinuities and the surface topography will also influence the site response at a particular location. In the case of a nuclear power plant, the details obtained from the site investigation will have multiple objectives: (i) for the effective design of the foundation (ii) assessment of site amplification (iii) for liquefaction potential evaluation. Since the seismic effects on the structure depend fully on the site conditions and assessment of site amplification. The first input required in evaluation of geotechnical aspect of seismic hazard is the rock level peak horizontal acceleration (PHA) values. The surface level acceleration values need to be calculated based on the site conditions and site amplification values. This paper discusses various methods for evaluating the site amplification values, dynamic soil properties, different field and laboratory tests required and various site classification schemes. In addition to these aspects, the evaluation of liquefaction potential of the site is also presented. The paper highlights on the latest testing methods to evaluate dynamic properties (shear modulus and damping ratio) of soils and techniques for estimating local site effects. (author)

  20. Analysis Methodology for Optimal Selection of Ground Station Site in Space Missions

    Science.gov (United States)

    Nieves-Chinchilla, J.; Farjas, M.; Martínez, R.

    2013-12-01

    ). To check/test the spatial proposal of the ground station site, this analysis methodology uses mission simulation software of spatial vehicles to analyze and quantify how the geographic accuracy of the position of the spatial vehicles along the horizon visible from the antenna, increases communication time with the ground station. Experimental results that have been obtained from a ground station located at ETSIT-UPM in Spain (QBito Nanosatellite, UPM spacecraft mission within the QB50 project) show that selection of the optimal site increases the field of view from the antenna and hence helps to meet mission requirements.

  1. Ship Systems Survivability Test Site

    Data.gov (United States)

    Federal Laboratory Consortium — Area for testing survivability of shipboard systems to include electrical, communications, and fire suppression. Multipurpose test range for supporting gun firing,...

  2. Options for clean-up of the Maralinga test site

    International Nuclear Information System (INIS)

    1985-06-01

    This report examines the limit of contamination of the soil and ground cover by 239 Pu, 235 U and 241 Am which may be considered as permitting the unrestricted land use of the former nuclear weapon test sites at Emu and Maralinga by Aboriginal groups. It reports on the options available to achieve this objective and their cost

  3. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NSO Waste Management Project

    2008-06-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  4. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    International Nuclear Information System (INIS)

    NNSA/NSO Waste Management Project

    2008-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal

  5. Hypersonic Inflatable Aerodynamic Decelerator Ground Test Development

    Science.gov (United States)

    Del Corso, Jospeh A.; Hughes, Stephen; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony

    2015-01-01

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology readiness levels have been incrementally matured by NASA over the last thirteen years, with most recent support from NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). Recently STMD GCDP has authorized funding and support through fiscal year 2015 (FY15) for continued HIAD ground developments which support a Mars Entry, Descent, and Landing (EDL) study. The Mars study will assess the viability of various EDL architectures to enable a Mars human architecture pathfinder mission planned for mid-2020. At its conclusion in November 2014, NASA's first HIAD ground development effort had demonstrated success with fabricating a 50 W/cm2 modular thermal protection system, a 400 C capable inflatable structure, a 10-meter scale aeroshell manufacturing capability, together with calibrated thermal and structural models. Despite the unquestionable success of the first HIAD ground development effort, it was recognized that additional investment was needed in order to realize the full potential of the HIAD technology capability to enable future flight opportunities. The second HIAD ground development effort will focus on extending performance capability in key technology areas that include thermal protection system, lifting-body structures, inflation systems, flight control, stage transitions, and 15-meter aeroshell scalability. This paper presents an overview of the accomplishments under the baseline HIAD development effort and current plans for a follow-on development effort focused on extending those critical technologies needed to enable a Mars Pathfinder mission.

  6. Ground/Flight Test Techniques and Correlation.

    Science.gov (United States)

    1983-02-01

    dihedral. The photogrammetric analysis system developed at AEDC 6 uses 70-mm Hasselblad cameras and a Keffel & Esser DSC-3/80® analytical stereocompiler...model transmits data to a ground receiver by telemetry and is tracked by accurate radar scanners and/or kinetheodolite cameras as required. The required...Materials Panel Meeting, Ottawa/Canada Sept. 25-27, 1967; also Jahrbuch 1967 der Wissenschaftlichen Gesell - schaft fur Luft- und Raumfahrt, pp. 211

  7. Ground-water hydrology and radioactive waste disposal at the Hanford Site

    International Nuclear Information System (INIS)

    Law, A.G.

    1979-02-01

    This paper is a summary of the hydrologic activities conducted at the Hanford Site as a part of the environmental protection effort. The Site encompasses 1,480 square kilometers in the arid, southeastern part of Washington State. Precipitation averages about 160 millimeters per year with a negligible amount, if any, recharging the water table, which is from 50 to 100 meters below the ground surface. An unconfined aquifer occurs in the upper and middle Ringold Formations. The lower Ringold Formation along with interbed and interflow zones in the Saddle Mountain and Wanapum basalts forms a confined aquifer system. A potential exists for the interconnection of the unconfined and confined aquifer systems, especially near Gable Mountain where the anticlinal ridge was eroded by the catastrophic floods of the ancestral Columbia River system. Liquid wastes from chemical processing operations have resulted in large quantities of processing and cooling water disposed to ground via ponds, cribs, and ditches. The ground-water hydrology program at Hanford is designed: (1) to define and quantify the ground-water flow systems, (2) to evaluate the impact of the liquid waste discharges on these flow systems, and (3) to predict the impact on the ground-water systems of changes in system inputs. This work is conducted through a drilling, sampling, testing, and modeling program

  8. Radioactive contamination of former Semipalatinsk test site area

    International Nuclear Information System (INIS)

    Artem'ev, O.I.; Akhmetov, M.A.; Ptitskaya, L.D.

    2001-01-01

    The nuclear weapon infrastructure elimination activities and related surveys of radioactive contamination are virtually accomplished at the Semipalatinsk test site (STS). The radioecological surveys accompanied closure of tunnels which were used for underground nuclear testing at Degelen technical field and elimination of intercontinental ballistic missile silo launchers at Balapan technical field. At the same time a ground-based route survey was carried out at the Experimental Field where aboveground tests were conducted and a ground-based area survey was performed in the south of the test site where there are permanent and temporary inhabited settlements. People dwelling these settlements are mainly farmers. The paper presents basic results of radiological work conducted in the course of elimination activities. (author)

  9. Well installation, single-well testing, and particle-size analysis for selected sites in and near the Lost Creek Designated Ground Water Basin, north-central Colorado, 2003-2004

    Science.gov (United States)

    Beck, Jennifer A.; Paschke, Suzanne S.; Arnold, L. Rick

    2011-01-01

    This report describes results from a groundwater data-collection program completed in 2003-2004 by the U.S. Geological Survey in support of the South Platte Decision Support System and in cooperation with the Colorado Water Conservation Board. Two monitoring wells were installed adjacent to existing water-table monitoring wells. These wells were installed as well pairs with existing wells to characterize the hydraulic properties of the alluvial aquifer and shallow Denver Formation sandstone aquifer in and near the Lost Creek Designated Ground Water Basin. Single-well tests were performed in the 2 newly installed wells and 12 selected existing monitoring wells. Sediment particle size was analyzed for samples collected from the screened interval depths of each of the 14 wells. Hydraulic-conductivity and transmissivity values were calculated after the completion of single-well tests on each of the selected wells. Recovering water-level data from the single-well tests were analyzed using the Bouwer and Rice method because test data most closely resembled those obtained from traditional slug tests. Results from the single-well test analyses for the alluvial aquifer indicate a median hydraulic-conductivity value of 3.8 x 10-5 feet per second and geometric mean hydraulic-conductivity value of 3.4 x 10-5 feet per second. Median and geometric mean transmissivity values in the alluvial aquifer were 8.6 x 10-4 feet squared per second and 4.9 x 10-4 feet squared per second, respectively. Single-well test results for the shallow Denver Formation sandstone aquifer indicate a median hydraulic-conductivity value of 5.4 x 10-6 feet per second and geometric mean value of 4.9 x 10-6 feet per second. Median and geometric mean transmissivity values for the shallow Denver Formation sandstone aquifer were 4.0 x 10-5 feet squared per second and 5.9 x 10-5 feet squared per second, respectively. Hydraulic-conductivity values for the alluvial aquifer in and near the Lost Creek Designated

  10. Grimsel Test Site: heat test, final report

    International Nuclear Information System (INIS)

    Schneefuss, J.; Glaess, F.; Gommlich, G.; Schmidt, M.

    1989-05-01

    The Swiss concept for the storage of radioactive waste consists in placing it in compact, dense rock formations. An experiment 'Heat Test' carried out by the 'Gesellschaft fuer Strahlen- und Umweltforschung' in Nagra's Grimsel rock laboratory simulated the heat production of stored radioactive waste. The aim was to evaluate processes for the demonstration of the suitability of a final repository for heat-producing radioactive waste in cristalline rock, to investigate the thermic, mechanic and hydraulic reactions to an artificial heat source, and to develop corresponding calculating models. The duration of the tests was about 3 years. In this report the measured thermic, mechanic and hydraulic reactions are documented and discussed in detail. A simple, rotation symmetrical FEM-model was used for the preparatory and experiment-accompanying modelling of the thermomechanical conditions in the heat test. The test showed that suitable measuring methods for the surveillance of the geomechanics of a final repository are available and that the reactions of the crystalline host rock to the heat source remain locally limited and can be modelled with relatively small effort. 29 refs., 33 figs., 10 tabs

  11. Controlled Archaeological Test Site (CATS) Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CATS facility is at the Construction Engineering Research Laboratory (CERL), Champaign, IL. This 1-acre test site includes a variety of subsurface features carefully...

  12. Prediction of site specific ground motion for large earthquake

    International Nuclear Information System (INIS)

    Kamae, Katsuhiro; Irikura, Kojiro; Fukuchi, Yasunaga.

    1990-01-01

    In this paper, we apply the semi-empirical synthesis method by IRIKURA (1983, 1986) to the estimation of site specific ground motion using accelerograms observed at Kumatori in Osaka prefecture. Target earthquakes used here are a comparatively distant earthquake (Δ=95 km, M=5.6) caused by the YAMASAKI fault and a near earthquake (Δ=27 km, M=5.6). The results obtained are as follows. 1) The accelerograms from the distant earthquake (M=5.6) are synthesized using the aftershock records (M=4.3) for 1983 YAMASAKI fault earthquake whose source parameters have been obtained by other authors from the hypocentral distribution of the aftershocks. The resultant synthetic motions show a good agreement with the observed ones. 2) The synthesis for a near earthquake (M=5.6, we call this target earthquake) are made using a small earthquake which occurred in the neighborhood of the target earthquake. Here, we apply two methods for giving the parameters for synthesis. One method is to use the parameters of YAMASAKI fault earthquake which has the same magnitude as the target earthquake, and the other is to use the parameters obtained from several existing empirical formulas. The resultant synthetic motion with the former parameters shows a good agreement with the observed one, but that with the latter does not. 3) We estimate the source parameters from the source spectra of several earthquakes which have been observed in this site. Consequently we find that the small earthquakes (M<4) as Green's functions should be carefully used because the stress drops are not constant. 4) We propose that we should designate not only the magnitudes but also seismic moments of the target earthquake and the small earthquake. (J.P.N.)

  13. Colloid research for the Nevada Test Site

    International Nuclear Information System (INIS)

    Bryant, E.A.

    1992-05-01

    Research is needed to understand the role of particulates in the migration of radionuclides away from the sites of nuclear tests at the Nevada Test Site. The process of testing itself may produce a reservoir of particles to serve as vectors for the transport of long-lived radionuclides in groundwater. Exploratory experiments indicate the presence of numerous particulates in the vicinity of the Cambric test but a much lower loading in a nearby well that has been pumped continuously for 15 years. Recent groundwater colloid research is briefly reviewed to identify sampling and characterization methods that may be applicable at the Nevada Test Site

  14. Natural radioactivity in ground water near the Savannah River Site

    International Nuclear Information System (INIS)

    Price, V. Jr.; Michel, J.

    1990-08-01

    A study of natural radioactivity in groundwater on and adjacent to the Savannah River Site (SRS) in Aiken (SC) was conducted to determine the spatial and temporal variations in the concentration of specific radionuclides. All available measurements for gross alpha particle activity, gross beta activity, uranium, Ra-226, Ra-228, and radon were collated. Relatively few radionuclide-specific results were found. Twenty samples from drinking water supplies in the area were collected in October 1987 and analyzed for U-238, U-234, Ra-226, Ra-228, and Rn-222. The aquifer type for each public water supply system was determined, and statistical analyses were conducted to detect differences among aquifer types and geographic areas defined at the country level. For samples from the public water wells and distribution systems on and adjacent to the site, most of the gross alpha particle activity could be attributed to Ra-226. Aquifer type was an important factor in determining the level of radioactivity in groundwater. The distribution and geochemical factors affecting the distribution of each radionuclide for the different aquifer types are discussed in detail. Statistical analyses were also run to test for aerial differences, among counties and the site. For all types of measurements, there were no differences in the distribution of radioactivity among the ten counties in the vicinity of the site or the site itself. The mean value for the plant was the lowest of all geographic areas for gross alpha particle activity and radon, intermediate for gross beta activity, and in the upper ranks for Ra-226 and Ra-228. It is concluded that the drinking water quality onsite is comparable with that in the vicinity. 19 refs., 5 figs., 5 tabs

  15. Nevada Test Site Environmental Report 2004

    International Nuclear Information System (INIS)

    BECHTEL NEVADA

    2005-01-01

    The ''Nevada Test Site Environmental Report 2004'' was prepared by Bechtel Nevada (BN) to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of non-radiological releases, implementation status of the NTS Environmental Management System, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled ''Nevada Test Site Environmental Report Summary 2004''. It was produced this year to provide a more cost-effective and wider distribution of a hardcopy summary of the ''Nevada Test Site Environmental Report 2004'' to interested DOE stakeholders

  16. Site Classification using Multichannel Channel Analysis of Surface Wave (MASW) method on Soft and Hard Ground

    Science.gov (United States)

    Ashraf, M. A. M.; Kumar, N. S.; Yusoh, R.; Hazreek, Z. A. M.; Aziman, M.

    2018-04-01

    Site classification utilizing average shear wave velocity (Vs(30) up to 30 meters depth is a typical parameter. Numerous geophysical methods have been proposed for estimation of shear wave velocity by utilizing assortment of testing configuration, processing method, and inversion algorithm. Multichannel Analysis of Surface Wave (MASW) method is been rehearsed by numerous specialist and professional to geotechnical engineering for local site characterization and classification. This study aims to determine the site classification on soft and hard ground using MASW method. The subsurface classification was made utilizing National Earthquake Hazards Reduction Program (NERHP) and international Building Code (IBC) classification. Two sites are chosen to acquire the shear wave velocity which is in the state of Pulau Pinang for soft soil and Perlis for hard rock. Results recommend that MASW technique can be utilized to spatially calculate the distribution of shear wave velocity (Vs(30)) in soil and rock to characterize areas.

  17. Nevada Test Site Environmental Report 2005, Attachment A - Site Description

    International Nuclear Information System (INIS)

    Cathy A. Wills

    2006-01-01

    This appendix to the ''Nevada Test Site Environmental Report 2005'', dated October 2006 (DOE/NV/11718--1214; DOE/NV/25946--007) expands on the general description of the Nevada Test Site (NTS) presented in the Introduction. Included are subsections that summarize the site?s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This appendix complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report

  18. Nevada Test Site Environmental Report 2005, Attachment A - Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2006-10-01

    This appendix to the ''Nevada Test Site Environmental Report 2005'', dated October 2006 (DOE/NV/11718--1214; DOE/NV/25946--007) expands on the general description of the Nevada Test Site (NTS) presented in the Introduction. Included are subsections that summarize the site?s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This appendix complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  19. Quantum optics as a conceptual testing ground

    International Nuclear Information System (INIS)

    Bergon, J.A.

    1997-01-01

    Entangled states provide the necessary tools for conceptual tests of quantum mechanics and other alternative theories. Here our focus is on a test of the time symmetric, pre- and post selective quantum mechanics and its relation to the consistent histories interpretation. First, we show to produce a nonlocal entangled state, necessary for the test, where there is precisely one photon hiding in three cavities. This state can be produced by sending appropriately prepared atoms through the cavities. Then, we briefly review the proposal for an experimental test of pre- and post selective quantum mechanics using the three-cavity state. Finally, we show that the outcome of such an experiment can be discussed from the viewpoint of the consistent histories interpretation of quantum mechanics and therefore provides an opportunity to subject quantum cosmological ideas to laboratory tests. (author)

  20. Monitoring of natural revegetation of Semipalatinsk nuclear testing ground

    International Nuclear Information System (INIS)

    Sultanova, B.M.

    2002-01-01

    It is well known, that monitoring of natural revegetation of Semipalatinsk test site (STS) was carried out during period 1994-2002 at test areas (Experimental field, Balapan, Degelen). In this paper the peculiarities of vegetation cover of these test areas are observed. Thus, vegetation cover of Experimental field ground in the epicentre is completely destroyed. At present there are different stages of zonal steppe communities rehabilitation: in zones with γ-irradiation 11000-14000 μR/h the revegetation is not found; on the plots with γ-irradiation 8200-10000 μR/h rare species of Artemisia frigida are found; aggregation of plant (managed from 6000-7000 μR/h is observed; At the γ-irradiation 80-200 μR/h rarefied groups of bunch grass communities similar to the zonal steppe are formed and zonal bunch grass communities developed with 18-25 μR/h. Vegetation cover of Degelen hill tops and near-mouth ground in the results of underground nuclear expulsions are completely destroyed. Here there are three main kinds of vegetation: very stony gallery areas don't almost overgrow; at technogen tops near galleries the single plants, rare field groups and unclosed micro-phyto-biocenoses of weed and adventive species (Amaranthus retroflexus, Artemisia dracunculus, Laxctuca serriola, Chorispora sibirica etc.). On the Balapan are the revegetation is limited by high radiation pollution rate. Here cenose rehabilitation is presented by Artemisia marshalliana, Spita sareptana, Festuca valresiaca). In their paper florostic and phyrocoenitic diversity of STS's flora transformation is studied. Pattern distribution and migration of radionuclides in soils and vegetation cover is represented

  1. Environmental assessment of ground-water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming

    International Nuclear Information System (INIS)

    1997-02-01

    This report assesses the environmental impacts of the Uranium Mill Tailings Site at Spook, Wyoming on ground water. DOE previously characterized the site and monitoring data were collected during the surface remediation. The ground water compliance strategy is to perform no further remediation at the site since the ground water in the aquifer is neither a current nor potential source of drinking water. Under the no-action alternative, certain regulatory requirements would not be met

  2. Nevada Test Site Environmental Report 2007 Attachment A: Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2008-09-01

    This appendix expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2007 (U.S. Department of Energy [DOE], 2008). Included are subsections that summarize the site's geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  3. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    International Nuclear Information System (INIS)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    2005-01-01

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal

  4. Double tracks test site characterization report

    International Nuclear Information System (INIS)

    1996-05-01

    This report presents the results of site characterization activities performed at the Double Tracks Test Site, located on Range 71 North, of the Nellis Air Force Range (NAFR) in southern Nevada. Site characterization activities included reviewing historical data from the Double Tracks experiment, previous site investigation efforts, and recent site characterization data. The most recent site characterization activities were conducted in support of an interim corrective action to remediate the Double Tracks Test Site to an acceptable risk to human health and the environment. Site characterization was performed using a phased approach. First, previously collected data and historical records sere compiled and reviewed. Generalized scopes of work were then prepared to fill known data gaps. Field activities were conducted and the collected data were then reviewed to determine whether data gaps were filled and whether other areas needed to be investigated. Additional field efforts were then conducted, as required, to adequately characterize the site. Characterization of the Double Tracks Test Site was conducted in accordance with the US Department of Energy's (DOE) Streamlined Approach for Environmental Restoration (SAFER)

  5. Site Release Report for C-Well Pipeline, UE-25 Large Rocks Test Site, and 29 GSF Test Pits

    International Nuclear Information System (INIS)

    K.E. Rasmuson

    2002-01-01

    The U.S. Department of Energy has implemented a program to reclaim lands disturbed by site characterization at Yucca Mountain. Long term goals of the program are to re-establish processes on disturbed sites that will lead to self-sustaining plant communities. The Biological Opinion for Yucca Mountain Site Characterization Studies required that the U.S. Department of Energy develop a Reclamation Standards and Monitoring Plan to evaluate the success of reclamation efforts. According to the Reclamation Standards and Monitoring Plan, reclaimed sites will be monitored periodically, remediated if necessary, and eventually compared to an appropriate reference area to determine whether reclamation goals have been achieved and the site can be released from further monitoring. Plant cover, density, and species richness (success parameters) on reclaimed sites are compared to 60 percent of the values (success criteria) for the same parameters on the reference area. Small sites (less than 0.1 ha) are evaluated for release using qualitative methods while large sites (greater than 0.1 ha) are evaluated using quantitative methods. In the summer of 2000, 31 small sites reclaimed in 1993 and 1994 were evaluated for reclamation success and potential release from further monitoring. Plant density, cover, and species richness were estimated on the C-Well Pipeline, UE-25 Large Rocks test site, and 29 ground surface facility test pits. Evidence of erosion, reproduction and natural recruitment, exotic species abundance, and animal use (key attributes) also were recorded for each site and used in success evaluations. The C-Well Pipeline and ground surface facility test pits were located in a ''Larrea tridentata - Ephedra nevadensis'' vegetation association while the UE-25 Large Rocks test site was located in an area dominated by ''Coleogyne ramosissima and Ephedra nevadensis''. Reference areas in the same vegetation associations with similar slope and aspect were chosen for comparison to

  6. Site Release Reports for C-Well Pipeline, UE-25 Large Rocks Test Site, and 29 GSF Test Pits

    Energy Technology Data Exchange (ETDEWEB)

    K.E. Rasmuson

    2002-04-02

    The U.S. Department of Energy has implemented a program to reclaim lands disturbed by site characterization at Yucca Mountain. Long term goals of the program are to re-establish processes on disturbed sites that will lead to self-sustaining plant communities. The Biological Opinion for Yucca Mountain Site Characterization Studies required that the U.S. Department of Energy develop a Reclamation Standards and Monitoring Plan to evaluate the success of reclamation efforts. According to the Reclamation Standards and Monitoring Plan, reclaimed sites will be monitored periodically, remediated if necessary, and eventually compared to an appropriate reference area to determine whether reclamation goals have been achieved and the site can be released from further monitoring. Plant cover, density, and species richness (success parameters) on reclaimed sites are compared to 60 percent of the values (success criteria) for the same parameters on the reference area. Small sites (less than 0.1 ha) are evaluated for release using qualitative methods while large sites (greater than 0.1 ha) are evaluated using quantitative methods. In the summer of 2000, 31 small sites reclaimed in 1993 and 1994 were evaluated for reclamation success and potential release from further monitoring. Plant density, cover, and species richness were estimated on the C-Well Pipeline, UE-25 Large Rocks test site, and 29 ground surface facility test pits. Evidence of erosion, reproduction and natural recruitment, exotic species abundance, and animal use (key attributes) also were recorded for each site and used in success evaluations. The C-Well Pipeline and ground surface facility test pits were located in a ''Larrea tridentata - Ephedra nevadensis'' vegetation association while the UE-25 Large Rocks test site was located in an area dominated by ''Coleogyne ramosissima and Ephedra nevadensis''. Reference areas in the same vegetation associations with similar slope

  7. Effects of Permafrost and Seasonally Frozen Ground on the Seismic Response of Transportation Infrastructure Sites

    Science.gov (United States)

    2010-02-01

    This interdisciplinary project combined seismic data recorded at bridge sites with computer models to identify how highway bridges built on permanently and seasonally frozen ground behave during an earthquake. Two sites one in Anchorage and one in...

  8. Ground water monitoring strategies at the Weldon Spring Site, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    Meyer, K.A. Jr.

    1988-01-01

    This paper presents ground water monitoring strategies at the Weldon Spring Site in east-central Missouri. The Weldon Spring Site is a former ordnance works and uranium processing facility. In 1987, elevated levels of inorganic anions and nitroaromatics were detected in ground water beneath the site. Studies are currently underway to characterize the hydrogeologic regime and to define ground water contamination. The complex hydrogeology at the Weldon Spring Site requires innovative monitoring strategies. Combinations of fracture and conduit flow exist in the limestone bedrock. Perched zones are also present near surface impoundments. Losing streams and springs surround the site. Solving this complex combination of hydrogeologic conditions is especially challenging

  9. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania

    International Nuclear Information System (INIS)

    1994-09-01

    This baseline risk assessment evaluates potential impacts to public health and the environment resulting from ground water contamination from past activities at the former uranium processing site in Canonsburg, Pennsylvania. The US Department of Energy Uranium Mill Tailings Remedial Action (UMTRA) Project has placed contaminated material from this site in an on-site disposal cell. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the UMTRA Ground Water Project. Currently, no domestic or drinking water well tap into contaminated ground water of the two distinct ground water units: the unconsolidated materials and the bedrock. Because there is no access, no current health or environmental risks are associated with the direct use of the contaminated ground water. However, humans and ecological organisms could be exposed to contaminated ground water if a domestic well were to be installed in the unconsolidated materials in that part of the site being considered for public use (Area C). The first step is evaluating ground water data collected from monitor wells at the site. For the Canonsburg site, this evaluation showed the contaminants in ground water exceeding background in the unconsolidated materials in Area C are ammonia, boron, calcium, manganese, molybdenum, potassium, strontium, and uranium

  10. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This baseline risk assessment evaluates potential impacts to public health and the environment resulting from ground water contamination from past activities at the former uranium processing site in Canonsburg, Pennsylvania. The US Department of Energy Uranium Mill Tailings Remedial Action (UMTRA) Project has placed contaminated material from this site in an on-site disposal cell. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the UMTRA Ground Water Project. Currently, no domestic or drinking water well tap into contaminated ground water of the two distinct ground water units: the unconsolidated materials and the bedrock. Because there is no access, no current health or environmental risks are associated with the direct use of the contaminated ground water. However, humans and ecological organisms could be exposed to contaminated ground water if a domestic well were to be installed in the unconsolidated materials in that part of the site being considered for public use (Area C). The first step is evaluating ground water data collected from monitor wells at the site. For the Canonsburg site, this evaluation showed the contaminants in ground water exceeding background in the unconsolidated materials in Area C are ammonia, boron, calcium, manganese, molybdenum, potassium, strontium, and uranium.

  11. Assessment of acid mine drainage remediation schemes on ground water flow regimes at a reclaimed mine site

    International Nuclear Information System (INIS)

    Gabr, M.A.; Bowders, J.J.

    1994-01-01

    Ground water modeling and a field monitoring program were conducted for a 35-acre reclaimed surface mine site that continues to produce acid mine drainage (AMD). The modeling effort was focused on predicting the effectiveness of various remedial measures implemented at the site for the abatement of AMD on predicting the effectiveness of various remedial measures implemented at the site for the abatement of AMD production. The field work included surface surveys and monitoring of ground water levels with time, seepage areas, and sedimentation ponds located on the site. The surveys provided the physical and topographic characteristics of the site. Pump tests conducted at the site provided general hydraulic conductivities (k) for two major areas of the site; undisturbed area (k ≅ 2.9 x 10 -5 ft/s) and disturbed area (k ≅ 3.3 x 10 -4 ft/s to 2.0 x 10 -3 ft/s). The monitored ground water data indicated rapid change in ground water levels during recharge events. Such behavior is indicative of flow regime that is dominated by fracture flow. Modeling of an approximately 700 ft by 1,500 ft area of the site was achieved using the US GS code MODFLOW, and ground water field measurements were used to calibrate the model. A hydraulic conductivity of about 1.15 x 10 -3 ft/s was estimated for the undisturbed area and 1.15 x 10 -2 ft/s for the reclaimed area. Remedial measures for diverting the ground water away from the areas of spoil included the use of a subsurface seepage cutoff wall and discrete sealing techniques. Modeling results indicated that the most effective remedial technique for this site is the use of a subsurface seepage cutoff wall installed at the interface (highwall) between the disturbed and undisturbed zones. Using this scheme caused a dewatering effect in the reclaimed area and therefore reduction in the volume of the AMD generated at the site

  12. Tritium in the burial ground of the Savannah River Site

    International Nuclear Information System (INIS)

    Hyder, M.L.

    1993-06-01

    This memorandum reviews the available information on tritium-contaminated material discarded to burial grounds. Tritium was the first isotope studied because it represents the most immediate concern with regard to release to the environment. Substantial amounts of tritium are known to be present in the ground water underneath the area, and outcropping of this ground water in springs and seeps has been observed. The response to this release of tritium from the burial ground is a current concern. The amount of tritium emplaced in the burial ground facilities is very uncertain, however, some general conclusions can be made. In particular, most of the tritium buried is associated with spent equipment and other waste, rather than spent melts. Correspondingly, most of the tritium in the ground water seems to be associated with burials of this type, rather than the spent melts. Maps are presented showing the location of burials of tritiated waste by type, and the location of the largest individual burials according to COBRA records

  13. SITE-94. Geochemical characterization of Simpevarp ground waters near the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Glynn, P.D.; Voss, C.I.

    1999-09-01

    The present report analyzes the geochemical data in order to evaluate collection and interpretation techniques that will be used to site the repository and to assess its safety. Ground waters near the Aespoe Hard Rock Laboratory (HRL) may be grouped into five chemically and isotopically distinct water types, on the basis of their deuterium and chloride contents: 1) recent waters, 2) 5 g/L chloride waters, 3) deep waters, 4) seawater imprint waters, and 5) glacial melt waters. The sampled ground waters show a progressive change from a predominantly NaHCO 3 composition at shallow depth to a CaCl 2 -rich composition at depth. Despite the proximity of the Baltic, relatively few of the sampled ground waters contain any evidence of a seawater component. This finding, together with the rather shallow depths at which saline waters were found, indicates that Aespoe island is presently in a regional ground-water discharge area. The chemical and isotopic composition of the sampled waters also indicates that local recharge of dilute recent waters occurs only down to shallow depths (generally less than 100 in). The Aespoe ground waters are sulfidic and do not presently contain any dissolved oxygen. Measured E H values are generally near -300 mV, and on average are only about 50 mV lower than E H values calculated from the sulfide/sulfate couple. Maintenance of reducing conditions, such as presently found at the Aespoe HRL, is an important consideration in assessing the performance of nuclear waste disposal sites. Measurements of dissolved radon and of uranium concentrations in fracture-fill materials were used to calculate an average effective flow-wetted surface area of 3.1 m 2 per liter of water for the Aespoe site. Estimation of flow-wetted surface areas is essential in determining the importance of matrix diffusion and surface sorption processes for radionuclide release calculations. The Rn calculation technique shows promise in helping narrow the possible range of values

  14. Nevada Test Site Environmental Report 2008 Attachment A: Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2009-09-01

    This attachment expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2008 (National Security Technologies, LLC [NSTec], 2009a). Included are subsections that summarize the site’s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site’s environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  15. Nevada Test Site Environmental Report 2009, Attachment A: Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills, ed.

    2010-09-13

    This attachment expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2009. Included are subsections that summarize the site’s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site’s environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  16. Nevada Test Site Environmental Report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada

    2004-10-01

    The Nevada Test Site Environmental Report 2003 was prepared by Bechtel Nevada to meet the requirements and guidelines of the U.S. Department of Energy and the information needs of the public. This report is meant to be useful to members of the public, public officials, regulators, and Nevada Test Site contractors. The Executive Summary strives to present in a concise format the purpose of the document, the NTS mission and major programs, a summary of radiological releases and doses to the public resulting from site operations, a summary of non-radiological releases, and an overview of the Nevada Test Site Environmental Management System. The Executive Summary, combined with the following Compliance Summary, are written to meet all the objectives of the report and to be stand-alone sections for those who choose not to read the entire document.

  17. Ground motion measurements at the LBL Light Source site, the Bevatron and at SLAC

    International Nuclear Information System (INIS)

    Green, M.A.; Majer, E.I.; More, V.D.; O'Connell, D.R.; Shilling, R.C.

    1986-12-01

    This report describes the technique for measuring ground motion at the site of the 1.0 to 2.0 GeV Synchrotron Radiation Facility which was known as the Advanced Light Source (in 1983 when the measurements were taken). The results of ground motion measurements at the Light Source site at Building 6 at LBL are presented. As comparison, ground motion measurements were made at the Byerly Tunnel, the Bevatron, Blackberry Canyon, and SLAC at the Spear Ring. Ground Motion at the Light Source site was measured in a band from 4 to 100 Hz. The measured noise is primarily local in origin and is not easily transported through LBL soils. The background ground motion is for the most part less than 0.1 microns. Localized truck traffic near Building 6 and the operation of the cranes in the building can result in local ground motions of a micron or more for short periods of time. The background motion at Building 6 is between 1 and 2 orders of magnitude higher than ground motion in a quiet seismic tunnel, which is representative of quiet sites worldwide. The magnitude of the ground motions at SLAC and the Bevatron are comparable to ground motions measured at the Building 6 Light Source site. However, the frequency signature of each site is very different

  18. Interdisciplinary hydrogeologic site characterization at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hawkins, W.L.; Wagoner, J.L.; Drellack, S.L.

    1992-01-01

    The Nevada Test Site was established in 1950 as a continental area for testing nuclear devices. Hydrogeologic investigations began in earnest with the US Geological Survey mapping much of the area from 1960 to 1965. Since 1963, all nuclear detonations have been underground. Most tests are conducted in vertical shafts, but a small percentage are conducted in tunnels. The majority of detonation points are above the water table, primarily in volcanic rocks, but sometimes in alluvium. Hydrogeologic investigations began in earnest with the US Geological Survey's mapping of much of the NTS region from 1960 to 1965. Following the BANEBERRY test in December 1970, which produced an accidental release of radioactivity to the atmosphere, the US Department of Energy (then the Atomic Energy Commission) established the Containment Evaluation Panel (CEP). Results of interdisciplinary hydrogeologic investigations for each test location are included in a Containment Prospectus which is thoroughly reviewed by the CEP

  19. Nevada Test Site Environmental Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA

    2005-10-01

    The ''Nevada Test Site Environmental Report 2004'' was prepared by Bechtel Nevada (BN) to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of non-radiological releases, implementation status of the NTS Environmental Management System, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled ''Nevada Test Site Environmental Report Summary 2004''. It was produced this year to provide a more cost-effective and wider distribution of a hardcopy summary of the ''Nevada Test Site Environmental Report 2004'' to interested DOE stakeholders.

  20. Seismic-reflection and ground penetrating radar for environmental site characterization. 1998 annual progress report

    International Nuclear Information System (INIS)

    Plumb, R.; Steeples, D.W.

    1998-01-01

    'The project''s goals are threefold: (1) to examine the complementary site-characterization capabilities of modern, three-component shallow-seismic techniques and ground-penetrating radar (GPR) methods at depths ranging from 2 to 8 m at an existing test site; (2) to demonstrate the usefulness of the two methods when used in concert to characterize, in three-dimensions, the cone of depression of a pumping well, which will serve as a proxy site for fluid-flow at an actual, polluted site; and (3) to use the site as an outdoor mesoscale laboratory to validate existing three-dimensional ground-penetrating radar and seismic-reflection computer models developed at the Univ. of Kansas. To do this, useful seismic and GPR data are being collected along the same line(s) and within the same depth range. The principal investigators selected a site in central Kansas as a primary location and, although the site itself is not environmentally sensitive, the location chosen offers particularly useful attributes for this research and will serve as a proxy site for areas that are contaminated. As part of an effort to evaluate the strengths of each method, the authors will repeat the seismic and GPR surveys on a seasonal basis to establish how the complementary information obtained varies over time. Because the water table fluctuates at this site on a seasonal basis, variations in the two types of data over time also can be observed. Such noninvasive in-situ methods of identifying and characterizing the hydrologic flow regimes at contaminated sites support the prospect of developing effective, cost-conscious cleanup strategies in the near future. As of the end of May 1998, the project is on schedule. The first field work was conducted using both of the geophysical survey methods in October of 1997, and the second field survey employed both methods in March of 1998. One of the stated tasks is to reoccupy the same survey line on a quarterly basis for two years to examine change in both

  1. Siting and constructing very deep monitoring wells on the US Department of Energy's Nevada Test Site

    International Nuclear Information System (INIS)

    Cullen, J.J.; Jacobson, R.L.; Russell, C.E.

    1991-01-01

    Many aspects of the Nevada Test Site's (NTS) hydrogeologic setting restrict the use of traditional methods for the siting and construction of ground-water characterization and monitoring wells. The size of the NTS precludes establishing high-density networks of characterization wells, as are typically used at smaller sites. The geologic complexity and variability of the NTS requires that the wells be criticality situated. The hydrogeologic complexity requires that each well provide access to many aquifers. Depths to ground water on the NTS require the construction of wells averaging approximately 1000 meters in depth. Wells meeting these criteria are uncommon in the ground-water industry, therefore techniques used by petroleum engineers are being employed to solve certain siting-, design- and installation-related problems. To date, one focus has been on developing completion strings that facilitate routine and efficient ground-water sampling from multiple intervals in a single well. The method currently advocated employs a new design of sliding side door sleeve that is actuated by an electrically operated hydraulic shifting tool. Stemming of the wells is being accomplished with standard materials (cement based grouts and sands); however, new stemming methods are being developed, to accommodate the greater depths, to minimize pH-related problems caused by the use of cements, to enhance the integrity of the inter-zone seals, and to improve the representativeness of radionuclide analyses performed on ground-water samples. Bench-scale experiments have been used to investigate the properties of more than a dozen epoxy-aggregate grout mixtures -- materials that are commonly used in underwater sealing applications

  2. Procedures for evaluation of vibratory ground motions of soil deposits at nuclear power plant sites

    International Nuclear Information System (INIS)

    1975-06-01

    According to USNRC requirements set forth in Appendix A, 10 CFR, Part 100, vibratory ground motion criteria for a nuclear plant must be based on local soil conditions, as well as on the seismicity, geology, and tectonics of the region. This report describes how such criteria can be developed by applying the latest technology associated with analytical predictions of site-dependent ground motions and with the use of composite spectra obtained from the current library of strong motion records. Recommended procedures for defining vibratory ground motion criteria contain the following steps: (1) geologic and seismologic studies; (2) site soils investigations; (3) site response sensitivity studies; (4) evaluation of local site response characteristics; (5) selection of site-matched records; and (6) appraisal and selection of seismic input criteria. An in-depth discussion of the engineering characteristics of earthquake ground motions including parameters used to characterize earthquakes and strong motion records, geologic factors that influence ground shaking, the current strong motion data base, and case histories of the effects of past earthquake events is presented. Next, geotechnical investigations of the seismologic, geologic, and site soil conditions required to develop vibratory motion criteria are briefly summarized. The current technology for establishing vibratory ground motion criteria at nuclear plant sites, including site-independent and site-dependent procedures that use data from strong motion records and from soil response analyses is described. (auth)

  3. Nevada Test Site Environmental Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2009-09-01

    The Nevada Test Site Environmental Report (NTSER) 2008 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ NTSERs are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx.

  4. Nevada Test Site Environmental Report 2008 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2009-09-01

    The Nevada Test Site Environmental Report (NTSER) 2008 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ NTSERs are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx.

  5. Space Shuttle Boundary Layer Transition Flight Experiment Ground Testing Overview

    Science.gov (United States)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.

    2014-01-01

    In support of the Boundary Layer Transition (BLT) Flight Experiment (FE) Project in which a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS- 128, STS-131 and STS-133 as well as Space Shuttle Orbiter Endeavour for STS-134, a significant ground test campaign was completed. The primary goals of the test campaign were to provide ground test data to support the planning and safety certification efforts required to fly the flight experiment as well as validation for the collected flight data. These test included Arcjet testing of the tile protuberance, aerothermal testing to determine the boundary layer transition behavior and resultant surface heating and planar laser induced fluorescence (PLIF) testing in order to gain a better understanding of the flow field characteristics associated with the flight experiment. This paper provides an overview of the BLT FE Project ground testing. High-level overviews of the facilities, models, test techniques and data are presented, along with a summary of the insights gained from each test.

  6. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    International Nuclear Information System (INIS)

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs

  7. Handling effluent from nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Allen, G.C.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests

  8. Effluent treatment options for nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Brockmann, J.E.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests

  9. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  10. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado

    International Nuclear Information System (INIS)

    1995-08-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation's Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment

  11. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Riverton, Wyoming

    International Nuclear Information System (INIS)

    1994-09-01

    This Risk Assessment evaluated potential impacts to public health or the environment caused by ground water contamination at the former uranium mill processing site. In the first phase of the U.S. Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project, the tailing and other contaminated material at this site were placed in a disposal cell near the Gas Hills Plant in 1990. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document to evaluate potential health and environmental risks for the Riverton site under the Ground Water Project; it will help determine whether remedial actions are needed for contaminated ground water at the site

  12. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Riverton, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This Risk Assessment evaluated potential impacts to public health or the environment caused by ground water contamination at the former uranium mill processing site. In the first phase of the U.S. Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project, the tailing and other contaminated material at this site were placed in a disposal cell near the Gas Hills Plant in 1990. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document to evaluate potential health and environmental risks for the Riverton site under the Ground Water Project; it will help determine whether remedial actions are needed for contaminated ground water at the site.

  13. Nevada Test Site annual site environmental report, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Wruble, D T; McDowell, E M [eds.

    1990-11-01

    Prior to 1989 annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the US Department of Energy, Nevada Operations Office (DOE/NV). Results of the offsite radiological surveillance program conducted by the US Environmental Protection Agency (EPA), Environmental Monitoring Systems Laboratory, Las Vegas, Nevada, were reported separately by that Agency. Beginning with this 1989 annual Site environmental report for the NTS, these two documents are being combined into a single report to provide a more comprehensive annual documentation of the environmental protection program conducted for the nuclear testing program and other nuclear and non-nuclear activities at the Site. The two agencies have coordinated preparation of this combined onsite and offsite report through sharing of information on environmental releases and meteorological, hydrological, and other supporting data used in dose-estimate calculations. 57 refs., 52 figs., 65 tabs.

  14. Ground-water quality beneath solid-waste disposal sites at anchorage, Alaska

    Science.gov (United States)

    Zenone, Chester; Donaldson, D.E.; Grunwaldt, J.J.

    1975-01-01

    Studies at three solid-waste disposal sites in the Anchorage area suggest that differences in local geohydrologic conditions influence ground-water quality. A leachate was detected in ground water within and beneath two sites where the water table is very near land surface and refuse is deposited either at or below the water table in some parts of the filled areas. No leachate was detected in ground water beneath a third site where waste disposal is well above the local water table.

  15. Nevada Test Site Environmental Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2008-09-01

    The Nevada Test Site Environmental Report 2007 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2007. This NTSER was prepared to satisfy DOE Order 231.1A, Environment, Safety and Health Reporting. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This report meets these objectives for the NTS and three offsite Nevada facilities mentioned in this report.

  16. Nevada Test Site Environmental Report 2007

    International Nuclear Information System (INIS)

    Cathy Wills

    2008-01-01

    The Nevada Test Site Environmental Report 2007 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2007. This NTSER was prepared to satisfy DOE Order 231.1A, Environment, Safety and Health Reporting. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This report meets these objectives for the NTS and three offsite Nevada facilities mentioned in this report

  17. Nevada Test Site Environmental Report 2007 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2008-09-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) directs the management and operation of the Nevada Test Site (NTS). The NTS is the nation's historical testing site for nuclear weapons from 1951 through 1992 and is currently the nation's unique site for ongoing national-security related missions and high-risk operations. NNSA/NSO strives to provide to the public an understanding of the current activities on the NTS, including environmental monitoring and compliance activities aimed at protecting the public and the environment from radiation hazards and from nonradiological impacts. This document is a summary of the Nevada Test Site Environmental Report (NTSER) for calendar year 2007 (see attached compact disc on inside back cover). The NTSER is a comprehensive report of environmental activities performed at the NTS and offsite facilities over the previous calendar year. It is prepared annually to meet the requirements and guidelines of the U.S. Department of Energy (DOE) and the information needs of NNSA/NSO stakeholders. To provide an abbreviated and more readable version of the NTSER, this summary report is produced. This summary does not include detailed data tables, monitoring methods or design, a description of the NTS environment, or a discussion of all environmental program activities performed throughout the year. The reader may obtain a hard copy of the full NTSER as directed on the inside front cover of this summary report.

  18. Hanford Site ground-water monitoring for 1995

    International Nuclear Information System (INIS)

    Dresel, P.E.; Rieger, J.T.; Webber, W.D.; Thorne, P.D.; Gillespie, B.M.; Luttrell, S.P.; Wurstner, S.K.; Liikala, T.L.

    1996-08-01

    This report presents the results of the Groundwater Surveillance Project monitoring for calendar year 1995 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that impacted groundwater quality on the site. Monitoring of water levels and groundwater chemistry is performed to track the extent of contamination, to note trends in contaminant concentrations,a nd to identify emerging groundwater quality problems. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of onsite groundwater quality. A three- dimensional, numerical, groundwater model is being developed to improve predictions of contaminant transport. The existing two- dimensional model was applied to predict contaminant flow paths and the impact of changes on site conditions. These activities were supported by limited hydrogeologic characterization. Water level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Radiological monitoring results indicated that many radioactive contaminants were above US Environmental Protection Agency or State of Washington drinking water standards at the Hanford Site. Nitrate, fluoride, chromium, cyanide, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichloroethylene were present in groundwater samples at levels above their US EPA or State of Washington maximum contaminant levels

  19. Geologic structure of Semipalatinsk test site territory

    International Nuclear Information System (INIS)

    Ergaliev, G.Kh.; Myasnikov, A.K.; Nikitina, O.I.; Sergeeva, L.V.

    2000-01-01

    This article gives a short description of the territory of Semipalatinsk test site. Poor knowledge of the region is noted, and it tells us about new data on stratigraphy and geology of Paleozoic layers, obtained after termination of underground nuclear explosions. The paper contains a list a questions on stratigraphy, structural, tectonic and geologic formation of the territory, that require additional study. (author)

  20. Nevada Test Site Environmental Report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills, ed.

    2010-09-13

    The Nevada Test Site Environmental Report 2009 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ Nevada Test Site Environmental Reports (NTSERs) are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx. This NTSER was prepared to satisfy DOE Order DOE O 231.1A, “Environment, Safety and Health Reporting.” Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NNSA/NSO Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This NTSER summarizes data and compliance status for calendar year 2009 at the Nevada Test Site (NTS) and its two support facilities, the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory (RSL)-Nellis. It also addresses environmental restoration (ER) projects conducted at the Tonopah Test Range (TTR). Through a Memorandum of Agreement, NNSA/NSO is responsible for the oversight of TTR ER projects, and the Sandia Site Office of NNSA (NNSA/SSO) has oversight of all other TTR activities. NNSA/SSO produces the TTR annual environmental report available at http://www.sandia.gov/news/publications/environmental/index.html.

  1. An assessment of testing requirement impacts on nuclear thermal propulsion ground test facility design

    International Nuclear Information System (INIS)

    Shipers, L.R.; Ottinger, C.A.; Sanchez, L.C.

    1993-01-01

    Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed

  2. Respiration testing for bioventing and biosparging remediation of petroleum contaminated soil and ground water

    International Nuclear Information System (INIS)

    Gray, A.L.; Brown, A.; Moore, B.J.; Payne, R.E.

    1996-01-01

    Respiration tests were performed to measure the effect of subsurface aeration on the biodegradation rates of petroleum hydrocarbon contamination in vadose zone soils (bioventing) and ground water (biosparging). The aerobic biodegradation of petroleum contamination is typically limited by the absence of oxygen in the soil and ground water. Therefore, the goal of these bioremediation technologies is to increase the oxygen concentration in the subsurface and thereby enhance the natural aerobic biodegradation of the organic contamination. One case study for biosparging bioremediation testing is presented. At this site atmospheric air was injected into the ground water to increase the dissolved oxygen concentration in the ground water surrounding a well, and to aerate the smear zone above the ground water table. Aeration flow rates of 3 to 8 cfm (0.09 to 0.23 m 3 /min) were sufficient to increase the dissolved oxygen concentration. Petroleum hydrocarbon biodegradation rates of 32 to 47 microg/l/hour were calculated based on measurements of dissolved oxygen concentration in ground water. The results of this test have demonstrated that biosparging enhances the biodegradation of petroleum hydrocarbons, but the results as they apply to remediation are not known. Two case studies for bioventing respiration testing are presented

  3. A summary of ecological investigations at the burial ground complex, Savannah River Site - 1994

    Energy Technology Data Exchange (ETDEWEB)

    Friday, G.P.; Hartman, G.D.; Mackey, H.E. Jr.; Riley, R.S.; Roach, J.L.; Specht, W.L.; Westbury, H.M.; Wike, L.D.

    1994-11-01

    This report summarizes the results of three ecological investigations that were conducted in 1994 at the Burial Ground Complex (BGC) at the Savannah River Site (SRS). The three topics of study included remote sensing, aquatic toxicity testing, and qualitative surveys of herpetofauna and small mammals. Interim reports from each investigation are included in the appendices (A, B, and C). The objectives of the remote sensing effort were to compile historical aerial photography of the BGC and to develop a land use/cover map of the complex using recent aerial imagery. The goal of the aquatic toxicity testing was to determine if surface waters were toxic to aquatic biota whereas the objectives of the vertebrate surveys were to identify the species diversity and relative abundances of amphibians, reptiles, and small mammals inhabiting the study area.

  4. A summary of ecological investigations at the burial ground complex, Savannah River Site - 1994

    International Nuclear Information System (INIS)

    Friday, G.P.; Hartman, G.D.; Mackey, H.E. Jr.; Riley, R.S.; Roach, J.L.; Specht, W.L.; Westbury, H.M.; Wike, L.D.

    1994-11-01

    This report summarizes the results of three ecological investigations that were conducted in 1994 at the Burial Ground Complex (BGC) at the Savannah River Site (SRS). The three topics of study included remote sensing, aquatic toxicity testing, and qualitative surveys of herpetofauna and small mammals. Interim reports from each investigation are included in the appendices (A, B, and C). The objectives of the remote sensing effort were to compile historical aerial photography of the BGC and to develop a land use/cover map of the complex using recent aerial imagery. The goal of the aquatic toxicity testing was to determine if surface waters were toxic to aquatic biota whereas the objectives of the vertebrate surveys were to identify the species diversity and relative abundances of amphibians, reptiles, and small mammals inhabiting the study area

  5. Nuclear test at Semipalatinsk test site and their environmental impacts

    International Nuclear Information System (INIS)

    Logachev, V.A.

    2000-01-01

    This paper present classification of nuclear tests conducted at the Semipalatinsk test site by tier radiation hazards. The Institute of Biophysics of the Russian Ministry of Health established a data base the archival data on radiation situation parameters and compiled an album of radioactive plum footprints. The paper states that external and internal exposure doses received by population lived in the test vicinity can sufficiently reliably assesses using archival data. (author)

  6. Nevada Test Site Radiation Protection Program

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers' Council, Nevada Test Site

    2007-08-09

    Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

  7. Nevada Test Site Environmental Report 2005

    International Nuclear Information System (INIS)

    Cathy A. Wills

    2006-01-01

    The Nevada Test Site Environmental Report 2005 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts

  8. Nevada Test Site Environmental Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2006-10-01

    The Nevada Test Site Environmental Report 2005 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts.

  9. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal

  10. Review of analytical results from the proposed agent disposal facility site, Aberdeen Proving Ground

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, K.L.; Reed, L.L.; Myers, S.W.; Shepard, L.T.; Sydelko, T.G.

    1997-09-01

    Argonne National Laboratory reviewed the analytical results from 57 composite soil samples collected in the Bush River area of Aberdeen Proving Ground, Maryland. A suite of 16 analytical tests involving 11 different SW-846 methods was used to detect a wide range of organic and inorganic contaminants. One method (BTEX) was considered redundant, and two {open_quotes}single-number{close_quotes} methods (TPH and TOX) were found to lack the required specificity to yield unambiguous results, especially in a preliminary investigation. Volatile analytes detected at the site include 1, 1,2,2-tetrachloroethane, trichloroethylene, and tetrachloroethylene, all of which probably represent residual site contamination from past activities. Other volatile analytes detected include toluene, tridecane, methylene chloride, and trichlorofluoromethane. These compounds are probably not associated with site contamination but likely represent cross-contamination or, in the case of tridecane, a naturally occurring material. Semivolatile analytes detected include three different phthalates and low part-per-billion amounts of the pesticide DDT and its degradation product DDE. The pesticide could represent residual site contamination from past activities, and the phthalates are likely due, in part, to cross-contamination during sample handling. A number of high-molecular-weight hydrocarbons and hydrocarbon derivatives were detected and were probably naturally occurring compounds. 4 refs., 1 fig., 8 tabs.

  11. Evaluation of site effects on ground motions based on equivalent linear site response analysis and liquefaction potential in Chennai, south India

    Science.gov (United States)

    Nampally, Subhadra; Padhy, Simanchal; Trupti, S.; Prabhakar Prasad, P.; Seshunarayana, T.

    2018-05-01

    We study local site effects with detailed geotechnical and geophysical site characterization to evaluate the site-specific seismic hazard for the seismic microzonation of the Chennai city in South India. A Maximum Credible Earthquake (MCE) of magnitude 6.0 is considered based on the available seismotectonic and geological information of the study area. We synthesized strong ground motion records for this target event using stochastic finite-fault technique, based on a dynamic corner frequency approach, at different sites in the city, with the model parameters for the source, site, and path (attenuation) most appropriately selected for this region. We tested the influence of several model parameters on the characteristics of ground motion through simulations and found that stress drop largely influences both the amplitude and frequency of ground motion. To minimize its influence, we estimated stress drop after finite bandwidth correction, as expected from an M6 earthquake in Indian peninsula shield for accurately predicting the level of ground motion. Estimates of shear wave velocity averaged over the top 30 m of soil (V S30) are obtained from multichannel analysis of surface wave (MASW) at 210 sites at depths of 30 to 60 m below the ground surface. Using these V S30 values, along with the available geotechnical information and synthetic ground motion database obtained, equivalent linear one-dimensional site response analysis that approximates the nonlinear soil behavior within the linear analysis framework was performed using the computer program SHAKE2000. Fundamental natural frequency, Peak Ground Acceleration (PGA) at surface and rock levels, response spectrum at surface level for different damping coefficients, and amplification factors are presented at different sites of the city. Liquefaction study was done based on the V S30 and PGA values obtained. The major findings suggest show that the northeast part of the city is characterized by (i) low V S30 values

  12. Preparatory research to develop an operational method to calibrate airborne sensor data using a network of ground calibration sites

    International Nuclear Information System (INIS)

    Milton, E.J.; Smith, G.M.; Lawless, K.P.

    1996-01-01

    The objective of the research is to develop an operational method to convert airborne spectral radiance data to reflectance using a number of well-characterized ground calibration sites located around the UK. The study is in three phases. First, a pilot study has been conducted at a disused airfield in southern England to test the feasibility of the open-quote empirical line close-quote method of sensor calibration. The second phase is developing methods to predict temporal changes in the bidirectional reflectance of ground calibration sites. The final phase of the project will look at methods to extend such calibrations spatially. This paper presents some results from the first phase of this study. The viability of the empirical line method of correction is shown to depend upon the use of ground targets whose in-band reflectance encompasses that of the targets of interest in the spectral band(s) concerned. The experimental design for the second phase of the study, in which methods to predict temporal trends in the bidirectional reflectance of these sites will be developed, is discussed. Finally, it is planned to develop an automated method of searching through Landsat TM data for the UK to identify a number of candidate ground calibration sites for which the model can be tested. 11 refs., 5 figs., 5 tabs

  13. Forced vibration tests of a model foundation on rock ground

    International Nuclear Information System (INIS)

    Kisaki, N.; Siota, M.; Yamada, M.; Ikeda, A.; Tsuchiya, H.; Kitazawa, K.; Kuwabara, Y.; Ogiwara, Y.

    1983-01-01

    The response of very stiff structures, such as nuclear reactor buildings, to earthquake ground motion is significantly affected by radiation damping due to the soil-structure interaction. The radiation damping can be computed by vibration admittance theory or dynamical ground compliance theory. In order to apply the values derived from these theories to the practical problems, comparative studies between theoretical results and experimental results concerning the soil-structure interaction, especially if the ground is rock, are urgently needed. However, experimental results for rock are less easily obtained than theoretical ones. The purpose of this paper is to describe the harmonic excitation tests of a model foundation on rock and to describe the results of comparative studies. (orig./HP)

  14. Geologic surface effects of underground nuclear testing, Yucca Flat, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    Grasso, D.N.

    2000-01-01

    This report presents a new Geographic Information System composite map of the geologic surface effects caused by underground nuclear testing in the Yucca Flat Physiographic Area of the Nevada Test Site, Nye County, Nevada. The Nevada Test Site (NTS) was established in 1951 as a continental location for testing nuclear devices (Allen and others, 1997, p.3). Originally known as the ''Nevada Proving Ground'', the NTS hosted a total of 928 nuclear detonations, of which 828 were conducted underground (U.S. Department of Energy, 1994). Three principal testing areas of the NTS were used: (1) Yucca Flat, (2) Pahute Mesa, and (3) Rainier Mesa including Aqueduct Mesa. Underground detonations at Yucca Flat and Pahute Mesa were typically emplaced in vertical drill holes, while others were tunnel emplacements. Of the three testing areas, Yucca Flat was the most extensively used, hosting 658 underground tests (747 detonations) located at 719 individual sites (Allen and others, 1997, p.3-4). Figure 1 shows the location of Yucca Flat and other testing areas of the NTS. Figure 2 shows the locations of underground nuclear detonation sites at Yucca Flat. Table 1 lists the number of underground nuclear detonations conducted, the number of borehole sites utilized, and the number of detonations mapped for surface effects at Yucca Flat by NTS Operational Area

  15. SITE-94. Geochemical characterization of Simpevarp ground waters near the Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Glynn, P D; Voss, C I [US Geological Survey, Reston, VA (United States)

    1999-09-01

    evidence remains to be found to prove or to disprove that deep penetration of oxygenated ground waters occurred during the last Pleistocene glaciation. Amorphous Fe-oxyhydroxides and goethites have been observed at great depths at several SKB sites in Sweden. These phases may have formed as a result of the intrusion of oxygenated glacial melt waters. The recommendations for future geochemical characterization of potential nuclear waste disposal sites made by the present report generally complement recommendations made earlier by Andrews based on the international program of hydrochemical work at the Stripa mine. In addition to better sampling techniques and protocols, future characterization efforts should place greater emphasis on the measurement of conservative constituents (Cl, Br, {sup 2}H, {sup 18}O) that may provide information on the origin of ground waters and also on the hydrologic disturbances induced by sampling, testing and excavation activities. (abstract truncated)

  16. Ground Operations Demonstration Unit for Liquid Hydrogen Initial Test Results

    Science.gov (United States)

    Notardonato, W. U.; Johnson, W. L.; Swanger, A. M.; Tomsik, T.

    2015-01-01

    NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project has designed, assembled, and started testing of a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The system is unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. This paper will present and discuss the results of the initial phase of testing of the GODU LH2 system.

  17. Environmental Assessment of Ground Water Compliance at the Gunnison, Colorado, UMTRA Project Site

    International Nuclear Information System (INIS)

    2002-01-01

    The U.S. Department of Energy (DOE) is in the process of selecting a ground water compliance strategy for the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. This Environmental Assessment (EA) discusses two alternatives and the effects associated with each. The two alternatives are (1) natural flushing coupled with institutional controls and continued monitoring and (2) no action. The compliance strategy must meet U.S. Environmental Protection Agency (EPA) ground water standards defined in Title 40 ''Code of Federal Regulations'' Part 192, Subpart B, in areas where ground water beneath and around the site is contaminated as a result of past milling operations. It has been determined that contamination in the ground water at the Gunnison site consists of soluble residual radioactive material (RRM) as defined in the Uranium Mill Tailings Radiation Control Act (UMTRCA)

  18. Distribution of ground rigidity and ground model for seismic response analysis in Hualian project of large scale seismic test

    International Nuclear Information System (INIS)

    Kokusho, T.; Nishi, K.; Okamoto, T.; Tanaka, Y.; Ueshima, T.; Kudo, K.; Kataoka, T.; Ikemi, M.; Kawai, T.; Sawada, Y.; Suzuki, K.; Yajima, K.; Higashi, S.

    1997-01-01

    An international joint research program called HLSST is proceeding. HLSST is large-scale seismic test (LSST) to investigate soil-structure interaction (SSI) during large earthquake in the field in Hualien, a high seismic region in Taiwan. A 1/4-scale model building was constructed on the gravelly soil in this site, and the backfill material of crushed stone was placed around the model plant after excavation for the construction. Also the model building and the foundation ground were extensively instrumental to monitor structure and ground response. To accurately evaluate SSI during earthquakes, geotechnical investigation and forced vibration test were performed during construction process namely before/after base excavation, after structure construction and after backfilling. And the distribution of the mechanical properties of the gravelly soil and the backfill are measured after the completion of the construction by penetration test and PS-logging etc. This paper describes the distribution and the change of the shear wave velocity (V s ) measured by the field test. Discussion is made on the effect of overburden pressure during the construction process on V s in the neighbouring soil and, further on the numerical soil model for SSI analysis. (orig.)

  19. Cryogenic actuator testing for the SAFARI ground calibration setup

    Science.gov (United States)

    de Jonge, C.; Eggens, M.; Nieuwenhuizen, A. C. T.; Detrain, A.; Smit, H.; Dieleman, P.

    2012-09-01

    For the on-ground calibration setup of the SAFARI instrument cryogenic mechanisms are being developed at SRON Netherlands Institute for Space Research, including a filter wheel, XYZ-scanner and a flipmirror mechanism. Due to the extremely low background radiation requirement of the SAFARI instrument, all of these mechanisms will have to perform their work at 4.5 Kelvin and low-dissipative cryogenic actuators are required to drive these mechanisms. In this paper, the performance of stepper motors, piezoelectric actuators and brushless DC-motors as cryogenic actuators are compared. We tested stepper motor mechanical performance and electrical dissipation at 4K. The actuator requirements, test setup and test results are presented. Furthermore, design considerations and early performance tests of the flipmirror mechanism are discussed. This flipmirror features a 102 x 72 mm aluminum mirror that can be rotated 45°. A Phytron stepper motor with reduction gearbox has been chosen to drive the flipmirror. Testing showed that this motor has a dissipation of 49mW at 4K with a torque of 60Nmm at 100rpm. Thermal modeling of the flipmirror mechanism predicts that with proper thermal strapping the peak temperature of the flipmirror after a single action will be within the background level requirements of the SAFARI instrument. Early tests confirm this result. For low-duty cycle operations commercial stepper motors appear suitable as actuators for test equipment in the SAFARI on ground calibration setup.

  20. Modelling of the ground motion at Russe site (NE Bulgaria) due to the Vrancea earthquakes

    International Nuclear Information System (INIS)

    Kouteva, Mihaela; Panza, Giuliano F.; Paskaleva, Ivanka; Romanelli, Fabio

    2001-11-01

    An approach, capable of synthesising strong ground motion from a basic understanding of fault mechanism and of seismic wave propagation in the Earth, is applied to model the seismic input at a set of 25 sites along a chosen profile at Russe, NE Bulgaria, due to two intermediate-depth Vrancea events (August 30, 1986, Mw=7.2, and May 30, 1990, Mw=6.9). According to our results, once a strong ground motion parameter has been selected to characterise the ground motion, it is necessary to investigate the relationships between its values and the features of the earthquake source, the path to the site and the nature of the site. Therefore, a proper seismic hazard assessment requires an appropriate parametric study to define the different ground shaking scenarios corresponding to the relevant seismogenic zones affecting the given site. Site response assessment is provided simultaneously in frequency and space domains, and thus the applied procedure differs from the traditional engineering approach that discusses the site as a single point. The applied procedure can be efficiently used to estimate the ground motion for different purposes like microzonation, urban planning, retrofitting or insurance of the built environment. (author)

  1. Large scale vibration tests on pile-group effects using blast-induced ground motion

    International Nuclear Information System (INIS)

    Katsuichirou Hijikata; Hideo Tanaka; Takayuki Hashimoto; Kazushige Fujiwara; Yuji Miyamoto; Osamu Kontani

    2005-01-01

    Extensive vibration tests have been performed on pile-supported structures at a large-scale mining site. Ground motions induced by large-scale blasting operations were used as excitation forces for vibration tests. The main objective of this research is to investigate the dynamic behavior of pile-supported structures, in particular, pile-group effects. Two test structures were constructed in an excavated 4 m deep pit. Their test-structures were exactly the same. One structure had 25 steel piles and the other had 4 piles. The test pit was backfilled with sand of appropriate grain size distributions to obtain good compaction, especially between the 25 piles. Accelerations were measured at the structures, in the test pit and in the adjacent free field, and pile strains were measured. Dynamic modal tests of the pile-supported structures and PS measurements of the test pit were performed before and after the vibration tests to detect changes in the natural frequencies of the soil-pile-structure systems and the soil stiffness. The vibration tests were performed six times with different levels of input motions. The maximum horizontal acceleration recorded at the adjacent ground surface varied from 57 cm/s 2 to 1,683 cm/s 2 according to the distances between the test site and the blast areas. (authors)

  2. Ground-Penetrating Radar Prospecting in the Peinan Archaeological Site, Taiwan

    Directory of Open Access Journals (Sweden)

    Lun-Tao Tong

    2013-01-01

    Full Text Available The Peinan archaeological site is the largest prehistoric village in Taiwan. Only small-scale pits are allowed for research purposes because the Peinan site is protected by the Cultural Heritage Preservation Act. Careful selection of the pit locations is crucial for future archaeological research at this site. In this study, a ground-penetrating radar (GPR survey was applied near the stone pillar to understand the GPR signatures of the subsurface remains. Seven GPR signatures were categorized based on the radar characters shown on the GPR image. A detailed GPR survey with dense parallel survey lines was subsequently conducted in the area of northern extent of the onsite exhibition to map the subsurface ancient buildings. The results were verified by two test pits, which indicate that the distribution of the subsurface building structures can be well recognized from GPR depth slices. It will be very helpful for setting proper pits priorities for future archaeological research, and for making proper design of the new onsite exhibition.

  3. [Prediction of 137Cs accumulation in animal products in the territory of Semipalatinsk test site].

    Science.gov (United States)

    Spiridonov, S I; Gontarenko, I A; Mukusheva, M K; Fesenko, S V; Semioshkina, N A

    2005-01-01

    The paper describes mathematical models for 137Cs behavior in the organism of horses and sheep pasturing on the bording area to the testing area "Ground Zero" of the Semipalatinsk Test Site. The models are parameterized on the base of the data from an experiment with the breeds of animals now commonly encountered within the Semipalatinsk Test Site. The predictive calculations with the models devised have shown that 137Cs concentrations in milk of horses and sheep pasturingon the testing area to "Ground Zero" can exceed the adopted standards during a long period of time.

  4. Bioremediation of ground water contaminants at a uranium mill tailings site

    International Nuclear Information System (INIS)

    Barton, L.L.; Nuttall, H.E.; Thomson, B.M.; Lutze, W.

    1995-01-01

    Ground water contaminated with uranium from milling operations must be remediated to reduce the migration of soluble toxic compounds. At the mill tailings site near Tuba City, Arizona (USA) the approach is to employ bioremediation for in situ immobilization of uranium by bacterial reduction of uranyl, U(VI), compounds to uraninite, U(IV). In this initial phase of remediation, details are provided to indicate the magnitude of the contamination problem and to present preliminary evidence supporting the proposition that bacterial immobilization of uranium is possible. Additionally, consideration is given to contaminating cations and anions that may be at toxic levels in ground water at this uranium mill tailing site and detoxification strategies using bacteria are addressed. A model concept is employed so that results obtained at the Tuba City site could contribute to bioremediation of ground water at other uranium mill tailings sites

  5. Nevada Test Site Environmental Report Summary 2009

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills, ed.

    2010-09-13

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) directs the management and operation of the Nevada Test Site (NTS). NNSA/NSO prepares the Nevada Test Site Environmental Report (NTSER) to provide the public an understanding of the environmental monitoring and compliance activities that are conducted on the NTS to protect the public and the environment from radiation hazards and from nonradiological impacts. The NTSER is a comprehensive report of environmental activities performed at the NTS and offsite facilities over the previous calendar year. It is prepared annually to meet the requirements and guidelines of the U.S. Department of Energy (DOE) and the information needs of NNSA/NSO stakeholders. This summary provides an abbreviated and more readable version of the NTSER. It does not contain detailed descriptions or presentations of monitoring designs, data collection methods, data tables, the NTS environment, or all environmental program activities performed throughout the year. The reader may obtain a hard copy of the full NTSER as directed on the inside front cover of this summary report.

  6. Modeling Nonlinear Site Response Uncertainty in Broadband Ground Motion Simulations for the Los Angeles Basin

    Science.gov (United States)

    Assimaki, D.; Li, W.; Steidl, J. M.; Schmedes, J.

    2007-12-01

    The assessment of strong motion site response is of great significance, both for mitigating seismic hazard and for performing detailed analyses of earthquake source characteristics. There currently exists, however, large degree of uncertainty concerning the mathematical model to be employed for the computationally efficient evaluation of local site effects, and the site investigation program necessary to evaluate the nonlinear input model parameters and ensure cost-effective predictions; and while site response observations may provide critical constraints on interpretation methods, the lack of a statistically significant number of in-situ strong motion records prohibits statistical analyses to be conducted and uncertainties to be quantified based entirely on field data. In this paper, we combine downhole observations and broadband ground motion synthetics for characteristic site conditions the Los Angeles Basin, and investigate the variability in ground motion estimation introduced by the site response assessment methodology. In particular, site-specific regional velocity and attenuation structures are initially compiled using near-surface geotechnical data collected at downhole geotechnical arrays, inverse low-strain velocity and attenuation profiles at these sites obtained by inversion of weak motion records and the crustal velocity structure at the corresponding locations obtained from the Southern California Earthquake Centre Community Velocity Model. Successively, broadband ground motions are simulated by means of a hybrid low/high-frequency finite source model with correlated random parameters for rupture scenaria of weak, medium and large magnitude events (M =3.5-7.5). Observed estimates of site response at the stations of interest are first compared to the ensemble of approximate and incremental nonlinear site response models. Parametric studies are next conducted for each fixed magnitude (fault geometry) scenario by varying the source-to-site distance and

  7. Freshwater algae of the Nevada Test Site

    International Nuclear Information System (INIS)

    Taylor, W.D.; Giles, K.R.

    1979-06-01

    Fifty-two species of freshwater algae were identified in samples collected from the eight known natural springs of the Nevada Test Site. Although several species were widespread, 29 species were site specific. Diatoms provided the greatest variety of species at each spring. Three-fifths of all algal species encountered were diatoms. Well-developed mats of filamentous green algae (Chlorophyta) were common in many of the water tanks associated with the springs and accounted for most of the algal biomass. Major nutrients were adequate, if not abundant, in most spring waters - growth being limited primarily by light and physical habitat. There was some evidence of cesium-137 bioconcentration by algae at several of the springs

  8. Review of Nuclear Thermal Propulsion Ground Test Options

    Science.gov (United States)

    Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen

    2015-01-01

    High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.

  9. Integrated Vehicle Ground Vibration Testing of Manned Spacecraft: Historical Precedent

    Science.gov (United States)

    Lemke, Paul R.; Tuma, Margaret L.; Askins, Bruce R.

    2008-01-01

    For the first time in nearly 30 years, NASA is developing a new manned space flight launch system. The Ares I will carry crew and cargo to not only the International Space Station, but onward for the future exploration of the Moon and Mars. The Ares I control system and structural designs use complex computer models for their development. An Integrated Vehicle Ground Vibration Test (IVGVT) will validate the efficacy of these computer models. The IVGVT will reduce the technical risk of unexpected conditions that could place the vehicle or crew in jeopardy. The Ares Project Office's Flight and Integrated Test Office commissioned a study to determine how historical programs, such as Saturn and Space Shuttle, validated the structural dynamics of an integrated flight vehicle. The study methodology was to examine the historical record and seek out members of the engineering community who recall the development of historic manned launch vehicles. These records and interviews provided insight into the best practices and lessons learned from these historic development programs. The information that was gathered allowed the creation of timelines of the historic development programs. The timelines trace the programs from the development of test articles through test preparation, test operations, and test data reduction efforts. These timelines also demonstrate how the historical tests fit within their overall vehicle development programs. Finally, the study was able to quantify approximate staffing levels during historic development programs. Using this study, the Flight and Integrated Test Office was able to evaluate the Ares I Integrated Vehicle Ground Vibration Test schedule and workforce budgets in light of the historical precedents to determine if the test had schedule or cost risks associated with it.

  10. Population dose near the Semipalatinsk test site.

    Science.gov (United States)

    Hille, R; Hill, P; Bouisset, P; Calmet, D; Kluson, J; Seisebaev, A; Smagulov, S

    1998-10-01

    To determine the consequences of atmospheric atomic bomb tests for the population in the surroundings of the former nuclear weapons test site near Semipalatinsk in Kazakhstan, a pilot study was performed by an international cooperation between Kazakh, French, Czech and German institutions at two villages, Mostik and Maisk. Together with Kazakh scientists, eight experts from Europe carried out a field mission in September 1995 to assess, within the framework of a NATO supported project, the radiological situation as far as external doses, environmental contamination and body burden of man were concerned. A summary of the results obtained is presented. The actual radiological situation near the test site is characterized by fallout contaminations. Cs was found in upper soil layers in concentrations similar to those of the global fallout. Also Sr, Am and Co were observed. The resulting present dose to the population is low. Mean external doses from soil contamination for Maisk and Mostik (0.60-0.63 mSv/year) presently correspond to mean external doses in normal environments. Mean values of the annual internal doses observed in these two villages are below 2 microSv/year for 90Sr. For other radionuclides the internal doses are also negligible.

  11. Population dose near the Semipalatinsk test site

    International Nuclear Information System (INIS)

    Hille, R.; Hill, P.; Kluson, J.; Seisebaev, A.; Smagulov, S.

    1998-01-01

    To determine the consequences of atmospheric atomic bomb tests for the population in the surroundings of the former nuclear weapons test site near Semipalatinsk in Kazakhstan, a pilot study was performed by an international cooperation between Kazakh, French, Czech and German institutions at two villages, Mostik and Maisk. Together with Kazakh scientists, eight experts from Europe carried out a field mission in September 1995 to assess, within the framework of a NATO supported project, the radiological situation as far as external doses, environmental contamination and body burden of man were concerned. A summary of the results obtained is presented. The actual radiological situation near the test site is characterized by fallout contaminations. Cs was found in upper soil layers in concentrations similar to those of the global fallout. Also Sr, Am and Co were observed. The resulting present dose to the population is low. Mean external doses from soil contamination for Maisk and Mostik (0.60-0.63 mSv/ year) presently correspond to mean external doses in normal environments. Mean values of the annual internal doses observed in these two villages are below 2 μSv/year for 90 Sr. For other radionuclides the internal doses are also negligible. (orig.)

  12. Visibility Analysis of Domestic Satellites on Proposed Ground Sites for Optical Surveillance

    Directory of Open Access Journals (Sweden)

    Jung Hyun Jo1

    2011-12-01

    Full Text Available The objectives of this study are to analyze the satellite visibility at the randomly established ground sites, to determine the five optimal ground sites to perform the optical surveillance and tracking of domestic satellites, and to verify the acquisition of the optical observation time sufficient to maintain the precise ephemeris at optimal ground sites that have been already determined. In order to accomplish these objectives, we analyzed the visibility for sun-synchronous orbit satellites, low earth orbit satellites, middle earth orbit satellites and domestic satellites as well as the continuous visibility along with the fictitious satellite ground track, and calculate the effective visibility. For the analysis, we carried out a series of repetitive process using the satellite tool kit simulation software developed by Analytical Graphics Incorporated. The lighting states of the penumbra and direct sun were set as the key constraints of the optical observation. The minimum of the observation satellite elevation angle was set to be 20 degree, whereas the maximum of the sun elevation angle was set to be -10 degree which is within the range of the nautical twilight. To select the candidates for the optimal optical observation, the entire globe was divided into 84 sectors in a constant interval, the visibility characteristics of the individual sectors were analyzed, and 17 ground sites were arbitrarily selected and analyzed further. Finally, five optimal ground sites (Khurel Togoot Observatory, Assy-Turgen Observatory, Tubitak National Observatory, Bisdee Tier Optical Astronomy Observatory, and South Africa Astronomical Observatory were determined. The total observation period was decided as one year. To examine the seasonal variation, the simulation was performed for the period of three days or less with respect to spring, summer, fall and winter. In conclusion, we decided the optimal ground sites to perform the optical surveillance and tracking

  13. Calculated concentrations of any radionuclide deposited on the ground by release from underground nuclear detonations, tests of nuclear rockets, and tests of nuclear ramjet engines

    International Nuclear Information System (INIS)

    Hicks, H.G.

    1981-11-01

    This report presents calculated gamma radiation exposure rates and ground deposition of related radionuclides resulting from three types of event that deposited detectable radioactivity outside the Nevada Test Site complex, namely, underground nuclear detonations, tests of nuclear rocket engines and tests of nuclear ramjet engines

  14. CRYogenic Orbital TEstbed Ground Test Article Thermal Analysis

    Science.gov (United States)

    Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark

    2012-01-01

    The purpose of this study was to anchor thermal and fluid system models to CRYOTE ground test data. The CRYOTE ground test artide was jointly developed by Innovative Engineering Solutions, United Launch Alliance and NASA KSC. The test article was constructed out of a titanium alloy tank, Sapphire 77 composite skin (similar to G10), an external secondary payload adapter ring, thermal vent system, multi layer insulation and various data acquisition instrumentation. In efforts to understand heat loads throughout this system, the GTA (filled with liquid nitrogen for safety purposes) was subjected to a series of tests in a vacuum chamber at Marshall Space Flight Center. By anchoring analytical models against test data, higher fidelity thermal environment predictions can be made for future flight articles which would eventually demonstrate critical cryogenic fluid management technologies such as system chilldown, transfer, pressure control and long term storage. Significant factors that influenced heat loads included radiative environments, multi-layer insulation performance, tank fill levels and pressures and even contact conductance coefficients. This report demonstrates how analytical thermal/fluid networks were established and includes supporting rationale for specific thermal responses.

  15. Evaluation of soil radioactivity data from the Nevada Test Site

    International Nuclear Information System (INIS)

    1995-03-01

    Since 1951, 933 nuclear tests have been conducted at the Nevada Test Site (NTS) and test areas on the adjacent Tonopah Test Range (TTR) and Nellis Air Force Range (NAFR). Until the early 1960s. the majority of tests were atmospheric, involving detonation of nuclear explosive devices on the ground or on a tower, suspended from a balloon or dropped from an airplane. Since the signing of the Limited Test Ban Treaty in 1963, most tests have been conducted underground, although several shallow subsurface tests took place between 1962 and 1968. As a result of the aboveground and near-surface nuclear explosions, as well as ventings of underground tests, destruction of nuclear devices with conventional explosives, and nuclear-rocket engine tests, the surface soil on portions of the NTS has been contaminated with radionuclides. Relatively little consideration was given to the environmental effects of nuclear testing during the first two decades of operations at the NTS. Since the early 1970s, however, increasingly strict environmental regulations have forced greater attention to be given to contamination problems at the site and how to remediate them. One key element in the current environmental restoration program at the NTS is determining the amount and extent of radioactivity in the surface soil. The general distribution of soil radioactivity on the NTS is already well known as a result of several programs carried out in the 1970s and 1980s. However, questions have been raised as to whether the data from those earlier studies are suitable for use in the current environmental assessments and risk analyses. The primary purpose of this preliminary data review is to determine to what extent the historical data collected at the NTS can be used in the characterization/remediation process

  16. Acoustic-Seismic Coupling in Porous Ground - Measurements and Analysis for On-Site-Inspection Support

    Science.gov (United States)

    Liebsch, Mattes; Gorschlüter, Felix; Altmann, Jürgen

    2014-05-01

    During on-site inspections (OSI) of the Comprehensive Nuclear Test Ban Treaty Organisation (CTBTO) a local seismic network can be installed to measure seismic aftershock signals of an assumed underground nuclear explosion. These signals are caused by relaxation processes in and near the cavity created by the explosion and when detected can lead to a localisation of the cavity. This localisation is necessary to take gas samples from the ground which are analysed for radioactive noble gas isotopes to confirm or dismiss the suspicion of a nuclear test. The aftershock signals are of very low magnitude so they can be masked by different sources, in particular periodic disturbances caused by vehicles and aircraft in the inspection area. Vehicles and aircraft (mainly helicopters) will be used for the inspection activities themselves, e.g. for overhead imagery or magnetic-anomaly sensing. While vehicles in contact with the ground can excite soil vibrations directly, aircraft and vehicles alike emit acoustic waves which excite soil vibrations when hitting the ground. These disturbing signals are of periodic nature while the seismic aftershock signals are pulse-shaped, so their separation is possible. The understanding of the coupling of acoustic waves to the ground is yet incomplete, a better understanding is necessary to improve the performance of an OSI, e.g. to address potential consequences for the sensor placement, the helicopter trajectories etc. In a project funded by the Young Scientist Research Award of the CTBTO to one of us (ML), we investigated the acoustic-seismic coupling of airborne signals of jet aircraft and artificially induced ones by a speaker. During a measurement campaign several acoustic and seismic sensors were placed below the take-off trajectory of an airport at 4 km distance. Therefore taking off and landing jet aircraft passed nearly straightly above the setup. Microphones were placed close to the ground to record the sound pressure of incident

  17. DOUBLE TRACKS Test Site interim corrective action plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The DOUBLE TRACKS site is located on Range 71 north of the Nellis Air Force Range, northwest of the Nevada Test Site (NTS). DOUBLE TRACKS was the first of four experiments that constituted Operation ROLLER COASTER. On May 15, 1963, weapons-grade plutonium and depleted uranium were dispersed using 54 kilograms of trinitrotoluene (TNT) explosive. The explosion occurred in the open, 0.3 m above the steel plate. No fission yield was detected from the test, and the total amount of plutonium deposited on the ground surface was estimated to be between 980 and 1,600 grams. The test device was composed primarily of uranium-238 and plutonium-239. The mass ratio of uranium to plutonium was 4.35. The objective of the corrective action is to reduce the potential risk to human health and the environment and to demonstrate technically viable and cost-effective excavation, transportation, and disposal. To achieve these objectives, Bechtel Nevada (BN) will remove soil with a total transuranic activity greater then 200 pCI/g, containerize the soil in ``supersacks,`` transport the filled ``supersacks`` to the NTS, and dispose of them in the Area 3 Radioactive Waste Management Site. During this interim corrective action, BN will also conduct a limited demonstration of an alternative method for excavation of radioactive near-surface soil contamination.

  18. Plutonium Particle Migration in the Shallow Vadose Zone: The Nevada Test Site as an Analog Site

    Science.gov (United States)

    Hunt, J. R.; Smith, D. K.

    2004-12-01

    The upper meter of the vadose zone in desert environments is the horizon where wastes have been released and human exposure is determined through dermal, inhalation, and food uptake pathways. This region is also characterized by numerous coupled processes that determine contaminant transport, including precipitation infiltration, evapotranspiration, daily and annual temperature cycling, dust resuspension, animal burrowing, and geochemical weathering reactions. While there is considerable interest in colloidal transport of minerals, pathogenic organisms, and contaminants in the vadose zone, there are limited field sites where the actual occurrence of contaminant migration can be quantified over the appropriate spatial and temporal scales of interest. At the US Department of Energy Nevada Test Site, there have been numerous releases of radionuclides since the 1950's that have become field-scale tracer tests. One series of tests was the four safety shots conducted in an alluvial valley of Area 11 in the 1950's. These experiments tested the ability of nuclear materials to survive chemical explosions without initiating fission reactions. Four above-ground tests were conducted and they released plutonium and uranium on the desert valley floor with only one of the tests undergoing some fission. Shortly after the tests, the sites were surveyed for radionuclide distribution on the land surface using aerial surveys and with depth. Additional studies were conducted in the 1970's to better understand the fate of plutonium in the desert that included studies of depth distribution and dust resuspension. More recently, plutonium particle distribution in the soil profile was detected using autoradiography. The results to date demonstrate the vertical migration of plutonium particles to depths in excess of 30 cm in this arid vadose zone. While plutonium migration at the Nevada Test Site has been and continues to be a concern, these field experiments have become analog sites for the

  19. Advanced stellar compass deep space navigation, ground testing results

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Jørgensen, Peter Siegbjørn

    2006-01-01

    Deep space exploration is in the agenda of the major space agencies worldwide and at least the European Space Agency (SMART & Aurora Programs) and the American NASA (New Millennium Program) have set up programs to allow the development and the demonstration of technologies that can reduce the risks...... and the costs of the deep space missions. Navigation is the Achilles' heel of deep space. Being performed on ground, it imposes considerable constraints on the system and the operations, it is very expensive to execute, especially when the mission lasts several years and, above all, it is not failure tolerant...... to determine the orbit of a spacecraft autonomously, on-board and without any a priori knowledge of any kind. The solution is robust, elegant and fast. This paper presents the preliminary performances obtained during the ground tests. The results are very positive and encouraging....

  20. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Grant Evenson

    2006-01-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139

  1. Development of Ground Test System For RKX-200EB

    Science.gov (United States)

    Yudhi Irwanto, Herma

    2018-04-01

    After being postponed for seven years, the development of RKX-200EB now restarts by initiating a ground test, preceding the real flight test. The series of the development starts from simulation test using the real vehicle and its components, focusing on a flight sequence test using hardware in the loop simulation. The result of the simulation shows that the autonomous control system in development is able to control the X tail fin vehicle, since take off using booster, separating booster-sustainer, making flight maneuver using sustainer with average cruise speed of 1000 km/h, and doing bank to maneuver up to ±40 deg heading to the target. The simulation result also shows that the presence of sustainer in vehicle control can expand the distance range by 162% (12.6 km) from its ballistic range using only a booster.

  2. GIS Modelling of Radionuclide Transport from the Semipalatinsk Test Site

    Science.gov (United States)

    Balakay, L.; Zakarin, E.; Mahura, A.; Baklanov, A.; Sorensen, J. H.

    2009-04-01

    In this study, the software complex GIS-project MigRad (Migration of Radionuclide) was developed, tested and applied for the territory of the Semipalatinsk test site/ polygon (Republic of Kazakhstan), where since 1961, in total 348 underground nuclear explosions were conducted. The MigRad is oriented on integration of large volumes of different information (mapping, ground-based, and satellite-based survey): and also includes modeling on its base local redistribution of radionuclides by precipitation and surface waters and by long-range transport of radioactive aerosols. The existing thermal anomaly on territory of the polygon was investigated in details, and the object-oriented analysis was applied for the studied area. Employing the RUNOFF model, the simulation of radionuclides migration with surface waters was performed. Employing the DERMA model, the simulation of long-term atmospheric transport, dispersion and deposition patterns for cesium was conducted from 3 selected locations (Balapan, Delegen, and Experimental Field). Employing geoinformation technology, the mapping of the of the high temperature zones and epicenters of radioactive aerosols transport for the territory of the test site was carried out with post-processing and integration of modelling results into GIS environment. Contamination levels of pollution due to former nuclear explosions for population and environment of the surrounding polygon territories of Kazakhstan as well as adjacent countries were analyzed and evaluated. The MigRad was designed as instrument for comprehensive analysis of complex territorial processes influenced by former nuclear explosions on the territory of Semipalatinsk test site. It provides possibilities in detailed analyses for (i) extensive cartographic material, remote sensing, and field measurements data collected in different level databases; (ii) radionuclide migration with flows using accumulation and redistribution of soil particles; (iii) thermal anomalies

  3. Rehabilitation of nuclear test site at Maralinga

    International Nuclear Information System (INIS)

    Grad, P.

    1997-01-01

    A program to rehabilitate contaminated areas at the Maralinga Nuclear Test Range in South Australia is being undertaken by the Australian Department of Primary Industries and Energy (DPIE). A major part of the program is directed at reducing the risk presented by the contaminated debris buried at Taranaki, Maralinga's most heavily contaminated site. The rehabilitation program is using the insitu vitrification technology developed for the US Department of Energy. The program is now in its third phase, involving the construction of the full-scale treatment plant. This will be completed later this year. The fourth and last phase will involve the treatment of the Taranaki pits. This will commence in 1998. Tests carried out so far indicated that the normalized leach rates for all oxides in the vitrified product were less than 0.1g/m 2 . ills

  4. Nevada test site water-supply wells

    International Nuclear Information System (INIS)

    Gillespie, D.; Donithan, D.; Seaber, P.

    1996-05-01

    A total of 15 water-supply wells are currently being used at the Nevada Test Site (NTS). The purpose of this report is to bring together the information gleaned from investigations of these water-supply wells. This report should serve as a reference on well construction and completion, static water levels, lithologic and hydrologic characteristics of aquifers penetrated, and general water quality of water-supply wells at the NTS. Possible sources for contamination of the water-supply wells are also evaluated. Existing wells and underground nuclear tests conducted near (within 25 meters (m)) or below the water table within 2 kilometers (km) of a water-supply were located and their hydrogeologic relationship to the water-supply well determined

  5. Ground Water Issue: Phytoremediation of Contaminated Soil and Ground Water at Hazardous Waste Sites

    Science.gov (United States)

    2001-02-01

    Phytoremediation. 1(2):115-123. Harms, H., and C. Langebartels. 1986. Standardized plant cell suspension test systems for an ecotoxicologic evaluation of the... macrophytes : Bacopa monnieri, Scirpus lacustris, Phragmites karka. Chandra et al., 1997 Maximum Cr accumulation was in Phragmites karka (816 mg/kg dry

  6. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The ground water project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. This report is a site specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. Currently, no one is using the ground water and therefore, no one is at risk. However, the land will probably be developed in the future and so the possibility of people using the ground water does exist. This report examines the future possibility of health hazards resulting from the ingestion of contaminated drinking water, skin contact, fish ingestion, or contact with surface waters and sediments.

  7. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado

    International Nuclear Information System (INIS)

    1995-05-01

    The ground water project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. This report is a site specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. Currently, no one is using the ground water and therefore, no one is at risk. However, the land will probably be developed in the future and so the possibility of people using the ground water does exist. This report examines the future possibility of health hazards resulting from the ingestion of contaminated drinking water, skin contact, fish ingestion, or contact with surface waters and sediments

  8. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Slick Rock, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    Two UMTRA (Uranium Mill Tailings Remedial Action) Project sites are near Slick Rock, Colorado: the North Continent site and the Union Carbide site. Currently, no one uses the contaminated ground water at either site for domestic or agricultural purposes. However, there may be future land development. This risk assessment evaluates possible future health problems associated with exposure to contaminated ground water. Since some health problems could occur, it is recommended that the contaminated ground water not be used as drinking water

  9. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Slick Rock, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Two UMTRA (Uranium Mill Tailings Remedial Action) Project sites are near Slick Rock, Colorado: the North Continent site and the Union Carbide site. Currently, no one uses the contaminated ground water at either site for domestic or agricultural purposes. However, there may be future land development. This risk assessment evaluates possible future health problems associated with exposure to contaminated ground water. Since some health problems could occur, it is recommended that the contaminated ground water not be used as drinking water.

  10. Bridge Testing With Ground-Based Interferometric Radar: Experimental Results

    International Nuclear Information System (INIS)

    Chiara, P.; Morelli, A.

    2010-01-01

    The research of innovative non-contact techniques aimed at the vibration measurement of civil engineering structures (also for damage detection and structural health monitoring) is continuously directed to the optimization of measures and methods. Ground-Based Radar Interferometry (GBRI) represents the more recent technique available for static and dynamic control of structures and ground movements.Dynamic testing of bridges and buildings in operational conditions are currently performed: (a) to assess the conformity of the structure to the project design at the end of construction; (b) to identify the modal parameters (i.e. natural frequencies, mode shapes and damping ratios) and to check the variation of any modal parameters over the years; (c) to evaluate the amplitude of the structural response to special load conditions (i.e. strong winds, earthquakes, heavy railway or roadway loads). If such tests are carried out by using a non-contact technique (like GBRI), the classical issues of contact sensors (like accelerometers) are easily overtaken.This paper presents and discusses the results of various tests carried out on full-scale bridges by using a Stepped Frequency-Continuous Wave radar system.

  11. Bridge Testing With Ground-Based Interferometric Radar: Experimental Results

    Science.gov (United States)

    Chiara, P.; Morelli, A.

    2010-05-01

    The research of innovative non-contact techniques aimed at the vibration measurement of civil engineering structures (also for damage detection and structural health monitoring) is continuously directed to the optimization of measures and methods. Ground-Based Radar Interferometry (GBRI) represents the more recent technique available for static and dynamic control of structures and ground movements. Dynamic testing of bridges and buildings in operational conditions are currently performed: (a) to assess the conformity of the structure to the project design at the end of construction; (b) to identify the modal parameters (i.e. natural frequencies, mode shapes and damping ratios) and to check the variation of any modal parameters over the years; (c) to evaluate the amplitude of the structural response to special load conditions (i.e. strong winds, earthquakes, heavy railway or roadway loads). If such tests are carried out by using a non-contact technique (like GBRI), the classical issues of contact sensors (like accelerometers) are easily overtaken. This paper presents and discusses the results of various tests carried out on full-scale bridges by using a Stepped Frequency-Continuous Wave radar system.

  12. An Iterative Approach to Ground Penetrating Radar at the Maya Site of Pacbitun, Belize

    Directory of Open Access Journals (Sweden)

    Sheldon Skaggs

    2016-09-01

    Full Text Available Ground penetrating radar (GPR surveys provide distinct advantages for archaeological prospection in ancient, complex, urban Maya sites, particularly where dense foliage or modern debris may preclude other remote sensing or geophysical techniques. Unidirectional GPR surveys using a 500 MHz shielded antenna were performed at the Middle Preclassic Maya site of Pacbitun, Belize. The survey in 2012 identified numerous linear and circular anomalies between 1 m and 2 m deep. Based on these anomalies, one 1 m × 4 m unit and three smaller units were excavated in 2013. These test units revealed a curved plaster surface not previously found at Pacbitun. Post-excavation, GPR data were reprocessed to best match the true nature of excavated features. Additional GPR surveys oriented perpendicular to the original survey confirmed previously detected anomalies and identified new anomalies. The excavations provided information on the sediment layers in the survey area, which allowed better identification of weak radar reflections of the surfaces of a burnt, Middle Preclassic temple in the northern end of the survey area. Additional excavations of the area in 2014 and 2015 revealed it to be a large square structure, which was named El Quemado.

  13. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This risk assessment evaluates the possibility of health and environmental risks from contaminated ground water at the uranium mill tailings site near Durango, Colorado. The former uranium processing site`s contaminated soil and material were removed and placed at a disposal site located in Body Canyon, Colorado, during 1986--1991 by the US Departments of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating the nature and extent of ground water contamination at the site. This risk assessment follows an approach similar to that used by the US Environmental Protection Agency. The first step is to determine what site-related contaminants are found in ground water samples. The next step in the risk assessment is to determine how much of these contaminants people might ingest if they got their drinking water from a well on the site. In accordance with standard practice for this type of risk assessment, the highest contaminant concentrations from the most contaminated wells are used. The risk assessment then explains the possible health problems that could result from this amount of contamination.

  14. Tools for DIY site-testing

    Science.gov (United States)

    Flores, Federico; Rondanelli, Roberto; Abarca, Accel; Diaz, Marcos; Querel, Richard

    2012-09-01

    Our group has designed, sourced and constructed a radiosonde/ground-station pair using inexpensive opensource hardware. Based on the Arduino platform, the easy to build radiosonde allows the atmospheric science community to test and deploy instrumentation packages that can be fully customized to their individual sensing requirements. This sensing/transmitter package has been successfully deployed on a tethered-balloon, a weather balloon, a UAV airplane, and is currently being integrated into a UAV quadcopter and a student-built rocket. In this paper, the system, field measurements and potential applications will be described. As will the science drivers of having full control and open access to a measurement system in an age when commercial solutions have become popular but are restrictive in terms of proprietary sensor specifications, "black-box" calibration operations or data handling routines, etc. The ability to modify and experiment with both the hardware and software tools is an essential part of the scientific process. Without an understanding of the intrinsic biases or limitations in your instruments and system, it becomes difficult to improve them or advance the knowledge in any given field.

  15. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Tuba City, Arizona

    International Nuclear Information System (INIS)

    1994-06-01

    This document evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium mill site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1990 by the US Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine what remedial actions are necessary for contaminated ground water at the site

  16. Radionuclide migration in ground water at a low-level waste disposal site: a comparison of predicted radionuclide transport modeling versus field observations

    International Nuclear Information System (INIS)

    Bergeron, M.P.; Robertson, D.E.; Champ, D.R.; Killey, R.W.D.; Moltyaner, G.L.

    1987-01-01

    At the Chalk River Nuclear Laboratories (CRNL), in Ontario, Canada, a number of LLW shallow-land burial facilities have existed for 25-30 years. These facilities are useful for testing the concept of site modelability. In 1984, CRNL and the Pacific Northwest Laboratory (PNL) established a cooperative research program to examine two disposal sites having plumes of slightly contaminated ground water for study. This report addresses the LLW Nitrate Disposal Pit site, which received liquid wastes containing approximately 1000-1500 curies of mixed fission products during 1953-54. The objective of this study is to test the regulatory requirement that a site be modeled and to use the Nitrate Disposal Pit site as a field site for testing the reliability of models in predicting radionuclide movement in ground water. The study plan was to approach this site as though it were to be licensed under the requirements of 10 CFR 61. Under the assumption that little was known about this site, a characterization plan was prepared describing the geologic, hydrologic, and geochemical information needed to assess site performance. After completion of the plan, site data generated by CRNL were selected to fill the plan data requirements. This paper describes the site hydrogeology, modeling of ground water flow, the comparison of observed and predicted radionuclide movement, and summarizes the conclusions and recommendations. 3 references, 10 figures

  17. Depleted uranium risk assessment for Jefferson Proving Ground using data from environmental monitoring and site characterization. Final report

    International Nuclear Information System (INIS)

    Ebinger, M.H.; Hansen, W.R.

    1996-10-01

    This report documents the third risk assessment completed for the depleted uranium (DU) munitions testing range at Jefferson Proving Ground (JPG), Indiana, for the U.S. Army Test and Evaluation command. Jefferson Proving Ground was closed in 1995 under the Base Realignment and Closure Act and the testing mission was moved to Yuma Proving Ground. As part of the closure of JPG, assessments of potential adverse health effects to humans and the ecosystem were conducted. This report integrates recent information obtained from site characterization surveys at JPG with environmental monitoring data collected from 1983 through 1994 during DU testing. Three exposure scenarios were evaluated for potential adverse effects to human health: an occasional use scenario and two farming scenarios. Human exposure was minimal from occasional use, but significant risk were predicted from the farming scenarios when contaminated groundwater was used by site occupants. The human health risk assessments do not consider the significant risk posed by accidents with unexploded ordnance. Exposures of white-tailed deer to DU were also estimated in this study, and exposure rates result in no significant increase in either toxicological or radiological risks. The results of this study indicate that remediation of the DU impact area would not substantially reduce already low risks to humans and the ecosystem, and that managed access to JPG is a reasonable model for future land use options

  18. Nevada test site waste acceptance criteria

    International Nuclear Information System (INIS)

    1996-01-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document

  19. Nevada Test Site Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The Nevada Test Site (NTS) Resource Management Plan (RMP) describes the NTS Stewardship Mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. The NTS Stewardship Mission is to manage the land and facilities at the NTS as a unique and valuable national resource. The RMP has defined goals for twelve resource areas based on the principles of ecosystem management. These goals were established using an interdisciplinary team of DOE/NV resource specialists with input from surrounding land managers, private parties, and representatives of Native American governments. The overall goal of the RMP is to facilitate improved NTS land use management decisions within the Great Basin and Mojave Desert ecoregions.

  20. Nevada test site waste acceptance criteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document.

  1. Seismic hazard analysis for the NTS spent reactor fuel test site

    International Nuclear Information System (INIS)

    Campbell, K.W.

    1980-01-01

    An experiment is being directed at the Nevada Test Site to test the feasibility for storage of spent fuel from nuclear reactors in geologic media. As part of this project, an analysis of the earthquake hazard was prepared. This report presents the results of this seismic hazard assessment. Two distinct components of the seismic hazard were addressed: vibratory ground motion and surface displacement

  2. Recent Ground Hold and Rapid Depressurization Testing of Multilayer Systems

    Science.gov (United States)

    Johnson, Wesley L.

    2014-01-01

    In the development of flight insulation systems for large cryogenic orbital storage (spray on foam and multilayer insulation), testing need include all environments that are experienced during flight. While large efforts have been expended on studying, bounding, and modeling the orbital performance of the insulation systems, little effort has been expended on the ground hold and ascent phases of a mission. Historical cryogenic in-space systems that have flown have been able to ignore these phases of flight due to the insulation system being within a vacuum jacket. In the development phase of the Nuclear Mars Vehicle and the Shuttle Nuclear Vehicle, several insulation systems were evaluated for the full mission cycle. Since that time there had been minimal work on these phases of flight until the Constellation program began investigating cryogenic service modules and long duration upper stages. With the inception of the Cryogenic Propellant Storage and Transfer Technology Demonstration Mission, a specific need was seen for the data and as such, several tests were added to the Cryogenic Boil-off Reduction System liquid hydrogen test matrix to provide more data on a insulation system. Testing was attempted with both gaseous nitrogen (GN2) and gaseous helium (GHe) backfills. The initial tests with nitrogen backfill were not successfully completed due to nitrogen liquefaction and solidification preventing the rapid pumpdown of the vacuum chamber. Subsequent helium backfill tests were successful and showed minimal degradation. The results are compared to the historical data.

  3. An aerial radiological survey of the Nevada Test Site

    International Nuclear Information System (INIS)

    Hendricks, T.J.; Riedhauser, S.R.

    1999-01-01

    A team from the Remote Sensing Laboratory conducted an aerial radiological survey of the US Department of Energy's Nevada Test Site including three neighboring areas during August and September 1994. The survey team measured the terrestrial gamma radiation at the Nevada Test Site to determine the levels of natural and man-made radiation. This survey included the areas covered by previous surveys conducted from 1962 through 1993. The results of the aerial survey showed a terrestrial background exposure rate that varied from less than 6 microroentgens per hour (mR/h) to 50 mR/h plus a cosmic-ray contribution that varied from 4.5 mR/h at an elevation of 900 meters (3,000 feet) to 8.5 mR/h at 2,400 meters (8,000 feet). In addition to the principal gamma-emitting, naturally occurring isotopes (potassium-40, thallium-208, bismuth-214, and actinium-228), the man-made radioactive isotopes found in this survey were cobalt-60, cesium-137, europium-152, protactinium-234m an indicator of depleted uranium, and americium-241, which are due to human actions in the survey area. Individual, site-wide plots of gross terrestrial exposure rate, man-made exposure rate, and americium-241 activity (approximating the distribution of all transuranic material) are presented. In addition, expanded plots of individual areas exhibiting these man-made contaminations are given. A comparison is made between the data from this survey and previous aerial radiological surveys of the Nevada Test Site. Some previous ground-based measurements are discussed and related to the aerial data. In regions away from man-made activity, the exposure rates inferred from the gamma-ray measurements collected during this survey agreed very well with the exposure rates inferred from previous aerial surveys

  4. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado

    International Nuclear Information System (INIS)

    1995-02-01

    This risk assessment evaluates the possibility of health and environmental risks from contaminated ground water at the uranium mill tailings site near Durango, Colorado. The former uranium processing site's contaminated soil and material were removed and placed at a disposal site located in Body Canyon, Colorado, during 1986--1991 by the US Departments of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating the nature and extent of ground water contamination at the site. This risk assessment follows an approach similar to that used by the US Environmental Protection Agency. The first step is to determine what site-related contaminants are found in ground water samples. The next step in the risk assessment is to determine how much of these contaminants people might ingest if they got their drinking water from a well on the site. In accordance with standard practice for this type of risk assessment, the highest contaminant concentrations from the most contaminated wells are used. The risk assessment then explains the possible health problems that could result from this amount of contamination

  5. Geohydrology and ground-water quality beneath the 300 Area, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Lindberg, J.W.; Bond, F.W.

    1979-06-01

    Ground water enters the 300 Area from the northwest, west, and southwest. However, throughout most of the 300 Area, the flow is to the east and southeast. Ground water flows to the northeast only in the southern portion of the 300 Area. Variations in level of the Columbia River affected the ground-water system by altering the level and shape of the 300 Area watertable. Large quantities of process waste water, when warmed during summer months by solar radiation or cooled during winter months by ambient air temperature, influenced the temperature of the ground water. Leaking pipes and the intentional discharge of waste water (or withdrawal of ground water) affected the ground-water system in the 300 Area. Water quality tests of Hanford ground water in and adjacent to the 300 Area showed that in the area of the Process Water Trenches and Sanitary Leaching Trenches, calcium, magnesium, sodium, bicarbonate, and sulfate ions are more dilute, and nitrate and chloride ions are more concentrated than in surrounding areas. Fluoride, uranium, and beta emitters are more concentrated in ground water along the bank of the Columbia River in the central and southern portions of the 300 Area and near the 340 Building. Test wells and routine ground-water sampling are adequate to point out contamination. The variable Thickness Transient (VTT) Model of ground-water flow in the unconfined aquifer underlying the 300 Area has been set up, calibrated, and verified. The Multicomponent Mass Transfer (MMT) Model of distribution of contaminants in the saturated regime under the 300 Area has been set up, calibrated, and tested

  6. The microelectronics and photonics test bed (MPTB) space, ground test and modeling experiments

    International Nuclear Information System (INIS)

    Campbell, A.

    1999-01-01

    This paper is an overview of the MPTB (microelectronics and photonics test bed) experiment, a combination of a space experiment, ground test and modeling programs looking at the response of advanced electronic and photonic technologies to the natural radiation environment of space. (author)

  7. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Shiprock, New Mexico

    International Nuclear Information System (INIS)

    1994-04-01

    This baseline risk assessment at the former uranium mill tailings site near Shiprock, New Mexico, evaluates the potential impact to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an on-site disposal cell in 1986 through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. There are no domestic or drinking water wells in the contaminated ground water of the two distinct ground water units: the contaminated ground water in the San Juan River floodplain alluvium below the site and the contaminated ground water in the terrace alluvium area where the disposal cell is located. Because no one is drinking the affected ground water, there are currently no health or environmental risks directly associated with the contaminated ground water. However, there is a potential for humans, domestic animals, and wildlife to the exposed to surface expressions of ground water in the seeps and pools in the area of the San Juan River floodplain below the site. For these reasons, this risk assessment evaluates potential exposure to contaminated surface water and seeps as well as potential future use of contaminated ground water

  8. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Shiprock, New Mexico. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This baseline risk assessment at the former uranium mill tailings site near Shiprock, New Mexico, evaluates the potential impact to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an on-site disposal cell in 1986 through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. There are no domestic or drinking water wells in the contaminated ground water of the two distinct ground water units: the contaminated ground water in the San Juan River floodplain alluvium below the site and the contaminated ground water in the terrace alluvium area where the disposal cell is located. Because no one is drinking the affected ground water, there are currently no health or environmental risks directly associated with the contaminated ground water. However, there is a potential for humans, domestic animals, and wildlife to the exposed to surface expressions of ground water in the seeps and pools in the area of the San Juan River floodplain below the site. For these reasons, this risk assessment evaluates potential exposure to contaminated surface water and seeps as well as potential future use of contaminated ground water.

  9. Classification of groundwater at the Nevada Test Site

    International Nuclear Information System (INIS)

    Chapman, J.B.

    1994-08-01

    Groundwater occurring at the Nevada Test Site (NTS) has been classified according to the ''Guidelines for Ground-Water Classification Under the US Environmental Protection Agency (EPA) Ground-Water Protection Strategy'' (June 1988). All of the groundwater units at the NTS are Class II, groundwater currently (IIA) or potentially (IIB) a source of drinking water. The Classification Review Area (CRA) for the NTS is defined as the standard two-mile distance from the facility boundary recommended by EPA. The possibility of expanding the CRA was evaluated, but the two-mile distance encompasses the area expected to be impacted by contaminant transport during a 10-year period (EPA,s suggested limit), should a release occur. The CRA is very large as a consequence of the large size of the NTS and the decision to classify the entire site, not individual areas of activity. Because most activities are located many miles hydraulically upgradient of the NTS boundary, the CRA generally provides much more than the usual two-mile buffer required by EPA. The CRA is considered sufficiently large to allow confident determination of the use and value of groundwater and identification of potentially affected users. The size and complex hydrogeology of the NTS are inconsistent with the EPA guideline assumption of a high degree of hydrologic interconnection throughout the review area. To more realistically depict the site hydrogeology, the CRA is subdivided into eight groundwater units. Two main aquifer systems are recognized: the lower carbonate aquifer system and the Cenozoic aquifer system (consisting of aquifers in Quaternary valley fill and Tertiary volcanics). These aquifer systems are further divided geographically based on the location of low permeability boundaries

  10. Reusable LH2 tank technology demonstration through ground test

    Science.gov (United States)

    Bianca, C.; Greenberg, H. S.; Johnson, S. E.

    1995-01-01

    The paper presents the project plan to demonstrate, by March 1997, the reusability of an integrated composite LH2 tank structure, cryogenic insulation, and thermal protection system (TPS). The plan includes establishment of design requirements and a comprehensive trade study to select the most suitable Reusable Hydrogen Composite Tank system (RHCTS) within the most suitable of 4 candidate structural configurations. The 4 vehicles are winged body with the capability to deliver 25,000 lbs of payload to a circular 220 nm, 51.6 degree inclined orbit (also 40,000 lbs to a 28.5 inclined 150 nm orbit). A prototype design of the selected RHCTS is established to identify the construction, fabrication, and stress simulation and test requirements necessary in an 8 foot diameter tank structure/insulation/TPS test article. A comprehensive development test program supports the 8 foot test article development and involves the composite tank itself, cryogenic insulation, and integrated tank/insulation/TPS designs. The 8 foot diameter tank will contain the integrated cryogenic insulation and TPS designs resulting from this development and that of the concurrent lightweight durable TPS program. Tank ground testing will include 330 cycles of LH2 filling, pressurization, body loading, depressurization, draining, and entry heating.

  11. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    1993-01-01

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical ampersand Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties

  12. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions. Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-18

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical & Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties.

  13. Ground-dwelling ant fauna of sites with high levels of copper.

    Science.gov (United States)

    Diehl, E; Sanhudo, C E; Diehl-Fleig, Ed

    2004-02-01

    Richness and diversity of ant species are related to environmental factors such as vegetation, soil, presence of heavy metals, and insecticides, which allow the use of the assemblage members as terrestrial indicators of environmental conservation status. This study presents the results of ground ants surveyed in Minas do Camaquã in the municipality of Cacapava do Sul (Camaquã Basin), State of Rio Grande do Sul. Collections were performed in four sites, which high levels of copper in the soil, three of which--a mine, a liquid reject, and a solid reject-, had sparse or no plant cover, and one site where Pinus has been used for rehabilitation. Parque das Guaritas was the control site, since it presented normal levels of copper and a dense savanna cover. For each site, three transect lines extending 100 m were draw, and at each 10 m sardine baits were distributed; after two hours the ants present were collected. Hand collections in all five sites were performed during one hour (capture effort). A total of 51 species belonging to 17 genera were collected. The control site was the richest in ant species (r = 45). Sites with high level of copper and poor plant cover presented the lowest richness: mine (r = 14), solid reject (r = 15), and liquid reject (r = 16). In contrast, the site planted with Pinus presented an increment in richness (r = 24) of ground-dwelling ants, suggesting a reahabilitation process.

  14. Ground-dwelling ant fauna of sites with high levels of copper

    Directory of Open Access Journals (Sweden)

    E. Diehl

    Full Text Available Richness and diversity of ant species are related to environmental factors such as vegetation, soil, presence of heavy metals, and insecticides, which allow the use of the assemblage members as terrestrial indicators of environmental conservation status. This study presents the results of ground ants surveyed in Minas do Camaquã in the municipality of Caçapava do Sul (Camaquã Basin, State of Rio Grande do Sul. Collections were performed in four sites, with high levels of copper in the soil, three of which - a mine, a liquid reject, and a solid reject -, had sparse or no plant cover, and one site where Pinus has been used for rehabilitation. Parque das Guaritas was the control site, since it presented normal levels of copper and a dense savanna cover. For each site, three transect lines extending 100 m were draw, and at each 10 m sardine baits were distributed; after two hours the ants present were collected. Hand collections in all five sites were performed during one hour (capture effort. A total of 51 species belonging to 17 genera were collected. The control site was the richest in ant species (r = 45. Sites with high level of copper and poor plant cover presented the lowest richness: mine (r = 14, solid reject (r = 15, and liquid reject (r = 16. In contrast, the site planted with Pinus presented an increment in richness (r = 24 of ground-dwelling ants, suggesting a reahabilitation process.

  15. Testing the ecological site group concept

    Science.gov (United States)

    The 2016 “Ecological Sites for Landscape Management” special issue of Rangelands recommended an update to our thinking of Ecological Sites, suggesting that in our desire to make Ecological Sites more quantitative, we abandoned consideration of Ecological Sites’ spatial context. In response, Ecologic...

  16. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1994-11-01

    This baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado, evaluates potential public health and environmental impacts resulting from ground water contamination at the former North Continent (NC) and Union Carbide (UC) uranium mill processing sites. The tailings at these sites will be placed in a disposal cell at the proposed Burro Canyon, Colorado, site. The US Department of Energy (DOE) anticipates the start of the first phase remedial action by the spring of 1995 under the direction of the DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project will evaluate ground water contamination. This baseline risk assessment is the first site-specific document for these sites under the Ground Water Project. It will help determine the compliance strategy for contaminated ground water at the site. In addition, surface water and sediment are qualitatively evaluated in this report

  17. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    This baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado, evaluates potential public health and environmental impacts resulting from ground water contamination at the former North Continent (NC) and Union Carbide (UC) uranium mill processing sites. The tailings at these sites will be placed in a disposal cell at the proposed Burro Canyon, Colorado, site. The US Department of Energy (DOE) anticipates the start of the first phase remedial action by the spring of 1995 under the direction of the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project will evaluate ground water contamination. This baseline risk assessment is the first site-specific document for these sites under the Ground Water Project. It will help determine the compliance strategy for contaminated ground water at the site. In addition, surface water and sediment are qualitatively evaluated in this report.

  18. Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota

    International Nuclear Information System (INIS)

    1994-11-01

    This baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota, evaluates the potential impacts to public health or the environment from contaminated ground water at this site. This contamination is a result of the uraniferous lignite ashing process, when coal containing uranium was burned to produce uranium. Potential risk is quantified only for constituents introduced by the processing activities and not for the constituents naturally occurring in background ground water in the site vicinity. Background ground water, separate from any site-related contamination, imposes a percentage of the overall risk from ground water ingestion in the Bowman site vicinity. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is developing plans to address soil and ground water contamination at the site. The UMTRA Surface Project involves the determination of the extent of soil contamination and design of an engineered disposal cell for long-term storage of contaminated materials. The UMTRA Ground Water Project evaluates ground water contamination. Based on results from future site monitoring activities as defined in the site observational work plan and results from this risk assessment, the DOE will propose an approach for managing contaminated ground water at the Bowman site

  19. Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    This baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota, evaluates the potential impacts to public health or the environment from contaminated ground water at this site. This contamination is a result of the uraniferous lignite ashing process, when coal containing uranium was burned to produce uranium. Potential risk is quantified only for constituents introduced by the processing activities and not for the constituents naturally occurring in background ground water in the site vicinity. Background ground water, separate from any site-related contamination, imposes a percentage of the overall risk from ground water ingestion in the Bowman site vicinity. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is developing plans to address soil and ground water contamination at the site. The UMTRA Surface Project involves the determination of the extent of soil contamination and design of an engineered disposal cell for long-term storage of contaminated materials. The UMTRA Ground Water Project evaluates ground water contamination. Based on results from future site monitoring activities as defined in the site observational work plan and results from this risk assessment, the DOE will propose an approach for managing contaminated ground water at the Bowman site.

  20. A new ground-penetrating radar system for remote site characterization

    International Nuclear Information System (INIS)

    Davis, K.C.; Sandness, G.A.

    1994-08-01

    The cleanup of waste burial sites and military bombing ranges involves the risk of exposing field personnel to toxic chemicals, radioactive materials, or unexploded munitions. Time-consuming and costly measures are required to provide protection from those hazards. Therefore, there is a growing interest in developing remotely controlled sensors and sensor platforms that can be employed in site characterization surveys. A specialized ground-penetrating radar has been developed to operate on a remotely controlled vehicle for the non-intrusive subsurface characterization of buried waste sites. Improved radar circuits provide enhanced performance, and an embedded microprocessor dynamically optimizes operation. The radar unit is packaged to survive chemical contamination and decontamination

  1. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    1993-01-01

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. Therefore, empirically based approaches that are used for other regions, such as Western North America, are not appropriate for Eastern North America. Moreover, recent advances in science and technology have now made it possible to combine theoretical and empirical methods to develop new procedures and models for estimating ground motion. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. Specifically considered are magnitudes M from 5 to 8, distances from 0 to 500 km, and frequencies from 1 to 35 Hz. This document, Volume IV, provides Appendix 8.B, Laboratory Investigations of Dynamic Properties of Reference Sites

  2. Beam loading and cavity compensation for the ground test accelerator

    International Nuclear Information System (INIS)

    Jachim, S.P.; Natter, E.F.

    1989-01-01

    The Ground Test Accelerator (GTA) will be a heavily beam-loaded H/sup minus/ linac with tight tolerances on accelerating field parameters. The methods used in modeling the effects of beam loading in this machine are described. The response of the cavity to both beam and radio-frequency (RF) drive stimulus is derived, including the effects of cavity detuning. This derivation is not restricted to a small-signal approximation. An analytical method for synthesizing a predistortion network that decouples the amplitude and phase responses of the cavity is also outlined. Simulation of performance, including beam loading, is achieved through use of a control system analysis software package. A straightforward method is presented for extrapolating this work to model large coupled structures with closely spaced parasitic modes. Results to date have enabled the RF control system designs for GTA to be optimized and have given insight into their operation. 6 refs., 10 figs

  3. Commissioning of the Ground Test Accelerator Intertank Matching Section

    International Nuclear Information System (INIS)

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Cole, R.; Connolly, R.; Gilpatrick, J.D.; Ingalls, W.B.; Kersteins, D.; Little, C.; Lohsen, R.A.; Lysenko, W.P.; Mottershead, C.T.; Power, J.; Rusthoi, D.P.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1992-01-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H - beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on-line. The commissioning stages are the 35 keV H - injector, the 2.5 MeV Radio Frequency Quadrupole (RFQ), the Intertank Matching Section (IMS), the 3.2 MeV first 2βγ Drift Tube Linac (DTL-1) module, the 8.7 MeV 2βγ DTL (modules 1--5), and the 24 MeV GTA; all 10 DTL modules. Commissioning results from the IMS beam experiments will be presented

  4. Perspectives of investigation and development of Semipalatinsk Test Site

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.; Lukashenko, S.N.

    2008-01-01

    Full text: Since the Semipalatinsk Test Site has been stopped and up until now, National Nuclear Center of the Republic of Kazakhstan (NNC RK) in cooperation with other specialist from Kazakhstan and international scientific community have accumulated large scope of information about current radiological situation at Semipalatinsk Nuclear Test Site (SNTS) and adjacent territories. There were revealed all important spots of radioactive contamination, identified main pathways and mechanisms for present and potential proliferation of radioactive substances. Obtained data assure us that present-day SNTS provides no negative impact on population on adjacent to the Site territories excluding people in the water basin of the river Shagan. Compliance with regulatory requirements and special rules for SNTS territory assures radiation safety at commercial activities on the Site. At the same time, the radiological situation does not remain stable; there were revealed the processes of radionuclide migration what requires regular monitoring of radiological situation at SNTS. Taking into account the scale of the Site and the variety of tests performed there, the information available about SNTS can not be completely exhaustive but enables us to propose a scientifically grounded plan for further research and practical measures aimed at remediation and reclamation of lands. implementation of such measures should return up to 80% of the lands to commercial use. SNTS is one of the world largest nuclear test sites with decisive contribution to creation and development of nuclear weapon. To considerable extent, these were works at SNTS which established nuclear parity between the superpowers one of the crucial factors in the history of human civilization in the 20 century. Also taking into account the interest to SNTS paid by international organizations, it is reasonable to initiate a procedure and recognize SNTS as a landmark including it in the UNESCO List of Cultural and Nature

  5. Status of the ground water flow model for the UMTRA Project, Shiprock, New Mexico, site

    International Nuclear Information System (INIS)

    1995-01-01

    A two-dimensional numerical model was constructed for the alluvial aquifer in the area of the Uranium Mill Tailings Remedial Action (UMTRA) Project Shiprock, New Mexico, site. This model was used to investigate the effects of various hydrologic parameters on the evolution of the ground water flow field. Results of the model are useful for defining uncertainties in the site conceptual model and suggesting data collection efforts to reduce these uncertainties. The computer code MODFLOW was used to simulate the two-dimensional flow of ground water in the alluvium. The escarpment was represented as a no-flow boundary. The San Juan River was represented with the MODFLOW river package. A uniform hydraulic conductivity distribution with the value estimated by the UMTRA Project Technical Assistance Contractor (TAC) and a uniform recharge distribution was used. Infiltration from the flowing artesian well was represented using the well package. The ground water flow model was calibrated to ground water levels observed in April 1993. Inspection of hydrographs shows that these levels are representative of typical conditions at the site

  6. Current plans to characterize the design basis ground motion at the Yucca Mountain, Nevada Site

    International Nuclear Information System (INIS)

    Simecka, W.B.; Grant, T.A.; Voegele, M.D.; Cline, K.M.

    1992-01-01

    A site at Yucca Mountain Nevada is currently being studied to assess its suitability as a potential host site for the nation's first commercial high level waste repository. The DOE has proposed a new methodology for determining design-basis ground motions that uses both deterministic and probabilistic methods. The role of the deterministic approach is primary. It provides the level of detail needed by design engineers in the characterization of ground motions. The probabilistic approach provides a logical structured procedure for integrating the range of possible earthquakes that contribute to the ground motion hazard at the site. In addition, probabilistic methods will be used as needed to provide input for the assessment of long-term repository performance. This paper discusses the local tectonic environment, potential seismic sources and their associated displacements and ground motions. It also discusses the approach to assessing the design basis earthquake for the surface and underground facilities, as well as selected examples of the use of this type of information in design activities

  7. Evaluation of ground deformations induced by the 1999 Kocaeli earthquake (Turkey) at selected sites on shorelines

    Science.gov (United States)

    Aydan, Ömer; Ulusay, Reşat; Atak, Veysel Okan

    2008-03-01

    The Kocaeli earthquake ( M w = 7.4) of 17 August 1999 occurred in the Eastern Marmara Region of Turkey along the North Anadolu Fault and resulted in a very serious loss of life and property. One of the most important geotechnical issues of this event was the permanent ground deformations because of both liquefaction and faulting. These deformations occurred particularly along the southern shores of İzmit Bay and Sapanca Lake between the cities of Yalova and Adapazarı in the west and east, respectively. In this study, three sites founded on delta fans, namely Değirmendere Nose, Yeniköy tea garden at Seymen on the coast of İzmit Bay, and Vakıf Hotel site on the coast of Sapanca Lake were selected as typical cases. The main causes of the ground deformations at these sites were then investigated. Geotechnical characterization of the ground, derivation of displacement vectors from the pre- and post-earthquake aerial photographs, liquefaction assessments based on field performance data, and analyses carried out using the sliding body method have been fundamental in this study. The displacement vectors determined from photogrammetric evaluations conducted at Değirmendere and Seymen showed a combined movement of faulting and liquefaction. But except the movements in the close vicinity of shorelines, the dominant factor in this movement was faulting. The results obtained from the analyses suggested that the ground failure at Değirmendere was a submarine landslide mainly because of earthquake shaking rather than liquefaction. On the other hand, the ground failures at the Yeniköy tea garden on the coast of Seymen and the hotel area in Sapanca town resulted from liquefaction-induced lateral spreading. It was also obtained that the ground deformations estimated from the sliding body method were quite close to those measured by aerial photogrammetry technique.

  8. Management of Ground and Groundwater Contamination on a Compact Site Constrained by Ongoing Activities

    International Nuclear Information System (INIS)

    Eilbeck, K.E.; Reeve, P.

    2009-01-01

    Sellafield Site is a compact and complex site which since the 1940's has been home to a range of facilities associated with the production and reprocessing of fissile material. The site contains the UK equivalent of the Chicago Pile-1 reactor, Hanford B Reactor, Rocky Flats Buildings 771 and 774, West Valley Main Process Plant Building, Savannah River Vitrification Plant, Savannah River MOX Plant, Savannah River F Canyon, Hanford 222 Analytical Laboratory, Savannah River K-, L-, and P-Basins, and the Fort St. Vrain Reactor all in an area of approximately 1000 acres. Spent fuel reprocessing is still undertaken on site; however waste management and decommissioning activities are of increasing importance. These include the emptying and removal of fragile ponds and silos containing significant radioactive inventories, the decommissioning of reactors (including the world's first commercial reactor for power generation and the Windscale Piles, the site of a reactor fire in the late 1950's) and the construction of a new generation of vitrification and encapsulation plants. Leaks, spills and on-site disposals during the site's industrial lifetime have resulted in a legacy of fission products and other radionuclides in the ground and groundwater. Volumes of contaminated ground have been estimated as being as much as 18 million m 3 and an estimated below ground inventory of approximately 1.8 E16 Bq. These have all occurred within close proximity to a range of receptors including farm land and the sea. The cramped nature of the facilities on site, overlapping source terms and ongoing decommissioning, waste management and operating activities all raise significant challenges in the management and remediation of contaminated land and groundwater. The strategy to address these challenges includes: 1. Data collection, management and interpretation. The congested nature of the site and the age of some of the monitoring facilities has resulted in particular difficulties. For

  9. Environmental assessment for double tracks test site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1996-04-01

    The U.S. Department of Energy, Nevada Operations Office (DOE/NV), with appropriate approvals from the U.S. Air Force (USAF), proposes to conduct environmental restoration operations at the Double Tracks test site located on the Nellis Air Force Range (NAFR) in Nye County, Nevada. This environmental assessment (EA) evaluates the potential environmental consequences of four alternative actions for conducting the restoration operation and of the no action alternative. The EA also identifies mitigation measures, where appropriate, designed to protect natural and cultural resources and reduce impacts to human health and safety. The environmental restoration operation at the Double Tracks test site would serve two primary objectives. First, the proposed work would evaluate the effectiveness of future restoration operations involving contamination over larger areas. The project would implement remediation technology options and evaluate how these technologies could be applied to the larger areas of contaminated soils on the Nevada Test Site (NTS), the Tonopah Test Range (TTR), and the NAFR. Second, the remediation would provide for the removal of plutonium contamination down to or below a predetermined level which would require cleanup of 1 hectare (ha) (2.5 acres), for the most likely case, or up to 3.0 ha (7.4 acres) of contaminated soil, for the upper bounding case

  10. Interpreting Results from the Standardized UXO Test Sites

    National Research Council Canada - National Science Library

    May, Michael; Tuley, Michael

    2007-01-01

    ...) and the Environmental Security Technology Certification Program (ESCTP) to complete a detailed analysis of the results of testing carried out at the Standardized Unexploded Ordnance (UXO) Test Sites...

  11. Environmental Assessment of Ground Water Compliance at the Naturita, Colorado, UMTRA Project Site

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-04-23

    This Environmental Assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Naturita, Colorado, Uranium Mill Tailings Remedial Action Project site. In 1998, the U.S. Department of Energy (DOE) completed surface cleanup at the site and encapsulated the tailings in a disposal cell 15 miles northwest near the former town of Uravan, Colorado. Ground water contaminants of potential concern at the Naturita site are uranium and vanadium. Uranium concentrations exceed the maximum concentration limit (MCL) of 0.044 milligram per liter (mg/L). Vanadium has no MCL; however, vanadium concentrations exceed the EPA Region III residential risk-based concentration of 0.33 mg/L (EPA 2002). The proposed compliance strategy for uranium and vanadium at the Naturita site is no further remediation in conjunction with the application of alternate concentration limits. Institutional controls with ground water and surface water monitoring will be implemented for these constituents as part of the compliance strategy. This compliance strategy will be protective of human health and the environment. The proposed monitoring program will begin upon regulatory concurrence with the Ground Water Compliance Action Plan (DOE 2002a). Monitoring will consist of verifying that institutional controls remain in place, collecting ground water samples to verify that concentrations of uranium and vanadium are decreasing, and collecting surface water samples to verify that contaminant concentrations do not exceed a regulatory limit or risk-based concentration. If these criteria are not met, DOE would reevaluate the proposed action and determine the need for further National Environmental Policy Act documentation. No comments were received from the public during the public comment period. Two public meetings were held during this period. Minutes of these meetings are included as

  12. Environmental Assessment of Ground Water Compliance at the Naturita, Colorado, UMTRA Project Site

    International Nuclear Information System (INIS)

    2003-01-01

    This Environmental Assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Naturita, Colorado, Uranium Mill Tailings Remedial Action Project site. In 1998, the U.S. Department of Energy (DOE) completed surface cleanup at the site and encapsulated the tailings in a disposal cell 15 miles northwest near the former town of Uravan, Colorado. Ground water contaminants of potential concern at the Naturita site are uranium and vanadium. Uranium concentrations exceed the maximum concentration limit (MCL) of 0.044 milligram per liter (mg/L). Vanadium has no MCL; however, vanadium concentrations exceed the EPA Region III residential risk-based concentration of 0.33 mg/L (EPA 2002). The proposed compliance strategy for uranium and vanadium at the Naturita site is no further remediation in conjunction with the application of alternate concentration limits. Institutional controls with ground water and surface water monitoring will be implemented for these constituents as part of the compliance strategy. This compliance strategy will be protective of human health and the environment. The proposed monitoring program will begin upon regulatory concurrence with the Ground Water Compliance Action Plan (DOE 2002a). Monitoring will consist of verifying that institutional controls remain in place, collecting ground water samples to verify that concentrations of uranium and vanadium are decreasing, and collecting surface water samples to verify that contaminant concentrations do not exceed a regulatory limit or risk-based concentration. If these criteria are not met, DOE would reevaluate the proposed action and determine the need for further National Environmental Policy Act documentation. No comments were received from the public during the public comment period. Two public meetings were held during this period. Minutes of these meetings are included as

  13. Site investigations for repositories for solid radioactive wastes in shallow ground

    International Nuclear Information System (INIS)

    1982-01-01

    This report provides an overview and technical guidelines for investigations on a national level for the selection and confirmation of a repository site that will provide adequately safe performance for disposal of solid radioactive wastes that are low- or intermediate-level and short-lived. It also provides basic information on technical activities to be undertaken and on techniques that are available for such investigations in the various steps in selecting suitable sites. The report supplements the information given in Shallow Ground Disposal of Radioactive Wastes: A Guidebook, IAEA Safety Series No. 53 (1981). This report focuses mainly on different aspects of earth sciences and the various investigative techniques relative to earth sciences that may be necessary for site investigations. Some major related studies in other fields are discussed briefly. It is assumed that no previous investigations have been undertaken, and the report proceeds through area site selection to the stage when the site is confirmed as suitable for a waste repository

  14. Site investigations for repositories for solid radioactive wastes in shallow ground

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This report provides an overview and technical guidelines for investigations on a national level for the selection and confirmation of a repository site that will provide adequately safe performance for disposal of solid radioactive wastes that are low- or intermediate-level and short-lived. It also provides basic information on technical activities to be undertaken and on techniques that are available for such investigations in the various steps in selecting suitable sites. The report supplements the information given in Shallow Ground Disposal of Radioactive Wastes: A Guidebook, IAEA Safety Series No. 53 (1981). This report focuses mainly on different aspects of earth sciences and the various investigative techniques relative to earth sciences that may be necessary for site investigations. Some major related studies in other fields are discussed briefly. It is assumed that no previous investigations have been undertaken, and the report proceeds through area site selection to the stage when the site is confirmed as suitable for a waste repository.

  15. Fiber optic utilization at the Nevada Test Site

    International Nuclear Information System (INIS)

    Lyons, P.B.; Golob, J.E.; Looney, L.D.; Robichaud, R.E.; Nelson, M.A.; Davies, T.J.

    1978-11-01

    Optical fiber cables have been successfully used for 100-MHz analog data transmission during an underground nuclear test at the Nevada Test Site. Two 700-m Corning Corguide cables were used to provide thirteen single fiber data channels from the vicinity of the underground detonation, 350 meters below ground level, to recording instrumentation, 350 meters from the downhole shaft. No fiber performance degradation was observed during the extensive procedures used to seal the shaft. These procedures included backfilling the shaft with layers of sand and gravel, as well as poured epoxy plugs. Techniques were developed for internal sealing of the Corguide cable to prevent any possible radioactive gas flow through voids within the cable. The effects on optical fibers of intense, pulsed neutron and gamma irradiation were studied. Specialized tools, including a system for location of faults or breaks in the optical fibers, were developed. The success of this first test will allow consideration of fiber optic cables for future nuclear tests as well as for other applications involving extremely rough handling in field environments

  16. Radiation exposure of inhabitants around Semipalatinsk nuclear weapon test site

    International Nuclear Information System (INIS)

    Takada, Jun; Hoshi, Masaharu

    1997-01-01

    This paper described and reviewed the data reported by Russia and Kazakhstan and authors' studies on the exposed doses as follows. History of nuclear explosion tests in Semipalatinsk: From 1949 to 1989 in old Russia, 459 explosion tests involving 26 on the ground, 87 in the air and 346 in underground were performed, of which TNT equivalence was 0.6 Mt, 6 Mt and 11 Mt, respectively. A mystery in the reports of radiation doses by Russia and Kazakhstan. Present status of the regions after the end of nuclear weapon tests: Environment radiation doses in μSv/h in following regions were 0.06 in Mostik, 0.1 in Dolon and Semipalatinsk, 0.07 in Izvyestka and Znamenka, 0.08 in Tchagan and 21 in Atomic Lake. Evaluation of external exposure dose of the living regions with thermoluminescence method: External exposure dose was estimated to be about 90 cGy in a certain village and 40 cGy in Semipalatinsk which being 150 km far from the test site. (K.H.)

  17. Vision-based Ground Test for Active Debris Removal

    Directory of Open Access Journals (Sweden)

    Seong-Min Lim

    2013-12-01

    Full Text Available Due to the continuous space development by mankind, the number of space objects including space debris in orbits around the Earth has increased, and accordingly, difficulties of space development and activities are expected in the near future. In this study, among the stages for space debris removal, the implementation of a vision-based approach technique for approaching space debris from a far-range rendezvous state to a proximity state, and the ground test performance results were described. For the vision-based object tracking, the CAM-shift algorithm with high speed and strong performance, and the Kalman filter were combined and utilized. For measuring the distance to a tracking object, a stereo camera was used. For the construction of a low-cost space environment simulation test bed, a sun simulator was used, and in the case of the platform for approaching, a two-dimensional mobile robot was used. The tracking status was examined while changing the position of the sun simulator, and the results indicated that the CAM-shift showed a tracking rate of about 87% and the relative distance could be measured down to 0.9 m. In addition, considerations for future space environment simulation tests were proposed.

  18. Radiation exposures from nuclear tests at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, G M

    1958-12-01

    A summary of the pertinent data on radiation exposures from nuclear tests in Nevada is presented. The data are presented in categories of external ..gamma.. radiation, activity concentrations in air, and activity concentrations in water. Methods used to estimate exposure and to evaluate data are described. The data are tabulated. The maximum external exposure was 7 to 8 r for 15 persons involved. In terms of relatively large populations, the average exposure for the 1,000,000 people living nearest the site was at the rate of 1/2 r/30 yr. The highest concentration of fallout activity in the air was about 1.3 ..mu..c/m/sup 3/ averaged over the 30 hr that the activity was present in significant quantities. The highest concentration of fallout activity in a potential drinking water supply was about 1.4 x 10/sup -/ ..mu..c/me extrapolated to D + 3 days. Evaluation of these data is given.

  19. Nevada Test Site Site Treatment Plan. Revision 2

    International Nuclear Information System (INIS)

    1996-03-01

    Treatment Plans (STPS) are required for facilities at which the US Department of Energy (DOE) or stores mixed waste, defined by the Federal Facility Compliance Act (FFCAct) as waste containing both a hazardous waste subject to the Resource Conservation and Recovery Act and a radioactive material subject to the Atomic Energy Act. On April 6, 1993, DOE published a Federal Register notice (58 FR 17875) describing its proposed process for developing the STPs in three phases including a Conceptual, a Draft, and a Proposed Site Treatment Plan (PSTP). All of the DOE Nevada Operations Office STP iterations have been developed with the state of Nevada's input. The options and schedules reflect a ''bottoms-up'' approach and have been evaluated for impacts on other DOE sites, as well as impacts to the overall DOE program. Changes may have occurred in the preferred option and associated schedules between the PSTP, which was submitted to the state of Nevada and US Environmental Protection Agency April 1995, and the Final STP (hereafter referred to as the STP) as treatment evaluations progressed. The STP includes changes that have occurred since the submittal of the PSTP as a result of state-to-state and DOE-to-state discussions

  20. Combining ground penetrating radar and electromagnetic induction for industrial site characterization

    Science.gov (United States)

    Van De Vijver, Ellen; Van Meirvenne, Marc; Saey, Timothy; De Smedt, Philippe; Delefortrie, Samuël; Seuntjens, Piet

    2014-05-01

    Industrial sites pose specific challenges to the conventional way of characterizing soil and groundwater properties through borehole drilling and well monitoring. The subsurface of old industrial sites typically exhibits a large heterogeneity resulting from various anthropogenic interventions, such as the dumping of construction and demolition debris and industrial waste. Also larger buried structures such as foundations, utility infrastructure and underground storage tanks are frequently present. Spills and leaks from industrial activities and leaching of buried waste may have caused additional soil and groundwater contamination. Trying to characterize such a spatially heterogeneous medium with a limited number of localized observations is often problematic. The deployment of mobile proximal soil sensors may be a useful tool to fill up the gaps in between the conventional observations, as these enable measuring soil properties in a non-destructive way. However, because the output of most soil sensors is affected by more than one soil property, the application of only one sensor is generally insufficient to discriminate between all contributing factors. To test a multi-sensor approach, we selected a study area which was part of a former manufactured gas plant site located in one of the seaport areas of Belgium. It has a surface area of 3400 m² and was the location of a phosphate production unit that was demolished at the end of the 1980s. Considering the long and complex history of the site we expected to find a typical "industrial" soil. Furthermore, the studied area was located between buildings of the present industry, entailing additional practical challenges such as the presence of active utilities and aboveground obstacles. The area was surveyed using two proximal soil sensors based on two different geophysical methods: ground penetrating radar (GPR), to image contrasts in dielectric permittivity, and electromagnetic induction (EMI), to measure the apparent

  1. Ground Motions Simulations and Site Effects in the Quito Basin (Ecuador)

    Science.gov (United States)

    Courboulex, F.; Castro-Cruz, D.; Laurendeau, A.; Bonilla, L. F.; Bertrand, E.; Mercerat, D.; Alvarado, A. P.

    2017-12-01

    The city of Quito (3M inhabitants), capital of Ecuador has been damaged several times in the past by large earthquakes. It is built on the hanging-wall of an active reverse fault, constituting a piggy-back basin. The deep structure of this basin and its seismic response remains badly known. We first use the recordings of 170 events on 18 accelerometers from the Quito permanent network and perform spectral ratio analysis. We find that the southern part of Quito shows strong site amplification at low frequency ( 0.35 Hz). Yet, high frequency ( 5 Hz) amplifications also exist, but exhibit a complex spatial variability. We then propose a new calibrated method based on empirical Green's functions (EGF) to simulate the ground motions due to a future earthquake in Quito. The idea is to use the results of a global database of source time functions (i.e., the SCARDEC database, Vallée and Douet, 2016; Courboulex et al., 2016) to define the average values and the variability of the stress-drop ratio parameter, which strongly affects the resulting simulations. We test the method on a Mw 7.8 event, similar in location and focal mechanism to the Pedernales earthquake that occurred on April 16th 2016 on the subduction zone. For this aim, we use the recordings of 6 aftershocks of magnitude 5.6 to 6.2 as EGF's. The predicted Fourier spectra, peak values and response spectra we obtain are in good agreement with real data from the 2016 event recorded on the Quito network. With the constraints we impose on stress-drop ratios, we expect that the simulated ground motions be representative of the variability of other Pedernales-type events that could occur in the future. Our results also well reproduce the low frequency site effects amplification in the south of the basin. This amplification could be particularly dangerous in the case of a mega subduction earthquake, like the one that struck Ecuador in 1906.

  2. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    For the UMTRA Project site located near Durango, Colorado (the Durango site), the Surface Project cleanup occurred from 1986 to 1991. An evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people's health. Exposure could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. In addition, environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has mixed with contaminated ground water. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Durango site. The results of this report and further site characterization of the Durango site will be used to determine what is necessary to protect public health and the environment, and to comply with the EPA standards

  3. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    For the UMTRA Project site located near Durango, Colorado (the Durango site), the Surface Project cleanup occurred from 1986 to 1991. An evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. Exposure could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. In addition, environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has mixed with contaminated ground water. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Durango site. The results of this report and further site characterization of the Durango site will be used to determine what is necessary to protect public health and the environment, and to comply with the EPA standards.

  4. Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Belfield, North Dakota

    International Nuclear Information System (INIS)

    1994-08-01

    This Baseline Risk Assessment of Ground Water Contamination at the Inactive Uraniferous Lignite Ashing Site Near Belfield, North Dakota, evaluates potential impacts to public health or the environment resulting from ground water contamination at the site where coal containing uranium was burned to produce uranium. The US Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project is evaluating plans to remedy soil and ground water contamination at the site. Phase I of the UMTRA Project consists of determining the extent of soil contamination. Phase II of the UMTRA Project consists of evaluating ground water contamination. Under Phase II, results of this risk assessment will help determine what remedial actions may be necessary for contaminated ground water at the site. This risk assessment evaluates the potential risks to human health and the environment resulting from exposure to contaminated ground water as it relates to historic processing activities at the site. Potential risk is quantified for constituents introduced from the processing activities, and not for those constituents naturally occurring in water quality in the site vicinity. Background ground water quality has the potential to cause adverse health effects from exposure through drinking. Any risks associated with contaminants attributable to site activities are incremental to these risks from background ground water quality. This incremental risk from site-related contaminants is quantified in this risk assessment. The baseline risk from background water quality is incorporated only into the assessment of potential chemical interactions and the definition of the overall site condition

  5. Baseline risk assessment of ground water contamination at the inactive uriniferous lignite ashing site near Belfield, North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-08-01

    This Baseline Risk Assessment of Ground Water Contamination at the Inactive Uraniferous Lignite Ashing Site Near Belfield, North Dakota, evaluates potential impacts to public health or the environment resulting from ground water contamination at the site where coal containing uranium was burned to produce uranium. The US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project is evaluating plans to remedy soil and ground water contamination at the site. Phase I of the UMTRA Project consists of determining the extent of soil contamination. Phase II of the UMTRA Project consists of evaluating ground water contamination. Under Phase II, results of this risk assessment will help determine what remedial actions may be necessary for contaminated ground water at the site. This risk assessment evaluates the potential risks to human health and the environment resulting from exposure to contaminated ground water as it relates to historic processing activities at the site. Potential risk is quantified for constituents introduced from the processing activities, and not for those constituents naturally occurring in water quality in the site vicinity. Background ground water quality has the potential to cause adverse health effects from exposure through drinking. Any risks associated with contaminants attributable to site activities are incremental to these risks from background ground water quality. This incremental risk from site-related contaminants is quantified in this risk assessment. The baseline risk from background water quality is incorporated only into the assessment of potential chemical interactions and the definition of the overall site condition.

  6. [Study on Tritium Content in Soil at Sites of Nuclear Explosions on the Territory of Semipalatinsk Test Site].

    Science.gov (United States)

    Timonova, L V; Lyakhova, O N; Lukashenko, S N; Aidarkhanov, A O

    2015-01-01

    As a result of investigations carried out on the territory of Semipalatinsk Test Site, tritium was found in different environmental objects--surface and ground waters, vegetation, air environment, and snow cover. The analysis of the data obtained has shown that contamination of environmental objects at the Semipalatinsk Test Site with tritium is associated with the places where underground nuclear tests were performed. Since tritium can originate from an activation reaction and be trapped by pock particles during a test, it was decided to examine the soil in the sites where surface and excavation tests took place. It was found that the concentration of tritium in soil correlates with the concentration of europium. Probably, the concentration of tritium in the soil depends on the character and yield of the tests performed. Findings of the study have revealed that tritium can be found in soil in significant amounts not only in sites where underground nuclear tests took place but also in sites where surface and excavation nuclear tests were carried out.

  7. Ground beetles (Coleoptera, Carabidae of the Hanford Nuclear Site in south-central Washington State

    Directory of Open Access Journals (Sweden)

    Chris Looney

    2014-04-01

    Full Text Available In this paper we report on ground beetles (Coleoptera: Carabidae collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site, which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte, and Stenolophus lineola (Fabricius. Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity.

  8. Site Effect Assessment of Earthquake Ground Motion Based on Advanced Data Processing of Microtremor Array Measurements

    Science.gov (United States)

    Liu, L.; He, K.; Mehl, R.; Wang, W.; Chen, Q.

    2008-12-01

    High-resolution near-surface geologic information is essential for earthquake ground motion prediction. The near-surface geology forms the critical constituent to influence seismic wave propagation, which is known as the local site effects. We have collected microtremor data over 1000 sites in Beijing area for extracting the much needed earthquake engineering parameters (primarily sediment thickness, with the shear wave velocity profiling at a few important control points) in this heavily populated urban area. Advanced data processing algorithms are employed in various stages in assessing the local site effect on earthquake ground motion. First, we used the empirical mode decomposition (EMD), also known as the Hilbert-Huang transform (HHT), to enhance the microtremor data analysis by excluding the local transients and continuous monochromic industrial noises. With this enhancement we have significantly increased the number of data points to be useful in delineating sediment thickness in this area. Second, we have used the cross-correlation of microtremor data acquired for the pairs of two adjacent sites to generate a 'pseudo-reflection' record, which can be treated as the Green function of the 1D layered earth model at the site. The sediment thickness information obtained this way is also consistent with the results obtained by the horizontal to vertical spectral ratio method (HVSR). For most sites in this area, we can achieve 'self consistent' results among different processing skechems regarding to the sediment thickness - the fundamental information to be used in assessing the local site effect. Finally, the pseudo-spectral time domain method was used to simulate the seismic wave propagation caused by a scenario earthquake in this area - the 1679 M8 Sanhe-pinggu earthquake. The characteristics of the simulated earthquake ground motion have found a general correlation with the thickness of the sediments in this area. And more importantly, it is also in agreement

  9. Ground-water monitoring at the Hanford Site, January-December 1984

    Energy Technology Data Exchange (ETDEWEB)

    Cline, C.S.; Rieger, J.T.; Raymond, J.R.

    1985-09-01

    This program is designed to evaluate existing and potential pathways of exposure to radioactivity and hazardous chemicals from site operations. This document contains an evaluation of data collected during CY 1984. During 1984, 339 monitoring wells were sampled at various times for radioactive and nonradioactive constituents. Two of these constituents, specifically, tritium and nitrate, have been selected for detailed discussion in this report. Tritium and nitrate in the primary plumes originating from the 200 Areas continue to move generally eastward toward the Columbia River in the direction of ground-water flow. The movement within these plumes is indicated by changes in trends within the analytical data from the monitoring wells. No discernible impact on ground water has yet been observed from the start-up of the PUREX plant in December 1983. The shape of the present tritium plume is similar to those described in previous ground-water monitoring reports, although slight changes on the outer edges have been noted. Radiological impacts from two potential pathways for radionuclide transport in ground water to the environment are discussed in this report. The pathways are: (1) human consumption of ground water from onsite wells, and (2) seepage of ground water into the Columbia River. Concentrations of tritium in spring samples that were collected and analyzed in 1983, and in wells sampled adjacent to the Columbia River in 1984 confirmed that constituents in the ground water are entering the river via springs and subsurface flow. The primary areas where radionuclides enter the Columbia River via ground-water flow are the 100-N and 300 Areas and the shoreline adjacent to the Hanford Townsite. 44 refs., 25 figs., 11 tabs.

  10. Nevada Test Site, site treatment plan 1999 annual update

    International Nuclear Information System (INIS)

    1999-03-01

    A Site Treatment Plan (STP) is required for facilities at which the US Department of Energy Nevada Operations Office (DOE/NV) generates or stores mixed waste (MW), defined by the Federal Facility Compliance Act (FFC Act) as waste containing both a hazardous waste subject to the Resource Conservation and Recovery Act (RCRA) and a radioactive material subject to the Atomic Energy Act. This STP was written to identify specific treatment facilities for treating DOE/NV generated MW and provides proposed implementation schedules. This STP was approved by the Nevada Division of Environmental Protection (NDEP) and provided the basis for the negotiation and issuance of the FFC Act Consent Order (CO) dated March 6, 1996, and revised June 15, 1998. The FFC Act CO sets forth stringent regulatory requirements to comply with the implementation of the STP

  11. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase 1) and the Ground Water Project (phase 2). For the UMTRA Project site located near Green River, Utah, the Surface Project cleanup occurred from 1988 to 1989. The tailings and radioactively contaminated soils and materials were removed from their original locations and placed into a disposal cell on the site. The disposal cell is designed to minimize radiation emissions and minimize further contamination of ground water beneath the site. The UMTRA Project's second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. For the Green River site, the risk assessment helps determine whether human health risks result from exposure to ground water contaminated by uranium processing. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Green River site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards

  12. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase 1) and the Ground Water Project (phase 2). For the UMTRA Project site located near Green River, Utah, the Surface Project cleanup occurred from 1988 to 1989. The tailings and radioactively contaminated soils and materials were removed from their original locations and placed into a disposal cell on the site. The disposal cell is designed to minimize radiation emissions and minimize further contamination of ground water beneath the site. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. For the Green River site, the risk assessment helps determine whether human health risks result from exposure to ground water contaminated by uranium processing. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Green River site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

  13. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania. Revision 1

    International Nuclear Information System (INIS)

    1995-11-01

    For the UMTRA Project site located near Canonsburg, Pennsylvania (the Canonsburg site), the Surface Project cleanup occurred from 1983 to 1985, and involved removing the uranium processing mill tailings and radioactively contaminated soils and materials from their original locations and placing them in a disposal cell located on the former Canonsburg uranium mill site. This disposal cell is designed to minimize radiation emissions and further contamination of ground water beneath the site. The Ground Water Project will evaluate the nature and the extent of ground water contamination resulting from uranium processing at the former Canonsburg uranium mill site, and will determine a ground water strategy for complying with the US Environmental Protection Agency's (EPA) ground water standards established for the UMTRA Project. For the Canonsburg site, an evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people's health. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Canonsburg site. The results of this report and further site characterization of the Canonsburg site will be used to determine how to protect public health and the environment, and how to comply with the EPA standards

  14. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    For the UMTRA Project site located near Canonsburg, Pennsylvania (the Canonsburg site), the Surface Project cleanup occurred from 1983 to 1985, and involved removing the uranium processing mill tailings and radioactively contaminated soils and materials from their original locations and placing them in a disposal cell located on the former Canonsburg uranium mill site. This disposal cell is designed to minimize radiation emissions and further contamination of ground water beneath the site. The Ground Water Project will evaluate the nature and the extent of ground water contamination resulting from uranium processing at the former Canonsburg uranium mill site, and will determine a ground water strategy for complying with the US Environmental Protection Agency`s (EPA) ground water standards established for the UMTRA Project. For the Canonsburg site, an evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Canonsburg site. The results of this report and further site characterization of the Canonsburg site will be used to determine how to protect public health and the environment, and how to comply with the EPA standards.

  15. Measurement of flow and direction of ground water by radioactive tracers: hydrological evaluation of a waste disposal site at 'Instituto de Pesquisas Energeticas e Nucleares (IPEN)'

    International Nuclear Information System (INIS)

    Chandra, U.; Aoki, P.E.; Ramos e Silva, J.A.; Castagnet, A.C.G.

    1981-05-01

    The method of determining flow and drection of ground water by using radioactive tracers in ground water borings is described. Various parameters controlling the measurements are discussed in detail. Application of the method in studying a variety of geohydrological problems, in view of the hydrological evaluation of the waste disposal site at IPEN, is indicated. Comparison of the method with conventional pumping tests is made. (I.C.R.) [pt

  16. The VUV instrument SPICE for Solar Orbiter: performance ground testing

    Science.gov (United States)

    Caldwell, Martin E.; Morris, Nigel; Griffin, Douglas K.; Eccleston, Paul; Anderson, Mark; Pastor Santos, Carmen; Bruzzi, Davide; Tustain, Samuel; Howe, Chris; Davenne, Jenny; Grundy, Timothy; Speight, Roisin; Sidher, Sunil D.; Giunta, Alessandra; Fludra, Andrzej; Philippon, Anne; Auchere, Frederic; Hassler, Don; Davila, Joseph M.; Thompson, William T.; Schuehle, Udo H.; Meining, Stefan; Walls, Buddy; Phelan, P.; Dunn, Greg; Klein, Roman M.; Reichel, Thomas; Gyo, Manfred; Munro, Grant J.; Holmes, William; Doyle, Peter

    2017-08-01

    SPICE is an imaging spectrometer operating at vacuum ultraviolet (VUV) wavelengths, 70.4 - 79.0 nm and 97.3 - 104.9 nm. It is a facility instrument on the Solar Orbiter mission, which carries 10 science instruments in all, to make observations of the Sun's atmosphere and heliosphere, at close proximity to the Sun, i.e to 0.28 A.U. at perihelion. SPICE's role is to make VUV measurements of plasma in the solar atmosphere. SPICE is designed to achieve spectral imaging at spectral resolution >1500, spatial resolution of several arcsec, and two-dimensional FOV of 11 x16arcmins. The many strong constraints on the instrument design imposed by the mission requirements prevent the imaging performance from exceeding those of previous instruments, but by being closer to the sun there is a gain in spatial resolution. The price which is paid is the harsher environment, particularly thermal. This leads to some novel features in the design, which needed to be proven by ground test programs. These include a dichroic solar-transmitting primary mirror to dump the solar heat, a high in-flight temperature (60deg.C) and gradients in the optics box, and a bespoke variable-line-spacing grating to minimise the number of reflective components used. The tests culminate in the systemlevel test of VUV imaging performance and pointing stability. We will describe how our dedicated facility with heritage from previous solar instruments, is used to make these tests, and show the results, firstly on the Engineering Model of the optics unit, and more recently on the Flight Model. For the keywords, select up to 8 key terms for a search on your manuscript's subject.

  17. Further development of the methodical instruments to calculate ground water movements at repository sites

    International Nuclear Information System (INIS)

    Arens, G.; Clauser, C.; Fein, E.; Karpinski, P.; Storck, R.

    1990-06-01

    In addition to the subsequent requirements concerning the Konrad plan approval procedure, other ground water and propagation calculations were also made. All available programs were used. Simple one- and two-dimensional models were considered for which an analytical solution exists. In some cases such analytical solutions are only approximate under certain conditions. By calculating such simple problems, the programs used were tested and verified, and the use of those programs was reviewed and documented. In addition to the finite-difference program SWIFT and the finite-element program CFEST, two other ground water and propagation programs were applied: 1) Finite-difference program MOL, two-dimensional propagation program for ground water flow; 2) SUTRA, two-dimensional hybrid finite-element and integrated finite-difference model for ground water flow and radionuclide migration. (orig./HP) [de

  18. Motor sport in France: testing-ground for the world.

    Science.gov (United States)

    Cofaigh, Eamon O

    2011-01-01

    The birth of the automobile in the late nineteenth century was greeted with a mixture of awe, scepticism and sometimes even disdain from sections of the European public. In this article, the steps taken in France to pioneer and promote this new invention are examined. Unreliable and noisy, the early automobile owes a debt of gratitude to the French aristocracy who organised and codified motor racing in an effort to test these new inventions while at the same time introduce them to a wider public. City-to-city races demonstrated the potential of the automobile before the initiative of Gordon Bennett proved to be the catalyst for the birth of international motor sport as we recognise it today. Finally this article looks at the special connection between Le Mans and the automobile. Le Mans has, through its 24-hour race, maintained a strong link with the development of everyday automobile tourism and offers the enthusiast an alternative to the machines that reach incredible speeds on modern-day closed circuits. This article examines how French roads were veritable testing grounds for the earliest cars and how the public roads of Le Mans maintain the tradition to this day.

  19. Structural geology report: Spent Fuel Test - Climax Nevada Test Site

    International Nuclear Information System (INIS)

    Wilder, D.G.; Yow, J.L. Jr.

    1984-10-01

    We performed underground mapping and core logging in the Climax Stock, a granitic intrusive at the Nevada Test Site, as part of a major field test to determine the feasibility of using granitic or crystalline rock for the underground storage of spent fuel from a nuclear reactor. This mapping and logging identified more than 2500 fractures, over 1500 of which were described in enough detail to allow statistical analyses and orientation studies to be performed. We identified eight joint sets, three major shear sets, and a fault zone within the Spent Fuel Test - Climax (SFT-C) portion of the Stock. Joint sets identified within the SFT-C and elsewhere in the Stock correlated well. The orientations of joint sets identified by other investigators were consistent with our findings, indicating that the joint sets are persistent and have a relatively uniform orientation throughout a major portion of the Stock. The one joint set not seen elsewhere in the Stock is healed and the wall rock is altered, implying that healed joints were not included in the mapping criteria used by other investigators. The shear sets were distinguished from the joint sets by virtue of crushed minerals, continuous clay infilling, and other evidences of shearing, and from faults by the lack of offsetting. Previous investigators working mainly in the Pile Driver Drifts identified two of the shear sets. The third set, being nearly parallel to these Drifts had not been identified previously. The fault zone identified at the far (Receiving Room) end of the project is oriented approximately N45 0 E-75 0 SE, similar to both the Boundary and Shaft Station Faults. We have, therefore, concluded that the Receiving Room Fault is one of a series of normal faults that occur within the Climax Stock and that are possibly related, in both age and genesis, to the Boundary Fault. 52 refs., 26 figs., 11 tabs

  20. Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site.

  1. Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah

    International Nuclear Information System (INIS)

    1994-09-01

    This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site

  2. Multiple Site Damage in Flat Panel Testing

    National Research Council Canada - National Science Library

    Shrage, Daniel

    2000-01-01

    This report aimed to experimentally verify analytical models that predict the residual strength of representative aircraft structures, such as wide panels, that are subjected to Multiple Site Damage (MSD...

  3. Source, propagation and site effects: impact on mapping strong ground motion in Bucharest area

    International Nuclear Information System (INIS)

    Radulian, R.; Kuznetsov, I.; Panza, G.F.

    2004-01-01

    Achievements in the framework of the NATO SfP project 972266 focused on the impact of Vrancea earthquakes on the security of Bucharest urban area are presented. The problem of Bucharest city security to Vrancea earthquakes is discussed in terms of numerical modelling of seismic motion and intermediate term earthquake prediction. A hybrid numerical scheme developed by Faeh et al. (1990; 1993) for frequencies up to 1 Hz is applied for the realistic modelling of the seismic ground motion in Bucharest. The method combines the modal summation for the 1D bedrock model and the finite differences for the 2D local structure model. All the factors controlling the ground motion at the site are considered: source, propagation and site effects, respectively. The input data includes the recent records provided by the digital accelerometer network developed within the Romanian-German CRC461 cooperation programme and CALIXTO'99, VRANCEA'99, VRANCEA2001 experiments. The numerical simulation proves to be a powerful tool in mapping the strong ground motion for realistic structures, reproducing acceptably from engineering point of view the observations. A new model of the Vrancea earthquake scaling is obtained and implications for the determination of the seismic motion parameters are analyzed. The role of the focal mechanism and attenuation properties upon the amplitude and spectral content of the ground motion are outlined. CN algorithm is applied for predicting Vrancea earthquakes. Finally, implications for the disaster management strategy are discussed. (authors)

  4. Simulation analyses of vibration tests on pile-group effects using blast-induced ground motions

    International Nuclear Information System (INIS)

    Takayuki Hashimoto; Kazushige Fujiwara; Katsuichirou Hijikata; Hideo Tanaka; Kohji Koyamada; Atsushi Suzuki; Osamu Kontani

    2005-01-01

    Extensive vibration tests have been performed on pile-supported structures at a large-scale mining site to promote better understanding of the dynamic behavior of pile-supported structures, especially pile-group effects. Two test structures were constructed in an excavated pit. One structure was supported on 25 tubular steel piles and the other on 4. The test pit was backfilled with sand of an appropriate grain size distribution to ensure good compaction. Ground motions induced by large-scale blasting operations were used as excitation forces for the tests. The 3D Finite Element Method (3D FEM)and a Genetic Algorithm (GA) were employed to identify the shear wave velocities and damping factors of the compacted sand, especially of the surface layer. A beam-interaction spring model was employed to simulate the test results of the piles and the pile-supported structures. The superstructure and pile foundation were modeled by a one-stick model comprising lumped masses and beam elements. The pile foundations were modeled just as they were, with lumped masses and beam elements to simulate the test results showing that, for the 25-pile structure, piles at different locations showed different responses. It was confirmed that the analysis methods employed were very useful for evaluating the nonlinear behavior of the soil-pile-structure system, even under severe ground motions. (authors)

  5. Ground-penetrating radar in characterizing and monitoring waste-burial sites

    International Nuclear Information System (INIS)

    Sandness, G.A.; Kimball, C.S.

    1982-02-01

    Potential environmental hazards are associated with buried chemical and nuclear wastes because of the possibilities of inadvertent excavation or migration of toxic chemicals or radionuclides into groundwater or surface water bodies. Concern is often related to the fact that many existing waste burial sites have been found to be inadequately designed and/or poorly documented. New technology and innovative applications of current technology are needed to locate, characterize, and monitor the wastes contained in such sites. The work described in this paper is focused on the use of ground-penetrating radar (GPR) for those purposes

  6. Prototype Environmental Assessment of the impacts of siting and construction of an SPS ground receiving station

    Science.gov (United States)

    Hill, J.

    1980-01-01

    A prototype assessment of the environmental impacts of siting and constructing a Satellite Power System (SPS) Ground Receiving Station (GRS) is reported. The objectives of the study were: (1) to develop an assessment of the nonmicrowave related impacts of the reference system SPS GRS on the natural environment; (2) to assess the impacts of GRS construction and operations in the context of actual baseline data for a site in the California desert; and (3) to identify critical GRS characteristics or parameters that are most significant in terms of the natural environment.

  7. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    1993-01-01

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. Therefore, empirically based approaches that are used for other regions, such as Western North America, are not appropriate for Eastern North America. Moreover, recent advances in science and technology have now made it possible to combine theoretical and empirical methods to develop new procedures and models for estimating ground motion. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. Specifically considered are magnitudes M from 5 to 8, distances from 0 to 500 km, and frequencies from 1 to 35 Hz

  8. Ground-water surveillance at the Hanford Site for CY 1982

    International Nuclear Information System (INIS)

    Eddy, P.A.; Prater, L.S.; Rieger, J.T.

    1983-06-01

    Operations at the Hanford Site since 1944 have resulted in the discharge of large volumes of process cooling water and other waste waters to the ground. These effluents, which have reached the unconfined ground water, contain low levels of radioactive and chemical substances. The movement of these constituents in the unconfined ground water is monitored as part of the Ground-Water Surveillance Program. During 1982, 324 monitoring wells were sampled at various times for radioactive and chemical constituents. Tritium are the primary ones used to monitor the movement of the ground water. This report describes recent changes in the configuration of the tritium and nitrate plumes. The tritium plume continues to show increasing concentrations near the Columbia River. While it is mapped as having reached the Columbia River, its contribution to the river has not been distinguished from other sources at this time. The general plume configuration is much the same as in 1978, 1979, 1980, and 1981. The size of the nitrate plume appears stable. Concentrations of nitrate in the vicinity of the 100-H Area continue to be high as a result of past leaks from an evaporation facility

  9. Embracing Safe Ground Test Facility Operations and Maintenance

    Science.gov (United States)

    Dunn, Steven C.; Green, Donald R.

    2010-01-01

    Conducting integrated operations and maintenance in wind tunnel ground test facilities requires a balance of meeting due dates, efficient operation, responsiveness to the test customer, data quality, effective maintenance (relating to readiness and reliability), and personnel and facility safety. Safety is non-negotiable, so the balance must be an "and" with other requirements and needs. Pressure to deliver services faster at increasing levels of quality in under-maintained facilities is typical. A challenge for management is to balance the "need for speed" with safety and quality. It s especially important to communicate this balance across the organization - workers, with a desire to perform, can be tempted to cut corners on defined processes to increase speed. Having a lean staff can extend the time required for pre-test preparations, so providing a safe work environment for facility personnel and providing good stewardship for expensive National capabilities can be put at risk by one well-intending person using at-risk behavior. This paper documents a specific, though typical, operational environment and cites management and worker safety initiatives and tools used to provide a safe work environment. Results are presented and clearly show that the work environment is a relatively safe one, though still not good enough to keep from preventing injury. So, the journey to a zero injury work environment - both in measured reality and in the minds of each employee - continues. The intent of this paper is to provide a benchmark for others with operational environments and stimulate additional sharing and discussion on having and keeping a safe work environment.

  10. Methodological aspects of creating a radiological 'passport' of the former Semipalatinsk nuclear test site

    International Nuclear Information System (INIS)

    Dubasov, Yu.V.; Smagulov, S.G.; Tukhvatulin, Sh.T.

    2002-01-01

    During its existence, 456 nuclear tests were carried out at the Semipalatinsk Test Site - 30 at the ground surface, 86 in the atmosphere and 340 underground. Radioactive fallout from ground surface tests is responsible for the present radiation conditions within the 'Test Field'. The radiation situation in the Degelen Mountains is caused by 209 underground tests carried out in local tunnels. Within the former Test Site there are three large and several small zones to which general access is prohibited for public health reasons: the 'Test Field', the Degelen Mountains, lake Shagan, the rim of the lake, and the adjacent land to the north. The information and characteristics, which have to be included in radiological passport of the former Semipalatinsk Test Site, are discussed along with general information about the Semipalatinsk site, its administrative status, the population distribution throughout the territory, all the economic activities taking place within the territory, the zones and structures representing a radiation hazard, and radiohydrogeological conditions of the test site and the adjacent regions, biogenic conditions (topography, soil, vegetation), wildlife, fauna monitoring, etc. (author)

  11. Applied field test procedures on petroleum release sites

    International Nuclear Information System (INIS)

    Gilbert, G.; Nichols, L.

    1995-01-01

    The effective remediation of petroleum contaminated soils and ground water is a significant issue for Williams Pipe Line Co. (Williams): costing $6.8 million in 1994. It is in the best interest, then, for Williams to adopt approaches and apply technologies that will be both cost-effective and comply with regulations. Williams has found the use of soil vapor extraction (SVE) and air sparging (AS) field test procedures at the onset of a petroleum release investigation/remediation accomplish these goals. This paper focuses on the application of AS/SVE as the preferred technology to a specific type of remediation: refined petroleum products. In situ field tests are used prior to designing a full-scale remedial system to first validate or disprove initial assumptions on applicability of the technology. During the field test, remedial system design parameters are also collected to tailor the design and operation of a full-scale system to site specific conditions: minimizing cost and optimizing effectiveness. In situ field tests should be designed and operated to simulate as close as possible the operation of a full-scale remedial system. The procedures of an in situ field test will be presented. The results of numerous field tests and the associated costs will also be evaluated and compared to full-scale remedial systems and total project costs to demonstrate overall effectiveness. There are many advantages of As/SVE technologies over conventional fluid extraction or SVE systems alone. However, the primary advantage is the ability to simultaneously reduce volatile and biodegradable compound concentrations in the phreatic, capillary fringe, and unsaturated zones

  12. Ground state properties of a spin chain within Heisenberg model with a single lacking spin site

    International Nuclear Information System (INIS)

    Mebrouki, M.

    2011-01-01

    The ground state and first excited state energies of an antiferromagnetic spin-1/2 chain with and without a single lacking spin site are computed using exact diagonalization method, within the Heisenberg model. In order to keep both parts of a spin chain with a lacking site connected, next nearest neighbors interactions are then introduced. Also, the Density Matrix Renormalization Group (DMRG) method is used, to investigate ground state energies of large system sizes; which permits us to inquire about the effect of large system sizes on energies. Other quantum quantities such as fidelity and correlation functions are also studied and compared in both cases. - Research highlights: → In this paper we compute ground state and first excited state energies of a spin chain with and without a lacking spin site. The next nearest neighbors are introduced with the antiferromagnetic Heisenberg spin-half. → Exact diagonalization is used for small systems, where DMRG method is used to compute energies for large systems. Other quantities like quantum fidelity and correlation are also computed. → Results are presented in figures with comments. → E 0 /N is computed in a function of N for several values of J 2 and for both systems. First excited energies are also investigated.

  13. Development and Testing of Techniques for In-Ground Stabilization, Size Reduction and Safe Removal of Radioactive Wastes Stored in Large Containments in Burial Grounds - 13591

    International Nuclear Information System (INIS)

    Halliwell, Stephen

    2013-01-01

    Radioactive waste materials, including Transuranic (TRU) wastes from laboratories have been stored below ground in large containments at a number of sites in the US DOE Complex, and at nuclear sites in Europe. These containments are generally referred to as caissons or shafts. The containments are in a range of sizes and depths below grade. The caissons at the DOE's Hanford site are cylindrical, of the order of 2,500 mm in diameter, 3,050 mm in height and are buried about 6,000 mm below grade. One type of caisson is made out of corrugated pipe, whereas others are made of concrete with standard re-bar. However, the larger shafts in the UK are of the order of 4,600 mm in diameter, 53,500 mm deep, and 12,000 below grade. This paper describes the R and D work and testing activities performed to date to evaluate the concept of in-ground size reduction and stabilization of the contents of large containments similar to those at Hanford. In practice, the height of the Test Facility provided for a test cell that was approximately 22' deep. That prevented a 'full scale mockup' test in the sense that the Hanford Caisson configuration would be an identical replication. Therefore, the project was conducted in two phases. The first phase tested a simulated Caisson with surrogate contents, and part of a Chute section, and the second phase tested a full chute section. These tests were performed at VJ Technologies Test Facility located in East Haven, CT, as part of the Proof of Design Concept program for studying the feasibility of an in-situ grout/grind/mix/stabilize technology for the remediation of four caissons at the 618-11 Burial Ground at US Department of Energy Hanford Site. The test site was constructed such that multiple testing areas were provided for the evaluation of various tools, equipment and procedures under conditions that simulated the Hanford site, with representative soils and layout dimensions. (authors)

  14. Development and Testing of Techniques for In-Ground Stabilization, Size Reduction and Safe Removal of Radioactive Wastes Stored in Large Containments in Burial Grounds - 13591

    Energy Technology Data Exchange (ETDEWEB)

    Halliwell, Stephen [VJ Technologies Inc, 89 Carlough Road, Bohemia, NY (United States)

    2013-07-01

    Radioactive waste materials, including Transuranic (TRU) wastes from laboratories have been stored below ground in large containments at a number of sites in the US DOE Complex, and at nuclear sites in Europe. These containments are generally referred to as caissons or shafts. The containments are in a range of sizes and depths below grade. The caissons at the DOE's Hanford site are cylindrical, of the order of 2,500 mm in diameter, 3,050 mm in height and are buried about 6,000 mm below grade. One type of caisson is made out of corrugated pipe, whereas others are made of concrete with standard re-bar. However, the larger shafts in the UK are of the order of 4,600 mm in diameter, 53,500 mm deep, and 12,000 below grade. This paper describes the R and D work and testing activities performed to date to evaluate the concept of in-ground size reduction and stabilization of the contents of large containments similar to those at Hanford. In practice, the height of the Test Facility provided for a test cell that was approximately 22' deep. That prevented a 'full scale mockup' test in the sense that the Hanford Caisson configuration would be an identical replication. Therefore, the project was conducted in two phases. The first phase tested a simulated Caisson with surrogate contents, and part of a Chute section, and the second phase tested a full chute section. These tests were performed at VJ Technologies Test Facility located in East Haven, CT, as part of the Proof of Design Concept program for studying the feasibility of an in-situ grout/grind/mix/stabilize technology for the remediation of four caissons at the 618-11 Burial Ground at US Department of Energy Hanford Site. The test site was constructed such that multiple testing areas were provided for the evaluation of various tools, equipment and procedures under conditions that simulated the Hanford site, with representative soils and layout dimensions. (authors)

  15. Numerical modeling of ground-water flow systems in the vicinity of the reference repository location, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Davis, P.; Beyeler, W.; Logsdon, M.; Coleman, N.; Brinster, K.

    1989-04-01

    This report documents south-central Washington State's Pasco Basin ground-water modeling studies. This work was done to support the NRC's review of hydrogeologic studies under the Department of Energy's (DOE) Basalt Waste Isolation Project. The report provides a brief overview of the geology, hydrology, and hydrochemistry of the Pasco Basin as a basis for the evaluation of previous conceptual and numerical ground-water flow models of the region. Numerical models were developed to test new conceptual models of the site and to provide a means of evaluating the Department of Energy's performance assessments and proposed hydrologic testing. Regional ground-water flow modeling of an area larger than the Pasco Basin revealed that current concepts on the existence and behavior of a hydrologic barrier west of the proposed repository location are inconsistent with available data. This modeling also demonstrated that the measured pattern of hydraulic heads cannot be produced with a model that (1) has uniform layer properties over the entire domain; (2) has zones of large conductivity associated with anticlinal structures; or (3) includes recharge from the industrial disposal ponds. Adequate representation of the measured hydraulic heads was obtained with a model that contained regions of larger hydraulic conductivity that corresponded to the presence of sedimentary interbeds. In addition, a detailed model of a region smaller than the Pasco Basin was constructed to provide the NRC staff with the ability to analyze proposed Department of Energy hydrologic tests. 62 refs., 145 figs., 18 tabs

  16. Field testing a soil site field guide for Allegheny hardwoods

    Science.gov (United States)

    S.B. Jones

    1991-01-01

    A site quality evaluation decision model, developed for Allegheny hardwoods on the non-glaciated Allegheny Plateau of Pennsylvania and New York, was field tested by International Paper (IP) foresters and the author, on sites within the region of derivation and on glaciated sites north and west of the Wisconsin drift line. Results from the field testing are presented...

  17. Long-term ground-water monitoring program and performance-evaluation plan for the extraction system at the former Nike Missile Battery Site, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Senus, Michael P.; Tenbus, Frederick J.

    2000-01-01

    This report presents lithologic and ground-water-quality data collected during April and May 2000 in the remote areas of the tidal wetland of West Branch Canal Creek, Aberdeen Proving Ground, Maryland. Contamination of the Canal Creek aquifer with volatile organic compounds has been documented in previous investigations of the area. This study was conducted to investigate areas that were previously inaccessible because of deep mud and shallow water, and to support ongoing investigations of the fate and transport of volatile organic compounds in the Canal Creek aquifer. A unique vibracore drill rig mounted on a hovercraft was used for drilling and ground-water sampling. Continuous cores of the wetland sediment and of the Canal Creek aquifer were collected at five sites. Attempts to sample ground water were made by use of a continuous profiler at 12 sites, without well installation, at a total of 81 depths within the aquifer. Of those 81 attempts, only 34 sampling depths produced enough water to collect samples. Ground-water samples from two sites had the highest concentrations of volatile organic compounds?with total volatile organic compound concentrations in the upper part of the aquifer ranging from about 15,000 to 50,000 micrograms per liter. Ground-water samples from five sites had much lower total volatile organic compound concentrations (95 to 2,100 micrograms per liter), whereas two sites were essentially not contaminated, with total volatile organic compound concentrations less than or equal to 5 micrograms per liter.

  18. Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Belfield, North Dakota. Revision 1

    International Nuclear Information System (INIS)

    1994-09-01

    This risk assessment evaluates the potential for impacts to public health or the environment from contaminated ground water at this site caused by the burning of coal containing uranium to produce uranium. Potential risk is quantified for constituents introduced from the processing activities and not for those constituents naturally occurring in background ground water in the site vicinity. Because background ground water quality has the potential to cause adverse health effects from exposure through drinking, any risks associated with contaminants attributable to site activities are incremental to these risks from background. The incremental risk from site-related contaminants is quantified in this risk assessment. The baseline risk from background water quality is incorporated only into the assessment of potential chemical interactions and the definition of the overall site condition. The US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is developing plans to remedy soil and ground water contamination at the site. The UMTRA Surface Project consists of determining the extent of soil contamination and disposing of the contaminated soils in an engineered disposal cell. The UMTRA Ground Water Project consists of evaluating ground water contamination. Under the UMTRA Ground Water Project, results of this risk assessment will help determine what ground water compliance strategy may be applied at the site

  19. Lessons learned on the Ground Test Accelerator control system

    International Nuclear Information System (INIS)

    Kozubal, A.J.; Weiss, R.E.

    1994-01-01

    When we initiated the control system design for the Ground Test Accelerator (GTA), we envisioned a system that would be flexible enough to handle the changing requirements of an experimental project. This control system would use a developers' toolkit to reduce the cost and time to develop applications for GTA, and through the use of open standards, the system would accommodate unforeseen requirements as they arose. Furthermore, we would attempt to demonstrate on GTA a level of automation far beyond that achieved by existing accelerator control systems. How well did we achieve these goals? What were the stumbling blocks to deploying the control system, and what assumptions did we make about requirements that turned out to be incorrect? In this paper we look at the process of developing a control system that evolved into what is now the ''Experimental Physics and Industrial Control System'' (EPICS). Also, we assess the impact of this system on the GTA project, as well as the impact of GTA on EPICS. The lessons learned on GTA will be valuable for future projects

  20. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site at Grand Junction, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1994-09-01

    This risk assessment evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site

  1. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site at Grand Junction, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This risk assessment evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site.

  2. Interim report on flash floods, Area 5 - Nevada Test Site

    International Nuclear Information System (INIS)

    French, R.H.

    1980-09-01

    Examination of the presently available data indicates that consideration must be given to the possibility of flash floods when siting waste management facilities in Area 5 of the Nevada Test Site. 6 figures, 7 tables

  3. Test site experiments with a reconfigurable stepped frequency GPR

    Science.gov (United States)

    Persico, Raffaele; Matera, Loredana; Piro, Salvatore; Rizzo, Enzo; Capozzoli, Luigi

    2016-04-01

    In this contribution, some new possibilities offered by a reconfigurable stepped frequency GPR system are exposed. In particular, results achieved from a prototypal system achieved in two scientific test sites will be shown together with the results achieved in the same test sites with traditional systems. Moreover a novel technique for the rejection of undesired interferences is shown, with the use of interferences caused on purpose. Key words GPR, reconfigurable stepped frequency. Introduction A reconfigurable GPR system is meant as a GPR where some parameter can be changed vs. the frequency (if the system is stepped frequency) or vs. the time (if the system is pulsed) in a programmable way. The programming should then account for the conditions met in the scenario at hand [1]. Within the research project AITECH (http://www.aitechnet.com/ibam.html), the Institute for Archaeological and Monumental Heritage, together with the University of Florence and the IDS corporation have implemented a prototype, that has been used in sites of cultural interest in Italy [2], but also abroad in Norway and Malta. The system is a stepped frequency GPR working in the frequency range 50-1000 MHz, and its reconfigurability consists in three properties. The first one is the fact that the length of the antennas can be modulated by the aperture and closure of two electronic switches present along the arms of the antennas, so that the antennas can become electrically (and electronically) longer or shorter, so becoming more suitable to radiate some frequencies rather than some other. In particular, the system can radiate three different bands in the comprehensive range between 50-1000 MHz, so being suitable for different depth range of the buried targets, and the three bands are gathered in a unique "going through" because for each measurement point the system can sweep the entire frequency range trhee times, one for each configuration of the switchres on the arms. The second property is

  4. Testing Pearl Model In Three European Sites

    Science.gov (United States)

    Bouraoui, F.; Bidoglio, G.

    The Plant Protection Product Directive (91/414/EEC) stresses the need of validated models to calculate predicted environmental concentrations. The use of models has become an unavoidable step before pesticide registration. In this context, European Commission, and in particular DGVI, set up a FOrum for the Co-ordination of pes- ticide fate models and their USe (FOCUS). In a complementary effort, DG research supported the APECOP project, with one of its objective being the validation and im- provement of existing pesticide fate models. The main topic of research presented here is the validation of the PEARL model for different sites in Europe. The PEARL model, actually used in the Dutch pesticide registration procedure, was validated in three well- instrumented sites: Vredepeel (the Netherlands), Brimstone (UK), and Lanna (Swe- den). A step-wise procedure was used for the validation of the PEARL model. First the water transport module was calibrated, and then the solute transport module, using tracer measurements keeping unchanged the water transport parameters. The Vrede- peel site is characterised by a sandy soil. Fourteen months of measurements were used for the calibration. Two pesticides were applied on the site: bentazone and etho- prophos. PEARL predictions were very satisfactory for both soil moisture content, and pesticide concentration in the soil profile. The Brimstone site is characterised by a cracking clay soil. The calibration was conducted on a time series measurement of 7 years. The validation consisted in comparing predictions and measurement of soil moisture at different soil depths, and in comparing the predicted and measured con- centration of isoproturon in the drainage water. The results, even if in good agreement with the measuremens, highlighted the limitation of the model when the preferential flow becomes a dominant process. PEARL did not reproduce well soil moisture pro- file during summer months, and also under-predicted the arrival of

  5. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project, and the Ground Water Project. For the UMTRA Project site located near Naturita, Colorado, phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado. The surface cleanup will reduce radon and other radiation emissions from the former uranium processing site and prevent further site-related contamination of ground water. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health and the environment, and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water or surface water that has mixed with contaminated ground water. Therefore, a risk assessment was conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  6. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1995-11-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project, and the Ground Water Project. For the UMTRA Project site located near Naturita, Colorado, phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation's Upper Burbank Repository at Uravan, Colorado. The surface cleanup will reduce radon and other radiation emissions from the former uranium processing site and prevent further site-related contamination of ground water. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health and the environment, and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water or surface water that has mixed with contaminated ground water. Therefore, a risk assessment was conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment

  7. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Attachment 3, Ground water hydrology report: Preliminary final

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-04

    The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent ground water contamination resulting from processing activities at inactive uranium milling sites (52 FR 36000 (1987)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, 42 USC {section}7901 et seq., the US Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has determined that for Slick Rock, this assessment shall include hydrogeologic site characterization for two separate uranium processing sites, the Union Carbide (UC) site and the North Continent (NC) site, and for the proposed Burro Canyon disposal site. The water resources protection strategy that describes how the proposed action will comply with the EPA ground water protection standards is presented in Attachment 4. The following site characterization activities are discussed in this attachment: Characterization of the hydrogeologic environment, including hydrostratigraphy, ground water occurrence, aquifer parameters, and areas of recharge and discharge. Characterization of existing ground water quality by comparison with background water quality and the maximum concentration limits (MCL) of the proposed EPA ground water protection standards. Definition of physical and chemical characteristics of the potential contaminant source, including concentration and leachability of the source in relation to migration in ground water and hydraulically connected surface water. Description of local water resources, including current and future use, availability, and alternative supplies.

  8. Ground beetles (Coleoptera, Carabidae) of the Hanford Nuclear Site in south-central Washington State.

    Science.gov (United States)

    Looney, Chris; Zack, Richard S; Labonte, James R

    2014-01-01

    Carabidae) collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site), which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte), and Stenolophus lineola (Fabricius). Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity.

  9. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah

    International Nuclear Information System (INIS)

    1994-09-01

    This document evaluates potential impacts to public health and the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1989 by the US DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, UMTRA Project is evaluating ground water contamination in this risk assessment

  10. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This document evaluates potential impacts to public health and the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1989 by the US DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, UMTRA Project is evaluating ground water contamination in this risk assessment.

  11. X-36 on Ground after Radio and Telemetry Tests

    Science.gov (United States)

    1996-01-01

    A UH-1 helicopter lowers the X-36 Tailless Fighter Agility Research Aircraft to the ground after radio frequency and telemetry tests above Rogers Dry Lake at NASA Dryden Flight Research Center, Edwards, California, in November 1996. The purpose of taking the X-36 aloft for the radio and telemetry system checkouts was to test the systems more realistically while airborne. More taxi and radio frequency tests were conducted before the aircraft's first flight in early 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and

  12. Current Ground Test Options for Nuclear Thermal Propulsion (NTP)

    Science.gov (United States)

    Gerrish, Harold P., Jr.

    2014-01-01

    About 20 different NTP engines/ reactors were tested from 1959 to 1972 as part of the Rover and Nuclear Engine for Rocket Vehicle Application (NERVA) program. Most were tested in open air at test cell A or test cell C, at the Nevada Test Site (NTS). Even after serious engine breakdowns of the reactor (e.g., Phoebus 1A), the test cells were cleaned up for other engine tests. The engine test stand (ETS) was made for high altitude (approximately 1 psia) testing of an NTP engine with a flight configuration, but still had the exhaust released to open air. The Rover/NERVA program became aware of new environmental regulations which would prohibit the release of any significant quantity of radioactive particulates and noble gases into the open air. The nuclear furnace (NF-1) was the last reactor tested before the program was cancelled in 1973, but successfully demonstrated a scrubber concept on how to filter the NTP exhaust. The NF-1 was demonstrated in the summer of 1972. The NF-1 used a 44MW reactor and operated each run for approximately 90 minutes. The system cooled the hot hydrogen exhaust from the engine with a water spray before entering a particle filter. The exhaust then passed through a series of heat exchangers and water separators to help remove water from the exhaust and further reduce the exhaust temperatures. The exhaust was next prepared for the charcoal trap by passing through a dryer and effluent cooler to bring exhaust temperatures close to liquid nitrogen. At those low temperatures, most of the noble gases (e.g., Xe and Kr made from fission products) get captured in the charcoal trap. The filtered hydrogen is finally passed through a flare stack and released to the air. The concept was overall successful but did show a La plating on some surfaces and had multiple recommendations for improvement. The most recent detailed study on the NTP scrubber concept was performed by the ARES Corporation in 2006. The concept is based on a 50,000 lbf thrust engine

  13. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1994-06-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site

  14. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site.

  15. Integrated Ground Operations Demonstration Units Testing Plans and Status

    Science.gov (United States)

    Johnson, Robert G.; Notardonato, William U.; Currin, Kelly M.; Orozco-Smith, Evelyn M.

    2012-01-01

    Cryogenic propellant loading operations with their associated flight and ground systems are some of the most complex, critical activities in launch operations. Consequently, these systems and operations account for a sizeable portion of the life cycle costs of any launch program. NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite advances in cryogenics, system health management and command and control technologies. This project was developed to mature, integrate and demonstrate advancement in the current state of the art in these areas using two distinct integrated ground operations demonstration units (GODU): GODU Integrated Refrigeration and Storage (IRAS) and GODU Autonomous Control

  16. Nevada Test Site Resource Management Plan: Annual summary, January 2000

    International Nuclear Information System (INIS)

    2000-01-01

    The Nevada Test Site Resource Management Plan published in December of 1998 (DOE/NV--518) describes the Nevada Test Site stewardship mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. As part of the Nevada Test Site Resource Management Plan, DOE Nevada Operations Office has committed to perform and publish an annual summary review of DOE Nevada Operations' stewardship of the Nevada Test Site. This annual summary includes a description of progress made toward the goals of the Nevada Test Site Resource Management Plan, pertinent monitoring data, actions that were taken to adapt to changing conditions, and any other changes to the Nevada Test Site Resource Management Plan

  17. Nevada Test Site Resource Management Plan: Annual summary, January 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-01

    The Nevada Test Site Resource Management Plan published in December of 1998 (DOE/NV--518) describes the Nevada Test Site stewardship mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. As part of the Nevada Test Site Resource Management Plan, DOE Nevada Operations Office has committed to perform and publish an annual summary review of DOE Nevada Operations' stewardship of the Nevada Test Site. This annual summary includes a description of progress made toward the goals of the Nevada Test Site Resource Management Plan, pertinent monitoring data, actions that were taken to adapt to changing conditions, and any other changes to the Nevada Test Site Resource Management Plan.

  18. Ground-water travel time calculations for the potential nuclear repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Younker, J.L.; Wilson, W.E.; Sinnock, S.

    1986-01-01

    In support of the US Department of Energy Nevada Nuclear Waste Storage Investigations Project, ground-water travel times were calculated for flow paths in both the saturated and unsaturated zones at Yucca Mountain, a potential site for a high-level radioactive waste repository in southern Nevada. The calculations were made through a combined effort by Science Applications International Corporation, Sandia National Laboratories, and the US Geological Survey. Travel times in the unsaturated zone were estimated by dividing the flow path length by the ground-water velocity, where velocities were obtained by dividing the vertical flux by the effective porosity of the rock types along assumed vertical flow paths. Saturated zone velocities were obtained by dividing the product of the bulk hydraulic conductivity and hydraulic gradient by the effective porosity. Total travel time over an EPA-established 5-km flow path was then calculated to be the sum of the travel times in the two parts of the flow path. Estimates of ground water fluxes and travel times are critical for evaluating the favorability of the Yucca Mountain site because they provide the basis for estimating the potential for radionuclides to reach the accessible environment within certain time limits

  19. Guide to ground water remediation at CERCLA response action and RCRA corrective action sites

    International Nuclear Information System (INIS)

    1995-10-01

    This Guide contains the regulatory and policy requirements governing remediation of ground water contaminated with hazardous waste [including radioactive mixed waste (RMW)], hazardous substances, or pollutants/contaminants that present (or may present) an imminent and substantial danger. It was prepared by the Office of Environmental Policy and Assistance, RCRA/CERCLA Division (EH-413), to assist Environmental Program Managers (ERPMs) who often encounter contaminated ground water during the performance of either response actions under CERCLA or corrective actions under Subtitle C of RCRA. The Guide begins with coverage of the regulatory and technical issues that are encountered by ERPM's after a CERCLA Preliminary Assessment/Site Investigation (PA/SI) or the RCRA Facility Assessment (RFA) have been completed and releases into the environment have been confirmed. It is based on the assumption that ground water contamination is present at the site, operable unit, solid waste management unit, or facility. The Guide's scope concludes with completion of the final RAs/corrective measures and a determination by the appropriate regulatory agencies that no further response action is necessary

  20. Ground testing and simulation. II - Aerodynamic testing and simulation: Saving lives, time, and money

    Science.gov (United States)

    Dayman, B., Jr.; Fiore, A. W.

    1974-01-01

    The present work discusses in general terms the various kinds of ground facilities, in particular, wind tunnels, which support aerodynamic testing. Since not all flight parameters can be simulated simultaneously, an important problem consists in matching parameters. It is pointed out that there is a lack of wind tunnels for a complete Reynolds-number simulation. Using a computer to simulate flow fields can result in considerable reduction of wind-tunnel hours required to develop a given flight vehicle.

  1. Neutralizer Hollow Cathode Simulations and Comparisons with Ground Test Data

    Science.gov (United States)

    Mikellides, Ioannis G.; Snyder, John S.; Goebel, Dan M.; Katz, Ira; Herman, Daniel A.

    2009-01-01

    The fidelity of electric propulsion physics-based models depends largely on the validity of their predictions over a range of operating conditions and geometries. In general, increased complexity of the physics requires more extensive comparisons with laboratory data to identify the region(s) that lie outside the validity of the model assumptions and to quantify the uncertainties within its range of application. This paper presents numerical simulations of neutralizer hollow cathodes at various operating conditions and orifice sizes. The simulations were performed using a two-dimensional axisymmetric model that solves numerically a relatively extensive system of conservation laws for the partially ionized gas in these devices. A summary of the comparisons between simulation results and Langmuir probe measurements is provided. The model has also been employed to provide insight into recent ground test observations of the neutralizer cathode in NEXT. It is found that a likely cause of the observed keeper voltage drop is cathode orifice erosion. However, due to the small magnitude of this change, is approx. 0.5 V (less than 5% of the beginning-of-life value) over 10 khrs, and in light of the large uncertainties of the cathode material sputtering yield at low ion energies, other causes cannot be excluded. Preliminary simulations to understand transition to plume mode suggest that in the range of 3-5 sccm the existing 2-D model reproduces fairly well the rise of the keeper voltage in the NEXT neutralizer as observed in the laboratory. At lower flow rates the simulation produces oscillations in the keeper current and voltage that require prohibitively small time-steps to resolve with the existing algorithms.

  2. Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site`s tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site.

  3. Ground-water monitoring compliance projects for Hanford Site facilities: Annual progress report for 1987

    International Nuclear Information System (INIS)

    Hall, S.H.

    1988-09-01

    This report describes progress during 1987 of five Hanford Site ground water monitoring projects. Four of these projects are being conducted according to regulations based on the federal Resource Conservation and Recovery Act of 1976 and the state Hazardous Waste Management Act. The fifth project is being conducted according to regulations based on the state Solid Waste Management Act. The five projects discussed herein are: 300 Area Process Trenches; 183-H Solar Evaporation Basins; 200 Areas Low-Level Burial Grounds; Nonradioactive Dangerous Waste Landfill; Solid Waste Landfill. For each of the projects, there are included, as applicable, discussions of monitoring well installations, water-table measurements, background and/or downgradient water quality and results of chemical analysis, and extent and rate of movement of contaminant plumes. 14 refs., 30 figs., 13 tabs

  4. Performance Assessment Monitoring Plan for the Hanford Site Low-Level Burial Grounds

    International Nuclear Information System (INIS)

    2006-01-01

    The U.S. Department of Energy Order 435.1, Radioactive Waste Management, requires a disposal authorization statement authorizing operation (or continued operation) for low-level waste disposal facilities. In fulfillment of these requirements, a disposal authorization statement was issued on October 25, 1999, authorizing the Hanford Site to transfer, receive, possess, and dispose of low-level radioactive waste at the 200 East Area burial grounds and the 200 West Area burial grounds. One of the conditions is that monitoring plans for the 200 East Area and 200 West Area low-level burial grounds be written and approved by the Richland Operations Office. As a result of a record of decision for the Hanford Site Solid Waste Program and acceptance of the Hanford Site Solid Waste Environmental Impact Statement, the use of the low-level burial ground (LLBG) as a disposal facility for low-level and mixed low-level wastes has been restricted to lined trenches and the Navy reactor-compartment trench only. Hence, as of July 2004, only the two lined trenches in burial ground 218-W-5 (trenches 31 and 34, see Appendix A) and the Navy reactor-compartment trench in burial ground 218 E 12B (trench 94) are allowed to receive waste. When the two lined trenches are filled, the LLBG will cease to operate except for reactor compartment disposal at trench 94. Remaining operational lifetime of the LLBG is dependent on waste volume disposal rates. Existing programs for air sampling and analyses and subsidence monitoring are currently adequate for performance assessment at the LLBG. The waste disposal authorization for the Hanford Site is based (in part) on the post-closure performance assessments for the LLBG. In order to maintain a useful link between operational monitoring (e.g., Resource Conservation and Recovery Act [RCRA], Comprehensive Environmental Response, Compensation, and Liability Act, and State Waste Discharge Permits), constituents, monitoring frequencies, and boundaries require

  5. Investigation of ground water aquifer at Tlogorejo Site Karangawen District, Demak Regency, Central Java

    International Nuclear Information System (INIS)

    Lilik Subiantoro; Priyo Sularto; Slamet Sudarto

    2009-01-01

    Demak is one of regency are placed at north beach central Java. Some part of this area especially Tlogorejo site Karangawen have the problem of fresh water availability. Conditions of insufficient Standard Water have been recognized in some part of the region, those are Karangrowo area, Undaan District. The problem of clean water in this area is caused by sea water trapped in sedimentary material during sedimentation process, so the trapped ground water character is brine or brackish. One of the alternatives to overcome water problem is election or delineated of the prospect area for exploiting of ground water. Referring to those problems Pusbang Geologi Nuklir BATAN means to conduct investigation of ground water in some location which has problem of clean water. The ground investigation activity is to get information about the geology, hydrogeology and sub surface geophysical characteristic, which is needed to identification of ground water aquifer. To obtain those targets, conducted by topographic measurement in 1:5000 scale maps, measurement of soil radioactivity, geology and hydrogeology mapping, geo-electrical 2-D image measurement Base on observation, analysis, evaluation and discussion was identified the existence of potential confined aquifer that happened at the layer sand that is trapped in the in impermeable layer of clay, which is potential for confined aquifer. Potency of aquifer with the best condition from bad, there are placed on geophysical measurement is ''Sand Aquifer Layer-1'' are located at RB 1 (TLG-5), RB 2 (TLG-4) and RB 3 (TLG-22). Physical characterized of aquifer: resistivity 22-46 Ωm, the depth of surface water 110 to 146 meter. (author)

  6. Ground test facilities for evaluating nuclear thermal propulsion engines and fuel elements

    International Nuclear Information System (INIS)

    Allen, G.C.; Beck, D.F.; Harmon, C.D.; Shipers, L.R.

    1992-01-01

    Interagency panels evaluating nuclear thermal propulsion development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and design issues of a proposed ground test complex for evaluating nuclear thermal propulsion engines and fuel elements being developed for the Space Nuclear Thermal Propulsion (SNTP) program. 2 refs

  7. CHEMISTRY OF PLANTS AND RECLAIMED GROUNDS ON SODA WASTE SITE AT JANIKOWO

    Directory of Open Access Journals (Sweden)

    Jan Siuta

    2014-10-01

    Full Text Available The paper presents the state of soda waste dumping site prior to reclamation, including the initial vegetation and properties of local grounds, the chemistry of plants colonizing the alkaline grounds in 2013 as well as the comparison of mineral element contents in leaves of trees spontaneously growing on the soda waste site in the years 2000 and 2013. The paper consists an integral part of a wider work concerning the effectiveness of sewage sludge application for bioremediation of highly saline and alkaline waste at the Janikowo Soda Plant. The spontaneous vegetation on soda waste in 2000 was scarce and patchy, its development conditioned by local microrelief where depressions provided water for plant establishment. The main species entering the site included grasses (Lolium perenne, Calamagrostis epigeios and herbs (Reseda lutea, Tussilago farfara and Picris hieracioides. The physico-chemical properties of waste grounds varied widely both horizontally and spatially. In 2013, the reclaimed dumping site was covered by a well-established meadow-likevegetation and the soil top layer (0–5 cm contained 9.2–13.9% Ca and 15–161 mg Cl/kg, at pH 7.6–7.8. The underlying 10–20 cm layer contained 21.1–63.3% Ca and 204–3110 mg Cl/kg, at pH 7.93–9.04. In the deeper 40-60 cm layer there was found 30.0-37.5% Ca and 9 920-16 320 mg Cl/kg, at pH 11.5–12.1. The vegetation growing in the vicinity of soil profiles contained: 1.65–3.36% N; 0.25–0.43% P; 1.38–2.95% K; 0.33–1.10 % Ca and 0.13–0.54% Mg. The contents of heavy metals in plants approximated the average amounts found in meadow clippings in Poland. The contents of main nutrients in leaves of trees spontaneously growing on the waste site were significantly higher in 2013 (2.70–3.21% N; 0.25–0.34% P and 0.98–1.75% K than in the year 2000 (1.70–2.04% N; 0.11–0.21% P and 0.54–0.80% K. The application of sewage sludge and subsequent fertilization of vegetation on waste

  8. Flow Quality Analysis of Shape Morphing Structures for Hypersonic Ground Testing Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Background: Shape morphing, high temperature, ceramic structural materials are now becoming available and can revolutionize ground testing by providing dynamic flow...

  9. Hanford Site Emergency Alerting System siren testing report

    International Nuclear Information System (INIS)

    Weidner, L.B.

    1997-01-01

    The purpose of the test was to determine the effective coverage of the proposed upgrades to the existing Hanford Site Emergency Alerting System (HSEAS). The upgrades are to enhance the existing HSEAS along the Columbia River from the Vernita Bridge to the White Bluffs Boat Launch as well as install a new alerting system in the 400 Area on the Hanford Site. Five siren sites along the Columbia River and two sites in the 400 Area were tested to determine the site locations that will provide the desired coverage

  10. HIV/AIDS testing sites and locator services

    Data.gov (United States)

    U.S. Department of Health & Human Services — The HIV Testing Sites & Care Services Locator is a first-of-its-kind, location-based search tool that allows you to search for testing services, housing...

  11. Tornado damage at the Grand Gulf, Mississippi nuclear power plant site: aerial and ground surveys

    International Nuclear Information System (INIS)

    Fujita, T.T.; McDonald, J.R.

    1978-05-01

    A tornado struck the Grand Gulf nuclear power generating station, Port Gibson, Mississippi, about 11:30 p.m. on April 17, 1978. Storm damage investigators from the University of Chicago and Texas Tech University were dispatched to survey the damage. The meteorological situation that spawned the Grand Gulf tornado and seven others in the area is discussed. Aerial surveys of the entire damage path and detailed surveys of the plant site are presented. An engineering evaluation of the damage is also presented based primarily on information gained from detailed ground surveys

  12. Assessment of the Nevada Test Site as a Site for Distributed Resource Testing and Project Plan: March 2002

    Energy Technology Data Exchange (ETDEWEB)

    Horgan, S.; Iannucci, J.; Whitaker, C.; Cibulka, L.; Erdman, W.

    2002-05-01

    The objective of this project was to evaluate the Nevada Test Site (NTS) as a location for performing dedicated, in-depth testing of distributed resources (DR) integrated with the electric distribution system. In this large scale testing, it is desired to operate multiple DRs and loads in an actual operating environment, in a series of controlled tests to concentrate on issues of interest to the DR community. This report includes an inventory of existing facilities at NTS, an assessment of site attributes in relation to DR testing requirements, and an evaluation of the feasibility and cost of upgrades to the site that would make it a fully qualified DR testing facility.

  13. AMS Ground Truth Measurements: Calibration and Test Lines

    International Nuclear Information System (INIS)

    Wasiolek, P.

    2013-01-01

    Airborne gamma spectrometry is one of the primary techniques used to define the extent of ground contamination after a radiological incident. Its usefulness was demonstrated extensively during the response to the Fukushima nuclear power plant (NPP) accident in March-May 2011. To map ground contamination a set of scintillation detectors is mounted on an airborne platform (airplane or helicopter) and flown over contaminated areas. The acquisition system collects spectral information together with the aircraft position and altitude every second. To provide useful information to decision makers, the count rate data expressed in counts per second (cps) needs to be converted to the terrestrial component of the exposure rate 1 m above ground, or surface activity of isotopes of concern. This is done using conversion coefficients derived from calibration flights. During a large scale radiological event, multiple flights may be necessary and may require use of assets from different agencies. However, as the production of a single, consistent map product depicting the ground contamination is the primary goal, it is critical to establish very early into the event a common calibration line. Such a line should be flown periodically in order to normalize data collected from different aerial acquisition systems and potentially flown at different flight altitudes and speeds. In order to verify and validate individual aerial systems, the calibration line needs to be characterized in terms of ground truth measurements. This is especially important if the contamination is due to short-lived radionuclides. The process of establishing such a line, as well as necessary ground truth measurements, is described in this document.

  14. AMS Ground Truth Measurements: Calibrations and Test Lines

    Energy Technology Data Exchange (ETDEWEB)

    Wasiolek, Piotr T. [National Security Technologies, LLC

    2015-12-01

    Airborne gamma spectrometry is one of the primary techniques used to define the extent of ground contamination after a radiological incident. Its usefulness was demonstrated extensively during the response to the Fukushima NPP accident in March-May 2011. To map ground contamination, a set of scintillation detectors is mounted on an airborne platform (airplane or helicopter) and flown over contaminated areas. The acquisition system collects spectral information together with the aircraft position and altitude every second. To provide useful information to decision makers, the count data, expressed in counts per second (cps), need to be converted to a terrestrial component of the exposure rate at 1 meter (m) above ground, or surface activity of the isotopes of concern. This is done using conversion coefficients derived from calibration flights. During a large-scale radiological event, multiple flights may be necessary and may require use of assets from different agencies. However, because production of a single, consistent map product depicting the ground contamination is the primary goal, it is critical to establish a common calibration line very early into the event. Such a line should be flown periodically in order to normalize data collected from different aerial acquisition systems and that are potentially flown at different flight altitudes and speeds. In order to verify and validate individual aerial systems, the calibration line needs to be characterized in terms of ground truth measurements This is especially important if the contamination is due to short-lived radionuclides. The process of establishing such a line, as well as necessary ground truth measurements, is described in this document.

  15. Ground-penetrating radar and electromagnetic surveys at the Monroe Crossroads battlefield site, Fort Bragg, North Carolina

    Science.gov (United States)

    Kessler, Richard; Strain, R.E.; Marlowe, J. I.; Currin, K.B.

    1996-01-01

    A ground-penetrating radar survey was conducted at the Monroe Crossroads Battlefield site at Fort Bragg, North Carolina, to determine possible locations of subsurface archaeological features. An electromagnetic survey also was conducted at the site to verify and augment the ground-penetrating radar data. The surveys were conducted over a 67,200-square-foot grid with a grid point spacing of 20 feet. During the ground-penetrating radar survey, 87 subsurface anomalies were detected based on visual inspection of the field records. These anomalies were flagged in the field as they appeared on the ground-penetrating radar records and were located by a land survey. The electromagnetic survey produced two significant readings at ground-penetrating radar anomaly locations. The National Park Service excavated 44 of the 87 anomaly locations at the Civil War battlefield site. Four of these excavations produced significant archaeological features, including one at an abandoned well.

  16. Nevada Test Site, Nye County, Nevada. Final environmental impact statement

    International Nuclear Information System (INIS)

    1977-09-01

    This environmental statement for the Nevada Test Site (NTS) considers underground nuclear detonations with yields of one megaton or less, along with the preparations necessary for such detonations. The testing activities considered also include other continuing and intermittent activities, both nuclear and nonnuclear, which can best be conducted in the remote and controlled area of the Nevada Test Site. These activities are listed, with emphasis on weapons testing programs which do not remain static

  17. Nevada Test Site, Nye County, Nevada. Final environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-09-01

    This environmental statement for the Nevada Test Site (NTS) considers underground nuclear detonations with yields of one megaton or less, along with the preparations necessary for such detonations. The testing activities considered also include other continuing and intermittent activities, both nuclear and nonnuclear, which can best be conducted in the remote and controlled area of the Nevada Test Site. These activities are listed, with emphasis on weapons testing programs which do not remain static.

  18. Peculiarities of radionuclide contamination of different Semipalatinsk nuclear test site (SNTS) zones

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.; Khazhekber, S.; Lukashenko, S.N.; Solodukhin, V.P.; Kazachevskij, I.V.; Poznyak, V.L.; Knyazev, B.B.; Rofer, Ch.

    2002-01-01

    The Semipalatinsk Nuclear Test Site occupies about 18500 km 2 . There are 3 basic test zones in this territory including various test platforms where different character nuclear explosions were carried out. On the test platforms of the 'Opytnoe Pole' zone air and ground tests were performed, including nuclear and hydronuclear (without nuclear reaction) explosions. On the other zones (the Degelen mountains and Balapan valley) the underground tests including camouflaged and excavation nuclear explosions were carried out. Each kind of these tests can be characterised by the quantity and composition of radionuclides which were formed during the nuclear explosion, by the area of their distribution, localisation of the radionuclides at various sites, radionuclide species in soil. Transfer of the products of the air and the ground nuclear explosions by air flows and their sedimentation on the ground surfaces have caused broadband radioactive plumes extending over hundreds of kilometres. As a result of hydronuclear experiments, plenty of alpha-active radionuclides, consisting of a nuclear device is thrown locally out. Besides the ground and the air explosions, radiation conditions of the territory of the SNTS were influenced by excavation explosions with ground throwing out. Such tests resulted in an intensive local pollution. Other zone of an original pollution is the Degelen mountains. Although an basic mass of the nuclear explosion products is obviously concentrated in basin cavities of the tunnels, the radionuclides are taken out on a day time surface together with waters acting in the basin cavity of the tunnels. The results of investigation of radionuclide pollution on the various platforms of the SNTS territory are presented. The results characterise the radionuclide pollution by specificity of spent tests

  19. Semipalatinsk nuclear test site: History of building and function

    International Nuclear Information System (INIS)

    Sergazina, G.M.; Balmukhanov, S.B.

    1999-01-01

    A vast materials on history of Semipalatinsk nuclear test site creation and it building and function are presented. Authors with big reliability report one page of Kazakhstan's history. In steppe on naked place thousands of soldiers and officers, construct and military specialists have built the nuclear site on which during 40 years were conducting nuclear tests . Prolonged chronic radiation on population living near by site results to tragedy which is confessed by General Assembly of United Nations. In the book aspects of test site conversion and rehabilitation of injured population are considered. The book consists of introduction, three chapters and conclusion. The book is intended to wide circle of readers. (author)

  20. On-site cell field test support program

    Science.gov (United States)

    Staniunas, J. W.; Merten, G. P.

    1982-09-01

    Utility sites for data monitoring were reviewed and selected. Each of these sites will be instrumented and its energy requirements monitored and analyzed for one year prior to the selection of 40 Kilowatt fuel cell field test sites. Analyses in support of the selection of sites for instrumentation shows that many building sectors offered considerable market potential. These sectors include nursing home, health club, restaurant, industrial, hotel/motel and apartment.

  1. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1995-08-01

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment

  2. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment.

  3. Social problems on Semipalatinsk test site

    International Nuclear Information System (INIS)

    Cherepnin, Yu.S.; Zhdanov, N.A.; Tumenova, B.N.

    2000-01-01

    In the report main stages of National Nuclear Center of Republic of Kazakhstan activity in the field of scientific information obtain about consequences of conducted nuclear tests, radioecological and medical and biological researches, restoration of natural environment and people's health in Republic of Kazakhstan are reflected. Chronicle and results of joint works within frameworks of international programs in these field are given as well. Analysis of up-to-date social problems of population of the region is carried out

  4. The Road Side Unit for the A270 Test Site

    NARCIS (Netherlands)

    Passchier, I.; Driessen, B.J.F.; Heijligers, B.M.R.; Netten, B.D.; Schackmann, P.P.M.

    2011-01-01

    The design and implementation of the Road Side Unit for the A270 Test Site is presented. It consists of a sensor platform and V2I communication platform with full coverage of the test site. A service platform enables applications to make use of these facilities. The RSU will be used both for the

  5. Methods of Usability Testing in Libraries Web Sites

    Directory of Open Access Journals (Sweden)

    Eman Fawzy

    2006-03-01

    Full Text Available A Study about libraries' web sites evaluation, that is the Usability, the study talking about methods of usability testing and define it, and its important in web sites evaluation, then details the methods of usability: questionnaire, core groups, testing experimental model, cards arrangement, and composed evaluation.

  6. Nevada Test Site Waste Acceptance Criteria, December 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal.

  7. Nevada Test Site Waste Acceptance Criteria, December 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal

  8. Ground-penetrating radar investigations conducted in the 100 areas, Hanford Site: Fiscal Year 1992

    International Nuclear Information System (INIS)

    Bergstrom, K.A.

    1994-01-01

    During Fiscal Year 1992, the Geophysics Group conducted forty- five Ground-Penetrating Radar (GPR) surveys in the 100 Areas (Figure 1) - Objectives for the investigations varied, from locating cribs, trenches and septic systems to helping site boreholes. The results of each investigation were delivered to clients in the form of a map that summarized the interpretation of a given site. No formal reports were prepared. The purpose of this document is to show where and why each of the surveys was conducted. The data and interpretation of each survey are available by contacting the Westinghouse Hanford Company, Geophysics Group. A map showing the location and basic parameters of each survey can be found in the Appendices of this report

  9. Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1

    International Nuclear Information System (INIS)

    1994-08-01

    This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site's tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site

  10. The development and testing of pulsed detonation engine ground demonstrators

    Science.gov (United States)

    Panicker, Philip Koshy

    2008-10-01

    The successful implementation of a PDE running on fuel and air mixtures will require fast-acting fuel-air injection and mixing techniques, detonation initiation techniques such as DDT enhancing devices or a pre-detonator, an effective ignition system that can sustain repeated firing at high rates and a fast and capable, closed-loop control system. The control system requires high-speed transducers for real-time monitoring of the PDE and the detection of the detonation wave speed. It is widely accepted that the detonation properties predicted by C-J detonation relations are fairly accurate in comparison to experimental values. The post-detonation flow properties can also be expressed as a function of wave speed or Mach number. Therefore, the PDE control system can use C-J relations to predict the post-detonation flow properties based on measured initial conditions and compare the values with those obtained from using the wave speed. The controller can then vary the initial conditions within the combustor for the subsequent cycle, by modulating the frequency and duty cycle of the valves, to obtain optimum air and fuel flow rates, as well as modulate the energy and timing of the ignition to achieve the required detonation properties. Five different PDE ground demonstrators were designed, built and tested to study a number of the required sub-systems. This work presents a review of all the systems that were tested, along with suggestions for their improvement. The PDE setups, ranged from a compact PDE with a 19 mm (3/4 in.) i.d., to two 25 mm (1 in.) i.d. setups, to a 101 mm (4 in.) i.d. dual-stage PDE setup with a pre-detonator. Propane-oxygen mixtures were used in the smaller PDEs. In the dual-stage PDE, propane-oxygen was used in the pre-detonator, while propane-air mixtures were used in the main combustor. Both rotary valves and solenoid valve injectors were studied. The rotary valves setups were tested at 10 Hz, while the solenoid valves were tested at up to 30 Hz

  11. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Riverton, Wyoming. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the Surface Project and the Ground Water Project. At the UMTRA Project site near Riverton, Wyoming, Surface Project cleanup occurred from 1988 to 1990. Tailings and radioactively contaminated soils and materials were taken from the Riverton site to a disposal cell in the Gas Hills area, about 60 road miles (100 kilometers) to the east. The surface cleanup reduces radon and other radiation emissions and minimizes further ground water contamination. The UMTRA Project`s second phase, the Ground Water Project, will evaluate the nature and extent of ground water contamination at the Riverton site that has resulted from the uranium ore processing activities. Such evaluations are used at each site to determine a strategy for complying with UMTRA ground water standards established by the US Environmental Protection Agency (EPA) and if human health risks could result from exposure to ground water contaminated by uranium ore processing. Exposure could hypothetically occur if drinking water were pumped from a well drilled in an area where ground water contamination might have occurred. Human health and environmental risks may also result if people, plants, or animals are exposed to surface water that has mixed with contaminated ground water.

  12. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Riverton, Wyoming. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the Surface Project and the Ground Water Project. At the UMTRA Project site near Riverton, Wyoming, Surface Project cleanup occurred from 1988 to 1990. Tailings and radioactively contaminated soils and materials were taken from the Riverton site to a disposal cell in the Gas Hills area, about 60 road miles (100 kilometers) to the east. The surface cleanup reduces radon and other radiation emissions and minimizes further ground water contamination. The UMTRA Project's second phase, the Ground Water Project, will evaluate the nature and extent of ground water contamination at the Riverton site that has resulted from the uranium ore processing activities. Such evaluations are used at each site to determine a strategy for complying with UMTRA ground water standards established by the US Environmental Protection Agency (EPA) and if human health risks could result from exposure to ground water contaminated by uranium ore processing. Exposure could hypothetically occur if drinking water were pumped from a well drilled in an area where ground water contamination might have occurred. Human health and environmental risks may also result if people, plants, or animals are exposed to surface water that has mixed with contaminated ground water

  13. Microzonation and site-specific ground motion modelling for Delhi city

    International Nuclear Information System (INIS)

    Parvez, Imtiyaz A.; Vaccari, F.; Panza, G.F.

    2002-11-01

    Delhi - the capital of India - lies on a severe earthquake hazard threats not only from the local earthquakes but also from Himalayan events just 200-250 km apart. The seismic ground motion in a part of Delhi City is computed with a hybrid technique based (on the based) on the modal summation and the finite difference scheme for site-specific strong ground motion modelling. Complete realistic SH and P-SV wave seismograms are computed along two geological cross-sections, (1) North-South, from Inter State Bus Terminal (ISBT) to Sewanagar and (2) East- West, from Tilak Bridge to Punjabi Bagh. Two real earthquake sources of July 15, 1720 (MMI=IX, M=7.4) and August 27, 1960 (M=6.0) have been used in the modelling. The response spectra ratio (RSR), i.e. the response spectra computed from the signals synthesized along the laterally varying section normalized by the response spectra computed from the corresponding signals, synthesized for the bedrock reference regional model, have been determined. As expected, the sedimentary cover causes an increase of the signal amplitude particularly in the radial and transverse components. To further check the site-effects, we reversed the source location to the other side of the cross-section and re-computed the site amplifications. There are only a few sites where a large amplification is invariant with respect to the two source locations considered. The RSR ranges between 5 to 10 in the frequency range from 2.8 to 3.7 Hz, for the radial and transverse components of motion along the NS cross-section. Along the EW cross-section RSR varies between 3.5 to 7.5 in the frequency range from 3.5 to 4.1 Hz. The amplification of the vertical component is large at high frequency (>4 Hz) whereas it is negligible in lower frequency range. (author)

  14. Earthquake Strong Ground Motion Scenario at the 2008 Olympic Games Sites, Beijing, China

    Science.gov (United States)

    Liu, L.; Rohrbach, E. A.; Chen, Q.; Chen, Y.

    2006-12-01

    Historic earthquake record indicates mediate to strong earthquakes have been frequently hit greater Beijing metropolitan area where is going to host the 2008 summer Olympic Games. For the readiness preparation of emergency response to the earthquake shaking for a mega event in a mega city like Beijing in summer 2008, this paper tries to construct the strong ground motion scenario at a number of gymnasium sites for the 2008 Olympic Games. During the last 500 years (the Ming and Qing Dynasties) in which the historic earthquake record are thorough and complete, there are at least 12 earthquake events with the maximum intensity of VI or greater occurred within 100 km radius centered at the Tiananmen Square, the center of Beijing City. Numerical simulation of the seismic wave propagation and surface strong ground motion is carried out by the pseudospectral time domain methods with viscoelastic material properties. To improve the modeling efficiency and accuracy, a multi-scale approach is adapted: the seismic wave propagation originated from an earthquake rupture source is first simulated by a model with larger physical domain with coarser grids. Then the wavefield at a given plane is taken as the source input for the small-scale, fine grid model for the strong ground motion study at the sites. The earthquake source rupture scenario is based on two particular historic earthquake events: One is the Great 1679 Sanhe-Pinggu Earthquake (M~8, Maximum Intensity XI at the epicenter and Intensity VIII in city center)) whose epicenter is about 60 km ENE of the city center. The other one is the 1730 Haidian Earthquake (M~6, Maximum Intensity IX at the epicenter and Intensity VIII in city center) with the epicentral distance less than 20 km away from the city center in the NW Haidian District. The exist of the thick Tertiary-Quaternary sediments (maximum thickness ~ 2 km) in Beijing area plays a critical role on estimating the surface ground motion at the Olympic Games sites, which

  15. Tritium activities in selected wells on the Nevada Test Site

    International Nuclear Information System (INIS)

    Lyles, B.F.

    1993-05-01

    Literature and data were reviewed related to radionuclides in groundwater on and near the Nevada Test Site. No elevated tritium activities have been reported outside of the major testing regions of the Nevada Test Site. Three wells were identified as having water with above-background (>50 pCi/l) tritium activities: UE-15d Water Well; USGS Water Well A; and USGS Test Well B Ex. Although none of these wells have tritium activities greater than the Nevada State Drinking Water standard (20,000 pCi/l), their time-series tritium trends may be indicative to potential on-site radionuclide migration

  16. Evaluation of chemical sensors for in situ ground-water monitoring at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E.M.; Hostetler, D.D.

    1989-03-01

    This report documents a preliminary review and evaluation of instrument systems and sensors that may be used to detect ground-water contaminants in situ at the Hanford Site. Three topics are covered in this report: (1) identification of a group of priority contaminants at Hanford that could be monitored in situ, (2) a review of current instrument systems and sensors for environmental monitoring, and (3) an evaluation of instrument systems that could be used to monitor Hanford contaminants. Thirteen priority contaminants were identified in Hanford ground water, including carbon tetrachloride and six related chlorinated hydrocarbons, cyanide, methyl ethyl ketone, chromium (VI), fluoride, nitrate, and uranium. Based on transduction principles, chemical sensors were divided into four classes, ten specific types of instrument systems were considered: fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), spark excitation-fiber optic spectrochemical emission sensor (FOSES), chemical optrodes, stripping voltammetry, catalytic surface-modified ion electrode immunoassay sensors, resistance/capacitance, quartz piezobalance and surface acoustic wave devices. Because the flow of heat is difficult to control, there are currently no environmental chemical sensors based on thermal transduction. The ability of these ten instrument systems to detect the thirteen priority contaminants at the Hanford Site at the required sensitivity was evaluated. In addition, all ten instrument systems were qualitatively evaluated for general selectivity, response time, reliability, and field operability. 45 refs., 23 figs., 7 tabs.

  17. Evaluation of chemical sensors for in situ ground-water monitoring at the Hanford Site

    International Nuclear Information System (INIS)

    Murphy, E.M.; Hostetler, D.D.

    1989-03-01

    This report documents a preliminary review and evaluation of instrument systems and sensors that may be used to detect ground-water contaminants in situ at the Hanford Site. Three topics are covered in this report: (1) identification of a group of priority contaminants at Hanford that could be monitored in situ, (2) a review of current instrument systems and sensors for environmental monitoring, and (3) an evaluation of instrument systems that could be used to monitor Hanford contaminants. Thirteen priority contaminants were identified in Hanford ground water, including carbon tetrachloride and six related chlorinated hydrocarbons, cyanide, methyl ethyl ketone, chromium (VI), fluoride, nitrate, and uranium. Based on transduction principles, chemical sensors were divided into four classes, ten specific types of instrument systems were considered: fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), spark excitation-fiber optic spectrochemical emission sensor (FOSES), chemical optrodes, stripping voltammetry, catalytic surface-modified ion electrode immunoassay sensors, resistance/capacitance, quartz piezobalance and surface acoustic wave devices. Because the flow of heat is difficult to control, there are currently no environmental chemical sensors based on thermal transduction. The ability of these ten instrument systems to detect the thirteen priority contaminants at the Hanford Site at the required sensitivity was evaluated. In addition, all ten instrument systems were qualitatively evaluated for general selectivity, response time, reliability, and field operability. 45 refs., 23 figs., 7 tabs

  18. External quality control in ground-water sampling and analysis at the Hanford Site

    International Nuclear Information System (INIS)

    Hall, S.H.; Juracich, S.P.

    1991-11-01

    At the US Department of Energy's Hanford Site, external Quality Control (QC) for ground-water monitoring is extensive and has included routine submittal of intra- and interlaboratory duplicate samples, blind samples, and several kinds of blank samples. Examination of the resulting QC data for nine of the constituents found in ground water at the Hanford Site shows that the quality of analysis has generally been within the expectations of precision and accuracy that have been established by the US Environmental Protection Agency (EPA). The constituents subjected to review were nitrate, chromium, sodium, fluoride, carbon tetrachloride, tritium, ammonium, trichloroethylene, and cyanide. Of these, the fluoride measurements were notable exceptions and were poor by EPA standards. The review has shown that interlaboratory analysis of duplicate samples yields the most useful QC data for evaluating laboratory performance in determining commonly encountered constituents. For rarely encountered constituents, interlaboratory comparisons may be augmented with blind samples (synthetic samples of known composition). Intralaboratory comparisons, blanks, and spikes should be generally restricted to studies of suspected or known sample contamination and to studies of the adequacy of sampling and analytical procedures

  19. Assessment of hydrologic transport of radionuclides from the Rulison Underground Nuclear Test Site, Colorado

    International Nuclear Information System (INIS)

    Earman, S.; Chapman, J.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Rulison site in west-central Colorado was the location of an underground detonation of a 40-kiloton nuclear device in 1969. The test took place 2,568 m below ground surface in the Mesaverde Formation. Though located below the regional water table, none of the bedrock formations at the site yielded water during hydraulic tests, indicating extremely low permeability conditions. The scenario evaluated was the migration of radionuclides from the blast-created cavity through the Mesaverde Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. The transport calculations are most sensitive to changes in the mean groundwater velocity and the correlation scale of hydraulic conductivity, with transport of strontium and cesium also sensitive to the sorption coefficient

  20. PSP SAR interferometry monitoring of ground and structure deformations in the archeological site of Pompeii

    Science.gov (United States)

    Costantini, Mario; Francioni, Elena; Paglia, Luca; Minati, Federico; Margottini, Claudio; Spizzichino, Daniele; Trigila, Alessandro; Iadanza, Carla; De Nigris, Bruno

    2016-04-01

    The "Major Project Pompeii" (MPP) is a great collective commitment of different institututions and people to set about solving the serious problem of conservation of the largest archeological sites in the world. The ancient city of Pompeii with its 66 hectares, 44 of which are excaveted, is divided into 9 regiones (district), subdivided in 118 insulae (blocks) and almost 1500 domus (houses), and is Unesco site since 1996. The Italian Ministry for Heritage and Cultural Activities and Tourism (MiBACT) and Finmeccanica Group have sealed an agreement whereby the Finmeccanica Group will donate innovative technologies and services for monitoring and protecting the archaeological site of Pompeii. Moreover, the Italian Institute for Environment Protection and Research (ISPRA) - Geological Survey of Italy, was also involved to support the ground based analysis and interpretation of the measurements provided by the industrial team, in order to promote an interdisciplinary approach. In this work, we will focus on ground deformation measurements obtained by satellite SAR interferometry and on their interpretation. The satellite monitoring service is based on the processing of COSMO-SkyMed Himage data by the e-Geos proprietary Persistent Scatterer Pair (PSP) SAR interferometry technology. The PSP technique is a proven SAR interferometry method characterized by the fact of exploiting in the processing only the relative properties between close points (pairs) in order to overcome atmospheric artifacts (which are one of the main problems of SAR interferometry). Validations analyses showed that this technique applied to COSMO-SkyMed Himage data is able to retrieve very dense (except of course on vegetated or cultivated areas) millimetric deformation measurements with sub-metric localization. By means of the COSMO-SkyMed PSP SAR interferometry processing, a historical analysis of the ground and structure deformations occurred over the entire archaeological site of Pompeii in the

  1. Penetration Testing Model for Web sites Hosted in Nuclear Malaysia

    International Nuclear Information System (INIS)

    Mohd Dzul Aiman Aslan; Mohamad Safuan Sulaiman; Siti Nurbahyah Hamdan; Saaidi Ismail; Mohd Fauzi Haris; Norzalina Nasiruddin; Raja Murzaferi Mokhtar

    2012-01-01

    Nuclear Malaysia web sites has been very crucial in providing important and useful information and services to the clients as well as the users worldwide. Furthermore, a web site is important as it reflects the organisation image. To ensure the integrity of the content of web site, a study has been made and a penetration testing model has been implemented to test the security of several web sites hosted at Nuclear Malaysia for malicious attempts. This study will explain how the security was tested in the detailed condition and measured. The result determined the security level and the vulnerability of several web sites. This result is important for improving and hardening the security of web sites in Nuclear Malaysia. (author)

  2. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Falls City, Texas: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This baseline risk assessment of ground water contamination of the uranium mill tailings site near Falls City, Texas, evaluates potential impact to public health and the environment resulting from ground water contamination at the former Susquehanna Western, Inc. (SWI), uranium mill processing site. This document fulfills the following objectives: determine if the site presents immediate or potential future health risks, determine the need for interim institutional controls, serve as a key input to project planning and prioritization, and recommend future data collection efforts to more fully characterize risk. The Uranium Mill Tailings Remedial Action (UMTRA) Project has begun its evaluation of ground water contamination at the Falls City site. This risk assessment is one of the first documents specific to this site for the Ground Water Project. The first step is to evaluate ground water data collected from monitor wells at or near the site. Evaluation of these data show the main contaminants in the Dilworth ground water are cadmium, cobalt, fluoride, iron, nickel, sulfate, and uranium. The data also show high levels of arsenic and manganese occur naturally in some areas.

  3. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Salt Lake City, Utah. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the first is the Surface Project, and the second is the Ground Water Project. For the UMTRA Project site known as the Vitro site, near Salt Lake City, Utah, Surface Project cleanup occurred from 1985 to 1987. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. A risk assessment is the process of describing a source of contamination and showing how that contamination may reach people and the environment. The amount of contamination people or the environment may be exposed to is calculated and used to characterize the possible health or environmental effects that may result from this exposure. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Vitro site. The results of this report and further site characterization of the Vitro site will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

  4. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Falls City, Texas: Revision 1

    International Nuclear Information System (INIS)

    1994-09-01

    This baseline risk assessment of ground water contamination of the uranium mill tailings site near Falls City, Texas, evaluates potential impact to public health and the environment resulting from ground water contamination at the former Susquehanna Western, Inc. (SWI), uranium mill processing site. This document fulfills the following objectives: determine if the site presents immediate or potential future health risks, determine the need for interim institutional controls, serve as a key input to project planning and prioritization, and recommend future data collection efforts to more fully characterize risk. The Uranium Mill Tailings Remedial Action (UMTRA) Project has begun its evaluation of ground water contamination at the Falls City site. This risk assessment is one of the first documents specific to this site for the Ground Water Project. The first step is to evaluate ground water data collected from monitor wells at or near the site. Evaluation of these data show the main contaminants in the Dilworth ground water are cadmium, cobalt, fluoride, iron, nickel, sulfate, and uranium. The data also show high levels of arsenic and manganese occur naturally in some areas

  5. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Salt Lake City, Utah. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the first is the Surface Project, and the second is the Ground Water Project. For the UMTRA Project site known as the Vitro site, near Salt Lake City, Utah, Surface Project cleanup occurred from 1985 to 1987. The UMTRA Project's second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. A risk assessment is the process of describing a source of contamination and showing how that contamination may reach people and the environment. The amount of contamination people or the environment may be exposed to is calculated and used to characterize the possible health or environmental effects that may result from this exposure. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Vitro site. The results of this report and further site characterization of the Vitro site will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards

  6. Evaluation of the radionuclide tracer test conducted at the project Gnome Underground Nuclear Test Site, New Mexico

    International Nuclear Information System (INIS)

    Pohll, G.; Pohlmann, K.

    1996-08-01

    A radionuclide tracer test was conducted in 1963 by the U.S. Geological Survey at the Project Gnome underground nuclear test site, approximately 40 km southeast of Carlsbad, New Mexico. The tracer study was carried out under the auspices of the U.S. Atomic Energy Commission (AEC) to study the transport behavior of radionuclides in fractured rock aquifers. The Culebra Dolomite was chosen for the test because it was considered to be a reasonable analogue of the fractured carbonate aquifer at the Nevada Test Site (NTS), the principal location of U.S. underground nuclear tests. Project Gnome was one of a small number of underground nuclear tests conducted by the AEC at sites distant from the NTS. The Gnome device was detonated on December 10, 1961 in an evaporate unit at a depth of 360 m below ground surface. Recently, the U.S. Department of Energy (DOE) implemented an environmental restoration program to characterize, remediate, and close these offsite nuclear test areas. An early step in this process is performance of a preliminary risk analysis of the hazard posed by each site. The Desert Research Institute has performed preliminary hydrologic risk evaluations for the groundwater transport pathway at Gnome. That evaluation included the radioactive tracer test as a possible source because the test introduced radionuclides directly into the Culebra Dolomite, which is the only aquifer at the site. This report presents a preliminary evaluation of the radionuclide tracer test as a source for radionuclide migration in the Culebra Dolomite. The results of this study will assist in planning site characterization activities and refining estimates of the radionuclide source for comprehensive models of groundwater transport st the Gnome site

  7. Orion Ground Test Article Water Impact Tests: Photogrammetric Evaluation of Impact Conditions

    Science.gov (United States)

    Vassilakos, Gregory J.; Mark, Stephen D.

    2018-01-01

    The Ground Test Article (GTA) is an early production version of the Orion Crew Module (CM). The structural design of the Orion CM is being developed based on LS-DYNA water landing simulations. As part of the process of confirming the accuracy of LS-DYNA water landing simulations, the GTA water impact test series was conducted at NASA Langley Research Center (LaRC) to gather data for comparison with simulations. The simulation of the GTA water impact tests requires the accurate determination of the impact conditions. To accomplish this, the GTA was outfitted with an array of photogrammetry targets. The photogrammetry system utilizes images from two cameras with a specialized tracking software to determine time histories for the 3-D coordinates of each target. The impact conditions can then be determined from the target location data.

  8. Malignant tumors and Semipalatinsk test site

    International Nuclear Information System (INIS)

    Balmukhanov, S.B.; Gusev, B.I.; Abdrakhmanov, Zh.N.

    1998-01-01

    Mutational biological effect of ionizing irradiation initiates and promotes neoplastic process (cancer or leukemia) as well as genetic defects in further generations. It is well-known that the far-off irradiation effects, caused by deoxyribonucleic acid mutation, take place for adulterers when irradiation dose is within 20 c Sv and for foetus when it is 1.0 c Sv. According to information obtained by a number of researches, irradiation dose of within 0.5-0.9 c Sv, and even 0.1 c Sv, cannot be considered to be safe in regards to their capabilities to cause formation of malignant tumors. Number of people, being effected by the ionizing irradiation during 40 years of nuclear weapon testiness conduction (more than 600), comes to about 3 mill., half of which are Kazakstan people. In addition, more than 500 different areas in Semipalatinsk region, which have different level of radiation contamination. The excess malignant tumor sick rate, caused by irradiation effect, was studied for two groups of population that were being continuously examined since 1960. The exposure external irradiation dose was from 80 to 274 c Sv for the main population group (10 thousands). The testing group of population (11 thousands) was effected by the irradiation dose of 7-10 c Sv

  9. Ground Testing a Nuclear Thermal Rocket: Design of a sub-scale demonstration experiment

    Energy Technology Data Exchange (ETDEWEB)

    David Bedsun; Debra Lee; Margaret Townsend; Clay A. Cooper; Jennifer Chapman; Ronald Samborsky; Mel Bulman; Daniel Brasuell; Stanley K. Borowski

    2012-07-01

    In 2008, the NASA Mars Architecture Team found that the Nuclear Thermal Rocket (NTR) was the preferred propulsion system out of all the combinations of chemical propulsion, solar electric, nuclear electric, aerobrake, and NTR studied. Recently, the National Research Council committee reviewing the NASA Technology Roadmaps recommended the NTR as one of the top 16 technologies that should be pursued by NASA. One of the main issues with developing a NTR for future missions is the ability to economically test the full system on the ground. In the late 1990s, the Sub-surface Active Filtering of Exhaust (SAFE) concept was first proposed by Howe as a method to test NTRs at full power and full duration. The concept relied on firing the NTR into one of the test holes at the Nevada Test Site which had been constructed to test nuclear weapons. In 2011, the cost of testing a NTR and the cost of performing a proof of concept experiment were evaluated.

  10. Ground motion for the design basis earthquake at the Savannah River Site, South Carolina based on a deterministic approach

    International Nuclear Information System (INIS)

    Youngs, R.R.; Coppersmith, K.J.; Silva, W.J.; Stephenson, D.E.

    1991-01-01

    Ground motion assessments are presented for evaluation of the seismic safety of K-Reactor at the Savannah River Site. Two earthquake sources were identified as the most significant to seismic hazard at the site, a M 7.5 earthquake occurring at Charleston, South Carolina, and a M 5 event occurring in the site vicinity. These events control the low frequency and high frequency portions of the spectrum, respectively. Three major issues were identified in the assessment of ground motions for the Savannah River site; specification of the appropriate stress drop for the Charleston source earthquake, specification of the appropriate levels of soil damping at large depths for site response analyses, and the appropriateness of western US recordings for specification of ground motions in the eastern US

  11. Evolution of a test article handling system for the SP-100 ground engineering system test

    International Nuclear Information System (INIS)

    Shen, E.J.; Schweiger, L.J.; Miller, W.C.; Gluck, R.; Devies, S.M.

    1987-04-01

    A simulated space environment test of a flight prototypic SP-100 reactor, control system, and flight shield will be conducted at the Hanford Engineering Development Laboratory (HEDL). The flight prototypic components and the supporting primary heat removal system are collectively known as the Nuclear Assembly Test Article (TA). The unique configuration and materials of fabrication for the Test Article require a specialized handling facility to support installation, maintenance, and final disposal operations. Westinghouse Hanford Company, the Test Site Operator, working in conjunction with General Electric Company, the Test Article supplier, developed and evaluated several handling concepts resulting in the selection of a reference Test Article Handling System. The development of the reference concept for the handling system is presented

  12. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2

    International Nuclear Information System (INIS)

    1996-02-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water

  13. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water.

  14. Surface Properties and Characteristics of Mars Landing Sites from Remote Sensing Data and Ground Truth

    Science.gov (United States)

    Golombek, M. P.; Haldemann, A. F.; Simpson, R. A.; Furgason, R. L.; Putzig, N. E.; Huertas, A.; Arvidson, R. E.; Heet, T.; Bell, J. F.; Mellon, M. T.; McEwen, A. S.

    2008-12-01

    Surface characteristics at the six sites where spacecraft have successfully landed on Mars can be related favorably to their signatures in remotely sensed data from orbit and from the Earth. Comparisons of the rock abundance, types and coverage of soils (and their physical properties), thermal inertia, albedo, and topographic slope all agree with orbital remote sensing estimates and show that the materials at the landing sites can be used as ground truth for the materials that make up most of the equatorial and mid- to moderately high-latitude regions of Mars. The six landing sites sample two of the three dominant global thermal inertia and albedo units that cover ~80% of the surface of Mars. The Viking, Spirit, Mars Pathfinder, and Phoenix landing sites are representative of the moderate to high thermal inertia and intermediate to high albedo unit that is dominated by crusty, cloddy, blocky or frozen soils (duricrust that may be layered) with various abundances of rocks and bright dust. The Opportunity landing site is representative of the moderate to high thermal inertia and low albedo surface unit that is relatively dust free and composed of dark eolian sand and/or increased abundance of rocks. Rock abundance derived from orbital thermal differencing techniques in the equatorial regions agrees with that determined from rock counts at the surface and varies from ~3-20% at the landing sites. The size-frequency distributions of rocks >1.5 m diameter fully resolvable in HiRISE images of the landing sites follow exponential models developed from lander measurements of smaller rocks and are continuous with these rock distributions indicating both are part of the same population. Interpretation of radar data confirms the presence of load bearing, relatively dense surfaces controlled by the soil type at the landing sites, regional rock populations from diffuse scattering similar to those observed directly at the sites, and root-mean-squared slopes that compare favorably

  15. Report of ground water monitoring for expansion of the golf course, Salt Lake City, Utah, vitro processing site

    International Nuclear Information System (INIS)

    1995-06-01

    To determine the potential impacts of the proposed golf course expansion on the south side of the Vitro site, ground water data from the UMTRA Vitro processing site were evaluated in response to the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project Office request. Golf in the Round, Inc., has proposed an expansion of the present driving range to include a 9-hole golf course on the UMTRA Vitro processing site, which is owned by the Central Valley Water Reclamation Facility (CVWRF). An expanded golf course would increase irrigation and increase the amount of water that could infiltrate the soil, recharging the unconfined aquifer. Increased water levels in the aquifer could alter the ground water flow regime; contaminants in the shallow ground water could then migrate off the site or discharge to surface water in the area. Dewatering of the unconfined aquifer on CVWRF property could also impact site contaminant migration; a significant amount of ground water extraction at CVWRF could reduce the amount of contaminant migration off the site. Since 1978, data have been collected at the site to determine the distribution of tailings materials (removed from the site from 1985 to 1987) and to characterize the presence and migration of contaminants in sediments, soils, surface water, and ground water at the former Vitro processing site. Available data suggest that irrigating an expanded golf course may cause contamination to spread more rapidly within the unconfined aquifer. The public is not at risk from current Vitro processing site activities, nor is risk expected due to golf course expansion. However, ecological risk could increase with increased surface water contamination and the development of ground water seeps

  16. TESTING GROUND BASED GEOPHYSICAL TECHNIQUES TO REFINE ELECTROMAGNETIC SURVEYS NORTH OF THE 300 AREA, HANFORD, WASHINGTON

    International Nuclear Information System (INIS)

    Petersen, S.W.

    2010-01-01

    Airborne electromagnetic (AEM) surveys were flown during fiscal year (FY) 2008 within the 600 Area in an attempt to characterize the underlying subsurface and to aid in the closure and remediation design study goals for the 200-PO-1 Groundwater Operable Unit (OU). The rationale for using the AEM surveys was that airborne surveys can cover large areas rapidly at relatively low costs with minimal cultural impact, and observed geo-electrical anomalies could be correlated with important subsurface geologic and hydrogeologic features. Initial interpretation of the AEM surveys indicated a tenuous correlation with the underlying geology, from which several anomalous zones likely associated with channels/erosional features incised into the Ringold units were identified near the River Corridor. Preliminary modeling resulted in a slightly improved correlation but revealed that more information was required to constrain the modeling (SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site). Both time-and frequency domain AEM surveys were collected with the densest coverage occurring adjacent to the Columbia River Corridor. Time domain surveys targeted deeper subsurface features (e.g., top-of-basalt) and were acquired using the HeliGEOTEM(reg s ign) system along north-south flight lines with a nominal 400 m (1,312 ft) spacing. The frequency domain RESOLVE system acquired electromagnetic (EM) data along tighter spaced (100 m (328 ft) and 200 m (656 ft)) north-south profiles in the eastern fifth of the 200-PO-1 Groundwater OU (immediately adjacent to the River Corridor). The overall goal of this study is to provide further quantification of the AEM survey results, using ground based geophysical methods, and to link results to the underlying geology and/or hydrogeology. Specific goals of this project are as follows: (1) Test ground based geophysical techniques for the efficacy in delineating underlying geology; (2) Use ground

  17. TESTING GROUND BASED GEOPHYSICAL TECHNIQUES TO REFINE ELECTROMAGNETIC SURVEYS NORTH OF THE 300 AREA HANFORD WASHINGTON

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN SW

    2010-12-02

    Airborne electromagnetic (AEM) surveys were flown during fiscal year (FY) 2008 within the 600 Area in an attempt to characterize the underlying subsurface and to aid in the closure and remediation design study goals for the 200-PO-1 Groundwater Operable Unit (OU). The rationale for using the AEM surveys was that airborne surveys can cover large areas rapidly at relatively low costs with minimal cultural impact, and observed geo-electrical anomalies could be correlated with important subsurface geologic and hydrogeologic features. Initial interpretation of the AEM surveys indicated a tenuous correlation with the underlying geology, from which several anomalous zones likely associated with channels/erosional features incised into the Ringold units were identified near the River Corridor. Preliminary modeling resulted in a slightly improved correlation but revealed that more information was required to constrain the modeling (SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site). Both time-and frequency domain AEM surveys were collected with the densest coverage occurring adjacent to the Columbia River Corridor. Time domain surveys targeted deeper subsurface features (e.g., top-of-basalt) and were acquired using the HeliGEOTEM{reg_sign} system along north-south flight lines with a nominal 400 m (1,312 ft) spacing. The frequency domain RESOLVE system acquired electromagnetic (EM) data along tighter spaced (100 m [328 ft] and 200 m [656 ft]) north-south profiles in the eastern fifth of the 200-PO-1 Groundwater OU (immediately adjacent to the River Corridor). The overall goal of this study is to provide further quantification of the AEM survey results, using ground based geophysical methods, and to link results to the underlying geology and/or hydrogeology. Specific goals of this project are as follows: (1) Test ground based geophysical techniques for the efficacy in delineating underlying geology; (2) Use ground

  18. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This document is the first volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of an introduction, summary/conclusion, site description and assessment, description of facility, and description of operation.

  19. Regular monitoring, analysis and forecast of radioecological environment of Azgir test site

    International Nuclear Information System (INIS)

    Akhmetov, E.; Agymov, I.; Gilmanov, Zh.; Ermanov, A.; Zhetbaev, A.

    1996-01-01

    The objective of investigations: basing on the results of regular annual measurements of radiation conditions on the sites of underground nuclear cavities of the Azgir test site, specific concentrations of radionuclides and heavy metals in soil and underground aquifers on the test site and adjacent territories to obtain data on migration and transfer of radionuclides and heavy metals. This will give a real possibility to make probability predictions of ways and qualitative characteristics of spreading of radionuclides and heavy metals in the region of the northern Pricaspian lowland. The Essence of the Problem The Azgir test site is located in the arid zone of the Great Azgir salt cupola near the Azgir village of Kurmangazinskiy rayon, Atyrau region. This cupola is located in the western periphery of Pricaspian salt-bearing province situated to the north of the Caspian sea between the Volga and Emba rivers. Major Tasks: - Development of technical requirements for carrying out regular examination of radionuclide and heavy metal contamination of the Azgir test site. - Preparation of material and technical base for field works on the Azgir test site. - Radiometric measurements on the sites and around them. - Taking of soil, soil and ground waters samples both on the test site and on the adjacent territories. - Spectrometric and radiochemical investigations of soil, soil and ground water samples. - Analysis and generalization of the results creating premises for forecasting of the radioecological conditions. - Investigation of the possibility of radioactive waste disposal in underground cavities. Expected Results: - Detection and outlining of local areas of radioactive contamination on the site and adjacent territories. - Data on real structure of spreading and concentration of artificial and natural radionuclides and heavy metals in soil layer of the test site region. - Results of analytic investigations of water samples of underground sources of the site and adjacent

  20. Anechoic Chamber test of the Electromagnetic Measurement System ground test unit

    Science.gov (United States)

    Stevenson, L. E.; Scott, L. D.; Oakes, E. T.

    1987-04-01

    The Electromagnetic Measurement System (EMMS) will acquire data on electromagnetic (EM) environments at key weapon locations on various aircraft certified for nuclear weapons. The high-frequency ground unit of the EMMS consists of an instrumented B61 bomb case that will measure (with current probes) the localized current density resulting from an applied EM field. For this portion of the EMMS, the first system test was performed in the Anechoic Chamber Facility at Sandia National Laboratories, Albuquerque, New Mexico. The EMMS pod was subjected to EM radiation at microwave frequencies of 1, 3, and 10 GHz. At each frequency, the EMMS pod was rotated at many positions relative to the microwave source so that the individual current probes were exposed to a direct line-of-sight illumination. The variations between the measured and calculated electric fields for the current probes with direct illumination by the EM source are within a few db. The results obtained from the anechoic test were better than expected and verify that the high frequency ground portion of the EMMS will accurately measure the EM environments for which it was designed.

  1. Simulation of ground water contamination by tritium: Application to a Moroccan Site

    International Nuclear Information System (INIS)

    Qassoud, D.; Soufi, I.; Nacir, B.; Ziagos, J.; Demir, Z.; Hajjani, A.

    2006-01-01

    Tritium is a radioactive element. Its movement in the environment depends on the chemical forms that it takes. Tritiated water is one of this forms. The infiltration of tritiated water can causes contamination of the environment and the underground water. In this context, we have taken into account a waste contaminated by Tritium and stored in the surface of the soil. We studied the impact of an infiltration of a unit activity of this radioelement in the Moroccan site of Maamora localized in the Rharb region. The principal objective of the work presented in this paper is to give necessary information for the site environmental surveillance program establishment. The assessment is based on the characteristics of the site considered. It is carried out using the methodology taken into account in the Lawrence Livermore National Laboratory (LLNL) for the pollutant transport simulation in the unsaturated zone (between the soil and underground water). This methodology is based on the mathematical model called NUFT[1,2] witch is a unified suite of multiphase, multicomponent models for numerical solution of non-isothermal flow and transport in porous media with application to subsurface contaminant transport problems. NUFT have been developed in LLNL (Livermore-USA). Considering a quantity of one Curie of Tritium and considering the assumptions of impact assessments of the radioactivity on the Maamora ground water, the concentration of this radionuclide in water, will be lower than 0,4% of the acceptable Tritium limit in water. Taking in to account the physical and hydrogeological characteristics of the site studied and in the basis of the site radiological baseline, the environmental impact of the tritium infiltration into the underground water is negligible for the case studied

  2. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    International Nuclear Information System (INIS)

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards

  3. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  4. Strategies for Ground Based Testing of Manned Lunar Surface Systems

    Science.gov (United States)

    Beyer, Jeff; Peacock, Mike; Gill, Tracy

    2009-01-01

    Integrated testing (such as Multi-Element Integrated Test (MEIT)) is critical to reducing risks and minimizing problems encountered during assembly, activation, and on-orbit operation of large, complex manned spacecraft. Provides the best implementation of "Test Like You Fly:. Planning for integrated testing needs to begin at the earliest stages of Program definition. Program leadership needs to fully understand and buy in to what integrated testing is and why it needs to be performed. As Program evolves and design and schedules mature, continually look for suitable opportunities to perform testing where enough components are together in one place at one time. The benefits to be gained are well worth the costs.

  5. Hanford tank initiative test facility site selection study

    International Nuclear Information System (INIS)

    Staehr, T.W.

    1997-01-01

    The Hanford Tanks Initiative (HTI) project is developing equipment for the removal of hard heel waste from the Hanford Site underground single-shell waste storage tanks. The HTI equipment will initially be installed in the 241-C-106 tank where its operation will be demonstrated. This study evaluates existing Hanford Site facilities and other sites for functional testing of the HTI equipment before it is installed into the 241-C-106 tank

  6. Proposed ground water protection strategy for the Uranium Mill Tailings Site at Green River, Utah. Final report

    International Nuclear Information System (INIS)

    1994-11-01

    This document presents the US DOE water resources protection strategy for the Green River, Utah mill tailings disposal site. The modifications in the original plan are based on new information, including ground water quality data collected after remedial action was completed, and on a revised assessment of disposal cell design features, surface conditions, and site hydrogeology. All aspects are discussed in this report

  7. RATES OF IRON OXIDATION AND ARSENIC SORPTION DURING GROUND WATER-SURFACE WATER MIXING AT A HAZARDOUS WASTE SITE

    Science.gov (United States)

    The fate of arsenic discharged from contaminated ground water to a pond at a hazardous waste site is controlled, in part, by the rate of ferrous iron oxidation-precipitation and arsenic sorption. Laboratory experiments were conducted using site-derived water to assess the impact...

  8. Present radiological situation at the Semipalatinsk nuclear test site

    International Nuclear Information System (INIS)

    Stegar, P.

    1996-01-01

    The corroboration of environmental contamination levels obtained by independent equipment and measurements of the team was generally good, the best being with recent Russian and Kazakh data using gamma dose rate measurements. Acceptable corroboration was observed for gamma emitting radionuclides in food and environmental samples. The preliminary results on plutonium levels in soil samples from contaminated sites in the polygon showed values comparable with the data reported by Russian scientists.The major sites selected for field work by the team were the settlements around the polygon of Kainar(population of about 10,000) in the south, Sharzhal (2000) and Karaul (5000) in the east, and Dolon (2000 just north of the Irtysh. Akzhar, within the polygon just south of the river, was used as a reference site. Inside the polygon the efforts were concentrated in the Lake Balapan area including the semipermanent farm around Ground Zero, and a selection of sampling sites along the plume paths of atmospheric and above ground explosions. The operations carried out in the field included: gamma dose rate measurements; in situ gamma spectrometry; and the collection of samples of grass, meat, milk, offal, vegetables and soil, as well as biological indicators such as animal bones, mushrooms and moss. The levels of contamination in the soil at the locations specified are shown. The contamination by ' S r in milk, drinking water and the lake water was also measured, together with results for 137 Cs in meat. The external gamma dose rates in settlements and in the polygon, excluding the Lake Balapan and Ground Zero areas, were around 0.1 uGy per hour, against rates of up to 40 uGy per hour around Lake Balapan and Ground Zero. The dose assessment included consideration of all relevant pathways, of which the most important were external gamma exposure from material on or in the ground, inhalation of material resuspended from the ground and consumption of contaminated foods. These

  9. Database on radioecological situation in Semipalatinsk nuclear test site

    International Nuclear Information System (INIS)

    Turkebaev, T.Eh.; Kislitsin, S.B.; Lopuga, A.D.; Kuketaev, A.T.; Kikkarin, S.M.

    1999-01-01

    One of the main objectives of the National Nuclear Center of the Republic of Kazakstan is to define radioecological situation in details, conduct a continuous monitoring and eliminate consequences of nuclear explosions at Semipalatinsk nuclear test site. Investigations of Semipalatinsk nuclear test site area contamination by radioactive substances and vindication activity are the reasons for development of computer database on radioecological situation of the test site area, which will allow arranging and processing the available and entering information about the radioecological situation, assessing the effect of different testing factors on the environment and health of the Semipalatinsk nuclear test site area population.The described conception of database on radioecological situation of the Semipalatinsk nuclear test site area cannot be considered as the final one. As new information arrives, structure and content of the database is updated and optimized. New capabilities and structural elements may be provided if new aspects in Semipalatinsk nuclear test site area contamination study (air environment study, radionuclides migration) arise

  10. Semipalatinsk test site: 10 years after shutting down

    International Nuclear Information System (INIS)

    Tukhvatulin, Sh.T.

    2001-01-01

    The paper consists the historical materials and chronology of events on the Semipalatinsk test site before and after it shutdown. The main part of the paper is focused on the activity on the former nuclear site after it shutdown. The first of all activity is related with coming into being and development of the National Nuclear Center of the Republic of Kazakhstan

  11. Usability Testing in a Library Web Site Redesign Project.

    Science.gov (United States)

    McMullen, Susan

    2001-01-01

    Discusses the need for an intuitive library information gateway to meet users' information needs and describes the process involved in redesigning a library Web site based on experiences at Roger Williams University. Explains usability testing methods that were used to discover how users were interacting with the Web site interface. (Author/LRW)

  12. Grid site testing for ATLAS with HammerCloud

    International Nuclear Information System (INIS)

    Elmsheuser, J; Hönig, F; Legger, F; LLamas, R Medrano; Sciacca, F G; Ster, D van der

    2014-01-01

    With the exponential growth of LHC (Large Hadron Collider) data in 2012, distributed computing has become the established way to analyze collider data. The ATLAS grid infrastructure includes more than 130 sites worldwide, ranging from large national computing centers to smaller university clusters. HammerCloud was previously introduced with the goals of enabling virtual organisations (VO) and site-administrators to run validation tests of the site and software infrastructure in an automated or on-demand manner. The HammerCloud infrastructure has been constantly improved to support the addition of new test workflows. These new workflows comprise e.g. tests of the ATLAS nightly build system, ATLAS Monte Carlo production system, XRootD federation (FAX) and new site stress test workflows. We report on the development, optimization and results of the various components in the HammerCloud framework.

  13. Tonopah Test Range Environmental Restoration Corrective Action Sites

    International Nuclear Information System (INIS)

    Ronald B. Jackson

    2007-01-01

    Corrective Action Sites (CASs) and Corrective Action Units (CAUs) at the Tonopah Test Range (TTR) may be placed into three categories: Clean Closure/No Further Action, Closure in Place, or Closure in Progress

  14. Grid Site Testing for ATLAS with HammerCloud

    CERN Document Server

    Elmsheuser, J; The ATLAS collaboration; Legger, F; Medrano LLamas, R; Sciacca, G; van der Ster, D

    2014-01-01

    With the exponential growth of LHC (Large Hadron Collider) data in 2012, distributed computing has become the established way to analyze collider data. The ATLAS grid infrastructure includes more than 130 sites worldwide, ranging from large national computing centers to smaller university clusters. HammerCloud was previously introduced with the goals of enabling VO- and site-administrators to run validation tests of the site and software infrastructure in an automated or on-demand manner. The HammerCloud infrastructure has been constantly improved to support the addition of new test work-flows. These new work-flows comprise e.g. tests of the ATLAS nightly build system, ATLAS MC production system, XRootD federation FAX and new site stress test work-flows. We report on the development, optimization and results of the various components in the HammerCloud framework.

  15. Grid Site Testing for ATLAS with HammerCloud

    CERN Document Server

    Elmsheuser, J; The ATLAS collaboration; Legger, F; Medrano LLamas, R; Sciacca, G; van der Ster, D

    2013-01-01

    With the exponential growth of LHC (Large Hadron Collider) data in 2012, distributed computing has become the established way to analyze collider data. The ATLAS grid infrastructure includes more than 130 sites worldwide, ranging from large national computing centers to smaller university clusters. HammerCloud was previously introduced with the goals of enabling VO- and site-administrators to run validation tests of the site and software infrastructure in an automated or on-demand manner. The HammerCloud infrastructure has been constantly improved to support the addition of new test work-flows. These new work-flows comprise e.g. tests of the ATLAS nightly build system, ATLAS MC production system, XRootD federation FAX and new site stress test work-flows. We report on the development, optimization and results of the various components in the HammerCloud framework.

  16. New data on the Paleozoic of the Semipalatinsk test site

    International Nuclear Information System (INIS)

    Ergaliev, G.Kh.; Myasnikov, A.K.; Nikitin, I.F.; Polyanskij, N.V.; Sergeeva, L.V.; Sergieva, M.N.; Sal'menova, L.T.; Utegulov, M.T.; Tsaj, D.T.; Shuzhanov, V.M.

    1998-01-01

    The latest data on Paleozoic of the Semipalatinsk test site acquired as result of the stratigraphic and pale ontological investigation which have been conducted for the first time after 46-year interval in geological studies are presented. (author)

  17. Closure Report for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 107 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Low Impact Soil Sites' and consists of the following 15 Corrective Action Sites (CASs), located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site: CAS 01-23-02, Atmospheric Test Site - High Alt; CAS 02-23-02, Contaminated Areas (2); CAS 02-23-03, Contaminated Berm; CAS 02-23-10, Gourd-Amber Contamination Area; CAS 02-23-11, Sappho Contamination Area; CAS 02-23-12, Scuttle Contamination Area; CAS 03-23-24, Seaweed B Contamination Area; CAS 03-23-27, Adze Contamination Area; CAS 03-23-28, Manzanas Contamination Area; CAS 03-23-29, Truchas-Chamisal Contamination Area; CAS 04-23-02, Atmospheric Test Site T4-a; CAS 05-23-06, Atmospheric Test Site; CAS 09-23-06, Mound of Contaminated Soil; CAS 10-23-04, Atmospheric Test Site M-10; and CAS 18-23-02, U-18d Crater (Sulky). Closure activities were conducted from February through April 2009 according to the FFACO (1996; as amended February 2008) and Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 107 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2009). The corrective action alternatives included No Further Action and Closure in Place with Administrative Controls. Closure activities are summarized.

  18. Aerosol Optical Properties at the Ground Sites during the 2010 CARES Field Campaign

    Science.gov (United States)

    Atkinson, D. B.; Radney, J. G.; Harworth, J. W.

    2010-12-01

    Preliminary results from the ground sites at the 2010 CARES field campaign (T0 near Sacramento, CA and T1 near Cool, CA) will be presented. A number of aerosol optical properties were measured at high time resolution for the four week study period using custom instruments. The aerosol extinction coefficient was measured at T0 using a cavity ring-down transmissometer (CRDT) at two wavelengths (532 and 1064 nm) and the aerosol scattering coefficient was measured at 532 nm using a Radiance Research M903 nephelometer. At T1, a new CRDT instrument was deployed that measured the extinction coefficient at three wavelengths (355, 532, and 1064 nm) for sub-10 μm (nominal) and sub-2.5 μm aerosols at ambient, elevated, and reduced relative humidity. A new type of custom nephelometer that measures the aerosol scattering coefficient at 532 nm using an array detector was also deployed at T1.

  19. The significance of natural ground-water recharge in site selection for mill tailings disposal

    International Nuclear Information System (INIS)

    Stephens, D.B.

    1985-01-01

    Milling operations throughout the world have created vast amounts of waste by-products, or tailings, which are often disposed on the land surface. The wastes may be disposed behind dams, on untreated ground, or on compacted clay or synthetic liners of impoundments and trenches. Often one of the principle concerns of environmental regulatory agencies is whether seepage from the waste pile could move through the vadose zone to the water table and possibly contaminate an aquifer. The seepage may be generated by the drainage of liquids initially deposited along with the tailings or by infiltrating meteoric water which leaches soluted from the tailings. The purpose of this article is to discuss some of the commonly held assumptions regarding storage of seepage wastes in the unsaturated zone. The significance of recent studies of water movement in dry climates which pertain to tailings site selection are presented

  20. Comparison of equivalent linear and non linear methods on ground response analysis: case study at West Bangka site

    International Nuclear Information System (INIS)

    Eko Rudi Iswanto; Eric Yee

    2016-01-01

    Within the framework of identifying NPP sites, site surveys are performed in West Bangka (WB), Bangka-Belitung Island Province. Ground response analysis of a potential site has been carried out using peak strain profiles and peak ground acceleration. The objective of this research is to compare Equivalent Linear (EQL) and Non Linear (NL) methods of ground response analysis on the selected NPP site (West Bangka) using Deep Soil software. Equivalent linear method is widely used because requires soil data in simple way and short time of computational process. On the other hand, non linear method is capable of representing the actual soil behaviour by considering non linear soil parameter. The results showed that EQL method has similar trends to NL method. At surface layer, the acceleration values for EQL and NL methods are resulted as 0.425 g and 0.375 g respectively. NL method is more reliable in capturing higher frequencies of spectral acceleration compared to EQL method. (author)

  1. Performance Assessment Monitoring Plan for the Hanford Site Low-Level Waste Burial Grounds

    International Nuclear Information System (INIS)

    SONNICHSEN, J.C.

    2000-01-01

    As directed by the U.S. Department of Energy (DOE), Richland Operations Office (DOE-RL), Fluor Hanford, Inc. will implement the requirements of DOE Order 435.1, Radioactive Waste Management, as the requirements relate to the continued operation of the low-level waste disposal facilities on the Hanford Site. DOE Order 435.1 requires a disposal authorization statement authorizing operation (or continued operation) of a low-level waste disposal facility. The objective of this Order is to ensure that all DOE radioactive waste is managed in a manner that protects the environment and personnel and public health and safety. The manual (DOE Order 435.1 Manual) implementing the Order states that a disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980 documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility. Failure to obtain a disposal authorization statement shall result in shutdown of an operational disposal facility. In fulfillment of the requirements of DOE Order 435.1, a disposal authorization statement was issued on October 25, 1999, authorizing the Hanford Site to transfer, receive, possess, and dispose of low-level radioactive waste at the 200 East Area and the 200 West Area Low-Level Burial Grounds. The disposal authorization statement constitutes approval of the performance assessment and composite analysis, authorizes operation of the facility, and includes conditions that the disposal facility must meet. One of the conditions is that monitoring plans for the 200 East Area and 200 West Area Low-Level Burial Grounds be written and approved by the DOE-RL. The monitoring plan is to be updated and implemented within 1 year following issuance of the disposal authorization statement to

  2. Site-specific strong ground motion prediction using 2.5-D modelling

    Science.gov (United States)

    Narayan, J. P.

    2001-08-01

    An algorithm was developed using the 2.5-D elastodynamic wave equation, based on the displacement-stress relation. One of the most significant advantages of the 2.5-D simulation is that the 3-D radiation pattern can be generated using double-couple point shear-dislocation sources in the 2-D numerical grid. A parsimonious staggered grid scheme was adopted instead of the standard staggered grid scheme, since this is the only scheme suitable for computing the dislocation. This new 2.5-D numerical modelling avoids the extensive computational cost of 3-D modelling. The significance of this exercise is that it makes it possible to simulate the strong ground motion (SGM), taking into account the energy released, 3-D radiation pattern, path effects and local site conditions at any location around the epicentre. The slowness vector (py) was used in the supersonic region for each layer, so that all the components of the inertia coefficient are positive. The double-couple point shear-dislocation source was implemented in the numerical grid using the moment tensor components as the body-force couples. The moment per unit volume was used in both the 3-D and 2.5-D modelling. A good agreement in the 3-D and 2.5-D responses for different grid sizes was obtained when the moment per unit volume was further reduced by a factor equal to the finite-difference grid size in the case of the 2.5-D modelling. The components of the radiation pattern were computed in the xz-plane using 3-D and 2.5-D algorithms for various focal mechanisms, and the results were in good agreement. A comparative study of the amplitude behaviour of the 3-D and 2.5-D wavefronts in a layered medium reveals the spatial and temporal damped nature of the 2.5-D elastodynamic wave equation. 3-D and 2.5-D simulated responses at a site using a different strike direction reveal that strong ground motion (SGM) can be predicted just by rotating the strike of the fault counter-clockwise by the same amount as the azimuth of

  3. Seismic ground motion characteristics in the Bucharest area: source and site effects contribution

    International Nuclear Information System (INIS)

    Grecu, B.; Popa, M.; Radulian, M.

    2003-01-01

    The contribution of source vs. site effects on the seismic ground motion in Bucharest is controversial as the previous studies showed. The fundamental period of resonance for the sedimentary cover is emphasized by ambient noise and earthquake measurements, if the spectral ratio method (Nakamura, 1989) is applied (Bonjer et al., 1989). On the other hand, the numerical simulations (Moldoveanu et al., 2000.) and acceleration spectra analysis (Sandi et al., 2001) brought into the light the determinant role of the source effects. We considered all the available instrumental data related to Vrancea earthquakes recorded in Bucharest area to find how the source and site properties control the peak ground motion peculiarities. Our main results are summarized as follows: 1. The resonant period of oscillation, related to the shallow sediment layer, is practically present in all the H/V spectral ratios, no matter we consider ambient noise or earthquakes of any size. This argues in favor of the crucial role played by the sedimentary cover and proves that the ratio method is reasonably removing the source effects. However, the absolute spectra are completely different for earthquakes below and above magnitude 7, namely amplitudes in the range of 1-2 s periods are negligible in the first case, and predominant in the second one. It looks like the resonant amplification by the sedimentary cover becomes effective only for the largest earthquakes (M > 7), when the source radiation coincides with the fundamental resonance range. We conclude that the damage in Bucharest is dramatically amplified when the earthquake size is above a critical value (M ≅ 7); 2. Our analysis shows a rather weak variability of the peak motion values and spectral amplitudes over the study area, in agreement with the relatively small variability of the shallow structure topography. (authors)

  4. Effect of Mehmood Booti dumping site in Lahore on ground water quality

    International Nuclear Information System (INIS)

    Haydar, S.

    2012-01-01

    A study was carried out to elucidate the effects of Mehmood Booti dumping site in Lahore on the quality of groundwater in conterminous areas and recommend improvement measures. For this purpose, five tube wells were selected for collection of water samples. One of these was located within the premises of Mahmood Booti dumping site while another tube well at a distance of 8 km near Mall Road was selected as the control point to compare the test results. Three samples from each sampling point were collected before monsoon and three after monsoon with a total of thirty (30) samples for statistical significance. To find out the effect of leachate on groundwater quality, five parameters i.e. turbidity, pH, hardness, total dissolved solids and fecal coliform were tested. Mean value of test results was compared with the World Health Organization (WHO) guidelines for drinking water. It was indicated by the test results that physico-chemical quality of all sources (tube wells) was satisfactory. The test results indicated that 20% of water samples collected from the tube wells before monsoon contained fecal contaminant and that percentage rose to 60% after monsoon. The analysis of results showed that Mehmood Booti dumping site has no significant effect on the selected water quality parameters. (author)

  5. Testing a ground-based canopy model using the wind river canopy crane

    Science.gov (United States)

    Robert Van Pelt; Malcolm P. North

    1999-01-01

    A ground-based canopy model that estimates the volume of occupied space in forest canopies was tested using the Wind River Canopy Crane. A total of 126 trees in a 0.25 ha area were measured from the ground and directly from a gondola suspended from the crane. The trees were located in a low elevation, old-growth forest in the southern Washington Cascades. The ground-...

  6. Software Development and Test Methodology for a Distributed Ground System

    Science.gov (United States)

    Ritter, George; Guillebeau, Pat; McNair, Ann R. (Technical Monitor)

    2002-01-01

    The Marshall Space Flight Center's (MSFC) Payload Operations Center (POC) ground system has evolved over a period of about 10 years. During this time the software processes have migrated from more traditional to more contemporary development processes in an effort to minimize unnecessary overhead while maximizing process benefits. The Software processes that have evolved still emphasize requirements capture, software configuration management, design documenting, and making sure the products that have been developed are accountable to initial requirements. This paper will give an overview of how the Software Processes have evolved, highlighting the positives as well as the negatives. In addition, we will mention the COTS tools that have been integrated into the processes and how the COTS have provided value to the project.

  7. Nevada Test Site Environmental Report 2006 and Site Description (Volume 1)

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2007-10-01

    The Nevada Test Site Environmental Report 2006 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2006 produced to be a more cost-effective means of distributing information contained in the NTSER to interested DOE stakeholders.

  8. Nevada Test Site Environmental Report 2006 and Site Description (Volume 1)

    International Nuclear Information System (INIS)

    Cathy Wills

    2007-01-01

    The Nevada Test Site Environmental Report 2006 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2006 produced to be a more cost-effective means of distributing information contained in the NTSER to interested DOE stakeholders

  9. Plenoptic Flow Imaging for Ground Testing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Instantaneous volumetric flow imaging is crucial to aerodynamic development and testing. Simultaneous volumetric measurement of flow parameters enables accurate...

  10. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2006-04-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139.

  11. A blind test of nondestructive underground void detection by ground penetrating radar (GPR)

    Science.gov (United States)

    Lai, Wallace W. L.; Chang, Ray K. W.; Sham, Janet F. C.

    2018-02-01

    Blind test/experiment is widely adopted in various scientific disciplines like medicine drug testing/clinical trials/psychology, but not popular in nondestructive testing and evaluation (NDTE) nor near-surface geophysics (NSG). This paper introduces a blind test of nondestructive underground void detection in highway/pavement using ground penetrating radar (GPR). Purpose of which is to help the Highways Department (HyD) of the Hong Kong Government to evaluate the feasibility of large-scale and nationwide application, and examine the ability of appropriate service providers to carry out such works. In the past failure case of such NDTE/NSG based on lowest bid price, it is not easy to know which part(s) in SWIMS (S - service provider, i.e. people; W - work procedure; I - instrumentation; M - materials in the complex underground; S - specifications by client) fails, and how it/they fail(s). This work attempts to carry out the blind test by burying fit balls (as voids) under a site with reinforced concrete road and paving block by PolyU team A. The blind test about the void centroid, spread and cover depth was then carried out by PolyU team B without prior information given. Then with this baseline, a marking scheme, acceptance criteria and passing mark were set to test six local commercial service providers, determine their scores and evaluate the performance. A pass is a prerequisite of the award of a service contract of similar nature. In this first attempt of the blind test, results were not satisfactory and it is concluded that 'S-service provider' and 'W-work procedure' amongst SWIMS contributed to most part of the unsatisfactory performance.+

  12. Nuclear Materials Management for the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Jesse C. Schreiber

    2007-01-01

    The Nevada Test Site (NTS) has transitioned from its historical role of weapons testing to a broader role that is focused on being a solution to multiple National Nuclear Security Administration (NNSA) challenges and opportunities with nuclear materials for the nation. NTS is supporting other NNSA sites challenged with safe nuclear materials storage and disposition. NNSA, with site involvement, is currently transforming the nuclear stockpile and supporting infrastructure to meet the 2030 vision. Efforts are under way to make the production complex smaller, more consolidated, and more modern. With respect to the nuclear material stockpile, the NNSA sites are currently reducing the complex nuclear material inventory through dispositioning and consolidating nuclear material. This includes moving material from other sites to NTS. State-of-the-art nuclear material management and control practices at NTS are essential for NTS to ensure that these new activities are accomplished in a safe, secure, efficient, and environmentally responsible manner. NTS is aggressively addressing this challenge

  13. Investigation of Nonlinear Site Response and Seismic Compression from Case History Analysis and Laboratory Testing

    Science.gov (United States)

    Yee, Eric

    In this thesis I address a series of issues related to ground failure and ground motions during earthquakes. A major component is the evaluation of cyclic volumetric strain behavior of unsaturated soils, more commonly known as seismic compression, from advanced laboratory testing. Another major component is the application of nonlinear and equivalent linear ground response analyses to large-strain problems involving highly nonlinear dynamic soil behavior. These two components are merged in the analysis of a truly unique and crucial field case history of nonlinear site response and seismic compression. My first topic concerns dynamic soil testing for relatively small strain dynamic soil properties such as threshold strains, gammatv. Such testing is often conducted using specialized devices such as dual-specimen simple-shear, as devices configured for large strain testing produce noisy signals in the small strain range. Working with a simple shear device originally developed for large-strain testing, I extend its low-strain capabilities by characterizing noisy signals and utilizing several statistical methods to extract meaningful responses in the small strain range. I utilize linear regression of a transformed variable to estimate the cyclic shear strain from a noisy signal and the confidence interval on its amplitude. I utilize Kernel regression with the Nadaraya-Watson estimator and a Gaussian kernel to evaluate vertical strain response. A practical utilization of these techniques is illustrated by evaluating threshold shear strains for volume change with a procedure that takes into account uncertainties in the measured shear and vertical strains. My second topic concerns the seismic compression characteristics of non-plastic and low-plasticity silty sands with varying fines content (10 ≤ FC ≤ 60%). Simple shear testing was performed on various sand-fines mixtures at a range of modified Proctor relative compaction levels ( RC) and degrees-of-saturation (S

  14. A reconnaissance assessment of probabilistic earthquake accelerations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Perkins, D.M.; Thenhaus, P.C.; Hanson, S.L.; Algermissen, S.T.

    1986-01-01

    We have made two interim assessments of the probabilistic ground-motion hazard for the potential nuclear-waste disposal facility at the Nevada Test Site (NTS). The first assessment used historical seismicity and generalized source zones and source faults in the immediate vicinity of the facility. This model produced relatively high probabilistic ground motions, comparable to the higher of two earlier estimates, which was obtained by averaging seismicity in a 400-km-radius circle around the site. The high ground-motion values appear to be caused in part by nuclear-explosion aftershocks remaining in the catalog even after the explosions themselves have been removed. The second assessment used particularized source zones and source faults in a region substantially larger than NTS to provide a broad context of probabilistic ground motion estimates at other locations of the study region. Source faults are mapped or inferred faults having lengths of 5 km or more. Source zones are defined by boundaries separating fault groups on the basis of direction and density. For this assessment, earthquake recurrence has been estimated primarily from historic seismicity prior to nuclear testing. Long-term recurrence for large-magnitude events is constrained by geological estimates of recurrence in a regime in which the large-magnitude earthquakes would occur with predominately normal mechanisms. 4 refs., 10 figs

  15. Hydraulic Characterization of Overpressured Tuffs in Central Yucca Flat, Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K.J. Halford; R.J. Laczniak; D.L. Galloway

    2005-10-07

    A sequence of buried, bedded, air-fall tuffs has been used extensively as a host medium for underground nuclear tests detonated in the central part of Yucca Flat at the Nevada Test Site. Water levels within these bedded tuffs have been elevated hundreds of meters in areas where underground nuclear tests were detonated below the water table. Changes in the ground-water levels within these tuffs and changes in the rate and distribution of land-surface subsidence above these tuffs indicate that pore-fluid pressures have been slowly depressurizing since the cessation of nuclear testing in 1992. Declines in ground-water levels concurrent with regional land subsidence are explained by poroelastic deformation accompanying ground-water flow as fluids pressurized by underground nuclear detonations drain from the host tuffs into the overlying water table and underlying regional carbonate aquifer. A hydraulic conductivity of about 3 x 10-6 m/d and a specific storage of 9 x 10-6 m-1 are estimated using ground-water flow models. Cross-sectional and three-dimensional ground-water flow models were calibrated to measured water levels and to land-subsidence rates measured using Interferometric Synthetic Aperture Radar. Model results are consistent and indicate that about 2 million m3 of ground water flowed from the tuffs to the carbonate rock as a result of pressurization caused by underground nuclear testing. The annual rate of inflow into the carbonate rock averaged about 0.008 m/yr between 1962 and 2005, and declined from 0.005 m/yr in 2005 to 0.0005 m/yr by 2300.

  16. Intra-site Secure Transport Vehicle test and evaluation

    International Nuclear Information System (INIS)

    Scott, S.

    1995-01-01

    In the past many DOE and DoD facilities involved in handling nuclear material realized a need to enhance the safely and security for movement of sensitive materials within their facility, or ''intra-site''. There have been prior efforts to improve on-site transportation; however, there remains a requirement for enhanced on-site transportation at a number of facilities. The requirements for on-site transportation are driven by security, safety, and operational concerns. The Intra-site Secure Transport Vehicle (ISTV) was designed to address these concerns specifically for DOE site applications with a standardized vehicle design. This paper briefly reviews the ISTV design features providing significant enhancement of onsite transportation safety and security, and also describes the test and evaluation activities either complete of underway to validate the vehicle design and operation

  17. Ground deformation monitoring using RADARSAT-2 DInSAR-MSBAS at the Aquistore CO2 storage site in Saskatchewan (Canada)

    Science.gov (United States)

    Czarnogorska, M.; Samsonov, S.; White, D.

    2014-11-01

    The research objectives of the Aquistore CO2 storage project are to design, adapt, and test non-seismic monitoring methods for measurement, and verification of CO2 storage, and to integrate data to determine subsurface fluid distributions, pressure changes and associated surface deformation. Aquistore site is located near Estevan in Southern Saskatchewan on the South flank of the Souris River and west of the Boundary Dam Power Station and the historical part of Estevan coal mine in southeastern Saskatchewan, Canada. Several monitoring techniques were employed in the study area including advanced satellite Differential Interferometric Synthetic Aperture Radar (DInSAR) technique, GPS, tiltmeters and piezometers. The targeted CO2 injection zones are within the Winnipeg and Deadwood formations located at > 3000 m depth. An array of monitoring techniques was employed in the study area including advanced satellite Differential Interferometric Synthetic Aperture Radar (DInSAR) with established corner reflectors, GPS, tiltmeters and piezometers stations. We used airborne LIDAR data for topographic phase estimation, and DInSAR product geocoding. Ground deformation maps have been calculated using Multidimensional Small Baseline Subset (MSBAS) methodology from 134 RADARSAT-2 images, from five different beams, acquired during 20120612-20140706. We computed and interpreted nine time series for selected places. MSBAS results indicate slow ground deformation up to 1 cm/year not related to CO2 injection but caused by various natural and anthropogenic causes.

  18. Fruit and vegetable radioactivity survey, Nevada Test Site environs

    International Nuclear Information System (INIS)

    Andrews, V.E.; Vandervort, J.C.

    1978-04-01

    During the 1974 growing season, the Environmental Monitoring and Support Laboratory-Las Vegas, of the U.S. Environmental Protection Agency, collected samples of fruits and vegetables grown in the off-site area surrounding the Nevada Test Site. The objective was to estimate the potential radiological dose to off-site residents from consumption of locally grown foodstuffs. Irrigation water and soil were collected from the gardens and orchards sampled. Soil concentrations of cesium-137 and plutonium-239 reflected the effects of close-in fallout from nuclear testing at the Nevada Test Site. The only radionuclide measured in fruit and vegetable samples which might be related to such fallout was strontium-90, for which the first year estimated dose to bone marrow of an adult with an assumed rate of consumption of the food would be 0.14 millirad

  19. Interpretation of Ground Penetrating Radar data at the Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, K.A.; Mitchell, T.H.; Kunk, J.R.

    1993-07-01

    Ground Penetrating Radar (GPR) is being used extensively during characterization and remediation of chemical and radioactive waste sites at the Hanford Site in Washington State. Time and money for GPR investigations are often not included during the planning and budgeting phase. Therefore GPR investigations must be inexpensive and quick to minimize impact on already established budgets and schedules. An approach to survey design, data collection, and interpretation has been developed which emphasizes speed and budget with minimal impact on the integrity of the interpretation or quality of the data. The following simple rules of thumb can be applied: (1) Assemble as much pre-survey information as possible, (2) Clearly define survey objectives prior to designing the survey and determine which combination of geophysical methods will best meet the objectives, (3) Continuously communicate with the client, before, during and after the investigation, (4) Only experienced GPR interpreters should acquire the field data, (5) Use real-time monitoring of the data to determine where and how much data to collect and assist in the interpretation, (6) Always ``error`` in favor of collecting too much data, (7) Surveys should have closely spaced (preferably 5 feet, no more than 10 feet), orthogonal profiles, (8) When possible, pull the antenna by hand.

  20. Interpretation of Ground Penetrating Radar data at the Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    Bergstrom, K.A.; Mitchell, T.H.; Kunk, J.R.

    1993-07-01

    Ground Penetrating Radar (GPR) is being used extensively during characterization and remediation of chemical and radioactive waste sites at the Hanford Site in Washington State. Time and money for GPR investigations are often not included during the planning and budgeting phase. Therefore GPR investigations must be inexpensive and quick to minimize impact on already established budgets and schedules. An approach to survey design, data collection, and interpretation has been developed which emphasizes speed and budget with minimal impact on the integrity of the interpretation or quality of the data. The following simple rules of thumb can be applied: (1) Assemble as much pre-survey information as possible, (2) Clearly define survey objectives prior to designing the survey and determine which combination of geophysical methods will best meet the objectives, (3) Continuously communicate with the client, before, during and after the investigation, (4) Only experienced GPR interpreters should acquire the field data, (5) Use real-time monitoring of the data to determine where and how much data to collect and assist in the interpretation, (6) Always ''error'' in favor of collecting too much data, (7) Surveys should have closely spaced (preferably 5 feet, no more than 10 feet), orthogonal profiles, (8) When possible, pull the antenna by hand

  1. Single-shell tank riser resistance to ground test plan

    International Nuclear Information System (INIS)

    Kiewert, L.R.

    1996-01-01

    This Test Procedure provides the general directions for conducting Single-Shell Tank Riser to Earth Measurements which will be used by engineering as a step towards providing closure for the Lightning Hazard Issue

  2. BIOMETRICAL CHARACTERIZATION OF TEST SITES FOR MAIZE BREEDING

    Directory of Open Access Journals (Sweden)

    Domagoj Šimić

    2003-12-01

    Full Text Available Yield stability of genotypes and analysis of genotype×environment interaction (GEI as important objects in analyses of multienvironment trials are well documented in Croatia. However, little is known about suitability and biometrical characters of the sites where genotypes should be tested. Objectives of this study were in combined analysis of balanced maize trials i to compare test sites in joint linear regression analysis and ii to compare several stability models by clustering test sites in order to assess biometrical suitability of particular test sites. Partitioning of GEI sum of squares according to the symmetrical joint linear regression analysis revealed highly significant Tukey's test, heterogeneity of environmental regressions and residual deviations. Mean grain yields, within-macroenvironment error mean squares, and stability parameters varied considerably among 16 macroenvironments. The highest grain yields were recorded in Osijek in both years and in Varaždin in 1996, with more than 11 t ha-1 . It seems that Feričanci would be optimum test site with relatively high and consistent yield and high values of entry mean squares indicating satisfactory differentiation among cultivars. However, four clustering methods generally did not correspond. According to three out of four clustering methods, two macroenvironments of Feričanci provide similar results. Employing other methods such as shifted multiplicative models, which effectively eliminate significant rank-change interaction, appears to be more reasonable.

  3. Hydrologic investigations to evaluate a potential site for a nuclear-waste repository, Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Wilson, W.E.

    1985-01-01

    Yucca Mountain, Nevada Test Site, is being evaluated by the U.S. Department of Energy for its suitability as a site for a mined geologic respository for high-level nuclear wastes. The repository facility would be constructed in densely welded tuffs in the unsaturated zone. In support of the evaluation, the U.S. Geological Survey is conducting hydrologic investigations of both the saturated and unsaturated zones, as well as paleohydrologic studies. Investigation in saturated-zone hydrology will help define one component of ground-water flow paths and travel times to the accessible environment. A two-dimensional, steady-state, finite-element model was developed to describe the regional hydrogeologic framework. The unsaturated zone is 450 to 700 meters thick at Yucca Mountain; precipitation averages about 150 millimeters per year. A conceptual hydrologic model of the unsaturated zone incorporates the following features: minimal net infiltration, variable distribution of flux, lateral flow, potential for perched-water zones, fracture and matrix flow, and flow along faults. The conceptual model is being tested primarily by specialized test drilling; plans also are being developed for in-situ testing in a proposed exploratory shaft. Quaternary climatic and hydrologic conditions are being evaluated to develop estimates of the hydrologic effects of potential climatic changes during the next 10,000 years. Evaluation approaches include analysis of plant macrofossils in packrat middens, evaluation of lake and playa sediments, infiltration tests, and modeling effects of potential increased recharge on the potentiometric surface

  4. Work plan for ground water elevation data recorder/monitor well installation at the New Rifle Site, Rifle, Colorado

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water monitor wells and ground water elevation data recorders (data loggers) at the New Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project site, Rifle, Colorado. The monitor wells and data loggers will be used to gather required time-dependent data to investigate the interaction between the shallow aquifer and the Colorado River

  5. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Lakeview, Oregon. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the UMTRA Project site near Lakeview, Oregon, was completed in 1989. The mill operated from February 1958 to November 1960. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  6. Defense waste management operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Williams, R.E.; Kendall, E.W.

    1988-01-01

    Waste management activities were initiated at the Nevada Test Site (NTS) to dispose of low-level wastes (LLW) produced by the Department of Energy's (DOE's) weapons testing program. Disposal activities have expanded from the burial of atmospheric weapons testing debris to demonstration facilities for greater-than-Class C (GTCC) waste, transuranic (TRU) waste storage and certification, and the development of a mixed waste (MW) facility. Site specific operational research projects support technology development required for the various disposal facilities. The annual cost of managing the facilities is about $6 million depending on waste volumes and types

  7. Assessment of radioactive contaminations of the ground in Hanover-List with scales and methods of the German Federal Ordinance on Soil Protection and Contaminated Sites (BBodSchV). Pt. 2. Application of test thresholds and determination of need for actions

    International Nuclear Information System (INIS)

    Gellermann, Rainer; Guenther, Petra; Evers, Burkhard

    2010-01-01

    In Part 1 of this paper test thresholds for radionuclides in soil have been derived on the basis of methods and scales of the German Ordinance on Soil Protection (BBodSchV). In this paper, these test thresholds are checked with regard to their plausibility. Materials, methods, results are described in Part 1 of this paper. This contribution demonstrates that the test thresholds derived in Part 1 are plausible and feasible according to the requirements of the established methods. The epidemiological basis for the treatment of ionizing radiation is well founded. Risks can be quantified via the knowledge of cancer risks due to radiation. As a reference value the overall fatal risk coefficient of 5 % per Sv recommended by ICRP is used. The test thresholds obtained are sufficiently far from background levels in soils of northern Germany. Consequently, the test thresholds are applicable without any background corrections. Exposures by external radiation outdoors and exposures by inhalation of radon in cellar rooms result in calculated test thresholds in the order of background levels. Nevertheless, feasible results are obtained because in the case of toxic substances without threshold levels the additional exposures are considered for determination of test thresholds. The approach of test thresholds for radioactive soil contamination presented in Part 1 of this paper complies with the criteria of the German methods for calculation of test thresholds in soil protection regarding plausibility and feasibility. It enables the soil protection authorities to assess radioactive contaminations of the ground according to the established rules in the field of soil protection and to make decisions according to Articles 9 and 10 of the German Soil Protection Act. Part 3 of this paper discusses the application of the test thresholds and the possibilities of determining the need for remediation actions. (orig.)

  8. V S30, slope, H 800 and f 0: performance of various site-condition proxies in reducing ground-motion aleatory variability and predicting nonlinear site response

    Science.gov (United States)

    Derras, Boumédiène; Bard, Pierre-Yves; Cotton, Fabrice

    2017-09-01

    The aim of this paper is to investigate the ability of various site-condition proxies (SCPs) to reduce ground-motion aleatory variability and evaluate how SCPs capture nonlinearity site effects. The SCPs used here are time-averaged shear-wave velocity in the top 30 m ( V S30), the topographical slope (slope), the fundamental resonance frequency ( f 0) and the depth beyond which V s exceeds 800 m/s ( H 800). We considered first the performance of each SCP taken alone and then the combined performance of the 6 SCP pairs [ V S30- f 0], [ V S30- H 800], [ f 0-slope], [ H 800-slope], [ V S30-slope] and [ f 0- H 800]. This analysis is performed using a neural network approach including a random effect applied on a KiK-net subset for derivation of ground-motion prediction equations setting the relationship between various ground-motion parameters such as peak ground acceleration, peak ground velocity and pseudo-spectral acceleration PSA ( T), and M w, R JB, focal depth and SCPs. While the choice of SCP is found to have almost no impact on the median ground-motion prediction, it does impact the level of aleatory uncertainty. V S30 is found to perform the best of single proxies at short periods ( T < 0.6 s), while f 0 and H 800 perform better at longer periods; considering SCP pairs leads to significant improvements, with particular emphasis on [ V S30- H 800] and [ f 0-slope] pairs. The results also indicate significant nonlinearity on the site terms for soft sites and that the most relevant loading parameter for characterising nonlinear site response is the "stiff" spectral ordinate at the considered period.[Figure not available: see fulltext.

  9. Defense waste management operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Williams, R.E.; Kendall, E.W.

    1988-01-01

    Waste management activities were initiated at the Nevada Test Site (NTS) to dispose of low-level wastes (LLW) produced by the Department of Energy's (DOE's) weapons testing program. Disposal activities have expanded from the burial of atmospheric weapons testing debris to demonstration facilities for greater-than-Class-C (GTCC) waste, transuranic (TRU) waste storage and certification, and the development of a mixed waste (MW) facility. Site specific operational research projects support technology development required for the various disposal facilities. The annual cost of managing the facilities is about $6 million depending on waste volumes and types. The paper discusses site selection; establishment of the Radioactive Waste Management Project; operations with respect to low-level radioactive wastes, transuranic waste storage, greater confinement disposal test, and mixed waste management facility; and related research activities such as tritium migration studies, revegetation studies, and in-situ monitoring of organics

  10. Verification test for three WindCube WLS7 LiDARs at the Høvsøre test site

    DEFF Research Database (Denmark)

    Gottschall, Julia; Courtney, Michael

    The report describes the procedure of testing ground-based WindCube lidars (manufactured by the French company Leosphere) at the Høvsøre test site in comparison to reference sensors mounted at a meteorological mast. Results are presented for three tested units – in detail for unit WLS7-0062, and ......-0062, and in a summary for units WLS7-0064 and WLS7-0066. The verification test covers the evaluation of measured mean wind speeds, wind directions and wind speed standard deviations. The data analysis is basically performed in terms of different kinds of regression analyses.......The report describes the procedure of testing ground-based WindCube lidars (manufactured by the French company Leosphere) at the Høvsøre test site in comparison to reference sensors mounted at a meteorological mast. Results are presented for three tested units – in detail for unit WLS7...

  11. Closure report for CAU No. 450: Historical UST release sites, Nevada Test Site. Volume 1

    International Nuclear Information System (INIS)

    1997-09-01

    This report addresses the closure of 11 historical underground storage tank (UST) release sites within various areas of the Nevada Test Site (NTS). The closure of each hydrocarbon release has not been documented, therefore, this report addresses the remedial activities completed for each release site. The hydrocarbon release associated with each tank site within CAU 450 was remediated by excavating the impacted soil. Clean closure of the release was verified through soil sample analysis by an off-site laboratory. All release closure activities were completed following standard environmental and regulatory guidelines. Based upon site observations during the remedial activities and the soil sample analytical results, which indicated that soil concentrations were below the Nevada Administrative code (NAC) Action Level of 100 mg/kg, it is anticipated that each of the release CASs be closed without further action

  12. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Lakeview, Oregon. Revision 1

    International Nuclear Information System (INIS)

    1995-12-01

    Surface cleanup at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lakeview, Oregon was completed in 1989. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment

  13. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Lakeview, Oregon. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Surface cleanup at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lakeview, Oregon was completed in 1989. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  14. On the population dose around the Semipalatinsk nuclear test site

    International Nuclear Information System (INIS)

    Hill, P.; Dederichs, H.; Ostapczuk, P.; Hille, R.; Artemev, O.; Ptitskaya, L.; Akhmetov, M.; Pivovarov, S.

    2002-01-01

    Since 1949 the Semipalatinsk Nuclear Test Site (NTS) was extensively used by the former Soviet government as a testing range for atomic weapons. Atmospheric and underground tests were finally stopped in 1962 and 1989, respectively. The Ministry of the Russian Federation of Atomic Energy officially counts a total of 456 tests, including 116 atmospheric tests. The total yield of the nuclear explosions carried out was 6.3 Megatons equivalent with 6.7 PetaBq of 1 37C s and 3.7 PetaBq of 9 0S r being released into the athmosphere. Some of the athmospheric radioactive tests shielded plumes, which extended far beyond the outer borders of the NTS. Already the first Soviet atomic bomb test on August 29, 1949 due to unfavourable meteorological conditions affected the villages of Dolon and Moistik. Since 1995 joint investigations performed by the Research Centre Julich in cooperation with the Kazakh National Nuclear Centre in the region of the former nuclear test site near Semipalatinsk besides environmental measurents also involve the assessment of the current dose of the population at and around the test site in addition to the important retrospective determination of the dose of persons affected by the atmospheric tests

  15. Measured data from the Avery Island Site C heater test

    International Nuclear Information System (INIS)

    Waldman, H.; Stickney, R.G.

    1984-11-01

    Over the past six years, a comprehensive field testing program was conducted in the Avery Island salt mine. Three single canister heater tests were included in the testing program. Specifically, electric heaters, which simulate canisters of heat-generating nuclear waste, were placed in the floor of the Avery Island salt mine, and measurements were made of the response of the salt to heating. These tests were in operation by June 1978. One of the three heater tests, Site C, operated for a period of 1858 days and was decommissioned during July and August 1983. This data report presents the temperature and displacement data gathered during the operation and decommissioning of the Site C heater test. The purpose of this data report is to transmit the data to the scientific community. Rigorous analysis and interpretation of the data are considered beyond the scope of a data report. 6 references, 21 figures, 1 table

  16. Single event effect ground test results for a fiber optic data interconnect and associated electronics

    International Nuclear Information System (INIS)

    LaBel, K.A.; Hawkins, D.K.; Cooley, J.A.; Stassinopoulos, E.G.; Seidleck, C.M.; Marshall, P.; Dale, C.; Gates, M.M.; Kim, H.S.

    1994-01-01

    As spacecraft unlock the potential of fiber optics for spaceflight applications, system level bit error rates become of concern to the system designer. The authors present ground test data and analysis on candidate system components

  17. Characterization of Site for Installing Open Loop Ground Source Heat Pump System

    Science.gov (United States)

    Yun, S. W.; Park, Y.; Lee, J. Y.; Yi, M. J.; Cha, J. H.

    2014-12-01

    This study was conducted to understand hydrogeological properties of site where open loop ground source heat pump system will be installed and operated. Groundwater level and water temperature were hourly measured at the well developed for usage of open loop ground source heat pump system from 11 October 2013 to 8 January 2014. Groundwater was sampled in January and August 2013 and its chemical and isotopic compositions were analyzed. The bedrock of study area is the Jurassic granodiorite that mainly consists of quartz (27.9 to 46.8%), plagioclase (26.0 to 45.5%), and alkali feldspar (9.5 to 18.7%). The groundwater level ranged from 68.30 to 68.94 m (above mean sea level). Recharge rate was estimated using modified watertable fluctuation method and the recharge ratios was 9.1%. The water temperature ranged from 14.8 to 15.0oC. The vertical Increase rates of water temperature were 1.91 to 1.94/100 m. The water temperature showed the significant seasonal variation above 50 m depth, but had constant value below 50 m depth. Therefore, heat energy of the groundwater can be used securely in open loop ground source heat pump system. Electrical conductivity ranged from 120 to 320 µS/cm in dry season and from 133 to 310 µS/cm in wet season. The electrical conductivity gradually decreased with depth. In particular, electrical conductivity in approximately 30 m depth decreased dramatically (287 to 249 µS/cm) in wet season. The groundwater was Ca-HCO3 type. The concentrations of dissolved components did not show the vertically significant variations from 0 to 250 m depth. The δ18O and δD ranged from -9.5 to -9.4‰ and from -69 to -68‰. This work is supported by the New and Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No.20123040110010).

  18. Joint ACE ground penetrating radar antenna test facility at the Technical University of Denmark

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter; Sarri, A.

    2005-01-01

    A ground penetrating radar (GPR) antenna test facility, established within the ACE network at the Technical University of Denmark (DTU), is described. Examples of results from the facility obtained from measurements of eight different GPR antennas are presented.......A ground penetrating radar (GPR) antenna test facility, established within the ACE network at the Technical University of Denmark (DTU), is described. Examples of results from the facility obtained from measurements of eight different GPR antennas are presented....

  19. Guidelines of the Design of Electropyrotechnic Firing Circuit for Unmanned Flight and Ground Test Projects

    Science.gov (United States)

    Gonzalez, Guillermo A.; Lucy, Melvin H.; Massie, Jeffrey J.

    2013-01-01

    The NASA Langley Research Center, Engineering Directorate, Electronic System Branch, is responsible for providing pyrotechnic support capabilities to Langley Research Center unmanned flight and ground test projects. These capabilities include device selection, procurement, testing, problem solving, firing system design, fabrication and testing; ground support equipment design, fabrication and testing; checkout procedures and procedure?s training to pyro technicians. This technical memorandum will serve as a guideline for the design, fabrication and testing of electropyrotechnic firing systems. The guidelines will discuss the entire process beginning with requirements definition and ending with development and execution.

  20. Investigation of the dynamics of radiation pollution at the former Semipalatinsk nuclear test site

    International Nuclear Information System (INIS)

    Belyashov, L.; Yushkov, A.; Grinshtein, Yu.; Makarenko, N.

    1996-01-01

    Main Tasks: - To perform aerial gamma-spectrometric shooting of the whole territory of the Semipalatinsk test site in a scale 1:200,000 with registration of the total spectrum; - The same in a scale 1:10,000 for the Balapan region; - To construct the physical-mathematical forecasting models of the dynamics of radionuclide contamination at the STS area. Scientific and Technical Means, Methods, Approaches - Aerial gamma-spectroscopy on a base of the crystals of Iodine Sodium, activated by Thallium, volume 25 I, with registration of the total spectrum; - A set of the software and computational means along with the data bases; - The aerial gamma-spectrometric standard testing site 'irtysh' - for Cesium-137 and the testing sites 'Kora' and 'Aidarly' - for natural radio-nuclides; - Software and computational means for development of physical-mathematical models; - Expedition equipment for ground testing in the points of the most prominent radiation anomalies. Expected Results - The second temporal point, with an interval of five years, on a state of radiation fields at the STS in two scales. Forecasting models for space-time evolution of radiation fields at the STS. - The results of comparison between the aerial and ground measurements

  1. Hanford Site physical separations CERCLA treatability test plan

    International Nuclear Information System (INIS)

    1992-03-01

    This test plan describes specifications, responsibilities, and general procedures to be followed to conduct a physical separations soil treatability test in the North Process Pond of the 300-FF-1 Operable Unit at the Hanford Site, Washington. The objective of this test is to evaluate the use of physical separation systems as a means of concentrating chemical and radioactive contaminants into fine soil fractions and thereby minimizing waste volumes. If successful the technology could be applied to clean up millions of cubic meters of contaminated soils in waste sites at Hanford and other sites. It is not the intent of this test to remove contaminated materials from the fine soils. Physical separation is a simple and comparatively low cost technology to potentially achieve a significant reduction in the volume of contaminated soils. Organic contaminants are expected to be insignificant for the 300-FF-I Operable Unit test, and further removal of metals and radioactive contaminants from the fine fraction of soils will require secondary treatment such as chemical extraction, electromagnetic separation, or other technologies. Additional investigations/testing are recommended to assess the economic and technical feasibility of applying secondary treatment technologies, but are not within the scope of this test. This plan provides guidance and specifications for the treatability test to be conducted as a service contract. More detailed instructions and procedures will be provided as part of the vendors (sellers) proposal. The procedures will be approved by Westinghouse Hanford Company (Westinghouse Hanford) and finalized by the seller prior to initiating the test

  2. A Hydrogen Containment Process for Nuclear Thermal Engine Ground testing

    Science.gov (United States)

    Wang, Ten-See; Stewart, Eric; Canabal, Francisco

    2016-01-01

    The objective of this study is to propose a new total hydrogen containment process to enable the testing required for NTP engine development. This H2 removal process comprises of two unit operations: an oxygen-rich burner and a shell-and-tube type of heat exchanger. This new process is demonstrated by simulation of the steady state operation of the engine firing at nominal conditions.

  3. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Wickline, Alfred

    2005-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action

  4. Seismic behavior of breakwaters on complex ground by numerical tests: Liquefaction and post liquefaction ground settlements

    Science.gov (United States)

    Gu, Linlin; Zhang, Feng; Bao, Xiaohua; Shi, Zhenming; Ye, Guanlin; Ling, Xianzhang

    2018-04-01

    A large number of breakwaters have been constructed along coasts to protect humans and infrastructures from tsunamis. There is a risk that foundation soils of these structures may liquefy, or partially liquefy during the earthquake preceding a tsunami, which would greatly reduce the structures' capacity to resist the tsunami. It is necessary to consider not only the soil's liquefaction behavior due to earthquake motions but also its post-liquefaction behavior because this behavior will affect the breakwater's capacity to resist an incoming tsunami. In this study, numerical tests based on a sophisticated constitutive model and a soil-water coupled finite element method are used to predict the mechanical behavior of breakwaters and the surrounding soils. Two real breakwaters subjected to two different seismic excitations are examined through numerical simulation. The simulation results show that, earthquakes affect not only the immediate behavior of breakwaters and the surrounding soils but also their long-term settlements due to post-earthquake consolidation. A soil profile with thick clayey layers beneath liquefied soil is more vulnerable to tsunami than a soil profile with only sandy layers. Therefore, quantitatively evaluating the seismic behavior of breakwaters and surrounding soils is important for the design of breakwater structures to resist tsunamis.

  5. SuperAGILE onboard electronics and ground test instrumentation

    International Nuclear Information System (INIS)

    Pacciani, Luigi; Morelli, Ennio; Rubini, Alda; Mastropietro, Marcello; Porrovecchio, Geiland; Costa, Enrico; Del Monte, Ettore; Donnarumma, Immacolata; Evangelista, Yuri; Feroci, Marco; Lazzarotto, Francesco; Rapisarda, Massimo; Soffitta, Paolo

    2007-01-01

    In this paper we describe the electronics of the SuperAGILE X-ray imager on-board AGILE satellite and the instrumentation developed to test and improve the Front-End and digital electronics of the flight model of the imager. Although the working principle of the instrument is very well established, and the conceptual scheme simple, the budget and mechanical constraints of the AGILE small mission made necessary the introduction of new elements in SuperAGILE, regarding both the mechanics and the electronics. In fact the instrument is contained in a ∼44x44x16cm 3 volume, but the required performance is quite ambitious, leading us to equip a sensitive area of ∼1350cm 2 with 6144 Silicon μstrips detectors with a pitch of 121μm and a total length of ∼18.2cm. The result is a very light and power-cheap imager with a good sensitivity (∼15mCrab in 1 day in 15-45keV), high angular resolution (6arcmin) and gross spectral resolution. The test-equipment is versatile, and can be easily modified to test FEE based on self-triggered, data-driven and sparse-readout ASICs such as XA family chips

  6. Investigation of the performance of cement-bentonite cut-off walls in aggressive ground at a disused gasworks site

    International Nuclear Information System (INIS)

    Tedd, P.; Holton, I.R.; Butcher, A.P.; Wallace, S.

    1997-01-01

    There has been an increased use of cement-bentonite slurry trench cut-off walls to control the lateral migration of pollution in the UK. Concerns inevitably exist about their performance in chemically aggressive ground particularly in the long term. To address some of the uncertainties a programme of field and laboratory research is being undertaken at a disused gasworks in the UK. Elevated levels of sulphate and other contaminants are present on the site and could potentially change the properties of the cement-bentonite. Two boxes, 10m square in plan, by 5m deep have been constructed, one with and one without an HDPE membrane, to isolate parts of the site. Local hydraulic gradients across the walls have been created by pumping from within the boxes. Isolated lengths of wall have been constructed which are being used to assess and develop in-situ testing techniques such as the piezocone for measuring permeability, strength and overall integrity of the wall

  7. Overview of software development at the parabolic dish test site

    Science.gov (United States)

    Miyazono, C. K.

    1985-01-01

    The development history of the data acquisition and data analysis software is discussed. The software development occurred between 1978 and 1984 in support of solar energy module testing at the Jet Propulsion Laboratory's Parabolic Dish Test Site, located within Edwards Test Station. The development went through incremental stages, starting with a simple single-user BASIC set of programs, and progressing to the relative complex multi-user FORTRAN system that was used until the termination of the project. Additional software in support of testing is discussed including software in support of a meteorological subsystem and the Test Bed Concentrator Control Console interface. Conclusions and recommendations for further development are discussed.

  8. Guidance on the Stand Down, Mothball, and Reactivation of Ground Test Facilities

    Science.gov (United States)

    Volkman, Gregrey T.; Dunn, Steven C.

    2013-01-01

    The development of aerospace and aeronautics products typically requires three distinct types of testing resources across research, development, test, and evaluation: experimental ground testing, computational "testing" and development, and flight testing. Over the last twenty plus years, computational methods have replaced some physical experiments and this trend is continuing. The result is decreased utilization of ground test capabilities and, along with market forces, industry consolidation, and other factors, has resulted in the stand down and oftentimes closure of many ground test facilities. Ground test capabilities are (and very likely will continue to be for many years) required to verify computational results and to provide information for regimes where computational methods remain immature. Ground test capabilities are very costly to build and to maintain, so once constructed and operational it may be desirable to retain access to those capabilities even if not currently needed. One means of doing this while reducing ongoing sustainment costs is to stand down the facility into a "mothball" status - keeping it alive to bring it back when needed. Both NASA and the US Department of Defense have policies to accomplish the mothball of a facility, but with little detail. This paper offers a generic process to follow that can be tailored based on the needs of the owner and the applicable facility.

  9. Implications of next generation attenuation ground motion prediction equations for site coefficients used in earthquake resistant design

    Science.gov (United States)

    Borcherdt, Roger D.

    2014-01-01

    Proposals are developed to update Tables 11.4-1 and 11.4-2 of Minimum Design Loads for Buildings and Other Structures published as American Society of Civil Engineers Structural Engineering Institute standard 7-10 (ASCE/SEI 7–10). The updates are mean next generation attenuation (NGA) site coefficients inferred directly from the four NGA ground motion prediction equations used to derive the maximum considered earthquake response maps adopted in ASCE/SEI 7–10. Proposals include the recommendation to use straight-line interpolation to infer site coefficients at intermediate values of (average shear velocity to 30-m depth). The NGA coefficients are shown to agree well with adopted site coefficients at low levels of input motion (0.1 g) and those observed from the Loma Prieta earthquake. For higher levels of input motion, the majority of the adopted values are within the 95% epistemic-uncertainty limits implied by the NGA estimates with the exceptions being the mid-period site coefficient, Fv, for site class D and the short-period coefficient, Fa, for site class C, both of which are slightly less than the corresponding 95% limit. The NGA data base shows that the median value  of 913 m/s for site class B is more typical than 760 m/s as a value to characterize firm to hard rock sites as the uniform ground condition for future maximum considered earthquake response ground motion estimates. Future updates of NGA ground motion prediction equations can be incorporated easily into future adjustments of adopted site coefficients using procedures presented herein. 

  10. Political aspects of nuclear test effects at Semipalatinsk nuclear test site

    International Nuclear Information System (INIS)

    Sydykov, E.B.; Panin, M.S.

    2003-01-01

    The paper describes tense struggle of Kazakhstan people for closure of the Semipalatinsk Nuclear Test Site. It reveals major foreign policy aspects and nuclear test effects for both Kazakhstan and the world community. (author)

  11. Summary of accidental releases of radioactivity detected off the Nevada Test Site, 1963--1986

    International Nuclear Information System (INIS)

    Patzer, R.G.; Phillips, W.G.; Grossman, R.F.; Black, S.C.; Costa, C.F.

    1988-08-01

    Of the more than 450 underground nuclear explosives tests conducted at the Nevada Test Site from August 1963 (signing of the Limited Test Ban Treaty) through the end of 1986, only 23 accidentally released radioactivity that was detectable beyond the boundary of the NTS. Of these 23, 4 were detectable off the NTS only by aircraft while the remainder were detectable by ground monitoring instruments. Since the Baneberry venting of December 1970, only two tests released radioactivity that was detectable off the NTS, and this was a seepage of radioactive noble gases. None of these releases from underground tests designed for complete containment caused exposure of the population living in the area that exceeded standards recommended by national and international radiation protection agencies. This report summarizes the releases from each of the tests, describes the monitoring that was conducted, and lists the location of the maximum exposure

  12. History of creation of Semipalatinsk test nuclear site. Chapter 1

    International Nuclear Information System (INIS)

    1999-01-01

    In 1949 August USSR's Government adopted decision about creation of nuclear site with conditional name Uchebnyj polygon 2. For its building was chosen territory in 140 km from Semipalatinsk city. Semipalatinsk test site consists of the land of three regions: Semipalatinsk, Pavlodar, Karaganda and it occupies 18,500 km 2 of fertile land, rich with minerals. Now this territory was alienated from national using. Polygon was complex object and it incorporated three main zones: Opytnoe Pole, zone of radiation safety, site Sh. Opytnoe Pole was equipped by special constructions ensuring nuclear test conducting, its observing and registration of physical measurements and occupied 2,300 km 2 . Around of the Opytnoe Pole is situated zone of radiation safety with area 45 thousand ha. Site Sh was situated in 14 km from center of Opytnoe Pole and it was intended for distribution of individual protection devices, dosimeters and for conducting of dis-activation and sanitary works. History of the site creation is connected with building of Kurchatov city. In dozen and hundred of kilometers from Kurchatov city there were top secret objects: site Balapan with total area 100,000 ha intended for conducting of nuclear tests in wells with threshold capacity 100-200 kt. Here simultaneously with main problems on the site the military-applied works were conducted on mechanics, physics of combustion, simulation of Earthquakes and determination of seismic stability of buildings and constructions. Research site Degelen with total area 33,100 ha which has been used for underground testing of nuclear charges with small capacity. Site 10 one of large research technical complex on which two reactor units were installed. Main tasks of the complex were as follows: high-temperature fuel materials testing, conducting of fundamental researches in field of physics of fissile products, thermal physics and gas hydrodynamics. On site M a laboratory base for radiochemical, radiological and chemical

  13. Special Nuclear Material Portal Monitoring at the Nevada Test Site

    International Nuclear Information System (INIS)

    DeAnn Long; Michael Murphy

    2008-01-01

    Prior to April 2007, acceptance and performance testing of the various Special Nuclear Material (SNM) monitoring devices at the Nevada Test Site (NTS) was performed by the Radiological Health Instrumentation department. Calibration and performance testing on the PM-700 personnel portal monitor was performed, but there was no test program for the VM-250 vehicle portal monitor. The handheld SNM monitors, the TSA model 470B, were being calibrated annually, but there was no performance test program. In April of 2007, the Material Control and Accountability Manager volunteered to take over performance testing of all SNM portal monitors at NTS in order to strengthen the program and meet U.S. Department of Energy Order requirements. This paper will discuss the following activities associated with developing a performance testing program: changing the culture, learning the systems, developing and implementing procedures, troubleshooting and repair, validating the process, physical control of equipment, acquisition of new systems, and implementing the performance test program

  14. Closure report for CAU No. 450: Historical UST release sites, Nevada Test Site. Volume 2

    International Nuclear Information System (INIS)

    1997-09-01

    This report addresses the closure of 11 historical underground storage tank release sites within various areas of the Nevada Test Site. This report contains remedial verification of the soil sample analytical results for the following: Area 11 Tweezer facility; Area 12 boiler house; Area 12 service station; Area 23 bypass yard; Area 23 service station; Area 25 power house; Area 25 tech. services building; Area 25 tech. operations building; Area 26 power house; and Area 27 boiler house

  15. Resource Conservation and Recovery Act Industrial Sites quality assurance project plan: Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1994-06-01

    This quality assurance project plan (QAPjP) describes the measures that shall be taken to ensure that the environmental data collected during characterization and closure activities of Resource Conservation and Recovery Act (RCRA) Industrial Sites at the Nevada Test Site (NTS) are meaningful, valid, defensible, and can be used to achieve project objectives. These activities are conducted by the US Department of Energy Nevada Operations Office (DOE/NV) under the Nevada Environmental Restoration (ER) Project. The Nevada ER Project consists of environmental restoration activities on the NTS, Tonopah Test Range, Nellis Air Force Range, and eight sites in five other states. The RCRA Industrial Sites subproject constitutes a component of the Nevada ER Project. Currently, this QAPjP is limited to the seven RCRA Industrial Sites identified within this document that are to be closed under an interim status and pertains to all field- investigation, analytical-laboratory, and data-review activities in support of these closures. The information presented here supplements the RCRA Industrial Sites Project Management Plan and is to be used in conjunction with the site-specific subproject sampling and analysis plans

  16. Development and testing of techniques for in-ground stabilization, size reduction, and safe removal of radioactive wastes stored in containments buried in ground

    International Nuclear Information System (INIS)

    Halliwell, Stephen; Christodoulou, Apostolos

    2013-01-01

    Since the 1950's radioactive wastes from a number of laboratories have been stored below ground at the Hanford site, Washington State, USA, in vertical pipe units (VPUs) made of five 200 litre drums without tops or bottoms, and in caissons, made out of corrugated pipe, or concrete and typically 2,500 mm in diameter. The VPU's are buried of the order of 2,100 mm below grade, and the caissons are buried of the order of 6,000 mm below grade. The waste contains fuel pieces, fission products, and a range of chemicals used in the laboratory processes. This can include various energetic reactants such as un-reacted sodium potassium (NaK), potassium superoxide (KO 2 ), and picric acid, as well as quantities of other liquids. The integrity of the containments is considered to present unacceptable risks from leakage of radioactivity to the environment. This paper describes the successful development and full scale testing of in-ground augering equipment, grouting systems and removal equipment for remediation and removal of the VPUs, and the initial development work to test the utilization of the same basic augering and grouting techniques for the stabilization, size reduction and removal of caissons. (authors)

  17. Ground water elevation monitoring at the Uranium Mill Tailings Remedial Action Salt Lake City, Utah, Vitro processing site

    International Nuclear Information System (INIS)

    1995-04-01

    In February 1994, a ground water level monitoring program was begun at the Vitro processing site. The purpose of the program was to evaluate how irrigating the new golf driving range affected ground water elevations in the unconfined aquifer. The program also evaluated potential impacts of a 9-hole golf course planned as an expansion of the driving range. The planned golf course expansion would increase the area to be irrigated and, thus, the water that could infiltrate the processing site soil to recharge the unconfined aquifer. Increased water levels in the aquifer could alter the ground water flow regime; contaminants in ground water could migrate off the site or could discharge to bodies of surface water in the area. The potential effects of expanding the golf course have been evaluated, and a report is being prepared. Water level data obtained during this monitoring program indicate that minor seasonal mounding may be occurring in response to irrigation of the driving range. However, the effects of irrigation appear small in comparison to the effects of precipitation. There are no monitor wells in the area that irrigation would affect most; that data limitation makes interpretations of water levels and the possibility of ground water mounding uncertain. Limitations of available data are discussed in the conclusion

  18. The JPSS Ground Project Algorithm Verification, Test and Evaluation System

    Science.gov (United States)

    Vicente, G. A.; Jain, P.; Chander, G.; Nguyen, V. T.; Dixon, V.

    2016-12-01

    The Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) is an operational system that provides services to the Suomi National Polar-orbiting Partnership (S-NPP) Mission. It is also a unique environment for Calibration/Validation (Cal/Val) and Data Quality Assessment (DQA) of the Join Polar Satellite System (JPSS) mission data products. GRAVITE provides a fast and direct access to the data and products created by the Interface Data Processing Segment (IDPS), the NASA/NOAA operational system that converts Raw Data Records (RDR's) generated by sensors on the S-NPP into calibrated geo-located Sensor Data Records (SDR's) and generates Mission Unique Products (MUPS). It also facilitates algorithm investigation, integration, checkouts and tuning, instrument and product calibration and data quality support, monitoring and data/products distribution. GRAVITE is the portal for the latest S-NPP and JPSS baselined Processing Coefficient Tables (PCT's) and Look-Up-Tables (LUT's) and hosts a number DQA offline tools that takes advantage of the proximity to the near-real time data flows. It also contains a set of automated and ad-hoc Cal/Val tools used for algorithm analysis and updates, including an instance of the IDPS called GRAVITE Algorithm Development Area (G-ADA), that has the latest installation of the IDPS algorithms running in an identical software and hardware platforms. Two other important GRAVITE component are the Investigator-led Processing System (IPS) and the Investigator Computing Facility (ICF). The IPS is a dedicated environment where authorized users run automated scripts called Product Generation Executables (PGE's) to support Cal/Val and data quality assurance offline. This data-rich and data-driven service holds its own distribution system and allows operators to retrieve science data products. The ICF is a workspace where users can share computing applications and resources and have full access to libraries and

  19. Mitigative techniques and analysis of generic site conditions for ground-water contamination associated with severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, J.M.; Oberlander, P.L.; Skaggs, R.L.

    1984-04-01

    The purpose of this study is to evaluate the feasibility of using ground-water contaminant mitigation techniques to control radionuclide migration following a severe commercial nuclear power reactor accident. The two types of severe commercial reactor accidents investigated are: (1) containment basemat penetration of core melt debris which slowly cools and leaches radionuclides to the subsurface environment, and (2) containment basemat penetration of sump water without full penetration of the core mass. Six generic hydrogeologic site classifications are developed from an evaluation of reported data pertaining to the hydrogeologic properties of all existing and proposed commercial reactor sites. One-dimensional radionuclide transport analyses are conducted on each of the individual reactor sites to determine the generic characteristics of a radionuclide discharge to an accessible environment. Ground-water contaminant mitigation techniques that may be suitable, depending on specific site and accident conditions, for severe power plant accidents are identified and evaluated. Feasible mitigative techniques and associated constraints on feasibility are determined for each of the six hydrogeologic site classifications. The first of three case studies is conducted on a site located on the Texas Gulf Coastal Plain. Mitigative strategies are evaluated for their impact on contaminant transport and results show that the techniques evaluated significantly increased ground-water travel times. 31 references, 118 figures, 62 tables.

  20. Mitigative techniques and analysis of generic site conditions for ground-water contamination associated with severe accidents

    International Nuclear Information System (INIS)

    Shafer, J.M.; Oberlander, P.L.; Skaggs, R.L.

    1984-04-01

    The purpose of this study is to evaluate the feasibility of using ground-water contaminant mitigation techniques to control radionuclide migration following a severe commercial nuclear power reactor accident. The two types of severe commercial reactor accidents investigated are: (1) containment basemat penetration of core melt debris which slowly cools and leaches radionuclides to the subsurface environment, and (2) containment basemat penetration of sump water without full penetration of the core mass. Six generic hydrogeologic site classifications are developed from an evaluation of reported data pertaining to the hydrogeologic properties of all existing and proposed commercial reactor sites. One-dimensional radionuclide transport analyses are conducted on each of the individual reactor sites to determine the generic characteristics of a radionuclide discharge to an accessible environment. Ground-water contaminant mitigation techniques that may be suitable, depending on specific site and accident conditions, for severe power plant accidents are identified and evaluated. Feasible mitigative techniques and associated constraints on feasibility are determined for each of the six hydrogeologic site classifications. The first of three case studies is conducted on a site located on the Texas Gulf Coastal Plain. Mitigative strategies are evaluated for their impact on contaminant transport and results show that the techniques evaluated significantly increased ground-water travel times. 31 references, 118 figures, 62 tables

  1. Ground vibration test results of a JetStar airplane using impulsive sine excitation

    Science.gov (United States)

    Kehoe, Michael W.; Voracek, David F.

    1989-01-01

    Structural excitation is important for both ground vibration and flight flutter testing. The structural responses caused by this excitation are analyzed to determine frequency, damping, and mode shape information. Many excitation waveforms have been used throughout the years. The use of impulsive sine (sin omega t)/omega t as an excitation waveform for ground vibration testing and the advantages of using this waveform for flight flutter testing are discussed. The ground vibration test results of a modified JetStar airplane using impulsive sine as an excitation waveform are compared with the test results of the same airplane using multiple-input random excitation. The results indicated that the structure was sufficiently excited using the impulsive sine waveform. Comparisons of input force spectrums, mode shape plots, and frequency and damping values for the two methods of excitation are presented.

  2. ANAEROBIC DEGRADATION OF MTBE TO TBA IN GROUND WATER AT GASOLINE SPILL SITES IN ORANGE COUNTY, CALIFORNIA

    Science.gov (United States)

    Although tert-Butyl Alcohol (TBA) has not been used as a fuel oxygenate in Orange County, California, the concentrations of TBA in ground water at gasoline spill sites are high compared to the concentrations of the conventional fuel oxygenate Methyl tert-Butyl Ether (MTBE). In t...

  3. Work plan for preliminary investigation of organic constituents in ground water at the New Rifle site, Rifle, Colorado. Revision 2

    International Nuclear Information System (INIS)

    1996-01-01

    A special study screening for Appendix 9 (40 CFR Part 264) analytes identified the New Rifle site as a target for additional screening for organic constituents. Because of this recommendation and the findings in a recent independent technical review, the US Department of Energy (DOE) has requested that the Technical Assistance Contractor (TAC) perform a preliminary investigation of the potential presence of organic compounds in the ground water at the New Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project site, Rifle, Colorado. From 1958 to 1972, organic chemicals were used in large quantities during ore processing at the New Rifle site, and it is possible that some fraction was released to the environment. Therefore, the primary objective of this investigation is to determine whether organic chemicals used at the milling facility are present in the ground water. The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water well points at the New Rifle site. The selection of analytes and the procedures for collecting ground water samples for analysis of organic constituents are also described

  4. Characteristics of Volcanic Stratospheric Aerosol Layer Observed by CALIOP and Ground Based Lidar at Equatorial Atmosphere Radar Site

    Science.gov (United States)

    Abo, Makoto; Shibata, Yasukuni; Nagasawa, Chikao

    2018-04-01

    We investigated the relation between major tropical volcanic eruptions in the equatorial region and the stratospheric aerosol data, which have been collected by the ground based lidar observations at at Equatorial Atmosphere Radar site between 2004 and 2015 and the CALIOP observations in low latitude between 2006 and 2015. We found characteristic dynamic behavior of volcanic stratospheric aerosol layers over equatorial region.

  5. Peculiarity of rock massif deformation under explosion impact (by the example of Zarechie area of the Semipalatinsk Test Site)

    International Nuclear Information System (INIS)

    Gorbunova, Eh.M.

    2003-01-01

    The paper systematize the results of study of man-caused situation formed outside the central zone of underground nuclear explosion (CZ UNE), at a testing area of the Semipalatinsk Test Site (STS) - Zarechie. The consequence effects of nuclear testing appeared in the rock massif and on the ground surface in the radius of 0.3-5 km from event epicenter are described. (author)

  6. Geomechanics of the Climax mine-by, Nevada Test Site

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1981-03-01

    A generic test of retrievable geologic storage of spent fuel assemblies in an underground chamber is being conducted at the Nevada Test Site. The horizontal shrinkage of the pillars is not explainable, but the vertical pillar stresses are easily understood. A two-phase project was initiated to estimate the in-situ deformability of the Climax granite and to refine the in-situ stress field data, and to model the mine-by

  7. SISMA (Site of Italian Strong Motion Accelerograms): a Web-Database of Ground Motion Recordings for Engineering Applications

    International Nuclear Information System (INIS)

    Scasserra, Giuseppe; Lanzo, Giuseppe; D'Elia, Beniamino; Stewart, Jonathan P.

    2008-01-01

    The paper describes a new website called SISMA, i.e. Site of Italian Strong Motion Accelerograms, which is an Internet portal intended to provide natural records for use in engineering applications for dynamic analyses of structural and geotechnical systems. SISMA contains 247 three-component corrected motions recorded at 101 stations from 89 earthquakes that occurred in Italy in the period 1972-2002. The database of strong motion accelerograms was developed in the framework of a joint project between Sapienza University of Rome and University of California at Los Angeles (USA) and is described elsewhere. Acceleration histories and pseudo-acceleration response spectra (5% damping) are available for download from the website. Recordings can be located using simple search parameters related to seismic source and the recording station (e.g., magnitude, V s30 , etc) as well as ground motion characteristics (e.g. peak ground acceleration, peak ground velocity, peak ground displacement, Arias intensity, etc.)

  8. PSP SAR interferometry monitoring of ground and structure deformations applied to archaeological sites

    Science.gov (United States)

    Costantini, Mario; Francioni, Elena; Trillo, Francesco; Minati, Federico; Margottini, Claudio; Spizzichino, Daniele; Trigila, Alessandro; Iadanza, Carla

    2017-04-01

    Archaeological sites and cultural heritage are considered as critical assets for the society, representing not only the history of region or a culture, but also contributing to create a common identity of people living in a certain region. In this view, it is becoming more and more urgent to preserve them from climate changes effect and in general from their degradation. These structures are usually just as precious as fragile: remote sensing technology can be useful to monitor these treasures. In this work, we will focus on ground deformation measurements obtained by satellite SAR interferometry and on the methodology adopted and implemented in order to use the results operatively for conservation policies in a Italian archaeological site. The analysis is based on the processing of COSMO-SkyMed Himage data by the e-GEOS proprietary Persistent Scatterer Pair (PSP) SAR interferometry technology. The PSP technique is a proven SAR interferometry technology characterized by the fact of exploiting in the processing only the relative properties between close points (pairs) in order to overcome atmospheric artefacts (which are one of the main problems of SAR interferometry). Validations analyses [Costantini et al. 2015] settled that this technique applied to COSMO-SkyMed Himage data is able to retrieve very dense (except of course on vegetated or cultivated areas) millimetric deformation measurements with sub-metric localization. Considering the limitations of all the interferometric techniques, in particular the fact that the measurement are along the line of sight (LOS) and the geometric distortions, in order to obtain the maximum information from interferometric analysis, both ascending and descending geometry have been used. The ascending analysis allows selecting measurements points over the top and, approximately, South-West part of the structures, while the descending one over the top and the South-East part of the structures. The interferometric techniques needs

  9. Operational radioactive waste management plan for the Nevada Test Site

    International Nuclear Information System (INIS)

    1980-11-01

    The Operational Radioactive Waste Management Plan for the Nevada Test Site establishes procedures and methods for the safe shipping, receiving, processing, disposal, and storage of radioactive waste. Included are NTS radioactive waste disposition program guidelines, procedures for radioactive waste management, a description of storage and disposal areas and facilities, and a glossary of specifications and requirements

  10. Tonopah Test Range Environmental Restoration Corrective Action Sites

    International Nuclear Information System (INIS)

    2010-01-01

    This report describes the status (closed, closed in place, or closure in progress) of the Corrective Action Sites (CASs) and Corrective Action Units (CAUs) at the Tonopah Test Range. CASs and CAUs where contaminants were either not detected or were cleaned up to within regulatory action levels are summarized

  11. Nevada test site radionuclide inventory and distribution: project operations plan

    International Nuclear Information System (INIS)

    Kordas, J.F.; Anspaugh, L.R.

    1982-01-01

    This document is the operational plan for conducting the Radionuclide Inventory and Distribution Program (RIDP) at the Nevada Test Site (NTS). The basic objective of this program is to inventory the significant radionuclides of NTS origin in NTS surface soil. The expected duration of the program is five years. This plan includes the program objectives, methods, organization, and schedules

  12. Ore levels in Paleozoic of Semipalatinsk test site

    International Nuclear Information System (INIS)

    Ergaliev, G.Kh.; Myasnikov, A.K.; Fomichev, V.I.

    1999-01-01

    The regularity of the deposition of main mineralization of industrial types within Semipalatinsk test site proves and here and there defines more exactly location of the ore levels in Eastern Kazakhstan. Two mega levels, namely: Cambrian-Ordovician (siliceous-basalt, island-arc) and Carboniferous (especially carbonaceous-tarragons) ones are the most perspective for localizing the leading gold mineralization in the region

  13. Soil monitoring in Pavlodar region adjoining to Semipalatinsk test site

    International Nuclear Information System (INIS)

    Tuleubaev, B.A.; Ramazanov, Zh.R.; Askarov, E.V.

    2004-01-01

    A problem of territory study and rehabilitation contaminated with man-caused radionuclides is an important task and it has economic, social, and ecology aspects. The problem is crucial for Pavlodar region due to real proximity and to partial location of Semipalatinsk Test Site on its territory. (author)

  14. Integrated radiobioecological monitoring of Semipalatinsk test site: general approach

    International Nuclear Information System (INIS)

    Sejsebaev, A.T.; Shenal', K.; Bakhtin, M.M.; Kadyrova, N.Zh.

    2001-01-01

    This paper presents major research directions and general methodology for establishment of an integrated radio-bio-ecological monitoring system at the territory of the former Semipalatinsk nuclear test site. Also, it briefly provides the first results of monitoring the natural plant and animal populations at STS. (author)

  15. Environmental survey of southern part of former Semipalatinsk test site

    International Nuclear Information System (INIS)

    Zharikov, S.K.

    2000-01-01

    The present paper discusses results of the environmental survey performed in selected areas of Semipalatinsk test site southern part and gives calculations of possible annual radionuclide (Cs-37, Sr-90 and Pu-239/240) intake due to local husbandry products. (author)

  16. Nevada Test Site Radiological Control Manual. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2010-02-09

    This document supersedes DOE/NV/25946--801, “Nevada Test Site Radiological Control Manual,” Revision 0 issued in October 2009. Brief Description of Revision: A minor revision to correct oversights made during revision to incorporate the 10 CFR 835 Update; and for use as a reference document for Tenant Organization Radiological Protection Programs.

  17. 78 FR 12259 - Unmanned Aircraft System Test Site Program

    Science.gov (United States)

    2013-02-22

    ... addressing potential UAS privacy concerns, as set out herein, contact Gregory C. Carter, Office of the Chief... address privacy concerns relating to the operation of the test site program, the FAA intends to include in... among policymakers, privacy advocates, and the industry regarding broader questions concerning the use...

  18. Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Theodore H. Asch; Donald Sweetkind; Bethany L. Burton; Erin L. Wallin

    2009-02-10

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the

  19. Assessment of hydrologic transport of radionuclides from the Rio Blanco underground nuclear test site, Colorado

    International Nuclear Information System (INIS)

    Chapman, J.; Earman, S.; Andricevic, R.

    1996-10-01

    DOE is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations used for nuclear testing. Evaluation of radionuclide transport by groundwater is part of preliminary risk analysis. These evaluations allow prioritization of test areas in terms of risk, provide a basis for discussions with regulators and the public about future work, and provide a framework for assessing site characterization data needs. The Rio Blanco site in Colorado was the location of the simultaneous detonation of three 30-kiloton nuclear devices. The devices were located 1780, 1899, and 2039 below ground surface in the Fort Union and Mesaverde formations. Although all the bedrock formations at the site are thought to contain water, those below the Green River Formation (below 1000 in depth) are also gas-bearing, and have very low permeabilities. The transport scenario evaluated was the migration of radionuclides from the blast-created cavity through the Fort Union Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. This modeling was performed to investigate how the uncertainty in various physical parameters affect radionuclide transport at the site, and to serve as a starting point for discussion regarding further investigation; it was not intended to be a definitive simulation of migration pathways or radionuclide concentration values. Given the sparse data, the modeling results may differ significantly from reality. Confidence in transport predictions can be increased by obtaining more site data, including the amount of radionuclides which would have been available for transport (i.e., not trapped in melt glass or vented during gas flow testing), and the hydraulic properties of the formation. 38 refs., 6 figs., 1 tab

  20. Examination of the geology and seismology associated with area 410 at the Nevada test site

    International Nuclear Information System (INIS)

    Hannon, W.J.; McKague, H.L.

    1975-01-01

    This report summarizes regional and local geology at the Nevada Test Site and identifies major tectonic features and active faults. Sufficient information is given to perform seismic safety analyses of present and future critical construction at the Super Kukla Site and Sites A and B in Area 410. However, examination of local minor faults and joints and soil thickness studies should be undertaken at construction time. The Cane Spring Fault is identified as the most significant geologic feature from the viewpoint of the potential seismic risk. Predictions of the peak ground acceleration (0.9 g), the response spectra for the Safe Shutdown Earthquake, and the maximum displacement across the Cane Spring Fault are made. (U.S.)

  1. Environmental radiation measurements at the former Soviet Union's Semipalatinsk nuclear test site and surrounding villages

    International Nuclear Information System (INIS)

    Shebell, P.; Hutter, A.R.

    1996-07-01

    Two scientists from the U.S. Department of Energy's Environmental Measurements Laboratory served as scientific experts to the International Atomic Energy Agency's (IAEA) Mission to Kazakhstan: Strengthening Radiation and Nuclear Safety Infrastructures in Countries of the former USSR, Special Task - Preassessment of the radiological situation in the Semipalatinsk and western areas of Kazakhstan. The former Soviet Union's largest nuclear test site was located near Semipalatinsk, Kazakhstan, and following Kazakhstan's independence, the IAEA committed to studying the environmental contamination and the resulting radiation exposure risk to the population due to 346 underground, 87 atmospheric and 26 surface nuclear detonations performed at the site between 1949 and 1989. As part of an 11-member team, environmental radiation measurements were performed during 2 weeks in July 1994. Approximately 30 sites were visited both within the boundaries of the Semipalatinsk nuclear test site as well as in and around surrounding villages. Specifically, the objectives of the EML team were to apply independent methods and equipment to assess potential current radiation exposures to the population. Towards this end, the EML scientists collected in-situ gamma-ray spectra, performed external gamma dose rate measurements using pressurized ionization chambers, and collected soil samples in order to estimate the inventory and to determine the depth distribution of radionuclides of interest. With the exception of an area near an open-quotes atomic lakeclose quotes and a 1 km 2 area encompassing ground zero, all the areas visited by the team had external dose rates that were within typical environmental levels. The measurements taken within a 15 km radius of ground zero had elevated levels of 137 Cs as well as the activation products 152 Eu and 60 Co, The dose rate within a 1 km radius of ground zero ranged from 500 to 30000 nGy h -1

  2. Probabilistic Description of a Clay Site using CPTU tests

    DEFF Research Database (Denmark)

    Andersen, Sarah; Lauridsen, Kristoffer; Nielsen, Benjaminn Nordahl

    2012-01-01

    A clay site at the harbour of Aarhus, where numerous cone penetration tests have been conducted, is assessed. The upper part of the soil deposit is disregarded, and only the clay sections are investigated. The thickness of the clay deposit varies from 5 to 6 meters, and is sliced into sections of...... a geotechnical assessment of a site, using both the method for classifying soil behaviour types and applying statistics, yield a new level of information, and certainty about the estimates of the strength parameters which are the important outcome of such a site description.......A clay site at the harbour of Aarhus, where numerous cone penetration tests have been conducted, is assessed. The upper part of the soil deposit is disregarded, and only the clay sections are investigated. The thickness of the clay deposit varies from 5 to 6 meters, and is sliced into sections of 1...... meter in thickness. For each slice, a map of the variation of the undrained shear strength is created through Kriging and the probability of finding weak zones in the deposit is calculated. This results in a description of the spatial variation of the undrained shear strength at the site. Making...

  3. Lawrence Livermore National Laboratory Experimental Test Site (Site 300) Potable Water System Operations Plan

    Energy Technology Data Exchange (ETDEWEB)

    Ocampo, Ruben P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bellah, Wendy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-04

    The existing Lawrence Livermore National Laboratory (LLNL) Site 300 drinking water system operation schematic is shown in Figures 1 and 2 below. The sources of water are from two Site 300 wells (Well #18 and Well #20) and San Francisco Public Utilities Commission (SFPUC) Hetch-Hetchy water through the Thomas shaft pumping station. Currently, Well #20 with 300 gallons per minute (gpm) pump capacity is the primary source of well water used during the months of September through July, while Well #18 with 225 gpm pump capacity is the source of well water for the month of August. The well water is chlorinated using sodium hypochlorite to provide required residual chlorine throughout Site 300. Well water chlorination is covered in the Lawrence Livermore National Laboratory Experimental Test Site (Site 300) Chlorination Plan (“the Chlorination Plan”; LLNL-TR-642903; current version dated August 2013). The third source of water is the SFPUC Hetch-Hetchy Water System through the Thomas shaft facility with a 150 gpm pump capacity. At the Thomas shaft station the pumped water is treated through SFPUC-owned and operated ultraviolet (UV) reactor disinfection units on its way to Site 300. The Thomas Shaft Hetch- Hetchy water line is connected to the Site 300 water system through the line common to Well pumps #18 and #20 at valve box #1.

  4. LLNL Experimental Test Site (Site 300) Potable Water System Operations Plan