WorldWideScience

Sample records for test reactor critical

  1. Interlaboratory computational comparisons of critical fast test reactor pin lattices

    International Nuclear Information System (INIS)

    Mincey, J.F.; Kerr, H.T.; Durst, B.M.

    1979-01-01

    An objective of the Consolidated Fuel Reprocessing Program's (CFRP) nuclear engineering group at Oak Ridge National Laboratory (ORNL) is to ensure that chemical equipment components designed for the reprocessing of spent LMFBR fuel (among other fuel types) are safe from a criticality standpoint. As existing data are inadequate for the general validation of computational models describing mixed plutonium--uranium oxide systems with isotopic compositions typical of LMFBR fuel, a program of critical experiments has been initiated at the Battelle Pacific Northwest Laboratories (PNL). The first series of benchmark experiments consisted of five square-pitched lattices of unirradiated Fast Test Reactor (FTR) fuel moderated and reflected by light water. Calculations of these five experiments have been conducted by both ORNL/CFRP and PNL personnel with the purpose of exploring how accurately various computational models will predict k/sub eff/ values for such neutronic systems and if differences between k/sub eff/ values obtained with these different models are significant

  2. Methods for monitoring the initial load to critical in the fast test reactor

    International Nuclear Information System (INIS)

    Johnson, D.L.

    1975-08-01

    Conventional symmetric fuel loadings for the initial loading to critical of the Fast Test Reactor (FTR) are predicted to be more time consuming than asymmetric or trisector loadings. Potentially significant time savings can be realized by the latter, since adequate intermediate assessments of neutron multiplication can be made periodically without control rod reconnection in all trisectors. Experimental simulation of both loading schemes was carried out in the Reverse Approach to Critical (RAC) experiments in the Fast Test Reactor-Engineering Mockup Critical facility. Analyses of these experiments indicated that conventional source multiplication methods can be applied for monitoring either a symmetric or asymmetric fuel loading scheme equally well provided that detection efficiency corrections are employed. Methods for refining predictions of reactivity and count rates for the stages in a load to critical were also investigated. (auth)

  3. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    International Nuclear Information System (INIS)

    Montierth, Leland M.

    2016-01-01

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  4. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  5. Static analysis of material testing reactor cores:critical core calculations

    International Nuclear Information System (INIS)

    Nawaz, A. A.; Khan, R. F. H.; Ahmad, N.

    1999-01-01

    A methodology has been described to study the effect of number of fuel plates per fuel element on critical cores of Material Testing Reactors (MTR). When the number of fuel plates are varied in a fuel element by keeping the fuel loading per fuel element constant, the fuel density in the fuel plates varies. Due to this variation, the water channel width needs to be recalculated. For a given number of fuel plates, water channel width was determined by optimizing k i nfinity using a transport theory lattice code WIMS-D/4. The dimensions of fuel element and control fuel element were determined using this optimized water channel width. For the calculated dimensions, the critical cores were determined for the given number of fuel plates per fuel element by using three dimensional diffusion theory code CITATION. The optimization of water channel width gives rise to a channel width of 2.1 mm when the number of fuel plates is 23 with 290 g ''2''3''5U fuel loading which is the same as in the case of Pakistan Reactor-1 (PARR-1). Although the decrease in number of fuel element results in an increase in optimal water channel width but the thickness of standard fuel element (SFE) and control fuel element (CFE) decreases and it gives rise to compact critical and equilibrium cores. The criticality studies of PARR-1 are in good agreement with the predictions

  6. STEADY STATE MODELING OF THE MINIMUM CRITICAL CORE OF THE TRANSIENT REACTOR TEST FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Anthony L. Alberti; Todd S. Palmer; Javier Ortensi; Mark D. DeHart

    2016-05-01

    With the advent of next generation reactor systems and new fuel designs, the U.S. Department of Energy (DOE) has identified the need for the resumption of transient testing of nuclear fuels. The DOE has decided that the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory (INL) is best suited for future testing. TREAT is a thermal neutron spectrum, air-cooled, nuclear test facility that is designed to test nuclear fuels in transient scenarios. These specific scenarios range from simple temperature transients to full fuel melt accidents. DOE has expressed a desire to develop a simulation capability that will accurately model the experiments before they are irradiated at the facility. It is the aim for this capability to have an emphasis on effective and safe operation while minimizing experimental time and cost. The multi physics platform MOOSE has been selected as the framework for this project. The goals for this work are to identify the fundamental neutronics properties of TREAT and to develop an accurate steady state model for future multiphysics transient simulations. In order to minimize computational cost, the effect of spatial homogenization and angular discretization are investigated. It was found that significant anisotropy is present in TREAT assemblies and to capture this effect, explicit modeling of cooling channels and inter-element gaps is necessary. For this modeling scheme, single element calculations at 293 K gave power distributions with a root mean square difference of 0.076% from those of reference SERPENT calculations. The minimum critical core configuration with identical gap and channel treatment at 293 K resulted in a root mean square, total core, radial power distribution 2.423% different than those of reference SERPENT solutions.

  7. Super critical water reactors

    International Nuclear Information System (INIS)

    Dumaz, P.; Antoni, O; Arnoux, P.; Bergeron, A; Renault, C.; Rimpault, G.

    2005-01-01

    Water is used as a calori-porter and moderator in the most major nuclear centers which are actually in function. In the pressurized water reactor (PWR) and boiling water reactor (BWR), water is maintained under critical point of water (21 bar, 374 Centigrade) which limits the efficiency of thermodynamic cycle of energy conversion (yield gain of about 33%) Crossing the critical point, one can then use s upercritical water , the obtained pressure and temperature allow a significant yield gains. In addition, the supercritical water offers important properties. Particularly there is no more possible coexistence between vapor and liquid. Therefore, we don't have more boiling problem, one of the phenomena which limits the specific power of PWR and BWR. Since 1950s, the reactor of supercritical water was the subject of studies more or less detailed but neglected. From the early 1990s, this type of conception benefits of some additional interests. Therefore, in the international term G eneration IV , the supercritical water reactors had been considered as one of the big options for study as Generation IV reactors. In the CEA, an active city has engaged from 1930 with the participation to a European program: The HPWR (High Performance Light Water Reactor). In this contest, the R and D studies are focused on the fields of neutrons, thermodynamic and materials. The CEA intends to pursue a limited effort of R and D in this field, in the framework of international cooperation, preferring the study of versions of rapid spectrum. (author)

  8. Critical Heat Flux Experiments on the Reactor Vessel Wall Using 2-D Slice Test Section

    International Nuclear Information System (INIS)

    Jeong, Yong Hoon; Chang, Soon Heung; Baek, Won-Pil

    2005-01-01

    The critical heat flux (CHF) on the reactor vessel outer wall was measured using the two-dimensional slice test section. The radius and the channel area of the test section were 2.5 m and 10 cm x 15 cm, respectively. The flow channel area and the heater width were smaller than those of the ULPU experiments, but the radius was greater than that of the ULPU. The CHF data under the inlet subcooling of 2 to 25 deg. C and the mass flux 0 to 300 kg/m 2 .s had been acquired. The measured CHF value was generally slightly lower than that of the ULPU. The difference possibly comes from the difference of the test section material and the thickness. However, the general trend of CHF according to the mass flux was similar with that of the ULPU. The experimental CHF data were compared with the predicted values by SULTAN correlation. The SULTAN correlation predicted well this study's data only for the mass flux higher than 200 kg/m 2 .s, and for the exit quality lower than 0.05. The local condition-based correlation was developed, and it showed good prediction capability for broad quality (-0.01 to 0.5) and mass flux ( 2 .s) conditions with a root-mean-square error of 2.4%. There were increases in the CHF with trisodium phosphate-added water

  9. Digital System Reliability Test for the Evaluation of safety Critical Software of Digital Reactor Protection System

    Directory of Open Access Journals (Sweden)

    Hyun-Kook Shin

    2006-08-01

    Full Text Available A new Digital Reactor Protection System (DRPS based on VME bus Single Board Computer has been developed by KOPEC to prevent software Common Mode Failure(CMF inside digital system. The new DRPS has been proved to be an effective digital safety system to prevent CMF by Defense-in-Depth and Diversity (DID&D analysis. However, for practical use in Nuclear Power Plants, the performance test and the reliability test are essential for the digital system qualification. In this study, a single channel of DRPS prototype has been manufactured for the evaluation of DRPS capabilities. The integrated functional tests are performed and the system reliability is analyzed and tested. The results of reliability test show that the application software of DRPS has a very high reliability compared with the analog reactor protection systems.

  10. Reactor Sharing at Rensselaer Critical Facility

    International Nuclear Information System (INIS)

    D. Steiner, D. Harris, T. Trumbull

    2006-01-01

    This final report summarizes the reactor sharing activities at the Rensselaer Critical Facility. An example of a typical tour is also included. Reactor sharing at the RCF brings outside groups into the facility for a tour, an explanation of reactor matters, and a reactor measurement. It has involved groups ranging from high school classes to advanced college groups and in size from a few to about 50 visitors. The RCF differs from other university reactors in that its fuel is like that of large power reactors, and its research and curriculum are dedicated to power reactor matters

  11. IAEA coordinated research programme on heat transfer behavior and thermo-hydraulics code testing for super critical water cooled reactors

    International Nuclear Information System (INIS)

    Bilbao y Leon, Sama; Aksan, Nusret

    2009-01-01

    One of the key roles of the IAEA is to foster the collaboration among Member States on the development of advances in technology for advanced nuclear power plants. There is high international interest, both in developing and industrialized countries, in innovative supercritical water-cooled reactors (SCWRs), primarily because such concepts will achieve high thermal efficiencies (44-45%) and promise improved economic competitiveness utilizing and building upon the recent developments for highly efficient fossil power plants. The SCWR has been selected as one of the promising concepts for development by the Generation-IV International Forum. Following the advice of the IAEA Nuclear Energy Department's Technical Working Groups on Advanced Technologies for LWRs and HWRs (the TWG-LWR and TWG-HWR), with the feedback from the Gen-IV SCWR Steering Committee, and in coordination with the OECD-NEA, IAEA has recently started a Coordinated Research Programme (CRP) in the areas of heat transfer behaviour and testing of thermo-hydraulic computer methods for Supercritical Water-Cooled Reactors. The first Research Coordination Meeting (RCM) of the CRP was held at the IAEA Headquarters, in Vienna, Austria in July 2008. This paper summarizes the current status of the CRP, including the Integrated Research Plan and the general schedule for the CRP. (author)

  12. Plan for IER-443 Testing of the Y-12 and AWE Criticality Accident Alarm System Detectors at the Godiva IV Burst Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Scorby, J. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hickman, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hudson, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Garbett, S. [Atomic Weapons Establishment (AWE), Berkshire (United Kingdom); Auld, G. [Atomic Weapons Establishment (AWE), Berkshire (United Kingdom); Horrne, A. [Atomic Weapons Establishment (AWE), Berkshire (United Kingdom); Beller, T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goda, J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Haught, C. [Y-12 National Security Complex, Oak Ridge, TN (United States); Woodrow, C. [Y-12 National Security Complex, Oak Ridge, TN (United States); Ward, D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-24

    This document provides the scope and details of the “Plan for Testing the Y-12 and AWE Criticality Accident Alarm System Detectors at the Godiva IV Burst Reactor”. Due to the relative simplicity of the testing goals, scope, and methodology, the NCSP Manager approved execution of the test when ready. No preliminary CED-1 or final design CED-2 reports were required or issued. The test will subject Criticality Accident Alarm System (CAAS) detectors supplied by Y- 12 and AWE to very intense and short duration mixed neutron and gamma radiation fields. The goals of the test will be to (1) substantiate functionality, for both existing and newly acquired Y- 12 CAAS detectors, and (2) the ability of the AWE detectors to provide quality temporal dose information after a hypothetical criticality accident. ANSI/ANS-8.3.1997 states that the “system shall be sufficiently robust as to actuate an alarm signal when exposed to the maximum radiation expected”, which has been defined at Y-12, in Documented Safety Analyses (DSAs), to be a dose rate of 10 Rad/s. ANSI/ANS-8.3.1997 further states that “alarm actuation shall occur as a result of a minimum duration transient” which may be assumed to be 1 msec. The pulse widths and dose rates which will be achieved in this test will exceed these requirements. Pulsed radiation fields will be produced by the Godiva IV fast metal burst reactor at the National Criticality Experimental Research Center (NCERC) at the Nevada National Security Site (NNSS). The magnitude of the pulses and the relative distances to the detectors will be varied to afford a wide range of radiation fluence and pulse widths. The magnitude of the neutron and gamma fields will be determined by reactor temperature rise to fluence and dose conversions which have been previously established through extensive measurements performed under IER-147. The requirements for CAAS systems to detect and alarm under a “minimum accident of concern” as well as other

  13. Final Report for the Testing of the Y-12 Criticality Accident Alarm System Detectors at the Godiva IV Burst Reactor (IER-443)

    Energy Technology Data Exchange (ETDEWEB)

    Scorby, John C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hickman, David [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hudson, Becka [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Beller, Tim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goda, Joetta [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Haught, Chris [Y-12 National Security Complex, Oak Ridge, TN (United States); Woodrow, Christopher [Y-12 National Security Complex, Oak Ridge, TN (United States); Ward, Dann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Chris [Atomic Weapons Establishment (AWE), Berkshire (United Kingdom); Clark, Leo [Atomic Weapons Establishment (AWE), Berkshire (United Kingdom)

    2018-01-05

    This report documents the experimental conditions and final results for the performance testing of the Y-12 Criticality Accident Alarm System (CAAS) detectors at the Godiva IV Burst Reactor at the National Criticality Experimental Research Center (NCERC) at the Nevada National Security Site (NNSS). The testing followed a previously issued test plan and was conducted during the week of July 17, 2017, with completion on Thursday July 20. The test subjected CAAS detectors supplied by Y-12 to very intense and short duration mixed neutron and gamma radiation fields to establish compliance to maximum radiation and minimum pulse width requirements. ANSI/ANS- 8.3.1997 states that the “system shall be sufficiently robust as to actuate an alarm signal when exposed to the maximum radiation expected”, which has been defined at Y-12, in Documented Safety Analyses (DSAs), to be a dose rate of 10 Rad/s. ANSI/ANS-8.3.1997 further states that “alarm actuation shall occur as a result of a minimum duration transient” which may be assumed to be 1 msec. The pulse widths and dose rates provided by each burst during the test exceeded those requirements. The CAAS detectors all provided an immediate alarm signal and remained operable after the bursts establishing compliance to the requirements and fitness for re-deployment at Y-12.

  14. Tokamak engineering test reactor

    International Nuclear Information System (INIS)

    Conn, R.W.; Jassby, D.L.

    1975-07-01

    The design criteria for a tokamak engineering test reactor can be met by operating in the two-component mode with reacting ion beams, together with a new blanket-shield design based on internal neutron spectrum shaping. A conceptual reactor design achieving a neutron wall loading of about 1 MW/m 2 is presented. The tokamak has a major radius of 3.05 m, the plasma cross-section is noncircular with a 2:1 elongation, and the plasma radius in the midplane is 55 cm. The total wall area is 149 m 2 . The plasma conditions are T/sub e/ approximately T/sub i/ approximately 5 keV, and ntau approximately 8 x 10 12 cm -3 s. The plasma temperature is maintained by injection of 177 MW of 200-keV neutral deuterium beams; the resulting deuterons undergo fusion reactions with the triton-target ions. The D-shaped toroidal field coils are extended out to large major radius (7.0 m), so that the blanket-shield test modules on the outer portion of the torus can be easily removed. The TF coils are superconducting, using a cryogenically stable TiNb design that permits a field at the coil of 80 kG and an axial field of 38 kG. The blanket-shield design for the inner portion of the torus nearest the machine center line utilizes a neutron spectral shifter so that the first structural wall behind the spectral shifter zone can withstand radiation damage for the reactor lifetime. The energy attenuation in this inner blanket is 8 x 10 -6 . If necessary, a tritium breeding ratio of 0.8 can be achieved using liquid lithium cooling in the []outer blanket only. The overall power consumption of the reactor is about 340 MW(e). A neutron wall loading greater than 1 MW/m 2 can be achieved by increasing the maximum magnetic field or the plasma elongation. (auth)

  15. Transmutation of americium in critical reactors

    International Nuclear Information System (INIS)

    Wallenius, J.

    2005-01-01

    Already in 1974, a Los Alamos report suggested that the recycling of higher actinides would be detrimental for the safety of critical reactors. Later investigations confirmed this understanding, and stringent limits on the fraction of minor actinides allowed to be present in the fuel of fast neutron reactors were established. In recent years, and in particular in connection with the generation IV initiative, it has been advocated that recycling of americium in critical reactors is not only feasible, but also a recommendable approach. In the present contribution, it is shown, to the contrary, that introduction of americium into reactors with uranium based fuels deteriorates the safety margin of these reactors to a degree that will not allow consumption of the americium sources present in any economically competitive nuclear fuel cycle. Further, it is shown that uranium and thorium free cores with plutonium based fuels may be designed, that features excellent safety characteristics, as long as americium is not present in the feed. Hence, a closed fuel cycle is suggested, that consists of commercial power production in light water reactors, plutonium burning in uranium and thorium free fast neutron critical reactors, and higher actinide consumption in accelerator driven systems with inert matrix fuel. It is argued that such a fuel cycle (being a refinement of the Double Strata fuel cycle proposed by JAERI and further developed by M. Salvatores) provides a minimum cost penalty for implementing P and T under realistic boundary conditions. (author)

  16. Research reactors and materials testing

    International Nuclear Information System (INIS)

    Vidal, H.

    1986-01-01

    Research reactors can be classified in three main groups according to the moderator which is used. Their technical characteristics are given and the three most recent research and materials testing reactors are described: OSIRIS, ORPHEE and the high-flux reactor of Grenoble. The utilization of research reactors is reviewed in four fields of activity: training, fundamental or applied research and production (eg. radioisotopes) [fr

  17. Irradiation facilitates at the advanced test reactor

    International Nuclear Information System (INIS)

    Grover, Blaine S.

    2006-01-01

    The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC - formerly known as the Test Reactor Area), located at the Idaho National Laboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950's with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), which operated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world's data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containing test specimens with no real-time monitoring or control capabilities. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens. The paper has the following contents: ATR description and capabilities; ATR operations, quality and safety requirements; Static capsule experiments; Lead experiments; Irradiation test vehicle; In-pile loop experiments; Gas test loop; Future testing; Support facilities at RTC; Conclusions. To summarize, the ATR has a long history in fuel and material irradiations, and will be fulfilling a critical role in the future fuel and material testing necessary to develop the next generation reactor systems and advanced fuel cycles. The

  18. ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kahler, A.C.; Herman, M.; Kahler,A.C.; MacFarlane,R.E.; Mosteller,R.D.; Kiedrowski,B.C.; Frankle,S.C.; Chadwick,M.B.; McKnight,R.D.; Lell,R.M.; Palmiotti,G.; Hiruta,H.; Herman,M.; Arcilla,R.; Mughabghab,S.F.; Sublet,J.C.; Trkov,A.; Trumbull,T.H.; Dunn,M.

    2011-12-01

    The ENDF/B-VII.1 library is the latest revision to the United States Evaluated Nuclear Data File (ENDF). The ENDF library is currently in its seventh generation, with ENDF/B-VII.0 being released in 2006. This revision expands upon that library, including the addition of new evaluated files (was 393 neutron files previously, now 423 including replacement of elemental vanadium and zinc evaluations with isotopic evaluations) and extension or updating of many existing neutron data files. Complete details are provided in the companion paper [M. B. Chadwick et al., 'ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data,' Nuclear Data Sheets, 112, 2887 (2011)]. This paper focuses on how accurately application libraries may be expected to perform in criticality calculations with these data. Continuous energy cross section libraries, suitable for use with the MCNP Monte Carlo transport code, have been generated and applied to a suite of nearly one thousand critical benchmark assemblies defined in the International Criticality Safety Benchmark Evaluation Project's International Handbook of Evaluated Criticality Safety Benchmark Experiments. This suite covers uranium and plutonium fuel systems in a variety of forms such as metallic, oxide or solution, and under a variety of spectral conditions, including unmoderated (i.e., bare), metal reflected and water or other light element reflected. Assembly eigenvalues that were accurately predicted with ENDF/B-VII.0 cross sections such as unmoderated and uranium reflected {sup 235}U and {sup 239}Pu assemblies, HEU solution systems and LEU oxide lattice systems that mimic commercial PWR configurations continue to be accurately calculated with ENDF/B-VII.1 cross sections, and deficiencies in predicted eigenvalues for assemblies containing selected materials, including titanium, manganese, cadmium and tungsten are greatly reduced. Improvements are also

  19. ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kahler, A. [Los Alamos National Laboratory (LANL); Macfarlane, R E [Los Alamos National Laboratory (LANL); Mosteller, R D [Los Alamos National Laboratory (LANL); Kiedrowski, B C [Los Alamos National Laboratory (LANL); Frankle, S C [Los Alamos National Laboratory (LANL); Chadwick, M. B. [Los Alamos National Laboratory (LANL); Mcknight, R D [Argonne National Laboratory (ANL); Lell, R M [Argonne National Laboratory (ANL); Palmiotti, G [Idaho National Laboratory (INL); Hiruta, h [Idaho National Laboratory (INL); Herman, Micheal W [Brookhaven National Laboratory (BNL); Arcilla, r [Brookhaven National Laboratory (BNL); Mughabghab, S F [Brookhaven National Laboratory (BNL); Sublet, J C [Culham Science Center, Abington, UK; Trkov, A. [Jozef Stefan Institute, Slovenia; Trumbull, T H [Knolls Atomic Power Laboratory; Dunn, Michael E [ORNL

    2011-01-01

    The ENDF/B-VII.1 library is the latest revision to the United States' Evaluated Nuclear Data File (ENDF). The ENDF library is currently in its seventh generation, with ENDF/B-VII.0 being released in 2006. This revision expands upon that library, including the addition of new evaluated files (was 393 neutron files previously, now 423 including replacement of elemental vanadium and zinc evaluations with isotopic evaluations) and extension or updating of many existing neutron data files. Complete details are provided in the companion paper [1]. This paper focuses on how accurately application libraries may be expected to perform in criticality calculations with these data. Continuous energy cross section libraries, suitable for use with the MCNP Monte Carlo transport code, have been generated and applied to a suite of nearly one thousand critical benchmark assemblies defined in the International Criticality Safety Benchmark Evaluation Project's International Handbook of Evaluated Criticality Safety Benchmark Experiments. This suite covers uranium and plutonium fuel systems in a variety of forms such as metallic, oxide or solution, and under a variety of spectral conditions, including unmoderated (i.e., bare), metal reflected and water or other light element reflected. Assembly eigenvalues that were accurately predicted with ENDF/B-VII.0 cross sections such as unrnoderated and uranium reflected (235)U and (239)Pu assemblies, HEU solution systems and LEU oxide lattice systems that mimic commercial PWR configurations continue to be accurately calculated with ENDF/B-VII.1 cross sections, and deficiencies in predicted eigenvalues for assemblies containing selected materials, including titanium, manganese, cadmium and tungsten are greatly reduced. Improvements are also confirmed for selected actinide reaction rates such as (236)U; (238,242)Pu and (241,243)Am capture in fast systems. Other deficiencies, such as the overprediction of Pu solution system critical

  20. Reactor group constants and benchmark test

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-08-01

    The evaluated nuclear data files such as JENDL, ENDF/B-VI and JEF-2 are validated by analyzing critical mock-up experiments for various type reactors and assessing applicability for nuclear characteristics such as criticality, reaction rates, reactivities, etc. This is called Benchmark Testing. In the nuclear calculations, the diffusion and transport codes use the group constant library which is generated by processing the nuclear data files. In this paper, the calculation methods of the reactor group constants and benchmark test are described. Finally, a new group constants scheme is proposed. (author)

  1. Effect of new cross-section evaluations on criticality and neutron energy spectrum of a typical material test research reactor

    International Nuclear Information System (INIS)

    Ahmad, Siraj-ul-Islam; Ahmad, Nasir; Aslam

    2004-01-01

    Several new WIMSD libraries based on recent cross-section evaluations such as IAEA, ENDFB-VI, JENDL, and JEF have been made available by IAEA. These libraries were used for the computation of multiplication factor and energy spectrum for Pakistan Research Reactor-1 (PARR-1). Methodology was validated for benchmark problems made available by IAEA and comparison with reference results. The value of effective multiplication factors for all newly released libraries are 1.8-3.2% less than that of 1981 WIMSD library. The effect of various cross-section libraries on neutron energy spectrum was also studied. Differences of about -10% to 12.5% were found in thermal flux using the newly released libraries as compared with that obtained using 1981 WIMSD library. From the analysis, it was found that the main source of the difference is the cross-sections of hydrogen bound in water. When these cross-sections of hydrogen (bound in water) from new libraries were used along with all other data in 1981 WIMSD library, the k eff obtained in this way has a difference of only 0.02-0.8% with that obtained from new libraries, while the flux spectrum agreed within 1% below 1 MeV with new libraries

  2. Test reactor risk assessment methodology

    International Nuclear Information System (INIS)

    Jennings, R.H.; Rawlins, J.K.; Stewart, M.E.

    1976-04-01

    A methodology has been developed for the identification of accident initiating events and the fault modeling of systems, including common mode identification, as these methods are applied in overall test reactor risk assessment. The methods are exemplified by a determination of risks to a loss of primary coolant flow in the Engineering Test Reactor

  3. Test reactors in the world

    International Nuclear Information System (INIS)

    Corella, M.R.; Gomez Alonso, M.

    1983-01-01

    INFCE work on research reactor core conversion from HEU to LEU, attracted a raising interest on this type of nuclear reactors. In this context, the present work shows a compilation of worldwide research and test nuclear reactors, now in operation, under construction, or planned, as well as decommissioned reactors (tables A to F). Brief descriptions of these reactors are included in tables G to L. In table M a summary view of reactors with power level between 10 and 30 MWt is shown. Attention is focused on that power range, as it has been considered in very preliminar studies for a new research reactor. Almost all data have been obtained from current available bibliography. (author)

  4. Simulator for materials testing reactors

    International Nuclear Information System (INIS)

    Takemoto, Noriyuki; Sugaya, Naoto; Ohtsuka, Kaoru; Hanakawa, Hiroki; Onuma, Yuichi; Hosokawa, Jinsaku; Hori, Naohiko; Kaminaga, Masanori; Tamura, Kazuo; Hotta, Kohji; Ishitsuka, Tatsuo

    2013-06-01

    A real-time simulator for both reactor and irradiation facilities of a materials testing reactor, “Simulator of Materials Testing Reactors”, was developed for understanding reactor behavior and operational training in order to utilize it for nuclear human resource development and to promote partnership with developing countries which have a plan to introduce nuclear power plant. The simulator is designed based on the JMTR (Japan Materials Testing Reactor), and it simulates operation, irradiation tests and various kinds of anticipated operational transients and accident conditions caused by the reactor and irradiation facilities. The development of the simulator was sponsored by the Japanese government as one of the specialized projects of advanced research infrastructure in order to promote basic as well as applied researches. This report summarizes the simulation components, hardware specification and operation procedure of the simulator. (author)

  5. Reactivity estimation for subcritical and critical reactors

    International Nuclear Information System (INIS)

    Benhaim A; Bellino P; Gomez A

    2012-01-01

    We developed a digital reactimeter that works in both current and pulse mode. This reactimeter will allow to estimate the reactivity of the reactor at any state. We st obtained for the measurements taken in the experimental reactor RA-1 the reactivity around the critical state without a neutron source. Measurements were made using simultaneously a compensated ionization chamber and a 3He proportional counter. The results were compared with the ones obtained from the digital reactimeter of reference with matching results within the experimental errors (author)

  6. Research on perturbation based Monte Carlo reactor criticality search

    International Nuclear Information System (INIS)

    Li Zeguang; Wang Kan; Li Yangliu; Deng Jingkang

    2013-01-01

    Criticality search is a very important aspect in reactor physics analysis. Due to the advantages of Monte Carlo method and the development of computer technologies, Monte Carlo criticality search is becoming more and more necessary and feasible. Traditional Monte Carlo criticality search method is suffered from large amount of individual criticality runs and uncertainty and fluctuation of Monte Carlo results. A new Monte Carlo criticality search method based on perturbation calculation is put forward in this paper to overcome the disadvantages of traditional method. By using only one criticality run to get initial k_e_f_f and differential coefficients of concerned parameter, the polynomial estimator of k_e_f_f changing function is solved to get the critical value of concerned parameter. The feasibility of this method was tested. The results show that the accuracy and efficiency of perturbation based criticality search method are quite inspiring and the method overcomes the disadvantages of traditional one. (authors)

  7. The advanced test reactor strategic evaluation program

    International Nuclear Information System (INIS)

    Buescher, B.J.

    1989-01-01

    Since the Chernobly accident, the safety of test reactors and irradiation facilities has been critically evaluated from the public's point of view. A systematic evaluation of all safety, environmental, and operational issues must be made in an integrated manner to prioritize actions to maximize benefits while minimizing costs. Such a proactive program has been initiated at the Advanced Test Reactor (ATR). This program, called the Strategic Evaluation Program (STEP), is being conducted for the ATR to provide integrated safety and operational reviews of the reactor against the standards applied to licensed commercial power reactors. This has taken into consideration the lessons learned by the US Nuclear Regulatory Commission (NRC) in its Systematic Evaluation Program (SEP) and the follow-on effort known as the Integrated Safety Assessment Program (ISAP). The SEP was initiated by the NRC to review the designs of older operating nuclear power plants to confirm and document their safety. The ATR STEP objectives are discussed

  8. Broad-Application Test Reactor

    International Nuclear Information System (INIS)

    Motloch, C.G.

    1992-05-01

    This report is about a new, safe, and operationally efficient DOE reactor of nuclear research and testing proposed for the early to mid- 21st Century. Dubbed the Broad-Application Test Reactor (BATR), the proposed facility incorporates a multiple-application, multiple-mission design to support DOE programs such as naval reactors and space power and propulsion, as well as research in medical, science, isotope, and electronics arenas. DOE research reactors are aging, and implementing major replacement projects requires long lead times. Primary design drivers include safety, low risk, minimum operation cost, mission flexibility, waste minimization, and long life. Scientists and engineers at the Idaho National Engineering Laboratory are evaluating possible fuel forms, structural materials, reactor geometries, coolants, and moderators

  9. Startup testing of Romania dual-core test reactor

    International Nuclear Information System (INIS)

    Whittemore, W.L.

    1980-01-01

    Late in 1979 both the Annular Core Pulsed Reactor (ACPR) and the 14-MW steady-state reactor (SSR) were loaded to critical. The fuel loading in both was then carried to completion and low-power testing was conducted. Early in 1980 both reactors successfully underwent high-power testing. The ACPR was operated for several hours at 500 kW and underwent pulse tests culminating in pulses with reactivity insertions of $4.60, peak power levels of about 20,000 MW, energy releases of 100 MW-sec, and peak measured fuel temperatures of 830 deg. C. The SSR was operated in several modes, both with natural convection and forced cooling with one or more pumps. The reactor successfully completed a 120-hr full-power test. Subsequent fuel element inspections confirmed that the fuel has performed without fuel damage or distortion. (author)

  10. PITR: Princeton Ignition Test Reactor

    International Nuclear Information System (INIS)

    1978-12-01

    The principal objectives of the PITR - Princeton Ignition Test Reactor - are to demonstrate the attainment of thermonuclear ignition in deuterium-tritium, and to develop optimal start-up techniques for plasma heating and current induction, in order to determine the most favorable means of reducing the size and cost of tokamak power reactors. This report describes the status of the plasma and engineering design features of the PITR. The PITR geometry is chosen to provide the highest MHD-stable values of beta in a D-shaped plasma, as well as ease of access for remote handling and neutral-beam injection

  11. FASTER Test Reactor Preconceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-31

    The FASTER test reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  12. Reactor operator screening test experiences

    International Nuclear Information System (INIS)

    O'Brien, W.J.; Penkala, J.L.; Witzig, W.F.

    1976-01-01

    When it became apparent to Duquesne Light Company of Pittsburgh, Pennsylvania, that the throughput of their candidate selection-Phase I training-reactor operator certification sequence was something short of acceptable, the utility decided to ask consultants to make recommendations with respect to candidate selection procedures. The recommendation implemented was to create a Nuclear Training Test that would predict the success of a candidate in completing Phase I training and subsequently qualify for reactor operator certification. The mechanics involved in developing and calibrating the Nuclear Training Test are described. An arbitration decision that resulted when a number of International Brotherhood of Electrical Workers union employees filed a grievance alleging that the selection examination was unfair, invalid, not job related, inappropriate, and discriminatorily evaluated is also discussed. The arbitration decision favored the use of the Nuclear Training Test

  13. Present status of Japan materials testing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hori, Naohiko; Kaminaga, Masanori; Kusunoki, Tsuyoshi; Ishihara, Masahiro; Niimi, Motoji; Komori, Yoshihiro; Suzuki, Masahide; Kawamura, Hiroshi [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    The Japan Materials Testing Reactor (JMTR) in Japan Atomic Energy Agency (JAEA) is a light water cooled tank type reactor with first criticality in March 1968. Owing to the connection between the JMTR and hot laboratory by a canal, easy re-irradiation tests can be conducted with safe and quick transportation of irradiated samples. The JMTR has been applied to fuel/material irradiation examinations for LWRs, HTGR, fusion reactor and RI production. However, the JMTR operation was once stopped in August 2006, and check and review on the reoperation had been conducted by internal as well as external committees. As a result of the discussion, the JMTR reoperation was determined, and refurbishment works started from the beginning of JFY 2007. The refurbishment works have finished in March 2011 taking four years from JFY 2007. Unfortunately, at the end of the JFY 2010 on March 11, the Great-Eastern-Japan-Earthquake occurred, and functional tests before the JMTR restart, such as cooling system, reactor control system and so on, were delayed by the earthquake. Moreover, a detail inspection found some damages such as slight deformation of the truss structure at the roof of the JMTR reactor building. Consequently, the restart of the JMTR will be delayed from June to next October, 2012. Now, the safety evaluation after the earthquake disaster is being carried out aiming at the restart of the JMTR. The renewed JMTR will be started from JFY 2012 and operated for a period of about 20 years until around JFY 2030. The usability improvement of the JMTR, e.g. higher reactor availability, shortening turnaround time to get irradiation results, attractive irradiation cost, business confidence, is also discussed with users as the preparations for re-operation. (author)

  14. Present status of Japan materials testing reactor

    International Nuclear Information System (INIS)

    Hori, Naohiko; Kaminaga, Masanori; Kusunoki, Tsuyoshi; Ishihara, Masahiro; Niimi, Motoji; Komori, Yoshihiro; Suzuki, Masahide; Kawamura, Hiroshi

    2012-01-01

    The Japan Materials Testing Reactor (JMTR) in Japan Atomic Energy Agency (JAEA) is a light water cooled tank type reactor with first criticality in March 1968. Owing to the connection between the JMTR and hot laboratory by a canal, easy re-irradiation tests can be conducted with safe and quick transportation of irradiated samples. The JMTR has been applied to fuel/material irradiation examinations for LWRs, HTGR, fusion reactor and RI production. However, the JMTR operation was once stopped in August 2006, and check and review on the reoperation had been conducted by internal as well as external committees. As a result of the discussion, the JMTR reoperation was determined, and refurbishment works started from the beginning of JFY 2007. The refurbishment works have finished in March 2011 taking four years from JFY 2007. Unfortunately, at the end of the JFY 2010 on March 11, the Great-Eastern-Japan-Earthquake occurred, and functional tests before the JMTR restart, such as cooling system, reactor control system and so on, were delayed by the earthquake. Moreover, a detail inspection found some damages such as slight deformation of the truss structure at the roof of the JMTR reactor building. Consequently, the restart of the JMTR will be delayed from June to next October, 2012. Now, the safety evaluation after the earthquake disaster is being carried out aiming at the restart of the JMTR. The renewed JMTR will be started from JFY 2012 and operated for a period of about 20 years until around JFY 2030. The usability improvement of the JMTR, e.g. higher reactor availability, shortening turnaround time to get irradiation results, attractive irradiation cost, business confidence, is also discussed with users as the preparations for re-operation. (author)

  15. Unusual occurrences in fast breeder test reactor

    International Nuclear Information System (INIS)

    Kapoor, R.P.; Srinivasan, G.; Ellappan, T.R.; Ramalingam, P.V.; Vasudevan, A.T.; Iyer, M.A.K.; Lee, S.M.; Bhoje, S.B.

    2000-01-01

    Fast Breeder Test Reactor (FBTR) is a 40 MWt/13.2 MWe sodium cooled mixed carbide fuelled reactor. Its main aim is to generate experience in the design, construction and operation of fast reactors including sodium systems and to serve as an irradiation facility for the development of fuel and structural materials for future fast reactors. It achieved first criticality in Oct 85 with Mark I core (70% PuC - 30% UC). Steam generator was put in service in Jan 93 and power was raised to 10.5 MWt in Dec 93. Turbine generator was synchronised to the grid in Jul 97. The indigenously developed mixed carbide fuel has achieved a burnup of 44,000 MW-d/t max at a linear heat rating of 320 W/cm max without any fuel clad failure. The commissioning and operation of sodium systems and components have been smooth and performance of major components, viz., sodium pumps, intermediate heat exchangers and once through sodium heated steam generators (SG) have been excellent. There have been three minor incidents of Na/NaK leaks during the past 14 years, which are described in the paper. There have been no incident of a tube leak in SG. However, three incidents of water leaks from water / steam headers have been detailed. The plant has encountered some unusual occurrences, which were critically analysed and remedial measures, in terms of system and procedural modifications, incorporated to prevent recurrence. This paper describes unusual occurrences of fuel handling incident of May 1987, main boiler feed pump seizure in Apr 1992, reactivity transients in Nov 1994 and Apr 1995, and malfunctioning of the core cover plate mechanism in Jul 1995. These incidents have resulted in long plant shutdowns. During the course of investigation, various theoretical and experimental studies were carried out for better understanding of the phenomena and several inspection techniques and tools were developed resulting in enriching the technology of sodium cooled reactors. FBTR has 36 neutronic and process

  16. the JHR Material Testing Reactor

    International Nuclear Information System (INIS)

    Roure, C.; Cornu, B.; Berthet, B.; Simon, E.; Estre, N.; Guimbal, P.; Kinnunen, P.; Kotiluoto, P.

    2013-06-01

    The Jules Horowitz Reactor (JHR) is a European experimental reactor under construction in CEA Cadarache. It will be dedicated to material and fuel irradiation tests, and to medical isotopes production. Non-Destructive nuclear Examinations systems (NDE) will be implemented in pools to analyse the irradiated fuel or tested material in their supporting experimental irradiation devices extracted from the core or its immediate periphery. The Nuclear Measurement Laboratory (NML) of CEA Cadarache is working in collaboration with VTT (Technical Research Centre in Finland) in designing and developing NDE systems implementing gamma-ray spectroscopy and high energy X-ray imaging of the sample and irradiation device. CEA is also designing a neutron radiography system for which NML is working on the detection system. Design studies are performed with Monte Carlo transport codes and specific simulation tools developed by the NML for Xray and neutron imaging. (authors)

  17. Reactor transients tests for SNR fuel elements in HFR reactor

    International Nuclear Information System (INIS)

    Plitz, H.

    1989-01-01

    In HFR reactor, fuel pins of LMFBR reactors are putted in irradiation specimen capsules cooled with sodium for reactor transients tests. These irradiation capsules are instrumented and the experiences realized until this day give results on: - Fuel pins subjected at a continual variation of power - melting fuel - axial differential elongation of fuel pins

  18. Reactor recirculation pump test loop

    International Nuclear Information System (INIS)

    Taka, Shusei; Kato, Hiroyuki

    1979-01-01

    A test loop for a reactor primary loop recirculation pumps (PLR pumps) has been constructed at Ebara's Haneda Plant in preparation for production of PLR pumps under license from Byron Jackson Pump Division of Borg-Warner Corporation. This loop can simulate operating conditions for test PLR pumps with 130 per cent of the capacity of pumps for a 1100 MWe BWR plant. A main loop, primary cooling system, water demineralizer, secondary cooling system, instrumentation and control equipment and an electric power supply system make up the test loop. This article describes the test loop itself and test results of two PLR pumps for Fukushima No. 2 N.P.S. Unit 1 and one main circulation pump for HAZ Demonstration Test Facility. (author)

  19. FASTER test reactor preconceptual design report summary

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, Steven [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-29

    The FASTER reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  20. Kinetic analysis of sub-prompt-critical reactor assemblies

    International Nuclear Information System (INIS)

    Das, S.

    1992-01-01

    Neutronic analysis of safety-related kinetics problems in experimental neutron multiplying assemblies has been carried out using a sub-prompt-critical reactor model. The model is based on the concept of a sub-prompt-critical nuclear reactor and the concept of instantaneous neutron multiplication in a reactor system. Computations of reactor power, period and reactivity using the model show excellent agreement with results obtained from exact kinetics method. Analytic expressions for the energy released in a controlled nuclear power excursion are derived. Application of the model to a Pulsed Fast Reactor gives its sensitivity between 4 and 5. (author). 6 refs., 4 figs., 1 tab

  1. Irradiation Facilities at the Advanced Test Reactor

    International Nuclear Information System (INIS)

    S. Blaine Grover

    2005-01-01

    The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC) (formerly known as the Test Reactor Area), located at the Idaho National Laboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950s with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), which operated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world's data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containing test specimens with no real-time monitoring or control capabilities. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens

  2. A Preliminary Analysis of Reactor Performance Test (LOEP) for a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeonil; Park, Su-Ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The final phase of commissioning is reactor performance test, which is to prove the integrated performance and safety of the research reactor at full power with fuel loaded such as neutron power calibration, Control Absorber Rod/Second Shutdown Rod drop time, InC function test, Criticality, Rod worth, Core heat removal with natural mechanism, and so forth. The last test will be safety-related one to assure the result of the safety analysis of the research reactor is marginal enough to be sure about the nuclear safety by showing the reactor satisfies the acceptance criteria of the safety functions such as for reactivity control, maintenance of auxiliaries, reactor pool water inventory control, core heat removal, and confinement isolation. After all, the fuel integrity will be ensured by verifying there is no meaningful change in the radiation levels. To confirm the performance of safety equipment, loss of normal electric power (LOEP), possibly categorized as Anticipated Operational Occurrence (AOO), is selected as a key experiment to figure out how safe the research reactor is before turning over the research reactor to the owner. This paper presents a preliminary analysis of the reactor performance test (LOEP) for a research reactor. The results showed how different the transient between conservative estimate and best estimate will look. Preliminary analyses have shown all probable thermal-hydraulic transient behavior of importance as to opening of flap valve, minimum critical heat flux ratio, the change of flow direction, and important values of thermal-hydraulic parameters.

  3. Sharing of Rensselaer Polytechnic Institute Reactor Critical Facility (RCF)

    International Nuclear Information System (INIS)

    1995-01-01

    The RPI Reactor Critical Facility (RCF) operated successfully over the period fall 1994 - fall 1995. During this period, the RCF was used for Critical Reactor Laboratory spring 1995 (12 students); Reactor Operations Training fall 1994 (3 students); Reactor Operations Training spring 1995 (3 students); and Reactor Operations Training fall 1995 (3 students). Thirty-two Instrumentation and Measurement students used the RCF for one class for hands-on experiments with nuclear instruments. In addition, a total of nine credits of PhD thesis work were carried out at the RCF. This document constitutes the 1995 Report of the Rensselaer Polytechnic Institute's Reactor Critical Facility (RCF) to the USNRC, to the USDOE, and to RPI management

  4. Comparison of the transient behavior of lead-based advanced critical and sub-critical reactors

    International Nuclear Information System (INIS)

    Wang Gang; Gu Zhixing; Wang Zhen; Jin Ming; Bai Yunqing

    2014-01-01

    A lead-based reactor developed by FDS Team is proposed in 2011 and designed to be 10 MW. It is a pool type reactor and the primary coolant is driven by natural circulation. The reactor has two operation modes, which are a lead-based critical fast reactor mode and a lead-based sub-critical reactor mode. The conceptual designs of the two modes are both completed by 2013. In this paper, four transient accidents were simulated for both the critical and sub-critical reactors above by NTC-2D code, which is developed by FDS Team for advanced reactor safety analysis. The four accidents were protected and unprotected loss of heat sink accidents (PLOHS and ULOHS), protected and unprotected transient overpower accidents (PTOP and UTOP). The simulation results of the two reactors were compared and analyzed. The results showed that during PLOHS and PTOP accidents for both the two modes, all the key parameters (core power, fuel, cladding and coolant temperatures in the hottest channel) decreased to very small values after the reactor scrammed, which meant the reactors under the two modes were both safe. For ULOHS, the fuel, cladding and coolant temperatures of the sub-critical reactor increased bigger than those of the critical one. For UTOP, the parameters above of the critical fast reactor were much bigger than those of the sub-critical one. The analysis results showed different safety advantages of the lead-based critical fast and sub-critical reactors during different transient accidents. (author)

  5. Real time simulator for material testing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Takemoto, Noriyuki; Imaizumi, Tomomi; Izumo, Hironobu; Hori, Naohiko; Suzuki, Masahide [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan); Ishitsuka, Tatsuo; Tamura, Kazuo [ITOCHU Techno-Solutions Corp., Tokyo (Japan)

    2012-03-15

    Japan Atomic Energy Agency (JAEA) is now developing a real time simulator for a material testing reactor based on Japan Materials Testing Reactor (JMTR). The simulator treats reactor core system, primary and secondary cooling system, electricity system and irradiation facility systems. Possible simulations are normal reactor operation, unusual transient operation and accidental operation. The developed simulator also contains tool to revise/add facility in it for the future development. (author)

  6. Real time simulator for material testing reactor

    International Nuclear Information System (INIS)

    Takemoto, Noriyuki; Imaizumi, Tomomi; Izumo, Hironobu; Hori, Naohiko; Suzuki, Masahide; Ishitsuka, Tatsuo; Tamura, Kazuo

    2012-01-01

    Japan Atomic Energy Agency (JAEA) is now developing a real time simulator for a material testing reactor based on Japan Materials Testing Reactor (JMTR). The simulator treats reactor core system, primary and secondary cooling system, electricity system and irradiation facility systems. Possible simulations are normal reactor operation, unusual transient operation and accidental operation. The developed simulator also contains tool to revise/add facility in it for the future development. (author)

  7. Fission reactor critical experiments and analysis

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Work accomplished in support of nonweapons programs by LASL Group Q-14 is described. Included are efforts in basic critical measurements, nuclear criticality safety, a plasma core critical assembly, and reactivity coefficient measurements

  8. Numerical verification of the theory of coupled reactors for a deuterium critical assembly using MCNP5

    International Nuclear Information System (INIS)

    Hussein, M.S.; Bonin, H.W.; Lewis, B.J.

    2013-01-01

    The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as Deuterium Critical Assembly, (DCA). The variations of the criticality factors and the coupling coefficients were investigated by changing of the water levels in the inner and outer cores. The numerical results of the model developed with MCNP5 code were validated and verified against published results and the mathematical model based on coupled reactor theory. (author)

  9. Numerical verification of the theory of coupled reactors for a deuterium critical assembly using MCNP5

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, M.S.; Bonin, H.W.; Lewis, B.J., E-mail: mohamed.hussein@rmc.ca, E-mail: bonin-h@rmc.ca, E-mail: lewis-b@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)

    2013-07-01

    The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as Deuterium Critical Assembly, (DCA). The variations of the criticality factors and the coupling coefficients were investigated by changing of the water levels in the inner and outer cores. The numerical results of the model developed with MCNP5 code were validated and verified against published results and the mathematical model based on coupled reactor theory. (author)

  10. REACTOR FUEL ELEMENTS TESTING CONTAINER

    Science.gov (United States)

    Whitham, G.K.; Smith, R.R.

    1963-01-15

    This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

  11. Test reactor: basic to U.S. breeder reactor development

    International Nuclear Information System (INIS)

    Miller, B.J.; Harness, A.J.

    1975-01-01

    Long-range energy planning in the U. S. includes development of a national commercial breeder reactor program. U. S. development of the LMFBR is following a conservative sequence of extensive technology development through use of test reactors and demonstration plants prior to construction of commercial plants. Because materials and fuel technology development is considered the first vital step in this sequence, initial U. S. efforts have been directed to the design and construction of a unique test reactor. The Fast Flux Test Facility, FFTF, is a 400 MW(t) reactor with driver fuel locations, open test locations, and closed loops for higher risk experiments. The FFTF will provide a prototypic LMFBR core environment with sufficient instrumentation for detailed core environmental characterization and a testing capability substituted for breeder capability. The unique comprehensive fuel and materials testing capability of the FFTF will be key to achieving long-range objectives of increased power density, improved breeding gain and shorter doubling times. (auth)

  12. Ground test facility for nuclear testing of space reactor subsystems

    International Nuclear Information System (INIS)

    Quapp, W.J.; Watts, K.D.

    1985-01-01

    Two major reactor facilities at the INEL have been identified as easily adaptable for supporting the nuclear testing of the SP-100 reactor subsystem. They are the Engineering Test Reactor (ETR) and the Loss of Fluid Test Reactor (LOFT). In addition, there are machine shops, analytical laboratories, hot cells, and the supporting services (fire protection, safety, security, medical, waste management, etc.) necessary to conducting a nuclear test program. This paper presents the conceptual approach for modifying these reactor facilities for the ground engineering test facility for the SP-100 nuclear subsystem. 4 figs

  13. Present status and future perspective of research and test reactors in JAERI

    International Nuclear Information System (INIS)

    Baba, Osamu; Kaieda, Keisuke

    1999-01-01

    Since 1957, Japan Atomic Energy Research Institute (JAERI) has constructed several research and test reactors to fulfil a major role in the study of nuclear energy and fundamental research. At present, four reactors, the Japan Research Reactor No. 3 and No. 4 (JRR-3M and JRR-4 respectively), the Japan Materials Testing Reactor (JMTR) and the Nuclear Safety Research Reactor (NSRR), are in operation, and a new High Temperature Engineering Test Reactor (HTTR) has reached first criticality and is waiting for the power-up test. This paper introduce these reactors and describe their present operational status. The recent tendency of utilization and future perspectives are also reported. (author)

  14. Present status and future perspective of research and test reactors in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Osamu [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Kaieda, Keisuke

    1999-08-01

    Since 1957, Japan Atomic Energy Research Institute (JAERI) has constructed several research and test reactors to fulfil a major role in the study of nuclear energy and fundamental research. At present, four reactors, the Japan Research Reactor No. 3 and No. 4 (JRR-3M and JRR-4 respectively), the Japan Materials Testing Reactor (JMTR) and the Nuclear Safety Research Reactor (NSRR), are in operation, and a new High Temperature Engineering Test Reactor (HTTR) has reached first criticality and is waiting for the power-up test. This paper introduce these reactors and describe their present operational status. The recent tendency of utilization and future perspectives are also reported. (author)

  15. Research on reactor physics using the Very High Temperature Reactor Critical Assembly (VHTRC)

    International Nuclear Information System (INIS)

    Akino, Fujiyoshi

    1988-01-01

    The High Temperature Engineering Test Reactor (HTTR), of which the research and development are advanced by Japan Atomic Energy Research Institute, is planned to apply for the permission of installation in fiscal year 1988, and to start the construction in the latter half of fisical year 1989. As the duty of reactor physics research, the accuracy of the nuclear data is to be confirmed, the validity of the nuclear design techniques is to be inspected, and the nuclear safety of the HTTR core design is to be verified. Therefore, by using the VHTRC, the experimental data of the reactor physics quantities are acquired, such as critical mass, the reactivity worth of simulated control rods and burnable poison rods, the temperature factor of reactivity, power distribution and so on, and the experiment and analysis are advanced. The cores built up in the VHTRC so far were three kinds having different lattice forms and degrees of uranium enrichment. The calculated critical mass was smaller by 1-5 % than the measured values. As to the power distribution and the reactivity worth of burnable poison rods, the prospect of satisfying the required accuracy for the design of the HTTR core was obtained. The experiment using a new core having axially different enrichment degree is planned. (K.I.)

  16. Numerical solutions to critical problem of reflected cylindrical reactor

    International Nuclear Information System (INIS)

    Horie, Junnosuke

    1977-01-01

    The multi-region critical problem can be transformed into an eigenvalue problem in the classical sense by using the method of Kuscer and Corngold and of Wing. This transformation is applied to derive a variational formulation for a reflected reactor. An approximate critical value of the multiplying factor is determined by maximizing the Rayleigh quotient for radially and totally reflected cylindrical reactors. It is shown that this approximate critical value is an upper bound of the true critical value. From the facts that the operator is self-adjoint and the eigenfunction is positive, an expression is derived for the upper and lower bounds of the true eigenvalue, by making use of the approximate distribution. The difference of the upper and lower bounds is an uncertainty of the presumption of the true critical value. It is found that we can compute the bounds to any required precision. The narrow bounds are calculated for two radially and one totally reflected cylindrical reactors. (auth.)

  17. Critical fluctuations of the number of neutrons in a reactor

    International Nuclear Information System (INIS)

    Ryazanov, V.V.; Lakoza, E.L.; Sysoev, V.M.

    1995-01-01

    The nuclear chain reaction is the most important physical process in a reactor. The theory of nuclear chain reaction fluctuations (neutron noise), developed in and other studies, has given results that are important for reactor physics and reactor practice (correlation analysis of neutron noise for measurement of the physical characteristics and reactor monitoring, stability of the critical state, etc.). Here we propose to study these problems by applying the methods of continuous phase transitions and synergetics and using the analogy with chemical chain reactions and the general laws of critical phenomena. The optimal reactor operating conditions are critical. To predict how a critical reactor will behave it is necessary to reveal those features of the neutron laws that are universal in some way, i.e., do not depend on the details of the individual acts of neutron motion and transformation that occur in reactors of different types. The similarity between chemical and nuclear chain reactions was noted long ago. Consequently, a universal theory of continuous phase transition was developed for systems of diverse physical nature

  18. Design and analysis on super-critical water cooled power reactors

    International Nuclear Information System (INIS)

    Ishiwatari, Yuki

    2005-01-01

    The Super-Critical Water Cooled Power Reactors (SCPR) is cooled by 25 MPa supercritical water of 280degC at reactor inlet and greater than 500degC at reactor outlet and directly connected with turbine/generators with high energy conversion efficiency. This corresponds to the deletion of recirculation system and steam-water separation system of BWR type reactors or of pressurizer and steam generator of PWR type reactors. In addition to the design study of the university of Tokyo, technology development of the SCPR for practical use has started under the collaboration of industry and academia since 2000. Mockup single tube and bundle tests for heat transfer/fluid flow characteristics of the design have been conducted with 3D heat transfer analysis. Materials compatible with coolant conditions for fuel cans and reactor internals are also assessed. Overall evaluation of the reactor concept is under way. (T. Tanaka)

  19. Proceedings of the international symposium on materials testing reactors

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Kawamura, Hiroshi

    2009-01-01

    This report is the Proceedings of the International Symposium on Materials Testing Reactors hosted by Japan Atomic Energy Agency (JAEA). The symposium was held on July 16 to 17, 2008, at the Oarai Research and Development Center of JAEA. This symposium was also held for the 40th anniversary ceremony of Japan Materials Testing Reactor (JMTR) from achieving its first criticality. The objective of the symposium is to exchange the information on current status, future plan and so on among each testing reactors for the purpose of mutual understanding. There were 138 participants from Argentina, Belgium, France, Indonesia, Kazakhstan, Korea, the Russian Federation, Sweden, the United State, Vietnam and Japan. The symposium was divided into four technical sessions and three topical sessions. Technical sessions addressed the general topics of 'status and future plan of materials testing reactors', 'material development for research and testing reactors', irradiation technology (including PIE technology)' and 'utilization with materials testing reactors', and 21 presentations were made. Also the topical sessions addressed 'establishment of strategic partnership', 'management on re-operation work at reactor trouble' and 'basic technology for neutron irradiation tests in MTRs', and panel discussion was made. The 21 of the presented papers are indexed individually. (J.P.N.)

  20. Development of a method for high temperature reactor calculations tested at the critical facility Kahter using the program system RSYST. Entwicklung einer Rechenmethode zur HTR-Auslegung im Rahmen des Programmsystems RSYST und deren Erprobung an der kritischen Anlage 'Kahter'

    Energy Technology Data Exchange (ETDEWEB)

    Nabi, R

    1979-08-15

    In this report the neutron- and reactor physical aspects of the high temperature pebble bed reactor are studied. For this purpose appropriate HTR-nuclear data sets are generated and applied in a calculation model, which is developed on the basis of neutron transport and diffusion theory. This model includes the complete reactor calculation for determination of neutron flux, reactivity and reaction rates. This reactor calculation is based on following: evaluation of resonance absorption in double heterogeneity, cell calculation in spherical geometry, zone spectral calculation and subsequent 2-dimensional diffusion calculation. All calculations are performed in the modular program system RSYST, which accommodates simplified treatment of reactor physics problems through its data transfer and treatment techniques and through its calculations control features. In this report the neutron- and reactor physical aspects of the high temperature pebble bed reactor are studied. For this purpose appropriate HTR-nuclear data sets are generated and applied in a calculation model, which is developed on the basis of neutron transport and diffusion theory. This model includes the complete reactor calculation for determination of neutron flux, reactivity and reaction rates. This reactor calculation is based on following: evaluation of resonance absorption in double heterogeneity, cell calculation in spherical geometry, zone spectral calculation and subsequent 2-dimensional diffusion calculation. All calculations are performed in the modular program system RSYST, which accommodates simplified treatment of reactor physics problems through its data transfer and treatment techniques and through its calculations control features. The results of the calculations are compared with measured values of different core configurations of the critical facility for the high temperature pebble bed reactor (KAHTER). This comparison shows how a critical facility is used to verify and to adjust

  1. Method for critical current testing

    International Nuclear Information System (INIS)

    Siddall, M.B.; Smathers, D.B.

    1989-01-01

    Superconducting critical current testing software was developed with four important features not feasible with analog test equipment. First, quasi-steady-state sample current conditions are achieved by incrementing sample current, followed by holding some milliseconds until the transient voltage decays before voltage sampling. Then the self-field correction from a helically wound sample is computed and subtracted from each sampled field reading. A copper wire inductively wound shunt which is used for quench protection has a constant measured resistance from which the shunt leakage current is computed and subtracted from the sample current by measuring the shunt voltage after each sample current reading. Finally, the critical current is recomputed from a least squares curve fit to the power law: E=A*In when the correlation coefficient for the fit is high enough to ensure a better result than the raw datum. Comparison with NBS Standard Reference Material (NbTi) and current round robin Nb/sub 3/Sn testing is examined

  2. Scyllac fusion test reactor design

    International Nuclear Information System (INIS)

    Dudziak, D.J.; Gerstl, S.A.; Houck, D.L.; Jalbert, R.A.; Krakowski, R.A.; Linford, R.K.; McDonald, T.E.; Rogers, J.D.; Thomassen, K.I.

    1975-01-01

    A general design of the system is given. The implosion heating and compression systems (METS) are described. Tritium handling, shielding and activation of the reactor, and safety and environmental aspects are discussed

  3. Simulating Neutronic Core Parameters in a Research and Test Reactor

    International Nuclear Information System (INIS)

    Selim, H.K.; Amin, E.A.; Koutb, M.E.

    2011-01-01

    The present study proposes an Artificial Neural Network (ANN) modeling technique that predicts the control rods positions in a nuclear research reactor. The neutron, flux in the core of the reactor is used as the training data for the neural network model. The data used to train and validate the network are obtained by modeling the reactor core with the neutronic calculation code: CITVAP. The type of the network used in this study is the feed forward multilayer neural network with the backpropagation algorithm. The results show that the proposed ANN has good generalization capability to estimate the control rods positions knowing neutron flux for a research and test reactor. This method can be used to predict critical control rods positions to be used for reactor operation after reload

  4. Critical seismic response of nuclear reactors

    International Nuclear Information System (INIS)

    Drenick, R.F.; Wang, P.C.; Yun, C.B.; Philappacopoulos, A.J.

    1980-01-01

    This paper deals with the problem of how to assess the seismic resistance of important structures, particularly of nuclear reactor structures. Most of the design procedures presently in use or under investigation are based on design response spectra obtained by statistical evaluation of past ground excitations assuming certain probability distributions (e.g., normal or lognormal) of response peaks. Artificial time histories generated from these spectra are also used. However, it is not clear whether these approaches lead to designs that can be relied upon on the confidence levels that are presumably desired for structures such as nuclear reactors whose integrity during an earthquake is of considerable importance. The trouble lies with the fact that the analysis of structural integrity seems highly sensitive to the assumptions regarding the nature of those probability distributions: small variations, especially in the tails of the distributions, can induce large changes in the desired results. This greatly weakens the reliance that can be placed in many assessments of earthquake resistance. In this paper, a new method is developed which has the potential of avoiding those weaknesses. It is more specifically based on assumptions that seem well supported by seismological observations but side-steps others, especially those regarding probability distribution of ground motions, which are more conjectural. (orig./RW)

  5. The SPHINX reactor for engineering tests

    International Nuclear Information System (INIS)

    Adamov, E.O.; Artamkin, K.N.; Bovin, A.P.; Bulkin, Y.M.; Kartashev, E.F.; Korneev, A.A.; Stenbok, I.A.; Terekhov, A.S.; Khmel'Shehikov, V.V.; Cherkashov, Y.M.

    1990-01-01

    A research reactor known as SPHINX is under development in the USSR. The reactor will be used mainly to carry out tests on mock-up power reactor fuel assemblies under close-to-normal parameters in experimental loop channels installed in the core and reflector of the reactor, as well as to test samples of structural materials in ampoule and loop channels. The SPHINX reactor is a channel-type reactor with light-water coolant and moderator. Maximum achievable neutron flux density in the experimental channels (cell composition 50% Fe, 50% H 2 O) is 1.1 X 10 15 neutrons/cm 2 · s for fast neutrons (E > 0.1 MeV) and 1.7 X 10 15 for thermal neutrons at a reactor power of 200 MW. The design concepts used represent a further development of the technical features which have met with approval in the MR and MIR channel-type engineering test reactors currently in use in the USSR. The 'in-pond channel' construction makes the facility flexible and eases the carrying out of experimental work while keeping discharges of radioactivity into the environment to a low level. The reactor and all associated buildings and constructions conform to modern radiation safety and environmental protection requirements

  6. Critical plasma-materials issues for fusion reactor designs

    International Nuclear Information System (INIS)

    Wilson, K.L.; Bauer, W.

    1983-01-01

    Plasma-materials interactions are a dominant driving force in the design of fusion power reactors. This paper presents a summary of plasma-materials interactions research. Emphasis is placed on critical aspects related to reactor design. Particular issues to be addressed are plasma edge characterization, hydrogen recycle, impurity introduction, and coating development. Typical wall fluxes in operating magnetically confined devices are summarized. Recent calculations of tritium inventory and first wall permeation, based on laboratory measurements of hydrogen recycling, are given for various reactor operating scenarios. Impurity introduction/wall erosion mechanisms considered include sputtering, chemical erosion, and evaporation (melting). Finally, the advanced material development for in-vessel components is discussed. (author)

  7. New facilities in Japan materials testing reactor for irradiation test of fusion reactor components

    International Nuclear Information System (INIS)

    Kawamura, H.; Sagawa, H.; Ishitsuka, E.; Sakamoto, N.; Niiho, T.

    1996-01-01

    The testing and evaluation of fusion reactor components, i.e. blanket, plasma facing components (divertor, etc.) and vacuum vessel with neutron irradiation is required for the design of fusion reactor components. Therefore, four new test facilities were developed in the Japan Materials Testing Reactor: an in-pile functional testing facility, a neutron multiplication test facility, an electron beam facility, and a re-weldability facility. The paper describes these facilities

  8. Material test reactor fuel research at the BR2 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dyck, Steven Van; Koonen, Edgar; Berghe, Sven van den [Institute for Nuclear Materials Science, SCK-CEN, Boeretang, Mol (Belgium)

    2012-03-15

    The construction of new, high performance material test reactor or the conversion of such reactors' core from high enriched uranium (HEU) to low enriched uranium (LEU) based fuel requires several fuel qualification steps. For the conversion of high performance reactors, high density dispersion or monolithic fuel types are being developed. The Uranium-Molybdenum fuel system has been selected as reference system for the qualification of LEU fuels. For reactors with lower performance characteristics, or as medium enriched fuel for high performance reactors, uranium silicide dispersion fuel is applied. However, on the longer term, the U-Mo based fuel types may offer a more efficient fuel alternative and-or an easier back-end solution with respect to the silicide based fuels. At the BR2 reactor of the Belgian nuclear research center, SCK-CEN in Mol, several types of fuel testing opportunities are present to contribute to such qualification process. A generic validation test for a selected fuel system is the irradiation of flat plates with representative dimensions for a fuel element. By flexible positioning and core loading, bounding irradiation conditions for fuel elements can be performed in a standard device in the BR2. For fuel element designs with curved plates, the element fabrication method compatibility of the fuel type can be addressed by incorporating a set of prototype fuel plates in a mixed driver fuel element of the BR2 reactor. These generic types of tests are performed directly in the primary coolant flow conditions of the BR2 reactor. The experiment control and interpretation is supported by detailed neutronic and thermal-hydraulic modeling of the experiments. Finally, the BR2 reactor offers the flexibility for irradiation of full size prototype fuel elements, as 200mm diameter irradiation channels are available. These channels allow the accommodation of various types of prototype fuel elements, eventually using a dedicated cooling loop to provide the

  9. Reliability test for reactor internals rejuvenation technology

    International Nuclear Information System (INIS)

    Uchiyama, Junichi

    1998-01-01

    41 transparencies were presented on the subject of 'Reliability test for reactor internals rejuvenation technology'. The items presented give an introduction on the management of plant life in Japan and introduce the Nuclear Power Engineering Corporation (NUPEC). The question of what reliability tests for rejuvenation of reactor internals are is discussed in some detail and an outline of each test is given. Altogether six methods to rejuvenate reactor internals are presented, two of which have already been applied to actual plants. The presentation was supported by many detailed drawings and images

  10. Conceptual research on reactor core physics for accelerator driven sub-critical reactor

    International Nuclear Information System (INIS)

    Zhao Zhixiang; Ding Dazhao; Liu Guisheng; Fan Sheng; Shen Qingbiao; Zhang Baocheng; Tian Ye

    2000-01-01

    The main properties of reactor core physics are analysed for accelerator driven sub-critical reactor. These properties include the breeding of fission nuclides, the condition of equilibrium, the accumulation of long-lived radioactive wastes, the effect from poison of fission products, as well as the thermal power output and the energy gain for sub-critical reactor. The comparison between thermal and fast system for main properties are carried out. The properties for a thermal-fast coupled system are also analysed

  11. The count variance-covariance matrix in a critical reactor

    International Nuclear Information System (INIS)

    Carloni, F.; Giovannini, R.

    1984-01-01

    The present paper deals with a critical reactor containing a set of neutron detectors operating one at time in different time intervals. The analysis makes use of the Kolmogorov backward formalism for the branching processes, in the framework of the one-velocity, point reactor model, explicitly taking into account the six groups of delayed neutrons. The expression of the mean value, the covariance of the counting distribution are reported. The list of the Fortran 4. subroutine CRITIC which computes these moments is also reported

  12. Advanced Test Reactor National Scientific User Facility

    International Nuclear Information System (INIS)

    Marshall, Frances M.; Benson, Jeff; Thelen, Mary Catherine

    2011-01-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  13. Advanced Test Reactor probabilistic risk assessment

    International Nuclear Information System (INIS)

    Atkinson, S.A.; Eide, S.A.; Khericha, S.T.; Thatcher, T.A.

    1993-01-01

    This report discusses Level 1 probabilistic risk assessment (PRA) incorporating a full-scope external events analysis which has been completed for the Advanced Test Reactor (ATR) located at the Idaho National Engineering Laboratory

  14. Advanced Test Reactor National Scientific User Facility

    Energy Technology Data Exchange (ETDEWEB)

    Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

    2011-08-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  15. Application of MCNP in the criticality calculation for reactors

    International Nuclear Information System (INIS)

    Zhong Zhaopeng; Shi Gong; Hu Yongming

    2003-01-01

    The criticality calculation is carried out with 3-D Monte Carlo code (MCNP). The author focuses on the introduction of modelling of the core and reflector. The core description is simplified by using repetition structure function of MCNP. k eff in different control rods positions are calculated for the case of JRR3, and the results is consistent with that of the reference. This work shows that MCNP is applicable for reactor criticality calculation

  16. Safe operation of critical assemblies and research reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-09-15

    Some countries have accumulated considerable experience in the operation of these reactors and have in the process developed safe practices. On the other hand, other countries which have recently acquired, or will soon acquire, such reactors do not have sufficient background of experience with them to have developed full knowledge regarding their safe operation. In this situation, the International Atomic Energy Agency has considered that it would be useful to make available to all its Member States a set of recommendations on the safe operation of these reactors, based on the accumulated experience and best practices. The Director General accordingly nominated a Pane Ion Safe Operation of Critical Assemblies and Research Reactors to assist the Agency's Secretariat in drafting such recommendations

  17. The under-critical reactors physics for the hybrid systems

    International Nuclear Information System (INIS)

    Schapira, J.P.; Vergnes, J.; Zaetta, A.

    1998-01-01

    This day, organized by the SFEN, took place at Paris the 12 march 1998. Nine papers were presented. They take stock on the hybrid systems and more specifically the under-critical reactors. One of the major current preoccupation of nuclear industry is the problems of the increase of radioactive wastes produced in the plants and the destruction of the present stocks. To solve these problems a solution is the utilisation of hybrid systems: the coupling of a particle acceleration to an under-critical reactor. Historical aspects, advantages and performances of such hybrid reactors are presented in general papers. More technical papers are devoted to the spallation, the MUSE and the TARC experiments. (A.L.B.)

  18. Design Guide for Category I reactors critical facilities

    International Nuclear Information System (INIS)

    Brynda, W.J.; Powell, R.W.

    1978-08-01

    The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification, operation, maintenance, and decommissioning of DOE-owned critical facilities be in accordance with generally uniform standards, guides, and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission

  19. The initial criticality and nuclear commissioning test program at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choong-Sung; Seo, Chul-Gyo; Jun, Byung-Jin [Korea Atomic Energy Research Institute, Dukjin-Dong 150, Yusung-Ku, Taejon, 305-353 (Korea, Republic of)

    1995-07-01

    The construction of the Korea Multipurpose Research Reactor - HANARO of 3MW, developed by Korea Atomic Energy Research Institute, was completed at the beginning of this year. The first fuel loading began on February 2 1995, and initial criticality was achieved on February 8, when the core had four 18-element assemblies and thirteen 36-element assemblies. The critical control rod position was 600.8 mm which represents excess reactivity of 0.71 $. Currently the nuclear commissioning test is on going under the zero power range. This paper describes the initial criticality approach of the HANARO, and its nuclear commissioning test program. (author)

  20. Current and prospective fuel test programmes in the MIR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Izhutov, A.L.; Burukin, A.V.; Iljenko, S.A.; Ovchinnikov, V.A.; Shulimov, V.N.; Smirnov, V.P. [State Scientific Centre of Russia Research Institute of Atomic Reactors, Ulyanovsk region (Russian Federation)

    2007-07-01

    MIR reactor is a heterogeneous thermal reactor with a moderator and a reflector made of metal beryllium, it has a channel-type design and is placed in a water pool. MIR reactor is mainly designed for testing fragments of fuel elements and fuel assemblies (FA) of different nuclear power reactor types under normal (stationary and transient) operating conditions as well as emergency situations. At present six test loop facilities are being operated (2 PWR loops, 2 BWR loops and 2 steam coolant loops). The majority of current fuel tests is conducted for improving and upgrading the Russian PWR fuel, these tests involve issues such as: -) long term tests of short-size rods with different modifications of cladding materials and fuel pellets; -) further irradiation of power plant re-fabricated and full-size fuel rods up to achieving 80 MW*d/kg U; -) experiments with leaking fuel rods at different burnups and under transient conditions; -) continuation of the RAMP type experiments at high burnup of fuel; and -) in-pile tests with simulation of LOCA and RIA type accidents. Testing of the LEU (low enrichment uranium) research reactor fuel is conducted within the framework of the RERTR programme. Upgrading of the gas cooled and steam cooled loop facilities is scheduled for testing the HTGR fuel and sub-critical water-cooled reactor, correspondingly. The present paper describes the major programs of the WWER high burn-up fuel behavior study in the MIR reactor, capabilities of the applied techniques and some results of the performed irradiation tests. (authors)

  1. Reactor noise in critical and accelerator driven sub-critical systems

    International Nuclear Information System (INIS)

    Degweker, S.B.; Rana, Y.S.

    2007-01-01

    Noise methods have long been used for reactor kinetics parameters measurement and as diagnostic tools for monitoring the health of a nuclear power plant. It is conceivable that noise techniques would find similar applications in ADS. Measurement/monitoring the degree of sub-criticality of an ADS is one such application for which noise based methods are being considered, among others such as the pulsed source method. For this reason, theoretical studies on ADS noise have appeared since the late nineties. The principal difference between critical reactor noise and ADS noise is due to the statistical properties of the source. Unlike the source due to radioactive decay present in ordinary reactors, the machine produced ADS source cannot be assumed to be a Poisson process. In addition the source is pulsed. All this requires a new theoretical approach to the subject. In a number of papers (beginning in 2000) such a theoretical approach has been developed in BARC. Over the years, our approach has received general acceptance. The paper gives a description of the subject of reactor noise and its applications in critical reactors. The theory of noise in ADS is then outlined, highlighting the differences in approach and results from that of critical reactors. (author)

  2. Summary of ORSphere critical and reactor physics measurements

    Directory of Open Access Journals (Sweden)

    Marshall Margaret A.

    2017-01-01

    Full Text Available In the early 1970s Dr. John T. Mihalczo (team leader, J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF with highly enriched uranium (HEU metal (called Oak Ridge Alloy or ORALLOY to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s. The purpose of the Oak Ridge ORALLOY Sphere (ORSphere experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. This critical configuration has been evaluated. Preliminary results were presented at ND2013. Since then, the evaluation was finalized and judged to be an acceptable benchmark experiment for the International Criticality Safety Benchmark Experiment Project (ICSBEP. Additionally, reactor physics measurements were performed to determine surface button worths, central void worth, delayed neutron fraction, prompt neutron decay constant, fission density and neutron importance. These measurements have been evaluated and found to be acceptable experiments and are discussed in full detail in the International Handbook of Evaluated Reactor Physics Benchmark Experiments. The purpose of this paper is to summarize all the evaluated critical and reactor physics measurements evaluations.

  3. Summary of ORSphere Critical and Reactor Physics Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Margaret A.; Bess, John D.

    2016-09-01

    In the early 1970s Dr. John T. Mihalczo (team leader), J. J. Lynn, and J. R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s. The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. This critical configuration has been evaluated. Preliminary results were presented at ND2013. Since then, the evaluation was finalized and judged to be an acceptable benchmark experiment for the International Criticality Safety Benchmark Experiment Project (ICSBEP). Additionally, reactor physics measurements were performed to determine surface button worths, central void worth, delayed neutron fraction, prompt neutron decay constant, fission density and neutron importance. These measurements have been evaluated and found to be acceptable experiments and are discussed in full detail in the International Handbook of Evaluated Reactor Physics Benchmark Experiments. The purpose of this paper is summary summarize all the critical and reactor physics measurements evaluations and, when possible, to compare them to GODIVA experiment results.

  4. Summary of ORSphere critical and reactor physics measurements

    Science.gov (United States)

    Marshall, Margaret A.; Bess, John D.

    2017-09-01

    In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s. The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. This critical configuration has been evaluated. Preliminary results were presented at ND2013. Since then, the evaluation was finalized and judged to be an acceptable benchmark experiment for the International Criticality Safety Benchmark Experiment Project (ICSBEP). Additionally, reactor physics measurements were performed to determine surface button worths, central void worth, delayed neutron fraction, prompt neutron decay constant, fission density and neutron importance. These measurements have been evaluated and found to be acceptable experiments and are discussed in full detail in the International Handbook of Evaluated Reactor Physics Benchmark Experiments. The purpose of this paper is to summarize all the evaluated critical and reactor physics measurements evaluations.

  5. Administrative Aspects of the Criticality Controls Used in Programmes for Basic Criticality Research, Reactor Development and Materials Processing

    Energy Technology Data Exchange (ETDEWEB)

    Wood, D. P.; Giessing, D. F. [Operational Safety Division, USAEC Albuquerque Operations Office, NM (United States)

    1966-05-15

    This paper describes the administrative and procedural aspects of criticality controls used by a field office of the United States Atomic Energy Commission in programmes that include reactor criticals, research and materials testing reactors, and power reactor development. Situations encountered include handling, storing, and processing large quantities of uranium-235 and plutonium-239 of various configurations and compositions in laboratories and operations which gather basic criticality data, processing of fissile material, and varied reactor research and development, programmes including fuel materials. Similar situations exist for uranium-233 and plutonium-238 on a smaller laboratory scale. The administrative controls and interactions of the USAEC field office and the operating contractors, who operate these installations for the USAEC, are outlined. Also, the purpose and scope of the direct examination by USAEC personnel of these contractor facilities are analysed. The programme has been in effect for three years and is believed to be successful in maintaining efficient operations and an acceptable low level of risk of inadvertent criticality. Success of this programme is in good measure due to the close working relationship between the staffs of the USAEC field office and the operating contractors. (author)

  6. High gamma-rays irradiation tests of critical components for ITER (International Thermonuclear Experimental Reactor) in-vessel remote handling system

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi

    1999-02-01

    In ITER, the in-vessel remote handling is inevitably required to assemble and maintain the activated in-vessel components due to deuterium and tritium operation. Since the in-vessel remote handling system has to be operated under the intense of gamma ray irradiation, the components of the remote handling system are required to have radiation hardness so as to allow maintenance operation for a sufficient length of time under the ITER in-vessel environments. For this, the Japan, European and Russian Home Teams have extensively conducted gamma ray irradiation tests and quality improvements including optimization of material composition through ITER R and D program in order to develop radiation hard components which satisfy the doses from 10 MGy to 100 MGy at a dose rate of 1 x 10 6 R/h (ITER R and D Task: T252). This report describes the latest status of radiation hard component development which has been conducted by the Japan Home Team in the ITER R and D program. The number of remote handling components tested is about seventy and these are categorized into robotics (Subtask 1), viewing system (Subtask 2) and common components (Subtask 3). The irradiation tests, including commercial base products for screening, modified products and newly developed products to improve the radiation hardness, were carried out using the gamma ray irradiation cells in Takasaki Establishment, JAERI. As a result, the development of the radiation hard components which can be tolerable for high temperature and gamma radiation has been well progressed, and many components, such as AC servo motor with ceramics insulated wire, optical periscope and CCD camera, have been newly developed. (author)

  7. High gamma-rays irradiation tests of critical components for ITER (International Thermonuclear Experimental Reactor) in-vessel remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi [Department of Fusion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki (Japan)] [and others

    1999-02-01

    In ITER, the in-vessel remote handling is inevitably required to assemble and maintain the activated in-vessel components due to deuterium and tritium operation. Since the in-vessel remote handling system has to be operated under the intense of gamma ray irradiation, the components of the remote handling system are required to have radiation hardness so as to allow maintenance operation for a sufficient length of time under the ITER in-vessel environments. For this, the Japan, European and Russian Home Teams have extensively conducted gamma ray irradiation tests and quality improvements including optimization of material composition through ITER R and D program in order to develop radiation hard components which satisfy the doses from 10 MGy to 100 MGy at a dose rate of 1 x 10{sup 6} R/h (ITER R and D Task: T252). This report describes the latest status of radiation hard component development which has been conducted by the Japan Home Team in the ITER R and D program. The number of remote handling components tested is about seventy and these are categorized into robotics (Subtask 1), viewing system (Subtask 2) and common components (Subtask 3). The irradiation tests, including commercial base products for screening, modified products and newly developed products to improve the radiation hardness, were carried out using the gamma ray irradiation cells in Takasaki Establishment, JAERI. As a result, the development of the radiation hard components which can be tolerable for high temperature and gamma radiation has been well progressed, and many components, such as AC servo motor with ceramics insulated wire, optical periscope and CCD camera, have been newly developed. (author)

  8. Advanced Demonstration and Test Reactor Options Study

    Energy Technology Data Exchange (ETDEWEB)

    Petti, David Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Gehin, J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Kinsey, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Grandy, Christopher [Argonne National Lab. (ANL), Argonne, IL (United States); Qualls, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Croson, D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    Global efforts to address climate change will require large-scale decarbonization of energy production in the United States and elsewhere. Nuclear power already provides 20% of electricity production in the United States (U.S.) and is increasing in countries undergoing rapid growth around the world. Because reliable, grid-stabilizing, low emission electricity generation, energy security, and energy resource diversity will be increasingly valued, nuclear power’s share of electricity production has a potential to grow. In addition, there are non electricity applications (e.g., process heat, desalination, hydrogen production) that could be better served by advanced nuclear systems. Thus, the timely development, demonstration, and commercialization of advanced nuclear reactors could diversify the nuclear technologies available and offer attractive technology options to expand the impact of nuclear energy for electricity generation and non-electricity missions. The purpose of this planning study is to provide transparent and defensible technology options for a test and/or demonstration reactor(s) to be built to support public policy, innovation and long term commercialization within the context of the Department of Energy’s (DOE’s) broader commitment to pursuing an “all of the above” clean energy strategy and associated time lines. This planning study includes identification of the key features and timing needed for advanced test or demonstration reactors to support research, development, and technology demonstration leading to the commercialization of power plants built upon these advanced reactor platforms. This planning study is consistent with the Congressional language contained within the fiscal year 2015 appropriation that directed the DOE to conduct a planning study to evaluate “advanced reactor technology options, capabilities, and requirements within the context of national needs and public policy to support innovation in nuclear energy

  9. Advanced Demonstration and Test Reactor Options Study

    International Nuclear Information System (INIS)

    Petti, David Andrew; Hill, R.; Gehin, J.; Gougar, Hans David; Strydom, Gerhard; Heidet, F.; Kinsey, J.; Grandy, Christopher; Qualls, A.; Brown, Nicholas; Powers, J.; Hoffman, E.; Croson, D.

    2017-01-01

    Global efforts to address climate change will require large-scale decarbonization of energy production in the United States and elsewhere. Nuclear power already provides 20% of electricity production in the United States (U.S.) and is increasing in countries undergoing rapid growth around the world. Because reliable, grid-stabilizing, low emission electricity generation, energy security, and energy resource diversity will be increasingly valued, nuclear power's share of electricity production has a potential to grow. In addition, there are non electricity applications (e.g., process heat, desalination, hydrogen production) that could be better served by advanced nuclear systems. Thus, the timely development, demonstration, and commercialization of advanced nuclear reactors could diversify the nuclear technologies available and offer attractive technology options to expand the impact of nuclear energy for electricity generation and non-electricity missions. The purpose of this planning study is to provide transparent and defensible technology options for a test and/or demonstration reactor(s) to be built to support public policy, innovation and long term commercialization within the context of the Department of Energy's (DOE's) broader commitment to pursuing an 'all of the above' clean energy strategy and associated time lines. This planning study includes identification of the key features and timing needed for advanced test or demonstration reactors to support research, development, and technology demonstration leading to the commercialization of power plants built upon these advanced reactor platforms. This planning study is consistent with the Congressional language contained within the fiscal year 2015 appropriation that directed the DOE to conduct a planning study to evaluate 'advanced reactor technology options, capabilities, and requirements within the context of national needs and public policy to support innovation in nuclear energy'. Advanced reactors are

  10. Dynamic Response Testing in an Electrically Heated Reactor Test Facility

    Science.gov (United States)

    Bragg-Sitton, Shannon M.; Morton, T. J.

    2006-01-01

    Non-nuclear testing can be a valuable tool in development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and full nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE-100a heat pipe cooled, electrically heated reactor and heat exchanger hardware, utilizing a one-group solution to the point kinetics equations to simulate the expected neutronic response of the system (Bragg-Sitton, 2005). The current paper applies the same testing methodology to a direct drive gas cooled reactor system, demonstrating the applicability of the testing methodology to any reactor type and demonstrating the variation in system response characteristics in different reactor concepts. In each testing application, core power transients were controlled by a point kinetics model with reactivity feedback based on core average temperature; the neutron generation time and the temperature feedback coefficient are provided as model inputs. Although both system designs utilize a fast spectrum reactor, the method of cooling the reactor differs significantly, leading to a variable system response that can be demonstrated and assessed in a non-nuclear test facility.

  11. Reliability tests for reactor internals replacement technology

    International Nuclear Information System (INIS)

    Fujimaki, K.; Uchiyama, J.; Ohtsubo, T.

    2000-01-01

    Structural damage due to aging degradation of LWR reactor internals has been reported in several nuclear plants. NUPEC has started a project to test the reliability of the technology for replacing reactor internals, which was directed at preventive maintenance before damage and repair after damage for the aging degradation. The project has been funded by the Ministry of International Trade and Industry (MITI) of Japan since 1995, and it follows the policy of a report that the MITI has formally issued in April 1996 summarizing the countermeasures to be considered for aging nuclear plants and equipment. This paper gives an outline of the whole test plans and the test results for the BWR reactor internals replacement methods; core shroud, ICM housing, and CRD Housing and stub tube. The test results have shown that the methods were reliable and the structural integrity was appropriate based on the evaluation. (author)

  12. Ageing management practice in Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Srinivasan, G.; Ramanathan, V.; Swaminathan, P.R.; Babu, A.; Rajasekarappa, E.; Rajendran, B.; Ramalingam, P.V.

    2006-01-01

    Fast Breeder Test Reactor is a 40 MWt, sodium cooled, PuC-UC fuelled fast reactor, located at Kalpakkam, India. The reactor went critical in October 85 with Mark I core rated for 10.5 MWt at a peak LHR of 320 W/cm. The reactor core was progressively enlarged and TG was synchronized to the grid in July 97. The present core has 41 fuel subassemblies rated for 15.7 MWt at a peak LHR of 320 W/cm. The reactor has so far been operated for 33000 h and has seen 660 EFPD of operation corresponding to peak LHR of 320 W/cm. The peak burnup reached by the carbide fuel is 127 GWd/t, without any fuel clad failure. The four sodium pumps have been operating satisfactorily for a cumulative time of more than 5,00,000 h. Creep, fatigue and fluence govern the life of the nuclear systems. Because of the reduced power and temperature at which the reactor has so far been operated, there is little ageing of the nuclear systems. The life of the nuclear components is being monitored by periodic surveillance. Periodic assessment of the fluence seen by reactor components is being made. The conventional systems have been in service for the past 19 years. Civil structures are 25 years old. These have been maintained by periodic preventive maintenance and replacement / repair wherever required. This paper details the various ageing management practices in FBTR. (author)

  13. Advanced Instrumentation for Transient Reactor Testing

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael L.; Anderson, Mark; Imel, George; Blue, Tom; Roberts, Jeremy; Davis, Kurt

    2018-01-31

    Transient testing involves placing fuel or material into the core of specialized materials test reactors that are capable of simulating a range of design basis accidents, including reactivity insertion accidents, that require the reactor produce short bursts of intense highpower neutron flux and gamma radiation. Testing fuel behavior in a prototypic neutron environment under high-power, accident-simulation conditions is a key step in licensing nuclear fuels for use in existing and future nuclear power plants. Transient testing of nuclear fuels is needed to develop and prove the safety basis for advanced reactors and fuels. In addition, modern fuel development and design increasingly relies on modeling and simulation efforts that must be informed and validated using specially designed material performance separate effects studies. These studies will require experimental facilities that are able to support variable scale, highly instrumented tests providing data that have appropriate spatial and temporal resolution. Finally, there are efforts now underway to develop advanced light water reactor (LWR) fuels with enhanced performance and accident tolerance. These advanced reactor designs will also require new fuel types. These new fuels need to be tested in a controlled environment in order to learn how they respond to accident conditions. For these applications, transient reactor testing is needed to help design fuels with improved performance. In order to maximize the value of transient testing, there is a need for in-situ transient realtime imaging technology (e.g., the neutron detection and imaging system like the hodoscope) to see fuel motion during rapid transient excursions with a higher degree of spatial and temporal resolution and accuracy. There also exists a need for new small, compact local sensors and instrumentation that are capable of collecting data during transients (e.g., local displacements, temperatures, thermal conductivity, neutron flux, etc.).

  14. Critical Power Response to Power Oscillations in Boiling Water Reactors

    International Nuclear Information System (INIS)

    Farawila, Yousef M.; Pruitt, Douglas W.

    2003-01-01

    The response of the critical power ratio to boiling water reactor (BWR) power oscillations is essential to the methods and practice of mitigating the effects of unstable density waves. Previous methods for calculating generic critical power response utilized direct time-domain simulations of unstable reactors. In this paper, advances in understanding the nature of the BWR oscillations and critical power phenomena are combined to develop a new method for calculating the critical power response. As the constraint of the reactor state - being at or slightly beyond the instability threshold - is removed, the new method allows the calculation of sensitivities to different operation and design parameters separately, and thus allows tighter safety margins to be used. The sensitivity to flow rate and the resulting oscillation frequency change are given special attention to evaluate the extension of the oscillation 'detect-and-suppress' methods to internal pump plants where the flow rate at natural circulation and oscillation frequency are much lower than jet pump plants

  15. Construction of fast experimental reactor 'Joyo' from start of construction to criticality

    International Nuclear Information System (INIS)

    Sakata, Hajime

    1977-01-01

    The fast experimental reactor ''Joyo'' is a sodium-cooled, fast neutron reactor using mixed oxide of uranium and plutonium, the first in Japan. The purposes of its construction are to experience and solve the various technical problems expected in the constructions of the prototype reactor ''Monju'' and future practical reactors, and to use as the irradiation facility for developing the fuel and material for fast breeder reactors in Japan after the completion. The construction finished by the end of 1974, and the synthetic functional test was carried out for about two years thereafter. The whole installation was handed over to PNC on March 8, 1977. The reactor attained the criticality on April 24, 1977. The outline of the construction works is described. ''Guidance to the structural design of sodium machinery for Joyo'' was compiled, and the analysis was made according to it. Moreover, various inspection standards regarding welding, electrical machinery, fuel and others were made. The revision of the design for improving the safety and performance was made during the construction at all times. The synthetic functional test was carried out for about two years on 266 items, and subsequently, the criticality test was completed satisfactorily. (Kako, I.)

  16. TESTING OF GAS REACTOR MATERIALS AND FUEL IN THE ADVANCED TEST REACTOR

    International Nuclear Information System (INIS)

    Grover, S.B.

    2004-01-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations

  17. Testing of Gas Reactor Materials and Fuel in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    S. Blaine Grover

    2004-01-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations

  18. Present status and future perspectives of research and test reactor in Japan

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko; Kaieda, Keisuke

    2000-01-01

    Since 1957, Japan Atomic Energy Research Institute (JAERI) has constructed several research and test reactors to fulfill a major role in the study of nuclear energy and fundamental research. At present four reactors, the Japan Research Reactor No. 3 and No. 4 (JRR-3M and JRR-4 respectively), the Japan Materials Testing Reactor (JMTR) and the Nuclear Safety Research Reactor (NSRR) are in operation, and a new High Temperature Engineering Test Reactor (HTTR) has recently reached first criticality and now in the power up test. In 1966, the Kyoto University built the Kyoto University Reactor (KUR) and started its operation for joint use program of the Japanese universities. This paper introduces these reactors and describes their present operational status and also efforts for aging management. The recent tendency of utilization and future perspectives is also reported. (author)

  19. Present status and future perspectives of research and test reactor in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Yoshihiko [Atomic Energy Research Laboratory, Musashi Institute of Technology, Kawasaki, Kanagawa (Japan); Kaieda, Keisuke [Department of Research Reactor, Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    2000-10-01

    Since 1957, Japan Atomic Energy Research Institute (JAERI) has constructed several research and test reactors to fulfill a major role in the study of nuclear energy and fundamental research. At present four reactors, the Japan Research Reactor No. 3 and No. 4 (JRR-3M and JRR-4 respectively), the Japan Materials Testing Reactor (JMTR) and the Nuclear Safety Research Reactor (NSRR) are in operation, and a new High Temperature Engineering Test Reactor (HTTR) has recently reached first criticality and now in the power up test. In 1966, the Kyoto University built the Kyoto University Reactor (KUR) and started its operation for joint use program of the Japanese universities. This paper introduces these reactors and describes their present operational status and also efforts for aging management. The recent tendency of utilization and future perspectives is also reported. (author)

  20. Reliability tests for reactor internals rejuvenation technology

    International Nuclear Information System (INIS)

    Fujimaki, Katsumi; Hitoki, Yoichi; Otsubo, Toru; Uchiyama, Junichi

    1998-01-01

    Structural damage due to aging degradation of LWR reactor internals has been reported in several nuclear plants. NUPEC has started a project to test the reliability of the technology for rejuvenating reactor internals which has been funded by the Ministry of International Trade and Industry (MITI) of Japan since 1995. The project follows the policy of a report that the MITI has formally issued in April 1996 summarizing the countermeasures to be considered for aging nuclear plants and equipment. This paper gives an outline of the test plans and results which are directed at preventive maintenance before damage and repair after damage for reactor internals aging degradation. The test results for the replacement methods of ICM housing and BWR core shroud have shown that the methods were reliable and the structural integrity was appropriate based on the evaluation. (author)

  1. Parametric study of the criticality of natural reactors

    International Nuclear Information System (INIS)

    Naudet, R.

    1978-01-01

    Conditions for the criticality of natural reactors are investigated from a general point of view; a parametric study is presented, which expresses the possibility of chain reactions as functions of five parameters: the age of the deposit, the ore's uranium content, the volume of high-grade ore, the neutron capture of the vein of ore and the amount of water associated with the uranium. It is demonstrated that although criticality could theoretically be attained for ages that are not in excess of 1000 to 1200 MA, conditions would have to be exceptionally favorable for it since the deposits are clearly much younger than those at Oklo. The study offers a much better appreciation of the probability for discovery of other natural fissionable reactors

  2. Asymptotic inverse periods of reflected reactors above prompt critical

    International Nuclear Information System (INIS)

    Spriggs, G.D.; Busch, R.D.

    1995-01-01

    It is commonly assumed that the kinetic behavior of reflected and unreflected reactors is identical. In particular, it is often accepted that a given reactivity change in either type of system will result in an identical asymptotic inverse period. This is generally true for reactivities below prompt critical. For reactivities above prompt critical, however, the asymptotic inverse period can vary in a highly nonlinear fashion with system reactivity depending on the reflector return fraction, the neutron lifetime in the core, and the neutron lifetime in the reflector

  3. Basic experiments of reactor physics using the critical assembly TCA

    International Nuclear Information System (INIS)

    Obara, Toru; Igashira, Masayuki; Sekimoto, Hiroshi; Nakajima, Ken; Suzaki, Takenori.

    1994-02-01

    This report is based on lectures given to graduate students of Tokyo Institute of Technology. It covers educational experiments conducted with the Tank-Type Critical Assembly (TCA) at Japan Atomic Energy Research Institute in July, 1993. During this period, the following basic experiments on reactor physics were performed: (1) Critical approach experiment, (2) Measurement of neutron flux distribution, (3) Measurement of power distribution, (4) Measurement of fuel rod worth distribution, (5) Measurement of safety sheet worth by the rod drop method. The principle of experiments, experimental procedure, and analysis of results are described in this report. (author)

  4. Reactor Dynamics Experiments with a Sub-Critical Assembly

    International Nuclear Information System (INIS)

    Miley, G.H.; Yang, Y.; Wu, L.; Momota, H.

    2004-01-01

    A resurgence in use of nuclear power is now underway worldwide. However due to the shutdown of many university research reactors , student laboratories must rely more heavily on use of sub-critical assemblies. Here a driven sub-critical is described that uses a cylindrical Inertial Electrostatic Confinement (IEC) device to provide a fusion neutron source. The small IEC neutron source would be inserted in a fuel element position, with its power input controlled externally at a control panel. This feature opens the way to use of the critical assembly for a number of transient experiments such as sub-critical pulsing and neutron wave propagation. That in turn adds important new insights and excitement for the student teaching laboratory

  5. High Flux Materials Testing Reactor (HFR), Petten

    International Nuclear Information System (INIS)

    1975-09-01

    After conversion to burnable poison fuel elements, the High Flux Materials Testing Reactor (HFR) Petten (Netherlands), operated through 1974 for 280 days at 45 MW. Equipment for irradiation experiments has been replaced and extended. The average annual occupation by experiments was 55% as compared to 38% in 1973. Work continued on thirty irradiation projects and ten development activities

  6. Correlations between power and test reactor data bases

    International Nuclear Information System (INIS)

    Guthrie, G.L.; Simonen, E.P.

    1989-02-01

    Differences between power reactor and test reactor data bases have been evaluated. Charpy shift data has been assembled from specimens irradiated in both high-flux test reactors and low-flux power reactors. Preliminary tests for the existence of a bias between test and power reactor data bases indicate a possible bias between the weld data bases. The bias is nonconservative for power predictive purposes, using test reactor data. The lesser shift for test reactor data compared to power reactor data is interpreted primarily in terms of greater point defect recombination for test reactor fluxes compared to power reactor fluxes. The possibility of greater thermal aging effects during lower damage rates is also discussed. 15 refs., 5 figs., 2 tabs

  7. Tests of the RBMK-1500 reactor fuel assemblies in the Leningrad reactor

    International Nuclear Information System (INIS)

    Aden, V.C.; Varovin, I.A.; Vorontsov, B.A.

    1981-01-01

    Test of fuel assemblies of the RBMK-1500 reactor is conducted in the reactor of the Leningrad NPP unit 2 for proving the calculational values of critical power of the RBMK-1500 reactor fuel assemblies adopted in design. The experiment presupposes the maximal approximation of the fuel assembly operation parameters to the calculational critical parameters without bringing into the mode of heat transfer crisis. The experiments are carried out at 500, 850 and 900 MW(el) of the reactor. The maximal channel power made up 472 kW at 20.5 t/h coolant flow rate and 49% mass steam content at the outlet of the channel. It was concluded that there was supply up to the heat transfer crisis in all the investigated modes. Data of temperature measurings of the fuel element cans, readings of the devices of the failure control system of the fuel element cans and external inspection of the assemblies after the tests testify to it [ru

  8. Nuclear fuels for material test reactors

    International Nuclear Information System (INIS)

    Ramanathan, L.V.; Durazzo, M.; Freitas, C.T. de

    1982-01-01

    Experimental results related do the development of nuclear fuels for reactors cooled and moderated by water have been presented cylindrical and plate type fuels have been described in which the core consists of U compouns dispersed in an Al matrix and is clad with aluminium. Fabrication details involving rollmilling, swaging or hot pressing have been described. Corrosion and irradiation test results are also discussed. The performance of the different types of fuels indicates that it is possible to locally fabricate fuel plates with U 3 O 8 +Al cores (20% enriched U) for use in operating Brazilian research reactors. (Author) [pt

  9. Integral test of JENDL-3.3 on fast reactors

    International Nuclear Information System (INIS)

    Chiba, Gou; Hazama, Taira

    2003-05-01

    An integral test has been carried out to evaluate a performance of evaluated nuclear data library JENDL-3.3, which was newly released, in a view of applying neutronics analyses of fast reactors. Japan Nuclear Cycle Development Institute has a large amount of data of critical assembly experiments (ZPPR, BFS, MOZART and FCA) and power reactor tests (JOYO). The database was utilized in this test. In plutonium loaded cores, an improvement was observed about 0.3% ε k in criticality and 5% in the non-leakage term of sodium void reactivity by a revision form JENDL-3.2 to -3.3. These results shoed that the revision is valid in plutonium loaded cores. In uranium loaded cores, dependence of C/E values on control rod position became smaller in control rod worth in ZPPR cores. On the other hand, C/E values became worse both in criticality (0.6%εk) and in sodium void reactivity (30%) in BFS cores. The main cause was a revision of uranium-235 capture cross section, and it could not be concluded whether the revision is valid or not in uranium loaded cores. It is necessary to carry out a validation test at other independent critical experiments in which uranium fuel is used. (author)

  10. The Standardization of Tests: Criteria and Criticisms

    Science.gov (United States)

    Weiner, Paul S.; Hoock, William C.

    1973-01-01

    Following a review of the procedures involved in the establishment of norms for standardized tests, the specific procedures used to establish norms for three tests commonly used in speech and language pathology are critically examined. (LS)

  11. Numerical verification/validation of the theory of coupled reactors for deuterium critical assembly, using MCNP5 and Serpent codes

    International Nuclear Information System (INIS)

    Hussein, M.S; Lewis, B.J.; Bonin, H.W.

    2013-01-01

    The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5 and the continuous-energy Monte Carlo reactor physics burnup calculation Serpent code. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as the Deuterium Critical Assembly, DCA. The multiplication factors k eff calculated numerically and independently from simulations of the DCA by MCNP5 and Serpent codes are compared with the multiplication factors k eff calculated based on the coupled reactor theory. Excellent agreement was obtained between the multiplication factors k eff calculated with the Serpent code, with MCNP5, and from the coupled reactor theory. This analysis demonstrates that the Serpent code is valid for the multipoint coupled reactor calculations. (author)

  12. Numerical verification/validation of the theory of coupled reactors for deuterium critical assembly, using MCNP5 and Serpent codes

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, M.S, E-mail: mohamed.hussein@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada); Lewis, B.J., E-mail: Brent.Lewis@uoit.ca [Univ. of Ontario Inst. of Technology, Faculty of Energy Systems and Nuclear Science, Oshawa, Ontario (Canada); Bonin, H.W., E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)

    2013-07-01

    The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5 and the continuous-energy Monte Carlo reactor physics burnup calculation Serpent code. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as the Deuterium Critical Assembly, DCA. The multiplication factors k{sub eff} calculated numerically and independently from simulations of the DCA by MCNP5 and Serpent codes are compared with the multiplication factors k{sub eff} calculated based on the coupled reactor theory. Excellent agreement was obtained between the multiplication factors k{sub eff} calculated with the Serpent code, with MCNP5, and from the coupled reactor theory. This analysis demonstrates that the Serpent code is valid for the multipoint coupled reactor calculations. (author)

  13. Thermal-hydraulic tests for reactor safety system

    International Nuclear Information System (INIS)

    Chun, Se Young; Chung, Moon Ki; Baek, Won Pil

    2002-05-01

    Tests for the safety depressurization system, Sparger adopted for the Korean next generation reactor, APR1400 are carried out for several geometries with the B and C (Blowdown and Condensation) facility in the condition of high temperature and pressure and with a small test facility in the condition of atmospheric temperature and pressure. Tests for the critical heat flux are performed with the RCS(Reactor Coolant System) facility as well as with the Freon CHF Loop in the condition of high temperature and pressure. The atmospheric temperature and pressure facility is utilized for development of the high standard thermal hydraulic measurement technology. The optical method is developed to measure the local thermal-hydraulic behavior for the single and two-phase boiling phenomena

  14. Operation and utilization of low power research reactor critical facility for Advanced Heavy Water Reactor (AHWR)

    International Nuclear Information System (INIS)

    De, S.K.; Karhadkar, C.G.

    2017-01-01

    An Advanced Heavy Water Reactor (AHWR) has been designed and developed for maximum power generation from thorium considering large reserves of thorium. The design envisages using 54 pin MOX cluster with different enrichment of "2"3"3U and Pu in Thoria fuel pins. Theoretical models developed to neutron transport and the geometrical details of the reactor including all reactivity devices involve approximations in modelling, resulting in uncertainties. With a view to minimize these uncertainties, a low power research reactor Critical Facility was built in which cold clean fuel can be arranged in a desired and precise geometry. Different experiments conducted in this facility greatly contribute to understand and validate the physics design parameters

  15. Safe Operation of Critical Assemblies and Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1961-05-15

    This Manual is provided as a guide to the safe operation of critical assemblies and small research reactors. It is intended that it should be used by all authorities and persons concerned with, or responsible for, the use of such equipment, in addition to the scientists and technologists who are actually working with, or operating it. It is suggested that it will be of use to those wishing to design and manufacture, or purchase, critical assemblies or research reactors, as well as those already in possession of them, and that it will prove particularly helpful to those users who have no direct access to other collected sources of information. This Manual is not a set of rules or a code of practice, but a series of recommendations which must be interpreted with scientific judgement in their application to any particular problem. The guiding principles are given from which good operational procedures may be established and improved. The promulgation of rigid standards is both impossible and undesirable at the present time, since the topics discussed form part of a rapidly growing science and technology. Therefore, any recommendations made should not be used to restrict or inhibit future developments. The Manual is intended mainly for use in those Member States where there has been little experience in the operation of critical assemblies and research reactors. It has been compounded from the best practices which exist in Member States having a large amount of such experience, so that nothing in it should conflict with the best practices to be encountered in the field of safe operation.

  16. Safe Operation of Critical Assemblies and Research Reactors

    International Nuclear Information System (INIS)

    1961-01-01

    This Manual is provided as a guide to the safe operation of critical assemblies and small research reactors. It is intended that it should be used by all authorities and persons concerned with, or responsible for, the use of such equipment, in addition to the scientists and technologists who are actually working with, or operating it. It is suggested that it will be of use to those wishing to design and manufacture, or purchase, critical assemblies or research reactors, as well as those already in possession of them, and that it will prove particularly helpful to those users who have no direct access to other collected sources of information. This Manual is not a set of rules or a code of practice, but a series of recommendations which must be interpreted with scientific judgement in their application to any particular problem. The guiding principles are given from which good operational procedures may be established and improved. The promulgation of rigid standards is both impossible and undesirable at the present time, since the topics discussed form part of a rapidly growing science and technology. Therefore, any recommendations made should not be used to restrict or inhibit future developments. The Manual is intended mainly for use in those Member States where there has been little experience in the operation of critical assemblies and research reactors. It has been compounded from the best practices which exist in Member States having a large amount of such experience, so that nothing in it should conflict with the best practices to be encountered in the field of safe operation.

  17. Critical issues for the early introduction of commercial fusion reactor

    International Nuclear Information System (INIS)

    Okano, Kunihiko; Yoshida, Tomoaki

    1996-01-01

    Critical issues for the realization of commercial fusion reactor are discussed on the basis of a prediction of power source composition in the next century. The key issue is rather a relaxation in the construction site condition than a competitive cost in comparison with the nuclear fission power plant. It seems a logical conclusion that the competitor of the fusion plant in the cost will be a future CCT (Clean Coal Technology) and/or LNG plant loaded with a CO 2 recovery system. (author)

  18. Critical Issues for Particle-Bed Reactor Fuels

    Science.gov (United States)

    Evans, Robert S.; Husser, Dewayne L.; Jensen, Russell R.; Kerr, John M.

    1994-07-01

    Particle-Bed Reactors (PBRs) potentially offer performance advantages for nuclear thermal propulsion, including very high power densities, thrust-to-weight ratios, and specific impulses. A key factor in achieving all of these is the development of a very-high-temperature fuel. The critical issues for all such PBR fuels are uranium loading, thermomechanical and thermochemical stability, compatibility with contacting materials, fission product retention, manufacturability, and operational tolerance for particle failures. Each issue is discussed with respect to its importance to PBR operation, its status among current fuels, and additional development needs. Mixed-carbide-based fuels are recommended for further development to support high-performance PBRs.

  19. The decommissioning of the KEMA suspension test reactor

    International Nuclear Information System (INIS)

    Spruyt, A.; Peters, D.; Loon, W.M.G.M. van; Boekschoten, H.J.C.; Brugman, H.

    1991-01-01

    In this report the decommissioning of the KEMA Suspension Test Reactor (KSTR) is described. This reactor was a 1 MWth aqueous homo-geneous nuclear reactor in which a suspension of a mixed oxide UO 2 / ThO 2 in light water was circulated in a closed loop through a sphere-shaped core vessel. The reactor, located on KEMA premises, made 150 MW of heat during its critical periods. Dismantling of this reactor, with its many connected subsystems, meant the mastering of activated components which were also contaminated on inner surfaces caused by small fuel deposits (alpha contaminants) and fission products (beta, gamma contaminants). A description is given of the save removal of the fuel, the remote dismantling of systems and components and the disposal of steel scrap and other materials. Important features are the measures to be taken and provisions needed for safe handling, for the reduction of the radiation dose for the working team and the prevention of spreading of activity over the working area and the environment. It has been demonstrated that safe dismantling and disposal of such systems can be achieved. Experience gained at KEMA for the proper dismantling and for safety measures to be taken for workers and the environment can be made available for similar dismantling projects. A cost break-down is included in the report. (author). 22 refs.; 52 figs.; 12 tabs

  20. Advanced burner test reactor preconceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an

  1. Instrumentation to Enhance Advanced Test Reactor Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

    2009-09-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

  2. Instrumentation to Enhance Advanced Test Reactor Irradiations

    International Nuclear Information System (INIS)

    Rempe, J.L.; Knudson, D.L.; Condie, K.G.; Daw, J.E.; Taylor, S.C.

    2009-01-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

  3. Advanced test reactor testing experience-past, present and future

    International Nuclear Information System (INIS)

    Marshall, Frances M.

    2006-01-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world's premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the corner 'lobes' to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 122 cm long and 12.7 cm diameter) provide unique testing opportunities. The current experiments in the ATR are for a variety of test sponsors - US government, foreign governments, private researchers, and commercial companies needing neutron irradiation services. There are three basic types of test configurations in the ATR. The simplest configuration is the sealed static capsule, which places the capsule in direct contact with the primary coolant. The next level of experiment complexity is an instrumented lead experiment, which allows for active control of experiment conditions during the irradiation. The most complex experiment is the pressurized water loop, in which the test sample can be subjected to the exact environment of a pressurized water reactor. For future research, some ATR modifications and enhancements are currently planned. This paper provides more details on some of the ATR capabilities, key design features, experiments, and future plans

  4. Educational reactor-physics experiments with the critical assemble TCA

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, Hiroaki; Okubo, Masaaki; Igashira, Masayuki [Tokyo Inst. of Tech. (Japan); Horiki, Oichiro; Suzaki, Takenori

    1997-10-01

    The Tank-Type Critical Assembly (TCA) of Japan Atomic Energy Research Institute is research equipment for light water reactor physics. In the present report, the lectures given to the graduate students of Tokyo Institute of Technology who participated in the educational experiment course held on 26-30 August at TCA are rearranged to provide useful information for those who will implement educational basic experiments with TCA in the future. This report describes the principles, procedures, and data analyses for (1) Critical approach and Exponential experiment, (2) Measurement of neutron flux distribution, (3) Measurement of power distribution, (4) Measurement of fuel rod worth distribution, and (5) Measurement of safety plate worth by the rod drop method. (author)

  5. Educational reactor-physics experiments with the critical assembly TCA

    International Nuclear Information System (INIS)

    Tsutsui, Hiroaki; Okubo, Masaaki; Igashira, Masayuki; Horiki, Oichiro; Suzaki, Takenori.

    1997-10-01

    The Tank-Type Critical Assembly (TCA) of Japan Atomic Energy Research Institute is research equipment for light water reactor physics. In the present report, the lectures given to the graduate students of Tokyo Institute of Technology who participated in the educational experiment course held on 26-30 August at TCA are rearranged to provide useful information for those who will implement educational basic experiments with TCA in the future. This report describes the principles, procedures, and data analyses for 1) Critical approach and Exponential experiment, 2) Measurement of neutron flux distribution, 3) Measurement of power distribution, 4) Measurement of fuel rod worth distribution, and 5) Measurement of safety plate worth by the rod drop method. (author)

  6. Reactor physics tests of TRIGA Mark-II Reactor in Ljubljana

    International Nuclear Information System (INIS)

    Ravnik, M.; Mele, I.; Trkov, A.; Rant, J.; Glumac, B.; Dimic, V.

    2008-01-01

    TRIGA Mark-II Reactor in Ljubljana was recently reconstructed. The reconstruction consisted mainly of replacing the grid plates, the control rod mechanisms and the control unit. The standard type control rods were replaced by the fuelled follower type, the central grid location (A ring) was adapted for fuel element insertion, the triangular cutouts were introduced in the upper plate design. However, the main novelty in reactor physics and operational features of the reactor was the installation of a pulse rod. Having no previous operational experience in pulsing, a detailed and systematic sequence of tests was defined in order to check the predicted design parameters of the reactor with measurements. The following experiments are treated in this paper: initial criticality, excess reactivity measurements, control rod worth measurement, fuel temperature distribution, fuel temperature reactivity coefficient, pulse parameters measurement (peak power, prompt energy, peak temperature). Flux distributions in steady state and pulse mode were measured as well, however, they are treated only briefly due to the volume of the results. The experiments were performed with completely fresh fuel of 12 w% enriched Standard Stainless Steel type. The core configuration was uniform (one fuel element type, including fuelled followers) and compact (no irradiation channels or gaps), as such being particularly convenient for testing the computer codes for TRIGA reactor calculations. Comparison of analytical predictions, obtained with WIMS, SLXTUS, TRIGAP and PULSTRI codes to measured values showed agreement within the error of the measurement and calculation. The paper has the following contents: 1. Introduction; 2. Steady State Experiments; 2.1. Core loading and critical experiment; 2.2. Flux range determination for tests at zero power; 2.3. Digital reactivity meter checkout; 2.4. Control rod worth measurements; 2.5. Excess reactivity measurement; 2.6. Thermal power calibration; 2

  7. For the criticality of water reflected homogeneous arrays and heterogeneous reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Hj; Rabitsch, H; Schuerrer, F [Technische Univ., Graz (Austria). Inst. fuer Theoretische Physik und Reaktorphysik

    1980-01-01

    The smallest critical masses for fuel elements of research reactors having a medium and high enrichment are calculated. The results fit close on the known critical masses of power reactors with low enrichment. The comparison of the critical masses of reactor fuel elements and homogenized uranium dioxide water systems yields the influence of the homogeneity and of the cladding on the criticality. A coefficient for heterogeneity is suggested which takes into consideration these influences.

  8. Thermal reactor benchmark tests on JENDL-2

    International Nuclear Information System (INIS)

    Takano, Hideki; Tsuchihashi, Keichiro; Yamane, Tsuyoshi; Akino, Fujiyoshi; Ishiguro, Yukio; Ido, Masaru.

    1983-11-01

    A group constant library for the thermal reactor standard nuclear design code system SRAC was produced by using the evaluated nuclear data JENDL-2. Furthermore, the group constants for 235 U were calculated also from ENDF/B-V. Thermal reactor benchmark calculations were performed using the produced group constant library. The selected benchmark cores are two water-moderated lattices (TRX-1 and 2), two heavy water-moderated cores (DCA and ETA-1), two graphite-moderated cores (SHE-8 and 13) and eight critical experiments for critical safety. The effective multiplication factors and lattice cell parameters were calculated and compared with the experimental values. The results are summarized as follows. (1) Effective multiplication factors: The results by JENDL-2 are considerably improved in comparison with ones by ENDF/B-IV. The best agreement is obtained by using JENDL-2 and ENDF/B-V (only 235 U) data. (2) Lattice cell parameters: For the rho 28 (the ratio of epithermal to thermal 238 U captures) and C* (the ratio of 238 U captures to 235 U fissions), the values calculated by JENDL-2 are in good agreement with the experimental values. The rho 28 (the ratio of 238 U to 235 U fissions) are overestimated as found also for the fast reactor benchmarks. The rho 02 (the ratio of epithermal to thermal 232 Th captures) calculated by JENDL-2 or ENDF/B-IV are considerably underestimated. The functions of the SRAC system have been continued to be extended according to the needs of its users. A brief description will be given, in Appendix B, to the extended parts of the SRAC system together with the input specification. (author)

  9. Lawson concepts and criticality in DT fusion reactors

    International Nuclear Information System (INIS)

    Lartigue, J.G.

    1987-01-01

    The original Lawson concepts (amplification factor R and parameter nτ) as well as their applications in DT reactors are discussed in two cases: the ignition regime and the subignition regime in a self-sufficient plant. The modified Lawson factor or internal amplification factor R a (a function of alpha power) is proposed as a means to measure the ignition level reached by the plasma, in a more precise way than that given by the collective parameter (nτkT). The self-sufficiency factor (δ) is proposed as a means to measure the plant self-sufficiency, δ being more significant than the traditional Q factor. It is stated that the ignition regime (R a = 1) is equivalent to a critical state (energy equilibrium); then, the corresponding critical mass concept is proposed. The analysis of the R a relationship with temperature (kT), (nτ), and recirculating factor (var-epsilon) gives the conditions for the reactor to reach ignition or for the plant to reach self-sufficiency; it also shows that an approach to ignition is not improved by heating from 50 to 100 KeV

  10. Decommissioning of the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Perry, E.; Chrzanowski, J.; Gentile, C.; Parsells, R.; Rule, K.; Strykowsky, R.; Viola, M.

    2003-01-01

    The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D and D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D and D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D and D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget

  11. Developing the MAPLE materials test reactor concept

    International Nuclear Information System (INIS)

    Lee, A.G.; Lidstone, R.F.; Donnelly, J.V.

    1992-05-01

    MAPLE-MTR is a new multipurpose research facility being planned by AECL Research as a possible replacement for the 35-year-old NRU reactor. In developing the MAPLE-MTR concept, AECL is starting from the recent design and licensing experience with the MAPLE-X10 reactor. By starting from technology developed to support the MAPLE-X10 design and adapting it to produce a concept that satisfies the requirements of fuel channel materials testing and fuel irradiation programs, AECL expects to minimize the need for major advances in nuclear technology (e.g., fuel, heat transfer). Formulation of the MAPLE-MTR concept is at an early stage. This report describes the irradiation requirements of the research areas, how these needs are translated into design criteria for the project and elements of the preliminary design concept

  12. Performance tests for integral reactor nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Dong-Seong; Yim, Jeong-Sik; Lee, Chong-Tak; Kim, Han-Soo; Koo, Yang-Hyun; Lee, Byung-Ho; Cheon, Jin-Sik; Oh, Je-Yong

    2006-02-15

    An integral type reactor SMART plans to utilize metallic Zr-U fuel which is Zr-based alloy with 34{approx}38 wt% U. In order to verify the technologies for the design and manufacturing of the fuel and get a license, performance tests were carried out. Experimental Fuel Assembly (EFA) manufactured in KAERI is being successfully irradiated in the MIR reactor of RIAR from September 4 2004, and it has achieved burnup of 0.21 g/cc as of January 25 2006. Thermal properties of irradiated Zr-U fuel were measured. Up to the phase transformation temperature, thermal diffusivity increased linearly in proportion to temperature. However its dependence on the burnup was not significant. RIA tests with 4 unirradiated Zr-U fuel rods were performed in Kurchatov Institute to establish a safety criterion. In the case of the un-irradiated Zr-U fuel, the energy deposition during the control rod ejection accident should be less than 172 cal/g to prevent the failure accompanying fuel fragmentation and dispersal. Finally the irradiation tests of fuel rods have been performed at HANARO. The HITE-2 test was successfully completed up to a burnup of 0.31 g/cc. The HITE-3 test began in February 2004 and will be continued up to a target burnup of 0.6 g/cc.

  13. Off reactor testings. Technological engineering applicative research

    International Nuclear Information System (INIS)

    Doca, Cezar

    2001-01-01

    By the end of year 2000 over 400 nuclear electro-power units were operating world wide, summing up a 350,000 MW total capacity, with a total production of 2,300 TWh, representing 16% of the world's electricity production. Other 36 units, totalizing 28,000 MW, were in construction, while a manifest orientation towards nuclear power development was observed in principal Asian countries like China, India, Japan and Korea. In the same world's trend one find also Romania, the Cernavoda NPP Unit 1 generating electrical energy into the national system beginning with 2 December 1996. Recently, the commercial contract was completed for finishing the Cernavoda NPP Unit 2 and launching it into operation by the end of year 2004. An important role in developing the activity of research and technological engineering, as technical support for manufacturing the CANDU type nuclear fuel and supplying with equipment the Cernavoda units, was played by the Division 7 TAR of the INR Pitesti. Qualification testings were conducted for: - off-reactor CANDU type nuclear fuel; - FARE tools, pressure regulators, explosion proof panels; channel shutting, as well as functional testing for spare pushing facility as a first step in the frame of the qualification tests for the charging/discharging machine (MID) 4 and 5 endings. Testing facilities are described, as well as high pressure hot/cool loops, measuring chains, all of them fulfilling the requirements of quality assurance. The nuclear fuel off-reactor tests were carried out to determine: strength; endurance; impact, pressure fall and wear resistance. For Cernavoda NPP equipment testings were carried out for: the explosion proof panels, pressure regulators, behaviour to vibration and wear of the steam generation tubings, effects of vibration upon different electronic component, channel shutting (for Cernavoda Unit 2), MID operating at 300 and 500 cycles. A number of R and D programs were conducted in the frame of division 7 TAR of INR

  14. Very high temperature gas-cooled reactor critical facility for Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Ishihara, Noriyuki

    1985-01-01

    The outline of the critical facility, its construction, the results of the basic studies and experiments on the graphite material, and the results obtained from the test conducted on the overall functions of the critical facility were reported. With the completion of the critical facility, it has been made possible to demonstrate the establishment of the manufacturing techniques and product-quality guarantee for extremely pure isotropic graphite in addition to the reliability of the structural design and analytical techniques for the main unit of the critical facility. It is expected that the present facility will prove instrumental in the verification of the nuclear safety of the very high temperature gas-cooled nuclear reactor and in the acquisition of experimental data on the reactor physics pertaining to the improvement of the reactor characteristics. The tasks which remain to be accomplished hereafter are the improvements of the performance and quality features with regard to the oxidization of graphite, the heat-resisting structural materials, and the welded structures. (Kubozono, M.)

  15. Thermal Hydraulic Tests for Reactor Core Safety

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S. K.; Baek, W. P.; Chun, S. Y. (and others)

    2007-06-15

    The main objectives of the present project are to resolve the current issues of reactor core thermal hydraulics, to develop an advanced measurement and analytical techniques, and to perform reactor core safety verification tests. 6x6 reflood experiments, various heat transfer experiments using Freon, and experiments on the spacer grids effects on the post-dryout are carried out using spacer grids developed in Korea in order to resolve the current issues of the reactor core thermal hydraulics. In order to develop a reflood heat transfer model, the detailed reflood phenomena are visualized and measured using round tube and 2x2 rod bundle. A detailed turbulent mixing phenomenon for subchannels is measured using advanced measurement techniques such as LDV and PIV. MARS and MATRA codes developed in Korea are assessed, verified and improved using the obtained experimental data. Finally, a systematic quality assurance program and experimental data generation system has been constructed in order to increase the reliability of the experimental data.

  16. The ICRH tokamak fusion test reactor

    International Nuclear Information System (INIS)

    Perkins, F.W.

    1976-01-01

    A Tokamak Fusion Test Reactor where the ion are maintained at Tsub(i) approximately 20keV>Tsub(e) approximately 7keV by ion-cyclotron resonance heating is shown to produce an energy amplification of Q>2 provided the principal ion energy loss channel is via collisional transfer to the electrons. Such a reactor produces 19MW of fusion power to the electrons. Such a reactor produces 19MW of fusion power and requires a 50MHz radio-frequency generator capable of 50MW peak power; it is otherwise compatible with the conceptual design for the Princeton TFTR. The required n tausub(E) values for electrons and ions are respectively ntausub(Ee)>1.5.10 13 cm -3 -sec and ntausub(Ei)>4.10 13 cm -3 -sec. The principal areas where research is needed to establish this concept are: tokamak transport calculations, ICRH physics, trapped-particle instability energy losses, tokamak equilibria with high values of βsub(theta), and, of course, impurities

  17. Criticality calculations in reactor accelerator coupling experiment (Race)

    International Nuclear Information System (INIS)

    Reda, M.A.; Spaulding, R.; Hunt, A.; Harmon, J.F.; Beller, D.E.

    2005-01-01

    A Reactor Accelerator Coupling Experiment (RACE) is to be performed at the Idaho State University Idaho Accelerator Center (IAC). The electron accelerator is used to generate neutrons by inducing Bremsstrahlung photon-neutron reactions in a Tungsten- Copper target. This accelerator/target system produces a source of ∼1012 n/s, which can initiate fission reactions in the subcritical system. This coupling experiment between a 40-MeV electron accelerator and a subcritical system will allow us to predict and measure coupling efficiency, reactivity, and multiplication. In this paper, the results of the criticality and multiplication calculations, which were carried out using the Monte Carlo radiation transport code MCNPX, for different coupling design options are presented. The fuel plate arrangements and the surrounding tank dimensions have been optimized. Criticality using graphite instead of water for reflector/moderator outside of the core region has been studied. The RACE configuration at the IAC will have a criticality (k-effective) of about 0,92 and a multiplication of about 10. (authors)

  18. Nuclear blenders: blended learning from Rensselaer's Reactor Critical Facility

    International Nuclear Information System (INIS)

    Haley, T.C.

    2011-01-01

    Rensselaer's senior level undergraduate nuclear engineering course 'Critical Reactor Laboratory' is highly regarded and much loved. If you can get in, that is. But now it's a required course, nuclear engineering enrollment is up, and others are knocking on our door to get in. How might one offer such a unique course to the masses, without losing the whole point of a laboratory experience? This presentation looks at the costs and benefits of the transition to a 'blended learning' mode -- the merging of traditional, face-to-face instruction and web-based instruction as a solution. As part of the presentation, the course and the facility will be highlighted by short excepts from the 50 minute movie 'Everything You Always Wanted to Know about Neutron Chain Reactions (but were afraid to ask)'.

  19. Experiments on Critical Heat Flux for CAREM -25 Reactor

    International Nuclear Information System (INIS)

    Mazufri, C.M

    2000-01-01

    The prediction of critical heat flux (CHF) in rod bundles of light water reactors is basically performed with the aid of empirical correlations derived from experimental data.Many CHF correlations have been proposed and are widely used in the analysis of the thermal margin during normal operation, transient, and accident conditions.Correlations found in the open literature are not sufficiently verified for the thermal hydraulic conditions that appear in the CAREM core under normal operation: high pressure, low flow, and low qualities.To compensate this deficiency, an experimental investigation on CHF in such thermal-hydraulic conditions was carried out.The experiments have been performed in the Institute of Physics and Power Engineering of Russian Federation.A short description of facilities, details of the experimental program and some preliminary results obtained are presented in this work

  20. Feasibility study of full-reactor gas core demonstration test

    Science.gov (United States)

    Kunze, J. F.; Lofthouse, J. H.; Shaffer, C. J.; Macbeth, P. J.

    1973-01-01

    Separate studies of nuclear criticality, flow patterns, and thermodynamics for the gas core reactor concept have all given positive indications of its feasibility. However, before serious design for a full scale gas core application can be made, feasibility must be shown for operation with full interaction of the nuclear, thermal, and hydraulic effects. A minimum sized, and hence minimum expense, test arrangement is considered for a full gas core configuration. It is shown that the hydrogen coolant scattering effects dominate the nuclear considerations at elevated temperatures. A cavity diameter of somewhat larger than 4 ft (122 cm) will be needed if temperatures high enough to vaporize uranium are to be achieved.

  1. Validation testing of safety-critical software

    International Nuclear Information System (INIS)

    Kim, Hang Bae; Han, Jae Bok

    1995-01-01

    A software engineering process has been developed for the design of safety critical software for Wolsung 2/3/4 project to satisfy the requirements of the regulatory body. Among the process, this paper described the detail process of validation testing performed to ensure that the software with its hardware, developed by the design group, satisfies the requirements of the functional specification prepared by the independent functional group. To perform the tests, test facility and test software were developed and actual safety system computer was connected. Three kinds of test cases, i.e., functional test, performance test and self-check test, were programmed and run to verify each functional specifications. Test failures were feedback to the design group to revise the software and test results were analyzed and documented in the report to submit to the regulatory body. The test methodology and procedure were very efficient and satisfactory to perform the systematic and automatic test. The test results were also acceptable and successful to verify the software acts as specified in the program functional specification. This methodology can be applied to the validation of other safety-critical software. 2 figs., 2 tabs., 14 refs. (Author)

  2. Experimental validation of TASS/SMR-S critical flow model for the integral reactor SMART

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Si Won; Ra, In Sik; Kim, Kun Yeup [ACT Co., Daejeon (Korea, Republic of); Chung, Young Jong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    An advanced integral PWR, SMART (System- Integrated Modular Advanced ReacTor) is being developed in KAERI. It has a compact size and a relatively small power rating (330MWt) compared to a conventional reactor. Because new concepts are applied to SMART, an experimental and analytical validation is necessary for the safety evaluation of SMART. The analytical safety validation is being accomplished by a safety analysis code for an integral reactor, TASS/SMR-S developed by KAERI. TASS/SMR-S uses a lumped parameter one dimensional node and path modeling for the thermal hydraulic calculation and it uses point kinetics for the reactor power calculation. It has models for a general usage such as a core heat transfer model, a wall heat structure model, a critical flow model, component models, and it also has many SMART specific models such as an once through helical coiled steam generator model, and a condensate heat transfer model. To ensure that the TASS/SMR-S code has the calculation capability for the safety evaluation of SMART, the code should be validated for the specific models with the separate effect test experimental results. In this study, TASS/SMR-S critical flow model is evaluated as compared with SMD (Super Moby Dick) experiment

  3. Experimental investigation of critical velocity in a parallel plate research reactor fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Alfredo J.A.; Scuro, Nikolas L.; Andrade, Delvonei A., E-mail: ajcastro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    The fuel elements of a MTR (Material Testing Reactor) type nuclear reactor are mostly composed of aluminum coated fuel plates containing the core of uranium silica (U{sub 3}Si{sub 2}) dispersed in an aluminum matrix. These plates have a thickness of the order of millimeters and are much longer in relation to their thickness. They are arranged in parallel in the assembly of the fuel element to form channels between them a few millimeters in thickness, through which there is a flow of the coolant. This configuration, combined with the need for a flow at high flow rates to ensure the cooling of the fuel element in operation, may create problems of mechanical failure of fuel plate due to the vibration induced by the flow in the channels. In the case of critical velocity excessive permanent deflections of the plates can cause blockage of the flow channel in the reactor core and lead to overheating in the plates. For this study an experimental bench capable of high volume flows and a test section that simulates a plate-like fuel element with three cooling channels were developed. The dimensions of the test section were based on the dimensions of the Fuel Element of the Brazilian Multipurpose Reactor (RMB), whose project is being coordinated by the National Commission of Nuclear Energy (CNEN). The experiments performed attained the objective of reaching Miller's critical velocity condition. The critical velocity was reached with 14.5 m/s leading to the consequent plastic deformation of the flow channel plates. (author)

  4. SRS reactor stack plume marking tests

    International Nuclear Information System (INIS)

    Petry, S.F.

    1992-03-01

    Tests performed in 105-K in 1987 and 1988 demonstrated that the stack plume can successfully be made visible (i.e., marked) by introducing smoke into the stack breech. The ultimate objective of these tests is to provide a means during an emergency evacuation so that an evacuee can readily identify the stack plume and evacuate in the opposite direction, thus minimizing the potential of severe radiation exposure. The EPA has also requested DOE to arrange for more tests to settle a technical question involving the correct calculation of stack downwash. New test canisters were received in 1988 designed to produce more smoke per unit time; however, these canisters have not been evaluated, because normal ventilation conditions have not been reestablished in K Area. Meanwhile, both the authorization and procedure to conduct the tests have expired. The tests can be performed during normal reactor operation. It is recommended that appropriate authorization and procedure approval be obtained to resume testing after K Area restart

  5. Grey Rod Test in HANARO Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choo, K. N.; Kim, B. G.; Kang, Y. H. (and others)

    2008-08-15

    Westinghouse/KAERI/KNF agreed to perform an irradiation test in the HANARO reactor to obtain irradiation data on the new grey rods that will be part of an AP1000 system. As a preliminary test, two samples containing pure Ag (Reference) and Ag-In-Cd materials provided by Westinghouse Electric Company (WEC) were inserted in a KNF irradiation capsule of 07M-13N. The specimens were irradiated for 95.19days (4 cycles) in the CT test hole of the HANARO of a 30MW thermal output to have a fast neutron fluence of 1.11x10{sup 21}(n/cm{sup 2}) (E>1.0MeV). This report provides all the test conditions and data obtained during the irradiation test of the grey rods in HANARO requested by Westinghouse. The test was prepared according to the meeting minutes (June 26, 2007) and the on-going subject test was stopped midway by the request of Westinghouse.

  6. Tests of vacuum interrupters for the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Warren, R.; Parsons, M.; Honig, E.; Lindsay, J.

    1979-04-01

    The Tokamak Fusion Test Reactor (TFTR) project at Princeton University requires the insertion of a resistor in an excited ohmic-heating coil circuit to produce a plasma initiation pulse (PIP). It is expected that the maximum duty for the switching system will be an interruption of 24 kA with an associated recovery voltage of 25 kV. Vacuum interrupters were selected as the most economical means to satisfy these requirements. However, it was felt that some testing of available systems should be performed to determine their reliability under these conditions. Two interrupter systems were tested for over 1000 interruptions each at 24 kA and 25 kV. One system employed special Westinghouse type WL-33552 interrupters in a circuit designed by LASL. This circuit used a commercially available actuator and a minimum size counterpulse bank and saturable reactor. The other used Toshiba type VGB2-D20 interrupters actuated by a Toshiba mechanism in a Toshiba circuit using a larger counterpulse bank and saturable reactor

  7. Temperature variation of criticality of thermal reactor lattices

    International Nuclear Information System (INIS)

    Velner, S.; Rothenstein, W.

    1975-01-01

    Departures from the asymptotic mode in the experimental setup have been examined in detail for two assemblies, one exponential, the other critical. It was found that the flux shape differed noticeably from the asymptotic mode in the core region especially for the exponential assemblies. On the other hand the departure from the fundamental mode has very little effect on the change of material buckling with temperature. Results of the calculations and their comparison with experiment are presented. The variation of material buckling with temperature is the same for ENDF/B-II and for ENDF/B-IV data, both for asymptotic reactor theory and for the buckling values derived from the flux calculated with the SN code. The results obtained with ENDF/B-IV data for both lattices are shown. In the small exponential assembly the results derived from S-4 calculations are compared with experiment. In the critical assembly the ratio of U-238 to U-235 fissions delta 28 and the relative conversion ratio - the ratio of U-238 captures to U-235 fissions in the lattice compared with the same quantity in a thermal column - are also shown. In both cases the experimental change of buckling with temperature is smaller than the calculated change. (B.G.)

  8. Decommissioning the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Walton, G.R.

    1993-01-01

    The Tokamak Fusion Test Reactor (TFTR) at Princeton Plasma Physics Laboratory (PPPL) will complete its experimental lifetime with a series of deuterium-tritium pulses in 1994. As a result, the machine structures will become radioactive, and vacuum components will also be contaminated with tritium. Dose rate levels will range from less than 1 mr/h for external structures to hundreds of mr/h for the vacuum vessel. Hence, decommissioning operations will range from hands on activities to the use of remotely operated equipment. After 21 months of cool down, decontamination and decommissioning (D and D) operations will commence and continue for approximately 15 months. The primary objective is to render the test cell complex re-usable for the next machine, the Tokamak Physics Experiment (TPX). This paper presents an overview of decommissioning TFTR and discusses the D and D objectives

  9. The behavior of fission products during nuclear rocket reactor tests

    International Nuclear Information System (INIS)

    Bokor, P.C.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    Fission product release from nuclear rocket propulsion reactor fuel is an important consideration for nuclear rocket development and application. Fission product data from the last six reactors of the Rover program are collected in this paper to provide as basis for addressing development and testing issues. Fission product loss from the fuel will depend on fuel composition and reactor design and operating parameters. During ground testing, fission products can be contained downstream of the reactor. The last Rover reactor tested, the Nuclear Furnance, was mated to an effluent clean-up system that was effective in preventing the discharge of fission products into the atmosphere

  10. Analysis and evaluation of ZPPR critical experiments for a 100 kilowatt-electric space reactor

    International Nuclear Information System (INIS)

    McFarlane, H.F.; Collins, P.J.; Carpenter, S.G.; Olsen, D.N.; Smith, D.M.; Schaefer, R.W.; Doncals, R.A.; Andre, S.V.; Porter, C.A.; Cowan, C.L.; Stewart, S.L.; Protsik, R.

    1990-01-01

    ZPPR critical experiments were used for physics testing the reactor design of the SP-100, a 100-kW thermoelectric LMR that is being developed to provide electrical power for space applications. These tests validated all key physics characteristics of the design, including the ultimate safety in the event of a launch or re-entry accident. Both the experiments and the analysis required the use of techniques not previously needed for fast reactor designs. A few significant discrepancies between the experimental and calculated results leave opportunities for further reductions in the mass of the SP-100. An initial investigation has been made into application of the ZPPR-20 results, along with those of other relevant integral data, to the SP-100 design

  11. Sub-Critical Nuclear Reactor Based on FFAG-Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Seok; Kang, Hung Sik; Lee, Tae Yeon [Pohang Accelerator Laboratory, Pohang (Korea, Republic of)

    2011-10-15

    After the East-Japan earthquake and the subsequent nuclear disaster, the anti-nuclear mood has been wide spread. It is very unfortunate both for nuclear science community and for the future of mankind, which is threatened by two serious challenges, the global warming caused by the greenhouse effect and the shortage of energy cause by the petroleum exhaustion. While the nuclear energy seemed to be the only solution to these problems, it is clear that it has its own problems, one of which broke out so strikingly in Japan. There are also other problems such as the radiotoxic nuclear wastes that survive up to even tens of thousands years and the limited reserves of Uranium. To solve these problems of nuclear fission energy, accelerator-based sub-critical nuclear reactor was once proposed. (Its details will be explained below.) First of all, it is safe in a disaster such as an earthquake, because the deriving accelerator stops immediately by the earthquake. It also minimizes the nuclear waste problem by reducing the amount of the toxic waste and shortening their half lifetime to only a few hundred years. Finally, it solves the Uranium reserve problem because it can use Thorium as its fuel. The Thorium reserve is much larger than that of Uranium. Although the idea of the accelerator-driven nuclear reactor was proposed long time ago, it has not been utilized yet first by technical difficulty and economical reasons. The accelerator-based system needs 1 GeV, 10 MW power proton accelerator. A conventional linear accelerator would need several hundred m length, which is highly costly particularly in Korea because of the high land cost. However, recent technologies make it possible to realize that scale accelerator by a reasonable size. That is the fixed-field alternating gradient (FFAG) accelerator that is described in this article

  12. Sub-Critical Nuclear Reactor Based on FFAG-Accelerator

    International Nuclear Information System (INIS)

    Lee, Hee Seok; Kang, Hung Sik; Lee, Tae Yeon

    2011-01-01

    After the East-Japan earthquake and the subsequent nuclear disaster, the anti-nuclear mood has been wide spread. It is very unfortunate both for nuclear science community and for the future of mankind, which is threatened by two serious challenges, the global warming caused by the greenhouse effect and the shortage of energy cause by the petroleum exhaustion. While the nuclear energy seemed to be the only solution to these problems, it is clear that it has its own problems, one of which broke out so strikingly in Japan. There are also other problems such as the radiotoxic nuclear wastes that survive up to even tens of thousands years and the limited reserves of Uranium. To solve these problems of nuclear fission energy, accelerator-based sub-critical nuclear reactor was once proposed. (Its details will be explained below.) First of all, it is safe in a disaster such as an earthquake, because the deriving accelerator stops immediately by the earthquake. It also minimizes the nuclear waste problem by reducing the amount of the toxic waste and shortening their half lifetime to only a few hundred years. Finally, it solves the Uranium reserve problem because it can use Thorium as its fuel. The Thorium reserve is much larger than that of Uranium. Although the idea of the accelerator-driven nuclear reactor was proposed long time ago, it has not been utilized yet first by technical difficulty and economical reasons. The accelerator-based system needs 1 GeV, 10 MW power proton accelerator. A conventional linear accelerator would need several hundred m length, which is highly costly particularly in Korea because of the high land cost. However, recent technologies make it possible to realize that scale accelerator by a reasonable size. That is the fixed-field alternating gradient (FFAG) accelerator that is described in this article

  13. Automated reactor protection testing saves time and avoids errors

    International Nuclear Information System (INIS)

    Raimondo, E.

    1990-01-01

    When the Pressurized Water Reactor units in the French 900MWe series were designed, the instrumentation and control systems were equipped for manual periodic testing. Manual reactor protection system testing has since been successfully replaced by an automatic system, which is also applicable to other instrumentation testing. A study on the complete automation of process instrumentation testing has been carried out. (author)

  14. TREAT [Transient Reactor Test Facility] reactor control rod scram system simulations and testing

    International Nuclear Information System (INIS)

    Solbrig, C.W.; Stevens, W.W.

    1990-01-01

    Air cylinders moving heavy components (100 to 300 lbs) at high speeds (above 300 in/sec) present a formidable end-cushion-shock problem. With no speed control, the moving components can reach over 600 in/sec if the air cylinder has a 5 ft stroke. This paper presents an overview of a successful upgrade modification to an existing reactor control rod drive design using a computer model to simulate the modified system performance for system design analysis. This design uses a high speed air cylinder to rapidly insert control rods (278 lb moved 5 ft in less than 300 msec) to scram an air-cooled test reactor. Included is information about the computer models developed to simulate high-speed air cylinder operation and a unique new speed control and end cushion design. A patent application is pending with the US Patent ampersand Trade Mark Office for this system (DOE case number S-68,622). The evolution of the design, from computer simulations thru operational testing in a test stand (simulating in-reactor operating conditions) to installation and use in the reactor, is also described. 6 figs

  15. Corrosion of spent Advanced Test Reactor fuel

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Croson, M.L.

    1994-01-01

    The results of a study of the condition of spent nuclear fuel elements from the Advanced Test Reactor (ATR) currently being stored underwater at the Idaho National Engineering Laboratory (INEL) are presented. This study was motivated by a need to estimate the corrosion behavior of dried, spent ATR fuel elements during dry storage for periods up to 50 years. The study indicated that the condition of spent ATR fuel elements currently stored underwater at the INEL is not very well known. Based on the limited data and observed corrosion behavior in the reactor and in underwater storage, it was concluded that many of the fuel elements currently stored under water in the facility called ICPP-603 FSF are in a degraded condition, and it is probable that many have breached cladding. The anticipated dehydration behavior of corroded spent ATR fuel elements was also studied, and a list of issues to be addressed by fuel element characterization before and after forced drying of the fuel elements and during dry storage is presented

  16. Present status of study on super-critical water cooled reactor

    International Nuclear Information System (INIS)

    Ookawa, Masahiro; Shiga, Shigenori; Moriya, Kumiaki; Oka, Yoshiaki; Yoshida, Suguru; Takahashi, Heishichiro

    2003-01-01

    Reactor structure design, the core design and coolant flow in sub-channel of fuel assembly are evaluated in the subtitle of plant concepts of the 2002 fiscal year. High temperature parts and high pressure parts are separated on the reactor structure design. Reactor pressure vessel (RPV) is designed under the condition of low temperature and high pressure, while, apparatuses and instruments in the reactor core are designed under the condition of high temperature and low pressure. Design of control rods for cold shut down of the reactor are estimated by using monte carlo computation code (MCNP). It reveals that the number of 16 control rods (0.7 cm in dia) per a fuel assembly is needed for getting control rod worth of conventional light water reactor. Radial power peaking factor reduces to 1.27 by using a load pattern of fuel assembly, number and load position of fuel elements with burnable poison and control rod pattern. Distributions of coolant flow rate in the fuel assembly are studied by sub-channel analysis code, SILFEED, for BWR. The fuel assembly with 1.0 mm gaps between fuel rod and water keeps an uniform flow distribution in which no sub-channel below 90% of flow rate appears in the fuel assembly. Heat transfer experiments for a single test fuel are carried out in the subtitle of heat transfer. The heat transfer data obtained by the experiments are fitted well to Watts' formula. Slow strain rate tests (SSRT) for SUS 304 and SUS 316L steels in the subtitle of materials are carried out for studying stress corrosion cracking (SCC) of the materials under the super-critical pressure water environment. Intergranular stress corrosion cracking (IGSCC) takes place in SUS 304, but doesn't take place in SUS 316L. (M. Suetake)

  17. Machine learning of the reactor core loading pattern critical parameters

    International Nuclear Information System (INIS)

    Trontl, K.; Pevec, D.; Smuc, T.

    2007-01-01

    The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. In this paper we investigate the applicability of a machine learning model which could be used for fast loading pattern evaluation. We employed a recently introduced machine learning technique, Support Vector Regression (SVR), which has a strong theoretical background in statistical learning theory. Superior empirical performance of the method has been reported on difficult regression problems in different fields of science and technology. SVR is a data driven, kernel based, nonlinear modelling paradigm, in which model parameters are automatically determined by solving a quadratic optimization problem. The main objective of the work reported in this paper was to evaluate the possibility of applying SVR method for reactor core loading pattern modelling. The starting set of experimental data for training and testing of the machine learning algorithm was obtained using a two-dimensional diffusion theory reactor physics computer code. We illustrate the performance of the solution and discuss its applicability, i.e., complexity, speed and accuracy, with a projection to a more realistic scenario involving machine learning from the results of more accurate and time consuming three-dimensional core modelling code. (author)

  18. Proposal of world network on material testing reactors

    International Nuclear Information System (INIS)

    Takemoto, Noriyuki; Izumo, Hironobu; Hori, Naohiko; Ishitsuka, Etsuo; Ishihara, Masahiro

    2011-01-01

    Establishment of an international cooperation system of worldwide testing reactor network (world network) is proposed in order to achieve efficient facility utilization and provide high quality irradiation data by role sharing of irradiation tests with materials testing reactors in the world. As for the first step, mutual understanding among materials testing reactors is thought to be necessary. From this point, an international symposium on materials testing reactors (ISMTR) was held to construct the world network from 2008, and a common understanding of world network has begun to be shared. (author)

  19. Fast reactor safety testing in Transient Reactor Test (TREAT) in the 1980s

    International Nuclear Information System (INIS)

    Wright, A.E.; Dutt, D.S.; Harrison, L.J.

    1990-01-01

    Several series of fast reactor safety tests were performed in TREAT during the 1980s. These focused on the transient behavior of full-length oxide fuels (US reference, UK reference, and US advanced design) and on modern metallic fuels. Most of the tests addressed fuel behavior under transient overpower or loss-of-flow conditions. The test series were the PFR/TREAT tests; the RFT, TS, CDT, and RX series on oxide fuels; and the M series on metallic fuels. These are described in terms of their principal results and relevance to analyses and safety evaluation. 4 refs., 3 tabs

  20. Core test reactor shield cooling system analysis

    International Nuclear Information System (INIS)

    Larson, E.M.; Elliott, R.D.

    1971-01-01

    System requirements for cooling the shield within the vacuum vessel for the core test reactor are analyzed. The total heat to be removed by the coolant system is less than 22,700 Btu/hr, with an additional 4600 Btu/hr to be removed by the 2-inch thick steel plate below the shield. The maximum temperature of the concrete in the shield can be kept below 200 0 F if the shield plug walls are kept below 160 0 F. The walls of the two ''donut'' shaped shield segments, which are cooled by the water from the shield and vessel cooling system, should operate below 95 0 F. The walls of the center plug, which are cooled with nitrogen, should operate below 100 0 F. (U.S.)

  1. The Advanced Test Reactor Strategic Evaluation Program

    International Nuclear Information System (INIS)

    Buescher, B.J.

    1990-01-01

    A systematic evaluation of safety, environmental, and operational issues has been initiated at the Advanced Test Reactor (ATR). This program, the Strategic Evaluation Program (STEP), provides an integrated review of safety and operational issues against the standards applied to licensed commercial facilities. In the review of safety issues, 18 deviations were identified which required prompt attention. Resolution of these items has been accelerated in the program. An integrated living schedule is being developed to address the remaining findings. A risk evaluation is being performed on the proposed corrective actions and these actions will then be formally ranked in order of priority based on considerations of safety and operational significance. Once the final ranking is completed, an integrated schedule will be developed, which will include considerations of availability of funding and operating schedule. 3 refs., 2 figs

  2. JENDL-3.3 thermal reactor benchmark test

    International Nuclear Information System (INIS)

    Akie, Hiroshi

    2001-01-01

    Integral tests of JENDL-3.2 nuclear data library have been carried out by Reactor Integral Test WG of Japanese Nuclear Data Committee. The most important problem in the thermal reactor benchmark testing was the overestimation of the multiplication factor of the U fueled cores. With several revisions of the data of 235 U and the other nuclides, JENDL-3.3 data library gives a good estimation of multiplication factors both for U and Pu fueled thermal reactors. (author)

  3. Final Physics Report for the Engineering Test Reactor

    International Nuclear Information System (INIS)

    Wolfe, I. B.

    1956-01-01

    This report is a summary of the physics design work performed on the Engineering Test Reactor. The ETR presents computational difficulties not found in other reactors because of the large number of experimental holes in the core. The physics of the ETR depends strongly upon the contents of the in-core experimental facilities. In order to properly evaluate the reactor' taking into account the experiments in the core, multi-region, two-dimensional calculations are required. These calculations require the use of a large computer such as the Remington Rand Univac and are complex and expensive enough to warrant a five-stage program: 1. In the early stages of design, only preliminary two-dimensional calculations were performed .in order to obtain a rough idea of the general behavior of the reactor and its critical mass with tentative experiments in place. 2. A large amount of work was carried out in which the reactor was approximated as one with a uniform homogeneous core. With this model, detailed studies were carried out to investigate the feasibility and to obtain general design data on such points as the design and properties of the gray and black control rods, the design of the beryllium reflector, gamma and neutron heating, the use of burnable poisons, etc. In performing these calculations, use was made of the IBM 650 PROD code obtained from KAPL. 3. With stages 1 and 2 carried out, two-dimensional calculations of the core at start-up conditions were performed on the Univac computer. 4. Detailed two-dimensional calculations of the properties of the ETR with a proposed first set of experiments in place were carried out. 5. A series of nuclear tests were performed at the reactivity measurements facility at the MTR site in order to confirm the validity of the analytical techniques in physics analysis. In performing the two-dimensional Univac calculations, the MUG code developed by KAPL and the Cuthill code developed at the David Taylor Model Basin were utilized. In

  4. Automated testing of reactor protection instrumentation made easy

    International Nuclear Information System (INIS)

    Iborra, A.; De Marcos, F.; Pastor, J.A.; Alvarez, B.; Jimenez, A.; Mesa, E.; Alsonso, L.; Regidor, J.J.

    1997-01-01

    Maintenance and testing of reactor protection systems is an important cause of unplanned reactor trips. Automated testing is the answer because it minimises test times and reduces human error. The GAMA I system, developed and implemented at Vandellos II in Spain, has the added advantage that it uses visual programming, which means that changing the software does not need specialist programming skills. (author)

  5. Two critical tests for the Critical Point earthquake

    Science.gov (United States)

    Tzanis, A.; Vallianatos, F.

    2003-04-01

    release rate) event(s). Again, the absence of a concrete case history complicates anyone’s ability to make solid inferences. In conclusion, our observations can be considered to be critical tests of the critical point / stress transfer earthquake model. If the expected earthquakes occur, then it is possible that we have a powerful tool. If not, we should contemplate the possibility that this approach has limited predictive capacity and is unsafe in evaluating seismic hazard. The answer is pending and the question is open for discussion.

  6. Proceedings of the international meeting on reduced enrichment for research and test reactors

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro

    1984-05-01

    The purpose of the Meeting was to exchange and discuss the most up-to-date information on the progress of various programs related to research and test reactor core conversion from high enriched uranium to lower enriched uranium. The papers presented during the Meeting were divided into 9 sessions and one round able discussion which concluded the Meeting. The Sessions were: Program, Fuel Development, Fuel Fabrication, Irradiation testing, Safety Analysis, Special Reactor Conversion, Reactor Design, Critical Experiments, and Reprocessing and Spent Fuel Storage. Thus, topics of this Meeting were of a very wide range that was expected to result in information exchange valuable for all the participants in the RERTR program

  7. Proceedings of the international meeting on reduced enrichment for research and test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchihashi, Keichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1984-05-01

    The purpose of the Meeting was to exchange and discuss the most up-to-date information on the progress of various programs related to research and test reactor core conversion from high enriched uranium to lower enriched uranium. The papers presented during the Meeting were divided into 9 sessions and one round able discussion which concluded the Meeting. The Sessions were: Program, Fuel Development, Fuel Fabrication, Irradiation testing, Safety Analysis, Special Reactor Conversion, Reactor Design, Critical Experiments, and Reprocessing and Spent Fuel Storage. Thus, topics of this Meeting were of a very wide range that was expected to result in information exchange valuable for all the participants in the RERTR program.

  8. Advanced Test Reactor outage risk assessment

    International Nuclear Information System (INIS)

    Thatcher, T.A.; Atkinson, S.A.

    1997-01-01

    Beginning in 1997, risk assessment was performed for each Advanced Test Reactor (ATR) outage aiding the coordination of plant configuration and work activities (maintenance, construction projects, etc.) to minimize the risk of reactor fuel damage and to improve defense-in-depth. The risk assessment activities move beyond simply meeting Technical Safety Requirements to increase the awareness of risk sensitive configurations, to focus increased attention on the higher risk activities, and to seek cost-effective design or operational changes that reduce risk. A detailed probabilistic risk assessment (PRA) had been performed to assess the risk of fuel damage during shutdown operations including heavy load handling. This resulted in several design changes to improve safety; however, evaluation of individual outages had not been performed previously and many risk insights were not being utilized in outage planning. The shutdown PRA provided the necessary framework for assessing relative and absolute risk levels and assessing defense-in-depth. Guidelines were written identifying combinations of equipment outages to avoid. Screening criteria were developed for the selection of work activities to receive review. Tabulation of inherent and work-related initiating events and their relative risk level versus plant mode has aided identification of the risk level the scheduled work involves. Preoutage reviews are conducted and post-outage risk assessment is documented to summarize the positive and negative aspects of the outage with regard to risk. The risk for the outage is compared to the risk level that would result from optimal scheduling of the work to be performed and to baseline or average past performance

  9. A Testing Framework for Critical Space SW

    Science.gov (United States)

    Fernandez, Ignacio; Di Cerbo, Antonio; Dehnhardt, Erik; Massimo, Tipaldi; Brünjes, Bernhard

    2015-09-01

    This paper describes a testing framework for critical space SW named Technical Specification Validation Framework (TSVF). It provides a powerful and flexible means and can be used throughout the SW test activities (test case specification & implementation, test execution and test artifacts analysis). In particular, tests can be run in an automated and/or step-by-step mode. The TSVF framework is currently used for the validation of the Satellite Control Software (SCSW), which runs on the Meteosat Third Generation (MTG) satellite on-board computer. The main purpose of the SCSW is to control the spacecraft along with its various subsystems (AOCS, Payload, Electrical Power, Telemetry Tracking & Command, etc.) in a way that guarantees a high degree of flexibility and autonomy. The TSVF framework serves the challenging needs of the SCSW project, where a plan-driven approach has been combined with an agile process in order to produce preliminary SW versions (with a reduced scope of implemented functionality) in order to fulfill the stakeholders needs ([1]). The paper has been organised as follows. Section 2 gives an overview of the TSVF architecture and interfaces versus the test bench along with the technology used for its implementation. Section 3 describes the key elements of the XML based language for the test case implementation. Section 4 highlights all the benefits compared to conventional test environments requiring a manual test script development, whereas section 5 concludes the paper.

  10. Testing algorithms for critical slowing down

    Directory of Open Access Journals (Sweden)

    Cossu Guido

    2018-01-01

    Full Text Available We present the preliminary tests on two modifications of the Hybrid Monte Carlo (HMC algorithm. Both algorithms are designed to travel much farther in the Hamiltonian phase space for each trajectory and reduce the autocorrelations among physical observables thus tackling the critical slowing down towards the continuum limit. We present a comparison of costs of the new algorithms with the standard HMC evolution for pure gauge fields, studying the autocorrelation times for various quantities including the topological charge.

  11. International Experience with Fast Reactor Operation & Testing

    International Nuclear Information System (INIS)

    Sackett, John I.; Grandy, C.

    2013-01-01

    Conclusion: • Worldwide experience with fast reactors has demonstrated the robustness of the technology and it stands ready for worldwide deployment. • The lessons learned are many and there is danger that what has been learned will be forgotten given that there is little activity in fast reactor development at the present time. • For this reason it is essential that knowledge of fast reactor technology be preserved, an activity supported in the U.S. as well as other countries

  12. Development of M3C code for Monte Carlo reactor physics criticality calculations

    International Nuclear Information System (INIS)

    Kumar, Anek; Kannan, Umasankari; Krishanani, P.D.

    2015-06-01

    The development of Monte Carlo code (M3C) for reactor design entails use of continuous energy nuclear data and Monte Carlo simulations for each of the neutron interaction processes. BARC has started a concentrated effort for developing a new general geometry continuous energy Monte Carlo code for reactor physics calculation indigenously. The code development required a comprehensive understanding of the basic continuous energy cross section sets. The important features of this code are treatment of heterogeneous lattices by general geometry, use of point cross sections along with unionized energy grid approach, thermal scattering model for low energy treatment, capability of handling the microscopic fuel particles dispersed randomly. The capability of handling the randomly dispersed microscopic fuel particles which is very useful for the modeling of High-Temperature Gas-Cooled reactor fuels which are composed of thousands of microscopic fuel particle (TRISO fuel particle), randomly dispersed in a graphite matrix. The Monte Carlo code for criticality calculation is a pioneering effort and has been used to study several types of lattices including cluster geometries. The code has been verified for its accuracy against more than 60 sample problems covering a wide range from simple (like spherical) to complex geometry (like PHWR lattice). Benchmark results show that the code performs quite well for the criticality calculation of the system. In this report, the current status of the code, features of the code, some of the benchmark results for the testing of the code and input preparation etc. are discussed. (author)

  13. Criticality qualification of a new Monte Carlo code for reactor core analysis

    International Nuclear Information System (INIS)

    Catsaros, N.; Gaveau, B.; Jaekel, M.; Maillard, J.; Maurel, G.; Savva, P.; Silva, J.; Varvayanni, M.; Zisis, Th.

    2009-01-01

    In order to accurately simulate Accelerator Driven Systems (ADS), the utilization of at least two computational tools is necessary (the thermal-hydraulic problem is not considered in the frame of this work), namely: (a) A High Energy Physics (HEP) code system dealing with the 'Accelerator part' of the installation, i.e. the computation of the spectrum, intensity and spatial distribution of the neutrons source created by (p, n) reactions of a proton beam on a target and (b) a neutronics code system, handling the 'Reactor part' of the installation, i.e. criticality calculations, neutron transport, fuel burn-up and fission products evolution. In the present work, a single computational tool, aiming to analyze an ADS in its integrity and also able to perform core analysis for a conventional fission reactor, is proposed. The code is based on the well qualified HEP code GEANT (version 3), transformed to perform criticality calculations. The performance of the code is tested against two qualified neutronics code systems, the diffusion/transport SCALE-CITATION code system and the Monte Carlo TRIPOLI code, in the case of a research reactor core analysis. A satisfactory agreement was exhibited by the three codes.

  14. On the theories, techniques, and computer codes used in numerical reactor criticality and burnup calculations

    International Nuclear Information System (INIS)

    El-Osery, I.A.

    1981-01-01

    The purpose of this paper is to discuss the theories, techniques and computer codes that are frequently used in numerical reactor criticality and burnup calculations. It is a part of an integrated nuclear reactor calculation scheme conducted by the Reactors Department, Inshas Nuclear Research Centre. The crude part in numerical reactor criticality and burnup calculations includes the determination of neutron flux distribution which can be obtained in principle as a solution of Boltzmann transport equation. Numerical methods used for solving transport equations are discussed. Emphasis are made on numerical techniques based on multigroup diffusion theory. These numerical techniques include nodal, modal, and finite difference ones. The most commonly known computer codes utilizing these techniques are reviewed. Some of the main computer codes that have been already developed at the Reactors Department and related to numerical reactor criticality and burnup calculations have been presented

  15. Imperfection detection probability at ultrasonic testing of reactor vessels

    International Nuclear Information System (INIS)

    Kazinczy, F. de; Koernvik, L.Aa.

    1980-02-01

    The report is a lecture given at a symposium organized by the Swedish nuclear power inspectorate on February 1980. Equipments, calibration and testing procedures are reported. The estimation of defect detection probability for ultrasonic tests and the reliability of literature data are discussed. Practical testing of reactor vessels and welded joints are described. Swedish test procedures are compared with other countries. Series of test data for welded joints of the OKG-2 reactor are presented. Future recommendations for testing procedures are made. (GBn)

  16. Results of assembly test of HTTR reactor internals

    International Nuclear Information System (INIS)

    Maruyama, S.; Saikusa, A.; Shiozawa, S.; Tsuji, N.; Miki, T.

    1996-01-01

    The assembly test of the HTTR actual reactor internals had been carried out at the works, prior to their installation in the actual reactor pressure vessel(RPV) at the construction site. The assembly test consists of several items such as examining fabricating precision of each component and alignment of piled-up structures, measuring circumferential coolant velocity profile in the passage between the simulated RPV and the reactor internals as well as under the support plates, measuring by-pass flow rate through gaps between the reactor internals, and measuring the binding force of the core restraint mechanism. Results of the test showed good performance of the HTTR reactor internals. Installation of the reactor internals in the actual RPV was started at the construction site of HTTR in April, 1995. In the installation process, main items of the assembly test at the works were repeated to investigate the reproducibility of installation. (author). 5 refs, 11 figs

  17. A critical review of homogenization techniques in reactor lattices

    International Nuclear Information System (INIS)

    Benoist, P.

    1983-01-01

    The determination of the shape of the neutron flux in a whole reactor is, at the time being, a much too complex problem to be treated by transport theory. Since the earlier times of reactor theory, the necessity appeared to solve the problem in two steps. First the reactor is divided into zones, each of them forming a regular lattice. In each of these zones, homogenized parameters are determined by transport theory, in order to define an equivalent smeared medium. In a second step, these parameters are introduced in a diffusion theory scheme in order to treat the reactor as a whole. This is the homogenization procedure. 14 refs

  18. A critical review of homogenization techniques in reactor lattices

    International Nuclear Information System (INIS)

    Benoist, P.

    1983-01-01

    The determination of the shape of the neutron flux in a whole reactor is, at the time being, a much too complex problem to be treated by transport theory. Since the earlier times of reactor theory, the necessity appeared to solve the problem in two steps. First the reactor is divided into zones, each of them forming a regular lattice. In each of these zones, homogenized parameters are determined by transport theory, in order to define an equivalent smeared medium. In a second step, these parameters are introduced in a diffusion theory scheme in order to treat the reactor as a whole. This is the homogenization procedure

  19. Summary Report of Commercial reactor Criticality Data for Three Mile Island Unit 1

    International Nuclear Information System (INIS)

    Larry B. Wimmer

    2001-01-01

    The objective of the ''Summary Report of Commercial Reactor Criticality Data for Three Mile Island Unit I'' is to present the CRC data for the TMI-1 reactor. Results from the CRC evaluations will support the development and validation of the neutronics models used for criticality analyses involving commercial spent nuclear fuel. These models and their validation are discussed in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000)

  20. U-233 fuelled low critical mass solution reactor experiment PURNIMA II

    International Nuclear Information System (INIS)

    Srinivasan, M.; Chandramoleshwar, K.; Pasupathy, C.S.; Rasheed, K.K.; Subba Rao, K.

    1987-01-01

    A homogeneous U-233 uranyl nitrate solution fuelled BeO reflected, low critical mass reactor has been built at the Bhabha Atomic Research Centre, India. Christened PURNIMA II, the reactor was used for the study of the variation of critical mass as a function of fuel solution concentration to determine the minimum critical mass achievable for this geometry. Other experiments performed include the determination of temperature coefficient of reactivity, study of time behaviour of photoneutrons produced due to interaction between decaying U-233 fission product gammas and the beryllium reflector and reactor noise measurements. Besides being the only operational U-233 fuelled reactor at present, PURNIMA II also has the distinction of having attained the lowest critical mass of 397 g of fissile fuel for any operating reactor at the current time. The paper briefly describes the facility and gives an account of the experiments performed and results achieved. (author)

  1. Determination of the lowest critical power levels of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Long, Vu Hai; Binh, Do Quang; Nghiem, Huynh Ton; Tuan, Nguyen Minh; Vien, Luong Ba; Vinh, Le Vinh [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    This paper presents the experimental methods for determining critical states of the Dalat Nuclear Research Reactor containing an extraneous neutron source induced by gamma ray reactions on beryllium in the reactor. The lowest critical power levels are measured at various moments after the reactor is shut down following 100 hours of its continuous operation. Th power levels vary from (0.5-1.2) x 10{sup -4} of P{sub n}, i.e. (25-60)W to (1.1-1.6) x 10{sup -5} of P{sub n}, i.e. (5.5-8)W at corresponding times of 4 days to 13 days after the reactor is shut down. However the critical power must be chosen greater than 500 W to sustain the steady criticality of the reactor for a long time. (author). 3 refs. 4 figs. 1 tab.

  2. Neutron importance and the generalized Green function for the conventionally critical reactor with normalized neutron distribution

    International Nuclear Information System (INIS)

    Khromov, V.V.

    1978-01-01

    The notion of neutron importance when applied to nuclear reactor statics problems described by time-independent homogeneous equations of neutron transport with provision for normalization of neutron distribution is considered. An equation has been obtained for the function of neutron importance in a conditionally critical reactor with respect to an arbitrary nons linear functional determined for the normalized neutron distribution. Relation between this function and the generalized Green function of the selfconjugated operator of the reactor equation is determined and the formula of small perturbations for the functionals of a conditionally critical reactor is deduced

  3. The feature of high flux engineering test reactor and its role in nuclear power development

    International Nuclear Information System (INIS)

    Lu Guangquan

    1987-01-01

    The High Flux Engineering Test Reactor (HFETR) designed and built by Chinese own efforts reached to its initial criticality on Dec. 27, 1979, and then achieved high power operation on Dec. 16, 1980. Until Nov. 11. 1986, the reactor had been operated for thirteen cycles. The paper presents briefly main feature of HFETR and its utilization during past years. The paper also deals with its role in nuclear power development. Finally, author gives his opinion on comprehensive utilization of HFETR. (author)

  4. MOCA, Criticality of VVER Reactor Hexagonal Fuel Assemblies

    International Nuclear Information System (INIS)

    KYNCL, Jan

    1994-01-01

    1 - Description of program or function: Criticality problem in neutron transport for hexagonal fuel assembly in VVER nuclear reactor. The assembly is assumed to be either arranged in an infinite hexagonal array or placed in vacuum. The problem is solved in three- dimensional geometry, using standard energy group formalism and assuming that effective scattering cross sections are presented as Legendre polynomial expansions. The code evaluates ten different physical quantities, e.g. multiplication factor, neutron flux per energy group and spatial zone, integrated over angle and power in any zone of the assembly. 2 - Method of solution: Monte Carlo method of successive generations is applied. Computation proceeds according to an analog random process. The code is organized into three blocks: In the first block, the input data are converted to quantities for use in the Monte Carlo calculation. An initial neutron distribution is calculated, which corresponds to a fission spectrum uniform in spatial and angular variables. The main calculations are carried out in the second block (subroutine PROC2). This block is subdivided into geometrical and physical parts. Neutron tracks in individual zones and groups as well as probabilities for the formation of secondary neutrons are calculated. In the third block (subroutine PROC3), the results are evaluated statistically. Effective multiplication coefficients, the neutron flux per group and zone, and respective errors are computed. These quantities serve as a basis for the evaluation of other quantities. The results are either printed or stored for future evaluations. 3 - Restrictions on the complexity of the problem: In the PC version of the program, the maximum number of neutrons is 1000, the maximum number of energy groups is 4, and the maximum number of material compositions is 15. Angular expansion of scattering cross sections is allowed up to P10. These restrictions can easily be removed by increasing input parameters and

  5. The combined use of test reactor experiments and power reactor tests for the development of PCI-resistant fuel

    International Nuclear Information System (INIS)

    Junkrans, S.; Vesterlund, G.; Vaernild, O.

    1980-01-01

    The theme of this paper is that for development of PCI-resistant fuel acceptable from the commercial and licensing aspects, extensive and time-consuming work is needed both in a test reactor and in power reactors. The test reactor is necessary for ramp testing to power levels not allowed in power reactors and with the aim of generating fuel failures. It is also used for other special irradiation experiments. The access to power reactors is necessary to generate information on performance in a real LWR core and to incubate at a reasonable cost the large amount of rods required for test reactor ramping. Selected results from the ASEA-ATOM work are used to support these conclusions. (author)

  6. Pebble bed test reactor in peu-a-peu load

    International Nuclear Information System (INIS)

    Kranz, L.

    1988-03-01

    The presented work deals with a new type of load model for high temperature reactors with spherical fuels: the peu-a-peu load system. Using this load system the reactor core is only filled partially in the beginning of the power operation. But it has to be a critical base core. With proceeding burn-off the reactor is filled up with further fuel elements the way that it stays always just critically. When the reactor is filled up completely with fuel elements, the reactor operation has to be interrupted and the reactor has to be discharged. Afterwards a new cycle can start like the one just described. A reference reactor with 100 MW thermal power is investigated in this work in detail and should make clear the way of function of the load system and the base idea of 'simplicity and safety'. The improvement proposal to use again a part of the fuel elements of a cycle for the next cycle minimizes the higher specific uranium need of a peu-a-peu reactor decisively. (orig.) [de

  7. I. Reactor safety (including comments on criticisms of WASH-1400)

    International Nuclear Information System (INIS)

    1976-01-01

    A major concern in any nuclear power programme is a reactor accident resulting in a large release of radioactivity to the environment. Serious reactor accidents are possible and the risk of such accidents cannot be reduced to zero i.e. absolute safety cannot be assured. All that can be expected is that the measures used to ensure safety in the design and operation of a reactor are such that the risk of accident is reduced to acceptably low levels. No member of the general public is known to have died or been injured as a result of an accident in over 1000 commercial nuclear power reactor-years. Some accidents in power reactors in operation today have come close enough to an environmental release of radioactivity to cause serious public concern about future safety. Apparent inadequacies in safety practices disclosed by former members of the nuclear power industry have added to this concern. To obtain an objective appraisal of the reactor safety issue this report examines the measures taken in the design and operation of nuclear reactors to reduce the probability of accident to acceptably low levels

  8. Safe operation of research reactors and critical assemblies. Code of practice and annexes. 1984 ed

    International Nuclear Information System (INIS)

    1984-01-01

    The safe operation of research reactors and critical assemblies (hereafter termed 'reactors') requires proper design, construction, management and supervision. This Code of Practice deals mainly with management and supervision. The provisions of the Code apply to the whole life of the reactor, including modification, updating and upgrading. The Code may be subject to revision in the light of experience and the state of technology. The Code is aimed at defining minimum requirements for the safe operation of reactors. Emphasis is placed on which safety requirements should be met rather than on specifying how these requirements may be met. The Code also provides guidance and information to persons and authorities responsible for the operation of reactors. The Code recommends that documents dealing with the operation of reactors and including safety analyses be prepared and submitted for review and approval to a regulatory body. Operation would be authorized on the understanding that it would comply with limits and conditions designed to ensure safety. The Code covers a wide range of reactor types, which gives rise to a variety of safety issues. Safety issues applicable to specific reactor types only (e.g. fast reactors) are not necessarily covered in this Code. Some of the recommendations in the Code are not directly applicable to critical assemblies. A recommendation may therefore be interpreted according to the type of reactor concerned. In such cases the words 'adequate' and 'appropriate' are used to mean 'adequate' or 'appropriate' for the type of reactor under consideration.

  9. Integral test of JENDL-3.3 for thermal reactors

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Mori, Takamasa

    2003-01-01

    Criticality benchmark testing was carried out for 59 experiments in various thermal reactors using a continues-energy Monte Carlo code MVP and its different libraries generated from JENDL-3.2, JENDL-3.3, JEF-2.2 and ENDF/B-VI (R8). From the benchmark results, we can say JENDL-3.3 generally gives better k eff values compared with other nuclear data libraries. However, further modification of JENDL-3.3 is expected to solve the following problems: 1) systematic underestimation of k eff depending on 235 U enrichment for the cores with low (less than 3wt.%) enriched uranium fueled cores, 2) dependence of C/E value of k eff on neutron spectrum and plutonium composition for MOX fueled cores. These are common problems for all of the nuclear data libraries used in this study. (author)

  10. TR-EDB: Test Reactor Embrittlement Data Base, Version 1

    Energy Technology Data Exchange (ETDEWEB)

    Stallmann, F.W.; Wang, J.A.; Kam, F.B.K. [Oak Ridge National Lab., TN (United States)

    1994-01-01

    The Test Reactor Embrittlement Data Base (TR-EDB) is a collection of results from irradiation in materials test reactors. It complements the Power Reactor Embrittlement Data Base (PR-EDB), whose data are restricted to the results from the analysis of surveillance capsules in commercial power reactors. The rationale behind their restriction was the assumption that the results of test reactor experiments may not be applicable to power reactors and could, therefore, be challenged if such data were included. For this very reason the embrittlement predictions in the Reg. Guide 1.99, Rev. 2, were based exclusively on power reactor data. However, test reactor experiments are able to cover a much wider range of materials and irradiation conditions that are needed to explore more fully a variety of models for the prediction of irradiation embrittlement. These data are also needed for the study of effects of annealing for life extension of reactor pressure vessels that are difficult to obtain from surveillance capsule results.

  11. TR-EDB: Test Reactor Embrittlement Data Base, Version 1

    International Nuclear Information System (INIS)

    Stallmann, F.W.; Wang, J.A.; Kam, F.B.K.

    1994-01-01

    The Test Reactor Embrittlement Data Base (TR-EDB) is a collection of results from irradiation in materials test reactors. It complements the Power Reactor Embrittlement Data Base (PR-EDB), whose data are restricted to the results from the analysis of surveillance capsules in commercial power reactors. The rationale behind their restriction was the assumption that the results of test reactor experiments may not be applicable to power reactors and could, therefore, be challenged if such data were included. For this very reason the embrittlement predictions in the Reg. Guide 1.99, Rev. 2, were based exclusively on power reactor data. However, test reactor experiments are able to cover a much wider range of materials and irradiation conditions that are needed to explore more fully a variety of models for the prediction of irradiation embrittlement. These data are also needed for the study of effects of annealing for life extension of reactor pressure vessels that are difficult to obtain from surveillance capsule results

  12. Data base of reactor physics experimental results in Kyoto University critical assembly experimental facilities

    International Nuclear Information System (INIS)

    Ichihara, Chihiro; Fujine, Shigenori; Hayashi, Masatoshi

    1986-01-01

    The Kyoto University critical assembly experimental facilities belong to the Kyoto University Research Reactor Institute, and are the versatile critical assembly constructed for experimentally studying reactor physics and reactor engineering. The facilities are those for common utilization by universities in whole Japan. During more than ten years since the initial criticality in 1974, various experiments on reactor physics and reactor engineering have been carried out using many experimental facilities such as two solidmoderated cores, a light water-moderated core and a neutron generator. The kinds of the experiment carried out were diverse, and to find out the required data from them is very troublesome, accordingly it has become necessary to make a data base which can be processed by a computer with the data accumulated during the past more than ten years. The outline of the data base, the data base CAEX using personal computers, the data base supported by a large computer and so on are reported. (Kako, I.)

  13. Transforming criticality control methods for EBR-II fuel handling during reactor decommissioning

    International Nuclear Information System (INIS)

    Eberle, C.S.; Dean, E.M.; Angelo, P.L.

    1995-01-01

    A review of the Department of Energy (DOE) request to decommission the Experimental Breeder Reactor-II (EBR-II) was conducted in order to develop a scope of work and analysis method for performing the safety review of the facility. Evaluation of the current national standards, DOE orders, EBR-II nuclear safeguards and criticality control practices showed that a decommissioning policy for maintaining criticality safety during a long term fuel transfer process did not exist. The purpose of this research was to provide a technical basis for transforming the reactor from an instrumentation and measurement controlled system to a system that provides both physical constraint and administrative controls to prevent criticality accidents. Essentially, this was done by modifying the reactor core configuration, reactor operations procedures and system instrumentation to meet the safety practices of ANS-8.1-1983. Subcritical limits were determined by applying established liquid metal reactor methods for both the experimental and computational validations

  14. Contributions of fast breeder test reactor to the advanced technology in India

    International Nuclear Information System (INIS)

    Kapoor, R.P.

    2001-01-01

    Fast Breeder Test Reactor (FBTR) is a 40 MWt/13.2 MWe loop type, sodium cooled, plutonium rich mixed carbide fuelled reactor. Its operation at Indira Gandhi Centre for Atomic Research, since first criticality in 1985, has contributed immensely to the advancement of this multidisciplinary and complex fast breeder technology in the country. It has also given a valuable operational feedback for the design of 500 MWe Prototype Fast Breeder Reactor. This paper highlights FBTR's significant contributions to this important technology which has a potential to provide energy security to the country in future. (author)

  15. The physics of accelerator driven sub-critical reactors

    Indian Academy of Sciences (India)

    Accelerator driven systems (ADS) are attracting worldwide attention .... The region of interest (or the entire reactor core) is divided into a suitable number ..... have also presented the status of the theoretical and experimental activities being.

  16. Evaluation of neutronic characteristics of in-pile test reactor for fast reactor safety research

    Energy Technology Data Exchange (ETDEWEB)

    Uto, N.; Ohno, S.; Kawata, N. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1996-09-01

    An extensive research program has been carried out at the Power Reactor and Nuclear Fuel Development Corporation for the safety of future liquid-metal fast breeder reactors to be commercialized. A major part of this program is investigation and planning of advanced safety experiments conducted with a new in-pile safety test facility, which is larger and more advanced than any of the currently existing test reactors. Such a transient safety test reactor generally has unique neutronic characteristics that require various studies from the reactor physics point of view. In this paper, the outcome of the neutronics study is highlighted with presenting a reference core design concept and its performance in regard to the safety test objectives. (author)

  17. Space reactor fuel element testing in upgraded TREAT

    International Nuclear Information System (INIS)

    Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W.Y.

    1993-01-01

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ∼60--80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ∼100 MW/L may be achievable

  18. Ground testing of an SP-100 prototypic reactor

    International Nuclear Information System (INIS)

    Motwani, K.; Pflasterer, G.R.; Upton, H.; Lazarus, J.D.; Gluck, R.

    1988-01-01

    SP-100 is a space power system which is being developed by GE to meet future space electrical power requirements. The ground testing of an SP-100 prototypic reactor system will be conducted at the Westinghouse Hanford Company site located at Richland, Washington. The objective of this test is to demonstrate the performance of a full scale prototypic reactor system, including the reactor, control system and flight shield. The ground test system is designed to simulate the flight operating conditions while meeting all the necessary nuclear safety requirements in a gravity environment. The goal of the reactor ground test system is to establish confidence in the design maturity of the SP-100 space reactor power system and resolve the technical issues necessary for the development of a flight mission design

  19. Space reactor fuel element testing in upgraded TREAT

    Science.gov (United States)

    Todosow, Michael; Bezler, Paul; Ludewig, Hans; Kato, Walter Y.

    1993-01-01

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ˜60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ˜100 MW/L may be achievable.

  20. RB reactor as the U-D2O benchmark criticality system

    International Nuclear Information System (INIS)

    Pesic, M.

    1998-01-01

    From a rich and valuable database fro 580 different reactor cores formed up to now in the RB nuclear reactor, a selected and well recorded set is carefully chosen and preliminarily proposed as a new uranium-heavy water benchmark criticality system for validation od reactor design computer codes and data libraries. The first results of validation of the MCNP code and adjoining neutron cross section libraries are resented in this paper. (author)

  1. Nondestructive testing of nuclear reactor components integrity

    International Nuclear Information System (INIS)

    Mala, M.; Miklos, M.

    2011-01-01

    Nuclear energy must respond to current challenges in the energy market. The significant parameters are increase of the nuclear fuel price, closed fuel cycle, reduction and safe and the final disposal of high level radioactive waste. Nowadays, the discussions on suitable energy mix are taking place not only here in Czech Republic, but also in many other European countries. It is necessary to establish an appropriate ratio among the production of electricity from conventional, nuclear and renewable energy sources. Also, it is necessary to find ways how to streamline the economy, central part of the nuclear fuel cycle and thereby to increase the competitiveness of nuclear energy. This streamlining can be carried out by improving utilization of existing nuclear fuel with maintaining a high degree of nuclear facilities safety. Increasing operational reliability and safety together with increasing utilization of nuclear fuel place increasing demands on monitoring of changes during fuel burnup. The potential fuel assembly damages in light water reactors are prevented by the introduction of new procedures and programs of the fuel assembly monitoring. One of them is the Post Irradiation Inspection Program (PIIP) which is a good tool for monitoring of chemical regime impact on the fuel assembly cladding behavior. Main nondestructive techniques that are used at nuclear power plants for the fuel assembly integrity evaluation are ultrasonic measurements, eddy current measurements, radiographic testing, acoustic techniques and others. Ultrasonic system is usual tool for leak fuel rod evaluation and it is also used at Temelin NPP. Since 2009, Temelin NPP has cooperated with Research Center Rez Ltd in frame of PIIP program at both units WWER 1000. This program was established for US VVantage6 fuel assemblies and also it continues for Russian TVSA-T fuel assemblies. (author)

  2. Deterministic Modeling of the High Temperature Test Reactor

    International Nuclear Information System (INIS)

    Ortensi, J.; Cogliati, J.J.; Pope, M.A.; Ferrer, R.M.; Ougouag, A.M.

    2010-01-01

    Idaho National Laboratory (INL) is tasked with the development of reactor physics analysis capability of the Next Generation Nuclear Power (NGNP) project. In order to examine INL's current prismatic reactor deterministic analysis tools, the project is conducting a benchmark exercise based on modeling the High Temperature Test Reactor (HTTR). This exercise entails the development of a model for the initial criticality, a 19 column thin annular core, and the fully loaded core critical condition with 30 columns. Special emphasis is devoted to the annular core modeling, which shares more characteristics with the NGNP base design. The DRAGON code is used in this study because it offers significant ease and versatility in modeling prismatic designs. Despite some geometric limitations, the code performs quite well compared to other lattice physics codes. DRAGON can generate transport solutions via collision probability (CP), method of characteristics (MOC), and discrete ordinates (Sn). A fine group cross section library based on the SHEM 281 energy structure is used in the DRAGON calculations. HEXPEDITE is the hexagonal z full core solver used in this study and is based on the Green's Function solution of the transverse integrated equations. In addition, two Monte Carlo (MC) based codes, MCNP5 and PSG2/SERPENT, provide benchmarking capability for the DRAGON and the nodal diffusion solver codes. The results from this study show a consistent bias of 2-3% for the core multiplication factor. This systematic error has also been observed in other HTTR benchmark efforts and is well documented in the literature. The ENDF/B VII graphite and U235 cross sections appear to be the main source of the error. The isothermal temperature coefficients calculated with the fully loaded core configuration agree well with other benchmark participants but are 40% higher than the experimental values. This discrepancy with the measurement stems from the fact that during the experiments the control

  3. Preliminary Options Assessment of Versatile Irradiation Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ramazan Sonat [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    The objective of this report is to summarize the work undertaken at INL from April 2016 to January 2017 and aimed at analyzing some options for designing and building a versatile test reactor; the scope of work was agreed upon with DOE-NE. Section 2 presents some results related to KNK II and PRISM Mod A. Section 3 presents some alternatives to the VCTR presented in [ ] as well as a neutronic parametric study to assess the minimum power requirement needed for a 235U metal fueled fast test reactor capable to generate a fast (>100 keV) flux of 4.0 x 1015 n /cm2-s at the test location. Section 4 presents some results regarding a fundamental characteristic of test reactors, namely displacement per atom (dpa) in test samples. Section 5 presents the INL assessment of the ANL fast test reactor design FASTER. Section 6 presents a summary.

  4. Criticality and Its Uncertainty Analysis of Spent Fuel Storage Rack for Research Reactor

    International Nuclear Information System (INIS)

    Han, Tae Young; Park, Chang Je; Lee, Byung Chul

    2011-01-01

    For evaluating the criticality safety of spent fuel storage rack in an open pool type research reactor, a permissible upper limit of criticality should be determined. It can be estimated from the criticality upper limit presented by the regulatory guide and an uncertainty of criticality calculation. In this paper, criticalities for spent fuel storage rack are carried out at various conditions. The calculation uncertainty of MCNP system is evaluated from the calculation results for the benchmark experiments. Then, the upper limit of criticality is determined from the uncertainties and the calculated criticality of the spent fuel storage rack is evaluated

  5. Research reactors for power reactor fuel and materials testing - Studsvik's experience

    International Nuclear Information System (INIS)

    Grounes, M.

    1998-01-01

    Presently Studsvik's R2 test reactor is used for BWR and PWR fuel irradiations at constant power and under transient power conditions. Furthermore tests are performed with defective LWR fuel rods. Tests are also performed on different types of LWR cladding materials and structural materials including post-irradiation testing of materials irradiated at different temperatures and, in some cases, in different water chemistries and on fusion reactor materials. In the past, tests have also been performed on HTGR fuel and FBR fuel and materials under appropriate coolant, temperature and pressure conditions. Fuel tests under development include extremely fast power ramps simulating some reactivity initiated accidents and stored energy (enthalpy) measurements. Materials tests under development include different types of in-pile tests including tests in the INCA (In-Core Autoclave) facility .The present and future demands on the test reactor fuel in all these cases are discussed. (author)

  6. Benchmark test of evaluated nuclear data files for fast reactor neutronics application

    International Nuclear Information System (INIS)

    Chiba, Go; Hazama, Taira; Iwai, Takehiko; Numata, Kazuyuki

    2007-07-01

    A benchmark test of the latest evaluated nuclear data files, JENDL-3.3, JEFF-3.1 and ENDF/B-VII.0, has been carried out for fast reactor neutronics application. For this benchmark test, experimental data obtained at fast critical assemblies and fast power reactors are utilized. In addition to comparing of numerical solutions with the experimental data, we have extracted several cross sections, in which differences between three nuclear data files affect significantly numerical solutions, by virtue of sensitivity analyses. This benchmark test concludes that ENDF/B-VII.0 predicts well the neutronics characteristics of fast neutron systems rather than the other nuclear data files. (author)

  7. French safety and criticality testing programmes

    International Nuclear Information System (INIS)

    Barbry, F.; Leclerc, J.; Manaranche, J.C.; Maubert, L.

    1982-01-01

    This article underlines the need to include experimental safety-criticality programmes in the French nuclear effort. The means and methods used at the Section of Experimental Nuclear Safety and Criticality Research, attached to the CEA Valduc Centre, are described. Three experimental programmes are presented: safety-criticality of the PWR fuel cycle, neutron poisoning of plutonium solutions by gadolinium and safety-criticality of slightly enriched and slightly moderated uranium oxide. Criticality accidents studies in solution are then described [fr

  8. Comparative analysis of sub-critical transmutation reactor concepts

    International Nuclear Information System (INIS)

    Chang, S. H.

    1997-01-01

    The long-lived nuclear wastes have been substantially generated from the light water reactor for a few decades. The toxicity of these spent fuels will be higher than that of the uranium ore, even if those will be stored in the repository more than ten thousands. Hence the means of transmuting the key long-lived nuclear wastes, primarily the minor actinides, using a hybrid proton accelerator and subcritical transmutation reactor, are proposed. Until now, the representative concepts for a subcritical transmutation reactor are the Energy Amplifier, the OMEGA project, the ATW and the MSBR. The detailed concepts and the specifications are illustrated in Table 1. The design requirements for the subcritical transmutation reactor are the high transmutation rate of long-lived nuclear wastes, safety and economics. And to propose the subcritical transmutation reactor concepts, the coolant, the target material and fuel type are carefully considered. In these aspects, the representative concepts for a subcritical transmutation reactor in Table 1 have been surveyed. The requirements for a target and a coolant are the reliable, low maintenance operation and safe operation to minimize the wastes. The reliable, low maintenance operation and safe operation to minimize the wastes. The reliable coolant must have the low melting point, high heat capacity and excellent physical properties. And the target material must have high neutron yield for a given proton condition and easy heat removal capability. Therefore in respect with the above requirements, Pb-Bi is proposed as the coolant and the target material for the subcritical reactor. Because the neutron yield for a given proton energy increases linearly with mass number up to bismuth but in heavier elements spallation events sharply increase both the neutron and heat outputs, Pb-Bi meets not only such the requirements as the above for the coolant but also those for the coolant and target, the simplification of system can be achieved

  9. Status and future program of reactor physics experiments in JAERI Critical facilities, FCA and TCA

    International Nuclear Information System (INIS)

    Okajima, Shigeaki; Osugi, Toshitaka; Nakajima, Ken; Suzaki, Takenori; Miyoshi, Yoshinori

    1999-01-01

    The critical facilities in JAERI, FCA (Fast Critical Assembly) and TCA (Tank-type Critical Assembly), have been used to provide integral data for evaluation of nuclear data as well as for development of various types of reactor since they went critical in 1960's. In this paper a review is presented on the experimental programs in both facilities. And the experimental programs in next 5 years are also shown. (author)

  10. Rise-to-power test in High Temperature Engineering Test Reactor. Test progress and summary of test results up to 30 MW of reactor thermal power

    International Nuclear Information System (INIS)

    Nakagawa, Shigeaki; Fujimoto, Nozomu; Shimakawa, Satoshi

    2002-08-01

    The High Temperature Engineering Test Reactor (HTTR) is a graphite moderated and gas cooled reactor with the thermal power of 30 MW and the reactor outlet coolant temperature of 850degC/950degC. Rise-to-power test in the HTTR was performed from April 23rd to June 6th in 2000 as phase 1 test up to 10 MW in the rated operation mode, from January 29th to March 1st in 2001 as phase 2 test up to 20 MW in the rated operation mode and from April 14th to June 8th in 2001 as phase 3 test up to 20 MW in the high temperature test the mechanism of the reactor outlet coolant temperature becomes 850degC at 30 MW in the rated operation mode and 950degC in the high temperature test operation mode. Phase 4 rise-to-power test to achieve the thermal reactor power of 30 MW started on October 23rd in 2001. On December 7th in 2001 it was confirmed that the thermal reactor power and the reactor outlet coolant temperature reached to 30 MW and 850degC respectively in the single loaded operation mode in which only the primary pressurized water cooler is operating. Phase 4 test was performed until March 6th in 2002. JAERI (Japan Atomic Energy Research Institute) obtained the certificate of the pre-operation test from MEXT (Ministry of Education Culture Sports Science and Technology) after all the pre-operation tests by MEXT were passed successfully with the reactor transient test at an abnormal event as a final pre-operation test. From the test results of the rise-up-power test up to 30 MW in the rated operation mode, performance of the reactor and cooling system were confirmed, and it was also confirmed that an operation of reactor facility can be performed safely. Some problems to be solved were found through the tests. By solving them, the reactor operation with the reactor outlet coolant temperature of 950degC will be achievable. (author)

  11. Refurbishing the BR2 materials testing reactor

    International Nuclear Information System (INIS)

    Baugnet, J.M.; Dekeyser, J.; Gubel, P.

    1995-01-01

    SCK/CEN is refurbishing its BR2 reactor to allow its further operation during the next 15 years; in doing so, it chooses to keep BR2 available for future scientific and technological irradiation programs within an international context. (author) 2 figs

  12. Reactor primary pumps dynamic balancing test

    International Nuclear Information System (INIS)

    Lu Qunxian

    2002-01-01

    Reactor primary Pump is the important equipment in the primary circuit, its working quality would directly influence the safety and operation of nuclear power plant. The author describes that the primary pump vibration status, vibration fault diagnosis and dynamic balancing process on site have been performed since commercial operation of DA YA BAY Nuclear Power plant

  13. Analysis on burnup step effect for evaluating reactor criticality and fuel breeding ratio

    International Nuclear Information System (INIS)

    Saputra, Geby; Purnama, Aditya Rizki; Permana, Sidik; Suzuki, Mitsutoshi

    2014-01-01

    Criticality condition of the reactors is one of the important factors for evaluating reactor operation and nuclear fuel breeding ratio is another factor to show nuclear fuel sustainability. This study analyzes the effect of burnup steps and cycle operation step for evaluating the criticality condition of the reactor as well as the performance of nuclear fuel breeding or breeding ratio (BR). Burnup step is performed based on a day step analysis which is varied from 10 days up to 800 days and for cycle operation from 1 cycle up to 8 cycles reactor operations. In addition, calculation efficiency based on the variation of computer processors to run the analysis in term of time (time efficiency in the calculation) have been also investigated. Optimization method for reactor design analysis which is used a large fast breeder reactor type as a reference case was performed by adopting an established reactor design code of JOINT-FR. The results show a criticality condition becomes higher for smaller burnup step (day) and for breeding ratio becomes less for smaller burnup step (day). Some nuclides contribute to make better criticality when smaller burnup step due to individul nuclide half-live. Calculation time for different burnup step shows a correlation with the time consuming requirement for more details step calculation, although the consuming time is not directly equivalent with the how many time the burnup time step is divided

  14. Benchmark tests for fast and thermal reactor applications

    International Nuclear Information System (INIS)

    Seki, Yuji

    1984-01-01

    Integral tests of JENDL-2 library for fast and thermal reactor applications are reviewed including relevant analyses of JUPITER experiments. Criticality and core center characteristics were tested with one-dimensional models for a total of 27 fast critical assemblies. More sofisticated problems such as reaction rate distributions, control rod worths and sodium void reactivities were tested using two-dimensional models for MOZART and ZPPR-3 assemblies. Main observations from the fast core benchmark tests are as follows. 1) The criticality is well predicted; the average C/E value is 0.999+-0.008 for uranium cores and 0.997+-0.005 for plutonium cores. 2) The calculation underpredicts the reaction rate ratio 239 Pusub(fis)/ 235 Usub(fis) by 3% and overpredicts 238 Usub(cap)/ 239 Pusub(fis) by 6%. The results are consistent with those of JUPITER analyses. 3) The reaction rate distributions in the cores of prototype size are well predicted within +-3%. In larger JUPITER cores, however, the C/E value increases with the radial distance from the core center up to 6% at the outer core edge. 4) The prediction of control rod worths is satisfactory; C/E values are within the range from 0.92 to 0.97 with no apparent dependence on 10 B enrichment and the number of control rods inserted. Spatial dependence of C/E is also observed in the JUPITER cores. 5) The sodium void reactivity is overpredicted by 30% to 50% to the positive side. 1) The criticality is well predicted, as is the same in the fast core tests; the average C/E is 0.997+-0.003. 2) The calculation overpredicts 238 Usub(fis)/ 235 Usub(fis) by 3% to 6%, which shows the same tendency as in the small and medium size fast assemblies. The 238 Usub(cap)/ 235 Usub(fis) ratio is well predicted in the thermal cores. The calculated reaction rate ratios of 232 Th deviate from the measurements by 10% to 15%. (author)

  15. Criticality design evaluation of the White Sands reactor building storage vault

    International Nuclear Information System (INIS)

    Philbin, J.S.; Nelson, W.E.

    1979-03-01

    This report describes the conceptual design and criticality evaluation of a storage vault for components of the fast pulse reactor at White Sands Missile Range. Criticality calculations were performed with the KENO-IV Monte Carlo code for various storage configurations in order to investigate the coupling between the portable reactor and storage arrays of spare reactor rings or other fissile components of similar mass. Abnormal conditions corresponding to pseudo--random arrays of the fuel components, as well as a number of flooded configurations, were also evaluated to assess criticality potential for highly unlikely situations. In a normal, dry configuration, the neutron self-multiplication factor, k/sub eff/, of the fully loaded 3 x 8 planar array plus the reactor is less than 0.87. A completely flooded vault was found to produce self-multiplication factors in excess of 1.2

  16. Qualification of safety-critical software for digital reactor safety system in nuclear power plants

    International Nuclear Information System (INIS)

    Kwon, Kee-Choon; Park, Gee-Yong; Kim, Jang-Yeol; Lee, Jang-Soo

    2013-01-01

    This paper describes the software qualification activities for the safety-critical software of the digital reactor safety system in nuclear power plants. The main activities of the software qualification processes are the preparation of software planning documentations, verification and validation (V and V) of the software requirements specifications (SRS), software design specifications (SDS) and codes, and the testing of the integrated software and integrated system. Moreover, the software safety analysis and software configuration management are involved in the software qualification processes. The V and V procedure for SRS and SDS contains a technical evaluation, licensing suitability evaluation, inspection and traceability analysis, formal verification, software safety analysis, and an evaluation of the software configuration management. The V and V processes for the code are a traceability analysis, source code inspection, test case and test procedure generation. Testing is the major V and V activity of the software integration and system integration phases. The software safety analysis employs a hazard operability method and software fault tree analysis. The software configuration management in each software life cycle is performed by the use of a nuclear software configuration management tool. Through these activities, we can achieve the functionality, performance, reliability, and safety that are the major V and V objectives of the safety-critical software in nuclear power plants. (author)

  17. Safety re-assessment of AECL test and research reactors

    International Nuclear Information System (INIS)

    Winfield, D.J.

    1990-01-01

    Atomic Energy of Canada Limited currently has four operating engineering test/research reactors of various sizes and ages; a new isotope-production reactor Maple-X10, under construction at Chalk River Nuclear Laboratories (CRNL), and a heating demonstration reactor, SDR, undergoing high-power commissioning at Whiteshell Nuclear Research Establishment (WNRE). The company is also performing design studies of small reactors for hot water and electricity production. The older reactors are ZED-2, PTR, NRX, and NRU; these range in age from 42 years (NRX) to 29 years (ZED-2). Since 1984, limited-scope safety re-assessments have been underway on three of these reactors (ZED-2, NRX AND NRU). ZED-2 and PTR are operated by the Reactor Physics Branch; all other reactors are operated by the respective site Reactor Operations Branches. For the older reactors the original safety reports produced were entirely deterministic in nature and based on the design-basis accident concept. The limited scope safety re-assessments for these older reactors, carried out over the past 5 years, have comprised both quantitative probabilistic safety-assessment techniques, such as event tree and fault analysis, and/or qualitative techniques, such as failure mode and effect analysis. The technique used for an individual assessment was dependent upon the specific scope required. This paper discusses the types of analyses carried out, specific insights/recommendations resulting from the analysis, and the plan for future analysis. In addition, during the last four years safety assessments have been carried out on the new isotope-, heat-, and electricity-producing reactors, as part of the safety design review, commissioning and licensing activities

  18. A Study of Critical Flowrate in the Integral Effect Test Facilities

    International Nuclear Information System (INIS)

    Kim, Yeongsik; Ryu, Sunguk; Cho, Seok; Yi, Sungjae; Park, Hyunsik

    2014-01-01

    In earlier studies, most of the information available in the literature was either for a saturated two-phase flow or a sub-cooled water flow at medium pressure conditions, e. g., up to about 7.0 MPa. The choking is regarded as a condition of maximum possible discharge through a given orifice and/or nozzle exit area. A critical flow rate can be achieved at a choking under the given thermo-hydraulic conditions. The critical flow phenomena were studied extensively in both single-phase and two-phase systems because of its importance in the LOCA analyses of light water reactors and in the design of other engineering areas. Park suggested a modified correlation for predicting the critical flow for sub-cooled water through a nozzle. Recently, Park et al. performed an experimental study on a two-phase critical flow with a noncondensable gas at high pressure conditions. Various experiments of critical flow using sub-cooled water were performed for a modeling of break simulators in thermohydraulic integral effect test facilities for light water reactors, e. g., an advanced power reactor 1400MWe (APR1400) and a system-integrated modular advanced reactor (SMART). For the design of break simulators of SBLOCA scenarios, the aspect ratio (L/D) is considered to be a key parameter to determine the shape of a break simulator. In this paper, an investigation of critical flow phenomena was performed especially on break simulators for LOCA scenarios in the integral effect test facilities of KAERI, such as ATLAS and FESTA. In this study, various studies on the critical flow models for sub-cooled and/or saturated water were reviewed. For a comparison among the models for the selected test data, discussions of the comparisons on the effect of the diameters, predictions of critical flow models, and break simulators for SBLOCA in the integral effect test facilities were presented

  19. A Study of Critical Flowrate in the Integral Effect Test Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeongsik; Ryu, Sunguk; Cho, Seok; Yi, Sungjae; Park, Hyunsik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In earlier studies, most of the information available in the literature was either for a saturated two-phase flow or a sub-cooled water flow at medium pressure conditions, e. g., up to about 7.0 MPa. The choking is regarded as a condition of maximum possible discharge through a given orifice and/or nozzle exit area. A critical flow rate can be achieved at a choking under the given thermo-hydraulic conditions. The critical flow phenomena were studied extensively in both single-phase and two-phase systems because of its importance in the LOCA analyses of light water reactors and in the design of other engineering areas. Park suggested a modified correlation for predicting the critical flow for sub-cooled water through a nozzle. Recently, Park et al. performed an experimental study on a two-phase critical flow with a noncondensable gas at high pressure conditions. Various experiments of critical flow using sub-cooled water were performed for a modeling of break simulators in thermohydraulic integral effect test facilities for light water reactors, e. g., an advanced power reactor 1400MWe (APR1400) and a system-integrated modular advanced reactor (SMART). For the design of break simulators of SBLOCA scenarios, the aspect ratio (L/D) is considered to be a key parameter to determine the shape of a break simulator. In this paper, an investigation of critical flow phenomena was performed especially on break simulators for LOCA scenarios in the integral effect test facilities of KAERI, such as ATLAS and FESTA. In this study, various studies on the critical flow models for sub-cooled and/or saturated water were reviewed. For a comparison among the models for the selected test data, discussions of the comparisons on the effect of the diameters, predictions of critical flow models, and break simulators for SBLOCA in the integral effect test facilities were presented.

  20. System for stress corrosion conditions tests on PWR reactors

    International Nuclear Information System (INIS)

    Castro, Andre Cesar de Jesus

    2007-01-01

    The study of environmentally assisted cracking (EAC) involves the consideration and evaluation of the inherent compatibility between a material and the environment under conditions of either applied or residual stress. EAC is a critical problem because equipment, components and structure are subject to the influence of mechanical stress, water environment of different composition, temperature and different material history. Testing for resistance to EAC is one of the most effective ways to determine the interrelationships among this variables on the process of EAC. Up to now, several experimental techniques have been developed worldwide, which address different aspects of environmental caused damage. Constant loading of CT specimens test is a typical example of test, which is used for the estimation of parameters of stress corrosion cracking. To assess the initiation stages and kinetics of crack growth, the testing facility should allow active loading of specimens in the environment that is close to the actual operation conditions of assessed component. This paper presents a testing facility for stress corrosion cracking to be installed at CDTN, which was designed and developed at CDTN. The facility is used to carry out constant load tests under simulated PWR environment, where temperature, water pressure and chemistry are controlled, which are considered the most important factors in SCC. Also, the equipment operational conditions, its applications, and restrictions are presented. The system was developed to operate at temperature until 380 degree C and pressure until 180 bar. It consists in a autoclave stuck at a mechanical system, responsible of producing load , a water treatment station, and a data acquisition system. This testing facility allows the evaluation of cracking progress, especially at PWR reactor. (author) operational conditions. (author)

  1. Testing plutonium fuel assembly production for fast-neutron reactors

    International Nuclear Information System (INIS)

    Nougues, B.; Benhamou, A.; Bertothy, G.; Lepetit, H.

    1975-01-01

    The main characteristics of plutonium fuel elements for fast breeder reactors justify specific test procedures and special techniques. The specific tests relating to the Pu content consist of Pu enrichment and distribution tests, determination of the O/M ratio and external contamination tests. The specific tests performed on fuel configuration are: testing of sintered pellet diameter, testing of pin welding and checking of internal assmbly [fr

  2. Development and testing of control rod drives for ship reactors

    International Nuclear Information System (INIS)

    Bruelheide, K.; Mundt, D.; Peters, C.-H.; Manthey, H.-J.

    1978-01-01

    The following paper deals with the development and testings of a new control rod drive design for marine reactors. Starting from the good operating experience with the advanced pressurized water reactor (FDR) of the NS OTTO HAHN a control rod drive system with an hermetically sealed drive principle was developed. A prototype control rod drive system was put through extensive tests and developed ready for standard production at the 'Gesellschaft fuer Kernenergieverwertung in Schiffbau und Schiffahrt'

  3. On Input Vector Representation for the SVR model of Reactor Core Loading Pattern Critical Parameters

    International Nuclear Information System (INIS)

    Trontl, K.; Pevec, D.; Smuc, T.

    2008-01-01

    Determination and optimization of reactor core loading pattern is an important factor in nuclear power plant operation. The goal is to minimize the amount of enriched uranium (fresh fuel) and burnable absorbers placed in the core, while maintaining nuclear power plant operational and safety characteristics. The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. Recently, we proposed a new method for fast loading pattern evaluation based on general robust regression model relying on the state of the art research in the field of machine learning. We employed Support Vector Regression (SVR) technique. SVR is a supervised learning method in which model parameters are automatically determined by solving a quadratic optimization problem. The preliminary tests revealed a good potential of the SVR method application for fast and accurate reactor core loading pattern evaluation. However, some aspects of model development are still unresolved. The main objective of the work reported in this paper was to conduct additional tests and analyses required for full clarification of the SVR applicability for loading pattern evaluation. We focused our attention on the parameters defining input vector, primarily its structure and complexity, and parameters defining kernel functions. All the tests were conducted on the NPP Krsko reactor core, using MCRAC code for the calculation of reactor core loading pattern critical parameters. The tested input vector structures did not influence the accuracy of the models suggesting that the initially tested input vector, consisted of the number of IFBAs and the k-inf at the beginning of the cycle, is adequate. The influence of kernel function specific parameters (σ for RBF kernel

  4. Reactor calculation benchmark PCA blind test results

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Stallmann, F.W.

    1980-01-01

    Further improvement in calculational procedures or a combination of calculations and measurements is necessary to attain 10 to 15% (1 sigma) accuracy for neutron exposure parameters (flux greater than 0.1 MeV, flux greater than 1.0 MeV, and dpa). The calculational modeling of power reactors should be benchmarked in an actual LWR plant to provide final uncertainty estimates for end-of-life predictions and limitations for plant operations. 26 references, 14 figures, 6 tables

  5. Reactor calculation benchmark PCA blind test results

    Energy Technology Data Exchange (ETDEWEB)

    Kam, F.B.K.; Stallmann, F.W.

    1980-01-01

    Further improvement in calculational procedures or a combination of calculations and measurements is necessary to attain 10 to 15% (1 sigma) accuracy for neutron exposure parameters (flux greater than 0.1 MeV, flux greater than 1.0 MeV, and dpa). The calculational modeling of power reactors should be benchmarked in an actual LWR plant to provide final uncertainty estimates for end-of-life predictions and limitations for plant operations. 26 references, 14 figures, 6 tables.

  6. Fuel solution criticality accident studies with the SILENE reactor: phenomenology, consequences and simulated intervention

    International Nuclear Information System (INIS)

    Barbry, F.

    1984-01-01

    After defining the content and the objectives of criticality accident studies, the SILENE reactor, a means of studying fuel solution criticality accidents, is presented. Information obtained from the CRAC and SILENE experimental programs are then presented; they concern power excursion phenomenology, radiological consequences, and finally guide-lines for current and future programs

  7. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    International Nuclear Information System (INIS)

    1993-11-01

    This document contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE non-reactor nuclear facilities. Adherence to these guidelines will provide consistency and uniformity in criticality safety evaluations (CSEs) across the complex and will document compliance with the requirements of DOE Order 5480.24

  8. A critical heat flux correlation for advanced pressurized light water reactor application

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Hame, W.

    1982-05-01

    Many CHF-correlations have been developed for water cooled rod clusters representing typical PWR or BWR fuel element geometries with relative wide rod lattices. However the fuel elements of an Advanced Pressurized Water Reactor (APWR) have a tight fuel rod lattice, in view of increasing the fuel utilization. It was therefore decided to produce a new CHF-correlation valid for rod bundles with tight lattices. The already available WSC-2 correlation was chosen as a basis. The geometry dependent parameters of this correlation were determined again with the method of the root mean square fitting from the experimental data of the CHF-tests performed in the frame of the Light Water Breeder Reactor programme at the Bettis Laboratory. These tests include triangular array rod bundles with very tight lattices. Furthermore the effect of spiral spacer ribs was investigated on the basis of experimental data from the Columbia University. Application of the new CHF-correlation to conditions typical for an APWR shows that the predicted critical heat fluxes are much smaller than those calculated with the usual PWR-CHF-correlations, but they are higher than those predicted by the B+W-VPI+SU correlation. (orig.) [de

  9. SCALE-4 analysis of pressurized water reactor critical configurations. Volume 1: Summary

    International Nuclear Information System (INIS)

    DeHart, M.D.

    1995-03-01

    The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor criticality safety analyses be validated against experimental measurements. If credit is to be taken for the reduced reactivity of burned or spent fuel relative to its original fresh composition, it is necessary to benchmark computational methods used in determining such reactivity worth against spent fuel reactivity measurements. This report summarizes a portion of the ongoing effort to benchmark away-from-reactor criticality analysis methods using critical configurations from commercial pressurized water reactors (PWR). The analysis methodology utilized for all calculations in this report is based on the modules and data associated with the SCALE-4 code system. Each of the five volumes comprising this report provides an overview of the methodology applied. Subsequent volumes also describe in detail the approach taken in performing criticality calculations for these PWR configurations: Volume 2 describes criticality calculations for the Tennessee Valley Authority's Sequoyah Unit 2 reactor for Cycle 3; Volume 3 documents the analysis of Virginia Power's Surry Unit 1 reactor for the Cycle 2 core; Volume 4 documents the calculations performed based on GPU Nuclear Corporation's Three Mile Island Unit 1 Cycle 5 core; and, lastly, Volume 5 describes the analysis of Virginia Power's North Anna Unit 1 Cycle 5 core. Each of the reactor-specific volumes provides the details of calculations performed to determine the effective multiplication factor for each reactor core for one or more critical configurations using the SCALE-4 system; these results are summarized in this volume. Differences between the core designs and their possible impact on the criticality calculations are also discussed. Finally, results are presented for additional analyses performed to verify that solutions were sufficiently converged

  10. Subcritical Measurements Research Program for Fresh and Spent Materials Test Reactor Fuels

    International Nuclear Information System (INIS)

    Blanchard, A.

    1999-01-01

    'A series of subcritical noise measurements were performed on fresh and spent University of Missouri Research Reactor fuel assemblies. These experimental measurements were performed for the purposes of providing benchmark quality data for validating transport theory computer codes and nuclear cross-section data used to perform criticality safety analyses for highly enriched, uranium-aluminum Material Test Reactor fuel assemblies. A mechanical test rig was designed and built to hold up to four fuel assemblies and neutron detectors in a subcritical array. The rig provided researchers with the ability to evaluate the reactivity effects of variable fuel/detector spacing, fuel rotation, and insertion of metal reflector plates into the lattice.'

  11. Utilization of fission reactors for fusion engineering testing

    International Nuclear Information System (INIS)

    Deis, G.A.; Miller, L.G.

    1985-01-01

    Fission reactors can be used to conduct some of the fusion nuclear engineering tests identified in the FINESSE study. To further define the advantages and disadvantages of fission testing, the technical and programmatic constraints on this type of testing are discussed here. This paper presents and discusses eight key issues affecting fission utilization. Quantitative comparisons with projected fusion operation are made to determine the technical assets and limitations of fission testing. Capabilities of existing fission reactors are summarized and compared with technical needs. Conclusions are then presented on the areas where fission testing can be most useful

  12. Inverse kinetics method with source term for subcriticality measurements during criticality approach in the IPEN/MB-01 research reactor

    International Nuclear Information System (INIS)

    Loureiro, Cesar Augusto Domingues; Santos, Adimir dos

    2009-01-01

    In reactor physics tests which are performed at the startup after refueling the commercial PWRs, it is important to monitor subcriticality continuously during criticality approach. Reactivity measurements by the inverse kinetics method are widely used during the operation of a nuclear reactor and it is possible to perform an online reactivity measurement based on the point reactor kinetics equations. This technique is successful applied at sufficiently high power level or to a core without an external neutron source where the neutron source term in point reactor kinetics equations may be neglected. For operation at low power levels, the contribution of the neutron source must be taken into account and this implies the knowledge of a quantity proportional to the source strength, and then it should be determined. Some experiments have been performed in the IPEN/MB-01 Research Reactor for the determination of the Source Term, using the Least Square Inverse Kinetics Method (LSIKM). A digital reactivity meter which neglects the source term is used to calculate the reactivity and then the source term can be determined by the LSIKM. After determining the source term, its value can be added to the algorithm and the reactivity can be determined again, considering the source term. The new digital reactivity meter can be used now to monitor reactivity during the criticality approach and the measured value for the reactivity is more precise than the meter which neglects the source term. (author)

  13. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    International Nuclear Information System (INIS)

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG ampersand G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options

  14. Conceptual design for simulator of irradiation test reactors

    International Nuclear Information System (INIS)

    Takemoto, Noriyuki; Ohto, Tsutomu; Magome, Hirokatsu; Izumo, Hironobu; Hori, Naohiko

    2012-03-01

    A simulator of irradiation test reactors has been developed since JFY 2010 for understanding reactor behavior and for upskilling in order to utilize a nuclear human resource development (HRD) and to promote partnership with developing countries which have a plan to introduce nuclear power plant. The simulator is designed based on the JMTR, one of the irradiation test reactors, and it simulates operation, irradiation tests and various kinds of accidents caused by the reactor and irradiation facility. The development of the simulator is sponsored by the Japanese government as one of the specialized projects of advanced research infrastructure in order to promote basic as well as applied researches. The training using the simulator will be started for the nuclear HRD from JFY 2012. This report summarizes the result of the conceptual design of the simulator in JFY 2010. (author)

  15. Adapting the Critical Thinking Assessment Test for Palestinian Universities

    Science.gov (United States)

    Basha, Sami; Drane, Denise; Light, Gregory

    2016-01-01

    Critical thinking is a key learning outcome for Palestinian students. However, there are no validated critical thinking tests in Arabic. Suitability of the US developed Critical Thinking Assessment Test (CAT) for use in Palestine was assessed. The test was piloted with university students in English (n = 30) and 4 questions were piloted in Arabic…

  16. Maintaining a critical spectra within Monteburns for a gas-cooled reactor array by way of control rod manipulation

    International Nuclear Information System (INIS)

    Adigun, Babatunde J.; Fensin, Michael L.; Galloway, Jack D.; Trellue, Holly R.

    2016-01-01

    Highlights: • Tested here are 4 methods for estimating critical rod position, in Monteburns, of a reactor fuel array. • Inverse multiplication methods better predict critical rod position at the cost of more iterations. • A polynomial fit technique can predict most plutonium isotopics to within 5%. - Abstract: This burnup study examined the effect of a predicted critical control rod position on the nuclide predictability of several axial and radial locations within a 4 × 4 graphite moderated gas cooled reactor fuel cluster geometry. To achieve this, a control rod position estimator (CRPE) tool was developed within the framework of the linkage code Monteburns between the transport code MCNP and depletion code CINDER90, and four methodologies were proposed within the tool for maintaining criticality. Two of the proposed methods used an inverse multiplication approach – where the amount of fissile material in a set configuration is slowly altered until criticality is attained – in estimating the critical control rod position. Another method carried out several MCNP criticality calculations at different control rod positions, then used a linear fit to estimate the critical rod position. The final method used a second-order polynomial fit of several MCNP criticality calculations at different control rod positions to guess the critical rod position. The results showed that consistency in prediction of power densities as well as uranium and plutonium isotopics was mutual among methods within the CRPE tool that predicted critical position consistently well. While the CRPE tool is currently limited to manipulating a single control rod, future work could be geared toward implementing additional criticality search methodologies along with additional features.

  17. Critical heat flux and flow instability in an advanced light water reactor

    International Nuclear Information System (INIS)

    Dae-Hyun Hwang; Kyong-Won Seo; Chung-Chan Lee; Sung-Kyun Zee

    2005-01-01

    Full text of publication follows: An advanced light water reactor concept has been continuously studied in KAERI with an output in the range of about 60 to 300 MW th . The reactor is purposed to be utilized as an energy source for seawater desalination as well as small scale power generation. In order to achieve the intrinsic safety and enhanced operational flexibility, some specific design considerations such as low power density and soluble boron free operation have been incorporated in the multiple-parallel-channel type reactor core. The low power density can be achieved by adopting fuel assemblies with tightly spaced non-square lattice rod array. The allowable core operating region should be primarily limited by the two design parameters; the critical heat flux(CHF) and the flow instabilities in the multiple parallel fuel assembly channels. The characteristics of CHF and flow instability have been investigated through experimental and analytical works. The CHF prediction model was established on the basis of experimental data obtained from 19-rod test bundles. The CHF experiments have been conducted for various test bundles with different heated lengths, uniform and non-uniform radial and axial power distributions, water and Freon as the working fluids, and different number of unheated rods. The parametric ranges of CHF experiments covers the pressure from 6 to 18 MPa, the mass flux from 150 to 2000 kg/m 2 /s, and the inlet subcooling from 10 to 120 deg. C. The flow instabilities due to density wave oscillations were investigated by conducting experiments with two parallel channels under the pressure ranges from 6 to 16 MPa. The parametric behavior of flow instability was examined for the test sections with different lengths of adiabatic risers, different axial power shapes, different inlet restrictions, and different channel cross sections. The stability boundary was experimentally determined by increasing channel inlet temperature or reducing the flow rate

  18. Criticality experiments with fast flux test facility fuel pins

    International Nuclear Information System (INIS)

    Bierman, S.R.

    1990-11-01

    A United States Department of Energy program was initiated during the early seventies at the Hanford Critical Mass Laboratory to obtain experimental criticality data in support of the Liquid Metal Fast Breeder Reactor Program. The criticality experiments program was to provide basic physics data for clean well defined conditions expected to be encountered in the handling of plutonium-uranium fuel mixtures outside reactors. One task of this criticality experiments program was concerned with obtaining data on PuO 2 -UO 2 fuel rods containing 20--30 wt % plutonium. To obtain this data a series of experiments were performed over a period of about twelve years. The experimental data obtained during this time are summarized and the associated experimental assemblies are described. 8 refs., 7 figs

  19. Reactor numerical simulation and hydraulic test research

    International Nuclear Information System (INIS)

    Yang, L. S.

    2009-01-01

    In recent years, the computer hardware was improved on the numerical simulation on flow field in the reactor. In our laboratory, we usually use the Pro/e or UG commercial software. After completed topology geometry, ICEM-CFD is used to get mesh for computation. Exact geometrical similarity is maintained between the main flow paths of the model and the prototype, with the exception of the core simulation design of the fuel assemblies. The drive line system is composed of drive mechanism, guide bush assembly, fuel assembly and control rod assembly, and fitted with the rod level indicator and drive mechanism power device

  20. Specifications, Pre-Experimental Predictions, and Test Plate Characterization Information for the Prometheus Critical Experiments

    International Nuclear Information System (INIS)

    ML Zerkle; ME Meyers; SM Tarves; JJ Powers

    2006-01-01

    This report provides specifications, pre-experimental predictions, and test plate characterization information for a series of molybdenum (Mo), niobium (Nb), rhenium (Re), tantalum (Ta), and baseline critical experiments that were developed by the Naval Reactors Prime Contractor Team (NRPCT) for the Prometheus space reactor development project. In March 2004, the Naval Reactors program was assigned the responsibility to develop, design, deliver, and operationally support civilian space nuclear reactors for NASA's Project Prometheus. The NRPCT was formed to perform this work and consisted of engineers and scientists from the Naval Reactors (NR) Program prime contractors: Bettis Atomic Power Laboratory, Knolls Atomic Power Laboratory (KAPL), and Bechtel Plant Machinery Inc (BPMI). The NRPCT developed a series of clean benchmark critical experiments to address fundamental uncertainties in the neutron cross section data for Mo, Nb, Re, and Ta in fast, intermediate, and mixed neutron energy spectra. These experiments were to be performed by Los Alamos National Laboratory (LANL) using the Planet vertical lift critical assembly machine and were designed with a simple, geometrically clean, cylindrical configuration consisting of alternating layers of test, moderator/reflector, and fuel materials. Based on reprioritization of missions and funding within NASA, Naval Reactors and NASA discontinued their collaboration on Project Prometheus in September 2005. One critical experiment and eighteen subcritical handstacking experiments were completed prior to the termination of work in September 2005. Information on the Prometheus critical experiments and the test plates produced for these experiments are expected to be of value to future space reactor development programs and to integral experiments designed to address the fundamental neutron cross section uncertainties for these refractory metals. This information is being provided as an orderly closeout of NRPCT work on Project

  1. HFR irradiation testing of light water reactor (LWR) fuel

    International Nuclear Information System (INIS)

    Markgraf, J.F.W.

    1985-01-01

    For the materials testing reactor HFR some characteristic information with emphasis on LWR fuel rod testing capabilities and hot cell investigation is presented. Additionally a summary of LWR fuel irradiation programmes performed and forthcoming programmes are described. Project management information and a list of publications pertaining to LWR fuel rod test programmes is given

  2. SMORN-III benchmark test on reactor noise analysis methods

    International Nuclear Information System (INIS)

    Shinohara, Yoshikuni; Hirota, Jitsuya

    1984-02-01

    A computational benchmark test was performed in conjunction with the Third Specialists Meeting on Reactor Noise (SMORN-III) which was held in Tokyo, Japan in October 1981. This report summarizes the results of the test as well as the works made for preparation of the test. (author)

  3. Permeated defect detecting test method and device in reactor

    International Nuclear Information System (INIS)

    Sakurai, Yoshishige.

    1996-01-01

    The present invention provides a method of and a device capable of performing a test for entire inner surfaces of the reactor upon periodical inspection of a BWR type reactor while sufficiently taking countermeasures for radiation rays into consideration. Namely, the present invention comprises following steps. (1) A provisional step for taking a shroud head of a reactor core shroud and incore structural components above and below the shroud out of the reactor, discharging reactor water and water tightly closing openings such as reactor wall perforation holes, (2) a pretreatment step for washing exposed inner surfaces of the reactor and peeling deteriorated materials, (3) a first drying step for drying portions washed and peeled in the step (2), (4) a permeation step for applying a permeation liquid of a defect detecting medium on the exposed inner surfaces of the reactor, (5) a permeation liquid removing step for removing the an excess permeation liquid in the step (4), (6) a second drying step for drying corresponding portions after performing the step (5), and (7) a flaw detecting step for optically observing the corresponding portions after performing the step (6) and detecting flaws. (I.S.)

  4. Removal of the Plutonium Recycle Test Reactor - 13031

    International Nuclear Information System (INIS)

    Herzog, C. Brad; Guercia, Rudolph; LaCome, Matt

    2013-01-01

    The 309 Facility housed the Plutonium Recycle Test Reactor (PRTR), an operating test reactor in the 300 Area at Hanford, Washington. The reactor first went critical in 1960 and was originally used for experiments under the Hanford Site Plutonium Fuels Utilization Program. The facility was decontaminated and decommissioned in 1988-1989, and the facility was deactivated in 1994. The 309 facility was added to Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) response actions as established in an Interim Record of Decision (IROD) and Action Memorandum (AM). The IROD directs a remedial action for the 309 facility, associated waste sites, associated underground piping and contaminated soils resulting from past unplanned releases. The AM directs a removal action through physical demolition of the facility, including removal of the reactor. Both CERCLA actions are implemented in accordance with U.S. EPA approved Remedial Action Work Plan, and the Remedial Design Report / Remedial Action Report associated with the Hanford 300-FF-2 Operable Unit. The selected method for remedy was to conventionally demolish above grade structures including the easily distinguished containment vessel dome, remove the PRTR and a minimum of 300 mm (12 in) of shielding as a single 560 Ton unit, and conventionally demolish the below grade structure. Initial sample core drilling in the Bio-Shield for radiological surveys showed evidence that the Bio-Shield was of sound structure. Core drills for the separation process of the PRTR from the 309 structure began at the deck level and revealed substantial thermal degradation of at least the top 1.2 m (4LF) of Bio-Shield structure. The degraded structure combined with the original materials used in the Bio-Shield would not allow for a stable structure to be extracted. The water used in the core drilling process proved to erode the sand mixture of the Bio-Shield leaving the steel aggregate to act as ball bearings against the

  5. Complementary role of critical integral experiment and power reactor start-up experiments for LMFBR neutronics data and method validation

    International Nuclear Information System (INIS)

    Salvatores, M.

    1986-09-01

    Both critical experiments and power reactor results play at present a complementary role in reducing the uncertainties in Key design parameters for LMFBR, which can be relevant for the economic performances of this type of reactors

  6. SCALE-4 Analysis of LaSalle Unit 1 BWR Commercial Reactor Critical Configurations

    International Nuclear Information System (INIS)

    Gauld, I.C.

    2000-01-01

    Five commercial reactor criticals (CRCs) for the LaSalle Unit 1 boiling-water reactor have been analyzed using KENO V.a, the Monte Carlo criticality code of the SCALE 4 code system. The irradiated fuel assembly isotopics for the criticality analyses were provided by the Waste Package Design team at the Yucca Mountain Project in the US, who performed the depletion calculations using the SAS2H sequence of SCALE 4. The reactor critical measurements involved two beginning-of-cycle and three middle-of-cycle configurations. The CRCs involved relatively low-cycle burnups, and therefore contained a relatively high gadolinium poison content in the reactor assemblies. This report summarizes the data and methods used in analyzing the critical configurations and assesses the sensitivity of the results to some of the modeling approximations used to represent the gadolinium poison distribution within the assemblies. The KENO V.a calculations, performed using the SCALE 44GROUPNDF5 ENDF/B-V cross-section library, yield predicted k eff values within about 1% Δk/k relative to reactor measurements for the five CRCs using general 8-pin and 9-pin heterogeneous gadolinium poison pin assembly models

  7. Computer-aided testing and operational aids for PARR-1 nuclear reactor

    International Nuclear Information System (INIS)

    Ansari, S.A.

    1990-01-01

    The utilization of the plant computer of Pakistan Research Reactor (PARR-1) for automatic periodic testing of nuclear instrumentation in the reactor is described. Computer algorithms have been developed for on-line acquisition and real-time processing of nuclear channel signals. The mean value, standard deviation, and probability distributions of nuclear channel signals are obtained in real time, and the computer generates a warning message if the signal error exceeds the maximum permissible error. In this way a faulty channel is automatically identified. Other real-time algorithms are also described that assist the operator in safe reactor operation by automatically computing approach-to-criticality during reactor start-up and the control rod worth determination

  8. Criticality analysis of the CAREM-25 reactor irradiated fuel elements storage pool

    International Nuclear Information System (INIS)

    Albornoz, A.F.; Jatuff, F.E.; Gho, C.J.

    1993-01-01

    A criticality safety analysis of the irradiated fuel element pool storage of the CAREM-25 reactor was performed. The CAREM project is property of the Comision Nacional de Energia Atomica (CNEA) of Argentine, and it is being executed by INVAP S.E. difficult evaluation of the CAREM core (relatively high -3,4%- enriched U O 2 , Gd 2 O 3 burnable absorber in different densities, or criticality achievement with as few as 7 fuel elements is inherited by the pool storage. The lattice code CONDOR 1.1 was used for investigating the problem scene, and some results compared on the Monte Carlo codes MONK 5.0 and MONK 6.3. Circular and square tubes of 304-L stainless steel, borated steel and boral B 4 C in Al) were tested as suitable channels for fuel element containment, in square and hexagonal arrays; in addition, burnup, burnable absorber concentration, Sm and leakage credits were determined. It was found that the critical is strongly dependent on the separation of the fuel elements in the pool. Out-of-nominal conditions were investigated too, showing that the loss of coolant and the change in temperature and density conditions in the storage lead to an increase in reactivity, but the system's reactivity remains near the safety limits. (author)

  9. Multifrequency tests in the EBR-II reactor plant

    International Nuclear Information System (INIS)

    Feldman, E.E.; Mohr, D.; Gross, K.C.

    1989-01-01

    A series of eight multifrequency tests was conducted on the Experimental Breeder Reactor II. In half of the tests a control rod was oscillated and in the other half the controller input voltage to the intermediate-loop-sodium pump was perturbed. In each test the input disturbance consisted of several superimposed single-frequency sinusoidal harmonics of the same fundamental. The tests are described along with the theoretical and practical aspects of their development and design. Samples of measured frequency responses are also provided for both the reactor and the power plant. 22 refs., 5 figs., 2 tabs

  10. EBR-2 [Experimental Breeder Reactor-2], IFR [Integral Fast Reactor] prototype testing programs

    International Nuclear Information System (INIS)

    Lehto, W.K.; Sackett, J.I.; Lindsay, R.W.; Planchon, H.P.; Lambert, J.D.B.

    1990-01-01

    The Experimental Breeder Reactor-2 (EBR-2) is a sodium cooled power reactor supplying about 20 MWe to the Idaho National Engineering Laboratory (INEL) grid and, in addition, is the key component in the development of the Integral Fast Reactor (IFR). EBR-2's testing capability is extensive and has seen four major phases: (1) demonstration of LMFBR power plant feasibility, (2) irradiation testing for fuel and material development. (3) testing the off-normal performance of fuel and plant systems and (4) operation as the IFR prototype, developing and demonstrating the IFR technology associated with fuel and plant design. Specific programs being carried out in support of the IFR include advanced fuels and materials development and component testing. This paper discusses EBR-2 as the IFR prototype and the associated testing programs. 29 refs

  11. EBR-2 [Experimental Breeder Reactor-2] test programs

    International Nuclear Information System (INIS)

    Sackett, J.I.; Lehto, W.K.; Lindsay, R.W.; Planchon, H.P.; Lambert, J.D.B.; Hill, D.J.

    1990-01-01

    The Experimental Breeder Reactor-2 (EBR-2) is a sodium cooled power reactor supplying about 20 MWe to the Idaho National Engineering Laboratory (INEL) grid and, in addition, is the key component in the development of the Integral Fast Reactor (IFR). EBR-2's testing capability is extensive and has seen four major phases: (1) demonstration of LMFBR power plant feasibility, (2) irradiation testing for fuel and material development, (3) testing the off-normal performance of fuel and plant systems and (4) operation as the IFR prototype, developing and demonstrating the IFR technology associated with fuel and plant design. Specific programs being carried out in support of the IFR include advanced fuels and materials development, advanced control system development, plant diagnostics development and component testing. This paper discusses EBR-2 as the IFR prototype and the associated testing programs. 29 refs

  12. Licensing experience of the HTR-10 test reactor

    International Nuclear Information System (INIS)

    Sun, Y.; Xu, Y.

    1996-01-01

    A 10MW high temperature gas-cooled test reactor (HTR-10) is now being projected by the Institute of Nuclear Energy Technology within China's National High Technology Programme. The Construction Permit of HTR-10 was issued by the Chinese nuclear licensing authority around the end of 1994 after a period of about one year of safety review of the reactor design. HTR-10 is the first high temperature gas-cooled reactor (HTGR) to be constructed in China. The purpose of this test reactor project is to test and demonstrate the technology and safety features of the advanced modular high temperature reactor design. The reactor uses spherical fuel elements with coated fuel particles. The reactor unit and the steam generator unit are arranged in a ''side-by-side'' way. Maximum fuel temperature under the accident condition of a complete loss of coolant is limited to values much lower than the safety limit set for the fuel element. Since the philosophy of the technical and safety design of HTR-10 comes from the high temperature modular reactor design, the reactor is also called the Test Module. HTR-10 represents among others also a licensing challenge. On the one side, it is the first helium reactor in China, and there are less licensing experiences both for the regulator and for the designer. On the other side, the reactor design incorporates many advanced design features in the direction of passive or inherent safety, and it is presently a world-wide issue how to treat properly the passive or inherent safety design features in the licensing safety review. In this presentation, the licensing criteria of HTR-10 are discussed. The organization and activities of the safety review for the construction permit licensing are described. Some of the main safety issues in the licensing procedure are addressed. Among these are, for example, fuel element behaviour, source term, safety classification of systems and components, containment design. The licensing experiences of HTR-10 are of

  13. Tritium experience in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Skinner, C.H.; Blanchard, W.; Hosea, J.; Mueller, D.; Nagy, A.; Hogan, J.

    1998-01-01

    Tritium management is a key enabling element in fusion technology. Tritium fuel was used in 3.5 years of successful deuterium-tritium (D-T) operations in the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory. The D-T campaign enabled TFTR to explore the transport, alpha physics, and MHD stability of a reactor core. It also provided experience with tritium retention and removal that highlighted the importance of these issues in future D-T machines. In this paper, the authors summarize the tritium retention and removal experience in TFTR and its implications for future reactors

  14. Experiences in stability testing of boiling water reactors

    International Nuclear Information System (INIS)

    March-Leuba, J.; Otaduy, P.J.

    1986-01-01

    The purpose of this paper is to summarize experiences with boiling water reactor (BWR) stability testing using noise analysis techniques. These techniques have been studied over an extended period of time, but it has been only recently that they have been well established and generally accepted. This paper contains first a review of the problem of BWR neutronic stability, focusing on its physical causes and its effects on reactor operation. The paper also describes the main techniques used to quantify, from noise measurements, the reactor's stability in terms of a decay ratio. Finally, the main results and experiences obtained from the stability tests performed at the Dresden and the Browns Ferry reactors using noise analysis techniques are summarized

  15. Tests for validation of fast neutron reactors safety

    International Nuclear Information System (INIS)

    Nagata, T.; Yamashita, H.

    2001-01-01

    Japanese scientific research and design enterprises in cooperation with industrial and power generating corporations implement a project on creating a fast neutron reactor of the ultimate safety. One of the basic expected results from such a development is creation of a reactor core structure that is able to eliminate recriticality occurrence in the course of reactor accident involving fuel melting. One of the possible ways to solve this problem is to include pipes (meant for specifying directed (controlled) molten fuel relocation) into fuel assembly structure. In the course of conduction and subsequent implementation of such a design the basic issue is to experimentally confirm the operating capacity of FA having such a structure and that is called FAIDUS. Within EAGLE Project on experimental basis of IAE NNC RK an activity has been started on preparation and conduction of out-of-pile and in-pile tests. During tests a sodium coolant will be used. Studies are conducted by NNC RK in cooperation with the Japanese corporations JAPC and JNC. Basic objective of out-of-pile tests was to obtain preliminary information on fuel relocation behavior under conditions simulating accident involving melting of core consisting of FAIDUS FA, which will help to clarify simulation criteria and to develop the most optimum structure of the experimental channel for reactor experiments conduction. The basic objective of in-pile tests was the experimental confirmation of operating capacity of FAIDUS FA model under reactor conditions. According to the program two tests are planned to be performed at IGR reactor: tests for validation of fast neutron reactor safety, and out-of-pile tests at EAGLE experimental facility without sodium coolant

  16. Sharing of the RPI Reactor Critical Facility (RCF). Final summary report, January 1988--September 1995

    International Nuclear Information System (INIS)

    Harris, D.R.

    1995-01-01

    Rensselaer Polytechnic Institute (RPI) has participated for a number of years in Sharing of the Reactor Critical Facility (RCF) under the U.S. Department of Energy University Reactor Sharing Program. In September of each year a Sharing invitation is sent to 92 public and private high schools and to 74 colleges and universities within about a 3 hour drive to the RCF (Appendix B). Each year about 10 such educational institutions send groups to share the RCF

  17. Ability to burn plutonium and minor actinides. Interest of accelerator driven system compared to critical reactor

    International Nuclear Information System (INIS)

    Vergnes, J.; Mouney, H.

    1998-01-01

    In the frame of the French Act of December 1991, EDF is presently assessing the interest of Acceleration Driven System (ADS) for the Transmutation of the Plutonium and Minor Actinides (MA) produced by its park of nuclear reactors. The studies presented here assess the efficiency of ADS and critical reactors to incinerate Pu and MA (Minor Actinides) and the potential interest of ADS for that purpose. (author)

  18. Sensitivity coefficients of reactor parameters in fast critical assemblies and uncertainty analysis

    International Nuclear Information System (INIS)

    Aoyama, Takafumi; Suzuki, Takayuki; Takeda, Toshikazu; Hasegawa, Akira; Kikuchi, Yasuyuki.

    1986-02-01

    Sensitivity coefficients of reactor parameters in several fast critical assemblies to various cross sections were calculated in 16 group by means of SAGEP code based on the generalized perturbation theory. The sensitivity coefficients were tabulated and the difference of sensitivity coefficients was discussed. Furthermore, the uncertainty of calculated reactor parameters due to cross section uncertainty were estimated using the sensitivity coefficients and cross section covariance data. (author)

  19. Analysis of steam explosions in plate-type, uranium-aluminum fuel test reactors

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.

    1989-01-01

    The concern over steam explosions in nuclear reactors can be traced to prompt critical nuclear excursions in aluminum-clad/fueled test reactors, as well as to explosive events in aluminum, pulp, and paper industries. The Reactor Safety Study prompted an extensive analytical and experimental effort for over a decade. This has led to significant improvements in their understanding of the steam explosion issue for commercial light water reactors. However, little progress has been made toward applying the lessons learned from this effort to the understanding and modeling of steam explosion phenomena in aluminum-clad/fueled research and test reactors. The purposes of this paper are to (a) provide a preliminary analysis of the destructive events in test reactors, based on current understandings of steam explosions; (b) provide a proposed approach for determining the likelihood of a steam explosion event under scenarios in which molten U-Al fuel drops into a water-filled cavity; and (c) present a benchmarking study conducted to estimate peak pressure pulse magnitudes

  20. Improving the understanding of thermal-hydraulics and heat transfer for super critical water cooled reactors

    International Nuclear Information System (INIS)

    Bilbao y Leon, S.; Aksan, N.

    2010-01-01

    Ensuring the exchange of information and fostering the collaboration among Member States on the development of technology advances for future nuclear power plants are among the key roles of the IAEA. There is high interest internationally in both developing and industrialized countries in the design of innovative super-critical water-cooled reactors (SCWRs). This interest arises from the high thermal efficiencies (44-45%) and improved economic competitiveness promised by for this concept, utilizing and building on the recent developments of highly efficient fossil power plants. The SCWR is one of the six concepts included in the Generation-IV International Forum (GIF). Following the advice of the IAEA Nuclear Energy Dept.'s Technical Working Groups on Advanced Technologies for LWRs and HWRs (the TWG-LWR and TWG-HWR), with the feedback from the Gen-IV SCWR Steering Committee, and in coordination with the OECD-NEA, IAEA is working on a Coordinated Research Project (CRP) in the areas of heat transfer behaviour and testing of thermo-hydraulic computer methods for Supercritical Water-Cooled Reactors. The second Research Coordination Meeting (RCM) of the CRP was held at the IAEA Headquarters, in Vienna (Austria)) in August 2009. This paper summarizes the current status of the CRP, as well as the major achievements to date. (authors)

  1. SP-100 reactor disassembly remote handling test program

    International Nuclear Information System (INIS)

    Wilson, C.E.; Potter, J.D.; Maiden, G.E.; Vader, D.P.

    1991-01-01

    This paper is presented as an overview of the remote handling equipment validation testing, which will be conducted before installation and use in the ground engineering test facility. This equipment will be used to defuel the SP-100 reactor core after removing it from the Test Assembly following nuclear testing. A series of full scale mock-up operational tests will be conducted at a Hanford Site facility to verify equipment design, operation, and capabilities

  2. High-Temperature Gas-Cooled Test Reactor Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Laboratory; Bayless, Paul David [Idaho National Laboratory; Nelson, Lee Orville [Idaho National Laboratory; Gougar, Hans David [Idaho National Laboratory; Kinsey, James Carl [Idaho National Laboratory; Strydom, Gerhard [Idaho National Laboratory; Kumar, Akansha [Idaho National Laboratory

    2016-04-01

    A point design has been developed for a 200 MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technological readiness level, licensing approach and costs.

  3. Integral test of JENDL-3.3 for fast reactors

    International Nuclear Information System (INIS)

    Chiba, Gou

    2003-01-01

    An integral test of JENDL-3.3 was performed for fast reactors. Various types of fast reactors were analyzed. Calculation values of the nuclear characteristics were greatly especially affected by the revisions of the cross sections of U-235 capture and elastic scattering reactions. The C/E values were improved for ZPPR cross where plutonium is mainly fueled, but not for BFS cores where uranium is mainly fueled. (author)

  4. A heuristic application of critical power ratio to pressurized water reactor core design

    International Nuclear Information System (INIS)

    Ahn, Seung Hoon; Jeun, Gyoo Dong

    2002-01-01

    The approach for evaluating the critical heat flux (CHF) margin using the departure from nucleate boiling ratio (DNBR) concept has been widely applied to PWR core design, while DNBR in this approach does not indicate appropriately the CHF margin in terms of the attainable power margin-to-CHF against a reactor core condition. The CHF power margin must be calculated by increasing power until the minimum DNBR reaches a DNBR limit. The Critical Power Ratio (CPR), defined as the ratio of the predicted CHF power to the operating power, is considered more reasonable for indicating the CHF margin and can be calculated by a CPR correlation based on the heat balance of a test bundle. This approach yields directly the CHF power margin, but the calculated CPR must be corrected to compensate for many local effects of the actual core, which are not considered in the CHF test and analysis. In this paper, correction of the calculated CPR is made so that it may become equal to the DNB overpower margin. Exemplary calculations showed that the correction tends to be increased as power distribution is more distorted, but are not unduly large

  5. TIBER engineering test reactor (ETR) startup scenarios

    International Nuclear Information System (INIS)

    Blackfield, D.T.; Perkins, L.J.

    1987-01-01

    A time-dependent Tokamak Systems Code (TTSC) has been developed and used to examine various inductively driven startup scenarios for the TIBER reactor. Radially averaged particle and energy balance equations are solved. In addition, time varying currents in the PF and OH coils are determined from MHD equilibrium and volt-seconds considerations. Less than 20 MW of auxiliary power deposited in the electrons is required to obtain steady-state operations. For this scenario, less than 10% of the total volt-seconds capability is consumed during startup and the currents in the PF and OH coils do not appear to exceed stress limits. For every volt-second saved during startup, the burn time can be extended 14 seconds. 4 refs., 6 figs., 3 tabs

  6. Educational use of research reactor (KUR) and critical assembly (KUCA) at Kyoto University

    International Nuclear Information System (INIS)

    Misawa, Tsuyoshi; Unesaki, Hironobu; Ichihara, Chihiro; Pyeon, Cheol Ho; Shiroya, Seiji

    2005-01-01

    At Kyoto University Research Reactor Institute, a research reactor of 5MW (KUR) and a critical assembly (KUCA) have been used for educational purpose to train undergraduate or graduate students. Using KUR, basic experiments for neutron applications have been carried out, and KUCA has been used for the education of nuclear engineering and technology. Especially, using KUCA, a joint reactor laboratory course of graduate level is offered every summer since 1975 by nine associated Japanese universities, and more than 2200 students attended this course

  7. Processing test of an upgraded mechanical design for PERMCAT reactor

    International Nuclear Information System (INIS)

    Borgognoni, Fabio; Demange, David; Doerr, Lothar; Tosti, Silvano; Welte, Stefan

    2010-01-01

    The PERMCAT membrane reactor is a coaxial combination of a Pd/Ag permeator membrane and a catalyst bed. This device has been proposed for processing fusion reactor plasma exhaust gas. A stream containing tritium (up to 1% of tritium in different chemical forms such as water, methane or molecular hydrogen) is decontaminated in the PERMCAT by counter-current isotopic swamping with protium. Different mechanical designs of the membrane reactor have been proposed to improve robustness and lifetime. The ENEA membrane reactor uses a permeator tube with a length of about 500 mm produced via cold-rolling and diffusion welding of Pd/Ag thin foils: two stainless steel pre-tensioned bellows have been applied to the Pd/Ag tube in order to avoid any significant compressive and bending stresses due to the permeator tube elongation consequent to the hydrogen uptake. An experimental test campaign has been performed using this reactor in order to assess the influence of different operating parameters and to evaluate the overall performance (decontamination factor). Tests have been carried out on two reactor prototypes: a defect-free membrane with complete (infinite) hydrogen selectivity and not perm-selective membrane. In this last case, the study has been aimed at verifying the behaviour of the PERMCAT devices under non-normal (accidental) conditions in the view of providing information for future safety analysis. The paper will present the specific mechanical design and the experimental results of tests based on isotopic exchange between H 2 O and D 2 .

  8. Water flooding criticality study for ZrH flight reactor

    International Nuclear Information System (INIS)

    Anderson, R.V.

    1970-01-01

    Five analytical criticality calculations were performed to study the effects of: (1) water reflecting only (no core flooding), (2) water reflection with 10 percent core flooding, (3) water reflection with 35 percent flooding, (4) water reflection plus complete core flooding, and (5) the negative reactivity feedback associated with rapid core expansion induced by a destructive transient. (U.S.)

  9. Modelling of critical functions of nuclear reactors using Fild Programmable Gate Array

    International Nuclear Information System (INIS)

    Teixeira, Pamela Iara Nolasco

    2016-01-01

    This paper proposes the development of a method using FPGA for critical security functions of a nuclear reactor. It was implemented two critical safety functions in VHDL, which is a way to describe, through a program, the behavior of a circuit or digital component. Two critical security functions, FCS Core Cooling, responsible for cooling the reactor core in the charts of the plant and also in the event of accidents involving loss of coolant and FCS Heat Transfer, responsible for cooling the reactor core in the event an accident with loss of coolant were implemented. In this Dissertation it was chosen the use of FPGA, because - due to the effects of aging, obsolescence issues, environmental degradation and mechanical failures - nuclear power plants need to replace their older systems by new ones based on digital technology. The technologies obtained using a system described in hardware language can be implemented in a programmable device, having the advantage of changing the code at any time. (author)

  10. Machine Learning of the Reactor Core Loading Pattern Critical Parameters

    Directory of Open Access Journals (Sweden)

    Krešimir Trontl

    2008-01-01

    Full Text Available The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm, and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. In this paper, we investigate the applicability of a machine learning model which could be used for fast loading pattern evaluation. We employ a recently introduced machine learning technique, support vector regression (SVR, which is a data driven, kernel based, nonlinear modeling paradigm, in which model parameters are automatically determined by solving a quadratic optimization problem. The main objective of the work reported in this paper was to evaluate the possibility of applying SVR method for reactor core loading pattern modeling. We illustrate the performance of the solution and discuss its applicability, that is, complexity, speed, and accuracy.

  11. Machine Learning of the Reactor Core Loading Pattern Critical Parameters

    International Nuclear Information System (INIS)

    Trontl, K.; Pevec, D.; Smuc, T.

    2008-01-01

    The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm, and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. In this paper, we investigate the applicability of a machine learning model which could be used for fast loading pattern evaluation. We employ a recently introduced machine learning technique, support vector regression (SVR), which is a data driven, kernel based, nonlinear modeling paradigm, in which model parameters are automatically determined by solving a quadratic optimization problem. The main objective of the work reported in this paper was to evaluate the possibility of applying SVR method for reactor core loading pattern modeling. We illustrate the performance of the solution and discuss its applicability, that is, complexity, speed, and accuracy

  12. Analysis of neutronics and dynamic characteristics with reactivity injection in LBE cooled sub-critical reactor

    International Nuclear Information System (INIS)

    Chen Sen; Wu Yican; Jin Ming; Chen Zhibin; Bai Yunqing; Zhao Zhumin

    2014-01-01

    Accelerator Driven Sub-critical System (ADS) has particular neutronics behaviors compared with the critical system. Prompt jump approximation point reactor kinetics equations taken external source into account have been deduced using an approach of prompt jump approximation. And the relationship between injection reactivity and power ampliation has been achieved. In addition, based on the RELAP5 code the prolong development of point reactor kinetics code used into assessing sub-critical system have been promoted. Different sub-criticality (k eff = 0.90, 0.95, 0.97, 0.98 and 0.99) have been assessed in preliminary design of a type of natural circulation cooling sub-critical reactor under conditions of reactivity injection +1 β in one second. It shows that the external source prompt transient approximation method has an accurate solution after injecting reactivity around short time and has a capacity to solve the dynamic equation, and the sub-critical system has an inner stability while the deeper sub-criticality the less impact on the sub-critical system. (authors)

  13. Testing of a transport cask for research reactor spent fuel

    International Nuclear Information System (INIS)

    Mourao, Rogerio P.; Silva, Luiz Leite da; Miranda, Carlos A.; Mattar Neto, Miguel; Quintana, Jose F.A.; Saliba, Roberto O.; Novara, Oscar E.

    2011-01-01

    Since the beginning of the last decade three Latin American countries which operate research reactors - Argentina, Brazil and Chile - have been joining efforts to improve the regional capability in the management of spent fuel elements from the reactors operated in the region. As a step in this direction, a packaging for the transport of irradiated fuel from research reactors was designed by a tri-national team and a half-scale model for MTR fuel constructed in Argentina and tested in Brazil. Two test campaigns have been carried out so far, covering both normal conditions of transportation and hypothetical accident conditions. Although the specimen has not successfully performed the tests, its overall performance was considered very satisfactory, and improvements are being introduced to the design. A third test sequence is planned for 2011. (author)

  14. Design and testing of reactors for 735 kV

    Energy Technology Data Exchange (ETDEWEB)

    Erb, W; Kraaij, D J

    1965-11-01

    The design and testing of five large, single phase shunt reactors rated either 110 or 55 MVAR, supplied for the 735 kV system of the Quebec Hydro Electric Commission which came into operation in the autumn of 1965 are described. As these reactors are permanently connected to the transmission lines, their losses must be considered as being continuously present and must be determined exactly. In addition to the use of a new bridge method, the losses were also measured calorimetrically for the purpose of comparison, the agreement between the two tests being remarkably good. The impulse tests with full wave and chopped wave are subsequently described.

  15. Neutronic and thermal hydraulic assessment of fast reactor cooling by water of super critical parameters

    International Nuclear Information System (INIS)

    Baranaev, Yu. D.; Glebov, A. P.; Ukraintsev, V. F.; Kolesov, V. V.

    2007-01-01

    Necessity of essential improvement of competitiveness for reactors on light water determines development of new generation power reactors on water of super critical parameters. The main objective of these projects is reaching of high efficiency coefficients while decreasing of investment to NPP and simplification of thermal scheme and high safety level. International programme of IV generation in which super critical reactors present is already started. In the frame of this concept specific Super Critical Fast Reactor with tight lattice of pitch is developing by collaboration of the FEI and IATE. In present article neutronic and thermal hydraulic assessment of fast reactor with plutonium MOX fuel and a core with a double-path of super critical water cooling is presented (SCFR-2X). The scheme of double path of coolant via the core in which the core is divided by radius on central and periphery parts with approximately equal number of fuel assemblies is suggested. Periferia part is cooling while down coming coolant movement. At the down part of core into the mix chamber flows from the periphery assemblies joining and come to the inlet of the central part which is cooling by upcoming flow. Eight zone of different content of MOX fuel are used (4 in down coming and 4 in upcoming) sub zones. Calculation of fuel burn-up and approximate scheme of refueling is evaluated. Calculation results are presented and discussed

  16. New design procedure development of future reactor critical power estimation. (1) Practical design-by-analysis method for BWR critical power design correlation

    International Nuclear Information System (INIS)

    Yamamoto, Yasushi; Mitsutake, Toru

    2007-01-01

    For present BWR fuels, the full mock-up thermal-hydraulic test, such as the critical power measurement test, pressure drop measurement test and so on, has been needed. However, the full mock-up test required the high costs and large-scale test facility. At present, there are only a few test facilities to perform the full mock-up thermal-hydraulic test in the world. Moreover, for future BWR, the bundle size tends to be larger, because of reducing the plant construction costs and minimizing the routine check period. For instance, AB1600, improved ABWR, was proposed from Toshiba, whose bundle size was 1.2 times larger than the conventional BWR fuel size. It is too expensive and far from realistic to perform the full mock-up thermal-hydraulic test for such a large size fuel bundle. The new design procedure is required to realize the large scale bundle design development, especially for the future reactor. Therefore, the new design procedure, Practical Design-by-Analysis (PDBA) method, has been developed. This new procedure consists of the partial mock-up test and numerical analysis. At present, the subchannel analysis method based on three-fluid two-phase flow model only is a realistic choice. Firstly, the partial mock-up test is performed, for instance, the 1/4 partial mock-up bundle. Then, the first-step critical power correlation coefficients are evaluated with the measured data. The input data, such as the spacer effect model coefficient, on the subchannel analysis are also estimated with the data. Next, the radial power effect on the critical power of the full-bundle size was estimated with the subchannel analysis. Finally, the critical power correlation is modified by the subchannel analysis results. In the present study, the critical power correlation of the conventional 8x8 BWR fuel was developed with the PDBA method by 4x4 partial mock-up tests and the subchannel analysis code. The accuracy of the estimated critical power was 3.8%. The several themes remain to

  17. An analysis of critical heat flux on the external surface of the reactor vessel lower head

    International Nuclear Information System (INIS)

    Yang, Soo Hyung; Baek, Won Pil; Chang, Soon Heung

    1999-01-01

    CHF (Critical heat flux) on the external surface of the reactor vessel lower head is major key in the evaluation on the feasibility of IVR-EVC (In-Vessel Retention through External Vessel Cooling) concept. To identify the CHF on the external surface, considerable works have been performed. Through the review on the previous works related to the CHF on the external surface, liquid subcooling, induced flow along the external surface, ICI (In-Core Instrument) nozzle and minimum gap are identified as major parameters. According to the present analysis, the effects of the ICI nozzle and minimum gap on CHF are pronounced at the upstream of test vessel: on the other hand, the induced flow considerably affects the CHF at downstream of test vessel. In addition, the subcooling effect is shown at all of test vessel, and decreases with the increase in the elevation of test vessel. In the real application of the IVR-EVC concept, vertical position is known as a limiting position, at which thermal margin is the minimum. So, it is very important to precisely predict the CHF at vertical position in a viewpoint of gaining more thermal margins. However, the effects of the liquid subcooling and induced flow do not seem to be adequately included in the CHF correlations suggested by previous works, especially at the downstream positions

  18. Reduced enrichment for research and test reactors: Proceedings

    International Nuclear Information System (INIS)

    1993-07-01

    The 15th annual Reduced Enrichment for Research and Test Reactors (RERTR) international meeting was organized by Ris oe National Laboratory in cooperation with the International Atomic Energy Agency and Argonne National Laboratory. The topics of the meeting were the following: National Programs, Fuel Fabrication, Licensing Aspects, States of Conversion, Fuel Testing, and Fuel Cycle. Individual papers have been cataloged separately

  19. Reduced enrichment for research and test reactors: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The 15th annual Reduced Enrichment for Research and Test Reactors (RERTR) international meeting was organized by Ris{o} National Laboratory in cooperation with the International Atomic Energy Agency and Argonne National Laboratory. The topics of the meeting were the following: National Programs, Fuel Fabrication, Licensing Aspects, States of Conversion, Fuel Testing, and Fuel Cycle. Individual papers have been cataloged separately.

  20. Research program of the high temperature engineering test reactor for upgrading the HTGR technology

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko; Tachibana, Yukio; Takeda, Takeshi; Saikusa, Akio; Sawa, Kazuhiro

    1997-07-01

    The High Temperature Engineering Test Reactor (HTTR) is a graphite-moderated and helium-cooled reactor with an outlet power of 30 MW and outlet coolant temperature of 950degC, and its first criticality will be attained at the end of 1997. In the HTTR, researches establishing and upgrading the technology basis necessary for an HTGR and innovative basic researches for a high temperature engineering will be conducted. A research program of the HTTR for upgrading the technology basis for the HTGR was determined considering realization of future generation commercial HTGRs. This paper describes a research program of the HTTR. (author)

  1. Scram and nonlinear reactor system seismic analysis for the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Morrone, A.

    1975-01-01

    A description is given of the analysis and results for the Fast Flux Test Facility (FFTF) reactor system which was analyzed for both scram times and seismic responses such as bending moments and impact forces. The reactor system was represented with a one-dimensional nonlinear mathematical model with two degrees of freedom per node. The results give time history plots of various seismic responses and plots of scram times as a function of control rod travel distance for the most critical scram initiation times. The total scram time considering the effects of the earthquake was still acceptable but about 4 times longer than that calculated without the earthquake. (U.S.)

  2. Proving Test on the Reliability for Reactor Containment Vessel

    International Nuclear Information System (INIS)

    Takumi, K.; Nonaka, A.

    1988-01-01

    NUPEC (Nuclear Power Engineering Test Center) has started an eight-year project of Proving Test on the Reliability for Reactor Containment Vessel since June 1987. The objective of this project is to confirm the integrity of containment vessels under severe accident conditions. This paper shows the outline of this project. The test Items are (1) Hydrogen mixing and distribution test, (2) Hydrogen burning test, (3) Iodine trapping characteristics test, and (4) Structural behavior test. Based on the test results, computer codes are verified and as the results of analysis and evaluation by the computer codes, containment integrity is to be confirmed

  3. Performance tests of the reactor containment structures of HTTR

    International Nuclear Information System (INIS)

    Sakaba, Nariaki; Iigaki, Kazuhiko; Kawaji, Satoshi; Iyoku, Tatsuo

    1998-03-01

    The containment structures of the HTTR consist of the reactor containment vessel (CV), service area (SA) and emergency air purification system, which minimize the release of FPs in the postulated accidents with FP release from the reactor facilities. The CV is designed to withstand the temperature and pressure transients and to be leak-tight within the specified leakage limit even in the case of a rupture of the primary concentric hot gas duct. The pressure of inside of the SA should be maintained slightly lower than that of atmosphere by the emergency air purification system. The radioactive materials are released from the stack to environment via the emergency air purification system under the accident condition. Then the emergency air purification system should remove airborne radio-activities and should maintain proper pressure in the SA. We established the method to measure leak rate of the CV with closed reactor coolant pressure boundary although it is normally measured under opened reactor coolant pressure boundary as employed in LWRs. The CV leak rate test was carried out by the newly developed method and the expected performance was obtained. The SA and emergency air purification system were also confirmed by the performance test. We concluded that the reactor containment structures were fabricated to minimize the release of FPs in the postulated accidents with FP release from the reactor facilities. (author)

  4. Preliminary design studies on the Broad Application Test Reactor

    International Nuclear Information System (INIS)

    Terry, W.J.; Terry, W.K.; Ryskamp, J.M.; Jahshan, S.N.; Fletcher, C.D.; Moore, R.L.; Leyse, C.F.; Ottewitte, E.H.; Motloch, C.G.; Lacy, J.M.

    1992-08-01

    This report describes progress made at the Idaho National Engineering Laboratory during the first three quarters of Fiscal Year (FY) 1992 on the Laboratory-Directed Research and Development (LDRD) project to perform preliminary design studies on the Broad Application Test Reactor (BATR). This work builds on the FY-92 BATR studies, which identified anticipated mission and safety requirements for BATR and assessed a variety of reactor concepts for their potential capability to meet those requirements. The main accomplishment of the FY-92 BATR program is the development of baseline reactor configurations for the two conventional conceptual test reactors recommended in the FY-91 report. Much of the present report consists of descriptions and neutronics and thermohydraulics analyses of these baseline configurations. In addition, we considered reactor safety issues, compared the consequences of steam explosions for alternative conventional fuel types, explored a Molten Chloride Fast Reactor concept as an alternate BATR design, and examined strategies for the reduction of operating costs. Work planned for the last quarter of FY-92 is discussed, and recommendations for future work are also presented

  5. Needs for development in nondestructive testing for advanced reactor systems

    International Nuclear Information System (INIS)

    McClung, R.W.

    1978-01-01

    The needs for development of nondestructive testing (NDT) techniques and equipment were surveyed and analyzed relative to problem areas for the Liquid-Metal Fast Breeder Reactor, the Molten-Salt Breeder Reactor, and the Advanced Gas-Cooled Reactor. The paper first discusses the developmental needs that are broad-based requirements in nondestrutive testing, and the respective methods applicable, in general, to all components and reactor systems. Next, the requirements of generic materials and components that are common to all advanced reactor systems are examined. Generally, nondestructive techniques should be improved to provide better reliability and quantitativeness, improved flaw characterization, and more efficient data processing. Specific recommendations relative to such methods as ultrasonics, eddy currents, acoustic emission, radiography, etc., are made. NDT needs common to all reactors include those related to materials properties and degradation, welds, fuels, piping, steam generators, etc. The scope of applicability ranges from initial design and material development stages through process control and manufacturing inspection to in-service examination

  6. Inductive testing of reactor pressure vessels

    International Nuclear Information System (INIS)

    Bergh, H.

    1987-01-01

    In Service Inspection of Reactor Pressure Vessels is mostly done with ultrasonics. Using special 2 crystal-probes good detectability is achieved for near surface defects. The problem is to detect closely spaced cracks, to decide if the defects are surface braking and, if not, to decide the remaining ligament. The purpose of this study is to investigate to what extent Eddy Current can solve these problems. Detecting surfacebreaking cracks and fields of cracks can be done using conventional Eddy Current techniques. Mapping of closely spaced cracks requires a small probe and a high frequency. Measurement of depths a larger probe, a lower frequency and knowledge of the crackfield since 2 closely spaced shallow cracks might be mistaken for one deep crack. Depths of singel cracks can be measured down to 7-8 mm. In closely spaced crackfields the depths can not be measured. The measurement is mostly based on amplitude. For not surface breaking defects the problem is to decide the ligament, i.e. the distance between surface and cracktip. To achieve good penetration a large probe, low frequency and high energy or pulsed energy is used. Ligament up to 4 mm can be measured with good accuracy. The measurements is mostly based on phase. Noise, which originates from rough surface, varied material structure and lift off, can be reduced using multi frequency mix, probe design and scanning pattern. (author)

  7. Chinese nuclear heating test reactor and demonstration plant

    International Nuclear Information System (INIS)

    Wang Dazhong; Ma Changwen; Dong Duo; Lin Jiagui

    1992-01-01

    In this report the importance of nuclear district heating is discussed. From the viewpoint of environmental protection, uses of energy resources and transport, the development of nuclear heating in China is necessary. The development program of district nuclear heating in China is given in the report. At the time being, commissioning of the 5 MW Test Heating Reactor is going on. A 200 MWt Demonstration Plant will be built. In this report, the main characteristics of these reactors are given. It shows this type of reactor has a high inherent safety. Further the report points out that for this type of reactor the stability is very important. Some experimental results of the driving facility are included in the report. (orig.)

  8. Design and testing of integrated circuits for reactor protection channels

    International Nuclear Information System (INIS)

    Battle, R.E.; Vandermolen, R.I.; Jagadish, U.; Swail, B.K.; Naser, J.

    1995-01-01

    Custom and semicustom application-specific integrated circuit design and testing methods are investigated for use in research and commercial nuclear reactor safety systems. The Electric Power Research Institute and Oak Ridge National Laboratory are working together through a cooperative research and development agreement to apply modern technology to a nuclear reactor protection system. The purpose of this project is to demonstrate to the nuclear industry an alternative approach for new or upgrade reactor protection and safety system signal processing and voting logic. Motivation for this project stems from (1) the difficulty of proving that software-based protection systems are adequately reliable, (2) the obsolescence of the original equipment, and (3) the improved performance of digital processing. A demonstration model for protection system of PWR reactor has been designed and built

  9. The Test Reactor Embrittlement Data Base (TR-EDB)

    International Nuclear Information System (INIS)

    Stallmann, F.W.; Kam, F.B.K.; Wang, J.A.

    1993-01-01

    The Test Reactor Embrittlement Data Base (TR-EDB) is part of an ongoing program to collect test data from materials irradiations to aid in the research and evaluation of embrittlement prediction models that are used to assure the safety of pressure vessels in power reactors. This program is being funded by the US Nuclear Regulatory Commission (NRC) and has resulted in the publication of the Power Reactor Embrittlement Data Base (PR-EDB) whose second version is currently being released. The TR-EDB is a compatible collection of data from experiments in materials test reactors. These data contain information that is not obtainable from surveillance results, especially, about the effects of annealing after irradiation. Other information that is only available from test reactors is the influence of fluence rates and irradiation temperatures on radiation embrittlement. The first version of the TR-EDB will be released in fall of 1993 and contains published results from laboratories in many countries. Data collection will continue and further updates will be published

  10. Applicability of Avery's coupled reactor theory to estimate subcriticality of test region in two region system

    International Nuclear Information System (INIS)

    Kugo, Teruhiko

    1992-01-01

    The author examined the validity to estimate the subcriticality of a test region in a coupled reactor system using only measurable quantities on the basis of Avery's coupled reactor theory. For the purpose, we analyzed coupled reactor experiments performed at the Tank-type Critical Assembly in Japan Atomic Energy Research Institute by using two region systems and evaluated the subcriticality of the test region through a numerical study. Coupling coefficients were redefined at the quasi-static state because their definitions by Avery were not clear. With the coupling coefficients obtained by the numerical calculation, the multiplication factor of the test region was evaluated by two formulas; one for the evaluation using only the measurable quantities and the other for the accurate evaluation which contains the terms dropped in the former formula by assuming the unchangeableness for the perturbation induced in a driver region. From the comparison between the results of the evaluations, it was found that the estimation using only the measurable quantities is valid only for the coupled reactor system where the subcriticality of the test region was very small within a few dollars in reactivity. Consequently, it is concluded that the estimation using only the measurable quantities is not applicable to a general coupled reactor system. (author)

  11. International benchmark on the natural convection test in Phenix reactor

    International Nuclear Information System (INIS)

    Tenchine, D.; Pialla, D.; Fanning, T.H.; Thomas, J.W.; Chellapandi, P.; Shvetsov, Y.; Maas, L.; Jeong, H.-Y.; Mikityuk, K.; Chenu, A.; Mochizuki, H.; Monti, S.

    2013-01-01

    Highlights: ► Phenix main characteristics, instrumentation and natural convection test are described. ► “Blind” calculations and post-test calculations from all the participants to the benchmark are compared to reactor data. ► Lessons learned from the natural convection test and the associated calculations are discussed. -- Abstract: The French Phenix sodium cooled fast reactor (SFR) started operation in 1973 and was stopped in 2009. Before the reactor was definitively shutdown, several final tests were planned and performed, including a natural convection test in the primary circuit. During this natural convection test, the heat rejection provided by the steam generators was disabled, followed several minutes later by reactor scram and coast-down of the primary pumps. The International Atomic Energy Agency (IAEA) launched a Coordinated Research Project (CRP) named “control rod withdrawal and sodium natural circulation tests performed during the Phenix end-of-life experiments”. The overall purpose of the CRP was to improve the Member States’ analytical capabilities in the field of SFR safety. An international benchmark on the natural convection test was organized with “blind” calculations in a first step, then “post-test” calculations and sensitivity studies compared with reactor measurements. Eight organizations from seven Member States took part in the benchmark: ANL (USA), CEA (France), IGCAR (India), IPPE (Russian Federation), IRSN (France), KAERI (Korea), PSI (Switzerland) and University of Fukui (Japan). Each organization performed computations and contributed to the analysis and global recommendations. This paper summarizes the findings of the CRP benchmark exercise associated with the Phenix natural convection test, including blind calculations, post-test calculations and comparisons with measured data. General comments and recommendations are pointed out to improve future simulations of natural convection in SFRs

  12. Assessments of the kinetic and dynamic transient behavior of sub-critical systems (ADS) in comparison to critical reactor systems

    International Nuclear Information System (INIS)

    Schikorr, W.M.

    2001-01-01

    The neutron kinetic and the reactor dynamic behavior of Accelerator Driven Systems (ADS) is significantly different from those of conventional power reactor systems currently in use for the production of power. It is the objective of this study to examine and to demonstrate the intrinsic differences of the kinetic and dynamic behavior of accelerator driven systems to typical plant transient initiators in comparison to the known, kinetic and dynamic behavior of critical thermal and fast reactor systems. It will be shown that in sub-critical assemblies, changes in reactivity or in the external neutron source strength lead to an asymptotic power level essentially described by the instantaneous power change (i.e. prompt jump). Shutdown of ADS operating at high levels of sub-criticality, (i.e. k eff ∼0.99), without the support of reactivity control systems (such as control or safety rods), may be problematic in case the ability of cooling of the core should be impaired (i.e. loss of coolant flow). In addition, the dynamic behavior of sub-critical systems to typical plant transients such as protected or unprotected loss of flow (LOF) or heat sink (LOH) transients are not necessarily substantially different from the plant dynamic behavior of critical systems if the reactivity feedback coefficients of the ADS design are unfavorable. As expected, the state of sub-criticality and the temperature feedback coefficients, such as Doppler and coolant temperature coefficient, play dominant roles in determining the course and direction of plant transients. Should the combination of these safety coefficients be very unfavorable, not much additional margin in safety may be gained by making a critical system only sub-critical (i.e. k eff ∼0.95). A careful optimization procedure between the selected operating level of sub-criticality, the safety reactivity coefficients and the possible need for additional reactivity control systems seems, therefore, advisable during the early

  13. Safety considerations of new critical assembly for the Research Reactor Institute, Kyoto University

    International Nuclear Information System (INIS)

    Umeda, Iwao; Matsuoka, Naomi; Harada, Yoshihiko; Miyamoto, Keiji; Kanazawa, Takashi

    1975-01-01

    The new critical assembly type of nuclear reactor having three cores for the first time in the world was completed successfully at the Research Reactor Institute of Kyoto University in autumn of 1974. It is called KUCA (Kyoto University Critical Assembly). Safety of the critical assembly was considered sufficiently in consequence of discussions between the researchers of the institute and the design group of our company, and then many bright ideas were created through the discussions. This paper is described the new safety design of main equipments - oil pressure type center core drive mechanism, removable water overflow mechanism, core division mechanism, control rod drive mechansim, protection instrumentation system and interlock key system - for the critical assembly. (author)

  14. Re criticality assessment following reactor core damage in Fukushima unit 2

    International Nuclear Information System (INIS)

    Jeong, Hae Sun; Song, Jin Ho; Park, Chang Je; Ha, Kwang Soon; Song, Yong Mann; Ryu, Eun Hyun

    2012-01-01

    Following the severe core damage accident at the Fukushima nuclear power plants (NPPs), many researchers have studied a possible Re criticality caused by core melting or corium. However, no one can accurately examine the internal conditions of the reactor vessel, and thus there have been different opinions from some organizations depending on their assumption and analysis methods. If there is a potential Re criticality in the reactor vessel, some counter plans for the accident management should be established to prevent and mitigate re criticality, and to return the plant to a safe and stable state. In this study, the criticality level following a severe core damage accident was first analyzed using the MCNPX 2.6.0 code. Based on this result, practical strategies in terms of accident management were obtained by charging soluble boron (H 3B O 3) into re flooded water

  15. Formal verification and validation of the safety-critical software in a digital reactor protection system

    International Nuclear Information System (INIS)

    Kwon, K. C.; Park, G. Y.

    2006-01-01

    This paper describes the Verification and Validation (V and V) activities for the safety-critical software in a Digital Reactor Protection System (DRPS) that is being developed through the Korea nuclear instrumentation and control system project. The main activities of the DRPS V and V process are a preparation of the software planning documentation, a verification of the software according to the software life cycle, a software safety analysis and a software configuration management. The verification works for the Software Requirement Specification (SRS) of the DRPS consist of a technical evaluation, a licensing suitability evaluation, a inspection and traceability analysis, a formal verification, and preparing a test plan and procedure. Especially, the SRS is specified by the formal specification method in the development phase, and the formal SRS is verified by a formal verification method. Through these activities, we believe we can achieve the functionality, performance, reliability, and safety that are the major V and V objectives of the nuclear safety-critical software in a DRPS. (authors)

  16. International English Language Testing: A Critical Response

    Science.gov (United States)

    Hall, Graham

    2010-01-01

    Uysal's article provides a research agenda for IELTS and lists numerous issues concerning the test's reliability and validity. She asks useful questions, but her analysis ignores the uncertainties inherent in all language test development and the wider social and political context of international high-stakes language testing. In this response, I…

  17. Vibration tests on some models of PEC reactor core elements

    International Nuclear Information System (INIS)

    Bonacina, G.; Castoldi, A.; Zola, M.; Cecchini, F.; Martelli, A.; Vincenzi, D.

    1982-01-01

    This paper describes the aims of the experimental tests carried out at ISMES, within an agreement with the Department of Fast Reactors of ENEA, on some models of the elements of PEC Fast Nuclear Reactor Core in the frame of the activities for the seismic verification of the PEC core. The seismic verification is briefly described with particular attention to the problems arising from the shocks among the various elements during an earthquake, as well as the computer code used, the purpose and the techniques used to perform tests, some results and the first comparison between the theory and the experimental data

  18. EMERIS: an advanced information system for a materials testing reactor

    International Nuclear Information System (INIS)

    Adorjan, F.; Buerger, L.; Lux, I.; Mesko, L.; Szabo, K.; Vegh, J.; Ivanov, V.V.; Mozhaev, A.A.; Yakovlev, V.V.

    1990-06-01

    The basic features of the Materials Testing Reactor of IAE, Moscow (MR) Information System (EMERIS) are outlined. The purpose of the system is to support reactor and experimental test loop operators by a flexible, fully computerized and user-friendly tool for the aquisition, analysis, archivation and presentation of data obtained during operation of the experimental facility. High availability of EMERIS services is ensured by redundant hardware and software components, and by automatic configuration procedure. A novel software feature of the system is the automatic Disturbance Analysis package, which is aimed to discover primary causes of irregularities occurred in the technology. (author) 2 refs.; 2 figs

  19. Education and training at the Rensselaer Polytechnic Institute reactor critical facility

    International Nuclear Information System (INIS)

    Harris, D.R.

    1989-01-01

    The Rensselaer Polytechnic Institute (RPI) Reactor Critical Facility (RCF) has provided hands-on education and training for RPI and other students for almost a quarter of a century. The RCF was built in the 1950s by the American Locomotive Company (ALCO) as a critical facility in which to carry out experiments in support of the Army Package power Reactor (APPR) program. A number of APPRs were built and operated. In the middle 1960s, ALCO went out of business and provided the facility to RPI. Since that time, RPI has operated the RCF primarily in a teaching mode in the nuclear engineering department, although limited amounts of reactor research, activation analysis, and reactivity assays have been carried out as well. Recently, a U.S. Department of Energy (DOE) upgrade program supported refueling the RCF with 4.81 wt% enriched UO 2 high-density pellets clad in stainless steel rods. The use of these SPERT (F1) fuel rods in the RCF provided a cost-effective approach to conversion from high-enrichment bombgrade fuel to low-enrichment fuel. More important, however, is the fact that the new fuel is of current interest for light water power reactors with extended lifetime fuel. Thus, not only are critical reactor experiments being carried out on the fuel but, more importantly, the quality of the education and training has been enhanced

  20. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This Department of Energy (DOE) is approved for use by all components of DOE. It contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE Non-Reactor Nuclear Facilities. Adherence with these guidelines will provide consistency and uniformity in Criticality Safety Evaluations (CSEs) across the complex and will document compliance with DOE Order 5480.24 requirements as they pertain to CSEs.

  1. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    International Nuclear Information System (INIS)

    1998-09-01

    This Department of Energy (DOE) is approved for use by all components of DOE. It contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE Non-Reactor Nuclear Facilities. Adherence with these guidelines will provide consistency and uniformity in Criticality Safety Evaluations (CSEs) across the complex and will document compliance with DOE Order 5480.24 requirements as they pertain to CSEs

  2. Criticality safety of storage barrels for enriched uranium fresh fuel at the RB research reactor

    International Nuclear Information System (INIS)

    Pesic, M. P.

    1997-01-01

    Study on criticality safety of fresh low and high enriched uranium (LEU and HEU) fuel elements in the storage/transport barrels at the RB research reactor is carried out by using the well-known MCNP computer code. It is shown that studied arrays of tightly closed fuel barrels, each entirely loaded with 100 fresh (HEU or LEU) fuel slugs, are far away from criticality, even in cases of an unexpected flooding by light water.(author)

  3. Reactor physics tests and benchmark analyses of STACY

    International Nuclear Information System (INIS)

    Miyoshi, Yoshinori; Umano, Takuya

    1996-01-01

    The Static Experiment Critical Facility, STACY in the Nuclear Fuel Cycle Safety Engineering Research Facility, NUCEF is a solution type critical facility to accumulate fundamental criticality data on uranyl nitrate solution, plutonium nitrate solution and their mixture. A series of critical experiments have been performed for 10 wt% enriched uranyl nitrate solution using a cylindrical core tank. In these experiments, systematic data of the critical height, differential reactivity of the fuel solution, kinetic parameter and reactor power were measured with changing the uranium concentration of the fuel solution from 313 gU/l to 225 gU/l. Critical data through the first series of experiments for the basic core are reported in this paper for evaluating the accuracy of the criticality safety calculation codes. Benchmark calculations of the neutron multiplication factor k eff for the critical condition were made using a neutron transport code TWOTRAN in the SRAC system and a continuous energy Monte Carlo code MCNP 4A with a Japanese evaluated nuclear data library, JENDL 3.2. (J.P.N.)

  4. Reactor physics studies in the GCFR phase-II critical assembly

    International Nuclear Information System (INIS)

    Pond, R.B.

    1976-09-01

    The reactor physics studies performed in the gas cooled fast reactor (GCFR) mockup on ZPR-9 are covered. This critical assembly, designated Phase II in the GCFR program, had a single zone PuO 2 -UO 2 core composition and UO 2 radial and axial blankets. The assembly was built both with and without radial and axial stainless steel reflectors. The program included the following measurements: small-sample reactivity worths of reactor constituent materials (including helium); 238 U Doppler effect; uranium and plutonium reaction rate distributions; thorium, uranium, and plutonium α and reactor kinetics. Analysis of the measurements used ENDF/B-IV nuclear data; anisotropic diffusion coefficients were used to account for neutron streaming effects. Comparison of measurements and calculations to GCFR Phase I are also made

  5. Models for transient analyses in advanced test reactors

    International Nuclear Information System (INIS)

    Gabrielli, Fabrizio

    2011-01-01

    Several strategies are developed worldwide to respond to the world's increasing demand for electricity. Modern nuclear facilities are under construction or in the planning phase. In parallel, advanced nuclear reactor concepts are being developed to achieve sustainability, minimize waste, and ensure uranium resources. To optimize the performance of components (fuels and structures) of these systems, significant efforts are under way to design new Material Test Reactors facilities in Europe which employ water as a coolant. Safety provisions and the analyses of severe accidents are key points in the determination of sound designs. In this frame, the SIMMER multiphysics code systems is a very attractive tool as it can simulate transients and phenomena within and beyond the design basis in a tightly coupled way. This thesis is primarily focused upon the extension of the SIMMER multigroup cross-sections processing scheme (based on the Bondarenko method) for a proper heterogeneity treatment in the analyses of water-cooled thermal neutron systems. Since the SIMMER code was originally developed for liquid metal-cooled fast reactors analyses, the effect of heterogeneity had been neglected. As a result, the application of the code to water-cooled systems leads to a significant overestimation of the reactivity feedbacks and in turn to non-conservative results. To treat the heterogeneity, the multigroup cross-sections should be computed by properly taking account of the resonance self-shielding effects and the fine intra-cell flux distribution in space group-wise. In this thesis, significant improvements of the SIMMER cross-section processing scheme are described. A new formulation of the background cross-section, based on the Bell and Wigner correlations, is introduced and pre-calculated reduction factors (Effective Mean Chord Lengths) are used to take proper account of the resonance self-shielding effects of non-fuel isotopes. Moreover, pre-calculated parameters are applied

  6. Applicable regulations and development of surveillance experiments of criticality approach in the TRIGA III Mark reactor

    International Nuclear Information System (INIS)

    Gonzalez M, J.L.; Aguilar H, F.; Rivero G, T.; Sainz M, E.

    2000-01-01

    In the procedure elaborated to repair the vessel of TRIGA III Mark reactor is required to move toward two tanks of temporal storage the fuel elements which are in operation and the spent fuel elements which are in decay inside the reactor pool. The National Commission of Nuclear Safety and Safeguards (CNSNS) has requested as protection measure that it is carried out a surveillance of the criticality approach of the temporal storages. This work determines the main regulation aspects that entails an experiment of criticality approach, moreover, informing about the results obtained in the developing of this experiments. The regulation aspects are not exclusives for this work in the TRIGA Mark III reactor but they also apply toward any assembling of fissile material. (Author)

  7. Criticality safety studies involved in actions to improve conditions for storing 'RA' research reactor spent fuel

    International Nuclear Information System (INIS)

    Matausek, M.; Marinkovic, N.

    1998-01-01

    A project has recently been initiated by the VINCA Institute of Nuclear Sciences to improve conditions in the spent fuel storage pool at the 6.5 MW research reactor RA, as well as to consider transferring this spent fuel into a new dry storage facility built for the purpose. Since quantity and contents of fissile material in the spent fuel storage at the RA reactor are such that possibility of criticality accident can not be a priori excluded, according to standards and regulations for handling fissile material outside a reactor, before any action is undertaken subcriticality should be proven under normal, as well as under credible abnormal conditions. To perform this task, comprehensive nuclear criticality safety studies had to be performed. (author)

  8. Critical technical issues and evaluation and comparison studies for inertial fusion energy reactors

    International Nuclear Information System (INIS)

    Abdou, M.A.; Ying, A.Y.; Tillack, M.S.; Ghoniem, N.M.; Waganer, L.M.; Driemeyer, D.E.; Linford, G.J.; Drake, D.J.

    1994-01-01

    The critical issues, evaluation and comparison of two inertial fusion energy (IFE) reactor design concepts developed in the Prometheus studies are presented. The objectives were (1) to identify and characterize the critical issues and the R and D required to solve them, and (2) to establish a sound basis for future IFE technical and programmatic decisions by evaluating and comparing the different design concepts. Quantitative evaluation and comparison of the two design options have been made with special focus on physics feasibility, engineering feasibility, economics, safety and environment, and research and development (R and D) requirements. Two key conclusions are made based on the overall evaluation analysis: (1) The heavy-ion driven reactors appear to have an overall advantage over laser-driven reactors; and: (2) The differences in scores are not large and future results of R and D could change the overall ranking of the two IFE concepts

  9. Irradiation Testing Vehicles for Fast Reactors from Open Test Assemblies to Closed Loops

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States); Grandy, Christopher [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-15

    A review of irradiation testing vehicle approaches and designs that have been incorporated into past Sodium-Cooled Fast Reactors (SFRs) or envisioned for incorporation has been carried out. The objective is to understand the essential features of the approaches and designs so that they can inform test vehicle designs for a future U.S. Fast Test Reactor. Fast test reactor designs examined include EBR-II, FFTF, JOYO, BOR-60, PHÉNIX, JHR, and MBIR. Previous designers exhibited great ingenuity in overcoming design and operational challenges especially when the original reactor plant’s mission changed to an irradiation testing mission as in the EBRII reactor plant. The various irradiation testing vehicles can be categorized as: Uninstrumented open assemblies that fit into core locations; Instrumented open test assemblies that fit into special core locations; Self-contained closed loops; and External closed loops. A special emphasis is devoted to closed loops as they are regarded as a very desirable feature of a future U.S. Fast Test Reactor. Closed loops are an important technology for irradiation of fuels and materials in separate controlled environments. The impact of closed loops on the design of fast reactors is also discussed in this report.

  10. Development of reactivity feedback effect measurement techniques under sub-critical condition in fast reactors

    International Nuclear Information System (INIS)

    Kitano, A.; Nishi, H.; Suzuki, T.; Okajima, S.; Kanemoto, S.

    2012-01-01

    The first-of-a-kind reactor has been licensed by a safety examination of the plant design based on the measured data in precedent mock-up experiments. The validity of the safety design can be confirmed without a mock-up experiment, if the reactor feed-back characteristics can be measured before operation, with the constructed reactor itself. The 'Synthesis Method', a systematic and sophisticated method of sub-criticality measurement, is proposed in this work to ensure the safety margin before operation. The 'Synthesis Method' is based on the modified source multiplication method (MSM) combined with the noise analysis method to measure the reference sub-criticality level for MSM. A numerical simulation for the control-rod reactivity worth and the isothermal feed-back reactivity was conducted for typical fast reactors of 100 MWe-size, 300 MWe-size, 750 MWe-size, and 1500 MWe-size to investigate the applicability of Synthesis Method. The number of neutron detectors and their positions necessary for the measurement were investigated for both methods of MSM and the noise analysis by a series of parametric survey calculations. As a result, it was suggested that a neutron detector located above the core center and three or more neutron detectors located above the radial blanket region enable the measurement of sub-criticality within 10% uncertainty from -$0.5 to -$2 and within 15% uncertainty for the deeper sub-criticality. (authors)

  11. Criticality calculation of the deposits for the fuel elements in RP-10 nuclear research reactor

    International Nuclear Information System (INIS)

    Aguirre, Alvaro; Bruna, Ruben

    2013-01-01

    This paper shows the results of the criticality calculation of the deposits for irradiated and non-irradiated fuel elements in the RP-10 research reactor with MCNP5 code. In all cases and for normal and incidental conditions, the effective multiplication factor (K eff ) results less than 0,90 according to the acceptance criterion. (authors).

  12. 25th birthday of the first criticality of IPR-R1 nuclear research reactor

    International Nuclear Information System (INIS)

    Tofani, P.C.; Stasiulevicius, R.; Roedel, G.

    1988-01-01

    The historical evolution of IPR-R1 research reactor of Instituto de Pesquisas Radioativas-Nuclebras, since the data of its first criticality, is presented. The modifications and the main activities carried out, are presented. (M.C.K.) [pt

  13. Improving the proliferation resistance of research and test reactors

    International Nuclear Information System (INIS)

    Lewis, R.A.

    1978-01-01

    Elimination, or substantial reduction, of the trade in unirradiated highly-enriched fuel elements for research and test reactors would significantly reduce the proliferation risk associated with the current potential for diversion of these materials. To this end, it is the long-term goal of U.S. policy to fuel all new and existing research and test reactors with uranium of less-than-20% enrichment (but substantially greater than natural) excepting, perhaps, only a small number of high-power, high-performance, reactors. The U.S. development program for enrichment reduction in research and test reactor designs currently using 90-93% enriched uranium is based on the practical criterion that enrichment reduction should not cause significant flux performance (flux per unit power) or burnup performance degradation relative to the unmodified reactor design. To first order, this implies the requirement that the 235 U loading in the reduced-enrichment fuel elements be the same as the 235 U loading in the 90-93% enriched fuel elements. This can be accomplished by substitution of higher uranium density fuel technology for currently-used fuel technology in the fuel meat volume of the current fuel element design and/or by increasing the usable fuel meat volume. For research and test reactors of power greater than 5-10 megawatts, fuel technology does not currently exist that would permit enrichment reductions to below 20% utilizing this criterion. A program is now beginning in the U.S. to develop the necessary fuel technology. Currently-proven fuel technology is capable, however, of accommodating enrichment reductions to the 30-45% range (from 90-93%) for many reactors in the 5-50MW range. Accordingly the U.S. is proposing to convert existing reactors (and new designs) in the 5-50MW range from the use of highly-enriched fuel to the use of 30-45% enriched fuel, and reactors of less that about 5MW to less-than-20% enrichment, wherever this can be done without significant

  14. Technical management on commissioning test of nuclear heating reactor

    International Nuclear Information System (INIS)

    Zhang Yajun; Su Qingshan

    1999-01-01

    The commissioning is the last construction stage of a nuclear heating project. The commissioning quality will directly affect on the safe operation and availability of the heating reactor. The author presents the whole test process until the completion of the test report from the point of test documents, including the preparation and execution of the test, the management of the various unexpected events during the test. And it will be emphatically discussed that the managing procedures of the various unexpected events during the test, including temporary control change, setpoint change, unexpected events and design change

  15. A structured approach to evaluating aging of the advanced test reactor

    International Nuclear Information System (INIS)

    Dwight, J.E.

    1990-01-01

    An aging evaluation program has been developed for the United States Department of Energy's Advanced Test Reactor to support the current goal of operation through the year 2014 and beyond. The Aging Evaluation and Life Extension Program (AELEX) employs a three-phased approach. In Phases 1 and 2, now complete, components were identified, categorized and prioritized. Critical components were selected and aging mechanisms for the critical components identified. An initial evaluation of the critical components was performed and extended life operation for the plant appears to be both technically and economically feasible. Detailed evaluations of the critical components are now in progress in the early stages of Phase 3. Some results are available. Evaluations of many non-critical components and refinements to the program based on probabilistic risk assessment results will follow in later stages of Phase 3. 6 refs., 2 figs., 5 tabs

  16. Analysis of severe accidents on fast reactor test loop

    International Nuclear Information System (INIS)

    Cenerini, R.; Verzelletti, G.; Curioni, S.

    1975-01-01

    The Pec reactor is a sodium cooled fast reactor which is being designed for the primary purpose of accomodating closed sodium cooled test loops for the developmental and proof testing of fast reactor fuel assemblies. The test loops are located in the central test region of reactor. The basic function for which the loop is designed is burn-up to failure testing of fuel under advanced performance conditions. It is therefore necessary to design the loop for failure conditions. Basically two types of accidents can occur within the loops: rupture of gas plenum in the fuel pins and coolant starvation. Explosive tests on Pec loop, whose first set is described in this report, are devoted to investigate the effects of an accidental energy release on loop containment. The loop model reproduces in the test section the prototype dimensions in radial scale 1:1. Using a wire explosive charge of 300mm, the height of test section is sufficient for determining the containment capability of the loop that has a nearly constant deformation in a length of. 3-4 time the diameter. The inertial effects of the coolant column are reproduced by two tubes at the extremities of test section, closed with top plugs. Some tests has been performed by wrapping around the test section four layers of steel wire in order to evaluate the influence on the containment of tungsten wire that is foreseen in prototype loop. The influence of the coolant around the loop was evaluated by inserting the model in water. Dummy sub-assemblies was used and explosive substitutes the central rods. Piezoelectric pressure transducers were mounted on the three plugs and radial deformation was measured directly at different height. From experiments performed it resulted the importance of harmonic wires and inertial reaction of external water on loop containment; maximum containable energy is about 50 Cal with E.1 explosive

  17. Operation, test, research and development of the high temperature engineering test reactor (HTTR). FY1999-2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-05-01

    The HTTR (High Temperature Engineering Test Reactor) with the thermal power of 30 MW and the reactor outlet coolant temperature of 850/950 degC is the first high temperature gas-cooled reactor (HTGR) in Japan, which uses coated fuel particle, graphite for core components, and helium gas for primary coolant. The HTTR, which locates at the south-west area of 50,000 m{sup 2} in the Oarai Research Establishment, had been constructed since 1991 before accomplishing the first criticality on November 10, 1998. Rise to power tests of the HTTR started in September, 1999 and the rated thermal power of 30 MW and the reactor outlet coolant temperature of 850 degC was attained in December 2001. JAERI received the certificate of pre-operation test, that is, the commissioning license for the HTTR in March 2002. This report summarizes operation, tests, maintenance, radiation control, and construction of components and facilities for the HTTR as well as R and Ds on HTGRs from FY1999 to 2001. (author)

  18. Reactor protection system with automatic self-testing and diagnostic

    International Nuclear Information System (INIS)

    Gaubatz, D.C.

    1996-01-01

    A reactor protection system is disclosed having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Automatic detection and discrimination against failed sensors allows the reactor protection system to automatically enter a known state when sensor failures occur. Cross communication of sensor readings allows comparison of four theoretically ''identical'' values. This permits identification of sensor errors such as drift or malfunction. A diagnostic request for service is issued for errant sensor data. Automated self test and diagnostic monitoring, sensor input through output relay logic, virtually eliminate the need for manual surveillance testing. This provides an ability for each division to cross-check all divisions and to sense failures of the hardware logic. 16 figs

  19. The technology development for surveillance test of reactor vessel materials

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai; Choi, Sun Phil; Park, Day Young; Choi, Kwen Jai

    1997-12-01

    Benchmark test was performed in accordance with the requirement of US NRC Reg. Guide DG-1053 for Kori unit-1 in order to determine best-estimated fast neutron fluence irradiated into reactor vessel. Since the uncertainty of radiation analysis comes from the calculation error due to neutron cross-section data, reactor core geometrical dimension, core source, mesh density, angular expansion and convergence criteria, evaluation of calculational uncertainty due to analytical method was performed in accordance with the regulatory guide and the proof was performed for entire analysis by comparing the measurement value obtained by neutron dosimetry located in surveillance capsule. Best-estimated neutron fluence in reactor vessel was calculated by bias factor, neutron flux measurement value/calculational value, from reanalysis result from previous 1st through 4th surveillance testing and finally fluence prediction was performed for the end of reactor life and the entire period of plant life extension. Pressurized thermal shock analysis was performed in accordance with 10 CFR 50.61 using the result of neutron fluence analysis in order to predict the life of reactor vessel material and the criteria of safe operation for Kori unit 1 was reestablished. (author). 55 refs., 55 figs.

  20. Testing and qualification of Control and Safety Rod and its drive mechanism of Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Rajan Babu, V.; Veerasamy, R.; Patri, Sudheer; Ignatius Sundar Raj, S.; Kumar Krovvidi, S.C.S.P.; Dash, S.K.; Meikandamurthy, C.; Rajan, K.K.; Puthiyavinayagam, P.; Chellapandi, P.; Vaidyanathan, G.; Chetal, S.C.

    2010-01-01

    Prototype Fast Breeder Reactor (PFBR) has two independent fast acting diverse shutdown systems. The absorber rod of the first system is called Control and Safety Rod (CSR). CSR and its Drive Mechanism (CSRDM) are used for reactor control and for safe shutdown of the reactor by scram action. In view of the safety role, the qualification of CSRDM is one of the important requirements. CSR and CSRDM were qualified in two stages by extensive testing. In the first stage, the critical subassemblies of the mechanism, such as scram release electromagnet, hydraulic dashpot and dynamic seals and CSR subassembly, were tested and qualified individually simulating the operating conditions of the reactor. Experiments were also carried out on sodium vapour deposition in the annular gaps between the stationary and mobile parts of the mechanism. In the second stage, full-scale CSRDM and CSR were subjected to all the integrated functional tests in air, hot argon and subsequently in sodium simulating the operating conditions of the reactor and finally subjected to endurance tests. Since the damage occurring in CSRDM and CSR is mainly due to fatigue cycles during scram actions, the number of test cycles was decided based on the guidelines given in ASME, Section III, Div. 1. The results show that the performance of CSRDM and CSR is satisfactory. Subsequent to the testing in sodium, the assemblies having contact with liquid sodium/sodium vapour were cleaned using CO 2 process and the total cleaning process has been established, so that the mechanism can be reused in sodium. The various stages of qualification programmes have raised the confidence level on the performance of the system as a whole for the intended and reliable operation in the reactor.

  1. Proceedings of the international meeting on research and test reactor core conversions from HEU to LEU fuels

    International Nuclear Information System (INIS)

    1983-09-01

    Separate abstracts have been prepared for each paper presented in the following areas of interest: (1) fuel development; (2) post-irradiation examinations; (3) reprocessing; (4) thermite reaction; (5) fuel fabrication; (6) element tests; (7) core tests; (8) criticals; (9) shipping; and (10) reactors and methods

  2. Results of the critical experiments concerning OTTO loading at the critical HTR-test facility KAHTER

    International Nuclear Information System (INIS)

    Drueke, V.; Litzow, W.; Paul, N.

    1982-12-01

    Critical experiments concerning OTTO loading are described. In the KAHTER facility an OTTO loading has been simulated, therefore the original KAHTER assembly was reconstructed. The determination of critical masses and reactivity worths of control rods and of additional absorber rods in the top reflector and in the upper cavity was of main interest for comparison with reactor following calculations. Besides this, reaction rates in different energy regions were measured in the upper part of the core, in the cavity and top reflector. (orig.) [de

  3. Fabrication of Fast Reactor Fuel Pins for Test Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Karsten, G. [Institute for Applied Reactor Physics, Kernforschungszentrum Karlsruhe, Karlsruhe, Federal Republic of Germany (Germany); Dippel, T. [Institute for Radiochemistry, Kernforschungszentrum Karlsruhe, Karlsruhe, Federal Republic of Germany (Germany); Laue, H. J. [Institute for Applied Reactor Physics, Kernforschungszentrum Karlsruhe, Karlsruhe, Federal Republic of Germany (Germany)

    1967-09-15

    An extended irradiation programme is being carried out for the fuel element development of the Karlsruhe fast breeder project. A very important task within the programme is the testing of plutonium-containing fuel pins in a fast-reactor environment. This paper deals with fabrication of such pins by our laboratories at Karlsruhe. For the fast reactor test positions at present envisaged a fuel with 15% plutonium and the uranium fully enriched is appropriate. Hie mixed oxide is both pelletized and vibro-compacted with smeared densities between 80 and 88% theoretical. The pin design is, for example, such that there are two gas plena at the top and bottom, and one blanket above the fuel with the fuel zone fitting to the test reactor core length. The specifications both for fuel and cladding have been adapted to the special purpose of a fast-breeder reactor - the outer dimensions, the choice of cladding and fuel types, the data used and the kind of tests outline the targets of the development. The fuel fabrication is described in detail, and also the powder line used for vibro-compaction. The source materials for the fuel are oxalate PuO{sub 2} and UO{sub 2} from the UF{sub 6} process. The special problems of mechanical mixing and of plutonium homogeneity have been studied. The development of the sintering technique and grain characteristics for vibratory compactive fuel had to overcome serious problems in order to reach 82-83% theoretical. The performance of the pin fabrication needed a major effort in welding, manufacturing of fits and decontamination of the pin surfaces. This was a stimulation for the development of some very subtle control techniques, for example taking clear X-ray photographs and the tube testing. In general the selection of tests was a special task of the production routine. In conclusion the fabrication of the pins resulted in valuable experiences for the further development of fast reactor fuel elements. (author)

  4. Entrained Flow Reactor Test of Potassium Capture by Kaolin

    DEFF Research Database (Denmark)

    Wang, Guoliang; Jensen, Peter Arendt; Wu, Hao

    2015-01-01

    In the present study a method to simulate the reaction between gaseous KCl and kaolin at suspension fired condition was developed using a pilot-scale entrained flow reactor (EFR). Kaolin was injected into the EFR for primary test of this method. By adding kaolin, KCl can effectively be captured...

  5. RELAP5 kinetics model development for the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Judd, J.L.; Terry, W.K.

    1990-01-01

    A point-kinetics model of the Advanced Test Reactor has been developed for the RELAP5 code. Reactivity feedback parameters were calculated by a three-dimensional analysis with the PDQ neutron diffusion code. Analyses of several hypothetical reactivity insertion events by the new model and two earlier models are discussed. 3 refs., 10 figs., 6 tabs

  6. Tokamak Fusion Test Reactor neutral beam injection system vacuum chamber

    International Nuclear Information System (INIS)

    Pedrotti, L.R.

    1977-01-01

    Most of the components of the Neutral Beam Lines of the Tokamak Fusion Test Reactor (TFTR) will be enclosed in a 50 cubic meter box-shaped vacuum chamber. The chamber will have a number of unorthodox features to accomodate both neutral beam and TFTR requirements. The design constraints, and the resulting chamber design, are presented

  7. Testing of research reactor fuel in the high flux reactor (Petten)

    International Nuclear Information System (INIS)

    Guidez, J.; Markgraf, J.W.; Sordon, G.; Wijtsma, F.J.; Thijssen, P.J.M.; Hendriks, J.A.

    1999-01-01

    The two types of fuel most frequently used by the main research reactors are metallic: highly enriched uranium (>90%) and silicide low enriched uranium ( 3 . However, a need exists for research on new reactor fuel. This would permit some plants to convert without losses in flux or in cycle length and would allow new reactor projects to achieve higher possibilities especially in fluxes. In these cases research is made either on silicide with higher density, or on other types of fuel (UMo, etc.). In all cases when new fuel is proposed, there is a need, for safety reasons, to test it, especially regarding the mechanical evolution due to burn-up (swelling, etc.). Initially, such tests are often made with separate plates, but lately, using entire elements. Destructive examinations are often necessary. For this type of test, the High Flux Reactor, located in Petten (The Netherlands) has many specific advantages: a large core, providing a variety of interesting positions with high fluence rate; a downward coolant flow simplifies the engineering of the device; there exists easy access with all handling possibilities to the hot-cells; the high number of operating days (>280 days/year), together with the high flux, gives a possibility to reach quickly the high burn-up needs; an experienced engineering department capable of translating specific requirements to tailor-made experimental devices; a well equipped hot-cell laboratory on site to perform all necessary measurements (swelling, γ-scanning, profilometry) and all destructive examinations. In conclusion, the HFR reactor readily permits experimental research on specific fuels used for research reactors with all the necessary facilities on the Petten site. (author)

  8. Processing test of an upgraded mechanical design for PERMCAT reactor

    Energy Technology Data Exchange (ETDEWEB)

    Borgognoni, Fabio, E-mail: fabio.borgognoni@enea.i [Associazione ENEA-Euratom sulla Fusione, C.R. ENEA Frascati, Via E. Fermi 45, Frascati, Roma I-00044 (Italy); Demange, David; Doerr, Lothar [Forschungszentrum Karlsruhe GmbH, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Postfach 3640, D-76021 Karlsruhe (Germany); Tosti, Silvano [Associazione ENEA-Euratom sulla Fusione, C.R. ENEA Frascati, Via E. Fermi 45, Frascati, Roma I-00044 (Italy); Welte, Stefan [Forschungszentrum Karlsruhe GmbH, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Postfach 3640, D-76021 Karlsruhe (Germany)

    2010-12-15

    The PERMCAT membrane reactor is a coaxial combination of a Pd/Ag permeator membrane and a catalyst bed. This device has been proposed for processing fusion reactor plasma exhaust gas. A stream containing tritium (up to 1% of tritium in different chemical forms such as water, methane or molecular hydrogen) is decontaminated in the PERMCAT by counter-current isotopic swamping with protium. Different mechanical designs of the membrane reactor have been proposed to improve robustness and lifetime. The ENEA membrane reactor uses a permeator tube with a length of about 500 mm produced via cold-rolling and diffusion welding of Pd/Ag thin foils: two stainless steel pre-tensioned bellows have been applied to the Pd/Ag tube in order to avoid any significant compressive and bending stresses due to the permeator tube elongation consequent to the hydrogen uptake. An experimental test campaign has been performed using this reactor in order to assess the influence of different operating parameters and to evaluate the overall performance (decontamination factor). Tests have been carried out on two reactor prototypes: a defect-free membrane with complete (infinite) hydrogen selectivity and not perm-selective membrane. In this last case, the study has been aimed at verifying the behaviour of the PERMCAT devices under non-normal (accidental) conditions in the view of providing information for future safety analysis. The paper will present the specific mechanical design and the experimental results of tests based on isotopic exchange between H{sub 2}O and D{sub 2}.

  9. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2002-01-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised

  10. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2002-04-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised.

  11. Research and Test Reactor Fuel Elements (RTRFE)

    International Nuclear Information System (INIS)

    Pace, Brett W.; Marinak, Edward A.

    1999-01-01

    BWX Technologies Inc. (BWXT) has experienced several production improvements over the past year. The homogeneity yields in 4.8 gU/cc U 3 Si 2 plates have increased over last year's already high yields. Through teamwork and innovative manufacturing techniques, maintaining high quality surface finishes on plates and elements is becoming easier and less expensive. Currently, BWXT is designing a fabrication development plan to reach a fuel loading of 9 gU/cc within 2 - 4 years. This development will involve a step approach requested by ANL to produce plates using U-8Mo at a loading of 6 gU/cc first and qualify the fuel at those levels. In achieving the goal of a very high-density fuel loading of 9 gU/cc, BWXT is considering employing several new, state of the art, ultrasonic testing techniques for fuel core evaluation. (author)

  12. Measures ensuring safety of the High Temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    1998-04-01

    JAERI has conducted research and development of an HTGR type reactor since 1969 under the project of the multi-purpose high-temperate gas-cooled experimental reactor, whose design was changed to the HTTR in 1985. The reactor license was granted by the Government in 1990 and the construction started next year. Various functions and performances have been tested since 1996 and the initial criticality achieved in 1998. This document consists of six chapters, describing safety matters examined in several development phases. The first chapter deals with succession of the multi-purpose experimental reactor technology and its exchange between JAERI and domestic industries. Chapter 2 reviews new technical findings after the licensing which were reflected to the current safety assessment. These technical items are given in the table form of extensive pages. Chapter 3 and 4 describe the performance tests and the criticality access, respectively. Chapter 5 and 6 deal with the detection of fuel failures and helium gas leaks, respectively. (H.Y.)

  13. Feasibility study of the Dragon reactor for HTGR fuel testing

    International Nuclear Information System (INIS)

    Wallroth, C.F.

    1975-01-01

    The Organization of European Community Development (OECD) Dragon high-temperature reactor project has performed HTGR fuel and fuel element testing for about 10 years. To date, a total of about 250 fuel elements have been irradiated and the test program continues. The feasibility of using this test facility for HTGR fuel testing, giving special consideration to U. S. needs, is evaluated. A detailed description for design, preparation, and data acquisition of a test experiment is given together with all possible options on supporting work, which could be carried out by the experienced Dragon project staff. 11 references. (U.S.)

  14. Human factors evaluation of the engineering test reactor control room

    International Nuclear Information System (INIS)

    Banks, W.W.; Boone, M.P.

    1981-03-01

    The Reactor and Process Control Rooms at the Engineering Test Reactor were evaluated by a team of human factors engineers using available human factors design criteria. During the evaluation, ETR, equipment and facilities were compared with MIL-STD-1472-B, Human Engineering design Criteria for Military Systems. The focus of recommendations centered on: (a) displays and controls; placing displays and controls in functional groups; (b) establishing a consistent color coding (in compliance with a standard if possible); (c) systematizing annunciator alarms and reducing their number; (d) organizing equipment in functional groups; and (e) modifying labeling and lines of demarcation

  15. Critical heat flux experiments for high conversion light water reactor, (3)

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Okubo, Tsutomu; Suemura, Takayuki; Hiraga, Fujio; Murao, Yoshio

    1990-03-01

    As a part of the thermal-hydraulic feasibility study of a high conversion light water reactor (HCLWR), critical heat flux (CHF) experiments were performed using triangular array rod bundles under steady-state and flow reduction transient conditions. The geometries of test sections were: rod outer diameter 9.5 mm, number of rods 4∼7, heated length 0.5∼1.0 m, and pitch to diameter ratio (P/D) 1.126∼1.2. The simulated fuel rod was a stainless steel tube and uniformly heated electrically with direct current. In the steady-state tests, pressures ranged: 1.0∼3.9 Mpa, mass velocities: 460∼4270 kg/s·m 2 , and exit qualities: 0.02∼0.35. In the transient tests, the times to CHF detection ranged from 0.5 to 25.4 s. The steady-state CHF's for the 4-rod test sections were higher than those for the 7-rod test sections with respect to the bundle averaged flow conditions. The measured CHF's increased with decreasing the heated length and decreased with decreasing the P/D. Based on the local flow conditions obtained with the subchannel analysis code COBRA-IV-I, KfK correlation agreed with the CHF data within 20 %, while WSC-2, EPRI-B and W, EPRI-Columbia and Kattor correlations failed to give satisfactory agreements. Under flow reduction rates less than 6 %/s, no significant difference in the onset conditions of DNB (departure from nucleate boiling) was recognized between the steady-state and transient conditions. At flow reduction rates higher than 6 %/s, on the other hand, the DNB occurred earlier than the DNB time predicted with the steady-state experiments. (author)

  16. Development of a digital reactivity meter for criticality prediction and control rod worth evaluation in pressurized water reactors

    International Nuclear Information System (INIS)

    Kuramoto, Renato Y.R.; Miranda, Anselmo F.; Valladares, Gastao Lommez; Prado, Adelk C.

    2009-01-01

    In this work, we have proposed the development of a digital reactivity meter in order to monitor subcriticality continuously during criticality approach in a PWR. A subcritical reactivity meter can provide an easy prediction of the estimated critical point prior to reactor criticality, without complicated hand calculation. Moreover, in order to reduce the interval of the Physics Tests from the economical point of view, a subcritical reactivity meter can evaluate the control rod worth from direct subcriticality measurement. In other words, count rate of Source Range (SR) detector recorded during the criticality approach could be used for subcriticality evaluation or control rod worth evaluation. Basically, a digital reactivity meter is based on the inverse solution of the kinetic equations of a reactor with the external neutron source in one-point reactor model. There are some difficulties in the direct application of a digital reactivity meter to the subcriticality measurement. When the Inverse Kinetic method is applied to a sufficiently high power level or to a core without an external neutron source, the neutron source term may be neglected. When applied to a lower power level or in the sub-critical domain, however, the source effects must be taken in account. Furthermore, some treatments are needed in using the count rate of Source Range (SR) detector as input signal to the digital reactivity meter. To overcome these difficulties, we have proposed a digital reactivity meter combined with a methodology of the modified Neutron Source Multiplication (NSM) method with correction factors for subcriticality measurements in PWR. (author)

  17. Development of a digital reactivity meter for criticality prediction and control rod worth evaluation in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kuramoto, Renato Y.R.; Miranda, Anselmo F.; Valladares, Gastao Lommez; Prado, Adelk C. [Eletrobras Termonuclear S.A. - ELETRONUCLEAR, Angra dos Reis, RJ (Brazil). Central Nuclear Almirante Alvaro Alberto], e-mail: kuramot@eletronuclear.gov.br

    2009-07-01

    In this work, we have proposed the development of a digital reactivity meter in order to monitor subcriticality continuously during criticality approach in a PWR. A subcritical reactivity meter can provide an easy prediction of the estimated critical point prior to reactor criticality, without complicated hand calculation. Moreover, in order to reduce the interval of the Physics Tests from the economical point of view, a subcritical reactivity meter can evaluate the control rod worth from direct subcriticality measurement. In other words, count rate of Source Range (SR) detector recorded during the criticality approach could be used for subcriticality evaluation or control rod worth evaluation. Basically, a digital reactivity meter is based on the inverse solution of the kinetic equations of a reactor with the external neutron source in one-point reactor model. There are some difficulties in the direct application of a digital reactivity meter to the subcriticality measurement. When the Inverse Kinetic method is applied to a sufficiently high power level or to a core without an external neutron source, the neutron source term may be neglected. When applied to a lower power level or in the sub-critical domain, however, the source effects must be taken in account. Furthermore, some treatments are needed in using the count rate of Source Range (SR) detector as input signal to the digital reactivity meter. To overcome these difficulties, we have proposed a digital reactivity meter combined with a methodology of the modified Neutron Source Multiplication (NSM) method with correction factors for subcriticality measurements in PWR. (author)

  18. Safety analysis calculations for research and test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S Y; MacDonald, R; MacFarlane, D [Argonne National Laboratory, Argonne, IL (United States)

    1983-08-01

    The goal of the RERTR (Reduced Enrichment in Research and Test Reactor) Program at ANL is to provide technical means for conversion of research and test reactors from HEU (High-Enrichment Uranium) to LEU (Low-Enrichment Uranium) fuels. In exploring the feasibility of conversion, safety considerations are a prime concern; therefore, safety analyses must be performed for reactors undergoing the conversion. This requires thorough knowledge of the important safety parameters for different types of reactors for both HEU and LEU fuel. Appropriate computer codes are needed to predict transient reactor behavior under postulated accident conditions. In this discussion, safety issues for the two general types of reactors i.e., the plate-type (MTR-type) reactor and the rod-type (TRIGA-type) reactor, resulting from the changes associated with LEU vs. HEU fuels, are explored. The plate-type fuels are typically uranium aluminide (UAl{sub x}) compounds dispersed in aluminum and clad with aluminum. Moderation is provided by the water coolant. Self shut-down reactivity coefficients with EU fuel are entirely a result of coolant heating, whereas with LEU fuel there is an additional shut down contribution provided by the direct heating of the fuel due to the Doppler coefficient. In contrast, the rod-type (TRIGA) fuels are mixtures of zirconium hydride, uranium, and erbium. This fuel mixture is formed into rods ( {approx} 1 cm diameter) and clad with stainless steel or Incoloy. In the TRIGA fuel the self-shutdown reactivity is more complex, depending on heating of the fuel rather than the coolant. The two most important mechanisms in providing this feedback are: spectral hardening due to neutron interaction with the ZrH moderator as it is heated and Doppler broadening of resonances in erbium and U-238. Since these phenomena result directly from heating of the fuel, and do not depend on heat transfer to the moderator/coolant, the coefficients are prompt acting. Results of transient

  19. Closed Loop In-Reactor Assembly (CLIRA): a fast flux test facility test vehicle

    International Nuclear Information System (INIS)

    Oakley, D.J.

    1978-01-01

    The Closed Loop In-Reactor Assembly (CLIRA) is a test vehicle for in-core material and fuel experiments in the Fast Flux Test Facility (FFTF). The FFTF is a fast flux nuclear test reactor operated for the Department of Energy (DOE) by Westinghouse Hanford Company in Richland, Washington. The CLIRA is a removable/replaceable part of the Closed Loop System (CLS) which is a sodium coolant system providing flow and temperature control independent of the reactor coolant system. The primary purpose of the CLIRA is to provide a test vehicle which will permit testing of nuclear fuels and materials at conditions more severe than exist in the FTR core, and to isolate these materials from the reactor core

  20. The first critical experiment with a new type of fuel assemblies IRT-3M on the training reactor VR-I

    International Nuclear Information System (INIS)

    Matejka, Karel; Sklenka, Lubomir

    1997-01-01

    The paper 'The first critical experiment with a new type of fuel assemblies IRT-3M on training reactor VR-1 presents basic information about the replacement of fuel on the reactor VR-1 run on FJFI CVUT in Prague. In spring 1997 the IRT-2M fuel type used till then was replaced by the IRT-3M type. When the fuel was replaced, no change in its enrichment was made, i.e. its level remained as 36% 235 U. The replacement itself was carried out in tight co-operation with the Nuclear Research Institute Rez plc., as related to the operation of the research reactor LVR-15. The fuel replacement on the VR-I reactor is a part of the international program RERTR (Reduced Enrichment for Research and Test Reactors) in which the Czech Republic participates. (author)

  1. Development of an aging evaluation and life extension program for the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Dwight, J.E. Jr.

    1988-01-01

    A life extension program has been developed for the US Department of Energy's Advanced Test Reactor. The program is an adaptation of life extension pilot programs at the Surry Unit 1 and Monticello generating stations and is being completed in three phases. In Phase 1, the critical plant components were identified. In Phase 2, existing lifetime analyses and support data for the critical components were reviewed. The results from the review give a preliminary indication that an overall plant lifetime in excess of forty years is feasible. In Phase 3, now in progress, detailed evaluations for component life extensions are being performed. 2 refs., 2 figs., 1 tab

  2. Critical technical issues and evaluation and comparison studies for inertial fusion energy reactors

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.A. (Mechanical, Aerospace and Nuclear Engineering Dept., Univ. of California, Los Angeles, CA (United States)); Ying, A.Y. (Mechanical, Aerospace and Nuclear Engineering Dept., Univ. of California, Los Angeles, CA (United States)); Tillack, M.S. (Mechanical, Aerospace and Nuclear Engineering Dept., Univ. of California, Los Angeles, CA (United States)); Ghoniem, N.M. (Mechanical, Aerospace and Nuclear Engineering Dept., Univ. of California, Los Angeles, CA (United States)); Waganer, L.M. (McDonnell Douglas Aerospace, St. Louis, MI (United States)); Driemeyer, D.E. (McDonnell Douglas Aerospace, St. Louis, MI (United States)); Linford, G.J. (TRW Space and Electronics Div., Redondo Beach, CA (United States)); Drake, D.J.

    1994-01-01

    Two inertial fusion energy (IFE) reactor design concepts developed in the Prometheus studies were evaluated. Objectives were to identify and characterize critical issues and the R and D required to resolve them, and to establish a sound basis for future IFE technical and programmatic decisions. Each critical issue contains several key physics and engineering issues associated with major reactor components and impacts key aspects of feasibility, safety, and economic potential of IFE reactors. Generic critical issues center around: demonstration of moderate gain at low driver energy, feasibility of direct drive targets, feasibility of indirect drive targets for heavy ions, feasibility of indirect drive targets for lasers, cost reduction strategies for heavy ion drivers, demonstration of higher overall laser driver efficiency, tritium self-sufficiency in IFE reactors, cavity clearing at IFE pulse repetition rates, performance/reliability/lifetime of final laser optics, viability of liquid metal film for first wall protection, fabricability/reliability/lifetime of SiC composite structures, validation of radiation shielding requirements, design tools, and nuclear data, reliability and lifetime of laser and heavy ion drivers, demonstration of large-scale non-linear optical laser driver architecture, demonstration of cost effective KrF amplifiers, and demonstration of low cost, high volume target production techniques. Quantitative evaluation and comparison of the two design options have been made with special focus on physics feasibility, engineering feasibility, economics, safety and environment, and research and development (R and D) requirements. Two key conclusions are made based on the overall evaluation analysis. The heavy-ion driven reactors appear to have an overall advantage over laser-driven reactors.

  3. GROWTH OF THE INTERNATIONAL CRITICALITY SAFETY AND REACTOR PHYSICS EXPERIMENT EVALUATION PROJECTS

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; John D. Bess; Jim Gulliford

    2011-09-01

    Since the International Conference on Nuclear Criticality Safety (ICNC) 2007, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) have continued to expand their efforts and broaden their scope. Eighteen countries participated on the ICSBEP in 2007. Now, there are 20, with recent contributions from Sweden and Argentina. The IRPhEP has also expanded from eight contributing countries in 2007 to 16 in 2011. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments1' have increased from 442 evaluations (38000 pages), containing benchmark specifications for 3955 critical or subcritical configurations to 516 evaluations (nearly 55000 pages), containing benchmark specifications for 4405 critical or subcritical configurations in the 2010 Edition of the ICSBEP Handbook. The contents of the Handbook have also increased from 21 to 24 criticality-alarm-placement/shielding configurations with multiple dose points for each, and from 20 to 200 configurations categorized as fundamental physics measurements relevant to criticality safety applications. Approximately 25 new evaluations and 150 additional configurations are expected to be added to the 2011 edition of the Handbook. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Reactor Physics Benchmark Experiments2' have increased from 16 different experimental series that were performed at 12 different reactor facilities to 53 experimental series that were performed at 30 different reactor facilities in the 2011 edition of the Handbook. Considerable effort has also been made to improve the functionality of the searchable database, DICE (Database for the International Criticality Benchmark Evaluation Project) and verify the accuracy of the data contained therein. DICE will be discussed in separate papers at ICNC 2011. The status of the

  4. Reactor vessel dismantling at the high flux materials testing reactor Petten

    International Nuclear Information System (INIS)

    Tas, A.; Teunissen, G.

    1986-01-01

    The project of replacing the reactor vessel of the high flux materials testing reactor (HFR) originated in 1974 when results of several research programs confirmed severe neutron embrittlement of aluminium alloys suggesting a limited life of the existing facility. This report describes the dismantling philosophy and organisation, the design of special underwater equipment, the dismantling of the reactor vessel and thermal column, and the conditioning and shielding activities resulting in a working area for the installation of the new vessel with no access limitations due to radiation. Finally an overview of the segmentation, waste disposal and radiation exposure is given. The total dismantling, segmentation and conditioning activities resulted in a total collective radiation dose of 300 mSv. (orig.) [de

  5. Heat Pipe Reactor Dynamic Response Tests: SAFE-100 Reactor Core Prototype

    Science.gov (United States)

    Bragg-Sitton, Shannon M.

    2005-01-01

    The SAFE-I00a test article at the NASA Marshall Space Flight Center was used to simulate a variety of potential reactor transients; the SAFEl00a is a resistively heated, stainless-steel heat-pipe (HP)-reactor core segment, coupled to a gas-flow heat exchanger (HX). For these transients the core power was controlled by a point kinetics model with reactivity feedback based on core average temperature; the neutron generation time and the temperature feedback coefficient are provided as model inputs. This type of non-nuclear test is expected to provide reasonable approximation of reactor transient behavior because reactivity feedback is very simple in a compact fast reactor (simple, negative, and relatively monotonic temperature feedback, caused mostly by thermal expansion) and calculations show there are no significant reactivity effects associated with fluid in the HP (the worth of the entire inventory of Na in the core is .tests, the point kinetics model was based on core thermal expansion via deflection measurements. It was found that core deflection was a strung function of how the SAFE-100 modules were fabricated and assembled (in terms of straightness, gaps, and other tolerances). To remove the added variable of how this particular core expands as compared to a different concept, it was decided to use a temperature based feedback model (based on several thermocouples placed throughout the core).

  6. Design and testing of integrated circuits for reactor protection channels

    International Nuclear Information System (INIS)

    Battle, R.E.; Vandermolen, R.I.; Jagadish, U.; Swail, B.K.; Naser, J.; Rana, I.

    1995-01-01

    Custom and semicustom application-specific integrated circuit design and testing methods are investigated for use in research and commercial nuclear reactor safety systems. The Electric Power Research Institute and Oak Ridge National Laboratory are working together through a cooperative research and development agreement to apply modern technology to a nuclear reactor protection system. Purpose of this project is to demonstrate to the nuclear industry an alternative approach for new or upgrade reactor protection and safety system signal processing and voting logic. Motivation for this project stems from (1) the difficulty of proving that software-based protection systems are adequately reliable, (2) the obsolescence of the original equipment, and (3) the improved performance of digital processing

  7. Replacement of core components in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Durney, J.L.; Croucher, D.W.

    1990-01-01

    The core internals of the Advanced Test Reactor are subjected to very high neutron fluences resulting in significant aging. The most irradiated components have been replaced on several occasions as a result of the neutron damage. The surveillance program to monitor the aging developed the needed criteria to establish replacement schedules and maximize the use of the reactor. The methods to complete the replacements with minimum radiation exposures to workers have been developed using the experience gained from each replacement. The original design of the reactor core and associated components allows replacements to be completed without special equipment. The plant has operated for about 20 years and is expected to continue operation for at least and additional 25 years. Aging evaluations are in progress to address additional replacements that may be needed during this period

  8. Replacement of core components in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Durney, J.L.; Croucher, D.W.

    1989-01-01

    The core internals of the Advanced Test Reactor are subjected to very high neutron fluences resulting in significant aging. The most irradiated components have been replaced on several occasions as a result of the neutron damage. The surveillance program to monitor the aging developed the needed criteria to establish replacement schedules and maximize the use of the reactor. Methods to complete the replacements with minimum radiation exposures to workers have been developed using the experience gained from each replacement. The original design of the reactor core and associated components allows replacements to be completed without special equipment. The plant has operated for about 20 years and will continue operation for perhaps another 20 years. Aging evaluations are in program to address additional replacements that may be needed during this extended time period. 3 figs

  9. Reduced enrichment for research and test reactors: Proceedings

    International Nuclear Information System (INIS)

    1988-05-01

    The international effort to develop new research reactor fuel materials and designs based on the use of low-enriched uranium, instead of highly-enriched uranium, has made much progress during the eight years since its inception. To foster direct communication and exchange of ideas among the specialist in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at the Argonne National Laboratory, sponsored this meeting as the ninth of a series which began in 1978. All previous meetings of this series are listed on the facing page. The focus of this meeting was on the LEU fuel demonstration which was in progress at the Oak Ridge Research (ORR) reactor, not far from where the meeting was held. The visit to the ORR, where a silicide LEU fuel with 4.8 g A/cm 3 was by then in routine use, illustrated how far work has progressed

  10. Reduced enrichment for research and test reactors: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    The international effort to develop new research reactor fuel materials and designs based on the use of low-enriched uranium, instead of highly-enriched uranium, has made much progress during the eight years since its inception. To foster direct communication and exchange of ideas among the specialist in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at the Argonne National Laboratory, sponsored this meeting as the ninth of a series which began in 1978. All previous meetings of this series are listed on the facing page. The focus of this meeting was on the LEU fuel demonstration which was in progress at the Oak Ridge Research (ORR) reactor, not far from where the meeting was held. The visit to the ORR, where a silicide LEU fuel with 4.8 g A/cm/sup 3/ was by then in routine use, illustrated how far work has progressed.

  11. Standard Guide for Benchmark Testing of Light Water Reactor Calculations

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide covers general approaches for benchmarking neutron transport calculations in light water reactor systems. A companion guide (Guide E2005) covers use of benchmark fields for testing neutron transport calculations and cross sections in well controlled environments. This guide covers experimental benchmarking of neutron fluence calculations (or calculations of other exposure parameters such as dpa) in more complex geometries relevant to reactor surveillance. Particular sections of the guide discuss: the use of well-characterized benchmark neutron fields to provide an indication of the accuracy of the calculational methods and nuclear data when applied to typical cases; and the use of plant specific measurements to indicate bias in individual plant calculations. Use of these two benchmark techniques will serve to limit plant-specific calculational uncertainty, and, when combined with analytical uncertainty estimates for the calculations, will provide uncertainty estimates for reactor fluences with ...

  12. Education and training by utilizing irradiation test reactor simulator

    International Nuclear Information System (INIS)

    Eguchi, Shohei; Koike, Sumio; Takemoto, Noriyuki; Tanimoto, Masataka; Kusunoki, Tsuyoshi

    2016-01-01

    The Japan Atomic Energy Agency, at its Japan Materials Testing Reactor (JMTR), completed an irradiation test reactor simulator in May 2012. This simulator simulates the operation, irradiation test, abnormal transient change during operation, and accident progress events, etc., and is able to perform operation training on reactor and irradiation equipment corresponding to the above simulations. This simulator is composed of a reactor control panel, process control panel, irradiation equipment control panel, instructor control panel, large display panel, and compute server. The completed simulator has been utilized in the education and training of JMTR operators for the purpose of the safe and stable operation of JMTR and the achievement of high operation rate after resuming operation. For the education and training, an education and training curriculum has been prepared for use in not only operation procedures at the time of normal operation, but also learning of fast and accurate response in case of accident events. In addition, this simulator is also being used in operation training for the purpose of contributing to the cultivation of human resources for atomic power in and out of Japan. (A.O.)

  13. Situation of test and research reactors' spent fuels

    International Nuclear Information System (INIS)

    Shimizu, Kenichi; Uchiyama, Junzo; Sato, Hiroshi

    1996-01-01

    The U.S. DOE decided a renewal Off-Site Fuel Policy for stopping to spread a highly enriched uranium which was originally enriched at the U.S., the policy declared that to receive all HEU spent fuels from Test and Research reactors in all the world. In Japan, under bilateral agreement of cooperation between the government of the United States and the government of Japan concerning peaceful uses of nuclear energy, the highly enriched uranium of Test and Research Reactors' fuels was purchased from the U.S. and the fuels had been manufactured in Japan, America, Germany and France. On the other hand, a former president of the U.S. J. Carter proposed that to convert the fuels from HEU to LEU concerning a nonproliferation of nuclear materials in 1978, and Japan absolutely supported this policy. Under this condition, the U.S. stopped to receive the spent fuels from the other countries concerning legal action to the Off-Site Fuels Policy. As a result, the spent fuels are increasing, and to cross to each reactor's storage capacity, and if this policy start, a faced crisis of Test and Research Reactors will be avoided. (author)

  14. WWER type reactor primary loop imitation on large test loop facility in MARIA reactor

    International Nuclear Information System (INIS)

    Moldysh, A.; Strupchevski, A.; Kmetek, Eh.; Spasskov, V.P.; Shumskij, A.M.

    1982-01-01

    At present in Poland in cooperation with USSR a nuclear water loop test facility (WL) in 'MARIA' reactor in Sverke is under construction. The program objective is to investigate processes occuring in WWER reactor under emergency conditions, first of all after the break of the mainprimary loop circulation pipe-line. WL with the power of about 600 kW consists of three major parts: 1) an active loop, imitating the undamaged loops of the WWER reactor; 2) a passive loop assignedfor modelling the broken loop of the WWER reactor; 3) the emergency core cooling system imitating the corresponding full-scale system. The fuel rod bundle consists of 18 1 m long rods. They were fabricated according to the standard WWER fuel technology. In the report some general principles of WWERbehaviour imitation under emergency conditions are given. They are based on the operation experience obtained from 'SEMISCALE' and 'LOFT' test facilities in the USA. A description of separate modelling factors and criteria effects on the development of 'LOCA'-type accident is presented (the break cross-section to the primary loop volume ratio, the pressure differential between inlet and outlet reactor chambers, the pressure drop rate in the loop, the coolant flow rate throuh the core etc.). As an example a comparison of calculated flow rate variations for the WWER-1000 reactor and the model during the loss-of-coolant accident with the main pipe-line break at the core inlet is given. Calculations have been carried out with the use of TECH'-M code [ru

  15. Critical heat flux correlation analysis for PWR reactors with low mass flow

    International Nuclear Information System (INIS)

    Carajilescov, Pedro

    1996-01-01

    The major limit in the thermalhydraulic design of water cooled reactors consists in the occurrence of critical heat flux, which is verified by correlation of large range of validity. In the present work, the major design correlations were analyzed, through comparisons with experimental data, for utilization in PWR with low mass flux in the core. The results show that the EPRI correlation, with modifications, gives conservative results, from the safety point of view, with lower data spreading, being the most indicated for the reactor thermal design. (author)

  16. Automated systems help prevent operator error during [reactor] I and C [instrumentation and control] testing

    International Nuclear Information System (INIS)

    Courcoux, R.

    1989-01-01

    On a nuclear steam supply system, even a minor failure can involve actuation of the whole reactor protection system (RPS). To reduce the likelihood of human error leading to unwanted trips during the maintenance of instrumentation and control systems, Framatome has been developing and installing various automated testing systems. Such automated systems are particularly helpful when periodic tests with a potential for RPS actuation have to be carried out, or when the test is on the critical path for the refuelling outage. The Sensitive Channel Programme described is an example of the sort of work that has been done. (author)

  17. Accelerated irradiation test of gundremmingen reactor vessel trepan material

    International Nuclear Information System (INIS)

    Hawthorne, J.R.

    1992-08-01

    Initial mechanical properties tests of beltline trepanned from the decommissioned KRB-A pressure vessel and archive material irradiated in the UBR test reactor revealed a major anomaly in relative radiation embrittlement sensitivity. Poor correspondence of material behavior in test vs. power reactor environments was observed for the weak test orientation (ASTL C-L) whereas correspondence was good for the strong orientation (ASTM C-L). To resolve the anomaly directly, Charpy-V specimens from a low (essentially-nil) fluence region of the vessel were irradiated together with archive material at 279 degrees C in the UBR test reactor. Properties tests before UBR irradiation revealed a significant difference in 41-J transition temperature and upper shelf energy level between the materials. However, the materials exhibited essentially the same radiation embrittlement sensitivity (both orientations), proving that the anomaly is not due to a basic difference in material irradiation resistances. Possible causes of the original anomaly and the significance to NRC Regulatory Guide 1.99 are discussed

  18. Accelerated irradiation test of Gundremmingen reactor vessel trepan material

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, J.R. [Materials Engineering Associates, Inc., Lanham, MD (United States)

    1992-08-01

    Initial mechanical properties tests of beltline trepanned from the decommissioned KRB-A pressure vessel and archive material irradiated in the UBR test reactor revealed a major anomaly in relative radiation embrittlement sensitivity. Poor correspondence of material behavior in test vs. power reactor environments was observed for the weak test orientation (ASTL C-L) whereas correspondence was good for the strong orientation (ASTM C-L). To resolve the anomaly directly, Charpy-V specimens from a low (essentially-nil) fluence region of the vessel were irradiated together with archive material at 279{degrees}C in the UBR test reactor. Properties tests before UBR irradiation revealed a significant difference in 41-J transition temperature and upper shelf energy level between the materials. However, the materials exhibited essentially the same radiation embrittlement sensitivity (both orientations), proving that the anomaly is not due to a basic difference in material irradiation resistances. Possible causes of the original anomaly and the significance to NRC Regulatory Guide 1.99 are discussed.

  19. Rupture tests with reactor pressure vessel head models

    International Nuclear Information System (INIS)

    Talja, H.; Keinaenen, H.; Hosio, E.; Pankakoski, P.H.; Rahka, K.

    2003-01-01

    In the LISSAC project (LImit Strains in Severe ACcidents), partly funded by the EC Nuclear Fission and Safety Programme within the 5th Framework programme, an extensive experimental and computational research programme is conducted to study the stress state and size dependence of ultimate failure strains. The results are aimed especially to make the assessment of severe accident cases more realistic. For the experiments in the LISSAC project a block of material of the German Biblis C reactor pressure vessel was available. As part of the project, eight reactor pressure vessel head models from this material (22 NiMoCr 3 7) were tested up to rupture at VTT. The specimens were provided by Forschungszentrum Karlsruhe (FzK). These tests were performed under quasistatic pressure load at room temperature. Two specimens sizes were tested and in half of the tests the specimens contain holes describing the control rod penetrations of an actual reactor pressure vessel head. These specimens were equipped with an aluminium liner. All six tests with the smaller specimen size were conducted successfully. In the test with the large specimen with holes, the behaviour of the aluminium liner material proved to differ from those of the smaller ones. As a consequence the experiment ended at the failure of the liner. The specimen without holes yielded results that were in very good agreement with those from the small specimens. (author)

  20. RIA testing capability of the transient reactor test facility

    International Nuclear Information System (INIS)

    Crawford, D.C.; Swanson, R.W.

    1999-01-01

    The advent of high-burnup fuel implementation in LWRs has generated international interest in high-burnup LWR fuel performance. Recent testing under simulated RIA conditions has demonstrated that certain fuel designs fail at peak fuel enthalpy values that are below existing regulatory criteria. Because many of these tests were performed with non-prototypically aggressive test conditions (i.e., with power pulse widths less than 10 msec FWHM and with non-protoypic coolant configurations), the results (although very informative) do not indisputably identify failure thresholds and fuel behavior. The capability of the TREAT facility to perform simulated RIA tests with prototypic test conditions is currently being evaluated by ANL personnel. TREAT was designed to accommodate test loops and vehicles installed for in-pile transient testing. During 40 years of TREAT operation and fuel testing and evaluation, experimenters have been able to demonstrate and determine the transient behavior of several types of fuel under a variety of test conditions. This experience led to an evolution of test methodology and techniques which can be employed to assess RIA behavior of LWR fuel. A pressurized water loop that will accommodate RIA testing of LWR and CANDU-type fuel has completed conceptual design. Preliminary calculations of transient characteristics and energy deposition into test rods during hypothetical TREAT RIA tests indicate that with the installation of a pressurized water loop, the facility is quite capable of performing prototypic RIA testing. Typical test scenarios indicate that a simulated RIA with a 72 msec FWHM pulse width and energy deposition of 1200 kJ/kg (290 cal/gm) is possible. Further control system enhancements would expand the capability to pulse widths as narrow as 40 msec. (author)

  1. Technical Bases to Consider for Performance and Demonstration Testing of Space Fission Reactors

    International Nuclear Information System (INIS)

    Hixson, Laurie L.; Houts, Michael G.; Clement, Steven D.

    2004-01-01

    Performance and demonstration testing are critical to the success of a space fission reactor program. However, the type and extent to which testing of space reactors should be performed has been a point of discussion within the industry for many years. With regard to full power ground nuclear tests, questions such as 'Do the benefits outweigh the risks? Are there equivalent alternatives? Can a test facility be constructed (or modified) in a reasonable amount of time? Will the test article accurately represent the flight system? Are the costs too restrictive?' have been debated for decades. There are obvious benefits of full power ground nuclear testing such as obtaining systems integrated reliability data on a full-scale, complete end-to-end system. But these benefits come at some programmatic risk. In addition, this type of testing does not address safety related issues. This paper will discuss and assess these and other technical considerations essential in deciding which type of performance and demonstration testing to conduct on space fission reactor systems. (authors)

  2. Study of reactor parameters on the critical systems. Phase I; Ispitivanje reaktorskih parametara na kriticnim sistemima, I faza

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N et al [Boris Kidric Institute of Nuclear Sciences Vinca, Belgrade (Yugoslavia)

    1962-08-15

    Phase 1 of the report on reactor parameters study describes the preparation of the RB reactor for operation including the following tasks: Completing and verification of reactor safety system; arranging dosimetry instruments; formation of fuel elements with 2% enriched fuel and aluminium holders; improvement of the heavy water level-meter; mounting the horizontal experimental channel; formation of reactor lattice with 16 cm pitch; testing the reactor system; filling the tank with heavy water and preparing the safety report.

  3. Results of the initial test program for the Sandia Pulsed Reactor III (SPR III)

    International Nuclear Information System (INIS)

    Estes, B.F.; Reuscher, J.A.

    1976-08-01

    This document presents a detailed discussion of the reactor including the mechanical and nuclear design characteristics. Also presented are the complete results of the Initial Approach to Critical and the Zero-and-Low Power testing programs. Reactivity worth measurements are given for such parameters as control element integral worth, Safety Block integral worth, and various materials (polyethylene, copper, lead, etc) as a function of position relative to the core. Subcritical reactivity measurements made during the approach to critical generally proved to be in reasonably good agreement with design values due to the good source-fuel-detector geometry possible with a reactor of this type. Subsequent dynamic measurements for reactivity worths are shown to be in good agreement with calculated results

  4. A quality assurance program for nuclear power reactor materials tests at the Ford nuclear reactor

    International Nuclear Information System (INIS)

    Burn, R.R.

    1989-01-01

    The University of Michigan Nuclear Reactor Laboratory Quality Assurance Program has been established to assure that materials testing services provided to electric utilities produce accurate results in accordance with industry standards, sound engineering practice, and customer requirements. The program was prepared to comply with applicable requirements of 10CFR50, Appendix B, of the Code of Federal Regulations and a standard of the American National Standards Institute (ANSI), N45.2. The paper discusses the quality assurance program applicability, organization, qualification and training of personnel, material identification and control, examination and testing, measuring and test equipment, nonconforming test equipment, records, audits, and distribution

  5. Integrated leak rate test results of JOYO reactor containment vessel

    International Nuclear Information System (INIS)

    Tamura, M.; Endo, J.

    1982-02-01

    Integrated leak rate tests of JOYO after the reactor coolant system had been filled with sodium have been performed two times since 1978 (February 1978 and December 1979). The tests were conducted with the in-containment sodium systems, primary argon cover gas system and air conditioning systems operating. Both the absolute pressure method and the reference chamber method were employed during the test. The results of both tests confirmed the functioning of the containment vessel, and leak rate limits were satisfied. In Addition, the adequancy of the test instrumentation system and the test method was demonstrated. Finally the plant conditions required to maintain reasonable accuracy for the leak rate testing of LMFBR were established. In this paper, the test conditions and the test results are described. (author)

  6. LOCA simulation in the NRU reactor: materials test-1

    International Nuclear Information System (INIS)

    Russcher, G.E.; Marshall, R.K.; Hesson, G.M.; Wildung, N.J.; Rausch, W.N.

    1981-10-01

    A simulated loss-of-coolant accident was performed with a full-length test bundle of pressurized water reactor fuel rods. This second experiment of the program produced peak fuel cladding temperatures of 1148K (1607 0 F) and resulted in six ruptured fuel rods. Test data and initial results from the experiment are presented here in the form of photographs and graphical summaries. These results are also compared with the preceding prototypic thermal-hydraulic test results and with computer model test predictions

  7. Mechanical behaviour of the reactor vessel support of a pressurized water reactor: tests and analysis

    International Nuclear Information System (INIS)

    Bolvin, M.; L'huby, Y.; Quillico, J.J.; Humbert, J.M.; Thomas, J.P.; Hugenschmitt, R.

    1985-08-01

    The PWR reactor vessel is supported by a steel ring laying on the reactor pit. This support has to ensure a good behaviour of the vessel in the event of accidental conditions (earthquake and pipe rupture). A new evolution of the evaluation methods of the applied forces has shown a significant increase in the design loads used until now. In order to take into account these new forces, we carried out a test on a representative mock-up of the vessel support (scale 1/6). This test was performed by CEA, EDF and FRAMATOME. Several static equivalent forces were applied on the experimental mock-up. Displacements and strains were simultaneously recorded. The results of the test have enabled to justify the design of the pit and the ring, to show up a wide safety margin until the collapse of the structures and to check our hypothesis about the transmission of the forces between the ring and the pit

  8. Manufacturing and material properties of forgings for reactor pressure vessel of high temperature engineering test reactor

    International Nuclear Information System (INIS)

    Sato, I.; Suzuki, K.

    1994-01-01

    For the reactor pressure vessel (RPV) of high temperature engineering test reactor (HTTR) which has been developed by Japan Atomic Energy Research Institute (JAERI), 2 1/4Cr-1Mo steel is used first in the world. Material confirmation test has been carried out to demonstrate good applicability of forged low Si 2 1/4Cr-1Mo steel to the RPV of HTTR. Recently, JSW has succeeded in the manufacturing of large size ring forgings and large size forged cover dome integrated with nozzles for stand pipe for the RPV. This paper describes the results of the material confirmation test as well as the manufacturing and material properties of the large forged cover dome integrated with nozzles for stand pipe. (orig.)

  9. Test process for the safety-critical embedded software

    International Nuclear Information System (INIS)

    Sung, Ahyoung; Choi, Byoungju; Lee, Jangsoo

    2004-01-01

    Digitalization of nuclear Instrumentation and Control (I and C) system requires high reliability of not only hardware but also software. Verification and Validation (V and V) process is recommended for software reliability. But a more quantitative method is necessary such as software testing. Most of software in the nuclear I and C system is safety-critical embedded software. Safety-critical embedded software is specified, verified and developed according to V and V process. Hence two types of software testing techniques are necessary for the developed code. First, code-based software testing is required to examine the developed code. Second, after code-based software testing, software testing affected by hardware is required to reveal the interaction fault that may cause unexpected results. We call the testing of hardware's influence on software, an interaction testing. In case of safety-critical embedded software, it is also important to consider the interaction between hardware and software. Even if no faults are detected when testing either hardware or software alone, combining these components may lead to unexpected results due to the interaction. In this paper, we propose a software test process that embraces test levels, test techniques, required test tasks and documents for safety-critical embedded software. We apply the proposed test process to safety-critical embedded software as a case study, and show the effectiveness of it. (author)

  10. Application of the modified neutron source multiplication method for a measurement of sub-criticality in AGN-201K reactor

    International Nuclear Information System (INIS)

    Myung-Hyun Kim

    2010-01-01

    Measurement of sub-criticality is a challenging and required task in nuclear industry both for nuclear criticality safety and physics test in nuclear power plant. A relatively new method named as Modified Neutron Source Multiplication Method (MNSM) was proposed in Japan. This method is an improvement of traditional Neutron Source Multiplication (NSM) Method, in which three correction factors are applied additionally. In this study, MNSM was tested in calculation of rod worth using an educational reactor in Kyung Hee University, AGN-201K. For this study, a revised nuclear data library and a neutron transport code system TRANSX-PARTISN were used for the calculation of correction factors for various control rod positions and source locations. Experiments were designed and performed to enhance errors in NSM from the location effects of source and detectors. MNSM can correct these effects but current results showed not much correction effects. (author)

  11. Enhanced in-pile instrumentation at the advanced test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J. L.; Knudson, D. L.; Daw, J. E.; Unruh, T.; Chase, B. M.; Palmer, J.; Condie, K. G.; Davis, K. L. [Idaho National Laboratory, MS 3840, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

    2011-07-01

    Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper reports results from this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and realtime flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted. (authors)

  12. Enhanced In-Pile Instrumentation at the Advanced Test Reactor

    Science.gov (United States)

    Rempe, Joy L.; Knudson, Darrell L.; Daw, Joshua E.; Unruh, Troy; Chase, Benjamin M.; Palmer, Joe; Condie, Keith G.; Davis, Kurt L.

    2012-08-01

    Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper provides an update on this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.

  13. Study on the leak rate test for HANARO reactor building

    International Nuclear Information System (INIS)

    Choi, Y. S.; Kim, Y. K.; Kim, M. J.; Park, J. M.; Woo, J. S.

    2002-01-01

    The reactor building of HANARO adopts the confinement concept, which allows a certain amount of air leakage. In order to restrict the air leakage through the confinement boundary, negative pressure of at least 2.5 mmWG is maintained in normal operating condition while maintaining 25 mmWG of negative pressure in abnormal condition, the inside air filtered by a train of charcoal filter is released to the atmosphere through the stack. In this situation, if the emergency ventilation system is not operable, the reactor building is isolated from the outside then the trapped air inside will be leaked out through the building by ground release concept. As the leak rate may be affected by an effect of wind velocity outside the reactor building, the air tightness of confinement should be maintained to limit the leak rate below the allowable value. The local leak rate test method was used since the beginning of the commissioning until July 1999. However it has been pointed out as a defect that the method is so susceptible to the change of temperature and atmospheric pressure during testing. For more accurate leak rate testing, we have introduced a new test method. We have periodically carried out the new leak rate testing and the results indicate that the bad effect by the temperature and atmospheric pressure change is considerably reduced, which gives more stable leak rate measurement

  14. Design of high temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Saito, Shinzo; Tanaka, Toshiyuki; Sudo, Yukio

    1994-09-01

    Construction of High Temperature Engineering Test Reactor (HTTR) is now underway to establish and upgrade basic technologies for HTGRs and to conduct innovative basic research at high temperatures. The HTTR is a graphite-moderated and helium gas-cooled reactor with 30 MW in thermal output and outlet coolant temperature of 850degC for rated operation and 950degC for high temperature test operation. It is planned to conduct various irradiation tests for fuels and materials, safety demonstration tests and nuclear heat application tests. JAERI received construction permit of HTTR reactor facility in February 1990 after 22 months of safety review. This report summarizes evaluation of nuclear and thermal-hydraulic characteristics, design outline of major systems and components, and also includes relating R and D result and safety evaluation. Criteria for judgment, selection of postulated events, major analytical conditions for anticipated operational occurrences and accidents, computer codes used in safety analysis and evaluation of each event are presented in the safety evaluation. (author)

  15. Tests of HAMMER (original) and HAMMER-TECHNION systems with critical experiments

    International Nuclear Information System (INIS)

    Santos, A. dos

    1986-01-01

    Performances of the reactor cell codes HAMMER (original) and HAMMER-TECHNION were tested against experimental results of critical benchmarks. The option made was the utilization of consistent methodologies so that only the NIT (Nordheim Integral Technique) was utilized in the HAMMER-TECHNION. All differences encountered in the analysis made with these systems can be attributed to their basic nuclear data library. Five critical benchmarks was utilized on this study. Surprisingly, the performance of the original HAMMER system was betterthan that of the HAMMER-TECHNION. (Author) [pt

  16. Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Perry, E.; Chrzanowski, J.; Rule, K.; Viola, M.; Williams, M.; Strykowsky, R.

    1999-01-01

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. The Decontamination and Decommissioning (D and D) of the TFTR is scheduled to occur over a period of three years beginning in October 1999. This is not a typical Department of Energy D and D Project where a facility is isolated and cleaned up by ''bulldozing'' all facility and hardware systems to a greenfield condition. The mission of TFTR D and D is to: (a) surgically remove items which can be re-used within the DOE complex, (b) remove tritium contaminated and activated systems for disposal, (c) clear the test cell of hardware for future reuse, (d) reclassify the D-site complex as a non-nuclear facility as defined in DOE Order 420.1 (Facility Safety) and (e) provide data on the D and D of a large magnetic fusion facility. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The record-breaking deuterium-tritium experiments performed on TFTR resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 Mev neutrons. The total tritium content within the vessel is in excess of 7,000 Curies while dose rates approach 75 mRem/hr. These radiological hazards along with the size and shape of the Tokamak present a unique and challenging task for dismantling

  17. Assessment of residual life of fast breeder test reactor

    International Nuclear Information System (INIS)

    Srinivasan, G.

    2016-01-01

    The Fast Breeder Test Reactor (FBTR) is a loop type sodium cooled fast reactor and has been in operation since 1985. As a part of regulatory requirement for relicensing, residual life assessment had to be carried out. The systems are made of SS 316, and designed for creep and fatigue. The design life for creep is 100,000 h at 550°C. The design fatigue cycle for operation from shutdown to full power varies from component to component. In general, most of the components are designed for 2000 cycles. The reactor has operated mostly below the design temperatures. It is seen that enough creep-fatigue life is available for the non-replaceable, permanent components. The residual life was found to be governed by the residual ductility of the Grid Plate supporting the core after neutron irradiation. Fast flux measurements were carried out at the grid plate location. Samples were irradiated and tensile tested. Results indicate the allowable dpa for a 10% residual ductility criterion as 4.37. This gave a residual life of ~ 6 Effective Full Power Years for the reactor as of Feb 2012. Measures to reduce the neutron dose on the grid plate are being taken. (author)

  18. A Critical Review of the IELTS Writing Test

    Science.gov (United States)

    Uysal, Hacer Hande

    2010-01-01

    Administered at local centres in 120 countries throughout the world, IELTS (International English Language Testing System) is one of the most widely used large-scale ESL tests that also offers a direct writing test component. Because of its popularity and its use for making critical decisions about test takers, it is crucial to draw attention to…

  19. Optimization by simulation of the coupling between a sub-critical reactor and its spallation source. Towards a pilot reactor

    International Nuclear Information System (INIS)

    Kerdraon, D.

    2001-10-01

    Accelerator Driven Systems (ADS), based on a proton accelerator and a sub-critical core coupled with a spallation target, offer advantages in order to reduce the nuclear waste radiotoxicity before repository closure. Many studies carried out on the ADS should lead to the definition of an experimental plan which would federate the different works in progress. This thesis deals with the neutronic Monte Carlo simulations with the MCNPX code to optimize such a system in view of a pilot reactor building. First, we have recalled the main neutronic properties of an hybrid reactor. The concept of gas-cooled eXperimental Accelerator Driven System (XADS) chosen for our investigations comes from the preliminary studies done by the Framatome company. In order to transmute minor actinides, we have considered the time evolution of the main fuels which could be reasonably used for the demonstration phases. The neutronic parameters of the reactor, concerning minor actinide transmutation, are reported. Also, we have calculated the characteristic times and the transmutation rates in the case of 99 Tc and 129 I isotopes. We have identified some neutronic differences between an experimental and a power ADS according to the infinite multiplication coefficient, the shape factor and the level of flux to extend the demonstrator concept. We have proposed geometric solutions to keep the radial shape factor of a power ADS acceptable. In the last part, beyond the experimental XADS scope, we have examined the possible transition towards an uranium/thorium cycle based on Molten Salt Reactors using a power ADS in order to generate the required 233 U proportion. (author)

  20. Test of QED at critical field strength

    Energy Technology Data Exchange (ETDEWEB)

    Bula, C. [Princeton Univ., NJ (United States)

    1997-01-01

    In a new experiment at the Final Focus Test Beam at SLAC, a low-emittance 46.6 GeV electron beam is brought into collisions with terawatt pulses of 1054 nm or 527 nm wavelength from a Nd:glass laser. Peak laser intensities of 10{sup 18} W/cm{sup 2} have been achieved corresponding to a value of 0.6 for the parameter {eta} = e{epsilon}/m{omega}{sub 0}c. In this case, an electron that crosses the center of the laser pulse has near-unit interaction probability. Results are presented for multiphoton Compton scattering in which an electron interacts with up to four laser photons, in agreement with theoretical calculations.

  1. Specialist committee's review reports for experimental fast reactor JOYO' MK-III performance tests

    International Nuclear Information System (INIS)

    Yamashita, Kiyonobu; Okubo, Toshiyuki; Kamide, Hideki

    2004-02-01

    Performance tests (startup-physics tests and power elevation tests) were planed for experimental fast reactor 'JOYO' MK-III where irradiation performances were upgraded by power increase from 100 to 140 MW. The reactor safety committee of O-arai Engineering Center has established a specialist committee for 'JOYO' MK-III Performance Tests at the first meeting of 2003 on 23th. April 2003, to accomplish the tests successfully. Subjects of the specialist committee were reviews of following items covering a wide range. 1) Contents of modification works. 2) Reflections of functional test results to the plant and facilities. 3) Reflections of safety rule modification to instruction and manual for operation. 4) Quality assurances and pre-calculation for performance test. 5) Inspection plan and its results. 6) Adequacy of performance test plan. 7) Confirmation of performance test results. Before test-starts, the specialist committee has confirmed by reviewing the items from 1) to 6) based on explanations and documents of the Division of Experimental Reactor, that the test plan and pre-inspections are adequate. After the tests, the specialist committee had confirmed by reviewing the item 7) in the same way, that the each test result satisfies the corresponding criterion. The specialist committee has concluded from these review's results before and after the tests that the 'JOYO' MK-III Performance Tests were carried out appropriately. Besides, the first criticality of the JOYO MK-III was achieved on 2nd. July 2003, and the continuous full power operation was carried on 20th. Nov. 2003. Finally, all performance tests were completed by the pass of the last governmental pre-serviced inspection (dose rate measurement during the shut down condition). (author)

  2. Conceptual design based on scale laws and algorithms for sub-critical transmutation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Gu; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    In order to conduct the effective integration of computer-aided conceptual design for integrated nuclear power reactor, not only is a smooth information flow required, but also decision making for both conceptual design and construction process design must be synthesized. In addition to the aboves, the relations between the one step and another step and the methodologies to optimize the decision variables are verified, in this paper especially, that is, scaling laws and scaling criteria. In the respect with the running of the system, the integrated optimization process is proposed in which decisions concerning both conceptual design are simultaneously made. According to the proposed reactor types and power levels, an integrated optimization problems are formulated. This optimization is expressed as a multi-objective optimization problem. The algorithm for solving the problem is also presented. The proposed method is applied to designing a integrated sub-critical reactors. 6 refs., 5 figs., 1 tab. (Author)

  3. Conceptual design based on scale laws and algorithms for sub-critical transmutation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Gu; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    In order to conduct the effective integration of computer-aided conceptual design for integrated nuclear power reactor, not only is a smooth information flow required, but also decision making for both conceptual design and construction process design must be synthesized. In addition to the aboves, the relations between the one step and another step and the methodologies to optimize the decision variables are verified, in this paper especially, that is, scaling laws and scaling criteria. In the respect with the running of the system, the integrated optimization process is proposed in which decisions concerning both conceptual design are simultaneously made. According to the proposed reactor types and power levels, an integrated optimization problems are formulated. This optimization is expressed as a multi-objective optimization problem. The algorithm for solving the problem is also presented. The proposed method is applied to designing a integrated sub-critical reactors. 6 refs., 5 figs., 1 tab. (Author)

  4. Trends in large-scale testing of reactor structures

    International Nuclear Information System (INIS)

    Blejwas, T.E.

    2003-01-01

    Large-scale tests of reactor structures have been conducted at Sandia National Laboratories since the late 1970s. This paper describes a number of different large-scale impact tests, pressurization tests of models of containment structures, and thermal-pressure tests of models of reactor pressure vessels. The advantages of large-scale testing are evident, but cost, in particular limits its use. As computer models have grown in size, such as number of degrees of freedom, the advent of computer graphics has made possible very realistic representation of results - results that may not accurately represent reality. A necessary condition to avoiding this pitfall is the validation of the analytical methods and underlying physical representations. Ironically, the immensely larger computer models sometimes increase the need for large-scale testing, because the modeling is applied to increasing more complex structural systems and/or more complex physical phenomena. Unfortunately, the cost of large-scale tests is a disadvantage that will likely severely limit similar testing in the future. International collaborations may provide the best mechanism for funding future programs with large-scale tests. (author)

  5. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Baek, W. P.; Song, C. H.; Kim, Y. S. and others

    2005-02-15

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform various integral effect tests for design, operation, and safety regulation of pressurized water reactors. During the first phase of this project (1997.8{approx}2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished: a full-height, 1/300-volume-scaled full pressure facility for APR1400, an evolutionary pressurized water reactor that was developed by Korean industry. Main objectives of the present phase (2002.4{approx}2005.2), was to optimize the facility design and to construct the experimental facility. We have performed following researches: 1) Optimization of the basic design of the thermal-hydraulic integral effect test facility for PWRs - ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) - Reduced height design for APR1400 (+ specific design features of KSNP safety injection systems) - Thermal-hydraulic scaling based on three-level scaling methodology by Ishii et al. 2) Construction of the ATLAS facility - Detailed design of the test facility - Manufacturing and procurement of components - Installation of the facility 3) Development of supporting technology for integral effect tests - Development and application of advanced instrumentation technology - Preliminary analysis of test scenarios - Development of experimental procedures - Establishment and implementation of QA system/procedure.

  6. Combined use of the RPI [Rensselaer Polytechnic Institute] reactor for training and critical experiments

    International Nuclear Information System (INIS)

    Harris, D.R.; Rohr, R.R.; Rodriguez-Vera, F.

    1990-01-01

    The Rensselaer Polytechnic Institute (RPI) reactor critical facility (RCF) has provided educational and research opportunities for RPI and other students for >25 yr. The RCF was built by the American Locomotive Company (ALCO) in the 1950s as a critical facility in support of the army package power reactor program, and, when ALCO went out of business in 1964, the RCF was acquired by RPI. Since that time, RPI has operated the RCF primarily in a teaching mode in the nuclear engineering department, although reactor research, activation analyses, and reactivity assays have been carried out as well. Until recently, the RCF was fueled by plates containing highly enriched uranium as a cermet in stainless steel. This highly enriched uranium (HEU) fuel was replaced recently by 4.81 wt% enriched UO 2 high-density pellets clad in stainless steel rods. The use of these SPERT (F1) fuel rods in the RCF provided a cost-effective method for conversion of the core from HEU to low-enriched uranium and for enhancement of the RCF training and research program. The RCF is the only facility in the United States that provides reactor training on a core containing fuel that is similar to that used in power industry light water reactors (LWRs). Moreover, the RCF is the only facility in the United States currently available for supplying critical experimental data in support of the LWR power industry. Thus, the RCF is in a unique position to carry out important training and research services consistent with RPI's nuclear engineering objectives

  7. Criticality analysis of thermal reactors for two energy groups applying Monte Carlo and neutron Albedo method

    International Nuclear Information System (INIS)

    Terra, Andre Miguel Barge Pontes Torres

    2005-01-01

    The Albedo method applied to criticality calculations to nuclear reactors is characterized by following the neutron currents, allowing to make detailed analyses of the physics phenomena about interactions of the neutrons with the core-reflector set, by the determination of the probabilities of reflection, absorption, and transmission. Then, allowing to make detailed appreciations of the variation of the effective neutron multiplication factor, keff. In the present work, motivated for excellent results presented in dissertations applied to thermal reactors and shieldings, was described the methodology to Albedo method for the analysis criticality of thermal reactors by using two energy groups admitting variable core coefficients to each re-entrant current. By using the Monte Carlo KENO IV code was analyzed relation between the total fraction of neutrons absorbed in the core reactor and the fraction of neutrons that never have stayed into the reflector but were absorbed into the core. As parameters of comparison and analysis of the results obtained by the Albedo method were used one dimensional deterministic code ANISN (ANIsotropic SN transport code) and Diffusion method. The keff results determined by the Albedo method, to the type of analyzed reactor, showed excellent agreement. Thus were obtained relative errors of keff values smaller than 0,78% between the Albedo method and code ANISN. In relation to the Diffusion method were obtained errors smaller than 0,35%, showing the effectiveness of the Albedo method applied to criticality analysis. The easiness of application, simplicity and clarity of the Albedo method constitute a valuable instrument to neutronic calculations applied to nonmultiplying and multiplying media. (author)

  8. Performance demonstration experience for reactor pressure vessel shell ultrasonic testing

    International Nuclear Information System (INIS)

    Zado, V.

    1998-01-01

    The most ultrasonic testing techniques used by many vendors for pressurized water reactor (PWR) examinations were based on American Society of Mechanical Engineers 'Boiler and Pressurized Vessel Code' (ASME B and PV Code) Sections XI and V. The Addenda of ASME B and PV Code Section XI, Edition 1989 introduced Appendix VIII - 'Performance Demonstration for Ultrasonic Examination Systems'. In an effort to increase confidence in performance of ultrasonic testing of the operating nuclear power plants in United States, the ultrasonic testing performance demonstration examination of reactor vessel welds is performed in accordance with Performance Demonstration Initiative (PDI) program which is based on ASME Code Section XI, Appendix VIII requirements. This article provides information regarding extensive qualification preparation works performed prior EPRI guided performance demonstration exam of reactor vessel shell welds accomplished in January 1997 for the scope of Appendix VIII, Supplements IV and VI. Additionally, an overview of the procedures based on requirements of ASME Code Section XI and V in comparison to procedure prepared for Appendix VIII examination is given and discussed. The samples of ultrasonic signals obtained from artificial flaws implanted in vessel material are presented and results of ultrasonic testing are compared to actual flaw sizes. (author)

  9. Advanced In-pile Instrumentation for Material and Test Reactors

    International Nuclear Information System (INIS)

    Rempe, J.L.; Knudson, D.L.; Daw, J.E.; Unruh, T.C.; Chase, B.M.; Davis, K.L.; Palmer, A.J.; Schley, R.S.

    2013-06-01

    The US Department of Energy sponsors the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program to promote U.S. research in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, advancing U.S. energy security needs. A key component of the ATR NSUF effort is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the strategy developed by the Idaho National Laboratory (INL) for identifying instrumentation needed for ATR irradiation tests and the program initiated to obtain these sensors. New sensors developed from this effort are identified; and the progress of other development efforts is summarized. As reported in this paper, INL staff is currently involved in several tasks to deploy real-time length and flux detection sensors, and efforts have been initiated to develop a crack growth test rig. Tasks evaluating 'advanced' technologies, such as fiber-optics based length detection and ultrasonic thermometers are also underway. In addition, specialized sensors for real-time detection of temperature and thermal conductivity are not only being provided to NSUF reactors, but are also being provided to several international test reactors. (authors)

  10. Advanced In-Pile Instrumentation for Materials Testing Reactors

    Science.gov (United States)

    Rempe, J. L.; Knudson, D. L.; Daw, J. E.; Unruh, T. C.; Chase, B. M.; Davis, K. L.; Palmer, A. J.; Schley, R. S.

    2014-08-01

    The U.S. Department of Energy sponsors the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program to promote U.S. research in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, advancing U.S. energy security needs. A key component of the ATR NSUF effort is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the strategy developed by the Idaho National Laboratory (INL) for identifying instrumentation needed for ATR irradiation tests and the program initiated to obtain these sensors. New sensors developed from this effort are identified, and the progress of other development efforts is summarized. As reported in this paper, INL researchers are currently involved in several tasks to deploy real-time length and flux detection sensors, and efforts have been initiated to develop a crack growth test rig. Tasks evaluating `advanced' technologies, such as fiber-optics based length detection and ultrasonic thermometers, are also underway. In addition, specialized sensors for real-time detection of temperature and thermal conductivity are not only being provided to NSUF reactors, but are also being provided to several international test reactors.

  11. Advanced Test Reactor National Scientific User Facility Partnerships

    International Nuclear Information System (INIS)

    Marshall, Frances M.; Allen, Todd R.; Benson, Jeff B.; Cole, James I.; Thelen, Mary Catherine

    2012-01-01

    In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin

  12. Present status of high-temperature engineering test reactor (HTTR) program

    International Nuclear Information System (INIS)

    Tanaka, Toshiyuki; Baba, Osamu; Shiozawa, Shusaku; Okubo, Minoru; Tobioka, Toshiaki

    1994-01-01

    The 30MWt HTTR is a high-temperature gas-cooled reactor (HTGR), with a maximum helium coolant temperature of 950degC at the reactor outlet. The construction of the HTTR started in March 1991, with first criticality to be followed in 1998 after commissioning testing. At present the HTTR reactor building (underground part) and its containment vessel have been almost completed and its main components, such as a reactor pressure vessel (RPV), an intermediate heat exchanger, hot gas pipings and graphite core structures, are now manufacturing at their factories at the target of their installation starting in 1994. The project is intended to establish and upgrade the technology basis necessary for HTGR developments. Japan Atomic Energy Research Institute (JAERI) also plans to conduct material and fuel irradiation tests as an innovative basic research after attaining rated power and coolant temperature. Innovative basic researches are now in great request. The paper describes major features of HTTR, present status of its construction and research and test using HTTR. (author)

  13. Present status of High-Temperature engineering Test Reactor (HTTR) program

    International Nuclear Information System (INIS)

    Tanaka, Toshiyuki; Baba, Osamu; Shiozawa, Shusaku; Okubo, Minoru; Tobioka, Toshiaki

    1993-01-01

    The 30MWt HTTR is a high-temperature gas-cooled reactor (HTGR), with a maximum helium coolant temperature of 950 deg C at the reactor outlet. The construction of the HTTR started in March 1991, with first criticality to be followed in 1998 after commissioning testing. At present the HTTR reactor building (underground part) and its containment vessel have been almost completed and its main components, such as a reactor pressure vessel (RPV), an intermediate heat exchanger, hot gas pipings and graphite core structures, are now manufacturing at their factories at the target of their installation starting in 1994. The project is intended to establish and upgrade the technology basis necessary for HTGR developments. Japan Atomic Energy Research Institute (JAERI) also plans to conduct material and fuel irradiation tests as an innovative basic research after attaining rated power and coolant temperature. Innovative basic researches are now in great request. The paper describes major features of HTTR, present status of its construction and research and test plan using HTTR. (author)

  14. Critical experiment and analysis for nitride fuel fast reactor using FCA

    International Nuclear Information System (INIS)

    Andoh, Masaki; Iijima, Susumu; Okajima, Shigeaki; Sakurai, Takeshi; Oigawa, Hiroyuki

    2000-03-01

    As a research on FBR with new types of fuel, a series of experiments on a nitride fuel fast reactor was carried out at Fast Critical Assembly (FCA) to evaluate the calculation accuracy on the neutronic characteristics of the reactor. In this study, criticality, sample reactivity worth and sodium void reactivity worth were measured in the FCA XIX-2 core simulating a nitride fuel fast reactor and were analyzed using the standard analysis method for FCA fast reactor cores. The accuracy of the analysis on the effective multiplication factor was the same as those of the other FCA cores. For the plate sample reactivity worth, the calculation on the radial distribution of plutonium plate reactivity worth overestimated the measurement depending on the distance from the center of the core. For the sodium void reactivity worth, the calculation overestimated the experimental value 10 to 20% at the core center, while the overestimation was improved as the voided position was located at the core boundary. It was found that the transport effect was considerable even at the center of the core. It was considered that the calculation accuracy on the non-leakage term of the void reactivity worth and transport correction should be improved. (author)

  15. Validation of High-Fidelity Reactor Physics Models for Support of the KJRR Experimental Campaign in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, David W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nielsen, Joseph W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Norman, Daren R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-01

    The Korea Atomic Energy Research Institute is currently in the process of qualifying a Low-Enriched Uranium fuel element design for the new Ki-Jang Research Reactor (KJRR). As part of this effort, a prototype KJRR fuel element was irradiated for several operating cycles in the Northeast Flux Trap of the Advanced Test Reactor (ATR) at the Idaho National Laboratory. The KJRR fuel element contained a very large quantity of fissile material (618g 235U) in comparison with historical ATR experiment standards (<1g 235U), and its presence in the ATR flux trap was expected to create a neutronic configuration that would be well outside of the approved validation envelope for the reactor physics analysis methods used to support ATR operations. Accordingly it was necessary, prior to high-power irradiation of the KJRR fuel element in the ATR, to conduct an extensive set of new low-power physics measurements with the KJRR fuel element installed in the ATR Critical Facility (ATRC), a companion facility to the ATR that is located in an immediately adjacent building, sharing the same fuel handling and storage canal. The new measurements had the objective of expanding the validation envelope for the computational reactor physics tools used to support ATR operations and safety analysis to include the planned KJRR irradiation in the ATR and similar experiments that are anticipated in the future. The computational and experimental results demonstrated that the neutronic behavior of the KJRR fuel element in the ATRC is well-understood, both in terms of its general effects on core excess reactivity and fission power distributions, its effects on the calibration of the core lobe power measurement system, as well as in terms of its own internal fission rate distribution and total fission power per unit ATRC core power. Taken as a whole, these results have significantly extended the ATR physics validation envelope, thereby enabling an entire new class of irradiation experiments.

  16. Analysis of kyoto university reactor physics critical experiments using NCNSRC calculation methodology

    International Nuclear Information System (INIS)

    Amin, E.; Hathout, A.M.; Shouman, S.

    1997-01-01

    The kyoto university reactor physics experiments on the university critical assembly is used to benchmark validate the NCNSRC calculations methodology. This methodology has two lines, diffusion and Monte Carlo. The diffusion line includes the codes WIMSD4 for cell calculations and the two dimensional diffusion code DIXY2 for core calculations. The transport line uses the MULTIKENO-Code vax Version. Analysis is performed for the criticality, and the temperature coefficients of reactivity (TCR) for the light water moderated and reflected cores, of the different cores utilized in the experiments. The results of both Eigen value and TCR approximately reproduced the experimental and theoretical Kyoto results. However, some conclusions are drawn about the adequacy of the standard wimsd4 library. This paper is an extension of the NCNSRC efforts to assess and validate computer tools and methods for both Et-R R-1 and Et-MMpr-2 research reactors. 7 figs., 1 tab

  17. Stability criteria and critical runway conditions of propylene glycol manufacture in a continuous stirred tank reactor

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Gómez

    2015-05-01

    Full Text Available Here, a new method for the analysis of the steady state and the safety operational conditions of the hydrolysis of propylene oxide with excess of water, in a Continuous Stirred Tank Reactor (CSTR, was developed. For industrial operational typical values, at first, the generated and removed heat balances were examined. Next, the effect of coolant fluid temperature in the critical ignition and extinction temperatures (TCI and TCE, respectively was analyzed. The influence of the heat exchange parameter (hS on coolant and critical temperatures was also studied. Finally, the steady state operation areas were defined. The existence of multiple stable states was recognized when the heat exchange parameter was in the range 6.636 < hS kJ/(min.K < 11.125. Unstable operation area was located between the TCI and TCE values, restricting the reactor operation area to the low stable temperatures.

  18. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Baek, Won Pil; Song, C. H.; Kim, Y. S.

    2007-02-01

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform the tests for design, operation, and safety regulation of pressurized water reactors. In the first phase of this project (1997.8∼2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished. In the second phase (2002.4∼2005.2), an optimized design of the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) was established and the construction of the facility was almost completed. In the third phase (2005.3∼2007.2), the construction and commission tests of the ATLAS are to be completed and some first-phase tests are to be conducted

  19. Core Seismic Tests for a Sodium-Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Gyeong Hoi; Lee, J. H

    2007-01-15

    This report describes the results of the comparison of the core seismic responses between the test and the analysis for the reduced core mock-up of a sodium-cooled fast reactor to verify the FAMD (Fluid Added Mass and Damping) code and SAC-CORE (Seismic Analysis Code for CORE) code, which implement the application algorithm of a consistent fluid added mass matrix including the coupling terms. It was verified that the narrow fluid gaps between the duct assemblies significantly affect the dynamic characteristics of the core duct assemblies and it becomes stronger as a number of duct increases within a certain level. As conclusion, from the comparison of the results between the tests and the analyses, it is verified that the FAMD code and the SAC-CORE code can give an accurate prediction of a complex core seismic behavior of the sodium-cooled fast reactor.

  20. Removal of the Materials Test Reactor overhead working reservoir

    International Nuclear Information System (INIS)

    Lunis, B.C.

    1975-10-01

    Salient features of the removal of an excessed contaminated facility, the Materials Test Reactor (MTR) overhead working reservoir (OWR) from the Test Reactor Area to the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory are described. The 125-ton OWR was an overhead 160,000-gallon-capacity tank approximately 193 feet high which supplied cooling water to the MTR. Radiation at ground level beneath the tank was 5 mR/hr and approximately 600 mR/hr at the exterior surface of the tank. Sources ranging from 3 R/hr to in excess of 500 R/hr exist within the tank. The tank interior is contaminated with uranium, plutonium, and miscellaneous fission products. The OWR was lowered to ground level with the use of explosive cutters. Dismantling, decontamination, and disposal were performed by Aerojet Nuclear Company maintenance forces

  1. Fuels for research and test reactors, status review: July 1982

    International Nuclear Information System (INIS)

    Stahl, D.

    1982-12-01

    A thorough review is provided on nuclear fuels for steady-state thermal research and test reactors. The review was conducted to provide a documented data base in support of recent advances in research and test reactor fuel development, manufacture, and demonstration in response to current US policy on availability of enriched uranium. The review covers current fabrication practice, fabrication development efforts, irradiation performance, and properties affecting fuel utilization, including thermal conductivity, specific heat, density, thermal expansion, corrosion, phase stability, mechanical properties, and fission-product release. The emphasis is on US activities, but major work in Europe and elsewhere is included. The standard fuel types discussed are the U-Al alloy, UZrH/sub x/, and UO 2 rod fuels. Among new fuels, those given major emphasis include H 3 Si-Al dispersion and UO 2 caramel plate fuels

  2. Research on the reactor physics using the Kyoto University Critical Assembly (KUCA)

    International Nuclear Information System (INIS)

    1986-10-01

    The Kyoto University Critical Assembly [KUCA] is a multi-core type critical assembly established in 1974, as a facility for the joint use study by researchers of all universities in Japan. Thereafter, many reactor physics experiments have been carried out using three cores (A-, B-, and C-cores) in the KUCA. In the A- and B-cores, solid moderator such as polyethylene or graphite is used, whereas light-water is utilized as moderator in the C-core. The A-core has been employed mainly in connection with the Cockcroft-Walton type accelerator installed in the KUCA, to measure (1) the subcriticality by the pulsed neutron technique for the critical safety research and (2) the neutron spectrum by the time-of-flight technique. Recently, a basic study on the tight lattice core has also launched using the A-core. The B-core has been employed for the research on the thorium fuel cycle ever since. The C-core has been employed (1) for the basic studies on the nuclear characteristics of light-water moderated high-flux research reactors, including coupled-cores, and (2) for a research related to reducing enrichment of uranium fuel used in research reactors. The C-core is being utilized in the reactor laboratory course experiment for students of ten universities in Japan. The data base of the KUCA critical experiments is generated so far on the basis of approximately 350 experimental reports accumulated in the KUCA. Besides, the assessed KUCA code system has been established through analyses on the various KUCA experiments. In addition to the KUCA itself, both of them are provided for the joint use study by researchers of all universities in Japan. (author)

  3. SN transport analyses of critical reactor experiments for the SNTP program

    International Nuclear Information System (INIS)

    Mays, C.W.

    1993-01-01

    The capability of S N methodology to accurately predict the neutronics behavior of a compact, light water-moderated reactor is examined. This includes examining the effects of cross-section modeling and the choice of spatial and angular representation. The isothermal temperature coefficient in the range of 293 K to 355 K is analyzed, as well as the radial fission density profile across the central fuel element. Measured data from a series of critical experiments are used for these analyses

  4. IAEA advisory group meeting on: Critical assessment of tritium retention in fusion reactor materials. Summary report

    International Nuclear Information System (INIS)

    Janev, R.K.; Federici, G.; Roth, J.

    1999-07-01

    The proceedings, conclusions and recommendations of the IAEA Advisory Group Meeting on 'Critical Assessment of Tritium Retention in Fusion Reactor Materials', held on June 7-8, 1999 at the IAEA Headquarters in Vienna, Austria, are briefly described. The report contains a summary of the presentations of meeting participants, a review of the data status (availability and needs) for the fusion most relevant bulk and mixed materials, and recommendations to the IAEA regarding its future activity in this data area. (author)

  5. Calculation of criticality of the AP600 reactor with KENO V.a code

    Energy Technology Data Exchange (ETDEWEB)

    Krumbein, A; Caner, M; Shapira, M [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center

    1996-12-01

    The Westinghouse AP600 PWR has been modeled using the KENO V.a three dimensional Monte Carlo criticality program of the SCALE-PC code system. These calculations and the use of a Monte Carlo neutron transport code such as KENO will provide us with an independent check on our WIMS/CITATION calculations for the AP600 as well as for other reactors. It will also enable us to model more complicated geometries. (authors).

  6. Scheduling and recording of reactor maintenance and testing by computer

    International Nuclear Information System (INIS)

    Gray, P.L.

    1975-01-01

    The use of a computer program, Maintenance Information and Control (MIAC), at the Savannah River Laboratory (SRL) assists a small operating staff in maintaining three research reactors and a subcritical facility. The program schedules and defines preventive maintenance, schedules required periodic tests, logs repair and cost information, specifies custodial and service responsibilities, and provides equipment maintenance history, all with a minimum of record-keeping

  7. Fracture toughness testing of a reactor grade graphite

    Energy Technology Data Exchange (ETDEWEB)

    Roeding, M.; Klein, G.; Schiffers, H.; Nickel, H.

    1976-03-15

    Fracture mechanics is a well established tool for the assessment of brittle fracture in metallic structural materials. In this paper an attempt is made to apply fracture mechanics to a reactor-grade graphite. The effect of several test parameters on the stress intensity factor was measured; this was found to lie in the range 25 and 50 N/mm/sup -3/2/. The results are discussed in terms of the well known mechanical characteristics of graphite.

  8. Facility for in-reactor creep testing of fuel cladding

    International Nuclear Information System (INIS)

    Kohn, E.; Wright, M.G.

    1976-11-01

    A biaxial stress creep test facility has been designed and developed for operation in the WR-1 reactor. This report outlines the rationale for its design and describes its construction and the operating experience with it. The equipment is optimized for the determination of creep data on CANDU fuel cladding. Typical results from Zr-2.5 wt% Nb fuel cladding are used to illustrate the accuracy and reliability obtained. (author)

  9. Diamond Wire Cutting of the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Keith Rule; Erik Perry; Robert Parsells

    2003-01-01

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. As a result, decommissioning commenced in October 1999. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The deuterium-tritium experiments resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 MeV neutrons. The total tritium content within the vessel is in excess of 7,000 Curies, while dose rates approach 50 mRem/hr. These radiological hazards along with the size of the tokamak present a unique and challenging task for dismantling. Engineers at the Princeton Plasma Physics Laboratory (PPPL) decided to investigate an alternate, innovative approach for dismantlement of the TFTR vacuum vessel: diamond wire cutting technology. In August 1999, this technology was successfully demonstrated and evaluated on vacuum vessel surrogates. Subsequently, the technology was improved and redesigned for the actual cutting of the vacuum vessel. Ten complete cuts were performed in a 6-month period to complete the removal of this unprecedented type of DandD (Decontamination and Decommissioning) activity

  10. Calculated k-effectives for light water reactor typical, U + Pu nitrate solution critical experiments

    International Nuclear Information System (INIS)

    Primm, R.T. III; Mincey, J.F.

    1982-01-01

    The Department of Energy's Consolidated Fuel Reprocessing Program has as a goal the design of nuclear fuel reprocessing equipment. In order to validate computer codes used for criticality analyses in the design of such equipment, k-effectives have been calculated for several U + Pu nitrate solution critical experiments. As of January 1981, descriptions of 45 unpoisoned, U + Pu solution experiments were available in the open literature. Twelve of these experiments were performed with solutions which have physical characteristics typical of dissolved, light water reactor fuel. This paper contains a discussion of these twelve experiments, a review of the calculational procedure used to determine k-effectives, and the results of the calculations

  11. Control of criticality risk in the manufacture of fuel elements for research reactors

    International Nuclear Information System (INIS)

    Friedenthal, M.; Cardenas Yucra, H.R.; Marajofsky, A.; La Gamma de Batistoni, A.M.

    1987-01-01

    The control of criticality risk in a chemical plant adopts different forms according to the quantities of fissile material and the type of compounds used. This work presents the treatment of the critical excursion risk adopted in production plants of U 3 O 8 and manufacturing plants of fuel elements for research reactors, located in Constituyentes Atomic Center. The possible events and accidents related to the fissile material control are analyzed, and the systems of administrative control and intrinsic safety through engineering are described. (Author)

  12. On-line reactor building integrity testing at Gentilly-2 (summary of results 1987-1994)

    International Nuclear Information System (INIS)

    Collins, N.; Lafreniere, P.

    1994-01-01

    In 1987, Hydro-0uebec embarked on an ambitious development program to provide the Gentilly-2 Nuclear Power Station with an effective and practical Reactor Building Containment integrity Test (CIT). In October 1992, the inaugural low pressure (3 kPa(g) nominal) CIT at 100% F.P was performed. The test was conclusive and the CIT was declared In-Service for containment integrity verification on-line. Five subsequent CITs performed in 1993 and 1994 have demonstrated the expected leak rate results and good reliability. The outstanding feature of the CITs is the demonstrated accurary of better than 5% of the measured leak rate. The CIT was developed with the primary goal of demonstrating 'overall' containment availability. Specifically it was designed to detect a 25 mm. diameter leak or hole in the Reactor Building. However, the remarkable CIT accuracy allows reliable detection of a 2 mm. hole. The Gentilly-2 CIT is an innovative approach based on the Temperature Compensation Method (TCM) which uses a reference volume composed of an extensive tubular network of several different diameters. This eliminates the need to track numerous temperature points. A second independent tubular network includes numerous humidity sampling points, thereby enabling the mearurernent of minute pressure variations inside the Reactor Building, independant of the spatial and temporal humidity behaviour. This Gentilly-2 TOM System has been demonstrated to work at both high and low test pressures. The GentiIly-2 design allows the CIT to be performed at a nominal 3 kPa(g) test pressure during a 12-hour period (28 hours total with alignment time) with the reactor at full power. The traditional Reactor Building Pressure Test (RBPT) is typically performed at high pressure (124 kPa(g) in a 5-day critical path window (7 days total with alignment time) during an annual shutdown

  13. Development of alarm logics for critical function monitoring in SMART-P reactor

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Seung Hwan; Hur, Seop; Seo, Jae Kwang; Lee, Tae Ho; Park, Cheon Tae; Kang, Han Ok

    2003-04-01

    The alarm logics for the critical functions of SMART-P reactor are developed, which are based on the those of Korean Standard Nuclear power Plant(KSNP). The SMART-P reactor is an integral typed nuclear power plant and has the some different design features compared to those of KSNP. It, however, has the similar features in critical functions because it is a kind of pressurized water reactor. The alarm logics for Critical Function Monitoring System(CFMS) in SMART-P are developed from those for CFMS in KSNP. The alarm logics of CFMS in only the primary loop are, therefore, developed, though the general CFMS covered the status of primary and secondary loop including the features of the containment. The specific setpoint of related variables related to the alarm logics will be developed after the specific designs of SMART-P are finished. In appendix, we describe the conceptual architecture and variables of display screens on CFMS according to the developed alarm logics.

  14. BFS, a Legacy to the International Reactor Physics, Criticality Safety, and Nuclear Data Communities

    International Nuclear Information System (INIS)

    Briggs, J. Blair; Tsibulya, Anatoly; Rozhikhin, Yevgeniy

    2012-01-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. Two Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) activities, the International Criticality Safety Benchmark Evaluation Project (ICSBEP), initiated in 1992, and the International Reactor Physics Experiment Evaluation Project (IRPhEP), initiated in 2003, have been identifying existing integral experiment data, evaluating those data, and providing integral benchmark specifications for methods and data validation for nearly two decades. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. Data provided by these two projects will be of use to the international reactor physics, criticality safety, and nuclear data communities for future decades The Russian Federation has been a major contributor to both projects with the Institute of Physics and Power Engineering (IPPE) as the major contributor from the Russian Federation. Included in the benchmark specifications from the BFS facilities are 34 critical configurations from BFS-49, 61, 62, 73, 79, 81, 97, 99, and 101; spectral characteristics measurements from BFS-31, 42, 57, 59, 61, 62, 73, 97, 99, and 101; reactivity effects measurements from BFS-62-3A; reactivity coefficients and kinetics measurements from BFS-73; and reaction rate measurements from BFS-42, 61, 62, 73, 97, 99, and 101.

  15. Best estimate approach for the evaluation of critical heat flux phenomenon in the boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kaliatka, Tadas; Kaliatka, Algirdas; Uspuras, Eudenijus; Vaisnoras, Mindaugas [Lithuanian Energy Institute, Kaunas (Lithuania); Mochizuki, Hiroyasu; Rooijen, W.F.G. van [Fukui Univ. (Japan). Research Inst. of Nuclear Engineering

    2017-05-15

    Because of the uncertainties associated with the definition of Critical Heat Flux (CHF), the best estimate approach should be used. In this paper the application of best-estimate approach for the analysis of CHF phenomenon in the boiling water reactors is presented. At first, the nodalization of RBMK-1500, BWR-5 and ABWR fuel assemblies were developed using RELAP5 code. Using developed models the CHF and Critical Heat Flux Ratio (CHFR) for different types of reactors were evaluated. The calculation results of CHF were compared with the well-known experimental data for light water reactors. The uncertainty and sensitivity analysis of ABWR 8 x 8 fuel assembly CHFR calculation result was performed using the GRS (Germany) methodology with the SUSA tool. Finally, the values of Minimum Critical Power Ratio (MCPR) were calculated for RBMK-1500, BWR-5 and ABWR fuel assemblies. The paper demonstrate how, using the results of sensitivity analysis, to receive the MCPR values, which covers all uncertainties and remains best estimated.

  16. 233U breeding in accelerator-driven sub-critical fast reactor

    International Nuclear Information System (INIS)

    Yang Yongwei; An Yu

    1999-01-01

    Accelerator-driven Sub-critical Fast Reactor (ADFR) is chosen as fissile-material-breeding reactor. (U-Pu)O x is chosen as fuel in the core and ThO 2 as fertile material in the blanket zone to breed 233 U. Molten lead is chosen as coolant because of its better neutronic and chemical characteristics over sodium. The program system used for neutronics study consists of: LAHET, for the simulation of the interaction between the proton with medium energy and the nuclei of the target; MCNP4A, for the simulation of neutron transport with energy below 20 MeV in the sub-critical reactor; CONNECT1, for the processing of some tallies provided by the output of MCNP4A in order to prepare micro-cross sections for elements used for burnup calculation; ORIGEN2, used for multi-region burnup calculation; CONNECT2, for the processing of atom densities of some elements provided in the output of ORIGEN2 in order to prepare input to LAHET calculation for next time step. The calculated results show that the proposed case is feasible for breeding fissile material considering the criticality safety, power density, burnup, etc

  17. Study of reactor parameters of on critical systems, Phase I: Safety report for RB zero power reactor

    International Nuclear Information System (INIS)

    Raisic, N.

    1962-09-01

    In addition to the safety analysis for the zero power RB reactor, this report contains a general description of the reactor, reactor components, auxiliary equipment and the reactor building. Reactor Rb has been reconstructed during 1961-1962 and supplied with new safety-control system as well as with a complete dosimetry instrumentation. Since RB reactor was constructed without shielding special attention is devoted to safety and protection of the staff performing experiments. Due to changed circumstances in the Institute ( start-up of the RA 7 MW power reactor) the role of the RB reactor was redefined

  18. Scale-4 analysis of pressurized water reactor critical configurations: Volume 5, North Anna Unit 1 Cycle 5

    International Nuclear Information System (INIS)

    Bowman, S.M.; Suto, T.

    1996-10-01

    ANSI/ANS 8.1 requires that calculational methods for away-from- reactor (AFR) criticality safety analyses be validated against experiment. This report summarizes part of the ongoing effort to benchmark AFR criticality analysis methods using selected critical configurations from commercial PWRs. Codes and data in the SCALE-4 code system were used. This volume documents the SCALE system analysis of one reactor critical configuration for North Anna Unit 1 Cycle 5. The KENO V.a criticality calculations for the North Anna 1 Cycle 5 beginning-of-cycle model yielded a value for k eff of 1. 0040±0.0005

  19. Seismic proving test of PWR reactor containment vessel

    International Nuclear Information System (INIS)

    Akiyama, H.; Yoshikawa, T.; Tokumaru, Y.

    1987-01-01

    The seismic reliability proving tests of nuclear power plant facilities are carried out by Nuclear Power Engineering Test Center (NUPEC), using the large-scale, high-performance vibration of Tadotsu Engineering Laboratory, and sponsored by the Ministry of International Trade and Industry (MITI). In 1982, the seismic reliability proving test of PWR containment vessel started using the test component of reduced scale 1/3.7 and the test component proved to have structural soundness against earthquakes. Subsequently, the detailed analysis and evaluation of these test results were carried out, and the analysis methods for evaluating strength against earthquakes were established. Whereupon, the seismic analysis and evaluation on the actual containment vessel were performed by these analysis methods, and the safety and reliability of the PWR reactor containment vessel were confirmed

  20. Pressure test method for reactor pressure vessel in construction field

    International Nuclear Information System (INIS)

    Takeda, Masakado; Ushiroda, Koichi; Miyahara, Ryohei; Takano, Hiroshi; Matsuura, Tadashi; Sato, Keiya.

    1998-01-01

    Plant constitutional parts as targets of both of a primary pressure test and a secondary pressure test are disposed in communication with a reactor pressure vessel, and a pressure of the primary pressure test is applied to the targets of both tests, so that the primary pressure test and the second pressure test are conducted together. Since the number of pressure tests can be reduced to promote construction, and the number of workers can also be reduced. A pressure exceeding the maximum pressure upon use is applied to the pressure vessel after disposing the incore structures, to continuously conduct the primary pressure test and the secondary pressure test joined together and an incore flowing test while closing the upper lid of the pressure vessel as it is in the construction field. The number of opening/closing of the upper lid upon conducting every test can be reduced, and since the pressure resistance test is conducted after arranging circumference conditions for the incore flowing test, the tests can be conducted collectively also in view of time. (N.H.)

  1. The Advanced Test Reactor Irradiation Facilities and Capabilities

    International Nuclear Information System (INIS)

    S. Blaine Grover; Raymond V. Furstenau

    2007-01-01

    The Advanced Test Reactor (ATR) is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These different capabilities include passive sealed capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. The ATR has enhanced capabilities in experiment monitoring and control systems for instrumented and/or temperature controlled experiments. The control systems utilize feedback from thermocouples in the experiment to provide a custom blended flowing inert gas mixture to control the temperature in the experiments. Monitoring systems have also been utilized on the exhaust gas lines from the experiment to monitor different parameters, such as fission gases for fuel experiments, during irradiation. ATR's unique control system provides axial flux profiles in the experiments, unperturbed by axially positioned control components, throughout each reactor operating cycle and over the duration of test programs requiring many years of irradiation. The ATR irradiation positions vary in diameter from 1.6 cm (0.625 inches) to 12.7 cm (5.0 inches) over an active core length of 122 cm (48.0 inches). Thermal and fast neutron fluxes can be adjusted radially across the core depending on the needs of individual test programs. This paper will discuss the different irradiation capabilities available and the cost/benefit issues related to each capability. Examples of different experiments will also be discussed to demonstrate the use of the capabilities and facilities at ATR for performing irradiation experiments

  2. Reactor physics experiments in PURNIMA sub critical facility coupled with 14 MeV neutron source

    International Nuclear Information System (INIS)

    Kumar, Rajeev; Degweker, S.B.; Patel, Tarun; Bishnoi, Saroj; Adhikari, P.S.

    2011-01-01

    Accelerator Driven Sub-critical Systems (ADSS) are attracting increasing worldwide attention due to their superior safety characteristics and their potential for burning actinide and fission product waste and energy production. A number of countries around the world have drawn up roadmaps/programs for development of ADSS. Indian interest in ADSS has an additional dimension, which is related to the planned utilization of our large thorium reserves for future nuclear energy generation. A programme for development of ADSS is taken up at the Bhabha Atomic Research Centre (BARC) in India. This includes R and D activities for high current proton accelerator development, target development and Reactor Physics studies. As part of the ADSS Reactor Physics research programme, a sub-critical facility is coming up in BARC which will be coupled with an existing D-D/D-T neutron generator. Two types of cores are planned. In one of these, the sub-critical reactor assembly consists of natural uranium moderated by high density polyethylene (HDP) and reflected by BeO. The other consists of natural uranium moderated by light water. The maximum neutron yield of the neutron source with tritium target is around 10 10 neutron per sec. Various reactor physics experiments like measurement of the source strength, neutron flux distribution, buckling estimation and sub-critical source multiplication are planned. Apart from this, measurement of the total fission power and neutron spectrum will also be carried out. Mainly activation detectors will be used in all in-core neutron flux measurement. Measurement of the degree of sub-criticality by various deterministic and noise methods is planned. Helium detectors with advanced data acquisition card will be used for the neutron noise experiments. Noise characteristics of ADSS are expected to be different from that of traditional reactors due to the non-Poisson statistical features of the source. A new theory incorporating these features has been

  3. Test case specifications for coupled neutronics-thermal hydraulics calculation of Gas-cooled Fast Reactor

    Science.gov (United States)

    Osuský, F.; Bahdanovich, R.; Farkas, G.; Haščík, J.; Tikhomirov, G. V.

    2017-01-01

    The paper is focused on development of the coupled neutronics-thermal hydraulics model for the Gas-cooled Fast Reactor. It is necessary to carefully investigate coupled calculations of new concepts to avoid recriticality scenarios, as it is not possible to ensure sub-critical state for a fast reactor core under core disruptive accident conditions. Above mentioned calculations are also very suitable for development of new passive or inherent safety systems that can mitigate the occurrence of the recriticality scenarios. In the paper, the most promising fuel material compositions together with a geometry model are described for the Gas-cooled fast reactor. Seven fuel pin and fuel assembly geometry is proposed as a test case for coupled calculation with three different enrichments of fissile material in the form of Pu-UC. The reflective boundary condition is used in radial directions of the test case and vacuum boundary condition is used in axial directions. During these condition, the nuclear system is in super-critical state and to achieve a stable state (which is numerical representation of operational conditions) it is necessary to decrease the reactivity of the system. The iteration scheme is proposed, where SCALE code system is used for collapsing of a macroscopic cross-section into few group representation as input for coupled code NESTLE.

  4. The ENEA criticality accident dosimetry system: a contribution to the 2002 international intercomparison at the SILENE reactor.

    Science.gov (United States)

    Gualdrini, G; Bedogni, R; Fantuzzi, E; Mariotti, F

    2004-01-01

    The present paper summarises the activity carried out at the ENEA Radiation Protection Institute for updating the methodologies employed for the evaluation of the neutron and photon dose to the exposed workers in case of a criticality accident, in the framework of the 'International Intercomparison of Criticality Accident Dosimetry Systems' (Silène reactor, IRSN-CEA-Valduc June 2002). The evaluation of the neutron spectra and the neutron dosimetric quantities relies on activation detectors and on unfolding algorithms. Thermoluminescent detectors are employed for the gamma dose measurement. The work is aimed at accurately characterising the measurement system and, at the same time, testing the algorithms. Useful spectral information were included, based on Monte Carlo simulations, to take into account the potential accident scenarios of practical interest. All along this exercise intercomparison a particular attention was devoted to the 'traceability' of all the experimental and computational parameters and therefore, aimed at an easy treatment by the user.

  5. Heat Transfer Behaviour and Thermohydraulics Code Testing for Supercritical Water Cooled Reactors (SCWRs)

    International Nuclear Information System (INIS)

    2014-08-01

    The supercritical water cooled reactor (SCWR) is an innovative water cooled reactor concept which uses water pressurized above its thermodynamic critical pressure as the reactor coolant. This concept offers high thermal efficiencies and a simplified reactor system, and is hence expected to help to improve economic competitiveness. Various kinds of SCWR concepts have been developed, with varying combinations of reactor type (pressure vessel or pressure tube) and core spectrum (thermal, fast or mixed). There is great interest in both developing and developed countries in the research and development (R&D) and conceptual design of SCWRs. Considering the high interest shown in a number of Member States, the IAEA established in 2008 the Coordinated Research Project (CRP) on Heat Transfer Behaviour and Thermo-hydraulics Code Testing for SCWRs. The aim was to foster international collaboration in the R&D of SCWRs in support of Member States’ efforts and under the auspices of the IAEA Nuclear Energy Department’s Technical Working Groups on Advanced Technologies for Light Water Reactors (TWG-LWR) and Heavy Water Reactors (TWG-HWR). The two key objectives of the CRP were to establish accurate databases on the thermohydraulics of supercritical pressure fluids and to test analysis methods for SCWR thermohydraulic behaviour to identify code development needs. In total, 16 institutes from nine Member States and two international organizations were involved in the CRP. The thermohydraulics phenomena investigated in the CRP included heat transfer and pressure loss characteristics of supercritical pressure fluids, development of new heat transfer prediction methods, critical flow during depressurization from supercritical conditions, flow stability and natural circulation in supercritical pressure systems. Two code testing benchmark exercises were performed for steady state heat transfer and flow stability in a heated channel. The CRP was completed with the planned outputs in

  6. Heat Transfer Behaviour and Thermohydraulics Code Testing for Supercritical Water Cooled Reactors (SCWRs)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-08-15

    The supercritical water cooled reactor (SCWR) is an innovative water cooled reactor concept which uses water pressurized above its thermodynamic critical pressure as the reactor coolant. This concept offers high thermal efficiencies and a simplified reactor system, and is hence expected to help to improve economic competitiveness. Various kinds of SCWR concepts have been developed, with varying combinations of reactor type (pressure vessel or pressure tube) and core spectrum (thermal, fast or mixed). There is great interest in both developing and developed countries in the research and development (R&D) and conceptual design of SCWRs. Considering the high interest shown in a number of Member States, the IAEA established in 2008 the Coordinated Research Project (CRP) on Heat Transfer Behaviour and Thermo-hydraulics Code Testing for SCWRs. The aim was to foster international collaboration in the R&D of SCWRs in support of Member States’ efforts and under the auspices of the IAEA Nuclear Energy Department’s Technical Working Groups on Advanced Technologies for Light Water Reactors (TWG-LWR) and Heavy Water Reactors (TWG-HWR). The two key objectives of the CRP were to establish accurate databases on the thermohydraulics of supercritical pressure fluids and to test analysis methods for SCWR thermohydraulic behaviour to identify code development needs. In total, 16 institutes from nine Member States and two international organizations were involved in the CRP. The thermohydraulics phenomena investigated in the CRP included heat transfer and pressure loss characteristics of supercritical pressure fluids, development of new heat transfer prediction methods, critical flow during depressurization from supercritical conditions, flow stability and natural circulation in supercritical pressure systems. Two code testing benchmark exercises were performed for steady state heat transfer and flow stability in a heated channel. The CRP was completed with the planned outputs in

  7. Implosion and staging systems for a Scyllac Fusion Test Reactor

    International Nuclear Information System (INIS)

    Gribble, R.F.; Linford, R.K.; Thomassen, K.I.

    1976-01-01

    The implosion heating and adiabatic compression processes will be separated in future theta pinch devices. The circuit to achieve the fast implosion heating and power crowbar (staging) for the Scyllac Fusion Test Reactor is described here. The plasma is very tightly coupled to the circuit and presents a varying inductive load. Computer-aided circuit designs which achieve a programmed magnetic field waveform are described. The field approximates a two-step waveform, on-off-on, which is ideal for achieving the large initial plasma radius needed for stability. The components for the circuits have been developed and are being tested in experiments at Los Alamos

  8. Implosion and staging systems for a Scyllac fusion test reactor

    International Nuclear Information System (INIS)

    Gribble, R.F.; Linford, R.K.; Thomassen, K.I.

    1975-01-01

    The implosion heating and adiabatic compression processes will be separated in future theta pinch devices. The circuit to achieve the fast implosion heating and power crowbar (staging) for the Scyllac Fusion Test Reactor is described here. The plasma is very tightly coupled to the circuit and presents a varying inductive load. Computer-aided circuit designs which achieve a programmed magnetic field waveform are described. The field approximates a two-step waveform, on-off-on, which is ideal for achieving the large initial plasma radius needed for stability. The components for the circuits have been developed and are being tested in experiments at Los Alamos. (auth)

  9. Conceptual design study of a scyllac fusion test reactor

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1975-07-01

    The report describes a conceptual design study of a fusion test reactor based on the Scyllac toroidal theta-pinch approach to fusion. It is not the first attempt to describe the physics and technology required for demonstrating scientific feasibility of the approach, but it is the most complete design in the sense that the physics necessary to achieve the device goals is extrapolated from experimentally tested MHD theories of toroidal systems,and it uses technological systems whose engineering performance has been carefully calculated to ensure that they meet the machine requirements

  10. RELAP5 simulations of critical break experiments in the RD-14 test facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I-G; Cho, Y-J; Lee, S [Korea Inst. of Nuclear Safety, Taejon (Korea, Republic of)

    1996-12-31

    RELAP5/MOD3 simulations of critical break tests in the RD-14 facility, modelling a loss of coolant in a CANDU reactor, were compared to the experimental results, and to CATHENA simulations of the early stage of the test. The RELAP5/MOD3 predicted thermal hydraulic behaviour reasonably well, but some discrepancies were observed after emergency cooling injection (ECI). Pressure differences between headers govern flow through the heated sections, particularly after ECI, and there is much uncertainty in the header pressures; further work is therefore recommended. 6 refs., 3 figs.

  11. Reactor power cutback system test experience at YGN 4

    International Nuclear Information System (INIS)

    Chi, Sung Goo; Kim, Se Chang; Seo, Jong Tae; Eom, Young Meen; Wook, Jeong Dae; Choi, Young Boo

    1995-01-01

    YGN 3 and 4 are the nuclear power plants having System 80 characteristics with a rated thermal output of 2815 MWth and a nominal net electrical output of 1040 MWe. YGN 3 achieved commercial operation on March 31, 1995 and YGN 4 completed Power Ascension Test (PAT) at 20%, 50%, 80% and 100% power by September 23, 1995. YGN 3 and 4 design incorporates the Reactor POwer Cutback System (RPCS) which reduces plant trips caused by Loss of Load (LOL)/ Turbine Trip and Loss of One Main Feedwater Pump (LOMFWP). The key design objective of the RPCS is to improve overall plant availability and performance, while minimizing challenges to the plant safety systems. The RPCS is designed to rapidly reduce reactor power by dropping preselected Control Element Assemblies (CEAs) while other NSSS control systems maintain process parameters within acceptable ranges. Extensive RPCS related tests performed during the initial startup of YGN 4 demonstrated that the RPCS can maintain the reactor on-line without opening primary or secondary safety valves and without actuating the Engineered Safety Features Actuation System (ESFAS). It is expected that use of the RPCS at YGN will increase the overall availability of the units and reduce the number of challenges to plant safety systems

  12. The US Advanced Liquid Metal Reactor and the Fast Flux Test Facility Phase IIA passive safety tests

    International Nuclear Information System (INIS)

    Shen, P.K.; Harris, R.A.; Campbell, L.R.; Dautel, W.A.; Dubberley, A.E.; Gluekler, E.L.

    1992-07-01

    This report discusses the safety approach of the Advanced Liquid Metal reactor program, sponsored by the US Department of Energy, which relies upon passive reactor responses to off-normal condition to limit power and temperature excursions to levels that allow safety margins. Gas expansion modules (GEM) have included in the design to provide negative reactivity to enhance these margins in the extremely unlikely event that pumping power is lost and the highly reliable scram system fails to operate. The feasibility and beneficial features of these devices were first demonstrated in the core of the Fast Flux Test Facility (FFTF) in 1986. Preapplication safety evaluations by the US Nuclear Regulatory Commission have identified areas that must be addressed if these devices are to be relied on. One of these areas is the response of the reactor when it is critical and the pumps are turned on, resulting in positive reactivity being added to the core. Tests to examine such transients have been performed as part of the continuing FFTF program to confirm the passive safety characteristics of liquid metal reactors (LMR). The primary tests consisted of starting the main coolant pumps, which forced sodium coolant into the GEMS, decreasing neutron leakage and adding positive reactivity. The resulting transients were shown to be benign and easily mitigated by the reactivity feedbacks inherent in the FFTF and all LMRs. Steady-state auxiliary tests of the GEM and feedback reactivity worths accurately predicted the transient results. The auxiliary GEM worth tests also demonstrated that the worth can be determined at a subcritical state, which allows for a verification of the GEM's availability prior to ascending to power

  13. Operation, test, research and development of the High Temperature Engineering Test Reactor (HTTR). FY2013

    International Nuclear Information System (INIS)

    2014-12-01

    The High Temperature Engineering Test Reactor (HTTR), a graphite-moderated and helium gas-cooled reactor with 30MW of thermal power, constructed at the Oarai Research and Development Center of the Japan Atomic Energy Agency (JAEA) is the first high-temperature gas-cooled reactor (HTGR) in Japan. The HTTR was attained at the full power operation of 30MW in December 2001 and achieved the 950degC of outlet coolant temperature at the outside the reactor pressure vessel in June 2004. To establish and upgrade basic technologies for HTGRs, we have obtained demonstration test data necessary for several R and Ds, and accumulated operation and maintenance experience of HTGRs throughout the HTTR's operation such as rated power operations, safety demonstration tests and long-term high temperature operations, and so on. In fiscal year 2013, we started to prepare the application document of reactor installation license for the HTTR to prove conformity with the new research reactor's safety regulatory requirements taken effect from December 2013. We had been making effort to restart the HTTR which was stopped since the 2011 when the Pacific coast of Tohoku Earthquake (2011.3.11) occurred. This report summarizes activities and results of HTTR operation, maintenance, and several R and Ds, which were carried out in the fiscal year 2013. (author)

  14. Operation, test, research and development of the High Temperature Engineering Test Reactor (HTTR). FY2014

    International Nuclear Information System (INIS)

    2016-02-01

    The High Temperature Engineering Test Reactor (HTTR), a graphite-moderated and helium gas-cooled reactor with 30 MW of thermal power, constructed at the Oarai Research and Development Center of the Japan Atomic Energy Agency is the first high-temperature gas-cooled reactor (HTGR) in Japan. The HTTR was attained at the full power operation of 30 MW in December 2001 and achieved the 950degC of coolant outlet temperature at outside of the reactor pressure vessel in June 2004. To establish and upgrade basic technologies for HTGRs, we have obtained demonstration test data necessary for several R and Ds, and accumulated operation and maintenance experience of HTGRs throughout the HTTR's operation such as rated power operations, safety demonstration tests and long-term high temperature operations, and so on. In fiscal year 2014, we started to apply the application document of reactor installation license for the HTTR to prove conformity with the new research reactor's safety regulatory requirements taken effect from December 2013. We had been making effort to restart the HTTR which was stopped since the 2011 by the Pacific coast of Tohoku Earthquake. This report summarizes activities and results of HTTR operation, maintenance, and several R and Ds, which were carried out in the fiscal year 2014. (author)

  15. Fire criticality probability analysis for 300 Area N Reactor fuel fabrication and storage facility. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.E.

    1995-02-08

    Uranium fuel assemblies and other uranium associated with the shutdown N Reactor are stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility (Facility). The 3712 Building, where the majority of the fuel assemblies and other uranium is stored, is where there could be a potential for a criticality bounding case. The purpose of this study is to evaluate the probability of potential fires in the Facility 3712 Building that could lead to criticality. This study has been done to support the criticality update. For criticality to occur, the wooden fuel assembly containers would have to burn such that the fuel inside would slump into a critical geometry configuration, a sufficient number of containers burn to form an infinite wide configuration, and sufficient water (about a 17 inch depth) be placed onto the slump. To obtain the appropriate geometric configuration, enough fuel assembly containers to form an infinite array on the floor would have to be stacked at least three high. Administrative controls require the stacks to be limited to two high for 1.25 wt% enriched finished fuel. This is not sufficient to allow for a critical mass regardless of the fire and accompanying water moderation. It should be noted that 0.95 wt% enriched fuel and billets are stacked higher than only two high. In this analysis, two initiating events will be considered. The first is a random fire that is hot enough and sufficiently long enough to burn away the containers and fuel separators such that the fuel can establish a critical mass. The second is a seismically induced fire with the same results.

  16. Annual report of the Neutron Irradiation and Testing Reactor Center. FY2007. April 1, 2007 - March 31, 2008

    International Nuclear Information System (INIS)

    2009-03-01

    The Japan Materials Testing Reactor (JMTR), achieving first criticality in March 1968, has been used in testing the durability and integrity of reactor fuels and components, basic nuclear research, the production of radioisotopes (RIs), and other purposes. The JMTR, however, stopped in August 2006 after its 165th operation cycle, and is currently under going partial renewal of reactor facilities and installation of new irradiation Facilities, geared toward being restarted in 2011. In addition, to cope with the strong requests from users to improve usability of the JMTR, efforts are being made to increase reactor operation efficiency, shorten the turnaround time for obtaining results, and other necessary tasks for JMTR to commence reoperation. The present report summarizes the activities carried out in 2007 for the refurbishment and restart of JMTR. (author)

  17. Manipulator for testing a top-opened reactor pressure vessel

    International Nuclear Information System (INIS)

    Bauer, R.; Kastl, H.

    1991-01-01

    The design is described of a manipulator to be inserted into the inside of reactor pressure vessels opened at the top. The main components of the manipulator include a fixed column protruding into the pressure vessel and a support which is slidable on the column and carries the bearing component for the measuring, testing, inspection and repair instruments. The device includes a driving equipment for the support as well as the power supply for the sets accommodated on the support, with the aim to reduce the failure rate of the manipulator as a whole, shorten the time necessary for its assembling and thus the time of staying in the reactor pressure vessel and, at the same time, make its maintenance and operation easier. (Z.S.). 13 figs

  18. ITER: a technology test bed for a fusion reactor

    International Nuclear Information System (INIS)

    Huguet, M.; Green, B.J.

    1996-01-01

    The ITER Project aims to establish nuclear fusion as an energy source that has potential safety and environmental advantages, and to develop the technologies required for a fusion reactor. ITER is a collaborative project between the European Union, Japan, the Russian Federation and the United States of America. During the current phase of the Project, an R and D programme of about 850 million dollars is underway to develop the technologies required for ITER. This technological effort should culminate in the construction of the components and systems of the ITER machine and its auxiliaries. The main areas of technological development include the first wall and divertor technology, the blanket technology and tritium breeding, superconducting magnet technology, pulsed power technology and remote handling. ITER is a test bed and an essential step to establish the technology of future fusion reactors. Many of the ITER technologies are of potential interest to other fields and their development is expected to benefit the industries involved. (author)

  19. Replacement of the Advanced Test Reactor control room

    International Nuclear Information System (INIS)

    Durney, J.L.; Klingler, W.B.

    1989-01-01

    The control room for the Advanced Test Reactor has been replaced to provide modern equipment utilizing current standards and meeting the current human factors requirements. The control room was designed in the early 1960 era and had not been significantly upgraded since the initial installation. The replacement did not change any of the safety circuits or equipment but did result in replacement of some of the recorders that display information from the safety systems. The replacement was completed in concert with the replacement of the control room simulator which provided important feedback on the design. The design successfully incorporates computer-based systems into the display of the plant variables. This improved design provides the operator with more information in a more usable form than was provided by the original design. The replacement was successfully completed within the scheduled time thereby minimizing the down time for the reactor. 1 fig., 1 tab

  20. Replacement of the Advanced Test Reactor control room

    International Nuclear Information System (INIS)

    Durney, J.L.; Klingler, W.B.

    1990-01-01

    The control room for the Advanced Test Reactor has been replaced to provide modern equipment utilizing current standards and meeting the current human factors requirements. The control room was designed in the early 1960 era and had not been significantly upgraded since the initial installation. The replacement did not change any of the safety circuits or equipment but did result in replacement of some of the recorders that display information from the safety systems. The replacement was completed in concert with the replacement of the control room simulator which provided important feedback on the design. The design successfully incorporates computer-based systems into the display of the plant variables. This improved design provides the operator with more information in a more usable form than was provided by the original design. The replacement was successfully completed within the scheduled time thereby minimizing the down time for the reactor

  1. Air leakage test of reactor hall using tracer technique

    International Nuclear Information System (INIS)

    Yang Yanqiu; Yang Liang; Yang Tongzai

    2011-01-01

    The leakage ratios of three related reactor halls were tested by sulfur hexafluoride gaseous tracer technique. Moreover, the accumulation intensities of leak gas and its retention time in some important working rooms, the crossroads of corridors and anteroom of the building were detected. The results show that the air leakage ratios of the three reactor halls are (7.30±0.16) x 10 -4 , (1.88±0.12) x 10 -4 and (2.07±0.07) x 10 -4 h -1 . The leak gas accumulates in all the detected working rooms fast, and the retention time to various rooms is about 5 h. The heaviest intensities are in the clothes change rooms on the first floor. However, the retention time to the crossroads and the anteroom is about 10 h, and the accumulation intensities are much small. (authors)

  2. The Jules Horowitz Reactor (JHR), a European Material Testing Reactor (MTR), with extended experimental capabilities

    International Nuclear Information System (INIS)

    Ballagny, A.; Bergamaschi, Y.; Bouilloux, Y.; Bravo, X.; Guigon, B.; Rommens, M.; Tremodeux, P.

    2003-01-01

    The Jules Horowitz Reactor (JHR) is the European MTR (Material Testing Reactor) designed to provide, after 2010, the necessary knowledge for keeping the existing power plants in operation and to design innovative reactors types with new objectives such as: minimizing the radioactive waste production, taking into account additional safety requirements, preventing risks of nuclear proliferation. To achieve such an ambitious objective. The JHR is designed with a high flexibility in order to satisfy the current demand from European industry, research and to be able to accommodate future requirements. The JHR will offer a wide range of performances and services in gathering, in a single site at Cadarache, all the necessary functionalities and facilities for an effective production of results: e.g. fuel fabrication laboratories, preparation of the instrumented devices, interpretation of the experiments, modelling. The JHR must rely on a top level scientific environment based on experts teams from CEA and EC and local universities. With a thermal flux of 7,4.10 14 ncm -2 s -1 and a fast flux of 6,4.10 14 ncm -2 s -1 , it is possible to carry out irradiation experiments on materials and fuels whatever the reactor type considered. It will also be possible to carry out locally, fast neutron irradiation to achieve damage effect up to 25 dpa/year. (dpa = deplacement per atom). The study of the fuels behavior under accidental conditions, from analytical experiments, on a limited amount of irradiated fuel, is a major objective of the project. These oriented safety tests are possible by taking into account specific requirements in the design of the facility such as the tightness level of the containment building, the addition of an alpha hot cell and a laboratory for on line fission products measurement. (author)

  3. Data on test results of vessel cooling system of high temperature engineering test reactor

    International Nuclear Information System (INIS)

    Saikusa, Akio; Nakagawa, Shigeaki; Fujimoto, Nozomu; Tachibana, Yukio; Iyoku, Tatsuo

    2003-02-01

    High Temperature Engineering Test Reactor (HTTR) is the first graphite-moderated helium gas cooled reactor in Japan. The rise-to-power test of the HTTR started on September 28, 1999 and thermal power of the HTTR reached its full power of 30 MW on December 7, 2001. Vessel Cooling System (VCS) of the HTTR is the first Reactor Cavity Cooling System (RCCS) applied for High Temperature Gas Cooled Reactors. The VCS cools the core indirectly through the reactor pressure vessel to keep core integrity during the loss of core flow accidents such as depressurization accident. Minimum heat removal of the VCS to satisfy its safety requirement is 0.3MW at 30 MW power operation. Through the performance test of the VCS in the rise-to-power test of the HTTR, it was confirmed that the VCS heat removal at 30 MW power operation was higher than 0.3 MW. This paper shows outline of the VCS and test results on the VCS performance. (author)

  4. Operating experiences since rise-to-power test in high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Watanabe, Shuji; Motegi, Toshihiro; Kawano, Shuichi; Kameyama, Yasuhiko; Sekita, Kenji; Kawasaki, Kozo

    2007-03-01

    The rise-to-power test of the High Temperature Engineering Test Reactor (HTTR) was actually started in April 2000. The rated thermal power of 30MW and the rated reactor outlet coolant temperature of 850degC were achieved in the middle of Dec. 2001. After that, the reactor thermal power of 30MW and the reactor outlet coolant temperature of 950degC were achieved in the final rise-to-power test in April 2004. After receiving the operation licensing at 850degC, the safety demonstration tests have conducted to demonstrate inherent safety features of the HTGRs as well as to obtain the core and plant transient data for validation of safety analysis codes and for establishment of safety design and evaluation technologies. This paper summarizes the HTTR operating experiences for six years from start of the rise-to-power test that are categorized into (1) Operating experiences related to advanced gas-cooled reactor design, (2) Operating experiences for improvement of the performance, (3) Operating experiences due to fail of system and components. (author)

  5. Verification Test of Hydraulic Performance for Reactor Coolant Pump

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Jun; Kim, Jae Shin; Ryu, In Wan; Ko, Bok Seong; Song, Keun Myung [Samjin Ind. Co., Seoul (Korea, Republic of)

    2010-01-15

    According to this project, basic design for prototype pump and model pump of reactor coolant pump and test facilities has been completed. Basic design for prototype pump to establish structure, dimension and hydraulic performance has been completed and through primary flow analysis by computational fluid dynamics(CFD), flow characteristics and hydraulic performance have been established. This pump was designed with mixed flow pump having the following design requirements; specific velocity(Ns); 1080.9(rpm{center_dot}m{sup 3}/m{center_dot}m), capacity; 3115m{sup 3}/h, total head ; 26.3m, pump speed; 1710rpm, pump efficiency; 77.0%, Impeller out-diameter; 349mm, motor output; 360kw, design pressure; 17MPaG. The features of the pump are leakage free due to no mechanical seal on the pump shaft which insures reactor's safety and law noise level and low vibration due to no cooling fan on the motor which makes eco-friendly product. Model pump size was reduced to 44% of prototype pump for the verification test for hydraulic performance of reactor coolant pump and was designed with mixed flow pump and canned motor having the following design requirements; specific speed(NS); 1060.9(rpm{center_dot}m{sup 3}/m{center_dot}m), capacity; 539.4m{sup 3}/h, total head; 21.0m, pump speed; 3476rpm, pump efficiency; 72.9%, Impeller out-diameter; 154mm, motor output; 55kw, design pressure; 1.0MPaG. The test facilities were designed for verification test of hydraulic performance suitable for pump performance test, homologous test, NPSH test(cavitation), cost down test and pressure pulsation test of inlet and outlet ports. Test tank was designed with testing capacity enabling up to 2000m{sup 3}/h and design pressure 1.0MPaG. Auxiliary pump was designed with centrifugal pump having capacity; 1100m{sup 3}/h, total head; 42.0m, motor output; 190kw

  6. Reactor laboratory course for students majoring in nuclear engineering with the Kyoto University Critical Assembly (KUCA)

    International Nuclear Information System (INIS)

    Nishihara, H.; Shiroya, S.; Kanda, K.

    1996-01-01

    With the use of the Kyoto University Critical Assembly (KUCA), a joint reactor laboratory course of graduate level is offered every summer since 1975 by nine associated Japanese universities (Hokkaido University, Tohoku University, Tokyo Institute of Technology, Musashi Institute of Technology, Tokai University, Nagoya University, Osaka University, Kobe University of Mercantile Marine and Kyushu University) in addition to a reactor laboratory course of undergraduate level for Kyoto University. These courses are opened for three weeks (two weeks for the joint course and one week for the undergraduate course) to students majoring in nuclear engineering and a total of 1,360 students have taken the course in the last 21 years. The joint course has been institutionalized with the background that it is extremely difficult for a single university in Japan to have her own research or training reactor. By their effort, the united faculty team of the joint course have succeeded in giving an effective, unique one-week course, taking advantage of their collaboration. Last year, an enquete (questionnaire survey) was conducted to survey the needs for the educational experiments of graduate level and precious data have been obtained for promoting reactor laboratory courses. (author)

  7. A study on criticality of coupled fast-thermal core HERBE at RB reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pesic, M; Zavaljevski, M; Milosevic, M; Stefanovic, D; Nikolic, D; Avdic, S [Boris Kidric Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia); Popovic, D; Marinkovic, P [Faculty of Electrical Engineering, Beograd (Yugoslavia)

    1991-07-01

    The coupled fast-thermal core HERBE at the RB zero power heavy water reactor in Vinca was designed with the aim of improving the experimental possibilities in fast neutron fields. The requirements for minimum modifications in the RB construction and the use available fuel, restricted design flexibility of the coupled system. The following core is considered optimal in the light of the foregoing constraints: the central fast core of natural uranium is surrounded by a neutron filter zone (cadmium and natural uranium) and a converter zone (enriched uranium fuel, without moderator). The coupling region is heavy water. The thermal core in the form of the RB heavy water 80% enriched uranium lattice with 12 cm pitch. The criticality of the system is obtained by adjusting the moderator level. The critical heavy water levels were measured for normal reactor operation and some simulated accidental conditions. These data were analyzed by a computer code for the design of thermal and coupled fast-thermal reactor recently developed in IBK Nuclear Engineering Laboratory. Good agreement between the computations and experimental data was achieved. (author)

  8. A study on criticality of coupled fast-thermal core HERBE at RB reactor

    International Nuclear Information System (INIS)

    Pesic, M.; Zavaljevski, M.; Milosevic, M.; Stefanovic, D.; Nikolic, D.; Avdic, S.; Popovic, D.; Marinkovic, P.

    1991-01-01

    The coupled fast-thermal core HERBE at the RB zero power heavy water reactor in Vinca was designed with the aim of improving the experimental possibilities in fast neutron fields. The requirements for minimum modifications in the RB construction and the use available fuel, restricted design flexibility of the coupled system. The following core is considered optimal in the light of the foregoing constraints: the central fast core of natural uranium is surrounded by a neutron filter zone (cadmium and natural uranium) and a converter zone (enriched uranium fuel, without moderator). The coupling region is heavy water. The thermal core in the form of the RB heavy water 80% enriched uranium lattice with 12 cm pitch. The criticality of the system is obtained by adjusting the moderator level. The critical heavy water levels were measured for normal reactor operation and some simulated accidental conditions. These data were analyzed by a computer code for the design of thermal and coupled fast-thermal reactor recently developed in IBK Nuclear Engineering Laboratory. Good agreement between the computations and experimental data was achieved. (author)

  9. Sub-critical crack growth and clad integrity in a PWR reactor pressure vessel

    International Nuclear Information System (INIS)

    Tice, D.R.; Foreman, A.J.E.; Sharples, J.K.

    1987-10-01

    The possibility of in-service growth of sub-critical defects in a PWR reactor pressure vessel to a critical size which could result in vessel failure was addressed in both the 1976 and 1982 reports of the Light Water Reactor Study Group (LWRSG), under the Chairmanship of Dr W Marshall (now Lord Marshall). An addendum to this report was published by UKAEA in April 1987. The section of the addendum dealing with subcritical crack growth and the related issue of integrity of the stainless steel cladding on the inner vessel surface is reproduced in this report. This section of the LWRSG addendum provides a review of the current status of fatigue crack growth and environmentally assisted cracking research for pressure vessel steels in light water reactor environments, as well as a review of developments in crack growth assessment methods. The review concludes that the alternative assessment procedures now being developed give a more realistic prediction of in service crack growth than the ASME Section XI Appendix A fatigue crack growth curves. (author)

  10. Critical values for unit root tests in seasonal time series

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); B. Hobijn (Bart)

    1997-01-01

    textabstractIn this paper, we present tables with critical values for a variety of tests for seasonal and non-seasonal unit roots in seasonal time series. We consider (extensions of) the Hylleberg et al. and Osborn et al. test procedures. These extensions concern time series with increasing seasonal

  11. High flux testing reactor Petten. Replacement of the reactor vessel and connected components. Overall report

    International Nuclear Information System (INIS)

    Chrysochoides, N.G.; Cundy, M.R.; Von der Hardt, P.; Husmann, K.; Swanenburg de Veye, R.J.; Tas, A.

    1985-01-01

    The project of replacing the HFR originated in 1974 when results of several research programmes confirmed severe neutron embrittlement of aluminium alloys suggesting a limited life of the existing facility. This report contains the detailed chronology of events concerning preparation and execution of the replacement. After a 14 months' outage the reactor resumed routine operation on 14th February, 1985. At the end of several years of planning and preparation the reconstruction proceded in the following steps: unloading of the old core, decay of short-lived radioactivity in December 1983, removal of the old tank and of its peripheral equipment in January-February 1984, segmentation and waste disposal of the removed components in March-April, decontamination of the pools, bottom penetration overhauling in May-June, installation of the new tank and other new components in July-September, testing and commissioning, including minor modifications in October-December, and, trials runs and start-up preparation in January-February 1985. The new HFR Petten features increased and improved experimental facilities. Among others the obsolete thermal columns was replaced by two high flux beam tubes. Moreover the new plant has been designed for future increases of reactor power and neutron fluxes. For the next three to four years the reactor has to cope with a large irradiation programme, claiming its capacity to nearly 100%

  12. Testing plan for critical heat flux measurement during in-vessel retention

    International Nuclear Information System (INIS)

    Aoki, Kazuyoshi; Iwaki, Chikako; Sato, Hisaki; Mimura, Satoshi; Kanamori, Daisuke

    2015-01-01

    In-Vessel Retention (IVR) is a method to maintain molten debris in a reactor vessel (RV) by RV outer surface cooling. Structural integrity of RV and cooling capacity on RV outer surface are important to verify IVR strategy. Critical Heat Flux (CHF) data is necessary to estimate cooling capacity on the RV outer surface. And there are some CHF data to estimate cooling capacity on the RV outer surface. However, these data were obtained for specific plants. Thus, the objective of this study is developing a CHF correlation for various PWR plants. The objectives of this paper are developing test equipment and testing plan for the CHF correlation. Firstly, plant conditions during severe accidents were organized. Then, ranges of testing parameters were estimated with the plant conditions. And specifications of the test equipment were set to cover the range of parameters. Secondly, testing cases were set based on design of experiments. The test cases are suitable to develop experimental correlations. (author)

  13. Synchrotron radiation losses in Engineering Test Reactors (ETRs)

    International Nuclear Information System (INIS)

    Uckan, N.A.

    1987-11-01

    In next-generation Engineering Test Reactors (ETRs), one major objective is envisioned to be a long-pulse or steady-state burn using noninductive current drive. At the high temperatures needed for efficient current drive, synchrotron radiation could represent a large power loss, especially if wall reflectivity (R) is very low. Many INTOR-class ETR designs [Fusion Engineering Reactor (FER), Next European Torus (NET), OTR, Tokamak Ignition/Burn Engineering Reactor (TIBER), etc.] call for carbon-covered surfaces for which wall reflectivity is uncertain. Global radiation losses are estimated for these devices using empirical expressions given by Trubnikov (and others). Various operating scenarios are evaluated under the assumption that the plasma performance is limited by either the density limit (typical of the ignition phase) or the beta limit (typical of the current drive phase). For a case with ≥90% wall reflectivity, synchrotron radiation is not a significant contribution to the overall energy balance (the ratio of synchrotron to alpha power is less than 10 to 20%, even at ∼ 30 keV) and thus should not adversely alter performance in these devices. In extreme cases with 0% wall reflectivity, the ratio of synchrotron radiation to alpha power may approach 30 to 60% (depending on the device and limiting operating scenario), adversely affecting the performance characteristics. 12 refs., 7 tabs

  14. The asymptotic behaviour of a critical point reactor in the absence of a controller

    International Nuclear Information System (INIS)

    Bansal, N.K.; Borgwaldt, H.

    1976-11-01

    A method is presented to calculate the first and second moments of neutron and precursor populations for a critical reactor system described by point kinetic equations and possessing inherent reactivity fluctuations. The equations have been linearised on the assumption that the system has a large average neutron population and that the amplitude of reactivity fluctuations is sufficiently small. The reactivity noise is assumed to be band limited white with a corner frequency higher than all the time constants of the system. Explicit expressions for the exact time development of the moments have been obtained for the case of a reactor without reactivity feedback and with one group of delayed neutrons. It is found that the expected values of the neutron and delayed neutron precursor numbers tend asymptotically to stationary values, whereas the mean square deviations increase linearly with time at an extremely low rate. (orig.) [de

  15. Spatial kinetics studies in liquid-metal fast breeder reactor critical assemblies

    International Nuclear Information System (INIS)

    Brumback, S.B.; Goin, R.W.; Carpenter, S.G.

    1988-01-01

    Recent measurements in the zero-power physics reactor have been used to study the effect of spatial decoupling in fast reactor critical assemblies of various sizes and compositions. Flux distributions in these assemblies had varying degrees of sensitivity to perturbations. Decoupling was investigated using rod-drop, boron-oscillator, and noise-coherence techniques, which emphasized different times following perturbations. Equilibrium flux distributions were also measured for subcritical configurations with inserted control rods. For most assemblies, accurate reactivity measurements were obtained by analyzing the power history from a single detector using inverse kinetics methods, assuming an instantaneous efficiency change for the detector. The instantaneous efficiency change assumption broke down, however, in assemblies with zones in which normal plutonium fuel was replaced by /sup 235/U fuel or fuel with a high /sup 240/Pu content. Flux redistributions caused by perturbations in these cores took several minutes to evolve

  16. Critical evaluation of high-temperature gas-cooled reactors applicable to coal conversion

    International Nuclear Information System (INIS)

    Spiewak, I.; Jones, J.E. Jr.; Rittenhouse, P.L.; DeStefano, J.R.; Delene, J.G.

    1975-12-01

    A critical review is presented of the technology and costs of very high-temperature gas-cooled reactors (VHTRs) applicable to nuclear coal conversion. Coal conversion processes suitable for coupling to reactors are described. Vendor concepts of the VHTR are summarized. The materials requirements as a function of process temperature in the range 1400 to 2000 0 F are analyzed. Components, environmental and safety factors, economics and nuclear fuel cycles are reviewed. It is concluded that process heat supply in the range 1400 to 1500 0 F could be developed with a high degree of assurance. Process heat at 1600 0 F would require considerably more materials development. While temperatures up to 2000 0 F appear to be attainable, considerably more research and risk were involved. A demonstration plant would be required as a step in the commercialization of the VHTR

  17. Intact and Degraded Component Criticality Calculations of N Reactor Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    L. Angers

    2001-01-01

    The objective of this calculation is to perform intact and degraded mode criticality evaluations of the Department of Energy's (DOE) N Reactor Spent Nuclear Fuel codisposed in a 2-Defense High-Level Waste (2-DHLW)/2-Multi-Canister Overpack (MCO) Waste Package (WP) and emplaced in a monitored geologic repository (MGR) (see Attachment I). The scope of this calculation is limited to the determination of the effective neutron multiplication factor (k eff ) for both intact and degraded mode internal configurations of the codisposal waste package. This calculation will support the analysis that will be performed to demonstrate the technical viability for disposing of U-metal (N Reactor) spent nuclear fuel in the potential MGR

  18. Summary report of the experimental fast reactor JOYO MK-III performance test

    International Nuclear Information System (INIS)

    Maeda, Yukimoto; Aoyama, Takafumi; Yoshida, Akihiro

    2004-03-01

    An upgrading project (MK-III project) was started to improve the irradiation capability of the experimental fast reactor JOYO. In this project, core replacement and increase of the reactor thermal power by the factor 1.4 were necessary for increasing the maximum fast neutron flux by the factor 1.3 and doubling the capacity for irradiation rigs. The modification of the cooling system that included the replacement of the main intermediate heat exchangers and the dump heat exchangers was completed in September 2000. After a series of system function tests, the performance test, of which objective is to fully characterize the upgraded core and heat transfer system, was started in June 2003. Twenty eight tests were selected and carried out as performance test, in order to confirm that the whole plant satisfy the design criteria and have sufficient characteristics (data necessary for safe and steady operation, core management, reactor control and monitoring) as an irradiation bed. After attaining the initial criticality of the core on 2nd July 2003, core characteristics (the excess reactivity, the isotherm temperature reactivity coefficient, the power reactivity coefficient and so on), plant characteristics (the plant heat balance, the adjustment of the temperature control system, the plant behavior at transient), shielding characteristics (dose rate distribution). As the result, it was confirmed that all the criteria regulated was satisfied and the core and plant have sufficient margins for full power operation, which was increased by the factor 1.4. Especially, nuclear analysis accuracy was verified by comparing the calculation with measured core characteristics of the initial core which consists of fifty five fresh fuel subassemblies. The operational data which is supposed to be useful for developing in-core anomaly detection system were also obtained. The operation manual and training simulator and design of next reactor development were revised based on the results

  19. Comparison of Critical Flow Models' Evaluations for SBLOCA Tests

    International Nuclear Information System (INIS)

    Kim, Yeon Sik; Park, Hyun Sik; Cho, Seok

    2016-01-01

    A comparison of critical flow models between the Trapp-Ransom and Henry-Fauske models for all SBLOCA (small break loss of coolant accident) scenarios of the ATLAS (Advanced thermal-hydraulic test loop for accident simulation) facility was performed using the MARS-KS code. For the comparison of the two critical models, the accumulated break mass was selected as the main parameter for the comparison between the analyses and tests. Four cases showed the same respective discharge coefficients between the two critical models, e.g., 6' CL (cold leg) break and 25%, 50%, and 100% DVI (direct vessel injection) breaks. In the case of the 4' CL break, no reasonable results were obtained with any possible Cd values. In addition, typical system behaviors, e.g., PZR (pressurizer) pressure and collapsed core water level, were also compared between the two critical models. Four cases showed the same respective discharge coefficients between the two critical models, e.g., 6' CL break and 25%, 50%, and 100% DVI breaks. In the case of the 4' CL break, no reasonable results were obtained with any possible Cd values. In addition, typical system behaviors, e.g., PZR pressure and collapsed core water level, were also compared between the two critical models. From the comparison between the two critical models for the CL breaks, the Trapp-Ransom model predicted quite well with respect to the other model for the smallest and larger breaks, e.g., 2', 6', and 8.5' CL breaks. In addition, from the comparison between the two critical models for the DVI breaks, the Trapp-Ransom model predicted quite well with respect to the other model for the smallest and larger breaks, e.g., 5%, 50%, and 100% DVI breaks. In the case of the 50% and 100% breaks, the two critical models predicted the test data quite well.

  20. Re-evaluation of the criticality experiments of the ''Otto Hahn Nuclear Ship'' reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lengar, I.; Snoj, L.; Rogan, P.; Ravnik, M. [Jozef Stefan Institute, Ljubljana (Slovenia)

    2008-11-15

    Several series of experiments with a FDR reactor (advanced pressurized light water reactor) were performed in 1972 in the Geesthacht critical facility ANEX. The experiments were performed to test the core prior to its usage for the propulsion of the first German nuclear merchant ship ''Otto-Hahn''. In the present paper a calculational re-evaluation of the experiments is described with the use of the up-to date computer codes (Monte-Carlo code MCNP5) and nuclear data (ENDF/B-VI release 6). It is focused on the determination of uncertainties in the benchmark model of the experimental set-up, originating mainly from the limited set of information still available about the experiments. Effects of the identified uncertainties on the multiplication factor were studied. The sensitivity studies include parametric variation of material composition and geometry. The combined total uncertainty being found 0.0050 in k{sub eff}, the experiments are qualified as criticality safety benchmark experiments. (orig.)

  1. INEL test reactor facility alarms: descriptions, technical specifications, and modification procedure

    International Nuclear Information System (INIS)

    Potash, L.M.; Boone, M.P.

    1980-04-01

    This report identifies standards, procedures, and practices which will affect any attempt to integrate or introduce human engineering principles into nuclear power plant alarm systems. Additional information concerning type of signal used, expected reaction, type of sensor, etc., is presented because of its relevance to future work on alarm system integration. The INEL test reactors were studied. Interviews were conducted with operators, designers, and management personnel. Additional information was obtained from available documentation. Only fire-alarm systems, and to a lesser extent, criticality alarms, have detailed industry-wide standards. One general standard has been written for control-room annunciators

  2. Study on the method of determining the sub-criticality of a reactor via the measurement of core neutron flux spatial distribution

    International Nuclear Information System (INIS)

    Ma Aifeng; Jiang Xiaofeng; Zhang Shaohong

    2007-01-01

    A new methodology based on rigorous reactor physics theory astead of the point reactor assumption was proposed to determine or monitor the sub-criticality ora reactor, especially the sub-critical reactor of ADS, via the measurement of in-core flux spatial distribution. Preliminary numerical studies on the 1st ADS sub-critical experimental facilities-Venus No.1 in China have demonstrated the feasibility of this new method. Related discussions pointed out the potential applications of the method. (authors)

  3. Development of large insulator rings for the TOKAMAK Fusion Test Reactor

    International Nuclear Information System (INIS)

    Brown, T.; Tobin, A.

    1977-01-01

    Research and development leading to the manufacture of large ceramic insulator rings for the TFTR (TOKAMAK Fusion Test Reactor). Material applictions, fabrication approach and testing activities are highlighted

  4. Reduced enrichment for research and test reactors: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    November 9--10, 1978, marked the first of what has become an annual event--the International Meeting on Reduced Enrichment for Research and Test Reactors (RERTR). The meeting brought together for the first time many people who became major program participants in later years. This first meeting emphasized fuel development, and it established the basis for all later meetings. Believing that the proceedings of this first meeting are important as a historical record of the beginning of the international RERTR effort. This report provides presentations and discussions of this original meeting. Individual papers have been cataloged separately.

  5. Seismically induced accident sequence analysis of the advanced test reactor

    International Nuclear Information System (INIS)

    Khericha, S.T.; Henry, D.M.; Ravindra, M.K.; Hashimoto, P.S.; Griffin, M.J.; Tong, W.H.; Nafday, A.M.

    1991-01-01

    A seismic probabilistic risk assessment (PRA) was performed for the Department of Energy (DOE) Advanced Test Reactor (ATR) as part of the external events analysis. The risk from seismic events to the fuel in the core and in the fuel storage canal was evaluated. The key elements of this paper are the integration of seismically induced internal flood and internal fire, and the modeling of human error rates as a function of the magnitude of earthquake. The systems analysis was performed by EG ampersand G Idaho, Inc. and the fragility analysis and quantification were performed by EQE International, Inc. (EQE)

  6. Reduced enrichment for research and test reactors: Proceedings

    International Nuclear Information System (INIS)

    1993-08-01

    November 9--10, 1978, marked the first of what has become an annual event--the International Meeting on Reduced Enrichment for Research and Test Reactors (RERTR). The meeting brought together for the first time many people who became major program participants in later years. This first meeting emphasized fuel development, and it established the basis for all later meetings. Believing that the proceedings of this first meeting are important as a historical record of the beginning of the international RERTR effort. This report provides presentations and discussions of this original meeting. Individual papers have been cataloged separately

  7. Technology issues for decommissioning the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Walton, G.R.

    1994-01-01

    The approach for decommissioning the Tokamak Fusion Test Reactor has evolved from a conservative plan based on cutting up and burying all of the systems, to one that considers the impact tritium contamination will have on waste disposal, how large size components may be used as their own shipping containers, and even the possibility of recycling the materials of components such as the toroidal field coils and the tokamak structure. In addition, the project is more carefully assessing the requirements for using remotely operated equipment. Finally, valuable cost database is being developed for future use by the fusion community

  8. 309 plutonium recycle test reactor ion exchanger vault deactivitation report

    International Nuclear Information System (INIS)

    Griffin, P.W.

    1996-03-01

    This report documents the deactivation of the ion exchanger vault at the 309 Plutonium Recycle Test Reactor (PRTR) Facility in the 300 Area. The vault deactivation began in May 1995 and was completed in June 1995. The final site restoration and shipment of the low-level waste for disposal was finished in September 1995. The ion exchanger vault deactivation project involved the removal and disposal of twelve ion exchangers and decontaminating and fixing of residual smearable contamination on the ion exchanger vault concrete surfaces

  9. Reactivity control system of the high temperature engineering test reactor

    International Nuclear Information System (INIS)

    Tachibana, Yukio; Sawahata, Hiroaki; Iyoku, Tatsuo; Nakazawa, Toshio

    2004-01-01

    The reactivity control system of the high temperature engineering test reactor (HTTR) consists of a control rod system and a reserve shutdown system. During normal operation, reactivity is controlled by the control rod system, which consists of 32 control rods (16 pairs) and 16 control rod drive mechanisms except for the case when the center control rods are removed to perform an irradiation test. In an unlikely event that the control rods fail to be inserted, reserve shutdown system is provided to insert pellets of neutron-absorbing material into the core. Alloy 800H is chosen for the metallic parts of the control rods. Because the maximum temperature of the control rods reaches about 900 deg. C at reactor scrams, structural design guideline and design material data on Alloy 800H are needed for the high temperature design. The design guideline for the HTTR control rod is based on ASME Code Case N-47-21. Design material data is also determined and shown in this paper. Observing the guideline, temperature and stress analysis were conducted; it can be confirmed that the target life of the control rods of 5 years can be achieved. Various tests conducted for the control rod system and the reserve shutdown system are also described

  10. Reactor noise diagnostics based on multivariate autoregressive modeling: Application to LOFT [Loss-of-Fluid-Test] reactor process noise

    International Nuclear Information System (INIS)

    Gloeckler, O.; Upadhyaya, B.R.

    1987-01-01

    Multivariate noise analysis of power reactor operating signals is useful for plant diagnostics, for isolating process and sensor anomalies, and for automated plant monitoring. In order to develop a reliable procedure, the previously established techniques for empirical modeling of fluctuation signals in power reactors have been improved. Application of the complete algorithm to operational data from the Loss-of-Fluid-Test (LOFT) Reactor showed that earlier conjectures (based on physical modeling) regarding the perturbation sources in a Pressurized Water Reactor (PWR) affecting coolant temperature and neutron power fluctuations can be systematically explained. This advanced methodology has important implication regarding plant diagnostics, and system or sensor anomaly isolation. 6 refs., 24 figs

  11. Nuclear start-up, testing and core management of the Fast Test Reactor (FTR)

    International Nuclear Information System (INIS)

    Bennett, R.A.; Daughtry, J.W.; Harris, R.A.; Jones, D.H.; Nelson, J.V.; Rawlins, J.A.; Rothrock, R.B.; Sevenich, R.A.; Zimmerman, B.D.

    1980-01-01

    Plans for the nuclear start-up, low and high power physics testing, and core management of the Fast Test Reactor (FTR) are described. Owing to the arrangement of the fuel-handling system, which permits continuous instrument lead access to experiments during refuelling, it is most efficient to load the reactor in an asymmetric fashion, filling one-third core sectors at a time. The core neutron level will be monitored during this process using both in-core and ex-core detectors. A variety of physics tests are planned following the core loading. Because of the experimental purpose of the reactor, these tests will include a comprehensive characterization programme involving both active and passive neutron and gamma measurements. Following start-up tests, the FTR will be operated as a fast neutron irradiation facility, to test a wide variety of fast reactor core components and materials. Nuclear analyses will be made prior to each irradiation cycle to confirm that the planned arrangement of standard and experimental components satisfies all safety and operational constraints, and that all experiments are located so as to achieve their desired irradiation environment. (author)

  12. Operation, test, research and development of the high temperature engineering test reactor (HTTR). FY2003

    International Nuclear Information System (INIS)

    2005-03-01

    The High Temperature Engineering Test Reactor (HTTR) constructed at the Oarai Research Establishment of The Japan Atomic Energy Research Institute (JAERI) is the first high-temperature gas-cooled reactor (HTGR) in Japan, which is a graphite-moderated and helium gas-cooled reactor with 30MW of thermal power. Coolant of helium-gas circulates under the pressure of about 4Mpa, and the reactor inlet and outlet temperature are 395degC and 950degC (maximum), respectively coated particle fuel is used as fuel, and the HTTR core is composed of graphite prismatic blocks. The full power operation of 30MW was attained in December, 2001, and then JAERI received the commissioning license for the HTTR in March, 2002. Since 2002, we have been carrying out rated power operation, safety demonstration tests and several R and Ds, etc., and conducted the high-temperature test operation of 950degC in April, 2004. This report summarizes activities and test results on HTTR operation and maintenance as well as safety demonstration tests and several R and Ds, which were carried out in the fiscal year of 2003 before the high temperature test operation of 950degC. (author)

  13. Validation of a clinical critical thinking skills test in nursing

    OpenAIRE

    Shin, Sujin; Jung, Dukyoo; Kim, Sungeun

    2015-01-01

    Purpose: The purpose of this study was to develop a revised version of the clinical critical thinking skills test (CCTS) and to subsequently validate its performance. Methods: This study is a secondary analysis of the CCTS. Data were obtained from a convenience sample of 284 college students in June 2011. Thirty items were analyzed using item response theory and test reliability was assessed. Test-retest reliability was measured using the results of 20 nursing college and graduate school stud...

  14. A Test Suite for Safety-Critical Java using JML

    DEFF Research Database (Denmark)

    Ravn, Anders Peter; Søndergaard, Hans

    2013-01-01

    Development techniques are presented for a test suite for the draft specification of the Java profile for Safety-Critical Systems. Distinguishing features are: specification of conformance constraints in the Java Modeling Language, encoding of infrastructure concepts without implementation bias......, and corresponding specifications of implicitly stated behavioral and real-time properties. The test programs are auto-generated from the specification, while concrete values for test parameters are selected manually. The suite is open source and publicly accessible....

  15. Preparation of a criticality benchmark based on experiments performed at the RA-6 reactor

    International Nuclear Information System (INIS)

    Bazzana, S.; Blaumann, H; Marquez Damian, J.I

    2009-01-01

    The operation and fuel management of a reactor uses neutronic modeling to predict its behavior in operational and accidental conditions. This modeling uses computational tools and nuclear data that must be contrasted against benchmark experiments to ensure its accuracy. These benchmarks have to be simple enough to be possible to model with the desired computer code and have quantified and bound uncertainties. The start-up of the RA-6 reactor, final stage of the conversion and renewal project, allowed us to obtain experimental results with fresh fuel. In this condition the material composition of the fuel elements is precisely known, which contributes to a more precise modeling of the critical condition. These experimental results are useful to evaluate the precision of the models used to design the core, based on U 3 Si 2 and cadmium wires as burnable poisons, for which no data was previously available. The analysis of this information can be used to validate models for the analysis of similar configurations, which is necessary to follow the operational history of the reactor and perform fuel management. The analysis of the results and the generation of the model were done following the methodology established by International Criticality Safety Benchmark Evaluation Project, which gathers and analyzes experimental data for critical systems. The results were very satisfactory resulting on a value for the multiplication factor of the model of 1.0000 ± 0.0044, and a calculated value of 0.9980 ± 0.0001 using MCNP 5 and ENDF/B-VI. The utilization of as-built dimensions and compositions, and the sensitivity analysis allowed us to review the design calculations and analyze their precision, accuracy and error compensation. [es

  16. Light water reactor pressure isolation valve performance testing

    International Nuclear Information System (INIS)

    Neely, H.H.; Jeanmougin, N.M.; Corugedo, J.J.

    1990-07-01

    The Light Water Reactor Valve Performance Testing Program was initiated by the NRC to evaluate leakage as an indication of valve condition, provide input to Section XI of the ASME Code, evaluate emission monitoring for condition and degradation and in-service inspection techniques. Six typical check and gate valves were purchased for testing at typical plant conditions (550F at 2250 psig) for an assumed number of cycles for a 40-year plant lifetime. Tests revealed that there were variances between the test results and the present statement of the Code; however, the testing was not conclusive. The life cycle tests showed that high tech acoustic emission can be utilized to trend small leaks, that specific motor signature measurement on gate valves can trend and indicate potential failure, and that in-service inspection techniques for check valves was shown to be both feasible and an excellent preventive maintenance indicator. Life cycle testing performed here did not cause large valve leakage typical of some plant operation. Other testing is required to fully understand the implication of these results and the required program to fully implement them. (author)

  17. Drop-in capsule testing of plutonium-based fuels in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Chang, G.S.; Ryskamp, J.M.; Terry, W.K.; Ambrosek, R.G.; Palmer, A.J.; Roesener, R.A.

    1996-09-01

    The most attractive way to dispose of weapons-grade plutonium (WGPu) is to use it as fuel in existing light water reactors (LWRs) in the form of mixed oxide (MOX) fuel - i.e., plutonia (PuO[sub 2]) mixed with urania (UO[sub 2]). Before U.S. reactors could be used for this purpose, their operating licenses would have to be amended. Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. The proposed weapons-grade MOX fuel is unusual, even relative to ongoing foreign experience with reactor-grade MOX power reactor fuel. Some demonstration of the in- reactor thermal, mechanical, and fission gas release behavior of the prototype fuel will most likely be required in a limited number of test reactor irradiations. The application to license operation with MOX fuel must be amply supported by experimental data. The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory (INEL) is capable of playing a key role in the irradiation, development, and licensing of these new fuel types. The ATR is a 250- MW (thermal) LWR designed to study the effects of intense radiation on reactor fuels and materials. For 25 years, the primary role of the ATR has been to serve in experimental investigations for the development of advanced nuclear fuels. Both large- and small-volume test positions in the ATR could be used for MOX fuel irradiation. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. Furthermore, these data can be obtained more quickly by using ATR instead of testing in a commercial LWR. Our previous work in this area has demonstrated that it is technically feasible to perform MOX fuel testing in the ATR. This report documents our analyses of sealed drop-in capsules containing plutonium-based test specimens placed in various ATR positions

  18. BCG: a code for calculating pointwise neutron spectra and criticality in fast reactor cells

    International Nuclear Information System (INIS)

    Leite, S.B.; Caldeira, A.D.; Garcia, R.D.M.

    1988-02-01

    The BCG code for determining the space and energy neutron flux distribution and criticality of fast reactor cylindrical cells is presented. The code solves the unidimensional neutron transport equation together with interface current relations at each energy in an unionized grid prepared for the cell and at an arbitrary number of spatial zones. While the spatial resolution is user specified, the energy dependence of the flux distribution is resolved according to the degree of variation in the reconstructed total microscopic cross sections of the atomic species in the cell. Results for a defined sample problem illustrate the high resolution and accuracy that can be obtained with the code. (author) [pt

  19. The criticality problem in reflected slab type reactor in the two-group transport theory

    International Nuclear Information System (INIS)

    Garcia, R.D.M.

    1978-01-01

    The criticality problem in reflected slab type reactor is solved for the first time in the two group neutron transport theory, by singular eingenfunctions expansion, the singular integrals obtained through continuity conditions of angular distributions at the interface are regularized by a recently proposed method. The result is a coupled system of regular integral equations for the expansion coefficients, this system is solved by an ordinary interactive method. Numerical results that can be utilized as a comparative standard for aproximation methods, are presented [pt

  20. Structural characteristics of a graphite moderated critical assembly for a Zero Power reactor at IEA (Brazil)

    International Nuclear Information System (INIS)

    Almeida Ferreira, A.C. de; Hukai, R.Y.

    1975-01-01

    The structural characteristics of a graphite moderated core of a critical assembly to be installed in the Zero Power Reactor of IEA have been defined. These characteristics are the graphite block dimensions, the number and dimensions of the holes in the graphite, the pitch, the dimensions of the sticks of fuel and graphite to be inserted in the holes, and the mechanical reproducibility of the system. The composition of the fuel and moderator sticks were also defined. The main boundary conditions were the range of the relation C/U and C/TH used in commercial HTGR and the neutronics homogeneity

  1. BCG: a computer code for calculating neutron spectra and criticality in cells of fast reactors

    International Nuclear Information System (INIS)

    Leite, S.B.; Caldeira, A.D.; Garcia, R.D.M.

    1988-01-01

    The BCG code for determining the space and energy neutron flux distribution and criticality of fast reactor cylindrical cells is discussed. The code solves the unidimensional neutron transport equation together with interface current relations at each energy point in an unionized energy grid prepared for the cell and at an arbitrary number of spatial zones. While the spatial resolution is user specified, the energy dependence of the flux distribution is resolved according to the degree of variation in the reconstruced total microscopic cross sections of the atomic species in the cell. Results for a simplified fuel cell illustrate the high resolution and accuracy that can be obtained with the code. (author) [pt

  2. Action Memorandum for the Engineering Test Reactor under the Idaho Cleanup Project

    Energy Technology Data Exchange (ETDEWEB)

    A. B. Culp

    2007-01-26

    This Action Memorandum documents the selected alternative for decommissioning of the Engineering Test Reactor at the Idaho National Laboratory under the Idaho Cleanup Project. Since the missions of the Engineering Test Reactor Complex have been completed, an engineering evaluation/cost analysis that evaluated alternatives to accomplish the decommissioning of the Engineering Test Reactor Complex was prepared adn released for public comment. The scope of this Action Memorandum is to encompass the final end state of the Complex and disposal of the Engineering Test Reactor vessol. The selected removal action includes removing and disposing of the vessel at the Idaho CERCLA Disposal Facility and demolishing the reactor building to ground surface.

  3. Action Memorandum for Decommissioning the Engineering Test Reactor Complex under the Idaho Cleanup Project

    International Nuclear Information System (INIS)

    A. B. Culp

    2007-01-01

    This Action Memorandum documents the selected alternative for decommissioning of the Engineering Test Reactor at the Idaho National Laboratory under the Idaho Cleanup Project. Since the missions of the Engineering Test Reactor Complex have been completed, an engineering evaluation/cost analysis that evaluated alternatives to accomplish the decommissioning of the Engineering Test Reactor Complex was prepared and released for public comment. The scope of this Action Memorandum is to encompass the final end state of the Complex and disposal of the Engineering Test Reactor vessel. The selected removal action includes removing and disposing of the vessel at the Idaho CERCLA Disposal Facility and demolishing the reactor building to ground surface

  4. Studies of super-critical CO2 gas turbine power generation fast reactor (Contract research, translated document)

    International Nuclear Information System (INIS)

    Kisohara, Naoyuki; Kotake, Shoji; Sakamoto, Toshihiko

    2008-08-01

    The following studies have been executed for a super-critical CO 2 turbine system of an SFR. (1) Preliminary design of a SFR adopting a super-critical CO 2 cycle turbine. Preliminary system design of an SFR that adopts a super-critical CO 2 cycle turbine has been made. This SFR system eliminates secondary sodium circuits because of no sodium/water reaction. The power generation efficiency of the SFR has been estimated to be approximately 42%. Compared to a conventional SFR that adopts a steam Rankine cycle with secondary sodium circuits, the volume of the reactor building of the SC-CO 2 SFR has been reduced by 20%. (2) Thermal-hydraulic experiment of a super-critical CO 2 cycle loop. A test loop that simulates a super-critical CO 2 whole cycle was fabricated. An electrical heater was used for a heat source of the test loop. The high efficiency of the compressor has been experimentally confirmed near the super-critical region. The temperature efficiencies of PCHE recuperators have been approximately 98-99% (hot leg), and the recuperators have exhibited high heat transfer performance. No significant flow instability has been observed in the test loop operation. (3) Liquid sodium/CO 2 reaction test. Reaction tests have been executed by contacting a small amount of liquid sodium and CO 2 gas. Continuous sodium/CO 2 reactions with flame have occurred at the temperature higher than 570-580degC. Main reaction products have been Na 2 CO 3 and CO gas. The reaction heat has been also measured to be 50-75kJ/Na-mol. (4) Computer code safety analysis for tube failure of sodium/CO 2 heat exchanger. Safety calculation has been done for one double ended guillotine tube failure (1 DEG) of a helical coil type sodium/CO 2 heat exchanger. The analysis has showed that the maximum pressure in the primary sodium circuit is 0.28MPa due to a gas leak. It has been, however, below the allowed level of the primary circuit structural integrity. The void reactivity of the reactor core has

  5. Storage and management of fuel from fast breeder test reactor and KAlpakkam MINI

    International Nuclear Information System (INIS)

    Sodhi, B.S.; Rao, M.S.; Natarajan, R.

    1999-01-01

    Two Research Reactors, FBTR (Fast Breeder Test Reactor) and KAMINI (KAlpakkam MINI) are in operation at Kalpakkam, India. FBTR is a 40 MWt reactor. It is the first reactor to use mixed carbide (70% PuC-30% UC) as driver fuel. Special precautions are needed to fabricate pellets in glove boxes under inert atmosphere to take into account the possibility of criticality, radiation, pyrophoricity and toxicity of PuC. FBTR has been operating with small core up to 12 MWt power. The initial limit was 250 W/cm, linear heat rating and 25,000 MWd/t peak burnup. This limit was increased to 320 W/cm and 50,000 MWd/t respectively after rigorous analysis. At present the core has reached 40,000 MWd/t without any pin failure. After 25,000 MWd/t burnup one fuel subassembly (SA) was removed and PEE was carried out. The results were as expected by the analysis. In FBTR, fuel is stored in a container filled with argon and the container is cooled by forced circulation of air (during storage). Closing the fuel cycle is important for the breeder programme. Therefore, efforts have been made to set up a reprocessing plant. It uses the well proven purex process. The irradiated fuel is sheared in a single pin chopper and dissolved in an electrochemical dissolver. The resulting solution after adjusting the valency of Pu to IVth state is processed in the solvent extraction plant using 30% Tri-n-Butyl phosphate/n-dodecane as solvent. KAMINI is 30 kWt neutron source reactor which uses light water as moderator and coolant and has as a fuel U-233 aluminium alloy. Uranium-233 has been indigenously recovered from thorium irradiated in CIRUS reactor at Trombay. KAMINI was made critical on October 1996. It is housed in a vault below one of the hot cells in the Radiometallurgy laboratories of IGCAR. This reactor is planned to be used for neutron radiography of fuel elements and neutron activation analysis. It is available for use by research institutions and universities also. This paper describes the

  6. The RERTR [Reduced Enrichment Research and Test Reactor] program:

    International Nuclear Information System (INIS)

    Travelli, A.

    1987-01-01

    The progress of the Reduced Enrichment Research and Test Reactor (RERTR) program is described. After a brief summary of the results which the RERTR program, in collaboration with its many international partners, had achieved by the end of 1986, the activities, results and new developments which ocurred in 1987 are reviewed. Irradiation of the second miniplate series, concentrating on U 3 Si 2 -Al and U 3 Si-Al fuels was completed and postirradiation examinations were performed on many of its miniplates. The whole-core ORR demonstration with U 3 Si 2 -Al fuel at 4.8 g U/cm 3 was completed at the end of March with excellent results and with 29 elements estimated to have reached at least 40 % average burnup. Good progress was made in the area of LEU usage for the production of fission 99 Mo, and in the coordination of safety evaluations related to LEU conversions of U.S. university reactors. Planned activities include testing and demonstrating advanced fuels intended to allow use of reduced enrichment uranium in very-high-performance reactors. Two candidate fuels are U 3 Si-Al with 19.75 % enrichment and U 3 Si 2 -Al with 45 % enrichment. Demonstration of these fuels will include irradiation of full-size elements and, possibly, a full-core demonstration. Achievement of the final program goals is still projected for 1990. This progress could not have been possible without the close international cooperation which has existed from the beginning, and which is essential to the ultimate success of the RERTR program. (Author)

  7. Meso-scale modeling of irradiated concrete in test reactor

    International Nuclear Information System (INIS)

    Giorla, A.; Vaitová, M.; Le Pape, Y.; Štemberk, P.

    2015-01-01

    Highlights: • A meso-scale finite element model for irradiated concrete is developed. • Neutron radiation-induced volumetric expansion is a predominant degradation mode. • Confrontation with expansion and damage obtained from experiments is successful. • Effects of paste shrinkage, creep and ductility are discussed. - Abstract: A numerical model accounting for the effects of neutron irradiation on concrete at the mesoscale is detailed in this paper. Irradiation experiments in test reactor (Elleuch et al., 1972), i.e., in accelerated conditions, are simulated. Concrete is considered as a two-phase material made of elastic inclusions (aggregate) subjected to thermal and irradiation-induced swelling and embedded in a cementitious matrix subjected to shrinkage and thermal expansion. The role of the hardened cement paste in the post-peak regime (brittle-ductile transition with decreasing loading rate), and creep effects are investigated. Radiation-induced volumetric expansion (RIVE) of the aggregate cause the development and propagation of damage around the aggregate which further develops in bridging cracks across the hardened cement paste between the individual aggregate particles. The development of damage is aggravated when shrinkage occurs simultaneously with RIVE during the irradiation experiment. The post-irradiation expansion derived from the simulation is well correlated with the experimental data and, the obtained damage levels are fully consistent with previous estimations based on a micromechanical interpretation of the experimental post-irradiation elastic properties (Le Pape et al., 2015). The proposed modeling opens new perspectives for the interpretation of test reactor experiments in regards to the actual operation of light water reactors.

  8. Meso-scale modeling of irradiated concrete in test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Giorla, A. [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Vaitová, M. [Czech Technical University, Thakurova 7, 166 29 Praha 6 (Czech Republic); Le Pape, Y., E-mail: lepapeym@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Štemberk, P. [Czech Technical University, Thakurova 7, 166 29 Praha 6 (Czech Republic)

    2015-12-15

    Highlights: • A meso-scale finite element model for irradiated concrete is developed. • Neutron radiation-induced volumetric expansion is a predominant degradation mode. • Confrontation with expansion and damage obtained from experiments is successful. • Effects of paste shrinkage, creep and ductility are discussed. - Abstract: A numerical model accounting for the effects of neutron irradiation on concrete at the mesoscale is detailed in this paper. Irradiation experiments in test reactor (Elleuch et al., 1972), i.e., in accelerated conditions, are simulated. Concrete is considered as a two-phase material made of elastic inclusions (aggregate) subjected to thermal and irradiation-induced swelling and embedded in a cementitious matrix subjected to shrinkage and thermal expansion. The role of the hardened cement paste in the post-peak regime (brittle-ductile transition with decreasing loading rate), and creep effects are investigated. Radiation-induced volumetric expansion (RIVE) of the aggregate cause the development and propagation of damage around the aggregate which further develops in bridging cracks across the hardened cement paste between the individual aggregate particles. The development of damage is aggravated when shrinkage occurs simultaneously with RIVE during the irradiation experiment. The post-irradiation expansion derived from the simulation is well correlated with the experimental data and, the obtained damage levels are fully consistent with previous estimations based on a micromechanical interpretation of the experimental post-irradiation elastic properties (Le Pape et al., 2015). The proposed modeling opens new perspectives for the interpretation of test reactor experiments in regards to the actual operation of light water reactors.

  9. Reactor cover gas monitoring at the Fast Flux Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bechtold, R A; Holt, F E; Meadows, G E; Schenter, R E [Westinghouse Hanford Company, Richland, WA (United States)

    1987-07-01

    The Fast Flux Test Facility (FFTF) is a 400 megawatt (thermal) sodium cooled reactor designed for irradiation testing of fuels, materials and components for LMRs. It is operated by the Westinghouse Hanford Company for the U. S. Department of Energy on the government-owned Hanford reservation near Richland, Washington. The first 100 day operating cycle began in April 1982 and the eighth operating cycle was completed In July 1986. Argon is used as the cover gas for all sodium systems at the plant. A program for cover gas monitoring has been in effect since the start of sodium fill in 1978. The argon is supplied to the FFTF by a liquid argon Dewar System and used without further purification. A liquid argon Dewar system provides the large volume of inert gas required for operation of the FFTF. The gas is used as received and is not recycled. Low concentrations of krypton and xenon in the argon supply are essential to preclude interference with the gas tag system. Gas chromatography has been valuable for detection of inadvertent air in leakage during refueling operations. A temporary system is installed over the reactor during outages to prevent oxide formation in the sodium vapor traps upstream from the on line gas chromatograph. On line gas monitoring by gamma spectrometry and grab sampling with GTSTs has been successful for the identification of numerous radioactive gas releases from creep capsule experiments as well as 9 fuel pin ruptures. A redundant fission gas monitoring system has been installed to insure constant surveillance of the reactor cover gas.

  10. Tokamak Fusion Test Reactor D-T results

    International Nuclear Information System (INIS)

    Meade, D.M.

    1995-01-01

    Temperatures, densities and confinement of deuterium plasmas confined in tokamaks have been achieved within the last decade that are approaching those required for a D-T reactor. As a result, the unique phenomena present in a D-T reactor plasma (D-T plasma confinement, α confinement, α heating and possible α-driven instabilities) can now be studied in the laboratory. Recent experiments on the Tokamak Fusion Test Reactor (TFTR) have been the first magnetic fusion experiments to study plasmas with reactor fuel concentrations of tritium. The injection of about 20MW of tritium and 14MW of deuterium neutral beams into the TFTR produced a plasma with a T-to-D density ratio of about 1 and yielding a maximum fusion power of about 9.2MW. The fusion power density in the core of the plasma was about 1.8MWm -3 , approximating that expected in a D-T fusion reactor. A TFTR plasma with a T-to-D density ratio of about 1 was found to have about 20% higher energy confinement time than a comparable D plasma, indicating a confinement scaling with average ion mass A of τ E ∝A 0.6 . The core ion temperature increased from 30 to 37keV owing to a 35% improvement of ion thermal conductivity. Using the electron thermal conductivity from a comparable deuterium plasma, about 50% of the electron temperature increase from 9 to 10.6keV can be attributed to electron heating by the α particles. The approximately 5% loss of α particles, as observed on detectors near the bottom edge of the plasma, was consistent with classical first orbit loss without anomalous effects. Initial measurements have been made of the confined high energy α particles and the resultant α ash density. At fusion power levels of 7.5MW, fluctuations at the toroidal Alfven eigen-mode frequency were observed by the fluctuation diagnostics. However, no additional α loss due to the fluctuations was observed. (orig.)

  11. Two important safety-related verification tests in the design of Qinshan NPP 600 MWe reactor

    International Nuclear Information System (INIS)

    Li Pengzhou; Li Tianyong; Yu Danping; Sun Lei

    2005-01-01

    This paper summarizes two most important verification tests performed in the design of reactor of Qinshan NPP Phase II: seismic qualification test of control rod drive line (CRDL), flow-induced vibration test of reactor internals both in 1:5 scaled model and on-site measurement during heat function testing (HFT). Both qualification tests proved that the structural design of the reactor has large safety margin. (authors)

  12. Preliminary irradiation test results from the Yankee Atomic Electric Company reactor vessel test irradiation program

    International Nuclear Information System (INIS)

    Biemiller, E.C.; Fyfitch, S.; Campbell, C.A.

    1993-01-01

    The Yankee Atomic Electric Company test irradiation program was implemented to characterize the irradiation response of representative Yankee Rowe reactor vessel beltline plate materials and to remove uncertainties in the analysis of existing irradiation data on the Yankee Rowe reactor vessel steel. Plate materials each containing 0.24 w/o copper, but different nickel contents at 0.63 w/o and 0.19 w/o, were heat treated to simulate the Yankee vessel heat treatment (austenitized at 1800 deg F) and to simulate Regulatory Guide 1.99 database materials (austenitized at 1600 deg. F). These heat treatments produced different microstructures so the effect of microstructure on irradiation damage sensitivity could be tested. Because the nickel content of the test plates varied and the copper level was constant, the effect of nickel on irradiation embrittlement was also tested. Correlation monitor material, HSST-02, was included in the program to benchmark the Ford Nuclear Reactor (U. of Michigan Test Reactor) which had never been used for this type of irradiation program. Materials taken from plate surface locations (vs. 1/4T) were included to test whether or not the improved toughness properties of the plate surface layer, resulting from the rapid quench, is maintained after irradiation. If the improved properties are maintained, pressurized thermal shock calculations could utilize this margin. Finally, for one experiment, irradiations were conducted at two irradiation temperatures (500 deg. F and 550 deg. F) to determine the effect of irradiation temperature on embrittlement. The preliminary results of the irradiation program show an increase in T 30 shift of 69 deg. F for a decrease in irradiation temperature of 50 deg. F. The results suggest that for nickel bearing steels, the superior toughness of plate surface material is maintained after irradiation and for the copper content tested, nickel had no apparent effect on irradiation response. No apparent microstructure

  13. Present status and prospects of high-temperature engineering test reactor (HTTR) program

    International Nuclear Information System (INIS)

    Tanaka, Toshiyuki; Baba, Osamu; Shiozawa, Shusaku; Okubo, Minoru; Tobioka, Toshiaki

    1995-01-01

    It is essentially important in Japan, which has limited amount of natural resources, to make efforts to obtain more reliable and stable energy supply by extended use of nuclear energy including high temperature heat from nuclear reactors. Hence, efforts are to be continuously devoted to establish and upgrade High Temperature Gas-cooled Reactor (HTGR) technologies and to make much of research resources accumulated so far. It is also expected that making basic researches at high temperature using HTGR will contribute to innovative basic research in future. Then, the construction of High Temperature engineering Test Reactor (HTTR), which is an HTGR with a maximum helium coolant temperature of 950degC at the reactor outlet, was decided by the Japanese Atomic Energy Commission (JAEC) in 1987 and is now under way by the Japan Atomic Energy Research Institute (JAERI). The construction of the HTTR started in March 1991, with first criticality in 1998 to be followed after commissioning testing. At present the HTTR reactor building and its containment vessel have been nearly completed and its main components, such as a reactor pressure vessel, an intermediate heat exchanger, hot gas pipings and core support structures, have been manufactured at their factories and delivered to the Oarai Research Establishment of the JAERI for their installation in the middle of 1994. Fuel fabrication will be started as well. The project is intended to establish and upgrade the technology basis necessary for HTGR developments. The IAEA Coordinated Research Programme on Design and Evaluation of Heat Utilization Systems for the HTTR, such as steam reforming of methane and thermochemical water splitting for hydrogen production, was launched successfully in January 1994. Some heat utilization system is planned to be connected to the HTTR and demonstrated at the former stage of the second core. At present, steam-reforming of methane is the first candidate. The JAERI also plans to conduct material

  14. New tritium monitor for the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Jalbert, R.A.

    1985-01-01

    At DT-fueled fusion reactors, there will be a need for tritium monitors that can simultaneously measure in real time the concentrations of HTO, HT and the activated air produced by fusion neutrons. Such a monitor has been developed, tested and delivered to the Princeton Plasma Physics Laboratory for use at the Tokamak Fusion Test Reactor (TFTR). It uses semipermeable membranes to achieve the removal of HTO from the sampled air for monitoring and a catalyst to convert the HT to HTO, also for removal and monitoring. The remaining air, devoid of tritium, is routed to a third detector for monitoring the activated air. The sensitivities are those that would be expected from tritium instruments employing conventional flow-through ionization chambers: 1 to 3 μCi/m 3 . Its discriminating ability is approximately 10 -3 for any of the three components (HTO, HT and activated air) in any of the other two channels. For instance, the concentration of HT in the HTO channel is 10 -3 times its original concentration in the sampled air. This will meet the needs of TFTR

  15. Project accent: graphite irradiated creep in a materials test reactor

    International Nuclear Information System (INIS)

    Brooking, M.

    2014-01-01

    Atkins manages a pioneering programme of irradiation experiments for EDF Energy. One of these projects is Project ACCENT, designed to obtain evidence of a beneficial physical property of the graphite, which may extend the life of the Advanced Gas-cooled Reactors (AGRs). The project team combines the in-house experience of EDF Energy with two supplier organisations (providing the material test reactors and testing facilities) and supporting consultancies (Atkins and an independent technical expert). This paper describes: - Brief summary of the Project; - Discussion of the challenges faced by the Project; and - Conclusion elaborating on the aims of the Project. These challenging experiments use bespoke technology and both un-irradiated (virgin) and irradiated AGR graphite. The results will help to better understand graphite irradiation-induced creep (or stress modified dimensional change) properties and therefore more accurately determine lifetime and safe operating envelopes of the AGRs. The first round of irradiation has been completed, with a second round about to commence. This is a key step to realising the full lifetime ambition for AGRs, demonstrating the relaxation of stresses within the graphite bricks. (authors)

  16. Decontamination and decommissioning the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Walton, G.R.; Perry, E.D.; Commander, J.C.; Spampinato, P.T.

    1994-01-01

    The Tokamak Fusion Test Reactor (TFTR) is scheduled to complete its end-of-life deuterium-tritium (D-T) experiments in September 1994. The D-T operation will result in the TFTR machine structure becoming activated, and plasma facing and vacuum components will be contaminated with tritium. The resulting machine activation levels after a two year cooldown period will allow hands on dismantling for external structures, but require remote dismantling for the vacuum vessel. The primary objective of the Decontamination and Decommissioning (D ampersand D) Project is to provide a facility for construction of a new Department of Energy (DOE) experimental fusion reactor by March 1998. The project schedule calls for a two year shutdown period when tritium decontamination of the vacuum vessel, neutral beam injectors and other components will occur. Shutdown will be followed by an 18 month period of D ampersand D operations. The technical objectives of the project are to: safely dismantle and remove components from the test cell complex; package disassembled components in accordance with applicable regulations; ship packages to a DOE approved disposal or material recycling site; and develop expertise using remote disassembly techniques on a large scale fusion facility. This paper discusses the D ampersand D objectives, the facility to be decommissioned, and the technical plan that will be implemented

  17. Potential for new societal contributions from the advanced test reactor

    International Nuclear Information System (INIS)

    Ryskamp, J.M.; Conner, J.E.; Ingram, F.W.

    1993-01-01

    The mission of the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory is to study the effects of intense radiation on materials and fuels and to produce radioisotopes for the U.S. Department of Energy (DOE) for government and commercial applications. Because of reductions in defense spending, four of the nine loop test spaces will become available in 1994. The purpose of this paper is to explore the potential benefits to society from these available neutrons. The ATR is a 250-MW(thermal) light water reactor with highly enriched uranium in plate-type fuel. Forty fuel elements are arranged in a serpentine pattern. The ATR uses a combination of hafnium control drums and shim rods to adjust power and hold flux distortion to a minimum. The different quadrants of the ATR can be operated at significantly different power levels to meet a variety of mission requirements. Irradiation positions are available at various locations throughout the core and beryllium reflector

  18. Criticality benchmark guide for light-water-reactor fuel in transportation and storage packages

    International Nuclear Information System (INIS)

    Lichtenwalter, J.J.; Bowman, S.M.; DeHart, M.D.; Hopper, C.M.

    1997-03-01

    This report is designed as a guide for performing criticality benchmark calculations for light-water-reactor (LWR) fuel applications. The guide provides documentation of 180 criticality experiments with geometries, materials, and neutron interaction characteristics representative of transportation packages containing LWR fuel or uranium oxide pellets or powder. These experiments should benefit the U.S. Nuclear Regulatory Commission (NRC) staff and licensees in validation of computational methods used in LWR fuel storage and transportation concerns. The experiments are classified by key parameters such as enrichment, water/fuel volume, hydrogen-to-fissile ratio (H/X), and lattice pitch. Groups of experiments with common features such as separator plates, shielding walls, and soluble boron are also identified. In addition, a sample validation using these experiments and a statistical analysis of the results are provided. Recommendations for selecting suitable experiments and determination of calculational bias and uncertainty are presented as part of this benchmark guide

  19. Microstructure in Zircaloy Creep Tested in the R2 Reactor

    International Nuclear Information System (INIS)

    Pettersson, Kjell

    2004-12-01

    Tubular specimens of Zircaloy-4 have been creep tested in bending in the R2 reactor in Studsvik. The creep deformation in the reactor core is accelerated in comparison with creep deformation outside the reactor core. The possible mechanisms behind this behaviour are described briefly. In order to determine which the actual mechanism is, the microstructure of the material creep tested in the R2 reactor has been examined by transmission electron microscopy. Due to the bending, material subjected to both tensile and compressive stress during creep was available. Since some of the proposed mechanisms might give microstructures which are different when the material is subjected to compressive or tensile stress it was assumed that examination of both types of material would give valuable information with regard to the operating mechanism. The result of the examination was that in the as-irradiated condition there were no obvious differences detected between materials which had been deformed in tension or compression. After a heat treatment to coarsen the irradiation induced microstructure there were still no significant differences between the two types of material. However it was now observed that in addition to dislocation loops the microstructure also contained network dislocations which presumably had been invisible in the electron microscope before heat treatment due to the high density of small dislocation loops in this state. It is therefore concluded that the most probable mechanism for irradiation creep in this case is climb and glide of the network dislocations. The role of irradiation is two-fold: It accelerates climb due to the production of point defects of which more interstitials than vacancies arrive to the network dislocations stopped at an obstacles. This leads to a net climb after which a dislocation is released from the obstacle and an amount of glide takes place. The second effect is the production of loops which serve as an increasing density of

  20. Review of Transient Fuel Test Results at Sandia National Laboratories and the Potential for Future Fast Reactor Fuel Transient Testing in the Annular Core Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A.; Pickard, Paul S.; Parma, Edward J.; Vernon, Milton E.; Kelly, John; Tikare, Veena [Sandia National Laboratories, Org 6872 MS-1146, PO Box 5800 Albuquerque, New Mexico 87185 (United States)

    2009-06-15

    Reactor driven transient tests of fast reactor fuels may be required to support the development and certification of new fuels for Fast Reactors. The results of the transient fuel tests will likely be needed to support licensing and to provide validation data to support the safety case for a variety of proposed fast fuel types and reactors. In general reactor driven transient tests are used to identify basic phenomenology during reactor transients and to determine the fuel performance limits and margins to failure during design basis accidents such as loss of flow, loss of heat sink, and reactivity insertion accidents. This paper provides a summary description of the previous Sandia Fuel Disruption and Transient Axial Relocation tests that were performed in the Annular Core Research Reactor (ACRR) for the U.S. Nuclear Regulatory Commission almost 25 years ago. These tests consisted of a number of capsule tests and flowing gas tests that used fission heating to disrupt fresh and irradiated MOX fuel. The behavior of the fuel disruption, the generation of aerosols and the melting and relocation of fuel and cladding was recorded on high speed cinematography. This paper will present videos of the fuel disruption that was observed in these tests which reveal stark differences in fuel behavior between fresh and irradiated fuel. Even though these tests were performed over 25 years ago, their results are still relevant to today's reactor designs. These types of transient tests are again being considered by the Advanced Fuel Cycle Initiative to support the Global Nuclear Energy Partnership because of the need to perform tests on metal fuels and transuranic fuels. Because the Annular Core Research Reactor is the only transient test facility available within the US, a brief summary of Sandia's continued capability to perform these tests in the ACRR will also be provided. (authors)