WorldWideScience

Sample records for test loop membrane

  1. Reactor recirculation pump test loop

    International Nuclear Information System (INIS)

    Taka, Shusei; Kato, Hiroyuki

    1979-01-01

    A test loop for a reactor primary loop recirculation pumps (PLR pumps) has been constructed at Ebara's Haneda Plant in preparation for production of PLR pumps under license from Byron Jackson Pump Division of Borg-Warner Corporation. This loop can simulate operating conditions for test PLR pumps with 130 per cent of the capacity of pumps for a 1100 MWe BWR plant. A main loop, primary cooling system, water demineralizer, secondary cooling system, instrumentation and control equipment and an electric power supply system make up the test loop. This article describes the test loop itself and test results of two PLR pumps for Fukushima No. 2 N.P.S. Unit 1 and one main circulation pump for HAZ Demonstration Test Facility. (author)

  2. Dynamic modelling and hardware-in-the-loop testing of PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Vath, Andreas; Soehn, Matthias; Nicoloso, Norbert; Hartkopf, Thomas [Technische Universitaet Darmstadt/Institut fuer Elektrische Energie wand lung, Landgraf-Georg-Str. 4, D-64283 Darmstadt (Germany); Lemes, Zijad; Maencher, Hubert [MAGNUM Automatisierungstechnik GmbH, Bunsenstr. 22, D-64293 Darmstadt (Germany)

    2006-07-03

    Modelling and hardware-in-the-loop (HIL) testing of fuel cell components and entire systems open new ways for the design and advance development of FCs. In this work proton exchange membrane fuel cells (PEMFC) are dynamically modelled within MATLAB-Simulink at various operation conditions in order to establish a comprehensive description of their dynamic behaviour as well as to explore the modelling facility as a diagnostic tool. Set-up of a hardware-in-the-loop (HIL) system enables real time interaction between the selected hardware and the model. The transport of hydrogen, nitrogen, oxygen, water vapour and liquid water in the gas diffusion and catalyst layers of the stack are incorporated into the model according to their physical and electrochemical characteristics. Other processes investigated include, e.g., the membrane resistance as a function of the water content during fast load changes. Cells are modelled three-dimensionally and dynamically. In case of system simulations a one-dimensional model is preferred to reduce computation time. The model has been verified by experiments with a water-cooled stack. (author)

  3. Multi-loop PWR modeling and hardware-in-the-loop testing using ACSL

    International Nuclear Information System (INIS)

    Thomas, V.M.; Heibel, M.D.; Catullo, W.J.

    1989-01-01

    Westinghouse has developed an Advanced Digital Feedwater Control System (ADFCS) which is aimed at reducing feedwater related reactor trips through improved control performance for pressurized water reactor (PWR) power plants. To support control system setpoint studies and functional design efforts for the ADFCS, an ACSL based model of the nuclear steam supply system (NSSS) of a Westinghouse (PWR) was generated. Use of this plant model has been extended from system design to system testing through integration of the model into a Hardware-in-Loop test environment for the ADFCS. This integration includes appropriate interfacing between a Gould SEL 32/87 computer, upon which the plant model executes in real time, and the Westinghouse Distributed Processing family (WDPF) test hardware. A development program has been undertaken to expand the existing ACSL model to include capability to explicitly model multiple plant loops, steam generators, and corresponding feedwater systems. Furthermore, the program expands the ADFCS Hardware-in-Loop testing to include the multi-loop plant model. This paper provides an overview of the testing approach utilized for the ADFCS with focus on the role of Hardware-in-Loop testing. Background on the plant model, methodology and test environment is also provided. Finally, an overview is presented of the program to expand the model and associated Hardware-in-Loop test environment to handle multiple loops

  4. Influence of membrane fouling reducers (MFRs) on filterability of disperse mixed liquor of jet loop bioreactors.

    Science.gov (United States)

    Koseoglu-Imer, Derya Yuksel; Dizge, Nadir; Karagunduz, Ahmet; Keskinler, Bulent

    2011-07-01

    The effects of membrane fouling reducers (MFRs) (the cationic polyelectrolyte (CPE) and FeCI(3)) on membrane fouling were studied in a lab-scale jet loop submerged membrane bioreactor (JL-SMBR) system. The optimum dosages of MFRs (CPE dosage=20 mg g(-1)MLSS, FeCI(3) dosage=14 mg g(-1)MLSS) were continuously fed to JL-SMBR system. The soluble and bound EPS concentrations as well as MLSS concentration in the mixed liquor of JL-SMBR were not changed substantially by the addition of MFRs. However, significant differences were observed in particle size and relative hydrophobicity. Filtration tests were performed by using different membrane types (polycarbonate (PC) and nitrocellulose mixed ester (ME)) and various pore sizes (0.45-0.22-0.1 μm). The steady state fluxes (J(ss)) of membranes increased at all membranes after MFRs addition to JL-SMBR. The filtration results showed that MFRs addition was an effective approach in terms of improvement in filtration performance for both membrane types. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Operation of the hot test loop facilities

    International Nuclear Information System (INIS)

    Cheong, Moon Ki; Park, Choon Kyeong; Won, Soon Yeon; Yang, Sun Kyu; Cheong, Jang Whan; Cheon, Se Young; Song, Chul Hwa; Jeon, Hyeong Kil; Chang, Suk Kyu; Jeong, Heung Jun; Cho, Young Ro; Kim, Bok Duk; Min, Kyeong Ho

    1994-12-01

    The objective of this project is to obtain the available experimental data and to develop the measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics department have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within fuel bundle and to understand the characteristic of pressure drop required for improving the nuclear fuel and to develop the advanced measuring techniques. RCS Loop, which is used to measure the CHF, is presently under design and construction. B and C Loop is designed and constructed to assess the automatic depressurization safety system behavior. 4 tabs., 79 figs., 7 refs. (Author) .new

  6. UPTF loop seal tests and their RELAP simulation

    International Nuclear Information System (INIS)

    Tuomainen, M.; Tuunanen, J.

    1997-01-01

    In a pressurized water reactor the loop seals have an effect on the natural circulation. If a loop seal is filled with water it can cause a flow stagnation in the loop during two-phase natural circulation. Also the pressure loss over a filled loop seal is high, which lowers the water level in the core. Tests to investigate the loop seal behaviour were performed on a German Upper Plenum Test Facility (UPTF). The purpose of the tests was to study the amount of water in the loop seal under different steam flow rates. The tests were simulated with RELAP5/MOD3.2. With high steam flow rates the code had problems in simulating the amount of the water remaining in the pump elbow, but in general the agreement between the calculated results and the experimental data was good. (orig.)

  7. Technical specification of HANARO fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y

    1998-03-01

    The design and installation of the irradiation test facility for verification test of the fuel performance are very important in connection with maximization of the utilization of HANARO. HANARO fuel test loop was designed in accordance with the same code and standards of nuclear power plant because HANARO FTL will be operated the high pressure and temperature same as nuclear power plant operation conditions. The objective of this study is to confirm the operation limit, safety limit, operation condition and checking points of HANARO fuel test loop. This results will become guidances for the planning of irradiation testing and operation of HANARO fuel test loop. (author). 13 refs., 13 tabs., 8 figs.

  8. Analysis of severe accidents on fast reactor test loop

    International Nuclear Information System (INIS)

    Cenerini, R.; Verzelletti, G.; Curioni, S.

    1975-01-01

    The Pec reactor is a sodium cooled fast reactor which is being designed for the primary purpose of accomodating closed sodium cooled test loops for the developmental and proof testing of fast reactor fuel assemblies. The test loops are located in the central test region of reactor. The basic function for which the loop is designed is burn-up to failure testing of fuel under advanced performance conditions. It is therefore necessary to design the loop for failure conditions. Basically two types of accidents can occur within the loops: rupture of gas plenum in the fuel pins and coolant starvation. Explosive tests on Pec loop, whose first set is described in this report, are devoted to investigate the effects of an accidental energy release on loop containment. The loop model reproduces in the test section the prototype dimensions in radial scale 1:1. Using a wire explosive charge of 300mm, the height of test section is sufficient for determining the containment capability of the loop that has a nearly constant deformation in a length of. 3-4 time the diameter. The inertial effects of the coolant column are reproduced by two tubes at the extremities of test section, closed with top plugs. Some tests has been performed by wrapping around the test section four layers of steel wire in order to evaluate the influence on the containment of tungsten wire that is foreseen in prototype loop. The influence of the coolant around the loop was evaluated by inserting the model in water. Dummy sub-assemblies was used and explosive substitutes the central rods. Piezoelectric pressure transducers were mounted on the three plugs and radial deformation was measured directly at different height. From experiments performed it resulted the importance of harmonic wires and inertial reaction of external water on loop containment; maximum containable energy is about 50 Cal with E.1 explosive

  9. Biophysical characterization and membrane interaction of the two fusion loops of glycoprotein B from herpes simplex type I virus.

    Directory of Open Access Journals (Sweden)

    Annarita Falanga

    Full Text Available The molecular mechanism of entry of herpesviruses requires a multicomponent fusion system. Cell invasion by Herpes simplex virus (HSV requires four virally encoded glycoproteins: namely gD, gB and gH/gL. The role of gB has remained elusive until recently when the crystal structure of HSV-1 gB became available and the fusion potential of gB was clearly demonstrated. Although much information on gB structure/function relationship has been gathered in recent years, the elucidation of the nature of the fine interactions between gB fusion loops and the membrane bilayer may help to understand the precise molecular mechanism behind herpesvirus-host cell membrane fusion. Here, we report the first biophysical study on the two fusion peptides of gB, with a particular focus on the effects determined by both peptides on lipid bilayers of various compositions. The two fusion loops constitute a structural subdomain wherein key hydrophobic amino acids form a ridge that is supported on both sides by charged residues. When used together the two fusion loops have the ability to significantly destabilize the target membrane bilayer, notwithstanding their low bilayer penetration when used separately. These data support the model of gB fusion loops insertion into cholesterol enriched membranes.

  10. Liquid Lead-Bismuth Materials Test Loop

    International Nuclear Information System (INIS)

    Tcharnotskaia, Valentina; Ammerman, Curtt; Darling, Timothy; King, Joe; Li, Ning; Shaw, Don; Snodgrass, Leon; Woloshun, Keith

    2002-01-01

    We designed and built the Liquid Lead-Bismuth Materials Test Loop (MTL) to study the materials behavior in a flow of molten lead-bismuth eutectic (LBE). In this paper we present a description of the loop with main components and their functions. Stress distribution in the piping due to sustained, occasional and expansion loads is shown. The loop is designed so that a difference of 100 deg. C can be attained between the coldest and the hottest parts at a nominal flow rate of 8.84 GPM. Liquid LBE flow can be activated by a mechanical sump pump or by natural convection. In order to maintain a self-healing protective film on the surface of the stainless steel pipe, a certain concentration of oxygen has to be maintained in the liquid metal. We developed oxygen sensors and an oxygen control system to be implemented in the loop. The loop is outfitted with a variety of instruments that are controlled from a computer based data acquisition system. Initial experiments include preconditioning the loop, filling it up with LBE, running at uniform temperature and tuning the oxygen control system. We will present some preliminary results and discuss plans for the future tests. (authors)

  11. Detail design of test loop for FIV in fuel bundle and preliminary test

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Woo Gunl; Lee, Wan Young; Kim, Sung Won [Hannam University, Taejeon (Korea)

    2002-04-01

    It is urgent to develop the analytical model for the structural/mechanical integrity of fuel rod. In general, it is not easy to develop a pure analytical model. Occasionally, experimental results have been utilized for the model.Because of this reason, it is required to design proper test loop. Using the optimized test loop, With the optimized test loop, the dynamic behaviour of the rod will be evaluated and the critical flow velocity, which the rod loses the stability in, will be measured for the design of the rod. To verify the integrity of the fuel rod, it is required to evaluate the dynamic behaviour and the critical flow velocity with the test loop. The test results will be utilized to the design of the rod. Generally, the rod has a ground vibration due to turbulence in wide range of flow velocity and the amplitude of vibration becomes larger by the resonance, in a range of the velocity where occurs vortex. The rod loses stability in critical flow velocity caused by fluid-elastic instability. For the purpose of the present work to perform the conceptional design of the test loop, it is necessary (1) to understand the mechanism of the flow-induced vibration and the related experimental coefficients, (2) to evaluate the existing test loops for improving the loop with design parameters and (3) to decide the design specifications of the major equipments of the loop. 35 refs., 14 figs., 4 tabs. (Author)

  12. Hardware in the loop simulation test platform of fuel cell backup system

    Directory of Open Access Journals (Sweden)

    Ma Tiancai

    2015-01-01

    Full Text Available Based on an analysis of voltage mechanistic model, a real-time simulation model of the proton exchange membrane (PEM fuel cell backup system is developed, and verified by the measurable experiment data. The method of online parameters identification for the model is also improved. Based on the software LabVIEW/VeriStand real-time environment and the PXI Express hardware system, the PEM fuel cell system controller hardware in the loop (HIL simulation plat-form is established. Controller simulation test results showed the accuracy of HIL simulation platform.

  13. Thermal-hydraulic analyses for in-pile SCWR fuel qualification test loops and SCWR material loop

    Energy Technology Data Exchange (ETDEWEB)

    Vojacek, A.; Mazzini, G.; Zmitkova, J.; Ruzickova, M. [Research Centre Rez (Czech Republic)

    2014-07-01

    One of the R&D directions of Research Centre Rez is dedicated to the supercritical water-cooled reactor concept (SCWR). Among the developed experimental facilities and infrastructure in the framework of the SUSEN project (SUStainable ENergy) is construction and experimental operation of the supercritical water loop SCWL focusing on material tests. At the first phase, this SCWL loop is assembled and operated out-of-pile in the dedicated loop facilities hall. At this out-of-pile operation various operational conditions are tested and verified. After that, in the second phase, the SCWL loop will be situated in-pile, in the core of the research reactor LVR-15, operated at CVR. Furthermore, it is planned to carry out a test of a small scale fuel assembly within the SuperCritical Water Reactor Fuel Qualification Test (SCWR-FQT) loop, which is now being designed. This paper presents the results of the thermal-hydraulic analyses of SCWL loop out-of-pile operation using the RELAP5/MOD3.3. The thermal-hydraulic modeling and the performed analyses are focused on the SCWL loop model validation through a comparison of the calculation results with the experimental results obtained at various operation conditions. Further, the present paper focuses on the transient analyses for start-up and shut-down of the FQT loop, particularly to explore the ability of system codes ATHLET 3.0A to simulate the transient between subcritical conditions and supercritical conditions. (author)

  14. Xenon oscillation tests in four-loop PWR cores

    International Nuclear Information System (INIS)

    Aoki, Norihiko; Osaka, Kenichi; Shimada, Shoichiro; Tochihara, Hiroshi; Machii, Seigo

    1980-01-01

    The Kansai Electric Power Co.'s OHI Unit 1 and 2 are the first 4-loop PWRs in Japan which use 17 x 17 fuel assemblies and have essentially the same plant parameters. A 4-loop core has larger core radius and higher power density than those of 2- or 3-loop cores, and is less stable for Xe oscillation. It is therefore important to confirm that Xe oscillations in radial direction are sufficiently stable in a 4-loop core. Radial and axial Xe oscillation tests were performed during the startup physics tests of OHI Unit 1 and 2; Xe oscillation was induced by perturbation of control rods and the Xe effect on power distribution observed periodically. The test results show that the transverse Xe oscillation in the 4-loop core is sufficiently stable and that the agreement between the measurement and the calculated prediction is good. (author)

  15. Operation of the nuclear fuel cycle test facilities -Operation of the hot test loop facilities

    International Nuclear Information System (INIS)

    Chun, S. Y.; Jeong, M. K.; Park, C. K.; Yang, S. K.; Won, S. Y.; Song, C. H.; Jeon, H. K.; Jeong, H. J.; Cho, S.; Min, K. H.; Jeong, J. H.

    1997-01-01

    A performance and reliability of a advanced nuclear fuel and reactor newly designed should be verified by performing the thermal hydraulics tests. In thermal hydraulics research team, the thermal hydraulics tests associated with the development of an advanced nuclear fuel and reactor haven been carried out with the test facilities, such as the Hot Test Loop operated under high temperature and pressure conditions, Cold Test Loop, RCS Loop and B and C Loop. The objective of this project is to obtain the available experimental data and to develop the advanced measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics research team have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for the double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of CANFLEX fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within HANARO fuel bundle and to study a thermal mixing characteristic of PWR fuel bundle. RCS thermal hydraulic loop was constructed and the experiments have been carried out to measure the critical heat flux. In B and C Loop, the performance tests for each component were carried out. (author). 19 tabs., 78 figs., 19 refs

  16. Operation of the nuclear fuel cycle test facilities -Operation of the hot test loop facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chun, S. Y.; Jeong, M. K.; Park, C. K.; Yang, S. K.; Won, S. Y.; Song, C. H.; Jeon, H. K.; Jeong, H. J.; Cho, S.; Min, K. H.; Jeong, J. H.

    1997-01-01

    A performance and reliability of a advanced nuclear fuel and reactor newly designed should be verified by performing the thermal hydraulics tests. In thermal hydraulics research team, the thermal hydraulics tests associated with the development of an advanced nuclear fuel and reactor haven been carried out with the test facilities, such as the Hot Test Loop operated under high temperature and pressure conditions, Cold Test Loop, RCS Loop and B and C Loop. The objective of this project is to obtain the available experimental data and to develop the advanced measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics research team have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for the double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of CANFLEX fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within HANARO fuel bundle and to study a thermal mixing characteristic of PWR fuel bundle. RCS thermal hydraulic loop was constructed and the experiments have been carried out to measure the critical heat flux. In B and C Loop, the performance tests for each component were carried out. (author). 19 tabs., 78 figs., 19 refs.

  17. Conceptual Design for a High-Temperature Gas Loop Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    James B. Kesseli

    2006-08-01

    This report documents an early-stage conceptual design for a high-temperature gas test loop. The objectives accomplished by the study include, (1) investigation of existing gas test loops to determine ther capabilities and how the proposed system might best complement them, (2) development of a preliminary test plan to help identify the performance characteristics required of the test unit, (3) development of test loop requirements, (4) development of a conceptual design including process flow sheet, mechanical layout, and equipment specifications and costs, and (5) development of a preliminary test loop safety plan.

  18. Summary of ALSEP Test Loop Solvent Irradiation Testing

    Energy Technology Data Exchange (ETDEWEB)

    Peterman, Dean Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Olson, Lonnie Gene [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    Separating the minor actinide elements (americium and curium) from the fission product lanthanides is an important step in closing the nuclear fuel cycle. Isolating the minor actinides will allow transmuting them to short lived or stable isotopes in fast reactors, thereby reducing the long-term hazard associated with these elements. The Actinide Lanthanide Separation Process (ALSEP) is being developed by the DOE-NE Material Recovery and Waste Form Development Campaign to accomplish this separation with a single process. To develop a fundamental understanding of the solvent degradation mechanisms for the ALSEP Process, testing was performed in the INL Radiolysis/Hydrolysis Test Loop for the extraction section of the ALSEP flowsheet. This work culminated in the completion of the level two milestone (M2FT-16IN030102021) "Complete ALSEP test loop solvent irradiation test.” This report summarizes the testing performed and the impact of radiation on the ALSEP Process performance as a function of dose.

  19. Irradiation Testing Vehicles for Fast Reactors from Open Test Assemblies to Closed Loops

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States); Grandy, Christopher [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-15

    A review of irradiation testing vehicle approaches and designs that have been incorporated into past Sodium-Cooled Fast Reactors (SFRs) or envisioned for incorporation has been carried out. The objective is to understand the essential features of the approaches and designs so that they can inform test vehicle designs for a future U.S. Fast Test Reactor. Fast test reactor designs examined include EBR-II, FFTF, JOYO, BOR-60, PHÉNIX, JHR, and MBIR. Previous designers exhibited great ingenuity in overcoming design and operational challenges especially when the original reactor plant’s mission changed to an irradiation testing mission as in the EBRII reactor plant. The various irradiation testing vehicles can be categorized as: Uninstrumented open assemblies that fit into core locations; Instrumented open test assemblies that fit into special core locations; Self-contained closed loops; and External closed loops. A special emphasis is devoted to closed loops as they are regarded as a very desirable feature of a future U.S. Fast Test Reactor. Closed loops are an important technology for irradiation of fuels and materials in separate controlled environments. The impact of closed loops on the design of fast reactors is also discussed in this report.

  20. Hardware-in-the-Loop Testing

    Data.gov (United States)

    Federal Laboratory Consortium — RTC has a suite of Hardware-in-the Loop facilities that include three operational facilities that provide performance assessment and production acceptance testing of...

  1. Accident analysis of HANARO fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.; Chi, D. Y

    1998-03-01

    Steady state fuel test loop will be equipped in HANARO to obtain the development and betterment of advanced fuel and materials through the irradiation tests. The HANARO fuel test loop was designed to match the CANDU and PWR fuel operating conditions. The accident analysis was performed by RELAP5/MOD3 code based on FTL system designs and determined the detail engineering specification of in-pile test section and out-pile systems. The accident analysis results of FTL system could be used for the fuel and materials designer to plan the irradiation testing programs. (author). 23 refs., 20 tabs., 178 figs.

  2. Gas Test Loop Booster Fuel Hydraulic Testing

    International Nuclear Information System (INIS)

    Gas Test Loop Hydraulic Testing Staff

    2006-01-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3

  3. Gas Test Loop Booster Fuel Hydraulic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  4. Design criteria and fabrication in-pile test section of HANARO fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.

    1997-10-01

    Safety state fuel test loop will be equipped in HANARO to obtain the development and betterments of advanced fuel and materials through the irradiation tests. The objective of this study is to determine the design criteria and technical specification of in-pile test section and to specify the manufacturing requirements of in-pile test section. HANARO fuel test loop was designed to meet the CANDU and PWR fuel testing and in-pile section will be manufactured and installed in HANARO. The design criteria and technical specification of in-pile test section could be used the fuel and materials design with for irradiation testing IPS of HANARO fuel test loop. This results will become guidances for the planning and programming of irradiation testing. (author). 12 refs., tabs., figs.

  5. Design and Evaluation of a Water Recirculation Loop Maintenance Device for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2012-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high-capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit Transport Water Loop. The bed design further leverages a sorbent developed for the ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System. The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of crewed spaceflight Environmental Control and Life Support System hardware.

  6. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2013-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  7. Design and Evaluation of a Water Recirculation Loop Maintenance Device for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2011-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a clear demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  8. French nuclear plant safeguard pump qualification testing: EPEC test loop

    International Nuclear Information System (INIS)

    Guesnon, H.

    1985-01-01

    This paper reviews the specifications to which nuclear power plant safeguard pumps must be qualified, and surveys the qualification methods and program used in France to verify operability of the pump assembly and major pump components. The EPEC test loop is described along with loop capabilities and acheivements up to now. This paper shows, through an example, the Medium Pressure Safety Injection Pump designed for service in 1300 MW nuclear power plants, and the interesting possibilities offered by qualification testing

  9. ac power control in the Core Flow Test Loop

    International Nuclear Information System (INIS)

    McDonald, D.W.

    1980-01-01

    This work represents a status report on a development effort to design an ac power controller for the Core Flow Test Loop. The Core Flow Test Loop will be an engineering test facility which will simulate the thermal environment of a gas-cooled fast-breeder reactor. The problems and limitations of using sinusoidal ac power to simulate the power generated within a nuclear reactor are addressed. The transformer-thyristor configuration chosen for the Core Flow Test Loop power supply is presented. The initial considerations, design, and analysis of a closed-loop controller prototype are detailed. The design is then analyzed for improved performance possibilities and failure modes are investigated at length. A summary of the work completed to date and a proposed outline for continued development completes the report

  10. Long Duration Testing of a Spacesuit Water Membrane Evaporator Prototype

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice; Cox, Marlon; Watts, Carly; Campbell, Colin; Vogel, Matthew; Colunga, Aaron; Conger, Bruce

    2012-01-01

    The Spacesuit Water Membrane Evaporator (SWME) is a heat-rejection device that is being developed to perform thermal control for advanced spacesuits. Cooling is achieved by circulating water from the liquid cooling garment (LCG) through hollow fibers (HoFi s), which are small hydrophobic tubes. Liquid water remains within the hydrophobic tubes, but water vapor is exhausted to space, thereby removing heat. A SWME test article was tested over the course of a year, for a total of 600 cumulative hours. In order to evaluate SWME tolerance to contamination due to constituents caused by distillation processes, these constituents were allowed to accumulate in the water as evaporation occurred. A test article was tested over the course of a year for a total of 600 cumulative hours. The heat rejection performance of the SWME degraded significantly--below 700 W, attributable to the accumulation of rust in the circulating loop and biofilm growth. Bubble elimination capability, a feature that was previously proven with SWME, was compromised during the test, most likely due to loss of hydrophobic properties of the hollow fibers. The utilization of water for heat rejection was shown not to be dependent on test article, life cycle, heat rejection rate, or freezing of the membranes.

  11. An Extended Surface Loop on Toxoplasma gondii Apical Membrane Antigen 1 (AMA1 Governs Ligand Binding Selectivity.

    Directory of Open Access Journals (Sweden)

    Michelle L Parker

    Full Text Available Apicomplexan parasites are the causative agents of globally prevalent diseases including malaria and toxoplasmosis. These obligate intracellular pathogens have evolved a sophisticated host cell invasion strategy that relies on a parasite-host cell junction anchored by interactions between apical membrane antigens (AMAs on the parasite surface and rhoptry neck 2 (RON2 proteins discharged from the parasite and embedded in the host cell membrane. Key to formation of the AMA1-RON2 complex is displacement of an extended surface loop on AMA1 called the DII loop. While conformational flexibility of the DII loop is required to expose the mature RON2 binding groove, a definitive role of this substructure has not been elucidated. To establish a role of the DII loop in Toxoplasma gondii AMA1, we engineered a form of the protein where the mobile portion of the loop was replaced with a short Gly-Ser linker (TgAMA1ΔDIIloop. Isothermal titration calorimetry measurements with a panel of RON2 peptides revealed an influential role for the DII loop in governing selectivity. Most notably, an Eimeria tenella RON2 (EtRON2 peptide that showed only weak binding to TgAMA1 bound with high affinity to TgAMA1ΔDIIloop. To define the molecular basis for the differential binding, we determined the crystal structure of TgAMA1ΔDIIloop in complex with the EtRON2 peptide. When analyzed in the context of existing AMA1-RON2 structures, spatially distinct anchor points in the AMA1 groove were identified that, when engaged, appear to provide the necessary traction to outcompete the DII loop. Collectively, these data support a model where the AMA1 DII loop serves as a structural gatekeeper to selectively filter out ligands otherwise capable of binding with high affinity in the AMA1 apical groove. These data also highlight the importance of considering the functional implications of the DII loop in the ongoing development of therapeutic intervention strategies targeting the AMA1-RON

  12. WWER type reactor primary loop imitation on large test loop facility in MARIA reactor

    International Nuclear Information System (INIS)

    Moldysh, A.; Strupchevski, A.; Kmetek, Eh.; Spasskov, V.P.; Shumskij, A.M.

    1982-01-01

    At present in Poland in cooperation with USSR a nuclear water loop test facility (WL) in 'MARIA' reactor in Sverke is under construction. The program objective is to investigate processes occuring in WWER reactor under emergency conditions, first of all after the break of the mainprimary loop circulation pipe-line. WL with the power of about 600 kW consists of three major parts: 1) an active loop, imitating the undamaged loops of the WWER reactor; 2) a passive loop assignedfor modelling the broken loop of the WWER reactor; 3) the emergency core cooling system imitating the corresponding full-scale system. The fuel rod bundle consists of 18 1 m long rods. They were fabricated according to the standard WWER fuel technology. In the report some general principles of WWERbehaviour imitation under emergency conditions are given. They are based on the operation experience obtained from 'SEMISCALE' and 'LOFT' test facilities in the USA. A description of separate modelling factors and criteria effects on the development of 'LOCA'-type accident is presented (the break cross-section to the primary loop volume ratio, the pressure differential between inlet and outlet reactor chambers, the pressure drop rate in the loop, the coolant flow rate throuh the core etc.). As an example a comparison of calculated flow rate variations for the WWER-1000 reactor and the model during the loss-of-coolant accident with the main pipe-line break at the core inlet is given. Calculations have been carried out with the use of TECH'-M code [ru

  13. Conceptual Design of Forced Convection Molten Salt Heat Transfer Testing Loop

    Energy Technology Data Exchange (ETDEWEB)

    Manohar S. Sohal; Piyush Sabharwall; Pattrick Calderoni; Alan K. Wertsching; S. Brandon Grover

    2010-09-01

    This report develops a proposal to design and construct a forced convection test loop. A detailed test plan will then be conducted to obtain data on heat transfer, thermodynamic, and corrosion characteristics of the molten salts and fluid-solid interaction. In particular, this report outlines an experimental research and development test plan. The most important initial requirement for heat transfer test of molten salt systems is the establishment of reference coolant materials to use in the experiments. An earlier report produced within the same project highlighted how thermophysical properties of the materials that directly impact the heat transfer behavior are strongly correlated to the composition and impurities concentration of the melt. It is therefore essential to establish laboratory techniques that can measure the melt composition, and to develop purification methods that would allow the production of large quantities of coolant with the desired purity. A companion report describes the options available to reach such objectives. In particular, that report outlines an experimental research and development test plan that would include following steps: •Molten Salts: The candidate molten salts for investigation will be selected. •Materials of Construction: Materials of construction for the test loop, heat exchangers, and fluid-solid corrosion tests in the test loop will also be selected. •Scaling Analysis: Scaling analysis to design the test loop will be performed. •Test Plan: A comprehensive test plan to include all the tests that are being planned in the short and long term time frame will be developed. •Design the Test Loop: The forced convection test loop will be designed including extensive mechanical design, instrument selection, data acquisition system, safety requirements, and related precautionary measures. •Fabricate the Test Loop. •Perform the Tests. •Uncertainty Analysis: As a part of the data collection, uncertainty analysis will

  14. Test system design for Hardware-in-Loop evaluation of PEM fuel cells and auxiliaries

    Energy Technology Data Exchange (ETDEWEB)

    Randolf, Guenter; Moore, Robert M. [Hawaii Natural Energy Institute, University of Hawaii, Honolulu, HI (United States)

    2006-07-14

    In order to evaluate the dynamic behavior of proton exchange membrane (PEM) fuel cells and their auxiliaries, the dynamic capability of the test system must exceed the dynamics of the fastest component within the fuel cell or auxiliary component under test. This criterion is even more critical when a simulated component of the fuel cell system (e.g., the fuel cell stack) is replaced by hardware and Hardware-in-Loop (HiL) methodology is employed. This paper describes the design of a very fast dynamic test system for fuel cell transient research and HiL evaluation. The integration of the real time target (which runs the simulation), the test stand PC (that controls the operation of the test stand), and the programmable logic controller (PLC), for safety and low-level control tasks, into one single integrated unit is successfully completed. (author)

  15. Performance of Water Recirculation Loop Maintentance Components for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Rector, Tony; Peyton, Barbara; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessonslearned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  16. Performance of Water Recirculation Loop Maintenance Components for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Rector, Tony; Peyton, Barbara M.; Steele, John W.; Makinen, Janice; Bue, Grant C.; Campbell, Colin

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  17. Design of Test Loops for Forced Convection Heat Transfer Studies at Supercritical State

    Science.gov (United States)

    Balouch, Masih N.

    Worldwide research is being conducted to improve the efficiency of nuclear power plants by using supercritical water (SCW) as the working fluid. One such SCW reactor considered for future development is the CANDU-Supercritical Water Reactor (CANDU-SCWR). For safe and accurate design of the CANDU-SCWR, a detailed knowledge of forced-convection heat transfer in SCW is required. For this purpose, two supercritical fluid loops, i.e. a SCW loop and an R-134a loop are developed at Carleton University. The SCW loop is designed to operate at pressures as high as 28 MPa, temperatures up to 600 °C and mass fluxes of up to 3000 kg/m2s. The R-134a loop is designed to operate at pressures as high as 6 MPa, temperatures up to 140 °C and mass fluxes in the range of 500-6000 kg/m2s. The test loops designs allow for up to 300 kW of heating power to be imparted to the fluid. Both test loops are of the closed-loop design, where flow circulation is achieved by a centrifugal pump in the SCW loop and three parallel-connected gear pumps in the R-134a loop, respectively. The test loops are pressurized using a high-pressure nitrogen cylinder and accumulator assembly, which allows independent control of the pressure, while simultaneously dampening pump induced pressure fluctuations. Heat exchangers located upstream of the pumps control the fluid temperature in the test loops. Strategically located measuring instrumentation provides information on the flow rate, pressure and temperature in the test loops. The test loops have been designed to accommodate a variety of test-section geometries, ranging from a straight circular tube to a seven-rod bundle, achieving heat fluxes up to 2.5 MW/m2 depending on the test-section geometry. The design of both test loops allows for easy reconfiguration of the test-section orientation relative to the gravitational direction. All the test sections are of the directly-heated design, where electric current passing through the pressure retaining walls of the

  18. A probabilistic safety assessment of in-pile test loop in HWRR

    International Nuclear Information System (INIS)

    Cao Xuewu; Li Zhaohuan

    1991-07-01

    The PSA methodology has been applied to the in-pile test loop which is installed in the Heavy Water Research Reactor (HWRR). This loop is designed and operated for fuel assembly testing of the Qinshan PWR plant. This analysis is to assess the safety and to evaluate the design of this operating loop. The procedure and models are similar to a PSA on nuclear power plant. The major contents in the analysis consist of the familiarization of the object, the investigation and selection of accident initiators, setting events and fault trees, data collections, quantitative calculations, qualitative and result analyses and final conclusion. This analysis is only limited to the initiators of in-pile loop itself and possible errors made by operators during normal operation. The accident occurence is less than 10 -4 a -1 which may be recommended as an acceptance risk for safety operation of an in-pile test loop. Finally, suggestions have been raised to improve the design of test loop, especially in reducing operation errors by local operators

  19. Derivative expansion of one-loop effective energy of stiff membranes with tension

    Science.gov (United States)

    Borelli, M. E. S.; Kleinert, H.; Schakel, Adriaan M. J.

    1999-03-01

    With help of a derivative expansion, the one-loop corrections to the energy functional of a nearly flat, stiff membrane with tension due to thermal fluctuations are calculated in the Monge parametrization. Contrary to previous studies, an arbitrary tilt of the surface is allowed to exhibit the nontrivial relations between the different, highly nonlinear terms accompanying the ultraviolet divergences. These terms are shown to have precisely the same form as those in the original energy functional, as necessary for renormalizability. Also infrared divergences arise. These, however, are shown to cancel in a nontrivial way.

  20. Development of Start-up and Shutdown Procedure for the HANARO Fuel Test Loop

    International Nuclear Information System (INIS)

    Park, S. K.; Sim, B. S.; Chi, D. Y.; Lee, J. M.; Lee, C. Y.; Ahn, S. H.

    2009-06-01

    A start-up and shutdown procedure for the HANARO fuel test loop has been developed. This is a facility for fuel and material irradiation tests. The facility provides experimental conditions similar to the normal operational pressures and temperatures of commercial PWR and CANDU plants. The normal operation modes of the HANARO fuel test loop are classified into loop shutdown, cold stand-by 1, cold stand-by 2, hot stand-by, and hot operation. The operation modes depend on the fission power of test fuels and the coolant temperature at the inlet of the in-pile test section. The HANARO must maintain a shutdown mode if the HANARO fuel test loop is loop shutdown, cold stand-by 1, cold stand-by 2, or hot stand-by. As the HANARO becomes power operation mode, the operation mode of the HANARO fuel test loop comes to hot operation from hot stand-by. The procedure for the HANARO fuel test loop consists of four main parts such as check of initial conditions, stat-up operation procedure, shutdown operation procedure, and check lists for operations. Several hot test operations ensure that the procedure is appropriate

  1. Solar cooling in the hardware-in-the-loop test; Solare Kuehlung im Hardware-in-the-Loop-Test

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Sandra; Radosavljevic, Rada; Goebel, Johannes; Gottschald, Jonas; Adam, Mario [Fachhochschule Duesseldorf (Germany). Erneuerbare Energien und Energieeffizienz E2

    2012-07-01

    The first part of the BMBF-funded research project 'Solar cooling in the hardware-in-the-loop test' (SoCool HIL) deals with the simulation of a solar refrigeration system using the simulation environment Matlab / Simulink with the toolboxes Stateflow and Carnot. Dynamic annual simulations and DoE supported parameter variations were used to select meaningful system configurations, control strategies and dimensioning of components. The second part of this project deals with hardware-in-the-loop tests using the 17.5 kW absorption chiller of the company Yazaki Europe Limited (Hertfordshire, United Kingdom). For this, the chiller is operated on a test bench in order to emulate the behavior of other system components (solar circuit with heat storage, recooling, buildings and cooling distribution / transfer). The chiller is controlled by a simulation of the system using MATLAB / Simulink / Carnot. Based on the knowledge on the real dynamic performance of the chiller the simulation model of the chiller can then be validated. Further tests are used to optimize the control of the chiller to the current cooling load. In addition, some changes in system configurations (for example cold backup) are tested with the real machine. The results of these tests and the findings on the dynamic performance of the chiller are presented.

  2. Seismic proving test of BWR primary loop recirculation system

    International Nuclear Information System (INIS)

    Sato, H.; Shigeta, M.; Karasawa, Y.

    1987-01-01

    The seismic proving test of BWR Primary Loop Recirculation system is the second test to use the large-scale, high-performance vibration table of Tadotsu Engineering Laboratory. The purpose of this test is to prove the seismic reliability of the primary loop recirculation system (PLR), one of the most important safety components in the BWR nuclear plants, and also to confirm the adequacy of seismic analysis method used in the current seismic design. To achieve the purpose, the test was conducted under conditions and scale as near as possible to actual systems. The strength proving test was carried out with the test model mounted on the vibration table in consideration of basic design earthquake ground motions and other conditions to confirm the soundness of structure and the strength against earthquakes. Detailed analysis and analytic evaluation of the data obtained from the test was conducted to confirm the adequacy of the seismic analysis method and earthquake response analysis method used in the current seismic design. Then, on the basis of the results obtained, the seismic safety and reliability of BWR primary loop recirculation of the actual plants was fully evaluated

  3. Negative Charge Neutralization in the Loops and Turns of Outer Membrane Phospholipase A Impacts Folding Hysteresis at Neutral pH.

    Science.gov (United States)

    McDonald, Sarah K; Fleming, Karen G

    2016-11-08

    Hysteresis in equilibrium protein folding titrations is an experimental barrier that must be overcome to extract meaningful thermodynamic quantities. Traditional approaches to solving this problem involve testing a spectrum of solution conditions to find ones that achieve path independence. Through this procedure, a specific pH of 3.8 was required to achieve path independence for the water-to-bilayer equilibrium folding of outer membrane protein OmpLA. We hypothesized that the neutralization of negatively charged side chains (Asp and Glu) at pH 3.8 could be the physical basis for path-independent folding at this pH. To test this idea, we engineered variants of OmpLA with Asp → Asn and Glu → Gln mutations to neutralize the negative charges within various regions of the protein and tested for reversible folding at neutral pH. Although not fully resolved, our results show that these mutations in the periplasmic turns and extracellular loops are responsible for 60% of the hysteresis in wild-type folding. Overall, our study suggests that negative charges impact the folding hysteresis in outer membrane proteins and their neutralization may aid in protein engineering applications.

  4. Long term testing of PSI-membranes

    Energy Technology Data Exchange (ETDEWEB)

    Huslage, J; Brack, H P; Geiger, F; Buechi, F N; Tsukada, A; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Long term tests of PSI membranes based on radiation-grafted FEP and ETFE films were carried out and FEP-based membranes were evaluated by monitoring the in-situ membrane area resistance measured by a current pulse method. By modifying our irradiation procedure and using the double crosslinking concept we obtain reproducible membrane cell lifetimes (in term of in-situ membrane resistance) of greater than 5000 hours at 60-65{sup o}C. Preliminary tests at 80-85{sup o}C with lifetimes of greater than 2500 demonstrate the potential long term stability of PSI proton exchange membranes based on FEP over the whole operating temperature range of low-temperature polymer electrolyte fuel cells. Radiation grafted PSI membranes based on ETFE have better mechanical properties than those of the FEP membranes. Mechanical properties are particularly important in large area cells and fuel cell stacks. ETFE membranes have been tested successfully for approximately 1000 h in a 2-cell stack (100 cm{sup 2} active area each cell). (author) 4 figs., 4 refs.

  5. Safety report content and development for test loop facility on MARIA reactor

    International Nuclear Information System (INIS)

    Konechko, A.; Shumskij, A.M.; Mikul'ahin, V.E.

    1982-01-01

    A 600 kW test loop facility for investigatin.o safety problems is realized on MARIA reactor in Poland together with USSR organizations. Safety reports have been developed in two steps at the designstage. The 1st report being essentially a preliminary safety analysis was developed within the scope of the feasibility study. At the engineering design stage the preliminary test loop facility safety report had been prepared considering measures excluding the possibility of the MARIA reactor damage. The test loop facility safety report is fulfilled for normal, transient and emergency operation regimes. Separate safety basing for each group of experiments will be prepared. The report presents the test loop facility safety criteria coordinated by the nuclear safety comission. They contains the preliminary reports on the test loop facility safety. At the final stage of construction and at thecommitioning stage the start-up safety report will be developed which after required correction and adding up the putting into operation data will turn into operation safety report [ru

  6. Closed Loop In-Reactor Assembly (CLIRA): a fast flux test facility test vehicle

    International Nuclear Information System (INIS)

    Oakley, D.J.

    1978-01-01

    The Closed Loop In-Reactor Assembly (CLIRA) is a test vehicle for in-core material and fuel experiments in the Fast Flux Test Facility (FFTF). The FFTF is a fast flux nuclear test reactor operated for the Department of Energy (DOE) by Westinghouse Hanford Company in Richland, Washington. The CLIRA is a removable/replaceable part of the Closed Loop System (CLS) which is a sodium coolant system providing flow and temperature control independent of the reactor coolant system. The primary purpose of the CLIRA is to provide a test vehicle which will permit testing of nuclear fuels and materials at conditions more severe than exist in the FTR core, and to isolate these materials from the reactor core

  7. Loop Transfer Matrix and Loop Quantum Mechanics

    International Nuclear Information System (INIS)

    Savvidy, George K.

    2000-01-01

    The gonihedric model of random surfaces on a 3d Euclidean lattice has equivalent representation in terms of transfer matrix K(Q i ,Q f ), which describes the propagation of loops Q. We extend the previous construction of the loop transfer matrix to the case of nonzero self-intersection coupling constant κ. We introduce the loop generalization of Fourier transformation which allows to diagonalize transfer matrices, that depend on symmetric difference of loops only and express all eigenvalues of 3d loop transfer matrix through the correlation functions of the corresponding 2d statistical system. The loop Fourier transformation allows to carry out the analogy with quantum mechanics of point particles, to introduce conjugate loop momentum P and to define loop quantum mechanics. We also consider transfer matrix on 4d lattice which describes propagation of memebranes. This transfer matrix can also be diagonalized by using the generalized Fourier transformation, and all its eigenvalues are equal to the correlation functions of the corresponding 3d statistical system. In particular the free energy of the 4d membrane system is equal to the free energy of 3d gonihedric system of loops and is equal to the free energy of 2d Ising model. (author)

  8. Scoping erosion flow loop test results in support of Hanford WTP

    International Nuclear Information System (INIS)

    Duignan, M.; Imrich, K.; Fowley, M.; Restivo, M.; Reigel, M.

    2015-01-01

    The Waste Treatment and Immobilization Plant (WTP) will process Hanford Site tank waste by converting the waste into a stable glass form. Before the tank waste can be vitrified, the baseline plan is to process the waste through the Pretreatment (PT) Facility where it will be mixed in various process vessels using Pulse Jet Mixers (PJM) and transferred to the High Level Waste (HLW) or Low Activity Waste (LAW) vitrification facilities. The Department of Energy (DOE) and Defense Nuclear Facility Safety Board (DNFSB), as well as independent review groups, have raised concerns regarding the design basis for piping erosion in the PT Facility. Due to the complex nature of slurry erosion/corrosion wear and the unique conditions that exist within the PT Facility, additional testing has been recommended by these entities. Pipe loop testing is necessary to analyze the potential for localized wear at elbows and bends, close the outstanding PT and HLW erosion/corrosion technical issues, and underpin BNI's design basis for a 40-year operational life for black cell piping and vessels. SRNL is consulting with the DOE Office of River Protection (ORP) to resolve technical concerns related to piping erosion/corrosion (wear) design basis for PT. SRNL was tasked by ORP to start designing, building, and testing a flow loop to obtain long-term total-wear rate data using bounding simulant chemistry, operating conditions, and prototypical materials. The initial test involved a scoping paint loop to locate experimentally the potential high-wear locations. This information will provide a basis for the placement of the many sensitive wear measurement instruments in the appropriate locations so that the principal flow-loop test has the best chance to estimate long-term erosion and corrosion. It is important to note that the scoping paint loop test only utilized a bounding erosion simulant for this test. A full chemical simulant needs to be added for the complete test flow loop. The

  9. Supercritical CO2 test loop operation and first test results

    International Nuclear Information System (INIS)

    Wright, Steven A.; Pickard, Paul S.

    2009-01-01

    The DOE Office of Nuclear Energy is investigating advanced Brayton cycles for use with next generation nuclear power plants. The focus of this work is on the supercritical CO 2 Brayton cycle which has the potential for high efficiency, and for reduced capital costs due to very compact turbomachinery. Sandia has fabricated and is operating a supercritical CO 2 (S-CO 2 ) test loop to investigate the key technology issues associated with this cycle. This loop is part of a multi-year phased development program to develop a megawatt (MW) class closed S-CO 2 Brayton cycle to demonstrate the applicability of this cycle for DOE Gen-IV program. The current loop has been configured as both a compression loop and as simple heated but unrecuperated Brayton cycle. A second split-flow or re-compression Brayton cycle is currently under development that will use approximately 1 MW of heat to run the Brayton cycle. Early configurations of this split-flow Brayton cycle will be operational later this fiscal year. The key issues for this cycle include the fundamental issues of compressor fluid performance and system control near the critical point, but also the supporting technology issues of bearings, sealing technologies, and rotor windage losses which are also essential to achieving efficiency and cost objectives. These tests are providing the first measurements and information on these key supercritical CO 2 power conversion systems questions. Important data for all these issues has been obtained. This report presents the major results of the testing by showing and comparing the measured compressor performance map with the predicted performance. The compression loop uses a ∼50 kWe motor driven compressor to spin a 37 mm OD compressor at design speeds up to 75,000 rpm with a pressure ratio of 1.8 and a flow rate of 3.53 kg/s for a compressor inlet condition of 305.3 K and 7690 kPa. The most recent configuration of this loop has added a small turbine and 260 kW of heater power is

  10. Smart Home Hardware-in-the-Loop Testing

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Annabelle

    2017-07-12

    This presentation provides a high-level overview of NREL's smart home hardware-in-the-loop testing. It was presented at the Fourth International Workshop on Grid Simulator Testing of Energy Systems and Wind Turbine Powertrains, held April 25-26, 2017, hosted by NREL and Clemson University at the Energy Systems Integration Facility in Golden, Colorado.

  11. UF6 test loop for evaluation and implementation of international enrichment plant safeguards

    International Nuclear Information System (INIS)

    Cooley, J.N.; Fields, L.W.; Swindle, D.W. Jr.

    1987-06-01

    A functional test loop capable of simulating UF 6 flows, pressures, and pipe deposits characteristic of gas centrifuge enrichment plant piping has been designed and fabricated by the Enrichment Safeguards Program of Martin Marietta Energy Systems, Inc., for use by International Atomic Energy Agency (IAEA) at its Safeguards Analytical Laboratory in Seibersdorf, Austria. Purpose of the test loop is twofold: (1) to enable the IAEA to evaluate and to calibrate enrichment safeguards measurement instrumentation to be used in limited frequency-unannounced access (LFUA) inspection strategy measurements at gas centrifuge enrichment plants and (2) to train IAEA inspectors in the use of such instrumentation. The test loop incorporates actual sections of cascade header pipes from the centrifuge enrichment plants subject to IAEA inspections. The test loop is described, applications for its use by the IAEA are detailed, and results from an initial demonstration session using the test loop are summarized

  12. A one-loop test of string duality

    International Nuclear Information System (INIS)

    Vafa, C.

    1995-01-01

    We test Type IIA-heterotic string duality in six dimensions by showing that the sigma model anomaly of the heterotic string is generated by a combination of a tree level and a string one-loop correction on the Type IIA side. (orig.)

  13. Roles of the Protruding Loop of Factor B Essential for the Localization of Lipoproteins (LolB) in the Anchoring of Bacterial Triacylated Proteins to the Outer Membrane*

    Science.gov (United States)

    Hayashi, Yumi; Tsurumizu, Ryoji; Tsukahara, Jun; Takeda, Kazuki; Narita, Shin-ichiro; Mori, Makiko; Miki, Kunio; Tokuda, Hajime

    2014-01-01

    The Lol system comprising five Lol proteins, LolA through LolE, sorts Escherichia coli lipoproteins to outer membranes. The LolCDE complex, an ATP binding cassette transporter in inner membranes, releases outer membrane-specific lipoproteins in an ATP-dependent manner, causing formation of the LolA-lipoprotein complex in the periplasm. LolA transports lipoproteins through the periplasm to LolB on outer membranes. LolB is itself a lipoprotein anchored to outer membranes, although the membrane anchor is functionally dispensable. LolB then localizes lipoproteins to outer membranes through largely unknown mechanisms. The crystal structure of LolB is similar to that of LolA, and it possesses a hydrophobic cavity that accommodates acyl chains of lipoproteins. To elucidate the molecular function of LolB, a periplasmic version of LolB, mLolB, was mutagenized at various conserved residues. Despite the lack of acyl chains, most defective mutants were insoluble. However, a derivative with glutamate in place of leucine 68 was soluble and unable to localize lipoproteins to outer membranes. This leucine is present in a loop protruding from mLolB into an aqueous environment, and no analogous loop is present in LolA. Thus, leucine 68 was replaced with other residues. Replacement by acidic, but not hydrophobic, residues generated for the first time mLolB derivatives that can accept but cannot localize lipoproteins to outer membranes. Moreover, deletion of the leucine with neighboring residues impaired the lipoprotein receptor activity. Based on these observations, the roles of the protruding loop of LolB in the last step of lipoprotein sorting are discussed. PMID:24569999

  14. Roles of the protruding loop of factor B essential for the localization of lipoproteins (LolB) in the anchoring of bacterial triacylated proteins to the outer membrane.

    Science.gov (United States)

    Hayashi, Yumi; Tsurumizu, Ryoji; Tsukahara, Jun; Takeda, Kazuki; Narita, Shin-ichiro; Mori, Makiko; Miki, Kunio; Tokuda, Hajime

    2014-04-11

    The Lol system comprising five Lol proteins, LolA through LolE, sorts Escherichia coli lipoproteins to outer membranes. The LolCDE complex, an ATP binding cassette transporter in inner membranes, releases outer membrane-specific lipoproteins in an ATP-dependent manner, causing formation of the LolA-lipoprotein complex in the periplasm. LolA transports lipoproteins through the periplasm to LolB on outer membranes. LolB is itself a lipoprotein anchored to outer membranes, although the membrane anchor is functionally dispensable. LolB then localizes lipoproteins to outer membranes through largely unknown mechanisms. The crystal structure of LolB is similar to that of LolA, and it possesses a hydrophobic cavity that accommodates acyl chains of lipoproteins. To elucidate the molecular function of LolB, a periplasmic version of LolB, mLolB, was mutagenized at various conserved residues. Despite the lack of acyl chains, most defective mutants were insoluble. However, a derivative with glutamate in place of leucine 68 was soluble and unable to localize lipoproteins to outer membranes. This leucine is present in a loop protruding from mLolB into an aqueous environment, and no analogous loop is present in LolA. Thus, leucine 68 was replaced with other residues. Replacement by acidic, but not hydrophobic, residues generated for the first time mLolB derivatives that can accept but cannot localize lipoproteins to outer membranes. Moreover, deletion of the leucine with neighboring residues impaired the lipoprotein receptor activity. Based on these observations, the roles of the protruding loop of LolB in the last step of lipoprotein sorting are discussed.

  15. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Rector, Tony; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2012-01-01

    A water loop maintenance device and process to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been undergoing a performance evaluation. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the water recirculation maintenance device and process is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance process further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware. This

  16. Optimal tests for electroweak loop effects

    International Nuclear Information System (INIS)

    Aoki, Kenichi; Aoyama, Hideaki; Harvard Univ., Cambridge, MA

    1986-01-01

    A statistical analysis is given for the experimental precision necessary for establishing loop effects in the electroweak theory. Cases with three observables, gauge boson masses and the Weinberg angle, is analyzed by an optimised test. An information on the Weinberg angle with even 5% error (+-.01 in sin 2 thetasub(W)) is shown to reduce the requirement for the measurements of gauge boson masses significantly. (orig.)

  17. Test of Flow Characteristics in Tubular Fuel Assembly I - Establishment of test loop and measurement validation test

    International Nuclear Information System (INIS)

    Park, Jong Hark; Chae, H. T.; Park, C.; Kim, H.

    2005-12-01

    Tubular type fuel has been developed as one of candidates for Advanced HANARO Reactor(AHR). It is necessary to test the flow characteristics such as velocity in each flow channels and pressure drop of tubular type fuel. A hydraulic test-loop to examine the hydraulic characteristics for a tubular type fuel has been designed and constructed. It consists of three parts; a) piping-loop including pump and motor, magnetic flow meter and valves etc, b) test-section part where a simulated tubular type fuel is located, and 3) data acquisition system to get reading signals from sensors or instruments. In this report, considerations during the design and installation of the facility and the selection of data acquisition sensors and instruments are described in detail. Before doing the experiment to measure the flow velocities in flow channels, a preliminary tests have been done for measuring the coolant velocities using pitot-tube and for validating the measurement accuracy as well. Local velocities of the radial direction in circular tubes are measured at regular intervals of 60 degrees by three pitot-tubes. Flow rate inside the circular flow channel can be obtained by integrating the velocity distribution in radial direction. The measured flow rate was compared to that of magnetic flow meter. According to the results, two values had a good agreement, which means that the measurement of coolant velocity by using pitot-tube and the flow rate measured by the magnetic flow meter are reliable. Uncertainty analysis showed that the error of velocity measurement by pitot-tube is less than ±2.21%. The hydraulic test-loop also can be adapted to others such as HANARO 18 and 36 fuel, in-pile system of FTL(Fuel Test Loop), etc

  18. Test results of reliable and very high capillary multi-evaporators / condenser loop

    Energy Technology Data Exchange (ETDEWEB)

    Van Oost, S; Dubois, M; Bekaert, G [Societe Anonyme Belge de Construction Aeronautique - SABCA (Belgium)

    1997-12-31

    The paper present the results of various SABCA activities in the field of two-phase heat transport system. These results have been based on a critical review and analysis of the existing two-phase loop and of the future loop needs in space applications. The research and the development of a high capillary wick (capillary pressure up to 38 000 Pa) are described. These activities have led towards the development of a reliable high performance capillary loop concept (HPCPL), which is discussed in details. Several loop configurations mono/multi-evaporators have been ground tested. The presented results of various tests clearly show the viability of this concept for future applications. Proposed flight demonstrations as well as potential applications conclude this paper. (authors) 7 refs.

  19. Test results of reliable and very high capillary multi-evaporators / condenser loop

    Energy Technology Data Exchange (ETDEWEB)

    Van Oost, S.; Dubois, M.; Bekaert, G. [Societe Anonyme Belge de Construction Aeronautique - SABCA (Belgium)

    1996-12-31

    The paper present the results of various SABCA activities in the field of two-phase heat transport system. These results have been based on a critical review and analysis of the existing two-phase loop and of the future loop needs in space applications. The research and the development of a high capillary wick (capillary pressure up to 38 000 Pa) are described. These activities have led towards the development of a reliable high performance capillary loop concept (HPCPL), which is discussed in details. Several loop configurations mono/multi-evaporators have been ground tested. The presented results of various tests clearly show the viability of this concept for future applications. Proposed flight demonstrations as well as potential applications conclude this paper. (authors) 7 refs.

  20. UF/sub 6/ test loop for evaluation and implementation of international enrichment plant safeguards

    International Nuclear Information System (INIS)

    Cooley, J.N.; Fields, L.W.; Swindle, D.W. Jr.

    1987-01-01

    A functional test loop capable of simulating UF/sub 6/ flows, pressures, and pipe deposits characteristic of gas centrifuge enrichment plant piping has been designed and fabricated by the Enrichment Safeguards Program of Martin Marietta Energy Systems, Inc., for use by the International Atomic Energy Agency (IAEA) at its Safeguards Analytical Laboratory in Seibersdorf, Austria. The purpose of the test loop is twofold: (1) to enable the IAEA to evaluate and to calibrate enrichment safeguards measurement instrumentation to be used in limited frequency-unannounced access (LFUA) inspection strategy measurements at gas centrifuge enrichment plants and (2) to train IAEA inspectors in the use of such instrumentation. The test loop incorporates actual sections of cascade header pipes from the centrifuge enrichment plants subject to IAEA inspections. The test loop is described, applications for its use by the IAEA are detailed, and results from an initial demonstration session using the test loop are summarized. By giving the IAEA the in-house capability to evaluate LFUA inspection strategy approaches, to develop inspection procedures, to calibrate instrumentation, and to train inspectors, the UF/sub 6/ cascade header pipe test loop will contribute to the IAEA's success in implementing LFUA strategy inspections at gas centrifuge enrichment facilities subject to international safeguards inspections

  1. Modeling a forced to natural convection boiling test with the program LOOP-W

    International Nuclear Information System (INIS)

    Carbajo, J.J.

    1984-01-01

    Extensive testing has been conducted in the Simulant Boiling Flow Visualization (SBFV) loop in which water is boiled in a vertical transparent tube by circulating hot glycerine in an annulus surrounding the tube. Tests ranged from nonboiling forced convection to oscillatory boiling natural convection. The program LOOP-W has been developed to analyze these tests. This program is a multi-leg, one-dimensional, two-phase equilibrium model with slip between the phases. In this study, a specific test, performed at low power where non-boiling forced convection was changed to boiling natural convection and then to non-boiling again, has been modeled with the program LOOP-W

  2. Design criteria of out-pile system of HANARO fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.

    1997-07-01

    The objective of HANARO aims at the development and localization of nuclear technologies through the engineering tests. Thus it is very important the design and installation of the irradiation test facilities to be installed at the irradiation hole for verification test of the fuel performance are in connection with maximization of the utilization of HANARO. The principle subjects of this study are to presend and informed the detail design criteria and technical specification of out-pile system of HANARO fuel test loop for the developing of the fuel and reactor material. This results will become guidance for the planning of the irradiation testing using the HANARO fuel test loop. (author). 16 refs., 31 tabs., 9 figs.

  3. LOCA simulation tests in the RD-12 loop with multiple heat channels

    International Nuclear Information System (INIS)

    Ardron, K.H.; McGee, G.R.; Hawley, E.H.

    1985-11-01

    A series of tests has been performed in the RD-12 loop to study the bahaviour of a CANDU-type, primary heat transport system (PHTS) during the blowdown and injection phases of a loss-of-coolant accident (LOCA). Specifically, the tests were used to investigate flow stagnation and refilling of the core following a LOCA. RD-12 is a pressurized water loop with the basic geometry of a CANDU reactor PHTS, but at approximately 1/125 volume scale. The loop consists of U-tube steam generators, pumps, headers, feeders, and heated channels arranged in the symmetrical figure-of-eight configuration of the CANDU PHTS. In the LOCA simulation tests, the loop contained four horizontal heated channels, each containing a seven-element assembly of indirectly heated, fuel-rod simulators. The channels were nominally identical, and were arranged in parallel pairs between the headers in each half-circuit. Tests were carried out using various restricting orifices to represent pipe breaks of different sizes. The break sizes were specifically chosen such that stagnation conditions in the heated channels would be likely to occur. In some tests, the primary pumps were programmed to run down over a 100-s period to simulate a LOCA with simultaneous loss of pump power. Test results showed that, for certain break sizes, periods of low flow occurred in the channels in one half of the loop, leading to flow stratification and sheath temperature excursions. This report reviews the results of two of the tests, and discusses possible mechanisms that may have led to the low channel flow conditions observed in some cases. Plans for future experiments in the larger scale RD-14 facility are outlined. 5 refs

  4. Construction of a dead-end type micro- to R.O. membrane test cell and performance test with the laboratory- made and commercial membranes

    Directory of Open Access Journals (Sweden)

    Darunee Bhongsuwan

    2002-11-01

    Full Text Available A dead-end type membrane stirred cell for an RO filtration test has been designed and constructed. Magnetic stirring system is applied to overcome a pressure-induced concentration polarization occurred over a membrane surface in the test cell. A high pressure N2 tank is used as a pressure source.Feed container is designed for 2.5 l feed solution and a stirred cell volume is 0.5 l . The test cell holds a magnetic stirrer freely moved over the membrane surface. All units are made of stainless steel. A porous SS316L disc is used as a membrane support. The dead-end stirred cell is tested to work properly in an operating pressure ranged 0 - 400 psi. It means that the dead-end cell can be used to test a membrane of different filtration modes, from micro- to Reverse Osmosis filtration. Tests performed at 400 psi for 3 hours are safe but tests at a 500 psi increase leakage possibility. The cell is used to test the performance of both commercial and laboratory-made membranes. It shows that the salt rejection efficiency of the nano- and RO membranes, NTR759HR and LES90, determined by using the new test cell, is closely similar to those reported from the manufacture. Result of the tests for our own laboratory-made membrane shows a similar performance to the nanofiltration membrane LES90.

  5. Testing of Synthetic Biological Membranes for Forward Osmosis Applications

    Science.gov (United States)

    Parodi, Jurek; Mangado, Jaione Romero; Stefanson, Ofir; Flynn, Michael; Mancinelli, Rocco; Kawashima, Brian; Trieu, Serena; Brozell, Adrian; Rosenberg, Kevan

    2016-01-01

    Commercially available forward osmosis membranes have been extensively tested for human space flight wastewater treatment. Despite the improvements achieved in the last decades, there is still a challenge to produce reliable membranes with anti-fouling properties, chemical resistance, and high flux and selectivity. Synthetic biological membranes that mimic the ones present in nature, which underwent millions of years of evolution, represent a potential solution for further development and progress in membrane technology. Biomimetic forward osmosis membranes based on a polymeric support filter and coated with surfactant multilayers have been engineered to investigate how different manufacturing processes impact the performance and structure of the membrane. However, initial results of the first generation prototype membranes tests reveal a high scatter in the data, due to the current testing apparatus set up. The testing apparatus has been upgraded to improve data collection, reduce errors, and to allow higher control of the testing process.

  6. Selfdual strings and loop space Nahm equations

    International Nuclear Information System (INIS)

    Gustavsson, Andreas

    2008-01-01

    We give two independent arguments why the classical membrane fields should be take values in a loop algebra. The first argument comes from how we may construct selfdual strings in the M5 brane from a loop space version of the Nahm equations. The second argument is that there appears to be no infinite set of finite-dimensional Lie algebras (such as su(N) for any N) that satisfies the algebraic structure of the membrane theory

  7. Detection Test for Leakage of CO2 into Sodium Loop

    International Nuclear Information System (INIS)

    Park, Sun Hee; Wi, Myung-Hwan; Min, Jae Hong

    2015-01-01

    This report is about the facility for the detection test for leakage of CO 2 into sodium loop. The facility for the detection test for leakage of CO 2 into sodium loop was introduced. The test will be carried out. Our experimental results are going to be expected to be used for approach methods to detect CO 2 leaking into sodium in heat exchangers. A sodium-and-carbon dioxide (Na-CO 2 ) heat exchanger is one of the key components for the supercritical CO 2 Brayton cycle power conversion system of sodium-cooled fast reactors (SFRs). A printed circuit heat exchanger (PCHE) is considered for the Na-CO 2 heat exchanger, which is known to have potential for reducing the volume occupied by the exchangers compared to traditional shell-and-tube heat exchangers. Among various issues about the Na- CO 2 exchanger, detection of CO 2 leaking into sodium in the heat exchanger is most important thing for its safe operation. It is known that reaction products from sodium and CO 2 such as sodium carbonate (Na 2 CO 3 ) and amorphous carbon are hardly soluble in sodium, which cause plug sodium channels. Detection technique for Na 2 CO 3 in sodium loop has not been developed yet. Therefore, detection of CO 2 and CO from reaction of sodium and CO 2 are proper to detect CO 2 leakage into sodium loop

  8. Tests in the ATLE loop on the PIUS design

    International Nuclear Information System (INIS)

    Bredolt, U.; Babala, D.; Kemppainen, J.

    1992-01-01

    This paper describes experimental demonstration of the self-protective features of Process Inherent Ultimate Safety (PIUS) design in a large scale test loop in ABB Atoms engineering laboratories. The loop employs real time simulation of core power as a function of coolant conditions in an electrically heated fuel assembly model. System responses to various severe transients were studied. Comparisons were made with predictions of the RIGEL code, which has been developed specifically for study of PIUS type reactors. A comparison between test results and calculated results was made for main state variables such as pressure, temperatures, concentrations, heat fluxes and mass flow rates. The tests have demonstrated the self-protective thermal-hydraulics of pressurized water reactor primary systems designed according to the PIUS principle and verified the capability of the RIGEL code to predict their behavior during severe accidents and in normal operation transients

  9. Mechanisms Engineering Test Loop - Phase 1 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Kultgen, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Hvasta, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Lisowski, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Toter, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Borowski, A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    This report documents the current status of the Mechanisms Engineering Test Loop (METL) as of the end of FY2016. Currently, METL is in Phase I of its design and construction. Once operational, the METL facility will test small to intermediate-scale components and systems in order to develop advanced liquid metal technologies. Testing different components in METL is essential for the future of advanced fast reactors as it will provide invaluable performance data and reduce the risk of failures during plant operation.

  10. Trace organic solutes in closed-loop forward osmosis applications: influence of membrane fouling and modeling of solute build-up.

    Science.gov (United States)

    D'Haese, Arnout; Le-Clech, Pierre; Van Nevel, Sam; Verbeken, Kim; Cornelissen, Emile R; Khan, Stuart J; Verliefde, Arne R D

    2013-09-15

    In this study, trace organics transport in closed-loop forward osmosis (FO) systems was assessed. The FO systems considered, consisted of an FO unit and a nanofiltration (NF) or reverse osmosis (RO) unit, with the draw solution circulating between both units. The rejection of trace organics by FO, NF and RO was tested. It was found that the rejection rates of FO were generally comparable with NF and lower than RO rejection rates. To assess the influence of fouling in FO on trace organics rejection, FO membranes were fouled with sodium alginate, bovine serum albumin or by biofilm growth, after which trace organics rejection was tested. A negative influence of fouling on FO rejection was found which was limited in most cases, while it was significant for some compounds such as paracetamol and naproxen, indicating specific compound-foulant interactions. The transport mechanism of trace organics in FO was tested, in order to differentiate between diffusive and convective transport. The concentration of trace organics in the final product water and the build-up of trace organics in the draw solution were modeled assuming the draw solution was reconcentrated by NF/RO and taking into account different transport mechanisms for the FO membrane and different rejection rates by NF/RO. Modeling results showed that if the FO rejection rate is lower than the RO rejection rate (as is the case for most compounds tested), the added value of the FO-RO cycle compared to RO only at steady-state was small for diffusively and negative for convectively transported trace organics. Modeling also showed that trace organics accumulate in the draw solution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Coupled hydrodynamic-structural analysis of an integral flowing sodium test loop in the TREAT reactor

    International Nuclear Information System (INIS)

    Zeuch, W.R.; A-Moneim, M.T.

    1979-01-01

    A hydrodynamic-structural response analysis of the Mark-IICB loop was performed for the TREAT (Transient Reactor Test Facility) test AX-1. Test AX-1 is intended to provide information concerning the potential for a vapor explosion in an advanced-fueled LMFBR. The test will be conducted in TREAT with unirradiated uranium-carbide fuel pins in the Mark-IICB integral flowing sodium loop. Our analysis addressed the ability of the experimental hardware to maintain its containment integrity during the reference accident postulated for the test. Based on a thermal-hydraulics analysis and assumptions for fuel-coolant interaction in the test section, a pressure pulse of 144 MPa maximum pressure and pulse width of 1.32 ms has been calculated as the reference accident. The response of the test loop to the pressure transient was obtained with the ICEPEL and STRAW codes. Modelling of the test section was completed with STRAW and the remainder of the loop was modelled by ICEPEL

  12. High temperature, high pressure gas loop - the Component Flow Test Loop (CFTL)

    International Nuclear Information System (INIS)

    Gat, U.; Sanders, J.P.; Young, H.C.

    1984-01-01

    The high-pressure, high-temperature, gas-circulating Component Flow Test Loop located at Oak Ridge National Laboratory was designed and constructed utilizing Section III of the ASME Boiler and Pressure Vessel Code. The quality assurance program for operating and testing is also based on applicable ASME standards. Power to a total of 5 MW is available to the test section, and an air-cooled heat exchanger rated at 4.4 MW serves as heat sink. The three gas-bearing, completely enclosed gas circulators provide a maximum flow of 0.47 m 3 /s at pressures to 10.7 MPa. The control system allows for fast transients in pressure, power, temperature, and flow; it also supports prolonged unattended steady-state operation. The data acquisition system can access and process 10,000 data points per second. High-temperature gas-cooled reactor components are being tested

  13. Electrolysis test of different composite membranes at elevated temperatures

    DEFF Research Database (Denmark)

    Hansen, Martin Kalmar

    temperatures, phosphoric acid (H3PO4)[1] and zirconium phosphate (ZrP)[2] were introduced. These composite membranes were tested in an electrolysis setup. A typical electrolysis test was performed at 130°C with a galvanostatic load. Polarization curves were recorded under stationary conditions. Testing...... night at 150°C in a zirconium phosphate saturated 85wt% phosphoric acid solution. Different thicknesses of membranes were tested and as expected, the performance increased when the thickness of the membranes decreased. Furthermore composite membranes only treated with phosphoric acid or only treated...

  14. Surface expression, single-channel analysis and membrane topology of recombinant Chlamydia trachomatis Major Outer Membrane Protein

    Directory of Open Access Journals (Sweden)

    McClafferty Heather

    2005-01-01

    Full Text Available Abstract Background Chlamydial bacteria are obligate intracellular pathogens containing a cysteine-rich porin (Major Outer Membrane Protein, MOMP with important structural and, in many species, immunity-related roles. MOMP forms extensive disulphide bonds with other chlamydial proteins, and is difficult to purify. Leaderless, recombinant MOMPs expressed in E. coli have yet to be refolded from inclusion bodies, and although leadered MOMP can be expressed in E. coli cells, it often misfolds and aggregates. We aimed to improve the surface expression of correctly folded MOMP to investigate the membrane topology of the protein, and provide a system to display native and modified MOMP epitopes. Results C. trachomatis MOMP was expressed on the surface of E. coli cells (including "porin knockout" cells after optimizing leader sequence, temperature and medium composition, and the protein was functionally reconstituted at the single-channel level to confirm it was folded correctly. Recombinant MOMP formed oligomers even in the absence of its 9 cysteine residues, and the unmodified protein also formed inter- and intra-subunit disulphide bonds. Its topology was modeled as a (16-stranded β-barrel, and specific structural predictions were tested by removing each of the four putative surface-exposed loops corresponding to highly immunogenic variable sequence (VS domains, and one or two of the putative transmembrane strands. The deletion of predicted external loops did not prevent folding and incorporation of MOMP into the E. coli outer membrane, in contrast to the removal of predicted transmembrane strands. Conclusions C. trachomatis MOMP was functionally expressed on the surface of E. coli cells under newly optimized conditions. Tests of its predicted membrane topology were consistent with β-barrel oligomers in which major immunogenic regions are displayed on surface-exposed loops. Functional surface expression, coupled with improved understanding of MOMP

  15. Membrane properties for permeability testing: Skin versus synthetic membranes.

    Science.gov (United States)

    Haq, Anika; Dorrani, Mania; Goodyear, Benjamin; Joshi, Vivek; Michniak-Kohn, Bozena

    2018-03-25

    Synthetic membranes that are utilized in diffusion studies for topical and transdermal formulations are usually porous thin polymeric sheets for example cellulose acetate (CA) and polysulfones. In this study, the permeability of human skin was compared using two synthetic membranes: cellulose acetate and Strat-M® membrane and lipophilic and hydrophilic compounds either as saturated or formulated solutions as well as marketed dosage forms. Our data suggests that hydrophilic compounds have higher permeation in Strat-M membranes compared with lipophilic ones. High variation in permeability values, a typical property of biological membranes, was not observed with Strat-M. In addition, the permeability of Strat-M was closer to that of human skin than that of cellulose acetate (CA > Strat-M > Human skin). Our results suggest that Strat-M with little or no lot to lot variability can be applied in pilot studies of diffusion tests instead of human skin and is a better substitute than a cellulose acetate. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Analyses of the Anticipated Operational Occurrences for the HANARO Fuel Test Loop

    International Nuclear Information System (INIS)

    Park, S. K.; Sim, B. S.; Chi, D. Y.; Lee, C. Y.; Ahn, S. H.

    2007-12-01

    The analyses of anticipated operational occurrences of the HANARO fuel test loop have been carried out by using the MARS/FTL A code, which is a modified version of the MARS code. A critical heat flux correlation on the three rods with triangular array was implemented in the MARS/FTL A code. The correlation was obtained from the critical heat fluxes measured at a test section, which is the same geometry of the in-pile test section of the HANARO fuel test loop. The anticipated operational occurrences of the HANARO fuel test loop are the inadvertent closure of the isolation valves, the over-power transient of the HANARO, the stuck open of the safety valves, and the loss of HANARO class IV power. A minimum DNBR (Departure from Nucleate Boiling Ratio) was predicted in the inadvertent closure of the isolation valves. It is indicated that the minimum DNBR of 1.85 is greater than the design limit DNBR of 1.39. The maximum coolant pressure calculated in the anticipated operational occurrences is also less than the 110 percents of the design pressure

  17. The cysteines of the extracellular loop are crucial for trafficking of human organic cation transporter 2 to the plasma membrane and are involved in oligomerization.

    Science.gov (United States)

    Brast, Sabine; Grabner, Alexander; Sucic, Sonja; Sitte, Harald H; Hermann, Edwin; Pavenstädt, Hermann; Schlatter, Eberhard; Ciarimboli, Giuliano

    2012-03-01

    Human organic cation transporter 2 (hOCT2) is involved in transport of many endogenous and exogenous organic cations, mainly in kidney and brain cells. Because the quaternary structure of transmembrane proteins plays an essential role for their cellular trafficking and function, we investigated whether hOCT2 forms oligomeric complexes, and if so, which part of the transporter is involved in the oligomerization. A yeast 2-hybrid mating-based split-ubiquitin system (mbSUS), fluorescence resonance energy transfer, Western blot analysis, cross-linking experiments, immunofluorescence, and uptake measurements of the fluorescent organic cation 4-(4-(dimethylamino)styryl)-N-methylpyridinium were applied to human embryonic kidney 293 (HEK293) cells transfected with hOCT2 and partly also to freshly isolated human proximal tubules. The role of cysteines for oligomerization and trafficking of the transporter to the plasma membranes was investigated in cysteine mutants of hOCT2. hOCT2 formed oligomers both in the HEK293 expression system and in native human kidneys. The cysteines of the large extracellular loop are important to enable correct folding, oligomeric assembly, and plasma membrane insertion of hOCT2. Mutation of the first and the last cysteines of the loop at positions 51 and 143 abolished oligomer formation. Thus, the cysteines of the extracellular loop are important for correct trafficking of the transporter to the plasma membrane and for its oligomerization.

  18. An Investigation of Loop Seal Clearings in ATLAS SBLOCA Tests

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeonsik; Cho, Seok; Kang, Kyoungho; Park, Hyunsik; Min, Kyeongho; Choi, Namhyeon; Park, Jonggook; Kim, Bokdeuk; Choi, Kiyong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    In most of the SBLOCA cases, the pressure of the upper-head region will increase mainly owing to the accumulated steam and water inventory in the upper-plenum. This build-up pressure acts as a suppression force to the core water level, and resultantly the core water level will decrease possibly up to and/or below the top of the active core region. Simultaneously, the downcomer water level will increase owing to the evacuated water inventory from the lower part of the core region. This unbalanced hydro-static pressure between the core and downcomer region acts as a potential pushing force to the reactor coolant pump (RCP) side intermediate leg. The potential pushing force will be increased with time to overcome the hydro-static head in the upflow intermediate leg. The unbalanced hydro-static pressure can finally be dissolved with the occurrence of the loop seal clearing. A minimum core collapsed water level, located below the elevation of the loop seal bottom leg in the ATLAS tests, is taken at this time. Since the loop seal bottom leg is located below the core top for typical PWR plants such as an APR1400, the water level depression may uncover the core upper regions until the core water level recovers with the progress of the clearing of the loop seal upflow leg. At this moment, the core temperature may increase to a peak cladding temperature (PCT) owing to an excessive core uncovery by the minimum core collapsed water level. Therefore, the loop seal clearing phenomenon is very important with respect to the PCT occurrence, which is one of the most important parameters to insure the safety of the reactor system. The loop seal clearing behavior seems to be closely related to the break location and break size. Usually, a loop seal in the break loop is cleared first, and the number of loop seal clearings is dependent on the break size. The larger the break size, the more the loop seals that are cleared. An investigation of LSC in the SBLOCA for DVI line and CL breaks

  19. Experimental facilities for PEC reactor design central channel test loop: CPC-1 - thermal shocks loop: CEDI

    International Nuclear Information System (INIS)

    Calvaresi, C.; Moreschi, L.F.

    1983-01-01

    PEC (Prova Elementi di Combustibile: Fuel Elements Test) is an experimental fast sodium-cooled reactor with a power of 120 MWt. This reactor aims at studying the behaviour of fuel elements under thermal and neutron conditions comparable with those existing in fast power nuclear facilities. Given the particular structure of the core, the complex operations to be performed in the transfer cell and the strict operating conditions of the central channel, two experimental facilities, CPC-1 and CEDI, have been designed as a support to the construction of the reactor. CPC-1 is a 1:1 scale model of the channel, transfer-cell and loop unit of the channel, whereas CEDI is a sodium-cooled loop which enables to carry out tests of isothermal endurance and thermal shocks on the group of seven forced elements, by simulating the thermo-hydraulic and mechanical conditions existing in the reactor. In this paper some experimental test are briefy discussed and some facilities are listed, both for the CPC-1 and for the CEDI. (Auth.)

  20. Application of the X-in-the-Loop Testing Method in the FCV Hybrid Degree Test

    Directory of Open Access Journals (Sweden)

    Haiyu Gao

    2018-02-01

    Full Text Available With the development of fuel cell vehicle technology, an effective testing method that can be applied to develop and verify the fuel cell vehicle powertrain system is urgently required. This paper presents the X-in-the-Loop (XiL testing method in the fuel cell vehicle (FCV hybrid degree test to resolve the first and key issues for the powertrain system design, and the test process and scenarios were designed. The hybrid degree is redefined into the static hybrid degree for system architecture design and the dynamic hybrid degree for vehicle control strategy design, and an integrated testing platform was introduced and a testing application was implemented by following the designed testing flowchart with two loops. Experimental validations show that the sizing of the FCE (Fuel Cell Engine, battery pack, and traction motor with the powertrain architecture can be determined, the control strategy can be evaluated seamlessly, and a systematic powertrain testing solution can be achieved through the whole development process. This research has developed a new testing platform and proposed a novel testing method on the fuel cell vehicle powertrain system, which will be a contribution to fuel cell vehicle technology and its industrialization.

  1. Development of 3-Pin Fuel Test Loop and Utilization Technology

    International Nuclear Information System (INIS)

    Lee, Chung Young; Sim, B. S.; Lee, C. Y.

    2007-06-01

    The principal contents of this project are to design, fabricate and install the steady-state fuel test loop in HANARO for nuclear technology development. Procurement and, fabrication of main equipment, licensing and installation for fuel test loop have been performed. Following contents are described in the report. 1. Design - Design of the In-pile system and Out pile system 2. Fabrication and procurement of the equipment - Fabrication of the In-pile system and In-pool piping - Fabrication and procurement of the equipment of the out-pile system 3. Acquisition of the license - Preparation of the safety analysis report and acquisition of the license - Pre-service inspection of the facility 4. Installation and commissioning - Installation of the FTL - Development of the commissioning procedure

  2. Analyses of the Anticipated Operational Occurrences for the HANARO Fuel Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Sim, B. S.; Chi, D. Y.; Lee, C. Y.; Ahn, S. H

    2007-12-15

    The analyses of anticipated operational occurrences of the HANARO fuel test loop have been carried out by using the MARS/FTL{sub A} code, which is a modified version of the MARS code. A critical heat flux correlation on the three rods with triangular array was implemented in the MARS/FTL{sub A} code. The correlation was obtained from the critical heat fluxes measured at a test section, which is the same geometry of the in-pile test section of the HANARO fuel test loop. The anticipated operational occurrences of the HANARO fuel test loop are the inadvertent closure of the isolation valves, the over-power transient of the HANARO, the stuck open of the safety valves, and the loss of HANARO class IV power. A minimum DNBR (Departure from Nucleate Boiling Ratio) was predicted in the inadvertent closure of the isolation valves. It is indicated that the minimum DNBR of 1.85 is greater than the design limit DNBR of 1.39. The maximum coolant pressure calculated in the anticipated operational occurrences is also less than the 110 percents of the design pressure.

  3. Review of design criteria and safety analysis of safety class electric building for fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.

    1998-02-01

    Steady state fuel test loop will be equipped in HANARO to obtain the development and betterment of advanced fuel and materials through the irradiation tests. HANARO fuel test loop was designed for CANDU and PWR fuel testing. Safety related system of Fuel Test Loop such as emergency cooling water system, component cooling water system, safety ventilation system, high energy line break mitigation system and remote control room was required 1E class electric supply to meet the safety operation in accordance with related code. Therefore, FTL electric building was designed to construction and install the related equipment based on seismic category I. The objective of this study is to review the design criteria and analysis the safety function of safety class electric building for fuel test loop, and this results will become guidance for the irradiation testing in future. (author). 10 refs., 6 tabs., 30 figs.

  4. Helium Loop for the HCPB Test Blanket Module

    International Nuclear Information System (INIS)

    Neuberger, H.; Boccaccini, L.V.; Ghidersa, B. E.; Jin, X.; Meyder, R.

    2006-01-01

    In the frame of the activities of the EU Breeder Blanket Programme and of the Test Blanket Working Group, the Helium loop for the Helium Cooled Pebble Bed Test Blanket Module (HCPB-TBM) in ITER has been investigated with regard to the layout definition, selection of components, control, dimensioning and integration. This paper presents the status of development. The loop design for the HCPB-TBM in ITER will mainly base on the experience gained from Helium Loop Karlsruhe (HELOKA) which is currently developed at the FZK for experiments under ITER relevant conditions. The ITER loop will be equipped with similar components like HELOKA and will mainly consist of a circulator with variable speed drive, a recuperator, an electric heater, a cooler, a dust filter and auxilary components e.g. pipework and valves. A Coolant Purification System (CPS) and a Pressure Control System (PCS) are foreseen to meet the requirements on coolant conditioning. To prepare a TBM for a new experimental campaign, a succession of operational states like '' cold maintenance '', '' baking '' and '' cold standby '' is required. Before a pulse operation, a '' hot stand-by '' state should be achieved providing the TBM with inlet coolant at nominal conditions. This operation modus is continued in the dwell time waiting for the successive pulse. A '' tritium out-gassing '' will be also required after several TBM-campaigns to remove the inventory rest of T in the beds for measurement purpose. The dynamic circuit behaviour during pulses, transition between different operational states as well as the behaviour in accident situations are investigated with RELAP. The main components of the loop will be accommodated inside the Tokamak Cooling Water System(TCWS)- vault from where the pipes require connection to the TBM which is attached to port 16 of the vacuum vessel. Therefore pipes across the ITER- building of about 110 m in length (each) are required. Additional equipment is also located in the port cell

  5. Validity and Reliability of Orthodontic Loops between Mechanical Testing and Computer Simulation: An Finite Element Method Study

    Directory of Open Access Journals (Sweden)

    Gaurav Sepolia

    2014-01-01

    Full Text Available The magnitude and direction of orthodontic force is one of the essential concerns of orthodontic tooth movements. Excessive force may cause root resorption and mobility of the tooth, whereas low force level may results in prolonged treatment. The addition of loops allows the clinician to more accurately achieve the desired results. Aims and objectives: The purpose of the study was to evaluate the validity and reliability of orthodontic loops between mechanical testing and computer simulation. Materials and methods: Different types of loops were taken and divided into four groups: The Teardrop loop, Opus loop, L loop and T loop. These were artificially activated for multiple lengths and studied using the FEM. Results: The Teardrop loop showed the highest force level, and there is no significant difference between mechanical testing and computer simulation.

  6. MTR loop at the MPR-GA. Siwabessy reactor of Serpong Indonesia for testing of LEU fuel

    International Nuclear Information System (INIS)

    Arbie, B.; Sunaryadi, D.; Supadi, S.

    1991-01-01

    The main objective of the MTR-Loop is for testing the specimens of MTR fuel element uprated conditions with respect to the normal conditions of the reactor fuel elements. It is intended to verify the suitability of the fuel elements for operation in a research reactor under preset temperature and pressure conditions. The most important part of the MTR loop is the test section. The fuel elements to be tested are positioned in the test section. For heat removal there is a cooling water flowing through the test section. On this paper the description of the MTR-Loop is described. Installation of the MTR-Loop will be performed in the middle of 1990. In order to facilitate the investigation of fuel behaviour and performance of the new fuel elements the supporting facilities are also already available in the RSG-GAS. (orig.)

  7. Testing of cobalt-free alloys for valve applications using a special test loop

    International Nuclear Information System (INIS)

    Benhamou, C.

    1992-01-01

    Considering that use of cobalt alloys should be avoided as far as possible in PWR components, a programme aimed at establishing the performance of cobalt-free alloys has been performed for valve applications, where cobalt alloys are mainly used. Referring to past work, two types of cobalt-free alloys were selected: Ni-Cr-B-Si and Ni-Cr-Fe alloys. Cobalt-free valves' behaviour has been evaluated comparatively with cobalt valves by implementation of a programme in a special PWR test loop. At the issue of the loop test programme, which included endurance, thermal shock and erosion tests, cobalt-free alloys candidate to replace cobalt alloys are proposed in relation with valve type (globe valve and swing check valve). The following was established: (i) Colmonoy 4-26 (Ni-Cr-B-Si alloy) and Cenium Z20 (Ni-Cr-Fe alloy) deposited by plasma arc process were found suitable for use in 3inch swing check valves; (ii) for integral parts acting as guide rings, Nitronic 60 and Cesium Z20/698 were tested successfully; (iii) for small-bore components such as 2inch globe valves, no solution can yet be proposed; introduction of cobalt-free alloys is dependent on the development of automatic advanced arc surfacing techniques applied to small-bore components

  8. Detection Test for Leakage of CO{sub 2} into Sodium Loop

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Hee; Wi, Myung-Hwan; Min, Jae Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    This report is about the facility for the detection test for leakage of CO{sub 2} into sodium loop. The facility for the detection test for leakage of CO{sub 2} into sodium loop was introduced. The test will be carried out. Our experimental results are going to be expected to be used for approach methods to detect CO{sub 2} leaking into sodium in heat exchangers. A sodium-and-carbon dioxide (Na-CO{sub 2}) heat exchanger is one of the key components for the supercritical CO{sub 2} Brayton cycle power conversion system of sodium-cooled fast reactors (SFRs). A printed circuit heat exchanger (PCHE) is considered for the Na-CO{sub 2} heat exchanger, which is known to have potential for reducing the volume occupied by the exchangers compared to traditional shell-and-tube heat exchangers. Among various issues about the Na- CO{sub 2} exchanger, detection of CO{sub 2} leaking into sodium in the heat exchanger is most important thing for its safe operation. It is known that reaction products from sodium and CO{sub 2} such as sodium carbonate (Na{sub 2}CO{sub 3}) and amorphous carbon are hardly soluble in sodium, which cause plug sodium channels. Detection technique for Na{sub 2}CO{sub 3} in sodium loop has not been developed yet. Therefore, detection of CO{sub 2} and CO from reaction of sodium and CO{sub 2} are proper to detect CO{sub 2} leakage into sodium loop.

  9. Results from Carbon Dioxide Washout Testing Using a Suited Manikin Test Apparatus with a Space Suit Ventilation Test Loop

    Science.gov (United States)

    Chullen, Cinda; Conger, Bruce; McMillin, Summer; Vonau, Walt; Kanne, Bryan; Korona, Adam; Swickrath, Mike

    2016-01-01

    NASA is developing an advanced portable life support system (PLSS) to meet the needs of a new NASA advanced space suit. The PLSS is one of the most critical aspects of the space suit providing the necessary oxygen, ventilation, and thermal protection for an astronaut performing a spacewalk. The ventilation subsystem in the PLSS must provide sufficient carbon dioxide (CO2) removal and ensure that the CO2 is washed away from the oronasal region of the astronaut. CO2 washout is a term used to describe the mechanism by which CO2 levels are controlled within the helmet to limit the concentration of CO2 inhaled by the astronaut. Accumulation of CO2 in the helmet or throughout the ventilation loop could cause the suited astronaut to experience hypercapnia (excessive carbon dioxide in the blood). A suited manikin test apparatus (SMTA) integrated with a space suit ventilation test loop was designed, developed, and assembled at NASA in order to experimentally validate adequate CO2 removal throughout the PLSS ventilation subsystem and to quantify CO2 washout performance under various conditions. The test results from this integrated system will be used to validate analytical models and augment human testing. This paper presents the system integration of the PLSS ventilation test loop with the SMTA including the newly developed regenerative Rapid Cycle Amine component used for CO2 removal and tidal breathing capability to emulate the human. The testing and analytical results of the integrated system are presented along with future work.

  10. Human lactoferricin derived di-peptides deploying loop structures induce apoptosis specifically in cancer cells through targeting membranous phosphatidylserine.

    Science.gov (United States)

    Riedl, Sabrina; Leber, Regina; Rinner, Beate; Schaider, Helmut; Lohner, Karl; Zweytick, Dagmar

    2015-11-01

    Host defense-derived peptides have emerged as a novel strategy for the development of alternative anticancer therapies. In this study we report on characteristic features of human lactoferricin (hLFcin) derivatives which facilitate specific killing of cancer cells of melanoma, glioblastoma and rhabdomyosarcoma compared with non-specific derivatives and the synthetic peptide RW-AH. Changes in amino acid sequence of hLFcin providing 9-11 amino acids stretched derivatives LF11-316, -318 and -322 only yielded low antitumor activity. However, the addition of the repeat (di-peptide) and the retro-repeat (di-retro-peptide) sequences highly improved cancer cell toxicity up to 100% at 20 μM peptide concentration. Compared to the complete parent sequence hLFcin the derivatives showed toxicity on the melanoma cell line A375 increased by 10-fold and on the glioblastoma cell line U-87mg by 2-3-fold. Reduced killing velocity, apoptotic blebbing, activation of caspase 3/7 and formation of apoptotic DNA fragments proved that the active and cancer selective peptides, e.g. R-DIM-P-LF11-322, trigger apoptosis, whereas highly active, though non-selective peptides, such as DIM-LF11-318 and RW-AH seem to kill rapidly via necrosis inducing membrane lyses. Structural studies revealed specific toxicity on cancer cells by peptide derivatives with loop structures, whereas non-specific peptides comprised α-helical structures without loop. Model studies with the cancer membrane mimic phosphatidylserine (PS) gave strong evidence that PS only exposed by cancer cells is an important target for specific hLFcin derivatives. Other negatively charged membrane exposed molecules as sialic acid, heparan and chondroitin sulfate were shown to have minor impact on peptide activity. Copyright © 2015. Published by Elsevier B.V.

  11. Loop corrections and a new test of inflation

    CERN Document Server

    Tasinato, Gianmassimo; Nurmi, Sami; Wands, David

    2013-01-01

    Inflation is the leading paradigm for explaining the origin of primordial density perturbations and the observed temperature fluctuations of the cosmic microwave background. However many open questions remain, in particular whether one or more scalar fields were present during inflation and how they contributed to the primordial density perturbation. We propose a new observational test of whether multiple fields, or only one (not necessarily the inflaton) generated the perturbations. We show that our test, relating the bispectrum and trispectrum, is protected against loop corrections at all orders, unlike previous relations.

  12. CLOSED LOOP AOCS TESTING OF AN AUTONOMOUS STAR TRACKER

    DEFF Research Database (Denmark)

    Jørgensen, John Leif

    1999-01-01

    not even a high quality star pattern generator may be able to pass the outlier rejection filtering of the ASC thus efficiently precluding artificial stimuli during AIT tests. In order to circumvent this impasse, the ASC has a series of build-in features enabling simple, yet comprehensive, closed loop...

  13. Gas Test Loop Functional and Technical Requirements

    International Nuclear Information System (INIS)

    Glen R. Longhurst; Soli T. Khericha; James L. Jones

    2004-01-01

    This document defines the technical and functional requirements for a gas test loop (GTL) to be constructed for the purpose of providing a high intensity fast-flux irradiation environment for developers of advanced concept nuclear reactors. This capability is needed to meet fuels and materials testing requirements of the designers of Generation IV (GEN IV) reactors and other programs within the purview of the Advanced Fuel Cycle Initiative (AFCI). Space nuclear power development programs may also benefit by the services the GTL will offer. The overall GTL technical objective is to provide developers with the means for investigating and qualifying fuels and materials needed for advanced reactor concepts. The testing environment includes a fast-flux neutron spectrum of sufficient intensity to perform accelerated irradiation testing. Appropriate irradiation temperature, gaseous environment, test volume, diagnostics, and access and handling features are also needed. This document serves to identify those requirements as well as generic requirements applicable to any system of this kind

  14. Gas Test Loop Functional and Technical Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Glen R. Longhurst; Soli T. Khericha; James L. Jones

    2004-09-01

    This document defines the technical and functional requirements for a gas test loop (GTL) to be constructed for the purpose of providing a high intensity fast-flux irradiation environment for developers of advanced concept nuclear reactors. This capability is needed to meet fuels and materials testing requirements of the designers of Generation IV (GEN IV) reactors and other programs within the purview of the Advanced Fuel Cycle Initiative (AFCI). Space nuclear power development programs may also benefit by the services the GTL will offer. The overall GTL technical objective is to provide developers with the means for investigating and qualifying fuels and materials needed for advanced reactor concepts. The testing environment includes a fast-flux neutron spectrum of sufficient intensity to perform accelerated irradiation testing. Appropriate irradiation temperature, gaseous environment, test volume, diagnostics, and access and handling features are also needed. This document serves to identify those requirements as well as generic requirements applicable to any system of this kind.

  15. Test Requirements and Conceptual Design for a Potassium Test Loop to Support an Advanced Potassium Rankine Cycle Power Conversion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, JR.G.L.

    2006-03-08

    Parameters for continuing the design and specification of an experimental potassium test loop are identified in this report. Design and construction of a potassium test loop is part of the Phase II effort of the project ''Technology Development Program for an Advanced Potassium Rankine Power Conversion System''. This program is supported by the National Aeronautics and Space Administration. Design features for the potassium test loop and its instrumentation system, specific test articles, and engineered barriers for ensuring worker safety and protection of the environment are described along with safety and environmental protection requirements to be used during the design process. Information presented in the first portion of this report formed the basis to initiate the design phase of the program; however, the report is a living document that can be changed as necessary during the design process, reflecting modifications as additional design details are developed. Some portions of the report have parameters identified as ''to be determined'' (TBD), reflecting the early stage of the overall process. In cases where specific design values are presently unknown, the report attempts to document the quantities that remain to be defined in order to complete the design of the potassium test loop and supporting equipment.

  16. Systematic Unit Testing in a Read-eval-print Loop

    DEFF Research Database (Denmark)

    Nørmark, Kurt

    2010-01-01

    .  The process of collecting the expressions and their results imposes only little extra work on the programmer.  The use of the tool provides for creation of test repositories, and it is intended to catalyze a much more systematic approach to unit testing in a read-eval-print loop.  In the paper we also discuss...... how to use a test repository for other purposes than testing.  As a concrete contribution we show how to use test cases as examples in library interface documentation.  It is hypothesized---but not yet validated---that the tool will motivate the Lisp programmer to take the transition from casual...

  17. Conceptural design of multipurpose sodium test loop

    International Nuclear Information System (INIS)

    Kim, W.C.; Lee, Y.W.; Nam, H.Y.; Chun, S.Y.; Kim, J.; Yuh, M.W.

    1982-01-01

    This report describes the conceptural design of the multipurpose sodium test loop (MSTL). This MSTL consists mainly of impurity control and measurement system, corrosion and masstransfer system and heat transfer system. Problems associated with liquid sodium coolant will be studied and operating experiences will be obtained by the use of this facility. This technology will be used to evaluate safety and reliability of large sodium facility in the future. The total cost excluding the cost of building construction is estimated to 175 thousand dollars. (Author)

  18. Performance test of ex-core high temperature and high pressure water loop test equipment (Contract research)

    International Nuclear Information System (INIS)

    Nakano, Hiroko; Uehara, Toshiaki; Takeuchi, Tomoaki; Shibata, Hiroshi; Nakamura, Jinichi; Matsui, Yoshinori; Tsuchiya, Kunihiko

    2016-03-01

    In Japan Atomic Energy Agency, we started research and development so as to monitor the situations in the Nuclear Plant Facilities during a severe accident, such as a radiation-resistant monitoring camera, a radiation-resistant transmission system for conveying the in-core information, and a heat-resistant signal cable. As a part of developments of the heat-resistant signal cable, we prepared ex-core high-temperature and high-pressure water loop test equipment, which can simulate the conditions of BWRs and PWRs, for evaluating reliability and properties of sheath materials of the cable. This equipment consists of autoclave, water conditioning tank, high-pressure metering pump, preheater, heat exchanger and water purification equipment, etc. This report describes the basic design and the performance test results of ex-core high-temperature and high-pressure water loop test equipment. (author)

  19. Development of Aerosol Scrubbing Test Loop for Containment Filtered Venting System

    International Nuclear Information System (INIS)

    Lee, Doo Yong; Jung, Woo Young; Lee, Hyun Chul; Lee, Jong Chan; Kim, Gyu Tae

    2016-01-01

    The scrubber tank is filled with scrubbing water with the chemical additives. The droplet separator based on a cyclone is installed above the scrubbing water pool to remove the large droplets that may clog a metal fiber filter installed at the upper section of the scrubber tank. The outlet piping is connected from the scrubber tank to the molecular sieve to chemically remove the gaseous iodine. The aerosol as a particle is physically captured in the scrubbing water pool passing through the scrubbing nozzle as well as the metal fiber filter. The gaseous iodine such as molecular iodine as well as organic iodide is chemically removed in the scrubbing water pool and molecular sieve. The thermal-hydraulic as well as scrubbing performance for the CFVS should be verified with the experiments. The experiment can be divided into the filtration component based experiment and whole system based one. In this paper, the aerosol scrubbing test loop developed to test the thermal-hydraulic and aerosol scrubbing performance of the scrubbing nozzle with the scrubbing water pool is introduced. The aerosol scrubbing test loop has been developed as a part of the Korean CFVS project. In this loop, the filtration components such as the scrubbing nozzle submerged in the scrubbing water pool as well as the cyclone as droplet separator can be tested under the CFVS operating conditions. The aerosol scrubbing performance of the filtration components including pool scrubbing behavior can be tested with the aerosol generation and feeding system and aerosol measurement system.

  20. Development of Aerosol Scrubbing Test Loop for Containment Filtered Venting System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Doo Yong; Jung, Woo Young; Lee, Hyun Chul; Lee, Jong Chan; Kim, Gyu Tae [FNC Technology, Yongin (Korea, Republic of)

    2016-05-15

    The scrubber tank is filled with scrubbing water with the chemical additives. The droplet separator based on a cyclone is installed above the scrubbing water pool to remove the large droplets that may clog a metal fiber filter installed at the upper section of the scrubber tank. The outlet piping is connected from the scrubber tank to the molecular sieve to chemically remove the gaseous iodine. The aerosol as a particle is physically captured in the scrubbing water pool passing through the scrubbing nozzle as well as the metal fiber filter. The gaseous iodine such as molecular iodine as well as organic iodide is chemically removed in the scrubbing water pool and molecular sieve. The thermal-hydraulic as well as scrubbing performance for the CFVS should be verified with the experiments. The experiment can be divided into the filtration component based experiment and whole system based one. In this paper, the aerosol scrubbing test loop developed to test the thermal-hydraulic and aerosol scrubbing performance of the scrubbing nozzle with the scrubbing water pool is introduced. The aerosol scrubbing test loop has been developed as a part of the Korean CFVS project. In this loop, the filtration components such as the scrubbing nozzle submerged in the scrubbing water pool as well as the cyclone as droplet separator can be tested under the CFVS operating conditions. The aerosol scrubbing performance of the filtration components including pool scrubbing behavior can be tested with the aerosol generation and feeding system and aerosol measurement system.

  1. High-pressure test loop design and application

    International Nuclear Information System (INIS)

    Burnette, R.D.; Graves, J.N.; Blair, P.G.; Baldwin, N.L.

    1980-07-01

    A high-pressure test loop (HPTL) has been constructed for the purpose of performing a number of chemistry experiments at simulated HTGR conditions of temperature, pressure, flow, and impurity content. The HPTL can be used to develop, modify, and verify computer codes for a variety of chemical processes involving gas phase transport in the reactor. Processes such as graphite oxidation, fission product transport, fuel reactions, purification systems, and dust entrainment can be studied at high pressure, which would largely eliminate difficulties in correlating existing laboratory data and reactor conditions

  2. Pd based ultrathin membranes for the tritiated water gas shift reaction in the ITER breeder recovery system

    International Nuclear Information System (INIS)

    Tosti, S.; Bettinali, L.; Violante, V.; Basile, A.; Chiappetta, M.; Criscuoli, A.; Drioli, E.; Rizzelo, C.

    1998-01-01

    A mathematical model of a catalytic membrane reactor (CMR) for the water gas shift reaction has been carried out. Based on the model, a new closed loop process for the tritium removal system for the ITER test module of helium cooled pebble bed blanket concept has been studied. A CMR is the main equipment of the proposed process. The main advantages of the closed loop process are related to the absence of secondary wastes, low tritium inventories, moderate operating temperatures and pressures, low dilution of the stream to be processed by isotopic separation. As permeating membranes in the CMR ultra-thin metallic membranes of Pd and PdAg (50-70 μm thick) have been studied. A ceramic porous tube, containing the catalyst in the lumen, has been put in the metallic tube to obtain the CMR for the water gas shifting. Experimental tests, carried out both on ultra-thin membranes and CMRs for the water gas shift reaction, confirmed the behavior studied by the theoretical model and showed a long live of the membrane. (authors)

  3. Disassembly and removal of sodium instrumentation test loop

    International Nuclear Information System (INIS)

    Ishikawa, Okinobu; Onojima, Takamitu; Nagai, Keiichi

    2000-07-01

    In 1999, the Sodium Instrumentation Test Loop was disassembled and removed. This report describes the tasks and experiences obtained in removing sodium from a storage tank, disassembling, and cleansing components and related activities. Overall the disassembly, handling and cleansing tasks proceeded as planned and the activities were carried out efficiently and safely. Documentation of the process is meant to establish not only a procedure, but also a guideline for future similar tasks. (author)

  4. Vanadium—lithium in-pile loop for comprehensive tests of vanadium alloys and multipurpose coatings

    Science.gov (United States)

    Lyublinski, I. E.; Evtikhin, V. A.; Ivanov, V. B.; Kazakov, V. A.; Korjavin, V. M.; Markovchev, V. K.; Melder, R. R.; Revyakin, Y. L.; Shpolyanskiy, V. N.

    1996-10-01

    The reliable information on design and material properties of self-cooled Li sbnd Li blanket and liquid metal divertor under neutron radiation conditions can be obtained using the concept of combined technological and material in-pile tests in a vanadium—lithium loop. The method of in-pile loop tests includes studies of vanadium—base alloys resistance, weld resistance under mechanical stress, multipurpose coating formation processes and coatings' resistance under the following conditions: high temperature (600-700°C), lithium velocities up to 10 m/s, lithium with controlled concentration of impurities and technological additions, a neutron load of 0.4-0.5 MW/m 2 and level of irradiation doses up to 5 dpa. The design of such an in-pile loop is considered. The experimental data on corrosion and compatibility with lithium, mechanical properties and welding technology of the vanadium alloys, methods of coatings formation and its radiation tests in lithium environment in the BOR-60 reactor (fast neutron fluence up to 10 26 m -2, irradiation temperature range of 500-523°C) are presented and analyzed as a basis for such loop development.

  5. Preliminary Feasibility, Design, and Hazard Analysis of a Boiling Water Test Loop Within the Idaho National Laboratory Advanced Test Reactor National Scientific User Facility

    International Nuclear Information System (INIS)

    Gerstner, Douglas M.

    2009-01-01

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The ATR and its support facilities are located at the Idaho National Laboratory (INL). A Boiling Water Test Loop (BWTL) is being designed for one of the irradiation test positions within the. The objective of the new loop will be to simulate boiling water reactor (BWR) conditions to support clad corrosion and related reactor material testing. Further it will accommodate power ramping tests of candidate high burn-up fuels and fuel pins/rods for the commercial BWR utilities. The BWTL will be much like the pressurized water loops already in service in 5 of the 9 'flux traps' (region of enhanced neutron flux) in the ATR. The loop coolant will be isolated from the primary coolant system so that the loop's temperature, pressure, flow rate, and water chemistry can be independently controlled. This paper presents the proposed general design of the in-core and auxiliary BWTL systems; the preliminary results of the neutronics and thermal hydraulics analyses; and the preliminary hazard analysis for safe normal and transient BWTL and ATR operation

  6. PETER loop. Multifunctional test facility for thermal hydraulic investigations of PWR fuel elements

    International Nuclear Information System (INIS)

    Ganzmann, I.; Hille, D.; Staude, U.

    2009-01-01

    The reliable fuel element behavior during the complete fuel cycle is one of the fundamental prerequisites of a safe and efficient nuclear power plant operation. The fuel element behavior with respect to pressure drop and vibration impact cannot be simulated by means of fluid-structure interaction codes. Therefore it is necessary to perform tests using fuel element mock-ups (1:1). AREVA NP has constructed the test facility PETER (PWR fuel element tests in Erlangen) loop. The modular construction allows maximum flexibility for any type of fuel elements. Modern measuring instrumentation for flow, pressure and vibration characterization allows the analysis of cause and consequences of thermal hydraulic phenomena. PETER loop is the standard test facility for the qualification of dynamic fuel element behavior in flowing fluid and is used for failure mode analysis.

  7. Production circulator fabrication and testing for core flow test loop. Final report, Phase III

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    The performance testing of two production helium circulators utilizing gas film lubrication is described. These two centrifugal-type circulators plus an identical circulator prototype will be arranged in series to provide the helium flow requirements for the Core Flow Test Loop which is part of the Gas-Cooled Fast Breeder Reactor Program (GCFR) at the Oak Ridge National Laboratory. This report presents the results of the Phase III performance and supplemental tests, which were carried out by MTI during the period of December 18, 1980 through March 19, 1981. Specific test procedures are outlined and described, as are individual tests for measuring the performance of the circulators. Test data and run descriptions are presented.

  8. Production circulator fabrication and testing for core flow test loop. Final report, Phase III

    International Nuclear Information System (INIS)

    1981-05-01

    The performance testing of two production helium circulators utilizing gas film lubrication is described. These two centrifugal-type circulators plus an identical circulator prototype will be arranged in series to provide the helium flow requirements for the Core Flow Test Loop which is part of the Gas-Cooled Fast Breeder Reactor Program (GCFR) at the Oak Ridge National Laboratory. This report presents the results of the Phase III performance and supplemental tests, which were carried out by MTI during the period of December 18, 1980 through March 19, 1981. Specific test procedures are outlined and described, as are individual tests for measuring the performance of the circulators. Test data and run descriptions are presented

  9. Localization and proliferation of lymphatic vessels in the tympanic membrane in normal state and regeneration

    International Nuclear Information System (INIS)

    Miyashita, Takenori; Burford, James L.; Hong, Young-Kwon; Gevorgyan, Haykanush; Lam, Lisa; Mori, Nozomu; Peti-Peterdi, Janos

    2013-01-01

    Highlights: •We newly developed the whole-mount imaging method of the tympanic membrane. •Lymphatic vessel loops were localized around the malleus handle and annulus tympanicus. •In regeneration, abundant lymphatic vessels were observed in the pars tensa. •Site-specific lymphatic vessels may play an important role in the tympanic membrane. -- Abstract: We clarified the localization of lymphatic vessels in the tympanic membrane and proliferation of lymphatic vessels during regeneration after perforation of the tympanic membrane by using whole-mount imaging of the tympanic membrane of Prox1 GFP mice. In the pars tensa, lymphatic vessel loops surrounded the malleus handle and annulus tympanicus. Apart from these locations, lymphatic vessel loops were not observed in the pars tensa in the normal tympanic membrane. Lymphatic vessel loops surrounding the malleus handle were connected to the lymphatic vessel loops in the pars flaccida and around the tensor tympani muscle. Many lymphatic vessel loops were detected in the pars flaccida. After perforation of the tympanic membrane, abundant lymphatic regeneration was observed in the pars tensa, and these regenerated lymphatic vessels extended from the lymphatic vessels surrounding the malleus at day 7. These results suggest that site-specific lymphatic vessels play an important role in the tympanic membrane

  10. Hanford Tank Farms Waste Certification Flow Loop Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, Judith A.; Meyer, Perry A.; Scott, Paul A.; Adkins, Harold E.; Wells, Beric E.; Blanchard, Jeremy; Denslow, Kayte M.; Greenwood, Margaret S.; Morgen, Gerald P.; Burns, Carolyn A.; Bontha, Jagannadha R.

    2010-01-01

    A future requirement of Hanford Tank Farm operations will involve transfer of wastes from double shell tanks to the Waste Treatment Plant. As the U.S. Department of Energy contractor for Tank Farm Operations, Washington River Protection Solutions anticipates the need to certify that waste transfers comply with contractual requirements. This test plan describes the approach for evaluating several instruments that have potential to detect the onset of flow stratification and critical suspension velocity. The testing will be conducted in an existing pipe loop in Pacific Northwest National Laboratory’s facility that is being modified to accommodate the testing of instruments over a range of simulated waste properties and flow conditions. The testing phases, test matrix and types of simulants needed and the range of testing conditions required to evaluate the instruments are described

  11. Optimal closed-loop identification test design for internal model control

    NARCIS (Netherlands)

    Zhu, Y.; Bosch, van den P.P.J.

    2000-01-01

    In this work, optimal closed-loop test design for control is studied. Simple design formulas are derived based on the asymptotic theory of Ljung. The control scheme used is internal model control (IMC) and the design constraint is the power of the process output or that of the reference signal. The

  12. The design of in-pile test section for fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Park, K. N.; Lee, J. M.; Shim, B. S.; Zee, D. Y.; Park, S. H.; Ahn, S. H.; Lee, J. Y.; Kim, Y. J. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    As an equipment for nuclear fuel's general performance irradiation test in HANARO, Fuel Test Loop(FTL) has been developed that can irradiate the pin to the maximum number of 3 at the core irradiation hole(IR1 hole) by considering for it's utility and user's irradiation requirement. 3-Pin FTL consists of In-Pile Test Section (IPS) and Out-of-Pile System (OPS). IPS consists for IPS Vessel assembly, In-Pool Piping, IPS Support, In-Pool Piping Support etc. Design that such IPS considers interference item consisted to do not bear in existing facilities by one. IVA that is connected to the OPS are controlled and regulated by means of system pressure, system temperature and the water quality. IPS Vessel assembly is consisted of outer pressure vessel, inner pressure vessel, IPS head, inner assembly and test fuel carrier. After 3-Pin FTL development which is expected to be finished by the 2006, FTL will be used for the irradiation test of the new PWR-type fuel and can maximize the usage of HANARO.

  13. Analysis of ATLAS LTC-04R Test for Loop Seal Reformation Phenomena using RELAP5

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang-Gyu; Kim, Dae-Hun; Kim, Han-Gon [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The loop seal reformation issue was selected to be the analysis topic of the DSP-04 based on the technical discussion between the participants and the operating agencies (KAERI and KINS) and domestic experts meetings. After that, KAERI performed LTC-04R test which is 4 inch top-slot cold-leg break test using ATLAS facility in December 27, 2015. KHNP CRI, as a participant of the DSP-04, performed the blind calculation and open calculation using RELAP5/Mod3.3 patch 3. This paper deals with the results of open calculation for ATLAS LTC-04R test. The results of several sensitivity analyses such as the critical flow modeling sensitivity and break flow system modeling sensitivity will be discussed. Several possible factors in the loop seal reformation behavior are examined in the sensitivity analysis. Heat loss modeling, fine break system modeling, fine loop seal nodalization and off-take modeling are not significant factor in the loop seal reformation. Still critical flow model and discharge coefficient are dominant factors. Based on the ATLAS LTC-04R, Ransom-Trapp model shows better prediction in the break flow than the Henry-Fauske model.

  14. MES lead bismuth forced circulation loop and test results

    International Nuclear Information System (INIS)

    Ono, Mikinori; Mine, Tatsuya; Kitano, Teruaki; Kamata, Kin-ya

    2003-01-01

    Liquid lead-bismuth is a promising material as future reactor coolant or intensive neutron source material for accelerator driven system (ADS). Mitsui Engineering and Shipbuilding Co., Ltd. (MES) completed lead-bismuth coolant (LBC) forced circulation loop in May 2001 and acquired engineering data on economizer, electro magnetic pump, electro magnetic flow meter and so on. For quality control of LBC, oxygen sensor and filtering element are developing using some hydrogen and moisture mixed gases. Structural materials corrosion test for accelerator driver system (ADS) will start soon. And thermal hydraulic test for ADS will start in tree years. (author)

  15. Fusion fuel purification during the Tritium Systems Test Assembly 3-week loop experiment

    International Nuclear Information System (INIS)

    Willms, R.S.

    1989-01-01

    During the time period from April 19, 1989--May 5, 1989, the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory (LANL) conducted its longest continuous integrated loop operation to date. This provided an opportunity to test some hitherto unproven capabilities of the TSTA Fuel Cleanup System (FCU). Previous FCU tests were reported. The purpose of the FCU is to remove impurities from a stream of hydrogen isotopes (Q 2 ) representative of torus exhaust gas. During this run impurities loadings ranging from 60 to 179 sccm of 90% N 2 and 10% CH 4 were fed to the FCU. Each of the two FCU main flow molecular sieve beds (MSB's) were filled to breakthrough three times. The MSB's were regenerated during loop operations. 2 refs., 6 figs., 2 tabs

  16. TLTA/6431, Two-Loop-Test-Apparatus, BWR/6 Simulator, Small-Break LOCA

    International Nuclear Information System (INIS)

    1992-01-01

    1 - Description of test facility: The Two-Loop-Test-Apparatus (TLTA) is a 1:624 volume scaled BWR/6 simulator. It was the predecessor of the better-scaled FIST facility. The facility is capable of full BWR system pressure and has a simulated core with a full size 8 x 8, full power single bundle of indirect electrically heated rods. All major BWR systems are simulated including lower plenum, guide tube, core region (bundle and bypass), upper plenum, steam separator, steam dome, annular downcomer, recirculation loops and ECC injection systems. The fundamental scaling consideration was to achieve real-time response. A number of the scaling compromises present in TLTA were corrected in the FIST configuration. These compromises include a number of regional volumes and component elevations. 2 - Description of test: 64.45 sqcm small break LOCA with activation of the full emergency core cooling system, but without activation of the automatic decompression system

  17. Thermal analysis of lithium cooled natural circulation loop module for fuel rod testing in the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Eyler, L.L.; Kim, D.; Stover, R.L.; Beaver, T.R.

    1987-01-01

    Maximum heat removal capability of a lithium cooled natural circulation fuel rod test module design is determined. Loop geometry is optimized within limitations of design specifications for nominal operation temperatures, materials, and test module environment. Results provide test module operation limits and range of potential uncertainties. 3 refs., 12 figs

  18. EPRI flow-loop/in situ test program for motor-operated valves

    International Nuclear Information System (INIS)

    Hosler, J.F.; Dorfman, L.S.

    1994-01-01

    The Electric Power Research Institute is undertaking a comprehensive research program to develop and validate methods for predicting the performance of common motor-operated gate, global, and butterfly valves. To assess motor-operated valve (MOV) performance characteristics and provide a basis for methods validation, full-scale testing was conducted on 62 MOVs. Tests were performed in four flow-loop facilities and in nine nuclear units. Forty-seven gate, five globe, and 10 butterfly valves were tested under a wide range of flow and differential pressure conditions. The paper describes the test program scope, test configurations, instrumentation and data acquisition, testing approach, and data analysis methods. Key results are summarized

  19. Testing FlexRay ECUs with a hardware-in-the-loop simulator; Test von FlexRay-Steuergeraeten am Hardware-in-the-Loop Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Stroop, J.; Koehl, S. [dSPACE GmbH, Paderborn (Germany); Peller, M.; Riedesser, P. [BMW AG, Muenchen (Germany)

    2005-07-01

    To master the data communication of complex and safety relevant systems within future vehicles, the BMW Group prepares the application of FlexRay. The accompanying development process plays an important role for the quality, stability and reliability of those systems. Hardware-in-the-loop simulation and test stands are indispensable constituents and they are an integral part of the validation process. The following contribution describes the technology that is used within the BMW Group in more detail, especially in terms of communication networks with FlexRay. (orig.)

  20. Preliminary Design of the Liquid Lead Corrosion Test Loop

    International Nuclear Information System (INIS)

    Cho, Chung Ho; Cha, Jae Eun; Cho, Choon Ho; Song, Tae Yung; Kim, Hee Reyoung

    2005-01-01

    Recently, Lead-Bismuth Eutectic (LBE) or Lead has newly attracted considerable attraction as a coolant to get the more inherent safety. Above all, LBE is preferred as the coolant and target material for an Accelerator-Driven System (ADS) due to its high production rate of neutrons, effective heat removal, and good radiation damage properties. But, the LBE or Lead as a coolant has a challenging problem that the LBE or Lead is more corrosive to the construction materials and fuel cladding material than the sodium because the solubility of Ni, Cr and Fe is high. After all, the LBE or Lead corrosion has been considered as an important design limit factor of ADS and Liquid Metal cooled Fast Reactors (LMFR). The Korea Atomic Energy Research Institute (KAERI) has been developing an ADS called HYPER. HYPER is designed to transmute Transuranics (TRU), Tc-99 and I-129 coming from Pressurized Water Reactors (PWRs) and uses an LBE as a coolant and target material. Also, an experimental apparatuses for the compatibility of fuel cladding and structural material with the LBE or Lead are being under the construction or design. The main objective of the present paper is introduction of Lead corrosion test loop which will be built the upside of the LBE corrosion test loop by the end of October of 2005

  1. Large lithium loop experience

    International Nuclear Information System (INIS)

    Kolowith, R.; Owen, T.J.; Berg, J.D.; Atwood, J.M.

    1981-10-01

    An engineering design and operating experience of a large, isothermal, lithium-coolant test loop are presented. This liquid metal coolant loop is called the Experimental Lithium System (ELS) and has operated safely and reliably for over 6500 hours through September 1981. The loop is used for full-scale testing of components for the Fusion Materials Irradiation Test (FMIT) Facility. Main system parameters include coolant temperatures to 430 0 C and flow to 0.038 m 3 /s (600 gal/min). Performance of the main pump, vacuum system, and control system is discussed. Unique test capabilities of the ELS are also discussed

  2. Efficiency of the pre-heater against flow rate on primary the beta test loop

    International Nuclear Information System (INIS)

    Edy Sumarno; Kiswanta; Bambang Heru; Ainur R; Joko P

    2013-01-01

    Calculation of efficiency of the pre-heater has been carried out against the flow rate on primary the BETA Test Loop. BETA test loop (UUB) is a facilities of experiments to study the thermal hydraulic phenomenon, especially for thermal hydraulic post-LOCA (Lost of Coolant Accident). Sequences removal on the BETA Test Loop contained a pre-heater that serves as a getter heat from the primary side to the secondary side, determination of efficiency is to compare the incoming heat energy with the energy taken out by a secondary fluid. Characterization is intended to determine the performance of a pre-heater, then used as tool for analysis, and as a reference design experiments. Calculation of efficiency methods performed by operating the pre-heater with fluid flow rate variation on the primary side. Calculation of efficiency on the results obtained that the efficiency change with every change of flow rate, the flow rate is 71.26% on 163.50 ml/s and 60.65% on 850.90 ml/s. Efficiency value can be even greater if the pre-heater tank is wrapped with thermal insulation so there is no heat leakage. (author)

  3. The Fusion Loops of the Initial Prefusion Conformation of Herpes Simplex Virus 1 Fusion Protein Point Toward the Membrane

    Directory of Open Access Journals (Sweden)

    Juan Fontana

    2017-08-01

    Full Text Available All enveloped viruses, including herpesviruses, must fuse their envelope with the host membrane to deliver their genomes into target cells, making this essential step subject to interference by antibodies and drugs. Viral fusion is mediated by a viral surface protein that transits from an initial prefusion conformation to a final postfusion conformation. Strikingly, the prefusion conformation of the herpesvirus fusion protein, gB, is poorly understood. Herpes simplex virus (HSV, a model system for herpesviruses, causes diseases ranging from mild skin lesions to serious encephalitis and neonatal infections. Using cryo-electron tomography and subtomogram averaging, we have characterized the structure of the prefusion conformation and fusion intermediates of HSV-1 gB. To this end, we have set up a system that generates microvesicles displaying full-length gB on their envelope. We confirmed proper folding of gB by nondenaturing electrophoresis-Western blotting with a panel of monoclonal antibodies (MAbs covering all gB domains. To elucidate the arrangement of gB domains, we labeled them by using (i mutagenesis to insert fluorescent proteins at specific positions, (ii coexpression of gB with Fabs for a neutralizing MAb with known binding sites, and (iii incubation of gB with an antibody directed against the fusion loops. Our results show that gB starts in a compact prefusion conformation with the fusion loops pointing toward the viral membrane and suggest, for the first time, a model for gB’s conformational rearrangements during fusion. These experiments further illustrate how neutralizing antibodies can interfere with the essential gB structural transitions that mediate viral entry and therefore infectivity.

  4. Review of application code and standards for mechanical and piping design of HANARO fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.

    1998-02-01

    The design and installation of the irradiation test facility for verification test of the fuel performance are very important in connection with maximization of the utilization of HANARO. HANARO fuel test loop was designed in accordance with the same code and standards of nuclear power plant because HANARO FTL will be operated the high pressure and temperature same as nuclear power plant operation conditions. The objective of this study is to confirm the propriety of application code and standards for mechanical and piping of HANARO fuel test loop and to decide the technical specification of FTL systems. (author). 18 refs., 8 tabs., 6 figs.

  5. Summary of TRUEX Radiolysis Testing Using the INL Radiolysis Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Dean R. Peterman; Lonnie G. Olson; Rocklan G. McDowell; Gracy Elias; Jack D. Law

    2012-03-01

    The INL radiolysis and hydrolysis test loop has been used to evaluate the effects of hydrolytic and radiolytic degradation upon the efficacy of the TRUEX flowsheet for the recovery of trivalent actinides and lanthanides from acidic solution. Repeated irradiation and subsequent re-conditioning cycles did result in a significant decrease in the concentration of the TBP and CMPO extractants in the TRUEX solvent and a corresponding decrease in americium and europium extraction distributions. However, the build-up of solvent degradation products upon {gamma}-irradiation, had little impact upon the efficiency of the stripping section of the TRUEX flowsheet. Operation of the TRUEX flowsheet would require careful monitoring to ensure extraction distributions are maintained at acceptable levels.

  6. System Description of the Electrical Power Supply System for the ATLAS Integral Test Loop

    International Nuclear Information System (INIS)

    Moon, S. K.; Park, J. K.; Kim, Y. S.; Song, C. H.; Baek, W. P.

    2007-02-01

    An integral effect test loop for pressurized water reactors (PWRs), the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), is constructed by Thermal-Hydraulics Safety Research Team in Korea Atomic Energy Research Institute (KAERI). The ATLAS facility has been designed to have the length scale of 1/2 and area scale of 1/144 compared with the reference plant, APR1400. This report describes the design and technical specifications of the electrical power supply system which supplies the electrical powers to core heater rods, other heaters, various pumps and other systems. The electrical power supply system had acquired the final approval on the operation from the Korea Electrical Safety Corporation. During performance tests for the operation and control, the electrical power supply system showed completely acceptable operation and control performance

  7. Inhibition of a type III secretion system by the deletion of a short loop in one of its membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Meshcheryakov, Vladimir A. [Okinawa Instiute of Science and Technology, Okinawa 904-0495 (Japan); Kitao, Akio [University of Tokyo, Tokyo 113-0032 (Japan); Core Research for Evolutionary Science and Technology, Tokyo 113-0032 (Japan); Matsunami, Hideyuki; Samatey, Fadel A., E-mail: f.a.samatey@oist.jp [Okinawa Instiute of Science and Technology, Okinawa 904-0495 (Japan)

    2013-05-01

    Crystal structures of the cytoplasmic domain of FlhB from S. typhimurium and A. aeolicus were solved at 2.45 and 2.55 Å resolution, respectively. The deletion of a short loop in the cytoplasmic domain of Salmonella FlhB completely abolishes secretion by the type III secretion system. A molecular-dynamics simulation shows that the deletion of the loop affects the flexibility of a linker between the transmembrane and cytoplasmic domains of FlhB. The membrane protein FlhB is a highly conserved component of the flagellar secretion system. It is composed of an N-terminal transmembrane domain and a C-terminal cytoplasmic domain (FlhB{sub C}). Here, the crystal structures of FlhB{sub C} from Salmonella typhimurium and Aquifex aeolicus are described at 2.45 and 2.55 Å resolution, respectively. These flagellar FlhB{sub C} structures are similar to those of paralogues from the needle type III secretion system, with the major difference being in a linker that connects the transmembrane and cytoplasmic domains of FlhB. It was found that deletion of a short flexible loop in a globular part of Salmonella FlhB{sub C} leads to complete inhibition of secretion by the flagellar secretion system. Molecular-dynamics calculations demonstrate that the linker region is the most flexible part of FlhB{sub C} and that the deletion of the loop reduces this flexibility. These results are in good agreement with previous studies showing the importance of the linker in the function of FlhB and provide new insight into the relationship between the different parts of the FlhB{sub C} molecule.

  8. Alteration of the mode of antibacterial action of a defensin by the amino-terminal loop substitution

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bin [Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, 100101 Beijing (China); Zhu, Shunyi, E-mail: Zhusy@ioz.ac.cn [Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, 100101 Beijing (China)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer Al-M is an engineered fungal defensin with the n-loop of an insect defensin. Black-Right-Pointing-Pointer Al-M adopts a native defensin-like structure with high antibacterial potency. Black-Right-Pointing-Pointer Al-M kills bacteria through a membrane disruptive mechanism. Black-Right-Pointing-Pointer This work sheds light on the functional evolution of CS{alpha}{beta}-type defensins. -- Abstract: Ancient invertebrate-type and classical insect-type defensins (AITDs and CITDs) are two groups of evolutionarily related antimicrobial peptides (AMPs) that adopt a conserved cysteine-stabilized {alpha}-helical and {beta}-sheet (CS{alpha}{beta}) fold with a different amino-terminal loop (n-loop) size and diverse modes of antibacterial action. Although they both are identified as inhibitors of cell wall biosynthesis, only CITDs evolved membrane disruptive ability by peptide oligomerization to form pores. To understand how this occurred, we modified micasin, a fungus-derived AITDs with a non-membrane disruptive mechanism, by substituting its n-loop with that of an insect-derived CITDs. After air oxidization, the synthetic hybrid defensin (termed Al-M) was structurally identified by circular dichroism (CD) and functionally evaluated by antibacterial and membrane permeability assays and electronic microscopic observation. Results showed that Al-M folded into a native-like defensin structure, as determined by its CD spectrum that is similar to that of micasin. Al-M was highly efficacious against the Gram-positive bacterium Bacillus megaterium with a lethal concentration of 1.76 {mu}M. As expected, in contrast to micasin, Al-M killed the bacteria through a membrane disruptive mechanism of action. The alteration in modes of action supports a key role of the n-loop extension in assembling functional surface of CITDs for membrane disruption. Our work provides mechanical evidence for evolutionary relationship between AITDs and CITDs.

  9. Alteration of the mode of antibacterial action of a defensin by the amino-terminal loop substitution

    International Nuclear Information System (INIS)

    Gao, Bin; Zhu, Shunyi

    2012-01-01

    Highlights: ► Al-M is an engineered fungal defensin with the n-loop of an insect defensin. ► Al-M adopts a native defensin-like structure with high antibacterial potency. ► Al-M kills bacteria through a membrane disruptive mechanism. ► This work sheds light on the functional evolution of CSαβ-type defensins. -- Abstract: Ancient invertebrate-type and classical insect-type defensins (AITDs and CITDs) are two groups of evolutionarily related antimicrobial peptides (AMPs) that adopt a conserved cysteine-stabilized α-helical and β-sheet (CSαβ) fold with a different amino-terminal loop (n-loop) size and diverse modes of antibacterial action. Although they both are identified as inhibitors of cell wall biosynthesis, only CITDs evolved membrane disruptive ability by peptide oligomerization to form pores. To understand how this occurred, we modified micasin, a fungus-derived AITDs with a non-membrane disruptive mechanism, by substituting its n-loop with that of an insect-derived CITDs. After air oxidization, the synthetic hybrid defensin (termed Al-M) was structurally identified by circular dichroism (CD) and functionally evaluated by antibacterial and membrane permeability assays and electronic microscopic observation. Results showed that Al-M folded into a native-like defensin structure, as determined by its CD spectrum that is similar to that of micasin. Al-M was highly efficacious against the Gram-positive bacterium Bacillus megaterium with a lethal concentration of 1.76 μM. As expected, in contrast to micasin, Al-M killed the bacteria through a membrane disruptive mechanism of action. The alteration in modes of action supports a key role of the n-loop extension in assembling functional surface of CITDs for membrane disruption. Our work provides mechanical evidence for evolutionary relationship between AITDs and CITDs.

  10. Multiple Flow Loop SCADA System Implemented on the Production Prototype Loop

    Energy Technology Data Exchange (ETDEWEB)

    Baily, Scott A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wheat, Robert Mitchell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-16

    The following report covers FY 15 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production prototype gas flow loop. The goal of this effort is to expand the existing system to include a second flow loop with a larger production-sized blower. Besides testing the larger blower, this system will demonstrate the scalability of our solution to multiple flow loops.

  11. Exergy analysis of the biogas sorption-enhanced chemical looping reforming process integrated with a high-temperature proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Kasemanand, Sarunyou; Im-orb, Karittha; Tippawan, Phanicha; Wiyaratn, Wisitsree; Arpornwichanop, Amornchai

    2017-01-01

    Highlights: • A biogas reforming and fuel cell integrated process is considered. • Energy and exergy analyses of the integrated process are performed. • Increasing the nickel oxide-to-biogas ratio decreases the exergy efficiency. • The exergy destruction of the fuel cell increases with increasing cell temperature. • The exergy efficiency of the process is improved when heat integration is applied. - Abstract: A biogas sorption-enhanced chemical looping reforming process integrated with a high-temperature proton exchange membrane fuel cell is analyzed. Modeling of such an integrated process is performed by using a flowsheet simulator (Aspen plus). The exergy analysis is performed to evaluate the energy utilization efficiency of each unit and that of the integrated process. The effect of steam and nickel oxide to biogas ratios on the exergetic performance of the stand-alone biogas sorption-enhanced chemical looping reforming process is investigated. The total exergy destruction increases as the steam or nickel oxide to biogas ratio increases. The main exergy destruction is found at the air reactor. For the high-temperature proton exchange membrane fuel cell, the main exergy destruction is found at the cathode. The total exergy destruction increases when cell temperature increases, whereas the inverse effect is found when the current density is considered as a key parameter. Regarding the exergy efficiency, the results show opposite trend to the exergy destruction. The heat integration analysis is performed to improve the exergetic performance. It is found that the integrated process including the heat integration system can improve the exergy destruction and exergy efficiency of 48% and 60%, respectively.

  12. COBALT: A GN&C Payload for Testing ALHAT Capabilities in Closed-Loop Terrestrial Rocket Flights

    Science.gov (United States)

    Carson, John M., III; Amzajerdian, Farzin; Hines, Glenn D.; O'Neal, Travis V.; Robertson, Edward A.; Seubert, Carl; Trawny, Nikolas

    2016-01-01

    The COBALT (CoOperative Blending of Autonomous Landing Technology) payload is being developed within NASA as a risk reduction activity to mature, integrate and test ALHAT (Autonomous precision Landing and Hazard Avoidance Technology) systems targeted for infusion into near-term robotic and future human space flight missions. The initial COBALT payload instantiation is integrating the third-generation ALHAT Navigation Doppler Lidar (NDL) sensor, for ultra high-precision velocity plus range measurements, with the passive-optical Lander Vision System (LVS) that provides Terrain Relative Navigation (TRN) global-position estimates. The COBALT payload will be integrated onboard a rocket-propulsive terrestrial testbed and will provide precise navigation estimates and guidance planning during two flight test campaigns in 2017 (one open-loop and closed- loop). The NDL is targeting performance capabilities desired for future Mars and Moon Entry, Descent and Landing (EDL). The LVS is already baselined for TRN on the Mars 2020 robotic lander mission. The COBALT platform will provide NASA with a new risk-reduction capability to test integrated EDL Guidance, Navigation and Control (GN&C) components in closed-loop flight demonstrations prior to the actual mission EDL.

  13. Feasibility study on the transient fuel test loop installation

    International Nuclear Information System (INIS)

    Kim, J. Y.; Lee, C. Y.

    1997-02-01

    The design and installation of the irradiation test facility for verification test of the fuel performance are very important in connection with maximization of the utilization of HANARO. The objective of this study is to investigate and analyze the test capsules and loops in research reactors of the other countries and to design preliminarily the eligible transient fuel test facility to be installed in HANARO. The principle subjects of this study are to analyze the contents, kinds and scopes of the irradiation test facilities for nuclear technology development. The guidances for the basic and detail design of the transient fuel test facility in the future are presented. The investigation and analysis of various kinds of test facilities that are now in operation at the research reactors of nuclear advanced countries are carried out. Based on the design data of HANARO the design materials for an eligible transient fuel test facility comprises two pacts : namely, in pile test fuel in reactor core site, and out of pile system regulates the experimental conditions in the in pile test section. Especially for power ramping and cycling selection of the eligible power variation equipment in HANARO is carried out. (author). 13 refs., 4 tabs., 46 figs

  14. In-pile loop OWL-2 and irradiation tests done with it

    International Nuclear Information System (INIS)

    Suzuki, Shinobu; Ikeshima, Yoshiaki; Kawano, Masakatsu; Watanabe, Hiroyuki; Sato, Hitoshi; Tanaka, Isao

    1990-11-01

    The OWL-2 which was built in the JMTR as the biggest water loop in Japan has been operating for irradiation service since February 1972. The desired objective of the OWL-2, contributing to the development of various nuclear fuels and materials for the light water power reactor and to reactor engineering, has been so fully achieved that the OWL-2 is planned to be dismantled. After the dismantling, a loop, needed for the research and development of the breeding blanket for the fusion reactor, is going to be installed in place of the OWL-2 as a part of the JMTR Modification Program. This paper deals with the history of the OWL-2 with an emphasis on the technical affairs taken into consideration when designing the OWL-2, the irradiation tests, development of the turbine flowmeter, results of the surveillance test of the material of the in-reactor tube, the knowledge gained in the course of the investigation into the cause of transgranular stress corrosion cracking (TGSCC) which developed in the wall of the in-reactor tube, and countermeasures taken to prevent TGSCC from recurring. (author)

  15. Hardware-in-the-loop vehicle system including dynamic fuel cell model

    Energy Technology Data Exchange (ETDEWEB)

    Lemes, Z.; Lenhart, T.; Braun, M.; Maencher, H. [MAGNUM Automatisierungstechnik GmbH, Darmstadt (Germany)

    2005-07-01

    In order to reduce costs and accelerate the development of fuel cells and systems the usage of hardware-in-the-loop (HIL) testing and dynamic modelling opens new possibilities. The dynamic model of a proton exchange membrane fuel cell (PEMFC) together with a vehicle model is used to carry out a comprehensive system investigation, which allows designing and optimising the behaviour of the components and the entire fuel cell system. The set-up of a HIL system enables real time interaction between the selected hardware and the model. (orig.)

  16. An automatic sodium-loop for testing the lon-term behaviour of sintered bodies flowed through by gas

    International Nuclear Information System (INIS)

    Barkleit, G.; George, G.; Haase, I.; Kiessling, W.

    1980-08-01

    An automatic sodium loop NAKOS for testing the long-term behaviour of porous stainless steel bodies which are flowed through by gas is described. The loop using a special safety protection system is capable of working without control up to 1000 h. During a 500 h-experiment the safety system and the gas permeability measuring method for testing the porous bodies were tested. Both first results of the behaviour of sintered bodies in liquid sodium of high purity and temperatures of about 850 K and some details of the production of these bodies are given. (author)

  17. PDCI Wide-Area Damping Control: PSLF Simulations of the 2016 Open and Closed Loop Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wilches Bernal, Felipe [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pierre, Brian Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Elliott, Ryan Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schoenwald, David A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Byrne, Raymond H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Neely, Jason C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trudnowski, Daniel J. [Montana Tech of the Univ. of Montana, Butte, MT (United States); Donnelly, Matthew K. [Montana Tech of the Univ. of Montana, Butte, MT (United States)

    2017-03-01

    To demonstrate and validate the performance of the wide-are a damping control system, the project plans to conduct closed-loop tests on the PDCI in summer/fall 2016. A test plan details the open and closed loop tests to be conducted on the P DCI using the wide-area damping control system. To ensure the appropriate level of preparedness, simulations were performed in order to predict and evaluate any possible unsafe operations before hardware experiments are attempted. This report contains the result s from these simulations using the power system dynamics software PSLF (Power System Load Flow, trademark of GE). The simulations use the WECC (Western Electricity Coordinating Council) 2016 light summer and heavy summer base cases.

  18. SRF cavity testing using a FPGA Self Excited Loop

    CERN Document Server

    Ben-Zvi, Ilan

    2018-01-01

    This document provides a detailed description of procedures for very-high precision calibration and testing of superconducting RF cavities using digital Low-Level RF (LLRF) electronics based on Field Programmable Gate Arrays (FPGA). The use of a Self-Excited Loop with an innovative procedure for fast turn-on allows the measurement of the forward, reflected and transmitted power from a single port of the directional coupler in front of the cavity, thus eliminating certain measurement errors. Various procedures for measuring the quality factor as a function of cavity fields are described, including a single RF pulse technique. Errors are estimated for the measurements.

  19. Long-Duration Testing of a Temperature-Swing Adsorption Compressor for Carbon Dioxide for Closed-Loop Air Revitalization Systems

    Science.gov (United States)

    Rosen, Micha; Mulloth, Lila; Varghese, Mini

    2005-01-01

    This paper describes the results of long-duration testing of a temperature-swing adsorption compressor that has application in the International Space Station (ISS) and future spacecraft for closing the air revitalization loop. The air revitalization system of the ISS operates in an open loop mode and relies on the resupply of oxygen and other consumables from Earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. The TSAC is a solid-state compressor that has the capability to remove CO2 from a low-pressure source, and subsequently store, compress, and deliver at a higher pressure as required by a processor. The TSAC is an ideal interface device for CO2 removal and reduction units in the air revitalization loop of a spacecraft for oxygen recovery. The TSAC was developed and its operation was successfully verified in integration tests with the flight-like Carbon Dioxide Removal Assembly (CDRA) at Marshall Space Flight Center prior to the long-duration tests. Long-duration tests reveal the impacts of repeated thermal cycling on the compressor components and the adsorbent material.

  20. Counter-part Test and Code Analysis of the Integral Test Loop, SNUF

    International Nuclear Information System (INIS)

    Park, Goon Cherl; Bae, B. U.; Lee, K. H.; Cho, Y. J.

    2007-02-01

    The thermal-hydraulic phenomena of Direct Vessel Injection (DVI) line Small-Break Loss-of-Coolant Accident (SBLOCA) in pressurized water reactor, APR1400, were investigated. The reduced-height and reduced-pressure integral test loop, SNUF (Seoul National University Facility), was constructed with scaling down the prototype. For the appropriate test conditions in the experiment of SNUF, the energy scaling methodology was suggested as scaling the coolant mass inventory and thermal power for the reduced-pressure condition. From the MARS code analysis, the energy scaling methodology was confirmed to show the reasonable transient when ideally scaled-down SNUF model was compared to the prototype model. In the experiments according to the conditions determined by energy scaling methodology, the phenomenon of downcomer seal clearing had a dominant role in decrease of the system pressure and increase of the coolant level of core. The experimental results was utilized to validate the calculation capability of MARS

  1. Selective purge for hydrogenation reactor recycle loop

    Science.gov (United States)

    Baker, Richard W.; Lokhandwala, Kaaeid A.

    2001-01-01

    Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.

  2. Pilot testing of a membrane system for postcombustion CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, Tim [Membrane Technology And Research, Incorporated, Newark, CA (United States); Kniep, Jay [Membrane Technology And Research, Incorporated, Newark, CA (United States); Wei, Xiaotong [Membrane Technology And Research, Incorporated, Newark, CA (United States); Carlisle, Trevor [Membrane Technology And Research, Incorporated, Newark, CA (United States); White, Steve [Membrane Technology And Research, Incorporated, Newark, CA (United States); Pande, Saurabh [Membrane Technology And Research, Incorporated, Newark, CA (United States); Fulton, Don [Membrane Technology And Research, Incorporated, Newark, CA (United States); Watson, Robert [Membrane Technology And Research, Incorporated, Newark, CA (United States); Hoffman, Thomas [Membrane Technology And Research, Incorporated, Newark, CA (United States); Freeman, Brice [Membrane Technology And Research, Incorporated, Newark, CA (United States); Baker, Richard [Membrane Technology And Research, Incorporated, Newark, CA (United States)

    2015-09-30

    This final report summarizes work conducted for the U.S. Department of Energy, National Energy Technology Laboratory (DOE) to scale up an efficient post-combustion CO2 capture membrane process to the small pilot test stage (award number DE-FE0005795). The primary goal of this research program was to design, fabricate, and operate a membrane CO2 capture system to treat coal-derived flue gas containing 20 tonnes CO2/day (20 TPD). Membrane Technology and Research (MTR) conducted this project in collaboration with Babcock and Wilcox (B&W), the Electric Power Research Institute (EPRI), WorleyParsons (WP), the Illinois Sustainable Technology Center (ISTC), Enerkem (EK), and the National Carbon Capture Center (NCCC). In addition to the small pilot design, build and slipstream testing at NCCC, other project efforts included laboratory membrane and module development at MTR, validation field testing on a 1 TPD membrane system at NCCC, boiler modeling and testing at B&W, a techno-economic analysis (TEA) by EPRI/WP, a case study of the membrane technology applied to a ~20 MWe power plant by ISTC, and an industrial CO2 capture test at an Enerkem waste-to-biofuel facility. The 20 TPD small pilot membrane system built in this project successfully completed over 1,000 hours of operation treating flue gas at NCCC. The Polaris™ membranes used on this system demonstrated stable performance, and when combined with over 10,000 hours of operation at NCCC on a 1 TPD system, the risk associated with uncertainty in the durability of postcombustion capture membranes has been greatly reduced. Moreover, next-generation Polaris membranes with higher performance and lower cost were validation tested on the 1 TPD system. The 20 TPD system also demonstrated successful operation of a new low-pressure-drop sweep module that will reduce parasitic energy losses at full scale by as much as 10 MWe. In modeling and pilot boiler testing, B&W confirmed the

  3. The model of the thermal and hydraulic behaviour of a out-of-pile test loop; Model thermohidraulickog ponasanja vanreaktorskog exksperimentalnog cirkulacionog kola

    Energy Technology Data Exchange (ETDEWEB)

    Vehauc, A; Stosic, Z [Institut za nuklearne nauke Boris Kidric, Voinca, Belgrade (Yugoslavia)

    1988-07-01

    A complex circulation loop was modeled and a simulation program developed for the determination of the pressure, temperature, velocity and flow rate distribution in legs of the loop. The model was used to study the thermal and hydraulic behaviour of an out-of-pile test loop at IBK-ITE. For a given set of conditions in the test section, the model yields data on all the operating modes possible with the existing control system and in consequence on the optimum operating conditions for the loop as a whole. (author)

  4. Internal humidifying of PEM [Proton Exchange Membrane] fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Staschewski, D [Karlsruhe Research Center (FZK), Karlsruhe (Germany). Inst. for Neutron Physics and Reactor Technics

    1996-12-01

    Hydrogen fuel cells (FC) for vehicular traction should stand out for a car-specific lightweight design. As regards PEMFC systems containing proton exchange membranes, this quality can be considerably improved by introducing porous bipolar plates which are conditioned by a water loop and deliver hot humidifying water to the adjacent membrane-electrode assembly (MEA). According to the principle of internal humidification here indicated special fuel cells based on sintered fiber and powder graphite were manufactured at FZK on a semi-technical scale. Self-made Pt/C electrodes hotpressed onto Nafion resulted in currents up to 200 A with pure oxygen as oxidant, providing the precondition for detailed studies of turnover and drainage rates within a monocell test arrangement. (author)

  5. Investigation of Loop Seal Clearing Phenomena for the ATLAS SBLOCA Long Term Cooling Test using TRACE and MARS-KS

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Min Jeong; Park, M. H.; Marigomen Ralph; Sim, S. K. [Environment and Energy Technology, Daejeon (Korea, Republic of)

    2016-10-15

    During Design Certificate(DC) review of the APR1400, USNRC raised a long term cooling safety issue on the effect of loop seal clearing during cold leg Small Break Loss Of Coolant Accident(SBLOCA) due to relatively deep cross-over loop compared to the US PWRs. The objective of this study is thus to investigate the loop seal clearing phenomena during cold leg slot break SBLOCA long term cooling and resolve the safety issue on the SBLOCA long term cooling related to the APR1400 DC. TRACE and MARS-KS were used to predict the test results and to perform sensitivity studies for the SBLOCA loop seal clearing phenomena. The calculation shows that the TRACE code well predict the sequence of Test LTC-CL-04R. However, compared to the experiment, the TRACE over predicts the primary pressure due to smaller break flow prediction. MARS-KS well predicts major thermal hydraulic parameters during the transient with reasonable agreement. MARS-KS better predicts ATLAS LTC-CL-04R test data with a good agreement than the TRACE due to better prediction of the break flow. Overall, compared to the experiment, the TRACE and MARS-KS Codes show a discrepancy in predicting the loop seal clearing and reformation time. Both TRACE and MARS-KS correctly predicts core water level and fuel cladding temperatures. From this study, it can be said that even though APR1400 cross-over leg design has slightly deeper loop seals, the effect on the safety of the SBLOCA long term cooling is minimal compared to the SBLOCA cladding failure criteria. Further study on the SBLOCA loop seal clearing phenomena is needed.

  6. Permeability testing of biomaterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B [NMI Natural and Medical Sciences Institute at University Tuebingen, Markwiesenstr. 55, D-72770 Reutlingen (Germany); Ahlers, M [GELITA AG, Gammelsbacher Str. 2, D-69412 Eberbach (Germany)], E-mail: schlosshauer@nmi.de

    2008-09-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation.

  7. Permeability testing of biomaterial membranes

    International Nuclear Information System (INIS)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B; Ahlers, M

    2008-01-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation

  8. Colorimetric test-systems for creatinine detection based on composite molecularly imprinted polymer membranes.

    Science.gov (United States)

    Sergeyeva, T A; Gorbach, L A; Piletska, E V; Piletsky, S A; Brovko, O O; Honcharova, L A; Lutsyk, O D; Sergeeva, L M; Zinchenko, O A; El'skaya, A V

    2013-04-03

    An easy-to-use colorimetric test-system for the efficient detection of creatinine in aqueous samples was developed. The test-system is based on composite molecularly imprinted polymer (MIP) membranes with artificial receptor sites capable of creatinine recognition. A thin MIP layer was created on the surface of microfiltration polyvinylidene fluoride (PVDF) membranes using method of photo-initiated grafting polymerization. The MIP layer was obtained by co-polymerization of a functional monomer (e.g. 2-acrylamido-2-methyl-1-propanesulfonic acid, itaconic acid or methacrylic acid) with N, N'-methylenebisacrylamide as a cross-linker. The choice of the functional monomer was based on the results of computational modeling. The creatinine-selective composite MIP membranes were used for measuring creatinine in aqueous samples. Creatinine molecules were selectively adsorbed by the MIP membranes and quantified using color reaction with picrates. The intensity of MIP membranes staining was proportional to creatinine concentration in an analyzed sample. The colorimetric test-system based on the composite MIP membranes was characterized with 0.25 mM detection limit and 0.25-2.5mM linear dynamic range. Storage stability of the MIP membranes was estimated as at least 1 year at room temperature. As compared to the traditional methods of creatinine detection the developed test-system is characterized by simplicity of operation, small size and low cost. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Field testing of polymeric mesh and ash-based ceramic membranes ...

    African Journals Online (AJOL)

    This paper presents the initial findings of field testing of 2 low-cost membrane filters, viz. 30 ìm polymeric mesh and 2–6 ìm macroporous waste-ash based ceramic filter, in a submerged membrane bioreactor (MBR) employing batch anoxic and aerobic conditions. The influent was raw wastewater from a residential complex ...

  10. Reactor loops at Chalk River

    International Nuclear Information System (INIS)

    Sochaski, R.O.

    1962-07-01

    This report describes broadly the nine in-reactor loops, and their components, located in and around the NRX and NRU reactors at Chalk River. First an introduction and general description is given of the loops and their function, supplemented with a table outlining some loop specifications and nine simplified flow sheets, one for each individual loop. The report then proceeds to classify each loop into two categories, the 'main loop circuit' and the 'auxiliary circuit', and descriptions are given of each circuit's components in turn. These components, in part, are comprised of the main loop pumps, the test section, loop heaters, loop coolers, delayed-neutron monitors, surge tank, Dowtherm coolers, loop piping. Here again photographs, drawings and tables are included to provide a clearer understanding of the descriptive literature and to include, in tables, some specifications of the more important components in each loop. (author)

  11. Thermal hydraulic considerations and mock-up tests for developing two-phase thermo-siphon loop of CARR-CNS

    International Nuclear Information System (INIS)

    Shejiao, Du; Qincheng, Bi; Tingkuan, Chen; Quanke, Feng

    2005-01-01

    The main component of the China Advanced Research Reactor Cold Neutron Source (CARR-CNS), which is under design, is a two-phase thermo-siphon loop of hydrogen. It consists of a condenser, a single tube with counter current flow avoiding flooding and a cylindrical-annulus moderator cell. The mockup tests were carried out using a full-scale loop with Freon-113, to validate the self-regulating characteristics of the loop, void fraction less than 20% in the liquid of the moderator cell and the requirements for establishing the condition under which the inner shell of the moderator cell has only vapor and the outer shell liquid. In the case of these mockup tests the density ratio of liquid to vapor and the volumetric vapor evaporation rate due to heat load are kept the same as those in normal operation of the CARR-CNS. The results show that the loop has the self-regulating characteristics and the inner shell of the moderator cell contains only vapor, the outer shell liquid. The average void fraction of the moderator cell was verified less than 20% under the volumetric vapor generation of 0.65 l/s corresponding to the nuclear heating of 800 W in the case of the liquid hydrogen. The local void fraction in the liquid hydrogen increases with the increase of the loop pressure under the condition of a constant volumetric evaporation

  12. Fatigue and creep to leak tests of proton exchange membranes using pressure-loaded blisters

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongqiang; Dillard, David A.; Case, Scott W. [Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0219 (United States); Ellis, Michael W. [Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0238 (United States); Lai, Yeh-Hung; Gittleman, Craig S.; Miller, Daniel P. [Fuel Cell Research Lab, GM R and D, General Motors Corporation, 10 Carriage Street, Honeoye Falls, NY 14472-0603 (United States)

    2009-12-01

    In this study, three commercially available proton exchange membranes (PEMs) are biaxially tested using pressure-loaded blisters to characterize their resistance to gas leakage under either static (creep) or cyclic fatigue loading. The pressurizing medium, air, is directly used for leak detection. These tests are believed to be more relevant to fuel cell applications than quasi-static uniaxial tensile-to-rupture tests because of the use of biaxial cyclic and sustained loading and the use of gas leakage as the failure criterion. They also have advantages over relative humidity cycling test, in which a bare PEM or catalyst coated membrane is clamped with gas diffusion media and flow field plates and subjected to cyclic changes in relative humidity, because of the flexibility in allowing controlled mechanical loading and accelerated testing. Nafion {sup registered} NRE-211 membranes are tested at three different temperatures and the time-temperature superposition principle is used to construct stress-lifetime master curve. Tested at 90 C, 2%RH extruded Ion Power {sup registered} N111-IP membranes have a longer lifetime than Gore trademark -Select {sup registered} 57 and Nafion {sup registered} NRE-211 membranes. (author)

  13. The Analysis of Loop Seal Purge Time for the KHNP Pressurizer Safety Valve Test Facility Using the GOTHIC Code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ae; Kim, Chang Hyun; Kweon, Gab Joo; Park, Jong Woon [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2007-10-15

    The pressurizer safety valves (PSV) in Pressurized Water Reactors are required to provide the overpressure protection for the Reactor Coolant System (RCS) during the overpressure transients. Korea Hydro and Nuclear Power Company (KHNP) plans to build the PSV test facility for the purpose of providing the PSV pop-up characteristics and the loop seal dynamics for the new safety analysis. When the pressurizer safety valve is mounted in a loop seal configuration, the valve must initially pass the loop seal water prior to popping open on steam. The loop seal in the upstream of PSV prevents leakage of hydrogen gas or steam through the safety valve seat. This paper studies on the loop seal clearing dynamics using GOTHIC-7.2a code to verify the effects of loop seal purge time on the reactor coolant system overpressure.

  14. Engineering design of IFMIF/EVEDA lithium test loop. Electro-magnetic pump and pressure drop

    International Nuclear Information System (INIS)

    Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Iuchi, Hiroshi; Kanemura, Takuji; Ida, Mizuho; Watanabe, Kazuyoshi; Wakai, Eiichi; Nakamura, Kazuyuki; Horiike, H.; Yamaoka, N.; Matsushita, I.

    2011-01-01

    The Engineering Validation and Engineering Design Activities (EVEDA) for the International Fusion Materials Irradiation Facility (IFMIF) is proceeding as one of the ITER Broader Approach (ITER-BA). A Li circulation loop for testing hydraulic stability of the Li target (high speed free-surface flow of liquid Li as a beam target) and Li purification traps are under construction in the Japan Atomic Energy Agency as a major Japanese activities in the EVEDA. This paper presents specification of an electro-magnetic pump (EMP) for the EVEDA Li Test Loop (ELTL) and evaluation of the pressure drop in the main loop of the ELTL. The EMP circulates the liquid Li at a large flow rate up to 0.05 m 3 /s (3000 l/min) under a vacuum cover gas (Ar) pressure of 10 -3 Pa, thus the evaluation of cavitation generation is a crucial issue. The EMP used in the ELTL consists of two EMPs aligned in series through a U-tube whose size of one EMP is 0.8 m square and 2.6 m in length. The calculation of the pressure drop in the main Li loop to the EMP is approx. 25 kPa at the design maximum flow rate of 0.05 m 3 /s. On the other hand the height from the EMP to a Li tank to supply Li to the EMP is designed to be 9.72 m, and secures a static pressure and the cavitation number of 18 kPa and 3.4 respectively at the maximum flow rate in a vacuum condition. As a result, it is confirmed to prevent cavitation at the inlet of the EMP in this design. (author)

  15. Hardware-in-the-loop (HIL) Test of Demand as Frequency Controlled Reserve (DFR)

    DEFF Research Database (Denmark)

    Wu, Qiuwei; Zimmermann, K.; Østergaard, Jacob

    2016-01-01

    This paper presents the hardware-in-the-loop (HIL) test of the demand as frequency controlled reserve (DFR). The HIL test refers to a test in which parts of a pure simulation have been replaced by actual physical components. It is used to understand the behavior of a new device or controller....... The DFR has been tested by offline simulations to illustrate the efficacy of this technology. The DFR control logics have been implemented in the SmartBox. The HIL was conducted by having the SmartBox connected to the real time simulations and the performance of the SmartBox was tested with difference...

  16. Molten Salt Test Loop (MSTL) system customer interface document.

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.; Briggs, Ronald D.

    2013-09-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate %E2%80%9Csolar salt%E2%80%9D and can circulate the salt at pressure up to 40 bar (600psi), temperature to 585%C2%B0C, and flow rate of 44-50kg/s(400-600GPM) depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

  17. BWR recirculation loop discharge line break LOCA tests with break areas of 50 and 100% assuming HPCS failure at ROSA-III test facility

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro; Tasaka, Kanji; Yonomoto, Taisuke; Anoda, Yoshinari; Kumamaru, Hiroshige; Nakamura, Hideo; Murata, Hideo; Shiba, Masayoshi; Iriko, Masanori.

    1985-03-01

    This report presents the experimental results of RUN 962 and RUN 963 in ROSA-III program, which are 50 and 100 % break LOCA tests at the BWR recirculation pump discharge line, respectively. The ROSA-III test facility simulates a volumetrically scaled (1/424) BWR system and has four half-length electrically heated fuel bundles, two active recirculation loops, three types of ECCSs and steam and feedwater systems. The experimental data of RUN 962 and RUN 963 were compared with those of RUN 961, a 200 % discharge line break test to study the break area effects on the transient thermal hydraulic phenomena. The least flow areas at the jet pump drive nozzles and recirculation pump discharge nozzle in the broken recirculation loop limitted the discharge flows from the pressure vessel and the depressurization rate in the 100 and 200 % break tests, whereas the least flow area at break nozzle limitted the depressurization rate in the 50 % break test. The highest PCT was observed in the 50 % break test among the three tests. (author)

  18. The fusion loops and membrane proximal region of Epstein-Barr virus glycoprotein B (gB) can function in the context of herpes simplex virus 1 gB when substituted individually but not in combination.

    Science.gov (United States)

    Zago, Anna; Connolly, Sarah A; Spear, Patricia G; Longnecker, Richard

    2013-01-01

    Among the herpesvirus glycoprotein B (gB) fusion proteins, the hydrophobic content of fusion loops and membrane proximal regions (MPRs) are inversely correlated with each other. We examined the functional importance of the hydrophobicity of these regions by replacing them in herpes simplex virus type 1 gB with corresponding regions from Epstein-Barr virus gB. We show that fusion activity is dependent on the structural context in which the specific loops and MPR sequences exist, rather than a simple hydrophobic relationship. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. An equivalent ground thermal test method for single-phase fluid loop space radiator

    Directory of Open Access Journals (Sweden)

    Xianwen Ning

    2015-02-01

    Full Text Available Thermal vacuum test is widely used for the ground validation of spacecraft thermal control system. However, the conduction and convection can be simulated in normal ground pressure environment completely. By the employment of pumped fluid loops’ thermal control technology on spacecraft, conduction and convection become the main heat transfer behavior between radiator and inside cabin. As long as the heat transfer behavior between radiator and outer space can be equivalently simulated in normal pressure, the thermal vacuum test can be substituted by the normal ground pressure thermal test. In this paper, an equivalent normal pressure thermal test method for the spacecraft single-phase fluid loop radiator is proposed. The heat radiation between radiator and outer space has been equivalently simulated by combination of a group of refrigerators and thermal electrical cooler (TEC array. By adjusting the heat rejection of each device, the relationship between heat flux and surface temperature of the radiator can be maintained. To verify this method, a validating system has been built up and the experiments have been carried out. The results indicate that the proposed equivalent ground thermal test method can simulate the heat rejection performance of radiator correctly and the temperature error between in-orbit theory value and experiment result of the radiator is less than 0.5 °C, except for the equipment startup period. This provides a potential method for the thermal test of space systems especially for extra-large spacecraft which employs single-phase fluid loop radiator as thermal control approach.

  20. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Putri, Zufira; Arcana, I Made

    2014-01-01

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO 2 are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO 2 compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO 2 blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM)

  1. High-temperature helium-loop facility

    International Nuclear Information System (INIS)

    Tokarz, R.D.

    1981-09-01

    The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100 0 F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system. The experimental capabilities and test conand presents the results that have been obtained. The study has been conducted using a four-phase approach. The first phase develops the solution to the steady-state radon-diffusion equation in one-dimensieered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent f water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Uranium concentrations in the sediments which were above detection limits ranged from 0.10 t 51.2 ppM. The mean of the logarithms of the uranium concentrations was 0.53. A group of high uranium concentrations occurs near the junctions of quadrangles AB, AC, BB, a 200 mK. In case 2), x-ray studies of isotopic phase separation in 3 He-- 4 He bcc solids were carried out by B. A. Fraass

  2. The soluble loop BC region guides, but not dictates, the assembly of the transmembrane cytochrome b6.

    Directory of Open Access Journals (Sweden)

    Lydia Tome-Stangl

    Full Text Available Studying folding and assembly of naturally occurring α-helical transmembrane proteins can inspire the design of membrane proteins with defined functions. Thus far, most studies have focused on the role of membrane-integrated protein regions. However, to fully understand folding pathways and stabilization of α-helical membrane proteins, it is vital to also include the role of soluble loops. We have analyzed the impact of interhelical loops on folding, assembly and stability of the heme-containing four-helix bundle transmembrane protein cytochrome b6 that is involved in charge transfer across biomembranes. Cytochrome b6 consists of two transmembrane helical hairpins that sandwich two heme molecules. Our analyses strongly suggest that the loop connecting the helical hairpins is not crucial for positioning the two protein "halves" for proper folding and assembly of the holo-protein. Furthermore, proteolytic removal of any of the remaining two loops, which connect the two transmembrane helices of a hairpin structure, appears to also not crucially effect folding and assembly. Overall, the transmembrane four-helix bundle appears to be mainly stabilized via interhelical interactions in the transmembrane regions, while the soluble loop regions guide assembly and stabilize the holo-protein. The results of this study might steer future strategies aiming at designing heme-binding four-helix bundle structures, involved in transmembrane charge transfer reactions.

  3. Field tests of carbon dioxide removal from flue gases using polymer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Daal, Ludwin [DNV KEMA the Netherlands, Arnhem (Netherlands). Dept. CES-PCW; Claassen, Linda [Parker Hannifin Manufacturing Netherlands (Filtration and Separation) B.V., Etten-Leur (Netherlands). domnick hunter Filtration and Separation Div.; Bruns, Ralf; Schallert, Bernd [E.ON, New Build and Technology GmbH, Gelsenkirchen (Germany). Div. Operational Support; Barbieri, Giuseppe; Brunetti, Adele [Calabria Univ., Rende (Italy). The Inst. on Membrane Technology; Nijmeijer, Kitty [Twente Univ., Entschede (Netherlands). Membrane Science and Technology, MESAplus Inst. for Nanotechnology

    2013-06-01

    For the capture of CO{sub 2} from flue gas, asymmetric hollow fibre poly phenylene oxide membranes are coated with sulphonated polyether etherketon. The membranes were integrated in an open and closed module and tested. The test results are presented. Since they are very promising, additional research is going to be supported in order to use the modules in a larger scale and over a longer period of time. (orig.)

  4. High-Temperature Structural Analysis of a Small-Scale PHE Prototype under the Test Condition of a Small-Scale Gas Loop

    International Nuclear Information System (INIS)

    Song, K.; Hong, S.; Park, H.

    2012-01-01

    A process heat exchanger (PHE) is a key component for transferring the high-temperature heat generated from a very high-temperature reactor (VHTR) to a chemical reaction for the massive production of hydrogen. The Korea Atomic Energy Research Institute has designed and assembled a small-scale nitrogen gas loop for a performance test on VHTR components and has manufactured a small-scale PHE prototype made of Hastelloy-X alloy. A performance test on the PHE prototype is underway in the gas loop, where different kinds of pipelines connecting to the PHE prototype are tested for reducing the thermal stress under the expansion of the PHE prototype. In this study, to evaluate the high-temperature structural integrity of the PHE prototype under the test condition of the gas loop, a realistic and effective boundary condition imposing the stiffness of the pipelines connected to the PHE prototype was suggested. An equivalent spring stiffness to reduce the thermal stress under the expansion of the PHE prototype was computed from the bending deformation and expansion of the pipelines connected to the PHE. A structural analysis on the PHE prototype was also carried out by imposing the suggested boundary condition. As a result of the analysis, the structural integrity of the PHE prototype seems to be maintained under the test condition of the gas loop.

  5. Gauge/gravity duality for interactions of spherical membranes in 11-dimensional pp-wave

    International Nuclear Information System (INIS)

    Lee, Hok Kong; McLoughlin, Tristan; Wu Xinkai

    2005-01-01

    We investigate the gauge/gravity duality in the interaction between two spherical membranes in the 11-dimensional pp-wave background. On the supergravity side, we find the solution to the field equations at locations close to a spherical source membrane, and use it to obtain the light-cone Lagrangian of a spherical probe membrane very close to the source, i.e., with their separation much smaller than their radii. On the gauge theory side, using the BMN matrix model, we compute the one-loop effective potential between two membrane fuzzy spheres. Perfect agreement is found between the two sides. Moreover, the one-loop effective potential we obtain on the gauge theory side is valid beyond the small-separation approximation, giving the full interpolation between interactions of membrane-like objects and that of graviton-like objects

  6. Bending and Twisting the Embryonic Heart: A Computational Model for C-Looping Based on Realistic Geometry

    Directory of Open Access Journals (Sweden)

    Yunfei eShi

    2014-08-01

    Full Text Available The morphogenetic process of cardiac looping transforms the straight heart tube into a curved tube that resembles the shape of the future four-chambered heart. Although great progress has been made in identifying the molecular and genetic factors involved in looping, the physical mechanisms that drive this process have remained poorly understood. Recent work, however, has shed new light on this complicated problem. After briefly reviewing the current state of knowledge, we propose a relatively comprehensive hypothesis for the mechanics of the first phase of looping, termed c-looping, as the straight heart tube deforms into a c-shaped tube. According to this hypothesis, differential hypertrophic growth in the myocardium supplies the main forces that cause the heart tube to bend ventrally, while regional growth and contraction in the omphalomesenteric veins (primitive atria and compressive loads exerted by the splanchnopleuric membrane drive rightward torsion. A computational model based on realistic embryonic heart geometry is used to test this hypothesis. The behavior of the model is in reasonable agreement with available experimental data from control and perturbed embryos, offering support for our hypothesis. The results also suggest, however, that several other mechanisms contribute secondarily to normal looping, and we speculate that these mechanisms play backup roles when looping is perturbed. Finally, some outstanding questions are discussed for future study.

  7. Hollow Fiber Spacesuit Water Membrane Evaporator Development and Testing for Advanced Spacesuits

    Science.gov (United States)

    Bue, Grant C.; Trevino, Luis A.; Tsioulos, Gus; Settles, Joseph; Colunga, Aaron; Vogel, Matthew; Vonau, Walt

    2010-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the most suitable candidate among commercial alternatives for HoFi SWME prototype development. A design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype consisting 14,300 tube bundled into 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Vacuum chamber testing has been performed characterize heat rejection as a function of inlet water temperature and water vapor backpressure and to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the tolerance to freezing and suitability to reject heat in a Mars pressure environment.

  8. Comparison of thermo-hydraulic analysis with measurements for HELIOS. The scaled integral test loop for PEACER

    International Nuclear Information System (INIS)

    Cho, Jae Hyun; Lim, Jun; Kim, Ji Hak; Hwang, Il Soon

    2009-01-01

    A scaled-down Lead-Bismuth Eutectic circulating integral test loop named as HELIOS (Heavy Eutectic liquid metal Loop for Integral test of Operability and Safety of PEACER) has been employed to characterize steady-state isothermal forced circulation behavior and non-isothermal natural circulation capability of the lead and lead-alloy cooled advanced nuclear energy systems (LACANES). In this time, thermal-hydraulic experiments have been carried out using HELIOS following rigorous calibration campaigns on sensors for temperature and pressure, especially isothermal steady-state forced convection using by the pump. The isothermal steady-state forced convection test was performed to obtain the pressure loss information including friction loss coefficients and form loss coefficients. Then its data were compared with multi-approaching analysis including hand calculation results and computer simulation code results. (MARS-LBE, CFX). We report the results of comparisons between the analysis and measurements together. (author)

  9. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Zufira, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung (Indonesia)

    2014-03-24

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO{sub 2} are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO{sub 2} compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO{sub 2} blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM)

  10. Optimizing nanodiscs and bicelles for solution NMR studies of two β-barrel membrane proteins

    International Nuclear Information System (INIS)

    Kucharska, Iga; Edrington, Thomas C.; Liang, Binyong; Tamm, Lukas K.

    2015-01-01

    Solution NMR spectroscopy has become a robust method to determine structures and explore the dynamics of integral membrane proteins. The vast majority of previous studies on membrane proteins by solution NMR have been conducted in lipid micelles. Contrary to the lipids that form a lipid bilayer in biological membranes, micellar lipids typically contain only a single hydrocarbon chain or two chains that are too short to form a bilayer. Therefore, there is a need to explore alternative more bilayer-like media to mimic the natural environment of membrane proteins. Lipid bicelles and lipid nanodiscs have emerged as two alternative membrane mimetics that are compatible with solution NMR spectroscopy. Here, we have conducted a comprehensive comparison of the physical and spectroscopic behavior of two outer membrane proteins from Pseudomonas aeruginosa, OprG and OprH, in lipid micelles, bicelles, and nanodiscs of five different sizes. Bicelles stabilized with a fraction of negatively charged lipids yielded spectra of almost comparable quality as in the best micellar solutions and the secondary structures were found to be almost indistinguishable in the two environments. Of the five nanodiscs tested, nanodiscs assembled from MSP1D1ΔH5 performed the best with both proteins in terms of sample stability and spectral resolution. Even in these optimal nanodiscs some broad signals from the membrane embedded barrel were severely overlapped with sharp signals from the flexible loops making their assignments difficult. A mutant OprH that had two of the flexible loops truncated yielded very promising spectra for further structural and dynamical analysis in MSP1D1ΔH5 nanodiscs

  11. Non-Native Metal Ion Reveals the Role of Electrostatics in Synaptotagmin 1-Membrane Interactions.

    Science.gov (United States)

    Katti, Sachin; Nyenhuis, Sarah B; Her, Bin; Srivastava, Atul K; Taylor, Alexander B; Hart, P John; Cafiso, David S; Igumenova, Tatyana I

    2017-06-27

    C2 domains are independently folded modules that often target their host proteins to anionic membranes in a Ca 2+ -dependent manner. In these cases, membrane association is triggered by Ca 2+ binding to the negatively charged loop region of the C2 domain. Here, we used a non-native metal ion, Cd 2+ , in lieu of Ca 2+ to gain insight into the contributions made by long-range Coulombic interactions and direct metal ion-lipid bridging to membrane binding. Using X-ray crystallography, NMR, Förster resonance energy transfer, and vesicle cosedimentation assays, we demonstrate that, although Cd 2+ binds to the loop region of C2A/B domains of synaptotagmin 1 with high affinity, long-range Coulombic interactions are too weak to support membrane binding of individual domains. We attribute this behavior to two factors: the stoichiometry of Cd 2+ binding to the loop regions of the C2A and C2B domains and the impaired ability of Cd 2+ to directly coordinate the lipids. In contrast, electron paramagnetic resonance experiments revealed that Cd 2+ does support membrane binding of the C2 domains in full-length synaptotagmin 1, where the high local lipid concentrations that result from membrane tethering can partially compensate for lack of a full complement of divalent metal ions and specific lipid coordination in Cd 2+ -complexed C2A/B domains. Our data suggest that long-range Coulombic interactions alone can drive the initial association of C2A/B with anionic membranes and that Ca 2+ further augments membrane binding by the formation of metal ion-lipid coordination bonds and additional Ca 2+ ion binding to the C2 domain loop regions.

  12. Tritium Management Loop Design Status

    Energy Technology Data Exchange (ETDEWEB)

    Rader, Jordan D. [ORNL; Felde, David K. [ORNL; McFarlane, Joanna [ORNL; Greenwood, Michael Scott [ORNL; Qualls, A L. [ORNL; Calderoni, Pattrick [Idaho National Laboratory (INL)

    2017-12-01

    This report summarizes physical, chemical, and engineering analyses that have been done to support the development of a test loop to study tritium migration in 2LiF-BeF2 salts. The loop will operate under turbulent flow and a schematic of the apparatus has been used to develop a model in Mathcad to suggest flow parameters that should be targeted in loop operation. The introduction of tritium into the loop has been discussed as well as various means to capture or divert the tritium from egress through a test assembly. Permeation was calculated starting with a Modelica model for a transport through a nickel window into a vacuum, and modifying it for a FLiBe system with an argon sweep gas on the downstream side of the permeation interface. Results suggest that tritium removal with a simple tubular permeation device will occur readily. Although this system is idealized, it suggests that rapid measurement capability in the loop may be necessary to study and understand tritium removal from the system.

  13. A two-loop test of M(atrix) theory

    International Nuclear Information System (INIS)

    Becker, K.

    1997-01-01

    We consider the scattering of two Dirichlet zero-branes in M(atrix) theory. Using the formulation of M(atrix) theory in terms of ten-dimensional super Yang-Mills theory dimensionally reduced to (0+1) dimensions, we obtain the effective (velocity-dependent) potential describing these particles. At one loop we obtain the well-known result for the leading order of the effective potential V eff ∝v 4 /r 7 , where v and r are the relative velocity and distance between the two zero-branes, respectively. A calculation of the effective potential at two loops shows that no renormalizations of the v 4 term of the effective potential occur at this order. (orig.)

  14. Analysis of the SBLOCAs in HANARO pool for the 3-pin fuel test loop

    International Nuclear Information System (INIS)

    Park, S. K.; Chi, D. Y.; Sim, B. S.; Park, K. N.; Ahn, S. H.; Lee, J. M.; Lee, C. Y.; Kim, Y. J.

    2004-09-01

    Fuel Test Loop(FTL) has been developed to meet the increasing demand on fuel irradiation and burn up test required the development of new fuels in Korea. It is designed to provide the test conditions of high pressure and temperature like the commercial PWR and CANDU power plants. And also the FTL have the cooling capability to sufficiently remove the thermal power of the in-pile test section for normal operation, Anticipated Operational Occurrences(AOOs), and Design Basis Accidents(DBAs). This report deals with the Small Break Loss Of Coolant Accidents (SBLOCAs) in HANARO pool for the 3-pin fuel test loop. The MARS code has been used for the prediction of the emergency core cooling capability of the FTL and the peak cladding temperature of the test fuels for the SBLOCAs. The location of the pipe break is assumed at the hill taps connecting the cold and hot legs in HANARO pool to the inlet and outlet nozzles of the In-Pile test Section (IPS). The break size is also assumed less than 20% of the cross section area of the pipe. The test fuels are heated up when the cold leg break occur. However, they are not heated up when the hot leg break occur. The maximum Peak Cladding Temperatures (PCT) are predicted to be about 906.9 .deg. C for the cold leg break accident in PWR fuel test mode and 971.9 .deg. C in CANDU fuel test mode respectively. The critical break size is about the 6% of the cross section area of the pipe for PWR fuel test mode and the 8% for CANDU fuel test mode. The PCTs meet the design criterion of commercial PWR fuel that the maximum PCT is lower than 1204 .deg. C

  15. Analysis of cerium-composite polymer-electrolyte membranes during and after accelerated oxidative-stability test

    Science.gov (United States)

    Shin, Dongwon; Han, Myungseong; Shul, Yong-Gun; Lee, Hyejin; Bae, Byungchan

    2018-02-01

    The oxidative stability of membranes constructed from a composite of pristine sulfonated poly(arylene ether sulfone) and cerium was investigated by conducting an accelerated oxidative-stability test at the open-circuit voltage (OCV). The membranes were analyzed in situ through OCV and impedance measurements, cyclic voltammetry, and linear-sweep voltammetry to monitor the electrochemical properties during the stability test. Although the high-frequency resistance of a composite membrane was slightly higher than that of a pristine membrane because of the exchange of protons from the sulfonic acid with cerium ions, the composite membrane maintained its potential for much longer than the pristine membrane. The effect of the cerium ions as radical scavengers was confirmed by analyzing the drain water and chemical structure after operation. These post-operation analyses confirmed that cerium ions improved the oxidative stability of the hydrocarbon-based polymer during fuel-cell operation. It is clear that the cerium-based radical scavengers prevented chemical degradation of the polymer membrane as well as the electrode in terms of hydrogen cross-over, polymer-chain scission, and the electrochemical surface area, while they rarely diffused outward from the membrane.

  16. Aging test results of an asphalt membrane liner

    International Nuclear Information System (INIS)

    Buelt, J.L.; Barnes, S.M.

    1983-07-01

    The objective of the asphalt aging study described in this report was to determine the expected performance lifetime of a catalytically airblown asphalt membrane as a seepage barrier for inactive uranium mill tailings. The study, conducted by Pacific Northwest Laboratory for the Department of Energy's Uranium Mill Tailings Remedial Action Program, showed through chemical compatibility tests that the asphalt membrane is well suited for this purpose. The chemical compatibility tests were designed to accelerate the aging reactions in the asphalt and to determine the accelerated aging effect. Higher temperatures and oxygen concentrations proved to be effective acceleration parameters. By infrared spectral analysis, the asphalt was determined to have undergone 7 years of equivalent aging in a 3-month period when exposed to 40 0 C and 1.7 atm oxygen pressure. However, the extent of aging was limited to a maximum penetration of 0.5% of the total liner thickness. It was concluded that the liner could be expected to be effective as a seepage barrier for at least 1000 years before the entire thickness of the liner would be degraded

  17. Testing of a 7-tube palladium membrane reactor for potential use in TEP

    International Nuclear Information System (INIS)

    Carlson, Bryan J.; Trujillo, Stephen; Willms, R. Scott

    2010-01-01

    A Palladium Membrane Reactor (PMR) consists of a palladium/silver membrane permeator filled with catalyst (catalyst may be inside or outside the membrane tubes). The PMR is designed to recover tritium from the methane, water, and other impurities present in fusion reactor effluent. A key feature of a PMR is that the total hydrogen isotope content of a stream is significantly reduced as (1) methane-steam reforming and/or water-gas shift reactions proceed on the catalyst bed and (2) hydrogen isotopes are removed via permeation through the membrane. With a PMR design matched to processing requirements, nearly complete hydrogen isotope removals can be achieved. A 3-tube PMR study was recently completed. From the results presented in this study, it was possible to conclude that a PMR is appropriate for TEP, perforated metal tube protectors function well, platinum on aluminum (PtA) catalyst performs the best, conditioning with air is probably required to properly condition the Pd/Ag tubes, and that CO/CO 2 ratios maybe an indicator of coking. The 3-tube PMR had a permeator membrane area of 0.0247 m 2 and a catalyst volume to membrane area ratio of 4.63 cc/cm 2 (with the catalyst on the outside of the membrane tubes and the catalyst only covering the membrane tube length). A PMR for TEP will require a larger membrane area (perhaps 0.35 m 2 ). With this in mind, an intermediate sized PMR was constructed. This PMR has 7 permeator tubes and a total membrane area of 0.0851 m 2 . The catalyst volume to membrane area ratio for the 7-tube PMR was 5.18 cc/cm 2 . The total membrane area of the 7-tube PMR (0.0851 m 2 ) is 3.45 times larger than total membrane area of the 3-tube PMR (0.0247 m 2 ). The following objectives were identified for the 7-tube PMR tests: (1) Refine test measurements, especially humidity and flow; (2) Refine maintenance procedures for Pd/Ag tube conditioning; (3) Evaluate baseline PMR operating conditions; (4) Determine PMR scaling method; (5) Evaluate PMR

  18. Testing the membrane paradigm with holography

    NARCIS (Netherlands)

    de Boer, J.; Heller, M.P.; Pinzani-Fokeeva, N.

    2015-01-01

    One version of the membrane paradigm states that, as far as outside observers are concerned, black holes can be replaced by a dissipative membrane with simple physical properties located at the stretched horizon. We demonstrate that such a membrane paradigm is incomplete in several aspects. We argue

  19. Hollow-Fiber Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Settles, Joseph

    2013-01-01

    The hollow-fiber spacesuit water membrane evaporator (HoFi SWME) is being developed to perform the thermal control function for advanced spacesuits and spacecraft to take advantage of recent advances in micropore membrane technology in providing a robust, heat-rejection device that is less sensitive to contamination than is the sublimator. After recent contamination tests, a commercial-off-the-shelf (COTS) micro porous hollow-fiber membrane was selected for prototype development as the most suitable candidate among commercial hollow-fiber evaporator alternatives. An innovative design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype for the spacesuit application. Vacuum chamber testing has been performed to characterize heat rejection as a function of inlet water temperature and water vapor back-pressure, and to show contamination resistance to the constituents expected to be found in potable water produced by the wastewater reclamation distillation processes. Other tests showed tolerance to freezing and suitability to reject heat in a Mars pressure environment. In summary, HoFi SWME is a lightweight, compact evaporator for heat rejection in the spacesuit that is robust, contamination- insensitive, freeze-tolerant, and able to reject the required heat of spacewalks in microgravity, lunar, and Martian environments. The HoFi is packaged to reject 810 W of heat through 800 hours of use in a vacuum environment, and 370 W in a Mars environment. The device also eliminates free gas and dissolved gas from the coolant loop.

  20. Development and testing of a transparent membrane biofouling monitor

    KAUST Repository

    Dreszer, C.; Flemming, Hans Curt; Wexler, Adam D.; Zwijnenburg, Arie; Kruithof, Joop C.; Vrouwenvelder, Johannes S.

    2014-01-01

    A modified version of the membrane fouling simulator (MFS) was developed for assessment of (i) hydraulic biofilm resistance, (ii) performance parameters feed-channel pressure drop and transmembrane pressure drop, and (iii) in situ spatial visual and optical observations of the biofilm in the transparent monitor, e.g. using optical coherence tomography. The flow channel height equals the feed spacer thickness enabling operation with and without feed spacer. The effective membrane surface area was enlarged from 80 to 200 cm2 by increasing the monitor width compared to the standard MFS, resulting in larger biomass amounts for analysis. By use of a microfiltration membrane (pore size 0.05 μm) in the monitor salt concentration polarization is avoided, allowing operation at low pressures enabling accurate measurement of the intrinsic hydraulic biofilm resistance. Validation tests on e.g. hydrodynamic behavior, flow field distribution, and reproducibility showed that the small-sized monitor was a representative tool for membranes used in practice under the same operating conditions, such as spiral-wound nanofiltration and reverse osmosis membranes. Monitor studies with and without feed spacer use at a flux of 20 L m-2 h-1 and a cross-flow velocity of 0.1 m s-1 clearly showed the suitability of the monitor to determine hydraulic biofilm resistance and for controlled biofouling studies. © 2013 Balaban Desalination Publications. All rights reserved.

  1. Development and testing of a transparent membrane biofouling monitor

    KAUST Repository

    Dreszer, C.

    2014-01-02

    A modified version of the membrane fouling simulator (MFS) was developed for assessment of (i) hydraulic biofilm resistance, (ii) performance parameters feed-channel pressure drop and transmembrane pressure drop, and (iii) in situ spatial visual and optical observations of the biofilm in the transparent monitor, e.g. using optical coherence tomography. The flow channel height equals the feed spacer thickness enabling operation with and without feed spacer. The effective membrane surface area was enlarged from 80 to 200 cm2 by increasing the monitor width compared to the standard MFS, resulting in larger biomass amounts for analysis. By use of a microfiltration membrane (pore size 0.05 μm) in the monitor salt concentration polarization is avoided, allowing operation at low pressures enabling accurate measurement of the intrinsic hydraulic biofilm resistance. Validation tests on e.g. hydrodynamic behavior, flow field distribution, and reproducibility showed that the small-sized monitor was a representative tool for membranes used in practice under the same operating conditions, such as spiral-wound nanofiltration and reverse osmosis membranes. Monitor studies with and without feed spacer use at a flux of 20 L m-2 h-1 and a cross-flow velocity of 0.1 m s-1 clearly showed the suitability of the monitor to determine hydraulic biofilm resistance and for controlled biofouling studies. © 2013 Balaban Desalination Publications. All rights reserved.

  2. Sensitivity of Hollow Fiber Spacesuit Water Membrane Evaporator Systems to Potable Water Constituents, Contaminants and Air Bubbles

    Science.gov (United States)

    Bue, Grant C.; Trevino, Luis A.; Fritts, Sharon; Tsioulos, Gus

    2008-01-01

    The Spacesuit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The first SWME prototype, designed, built, and tested at Johnson Space Center in 1999 used a Teflon hydrophobic porous membrane sheet shaped into an annulus to provide cooling to the coolant loop through water evaporation to the vacuum of space. This present study describes the test methodology and planning and compares the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME, in particular, a porous hydrophobic polypropylene, and two variants that employ ion exchange through non-porous hydrophilic modified Nafion. Contamination tests will be performed to probe for sensitivities of the candidate SWME elements to ordinary constituents that are expected to be found in the potable water provided by the vehicle, the target feedwater source. Some of the impurities in potable water are volatile, such as the organics, while others, such as the metals and inorganic ions are nonvolatile. The non-volatile constituents will concentrate in the SWME as evaporated water from the loop is replaced by the feedwater. At some point in the SWME mission lifecycle as the concentrations of the non-volatiles increase, the solubility limits of one or more of the constituents may be reached. The resulting presence of precipitate in the coolant water may begin to plug pores and tube channels and affect the SWME performance. Sensitivity to macroparticles, lunar dust simulant, and air bubbles will also be investigated.

  3. Performance Degradation Tests of Phosphoric Acid Doped Polybenzimidazole Membrane Based High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela

    2015-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation of the HT-PEM fuel cell. Continuous tests with pure dry H2 and meth...

  4. Closed-Loop Pure Oxygen Static Feed Fuel Cell for Lunar Missions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In order to address the NASA lunar mission, DESC proposes to develop a proton exchange membrane (PEM) closed-loop pure oxygen fuel cell for application to lunar...

  5. The Application of Hardware in the Loop Testing for Distributed Engine Control

    Science.gov (United States)

    Thomas, George L.; Culley, Dennis E.; Brand, Alex

    2016-01-01

    The essence of a distributed control system is the modular partitioning of control function across a hardware implementation. This type of control architecture requires embedding electronics in a multitude of control element nodes for the execution of those functions, and their integration as a unified system. As the field of distributed aeropropulsion control moves toward reality, questions about building and validating these systems remain. This paper focuses on the development of hardware-in-the-loop (HIL) test techniques for distributed aero engine control, and the application of HIL testing as it pertains to potential advanced engine control applications that may now be possible due to the intelligent capability embedded in the nodes.

  6. Construction and performance tests of Helium Engineering Demonstration Loop (HENDEL) for VHTR

    International Nuclear Information System (INIS)

    Hishida, M.; Tanaka, T.; Shimomura, H.; Sanokawa, K.

    1984-01-01

    A helium engineering demonstration loop (HENDEL) was constructed and operated in JAERI in order to develop the high-temperature key components of an experimental very high temperature gas cooled reactor, like fuel stack, in-core reactor structure, hot gas duct, intermediate heat exchanger. Performance tests as well as demonstration of integrity are carried out with large-size or actual-size models of key components. The key components to be tested in HENDEL are: fuel stack and control rod; core supporting structure, or bottom structure of rector core exposed to direct impingement of high temperature core outlet flow; reactor internal components and structure; high temperature components in heat removal system (primary and secondary cooling systems)

  7. Analysis of the LBLOCAs in the HANARO pool for the 3-pin fuel test loop

    International Nuclear Information System (INIS)

    Park, S. K.; Chi, D. Y.; Sim, B. S.; Park, K. N.; Ahn, S. H.; Lee, J. M.; Lee, C. Y.; Kim, Y. J.

    2004-12-01

    The Fuel Test Loop(FTL) has been developed to meet the increasing demand on fuel irradiation and burn up test required the development of new fuels in Korea. It is designed to provide the test conditions of high pressure and temperature like the commercial PWR and CANDU power plants. And also the FTL have the cooling capability to sufficiently remove the thermal power of the in-pile test section for normal operation, Anticipated Operational Occurrences(AOOs), and Design Basis Accidents(DBAs). This report deals with the Large Break Loss of Coolant Accidents (LBLOCAs) in HANARO pool for the 3-pin fuel test loop. The MARS code has been used for the prediction of the emergency core cooling capability of the FTL and the peak cladding temperature of the test fuels for the LBLOCAs. The location of the pipe break is assumed at the hill taps connecting the cold and hot legs in HANARO pool to the inlet and outlet nozzles of the In-Pile test Section (IPS). Double ended guillotine break is assumed for the large break loss of coolant accidents. The discharge coefficients of 0.1, 0.33, 0.67, 1.0 are investigated for the LBLOCAs. The test fuels for PWR and CANDU test modes are not heated up for the LBLOCAs caused by the double ended guillotine break in the HANARO pool. The reason is that the sufficient emergency cooling water to cool down the test fuels is supplied continuously to the in-pile test section. Therefore the PCTs for the LBLOCAs in the HANARO pool meet the design criterion of commercial PWR fuel that maximum PCT is lower than 1204 .deg. C

  8. LoopIng: a template-based tool for predicting the structure of protein loops.

    KAUST Repository

    Messih, Mario Abdel

    2015-08-06

    Predicting the structure of protein loops is very challenging, mainly because they are not necessarily subject to strong evolutionary pressure. This implies that, unlike the rest of the protein, standard homology modeling techniques are not very effective in modeling their structure. However, loops are often involved in protein function, hence inferring their structure is important for predicting protein structure as well as function.We describe a method, LoopIng, based on the Random Forest automated learning technique, which, given a target loop, selects a structural template for it from a database of loop candidates. Compared to the most recently available methods, LoopIng is able to achieve similar accuracy for short loops (4-10 residues) and significant enhancements for long loops (11-20 residues). The quality of the predictions is robust to errors that unavoidably affect the stem regions when these are modeled. The method returns a confidence score for the predicted template loops and has the advantage of being very fast (on average: 1 min/loop).www.biocomputing.it/loopinganna.tramontano@uniroma1.itSupplementary data are available at Bioinformatics online.

  9. Analysis of the LBLOCAs in the room 1 for the 3-pin fuel test loop

    International Nuclear Information System (INIS)

    Park, S. K.; Chi, D. Y.; Sim, B. S.; Park, K. N.; Ahn, S. H.; Lee, J. M.; Lee, C. Y.; Kim, Y. J.

    2004-12-01

    Fuel Test Loop(FTL) has been developed to meet the increasing demand on fuel irradiation and burn up test required the development of new fuels in Korea. It is designed to provide the test conditions of high pressure and temperature like the commercial PWR and CANDU power plants. And also the FTL have the cooling capability to sufficiently remove the thermal power of the in-pile test section for normal operation, Anticipated Operational Occurrences(AOOs), and Design Basis Accidents(DBAs). This report deals with the Large Break Loss of Coolant Accidents (LBLOCAs) in the Room 1 for the 3-pin fuel test loop. The MARS code has been used for the prediction of the emergency core cooling capability of the FTL and the peak cladding temperature of the test fuels for the LBLOCAs. The location of the pipe break is assumed at the downstream of the main cooling water pump and the upstream of the main cooler in the room 1. Double ended guillotine break is assumed for the large break loss of coolant accidents. The discharge coefficients of 0.1, 0.33, 0.67, 1.0 are investigated for the LBLOCAs. The maximum Peak Cladding Temperature (PCT) is predicted to be about 734.7 .deg. C for the PWR fuel test mode and 850.4 .deg. C for the CANDU fuel test mode respectively. The maximum peak cladding temperatures meet the design criterion of commercial PWR fuel that the maximum PCT is lower than 1204 .deg. C

  10. Prediction of the Long Term Cooling Performance for the 3-Pin Fuel Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Chi, D. Y.; Sim, B. S.; Park, K. N.; Ahn, S. H.; Lee, J. M.; Lee, C. Y.; Kim, H. R

    2005-12-15

    In the long term cooling phase that the emergency cooling water injection ends, the performance of the residual heat removal for the 3-pin fuel test loop has been predicted by a simplified heat transfer model. In the long term cooling phase the residual heat is 1323W for PWR fuel test mode and 1449W for CANDU fuel test mode. The each residual heat is assumed as 2% of the fission power of the test fuel used in the anticipated operational occurrence and design basis accident analyses. The each fission power used for the analyses is 105% of the rated fission power in the normal operation. In the long term cooling phase the residual heat is removed to the HANARO pool through the double pressure vessels of the in-pile test section. Saturate pooling boiling is assumed on the test fuel and condensation heat transfer is expected on the inner wall of the fuel carrier and the flow divider. Natural convection heat transfer on a heated vertical wall is also assumed on the outer wall of the outer pressure vessel. The conduction heat transfer is only considered in the gap between the double pressure vessels charged with neon gas and in the downcomer filled with coolant. The heat transfer rate between the coolant temperature of 152 .deg. C in the in-pile test section and the water temperature of 45 .deg. C in the HANARO pool is predicted as about 1666W. The 152 .deg. C is the saturate temperature of the coolant pressure predicted from the MARS code. The cooling capacity of 1666W is greater than the residual heats of 1323W and 1449W. Consequently the long term cooling performance of the 3-pin fuel test loop is sufficient for the anticipated operational occurrences and design basis accidents.

  11. Effects of High-Flux versus Low-Flux Membranes on Pulmonary Function Tests in Hemodialysis Patients.

    Science.gov (United States)

    Momeni, Ali; Rouhi, Hamid; Kiani, Glareh; Amiri, Masoud

    2013-01-01

    Several studies have been carried out to evaluate the effects of dialysis on pulmonary function tests (PFT). Dialysis procedure may reduce lung volumes and capacities or cause hypoxia; however, to the best of our knowledge, there is no previous study evaluating the effects of membrane type (high flux vs. low flux) on PFT in these patients. The aim of this study was the evaluation of this relationship. In this cross-sectional study, 43 hemodialysis patients without pulmonary disease were enrolled. In these patients dialysis was conducted by low-and high-flux membranes and before and after the procedure, spirometry was done and the results were evaluated by t-test and chi square test. The mean age of patients was 56.34 years. Twenty-three of them were female (53.5%). Type of membrane (high flux vs. low flux) had no effect on spirometry results of patients despite the significant decrease in the body weight during the dialysis session. High flux membrane had no advantage over low flux membrane in terms of improvement in spirometry findings; thus, we could not offer these expensive membranes for this purpose.

  12. A New Built-in Self Test Scheme for Phase-Locked Loops Using Internal Digital Signals

    Science.gov (United States)

    Kim, Youbean; Kim, Kicheol; Kim, Incheol; Kang, Sungho

    Testing PLLs (phase-locked loops) is becoming an important issue that affects both time-to-market and production cost of electronic systems. Though a PLL is the most common mixed-signal building block, it is very difficult to test due to internal analog blocks and signals. In this paper, we propose a new PLL BIST (built-in self test) using the distorted frequency detector that uses only internal digital signals. The proposed BIST does not need to load any analog nodes of the PLL. Therefore, it provides an efficient defect-oriented structural test scheme, reduced area overhead, and improved test quality compared with previous approaches.

  13. Mass transfer of steels for FBR in sodium loop

    International Nuclear Information System (INIS)

    Susukida, Hiroshi; Yonezawa, Toshio; Ueda, Mitsuo; Imazu, Takayuki; Kiyokawa, Teruyuki.

    1976-06-01

    In order to grasp quantitatively the corrosion and mass transfer of steels for FBR in sodium loop and to establish their allowable stress value and corrosion rate, a special sodium loop for material testing was designed and fabricated and the steels were given 3010 hours exposing test in the sodium loop. This paper gives the outline of the sodium loop and the results of the test. (1) Carburization and a slight increase in weight were observed in the specimens of type 304 stainless steel exposed in the sodium loop for 3010 hours, while decarburization was observed in the specimens of 2 1/4 Cr-1 Mo steel. It is considered that these phenomena were caused by the downstream factor of the sodium loop. (2) A remarkable decrease of Charpy absorbed energy was observed in the specimens of type 304 stainless steel exposed in the sodium loop. It is considered that this resulted from the weakening of the grain boundary due to heat history and mass transfer. (3) The specimens exposed in the sodium loop must be washed by ultrasonic waves in a water bath after washing in alcohol. (auth.)

  14. An Alphavirus E2 Membrane-Proximal Domain Promotes Envelope Protein Lateral Interactions and Virus Budding

    Directory of Open Access Journals (Sweden)

    Emily A. Byrd

    2017-11-01

    Full Text Available Alphaviruses are members of a group of small enveloped RNA viruses that includes important human pathogens such as Chikungunya virus and the equine encephalitis viruses. The virus membrane is covered by a lattice composed of 80 spikes, each a trimer of heterodimers of the E2 and E1 transmembrane proteins. During virus endocytic entry, the E1 glycoprotein mediates the low-pH-dependent fusion of the virus membrane with the endosome membrane, thus initiating virus infection. While much is known about E1 structural rearrangements during membrane fusion, it is unclear how the E1/E2 dimer dissociates, a step required for the fusion reaction. A recent Alphavirus cryo-electron microscopy reconstruction revealed a previously unidentified D subdomain in the E2 ectodomain, close to the virus membrane. A loop within this region, here referred to as the D-loop, contains two highly conserved histidines, H348 and H352, which were hypothesized to play a role in dimer dissociation. We generated Semliki Forest virus mutants containing the single and double alanine substitutions H348A, H352A, and H348/352A. The three D-loop mutations caused a reduction in virus growth ranging from 1.6 to 2 log but did not significantly affect structural protein biosynthesis or transport, dimer stability, virus fusion, or specific infectivity. Instead, growth reduction was due to inhibition of a late stage of virus assembly at the plasma membrane. The virus particles that are produced show reduced thermostability compared to the wild type. We propose the E2 D-loop as a key region in establishing the E1-E2 contacts that drive glycoprotein lattice formation and promote Alphavirus budding from the plasma membrane.

  15. Customer interface document for the Molten Salt Test Loop (MSTL) system.

    Energy Technology Data Exchange (ETDEWEB)

    Pettit, Kathleen; Kolb, William J.; Gill, David Dennis; Briggs, Ronald D.

    2012-03-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate 'solar salt' and can circulate the salt at pressure up to 600psi, temperature to 585 C, and flow rate of 400-600GPM depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

  16. Analysis of th SBLOCAs in the room 1 for the 3-pin fuel test loop

    International Nuclear Information System (INIS)

    Park, S. K.; Chi, D. Y.; Sim, B. S.; Park, K. N.; Ahn, S. H.; Lee, J. M.; Lee, C. Y.; Kim, Y. J.

    2004-10-01

    Fuel Test Loop(FTL) has been developed to meet the increasing demand on fuel irradiation and burn up test required the development of new fuels in Korea. It is designed to provide the test conditions of high pressure and temperature like the commercial PWR and CANDU power plants. And also the FTL have the cooling capability to sufficiently remove the thermal power of the in-pile test section for normal operation, Anticipated Operational Occurrences(AOOs), and Design Basis Accidents(DBAs). This report deals with the Small Break Loss of Coolant Accidents (SBLOCAs) in the Room 1 for the 3-pin fuel test loop. The MARS code has been used for the prediction of the emergency core cooling capability of the FTL and the peak cladding temperature of the test fuels for the SBLOCAs. The location of the pipe break is assumed at the downstream of the main cooling water pump and the upstream of the main cooler in the room 1. The break size is also assumed less than 20% of the cross section area of the pipe. The test fuels are heated up when the cold leg break occur. However, they are not heated up when the hot leg break occur. The maximum Peak Cladding Temperature (PCT) is predicted to be about 931.4 .deg. C for the cold leg break accident in PWR fuel test mode and 931.6 .deg. C in CANDU fuel test mode respectively. The critical break size is about the 8% of the cross section area of the pipe for PWR fuel test mode and the 10% for CANDU fuel test mode. The PCTs meet the design criterion of commercial PWR fuel that the maximum PCT is lower than 1204 .deg. C

  17. Structural basis for alginate secretion across the bacterial outer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, J.C.; Robinson, H.; Hay, I. D.; Li, C.; Eckford, P. D. W.; Amaya, M. F.; Wood, L. F.; Ohman, D. E.; Bear, C. E.; Rehm, B. H.; Howell, P. L.

    2011-08-09

    Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 {angstrom} crystal structure of AlgE, which reveals a monomeric 18-stranded {beta}-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 ({Delta}T8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or {Delta}L2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with {Delta}T8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.

  18. Structural Basis for Alginate Secretion Across the Bacterial Outer Membrane

    Energy Technology Data Exchange (ETDEWEB)

    J Whitney; I Hay; C Li; P Eckford; H Robinson; M Amaya; L Wood; D Ohman; C Bear; et al.

    2011-12-31

    Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 {angstrom} crystal structure of AlgE, which reveals a monomeric 18-stranded {beta}-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 ({Delta}T8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or {Delta}L2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with {Delta}T8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.

  19. NMR structural studies of peptides and proteins in membranes

    Energy Technology Data Exchange (ETDEWEB)

    Opella, S J [Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Chemistry

    1994-12-31

    The use of NMR methodology in structural studies is described as applicable to larger proteins, considering that the majority of membrane proteins is constructed from a limited repertoire of structural and dynamic elements. The membrane associated domains of these proteins are made up of long hydrophobic membrane spanning helices, shorter amphipathic bridging helices in the plane of the bilayer, connecting loops with varying degrees of mobility, and mobile N- and C- terminal sections. NMR studies have been successful in identifying all of these elements and their orientations relative to each other and the membrane bilayer 19 refs., 9 figs.

  20. Development of a Next-Generation Membrane-Integrated Adsorption Processor for CO2 Removal and Compression for Closed-Loop Air Revitalization Systems

    Science.gov (United States)

    Mulloth, Lila; LeVan, Douglas

    2002-01-01

    The current CO2 removal technology of NASA is very energy intensive and contains many non-optimized subsystems. This paper discusses the concept of a next-generation, membrane integrated, adsorption processor for CO2 removal nd compression in closed-loop air revitalization systems. This processor will use many times less power than NASA's current CO2 removal technology and will be capable of maintaining a lower CO2 concentration in the cabin than that can be achieved by the existing CO2 removal systems. The compact, consolidated, configuration of gas dryer, CO2 separator, and CO2 compressor will allow continuous recycling of humid air in the cabin and supply of compressed CO2 to the reduction unit for oxygen recovery. The device has potential application to the International Space Station and future, long duration, transit, and planetary missions.

  1. Sensing loop performance monitoring in the safety systems of nuclear power stations

    International Nuclear Information System (INIS)

    Colley, R.C.; Widmeyer, M.; Weiss, J.H.; Wiegle, H.R.

    1991-01-01

    This paper reports on plant technical specifications and NRC regulatory guides which require testing of sensing loops to detect degradation and failure. Industry efforts have focused on specific manual testing to detect individual failure modes such as increased response time and calibration drift. Recent work performed by EPRI and by others using instrument loop data, failure modes, and effects analyses (FMEAs), and experience with utility on-line sensor health monitoring programs has established qualitative physical models of the sensing loop. This methodology has demonstrated that sensing loop cross comparison techniques can provide equivalent indication of sensing loop performance. It also provides more frequent sensing loop health indication than manual testing and reduces the requirement for manual testing

  2. Closing the brain-to-brain loop in laboratory testing.

    Science.gov (United States)

    Plebani, Mario; Lippi, Giuseppe

    2011-07-01

    Abstract The delivery of laboratory services has been described 40 years ago and defined with the foremost concept of "brain-to-brain turnaround time loop". This concept consists of several processes, including the final step which is the action undertaken on the patient based on laboratory information. Unfortunately, the need for systematic feedback to improve the value of laboratory services has been poorly understood and, even more risky, poorly applied in daily laboratory practice. Currently, major problems arise from the unavailability of consensually accepted quality specifications for the extra-analytical phase of laboratory testing. This, in turn, does not allow clinical laboratories to calculate a budget for the "patient-related total error". The definition and use of the term "total error" refers only to the analytical phase, and should be better defined as "total analytical error" to avoid any confusion and misinterpretation. According to the hierarchical approach to classify strategies to set analytical quality specifications, the "assessment of the effect of analytical performance on specific clinical decision-making" is comprehensively at the top and therefore should be applied as much as possible to address analytical efforts towards effective goals. In addition, an increasing number of laboratories worldwide are adopting risk management strategies such as FMEA, FRACAS, LEAN and Six Sigma since these techniques allow the identification of the most critical steps in the total testing process, and to reduce the patient-related risk of error. As a matter of fact, an increasing number of laboratory professionals recognize the importance of understanding and monitoring any step in the total testing process, including the appropriateness of the test request as well as the appropriate interpretation and utilization of test results.

  3. Development and Testing of a Temperature-swing Adsorption Compressor for Carbon Dioxide in Closed-loop Air Revitalization Systems

    Science.gov (United States)

    Mulloth, Lila M.; Rosen, Micha; Affleck, David; LeVan, M. Douglas; Wang, Yuan

    2005-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby dosing the air-loop. We have developed a temperature-swing adsorption compressor (TSAC) that is energy efficient, quiet, and has no rapidly moving parts for performing these tasks. The TSAC is a solid-state compressor that has the capability to remove CO2 from a low- pressure source, and subsequently store, compress, and deliver at a higher pressure as required by a processor. The TSAC is an ideal interface device for CO2 removal and reduction units in the air revitalization loop of a spacecraft for oxygen recovery. This paper discusses the design and testing of a TSAC for carbon dioxide that has application in the ISS and future spacecraft for closing the air revitalization loop.

  4. Sensitivity Study of the Peak Cladding Temperature for the Pipe Break Accidents of the 3-Pin Fuel Test Loop

    International Nuclear Information System (INIS)

    Park, S. K.; Chi, D. Y.; Sim, B. S.; Park, K. N.; Ahn, S. H.; Lee, J. M.; Lee, C. Y.; Kim, H. R.

    2005-12-01

    The effect of the thermal hydraulic operation parameters, the stroke times of safety-related valves, the node number of test fuel for MARS modeling, and the axial power distribution on the peak cladding temperature (PCT) has been investigated for the loss of coolant accident of the 3-pin fuel test loop. The thermal hydraulic operation parameters investigated are the thermal power of the fuel test loop and the flow rate, temperature, and pressure of the main cooling water. The effect of the thermal power and the coolant temperature on the peak cladding temperature is dominant as compared with that of the coolant flow rate and pressure. The maximum PCT increases up to about 34.3K for the room 1 LOCA when the thermal power increase by 5% of the normal operation power and decreases up to about 38.9K for the room 1 LOCA when the coolant temperature decrease by 2% of the normal operation temperature. The effect of the stroke time of the loop isolation valves on the PCT is also dominant. However the effect of the stroke time of the safety injection valves and depressurization vent valves are negligible. Especially the maximum PCT increases up to 25.7K with the increase of the design stroke time of the cold leg loop isolation valve by 13% and decreases up to 25.1K with the decrease of the design stroke time by 13%. The maximum PCT increases by 3.3K as the number of nodes increases from 7 to 14 for the MARS model of test fuel. Three different axial power distributions are also investigated. The maximum PCT occurs for the room 1 LOCA in case the peak power is shifted to the downstream by 20cm

  5. Research and design of 3He pressure control loop

    International Nuclear Information System (INIS)

    Huang Xin; Zhang Peisheng; Tang Guoliang; Zhang Aimin; Zhang Yingchao

    2008-01-01

    In order to carry out power transient tests for PWR fuel element in China Advanced Research Reactor (CARR), the research and conceptual design of 3He pressure control loop were completed. The working principle, design parameters and technological flow of the loop were described. It is seen that the a He loop can adjust the power of the tested PWR fuel element rapidly, evenly and flexibly and it is an optimal path to realize the power transient regulation for tested PWR fuel. (authors)

  6. Preparation of Pd-Loaded Hierarchical FAU Membranes and Testing in Acetophenone Hydrogenation

    Directory of Open Access Journals (Sweden)

    Raffaele Molinari

    2016-03-01

    Full Text Available Pd-loaded hierarchical FAU (Pd-FAU membranes, containing an intrinsic secondary non-zeolitic (mesoporosity, were prepared and tested in the catalytic transfer hydrogenation of acetophenone (AP to produce phenylethanol (PE, an industrially relevant product. The best operating conditions were preliminarily identified by testing different solvents and organic hydrogen donors in a batch hydrogenation process where micron-sized FAU seeds were employed as catalyst support. Water as solvent and formic acid as hydrogen source resulted to be the best choice in terms of conversion for the catalytic hydrogenation of AP, providing the basis for the design of a green and sustainable process. The best experimental conditions were selected and applied to the Pd-loaded FAU membrane finding enhanced catalytic performance such as a five-fold higher productivity than with the unsupported Pd-FAU crystals (11.0 vs. 2.2 mgproduct gcat−1·h−1. The catalytic performance of the membrane on the alumina support was also tested in a tangential flow system obtaining a productivity higher than that of the batch system (22.0 vs. 11.0 mgproduct gcat−1·h−1.

  7. Preparation of Pd-Loaded Hierarchical FAU Membranes and Testing in Acetophenone Hydrogenation.

    Science.gov (United States)

    Molinari, Raffaele; Lavorato, Cristina; Mastropietro, Teresa F; Argurio, Pietro; Drioli, Enrico; Poerio, Teresa

    2016-03-22

    Pd-loaded hierarchical FAU (Pd-FAU) membranes, containing an intrinsic secondary non-zeolitic (meso)porosity, were prepared and tested in the catalytic transfer hydrogenation of acetophenone (AP) to produce phenylethanol (PE), an industrially relevant product. The best operating conditions were preliminarily identified by testing different solvents and organic hydrogen donors in a batch hydrogenation process where micron-sized FAU seeds were employed as catalyst support. Water as solvent and formic acid as hydrogen source resulted to be the best choice in terms of conversion for the catalytic hydrogenation of AP, providing the basis for the design of a green and sustainable process. The best experimental conditions were selected and applied to the Pd-loaded FAU membrane finding enhanced catalytic performance such as a five-fold higher productivity than with the unsupported Pd-FAU crystals (11.0 vs. 2.2 mgproduct gcat(-1)·h(-1)). The catalytic performance of the membrane on the alumina support was also tested in a tangential flow system obtaining a productivity higher than that of the batch system (22.0 vs. 11.0 mgproduct gcat(-1)·h(-1)).

  8. Testing the master constraint programme for loop quantum gravity: V. Interacting field theories

    International Nuclear Information System (INIS)

    Dittrich, B; Thiemann, T

    2006-01-01

    This is the fifth and final paper in our series of five in which we test the master constraint programme for solving the Hamiltonian constraint in loop quantum gravity. Here we consider interacting quantum field theories, specifically we consider the non-Abelian Gauss constraints of Einstein-Yang-Mills theory and 2 + 1 gravity. Interestingly, while Yang-Mills theory in 4D is not yet rigorously defined as an ordinary (Wightman) quantum field theory on Minkowski space, in background-independent quantum field theories such as loop quantum gravity (LQG) this might become possible by working in a new, background-independent representation. While for the Gauss constraint the master constraint can be solved explicitly, for the 2 + 1 theory we are only able to rigorously define the master constraint operator. We show that the, by other methods known, physical Hilbert is contained in the kernel of the master constraint, however, to systematically derive it by only using spectral methods is as complicated as for 3 + 1 gravity and we therefore leave the complete analysis for 3 + 1 gravity

  9. CO{sub 2} Capture by Sub-ambient Membrane Operation

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, S.; Hasse, D.; Sanders, E.; Chaubey, T.

    2012-11-30

    The main objective of the project was to develop a CO{sub 2} capture process based on sub-ambient temperature operation of a hollow fiber membrane. The program aims to reach the eventual DOE program goal of > 90% CO{sub 2} capture from existing PC fired power plants with < 35% increase in the cost of electricity. The project involves closed-loop testing of commercial fiber bundles under simulated process conditions to test the mechanical integrity and operability of membrane module structural component under sub ambient temperature. A commercial MEDAL 12” bundle exhibited excellent mechanical integrity for 2 months. However, selectivity was ~25% lower than expected at sub-ambient conditions. This could be attributed to a small feed to permeate leak or bundle non-ideality. To investigate further, and due to compressor flow limitations, the 12” bundle was replaced with a 6” bundle to conduct tests with lower permeate/feed ratios, as originally planned. The commercial 6” bundle was used for both parametric testing as well as long-term stability testing at sub-ambient conditions. Parametric studies were carried out both near the start and end of the long-term test. The parametric studies characterized membrane performance over a broad range of feed conditions: temperature (-25°C to -45°C), pressure (160 psig to 200 psig), and CO{sub 2} feed concentration (18% to 12%). Performance of the membrane bundle was markedly better at lower temperature (-45ºC), higher pressure (200 psig) and higher CO{sub 2} feed concentration (18%). The long-term test was conducted at these experimentally determined “optimum” feed conditions. Membrane performance was stable over 8 months at sub-ambient temperature operation. The experimentally measured high performance of the membrane bundle at sub-ambient operating conditions provides justification for interest in sub-ambient membrane processing of flue gas. In a parallel activity, the impact of contaminants (100 ppm SOx and NOx

  10. Multi-Megawatt-Scale Power-Hardware-in-the-Loop Interface for Testing Ancillary Grid Services by Converter-Coupled Generation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Koralewicz, Przemyslaw J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wallen, Robert B [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-26

    Power-hardware-in-the-loop (PHIL) is a simulation tool that can support electrical systems engineers in the development and experimental validation of novel, advanced control schemes that ensure the robustness and resiliency of electrical grids that have high penetrations of low-inertia variable renewable resources. With PHIL, the impact of the device under test on a generation or distribution system can be analyzed using a real-time simulator (RTS). PHIL allows for the interconnection of the RTS with a 7 megavolt ampere (MVA) power amplifier to test multi-megawatt renewable assets available at the National Wind Technology Center (NWTC). This paper addresses issues related to the development of a PHIL interface that allows testing hardware devices at actual scale. In particular, the novel PHIL interface algorithm and high-speed digital interface, which minimize the critical loop delay, are discussed.

  11. Dynamic fuel cell models and their application in hardware in the loop simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lemes, Zijad; Maencher, H. [MAGNUM Automatisierungstechnik GmbH, Bunsenstr. 22, D-64293 Darmstadt (Germany); Vath, Andreas; Hartkopf, Th. [Technische Universitaet Darmstadt/Institut fuer Elektrische Energiewandlung, Landgraf-Georg-Str. 4, D-64283 Darmstadt (Germany)

    2006-03-21

    Currently, fuel cell technology plays an important role in the development of alternative energy converters for mobile, portable and stationary applications. With the help of physical based models of fuel cell systems and appropriate test benches it is possible to design different applications and investigate their stationary and dynamic behaviour. The polymer electrolyte membrane (PEM) fuel cell system model includes gas humidifier, air and hydrogen supply, current converter and a detailed stack model incorporating the physical characteristics of the different layers. In particular, the use of these models together with hardware in the loop (HIL) capable test stands helps to decrease the costs and accelerate the development of fuel cell systems. The interface program provides fast data exchange between the test bench and the physical model of the fuel cell or any other systems in real time. So the flexibility and efficiency of the test bench increase fundamentally, because it is possible to replace real components with their mathematical models. (author)

  12. Rogowski Loop design for NSTX

    International Nuclear Information System (INIS)

    McCormack, B.; Kaita, R.; Kugel, H.; Hatcher, R.

    2000-01-01

    The Rogowski Loop is one of the most basic diagnostics for tokamak operations. On the National Spherical Torus Experiment (NSTX), the plasma current Rogowski Loop had the constraints of the very limited space available on the center stack, 5,000 volt isolation, flexibility requirements as it remained a part of the Center Stack assembly after the first phase of operation, and a +120 C temperature requirement. For the second phase of operation, four Halo Current Rogowski Loops under the Center Stack tiles will be installed having +600 C and limited space requirements. Also as part of the second operational phase, up to ten Rogowski Loops will installed to measure eddy currents in the Passive Plate support structures with +350 C, restricted space, and flexibility requirements. This presentation will provide the details of the material selection, fabrication techniques, testing, and installation results of the Rogowski Loops that were fabricated for the high temperature operational and bakeout requirements, high voltage isolation requirements, and the space and flexibility requirements imposed upon the Rogowski Loops. In the future operational phases of NSTX, additional Rogowski Loops could be anticipated that will measure toroidal plasma currents in the vacuum vessel and in the Passive Plate assemblies

  13. Test of the palladium diffuser in the JAERI Fuel Cleanup System in the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Konishi, Satoshi; Hayashi, Takumi; O-hira, Shigeru

    1993-03-01

    The JAERI Fuel Cleanup System (JFCU) is a major subsystem of the TSTA simulated fusion fuel loop. The palladium diffuser, that accepts simulated plasma exhaust and purifies the hydrogen isotopes mixture for the feed to the Isotope Separation System, was tested with deuterium to investigate the characteristics of the components. Permeation flow rate is a linear function of the difference of the square root of the pressure across the palladium alloy membrane. However at the low pressure region, an impediment on the permeation was observed. It was suspected to be caused by the impurity adsorbed on the surface of the permeated side of the membrane and was reduced by oxidation treatment. (author)

  14. Construction and validation of a long-channel membrane test cell for representative monitoring of performance and characterization of fouling over the length of spiral-wound membrane modules

    KAUST Repository

    Siebdrath, Nadine

    2017-12-03

    A long-channel membrane test cell (LCMTC) with the same length as full-scale elements was developed to simulate performance and fouling in nanofiltration and reverse osmosis spiral-wound membrane modules (SWMs). The transparent LCMTC enabled simultaneous monitoring of SWM performance indicators: feed channel pressure drop, permeate flux and salt passage. Both permeate flux and salt passage were monitored over five sections of the test cell and were related to the amount and composition of the accumulated foulant in these five sections, illustrating the unique features of the test cell. Validation experiments at various feed pressures showed the same flow profile and the same hydraulic behaviour as SWMs used in practice, confirming the representativeness and suitability of the test cell to study SWM operation and fouling. The importance to apply feed spacers matching the flow channel height in test cell systems was demonstrated. Biofouling studies showed that the dosage of a biodegradable substrate to the feed of the LCMTC accelerated the gradual decrease of membrane performance and the accumulation of biomass on the spacer and membrane sheets. The strongest permeate flux decline and the largest amount of accumulated biomass was found in the first 18 cm of the test cell. The LCMTC showed to be suitable to study the impact of biofilm development and biofouling control strategies under representative conditions for full-scale membrane elements.

  15. Construction and validation of a long-channel membrane test cell for representative monitoring of performance and characterization of fouling over the length of spiral-wound membrane modules

    KAUST Repository

    Siebdrath, Nadine; Ding, Wei; Pietsch, Elisabeth; Kruithof, Joop; Uhl, Wolfgang; Vrouwenvelder, Johannes S.

    2017-01-01

    A long-channel membrane test cell (LCMTC) with the same length as full-scale elements was developed to simulate performance and fouling in nanofiltration and reverse osmosis spiral-wound membrane modules (SWMs). The transparent LCMTC enabled simultaneous monitoring of SWM performance indicators: feed channel pressure drop, permeate flux and salt passage. Both permeate flux and salt passage were monitored over five sections of the test cell and were related to the amount and composition of the accumulated foulant in these five sections, illustrating the unique features of the test cell. Validation experiments at various feed pressures showed the same flow profile and the same hydraulic behaviour as SWMs used in practice, confirming the representativeness and suitability of the test cell to study SWM operation and fouling. The importance to apply feed spacers matching the flow channel height in test cell systems was demonstrated. Biofouling studies showed that the dosage of a biodegradable substrate to the feed of the LCMTC accelerated the gradual decrease of membrane performance and the accumulation of biomass on the spacer and membrane sheets. The strongest permeate flux decline and the largest amount of accumulated biomass was found in the first 18 cm of the test cell. The LCMTC showed to be suitable to study the impact of biofilm development and biofouling control strategies under representative conditions for full-scale membrane elements.

  16. Pressure and Temperature of the Room 1 for the Pipe Break Accidents of the 3-Pin Fuel Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Chi, D. Y.; Sim, B. S.; Park, K. N.; Ahn, S. H.; Lee, J. M.; Lee, C. Y.; Kim, H. R

    2005-08-15

    This report deals with the prediction of the pressure and temperature of the room 1 for the pipe break accidents of the 3-pin fuel test loop. The 3-pin fuel test loop is an experimental facility for nuclear fuel tests at the operation conditions similar to those of PWR and CANDU power plants. Because the most processing systems of the 3-pin fuel test loop are placed in the room 1. The structural integrity of the room 1 should be evaluated for the postulated accident conditions. Therefore the pressures and temperatures of the room 1 needed for the structural integrity evaluation have been calculated by using MARS code. The pressures and temperatures of the room 1 have been calculated in various conditions such as the thermal hydraulic operation parameters, the locations of pipe break, and the thermal properties of the room 1 wall. It is assumed that the pipe break accident occurs in the letdown operation without regeneration, because the mass and energy release to the room 1 is expected to be the largest. As a result of the calculations the maximum pressure and temperature are predicted to be 208kPa and 369.2K(96.0 .deg. C) in case the heat transfer is considered in the room 1 wall. However the pressure and temperature are asymptotically 243kPa and 378.1K(104.9 .deg. C) assuming that the heat transfer does not occur in the room 1 wall.

  17. Integrated Testing of a 4-Bed Molecular Sieve and a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization

    Science.gov (United States)

    Knox, James C.; Mulloth, Lila M.; Affleck, David L.

    2004-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The 4-Bed Molecular Sieve (4BMS) of ISS currently operates in an open loop mode without a compressor. This paper reports the integrated 4BMS and liquid-cooled TSAC testing conducted during the period of March 3 to April 18, 2003. The TSAC prototype was developed at NASA Ames Research Center (ARC). The 4BMS was modified to a functionally flight-like condition at NASA Marshall Space Flight Center (MSFC). Testing was conducted at MSFC. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of CDRA.

  18. Commissioning of an Integral Effect Test Loop for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyunsik; Bae, Hwang; Kim, Dongeok; Min, Kyoungho; Shin, Yongcheol; Ko, Yungjoo; Yi, Sungjae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    An integral-effect test loop for SMART, SMART-ITL (or FESTA), has been constructed at KAERI. Its height was preserved and its flow area and volume were scaled down to 1/49 compared with the prototype plant, SMART. The ratio of the hydraulic diameter is 1/7. The SMART is a 330 MW thermal power reactor, and its core exit temperature and PZR pressure are 323 .deg. C and 15 MPa during a normal working condition, respectively. The maximum power of the core heater in the SMART-ITL is 30% of the scaled full power. As shown in Fig. 1, the SMART-ITL consists of a primary system including a reactor pressure vessel with a pressurizer, four steam generators and four main coolant pumps, a secondary system, a safety system, and an auxiliary system. The SMART-ITL facility will be used to investigate the integral performance of the inter-connected components and possible thermal-hydraulic phenomena occurring in the SMART design, to validate its safety for various design basis events and broad transient scenarios, and to validate the related thermal-hydraulic models of the safety analysis codes. The scenarios include small-break loss-of coolant accident (SBLOCA) scenarios, complete loss of RCS flowrate (CLOF), steam generator tube rupture (SGTR), feedwater line break (FLB), and main steam line break (MSLB). The role of SMART-ITL will be extended to examine and verify the normal, abnormal, and emergency operating procedures required during the construction and export phases of SMART. After an extensive series of commissioning tests in 2012, the SMART-ITL facility is now in operation. In this paper, the major test results acquired during the commissioning tests will be discussed.

  19. On the loop-loop scattering amplitudes in Abelian and non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Meggiolaro, Enrico

    2005-01-01

    The high-energy elastic scattering amplitude of two colour-singlet qq-bar pairs is governed by the correlation function of two Wilson loops, which follow the classical straight lines for quark (antiquark) trajectories. This quantity is expected to be free of IR divergences, differently from what happens for the parton-parton elastic scattering amplitude, described, in the high-energy limit, by the expectation value of two Wilson lines. We shall explicitly test this IR finiteness by a direct non-perturbative computation of the loop-loop scattering amplitudes in the (pedagogic, but surely physically interesting) case of quenched QED. The results obtained for the Abelian case will be generalized to the case of a non-Abelian gauge theory with Nc colours, but stopping to the order O(g4) in perturbation theory. In connection with the above-mentioned IR finiteness, we shall also discuss some analytic properties of the loop-loop scattering amplitudes in both Abelian and non-Abelian gauge theories, when going from Minkowskian to Euclidean theory, which can be relevant to the still unsolved problem of the s-dependence of hadron-hadron total cross-sections

  20. Innovative hybrid pile oscillator technique in the Minerve reactor: open loop vs. closed loop

    Science.gov (United States)

    Geslot, Benoit; Gruel, Adrien; Bréaud, Stéphane; Leconte, Pierre; Blaise, Patrick

    2018-01-01

    Pile oscillator techniques are powerful methods to measure small reactivity worth of isotopes of interest for nuclear data improvement. This kind of experiments has long been implemented in the Mineve experimental reactor, operated by CEA Cadarache. A hybrid technique, mixing reactivity worth estimation and measurement of small changes around test samples is presented here. It was made possible after the development of high sensitivity miniature fission chambers introduced next to the irradiation channel. A test campaign, called MAESTRO-SL, took place in 2015. Its objective was to assess the feasibility of the hybrid method and investigate the possibility to separate mixed neutron effects, such as fission/capture or scattering/capture. Experimental results are presented and discussed in this paper, which focus on comparing two measurements setups, one using a power control system (closed loop) and another one where the power is free to drift (open loop). First, it is demonstrated that open loop is equivalent to closed loop. Uncertainty management and methods reproducibility are discussed. Second, results show that measuring the flux depression around oscillated samples provides valuable information regarding partial neutron cross sections. The technique is found to be very sensitive to the capture cross section at the expense of scattering, making it very useful to measure small capture effects of highly scattering samples.

  1. Operation manual for the core flow test loop zone power-supply controller

    Energy Technology Data Exchange (ETDEWEB)

    Harper, R.E.

    1981-11-01

    The core flow test loop, which is part of the Gas-Cooled Fast Breeder Reactor Program (GCFR) at ORNL, is a high-pressure, high-temperature, out-of-reactor helium circulation system that is being constructed to permit study of the performance at steady-state and transient conditions of simulated segments of core assemblies for a GCFR demonstration plant. The simulated core segments, which are divided into zones, contain electrical heating elements to simulate the heat generated by fission. To control the power which is applied to a zone, a novel multitapped transformer and zone power control system have been designed and built which satisfy stringent design criteria. The controller can match power output to demand to within better than +-1% over a 900:1 dynamic range and perform full-power transients within 1 s. The power is applied in such a way as to minimize the electromagnetic interference at the bandwidth of the loop instrumentation, and the controller incorporates several error detection techniques, making it inherently fail-safe. The operation manual describes the specifications, operating instructions, error detection capabilities, error recovery, troubleshooting, calibration and QA procedures, and maintenance requirements. Also included are sections on the theory of operation, circuitry description, and a complete set of schematics.

  2. Catalytic membrane reactors for tritium recovery from tritiated water in the ITER fuel cycle

    International Nuclear Information System (INIS)

    Tosti, S.; Violante, V.; Basile, A.; Chiappetta, G.; Castelli, S.; De Francesco, M.; Scaglione, S.; Sarto, F.

    2000-01-01

    Palladium and palladium-silver permeators have been obtained by coating porous ceramic tubes with a thin metal layer. Three coating techniques have been studied and characterized: chemical electroless deposition (PdAg film thickness of 10 μm), ion sputtering (about 1 μm) and rolling of thin metal sheets (50 μm). The Pd-ceramic membranes have been used for manufacturing catalytic membrane reactors (CMR) for hydrogen and its isotopes recovering and purifying. These composite membranes and the CMR have been studied and developed for a closed-loop process with reference to the design requirements of the international thermonuclear experimental reactor (ITER) blanket tritium recovery system in the enhanced performance phase of operation. The membranes and CMR have been tested in a pilot plant equipped with temperature, pressure and flow-rate on-line measuring and controlling devices. The conversion value for the water gas shift reaction in the CMR has been measured close to 100% (always above the equilibrium one, 80% at 350 deg. C): the effect of the membrane is very clear since the reaction is moved towards the products because of the continuous hydrogen separation. The rolled thin film membranes have separated the hydrogen from other gases with a complete selectivity and exhibited a slightly larger mass transfer resistance with respect to the electroless membranes. Preliminary tests on the sputtered membranes have also been carried out with a promising performance. Considerations on the use of different palladium alloy in order to improve the performances of the membranes in terms of permeation flux and mechanical strength, such as palladium/yttrium, are also reported

  3. Integrated Testing of a Carbon Dioxide Removal Assembly and a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization

    Science.gov (United States)

    Knox, J. C.; Mulloth, Lila; Frederick, Kenneth; Affleck, Dave

    2003-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The carbon dioxide removal assembly (CDRA) of ISS currently operates in an open loop mode without a compressor. This paper describes the integrated test results of a flight-like CDRA and a temperature-swing adsorption compressor (TSAC) for carbon dioxide removal and compression. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of CDRA.

  4. Evaluation of T-111 forced-convection loop tested with lithium at 13700C

    International Nuclear Information System (INIS)

    DeVan, J.H.; Long, E.L. Jr.

    1975-04-01

    A T-111 alloy (Ta--8 percent W--2 percent Hf) forced-convection loop containing molten lithium was operated 3000 h at a maximum temperature of 1370 0 C. Flow velocities up to 6.3 m/s were used. The results obtained in this forced-convection loop are very similar to those observed in lower velocity thermal-convection loops of T-111 containing lithium. Weight changes were determined at 93 positions around the loop. The maximum dissolution rate occurred at the maximum wall temperature of the loop and was less than 1.3 μ m/year. Mass transfer of hafnium, nitrogen, and, to a lesser extent, carbon occurred from the hotter to cooler regions. Exposed surfaces in the highest temperature region were found to be depleted in hafnium to a depth of 60 μ m with no detectable change in tungsten content. There was some loss in room-temperature tensile strength for specimens exposed to lithium at 1370 0 C, attributable to depletion of hafnium and nitrogen and to attendant grain growth. (U.S.)

  5. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.

    Science.gov (United States)

    Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A

    2014-10-21

    Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability

  6. Accuracy of small diameter sheathed thermocouples for the core flow test loop

    International Nuclear Information System (INIS)

    Anderson, R.L.; Kollie, T.G.

    1979-04-01

    This report summarizes the research and development on 0.5-mm-diameter, compacted, metal sheathed thermocouples. The objectives of this research effort have been: to identify and analyze the sources of temperature measurement errors in the use of 0.5-mm-diameter sheathed thermocouples to measure the surface temperature of the cladding of fuel-rod simulators in the Core Flow Test Loop (CFTL) at ORNL; to devise methods for reducing or correcting for these temperature measurement errors; to estimate the overall temperature measurement uncertainties; and to recommend modifications in the manufacture, installation, or materials used to minimize temperature measurement uncertainties in the CFTL experiments

  7. Improvement of Measurement Accuracy of Coolant Flow in a Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jintae; Kim, Jong-Bum; Joung, Chang-Young; Ahn, Sung-Ho; Heo, Sung-Ho; Jang, Seoyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, to improve the measurement accuracy of coolant flow in a coolant flow simulator, elimination of external noise are enhanced by adding ground pattern in the control panel and earth around signal cables. In addition, a heating unit is added to strengthen the fluctuation signal by heating the coolant because the source of signals are heat energy. Experimental results using the improved system shows good agreement with the reference flow rate. The measurement error is reduced dramatically compared with the previous measurement accuracy and it will help to analyze the performance of nuclear fuels. For further works, out of pile test will be carried out by fabricating a test rig mockup and inspect the feasibility of the developed system. To verify the performance of a newly developed nuclear fuel, irradiation test needs to be carried out in the research reactor and measure the irradiation behavior such as fuel temperature, fission gas release, neutron dose, coolant temperature, and coolant flow rate. In particular, the heat generation rate of nuclear fuels can be measured indirectly by measuring temperature variation of coolant which passes by the fuel rod and its flow rate. However, it is very difficult to measure the flow rate of coolant at the fuel rod owing to the narrow gap between components of the test rig. In nuclear fields, noise analysis using thermocouples in the test rig has been applied to measure the flow velocity of coolant which circulates through the test loop.

  8. Analysis of natural circulation stability in a low pressure thermohydraulic test loop

    International Nuclear Information System (INIS)

    Jafari, J.; D'Auria, F.; Kazeminejad, H.; Davilu, H.

    2002-01-01

    This paper discusses an instability study of a natural circulation (NC) loop performed with the aid of Relap5 thermal-hydraulic system code. This loop has been designed and constructed for the analysis of relevant thermohydraulic parameters of a nuclear reactor. In this study, the main parameters for the stability of NC are identified and characterized through the execution of proper code runs. The obtained stability boundary (SB) in the dimensionless Zuber- Sub-cooling plane is compared with the SB reported in referenced literature. The agreement of predicted NC stability boundaries with the results of independent studies demonstrates both the capability of the mentioned code in assessing NC loop stability and the quality of the performed calculations.(author)

  9. Full-Scale Hollow Fiber Spacesuit Water Membrane Evaporator Prototype Development and Testing for Advanced Spacesuits

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Dillon, Paul; Weaver, Gregg

    2009-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the superior candidate among commercial alternatives for HoFi SWME prototype development. Although a number of design variants were considered, one that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was deemed best for further development. An analysis of test data showed that eight layer stacks of the HoFi sheets that had good exposure on each side of the stack would evaporate water with high efficiency. A design that has 15,000 tubes, with 18 cm of exposed tubes between headers has been built and tested that meets the size, weight, and performance requirements of the SWME. This full-scale prototype consists of 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Testing has been performed to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the sensitivity to surfactants.

  10. The Impact of Curriculum Looping on Standardized Literacy and Mathematics Test Scores

    Science.gov (United States)

    Nessler, Ralph D.

    2010-01-01

    There is a lack of research on the practice of curriculum looping and student achievement. The purpose of this study was to examine academic achievement between students in looping classes and those in nonlooping classes. The theoretical model of this study was based on the social cognitive theory of Bandura and Maslow's hierarchy of needs theory.…

  11. Membrane-spanning lipids for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer

    Science.gov (United States)

    Schwarzmann, Günter; Breiden, Bernadette; Sandhoff, Konrad

    2015-01-01

    A Förster resonance energy transfer-based fusion and transfer assay was developed to study, in model membranes, protein-mediated membrane fusion and intermembrane lipid transfer of fluorescent sphingolipid analogs. For this assay, it became necessary to apply labeled reporter molecules that are resistant to spontaneous as well as protein-mediated intermembrane transfer. The novelty of this assay is the use of nonextractable fluorescent membrane-spanning bipolar lipids. Starting from the tetraether lipid caldarchaeol, we synthesized fluorescent analogs with fluorophores at both polar ends. In addition, we synthesized radioactive glycosylated caldarchaeols. These labeled lipids were shown to stretch through bilayer membranes rather than to loop within a single lipid layer of liposomes. More important, the membrane-spanning lipids (MSLs) in contrast to phosphoglycerides proved to be nonextractable by proteins. We could show that the GM2 activator protein (GM2AP) is promiscuous with respect to glycero- and sphingolipid transfer. Saposin (Sap) B also transferred sphingolipids albeit with kinetics different from GM2AP. In addition, we could unambiguously show that the recombinant activator protein Sap C x His6 induced membrane fusion rather than intermembrane lipid transfer. These findings showed that these novel MSLs, in contrast with fluorescent phosphoglycerolipids, are well suited for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer. PMID:26269359

  12. Membrane-spanning lipids for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer.

    Science.gov (United States)

    Schwarzmann, Günter; Breiden, Bernadette; Sandhoff, Konrad

    2015-10-01

    A Förster resonance energy transfer-based fusion and transfer assay was developed to study, in model membranes, protein-mediated membrane fusion and intermembrane lipid transfer of fluorescent sphingolipid analogs. For this assay, it became necessary to apply labeled reporter molecules that are resistant to spontaneous as well as protein-mediated intermembrane transfer. The novelty of this assay is the use of nonextractable fluorescent membrane-spanning bipolar lipids. Starting from the tetraether lipid caldarchaeol, we synthesized fluorescent analogs with fluorophores at both polar ends. In addition, we synthesized radioactive glycosylated caldarchaeols. These labeled lipids were shown to stretch through bilayer membranes rather than to loop within a single lipid layer of liposomes. More important, the membrane-spanning lipids (MSLs) in contrast to phosphoglycerides proved to be nonextractable by proteins. We could show that the GM2 activator protein (GM2AP) is promiscuous with respect to glycero- and sphingolipid transfer. Saposin (Sap) B also transferred sphingolipids albeit with kinetics different from GM2AP. In addition, we could unambiguously show that the recombinant activator protein Sap C x His6 induced membrane fusion rather than intermembrane lipid transfer. These findings showed that these novel MSLs, in contrast with fluorescent phosphoglycerolipids, are well suited for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  13. Natively unstructured loops differ from other loops.

    Directory of Open Access Journals (Sweden)

    Avner Schlessinger

    2007-07-01

    Full Text Available Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%-70% of all worm proteins observed to have more than seven protein-protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested

  14. DNA looping by FokI: the impact of twisting and bending rigidity on protein-induced looping dynamics

    Science.gov (United States)

    Laurens, Niels; Rusling, David A.; Pernstich, Christian; Brouwer, Ineke; Halford, Stephen E.; Wuite, Gijs J. L.

    2012-01-01

    Protein-induced DNA looping is crucial for many genetic processes such as transcription, gene regulation and DNA replication. Here, we use tethered-particle motion to examine the impact of DNA bending and twisting rigidity on loop capture and release, using the restriction endonuclease FokI as a test system. To cleave DNA efficiently, FokI bridges two copies of an asymmetric sequence, invariably aligning the sites in parallel. On account of the fixed alignment, the topology of the DNA loop is set by the orientation of the sites along the DNA. We show that both the separation of the FokI sites and their orientation, altering, respectively, the twisting and the bending of the DNA needed to juxtapose the sites, have profound effects on the dynamics of the looping interaction. Surprisingly, the presence of a nick within the loop does not affect the observed rigidity of the DNA. In contrast, the introduction of a 4-nt gap fully relaxes all of the torque present in the system but does not necessarily enhance loop stability. FokI therefore employs torque to stabilise its DNA-looping interaction by acting as a ‘torsional’ catch bond. PMID:22373924

  15. Innovative hybrid pile oscillator technique in the Minerve reactor: open loop vs. closed loop

    Directory of Open Access Journals (Sweden)

    Geslot Benoit

    2018-01-01

    Full Text Available Pile oscillator techniques are powerful methods to measure small reactivity worth of isotopes of interest for nuclear data improvement. This kind of experiments has long been implemented in the Mineve experimental reactor, operated by CEA Cadarache. A hybrid technique, mixing reactivity worth estimation and measurement of small changes around test samples is presented here. It was made possible after the development of high sensitivity miniature fission chambers introduced next to the irradiation channel. A test campaign, called MAESTRO-SL, took place in 2015. Its objective was to assess the feasibility of the hybrid method and investigate the possibility to separate mixed neutron effects, such as fission/capture or scattering/capture. Experimental results are presented and discussed in this paper, which focus on comparing two measurements setups, one using a power control system (closed loop and another one where the power is free to drift (open loop. First, it is demonstrated that open loop is equivalent to closed loop. Uncertainty management and methods reproducibility are discussed. Second, results show that measuring the flux depression around oscillated samples provides valuable information regarding partial neutron cross sections. The technique is found to be very sensitive to the capture cross section at the expense of scattering, making it very useful to measure small capture effects of highly scattering samples.

  16. Loop kinematics

    International Nuclear Information System (INIS)

    Migdal, A.A.

    1982-01-01

    Basic operators acting in the loop space are introduced. The topology of this space and properties of the Stokes type loop functionals are discussed. The parametrically invariant loop calculus developed here is used in the loop dynamics

  17. Natural Circulation High Pressure Loop Dynamics Around Operating Point, Tests and Modelling With Retran 02

    International Nuclear Information System (INIS)

    Masriera, N.A; Doval, A.S; Mazufri, C.M

    2000-01-01

    The Natural Circulation High Pressure Loop (CAPCN) reproduces in scale all the one-dimensional thermal-hydraulic phenomena occurring in the primary loop of CAREM-25 reactor.It plays an important role in the qualification process of calculating computer codes.This facility demanded to develop several technological solutions in order to achieve the measuring and control quality required by that process.This engineering and experimental development allowed completing the first stage of dynamic tests during 1998.The trends of recorded data were systematically evaluated in terms of the deviations of main variables in response to different perturbations.By this analysis a group of eight transients was selected, providing a Minimum Representative Set (MRS) of dynamic tests, allowing the evaluation of all dynamic phenomena.Each of these transients was simulated with RETRAN-02, using a spreadsheet to facilitate the consistent elaboration and modification of input files.Comparing measured data and computer simulations, it may be concluded that it is possible to reproduce the dynamic response of all the transients with a level of approximation quite homogeneous and generally acceptable.It is possible to identify the detailed physical models that fit better the dynamic phenomena, and which of the limitations of RETRAN code are more relevant

  18. Special power supply and control system for the gas-cooled fast reactor-core flow test loop

    International Nuclear Information System (INIS)

    Hudson, T.L.

    1981-09-01

    The test bundle in the Gas-Cooled Fast Reactor-Core Flow Test Loop (GCFR-CFTL) requires a source of electrical power that can be controlled accurately and reliably over a wide range of steady-state and transient power levels and skewed power distributions to simulate GCFR operating conditions. Both ac and dc power systems were studied, and only those employing silicon-controlled rectifiers (SCRs) could meet the requirements. This report summarizes the studies, tests, evaluations, and development work leading to the selection. it also presents the design, procurement, testing, and evaluation of the first 500-kVa LMPL supply. The results show that the LMPL can control 60-Hz sine wave power from 200 W to 500 kVA

  19. A Novel Clustering Algorithm Inspired by Membrane Computing

    Directory of Open Access Journals (Sweden)

    Hong Peng

    2015-01-01

    Full Text Available P systems are a class of distributed parallel computing models; this paper presents a novel clustering algorithm, which is inspired from mechanism of a tissue-like P system with a loop structure of cells, called membrane clustering algorithm. The objects of the cells express the candidate centers of clusters and are evolved by the evolution rules. Based on the loop membrane structure, the communication rules realize a local neighborhood topology, which helps the coevolution of the objects and improves the diversity of objects in the system. The tissue-like P system can effectively search for the optimal partitioning with the help of its parallel computing advantage. The proposed clustering algorithm is evaluated on four artificial data sets and six real-life data sets. Experimental results show that the proposed clustering algorithm is superior or competitive to k-means algorithm and several evolutionary clustering algorithms recently reported in the literature.

  20. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    Science.gov (United States)

    Polzin, Kurt A.; Godfroy, Thomas J.

    2008-01-01

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 5 psi, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.5 GPM.

  1. Hollow Fiber Space Suit Water Membrane Evaporator Development for Lunar Missions

    Science.gov (United States)

    Bue, Grant C.; Trevino, Luis A.; Hanford, Anthony J.; Mitchell, Keith

    2009-01-01

    The Space Suit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The Hollow Fiber (HoFi) SWME is being considered for service in the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) to provide cooling to the thermal loop through water evaporation to the vacuum of space. Previous work described the test methodology and planning to compare the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME: 1) porous hydrophobic polypropylene, 2) porous hydrophobic polysulfone, and 3) ion exchange through nonporous hydrophilic modified Nafion. Contamination tests were performed to probe for sensitivities of the candidate SWME elements to organics and non-volative inorganics expected to be found in the target feedwater source, i.e., potable water provided by the vehicle. The resulting presence of precipitate in the coolant water could plug pores and tube channels and affect the SWME performance. From this prior work, a commercial porous hydrophobic hollow fiber was selected to satisfy both the sensitivity question and the need to provide 800 W of heat rejection. This paper describes the trade studies, the design methodology, and the hollow fiber test data used to design a full

  2. Structures of Gate Loop Variants of the AcrB Drug Efflux Pump Bound by Erythromycin Substrate.

    Directory of Open Access Journals (Sweden)

    Abdessamad Ababou

    Full Text Available Gram-negative bacteria such as E. coli use tripartite efflux pumps such as AcrAB-TolC to expel antibiotics and noxious compounds. A key feature of the inner membrane transporter component, AcrB, is a short stretch of residues known as the gate/switch loop that divides the proximal and distal substrate binding pockets. Amino acid substitutions of the gate loop are known to decrease antibiotic resistance conferred by AcrB. Here we present two new AcrB gate loop variants, the first stripped of its bulky side chains, and a second in which the gate loop is removed entirely. By determining the crystal structures of the variant AcrB proteins in the presence and absence of erythromycin and assessing their ability to confer erythromycin tolerance, we demonstrate that the gate loop is important for AcrB export activity but is not required for erythromycin binding.

  3. Hollow Fiber Flight Prototype Spacesuit Water Membrane Evaporator Design and Testing

    Science.gov (United States)

    Bue, Grant; Vogel, Matt; Makinen, Janice; Tsioulos, Gus

    2010-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform thermal control for advanced spacesuits and to take advantage of recent advances in micropore membrane technology. This results in a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. The Membrana Celgard X50-215 microporous hollow-fiber (HoFi) membrane was selected after recent extensive testing as the most suitable candidate among commercial alternatives for continued SWME prototype development. The current design was based on a previous design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape. This was developed into a full-scale prototype consisting of 14,300 tube bundled into 30 stacks, each of which is formed into a chevron shape and separated by spacers and organized into three sectors of 10 nested stacks. The new design replaced metal components with plastic ones, and has a custom built flight like backpressure valve mounted on the side of the SWME housing to reduce backpressure when fully open. The spacers that provided separation of the chevron fiber stacks were eliminated. Vacuum chamber testing showed improved heat rejection as a function of inlet water temperature and water vapor backpressure compared with the previous design. Other tests pushed the limits of tolerance to freezing and showed suitability to reject heat in a Mars pressure environment with and without a sweep gas. Tolerance to contamination by constituents expected to be found in potable water produced by distillation processes was tested in a conventional way by allowing constituents to accumulate in the coolant as evaporation occurs. For this purpose, the SWME cartridge has endured an equivalent of 30 EVAs exposure and demonstrated minimal performance decline.

  4. Membrane Stability Testing

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-09-30

    The Electrosynthesis Co. Inc. (ESC) was contracted by the Westinghouse Savannah River Company to investigate the long term performance and durability of cell components (anode, membrane, cathode) in an electrochemical caustic recovery process using a simulated SRC liquid waste as anolyte solution. This report details the results of two long-term studies conducted using an ICI FM01 flow cell. This cell is designed and has previously been demonstrated to scale up directly into the commercial scale ICI FM21 cell.

  5. Gas Test Loop Facilities Alternatives Assessment Report Rev 1

    International Nuclear Information System (INIS)

    William J. Skerjanc; William F. Skerjanc

    2005-01-01

    An important task in the Gas Test Loop (GTL) conceptual design was to determine the best facility to serve as host for this apparatus, which will allow fast-flux neutron testing in an existing nuclear facility. A survey was undertaken of domestic and foreign nuclear reactors and accelerator facilities to arrive at that determination. Two major research reactors in the U.S. were considered in detail, the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR), each with sufficient power to attain the required neutron fluxes. HFIR routinely operates near its design power limit of 100 MW. ATR has traditionally operated at less than half its design power limit of 250 MW. Both of these reactors should be available for at least the next 30 years. The other major U.S. research reactor, the Missouri University Research Reactor, does not have sufficient power to reach the required neutron flux nor do the smaller research reactors. Of the foreign reactors investigated, BOR-60 is perhaps the most attractive. Monju and BN 600 are power reactors for their respective electrical grids. Although the Joyo reactor is vigorously campaigning for customers, local laws regarding transport of radioactive material mean it would be very difficult to retrieve test articles from either Japanese reactor for post irradiation examination. PHENIX is scheduled to close in 2008 and is fully booked until then. FBTR is limited to domestic (Indian) users only. Data quality is often suspect in Russia. The only accelerator seriously considered was the Fuel and Material Test Station (FMTS) currently proposed for operation at Los Alamos National Laboratory. The neutron spectrum in FMTS is similar to that found in a fast reactor, but it has a pronounced high-energy tail that is atypical of fast fission reactor spectra. First irradiation in the FMTS is being contemplated for 2008. Detailed review of these facilities resulted in the recommendation that the ATR would be the best host for the GTL

  6. Hydraulic loop: practices using open control systems

    International Nuclear Information System (INIS)

    Carrasco, J.A.; Alonso, L.; Sanchez, F.

    1998-01-01

    The Tecnatom Hydraulic Loop is a dynamic training platform. It has been designed with the purpose of improving the work in teams. With this system, the student can obtain a full scope vision of a system. The hydraulic Loop is a part of the Tecnatom Maintenance Centre. The first objective of the hydraulic Loop is the instruction in components, process and process control using open control system. All the personal of an electric power plant can be trained in the Hydraulic Loop with specific courses. The development of a dynamic tool for tests previous to plant installations has been an additional objective of the Hydraulic Loop. The use of this platform is complementary to the use of full-scope simulators in order to debug and to analyse advanced control strategies. (Author)

  7. FRIGG '95. ABB Atom's upgraded T/H loop

    International Nuclear Information System (INIS)

    Noren, T.

    1995-01-01

    The FRIGG '95 project is an upgrading and modernization of the FRIGG loop, ABB Atom's fuel test rig with BWR operating conditions. The current FRIGG loop with test section and heater rods is described, together with the modifications involved in the FRIGG '95 project, including the new unique tomographic void measuring system to be installed. Finally CFD (Computational Fluid Dynamics) is introduced. (orig) (8 refs., 10 figs.)

  8. Importance of the extracellular loops in G protein-coupled receptors for ligand recognition and receptor activation.

    Science.gov (United States)

    Peeters, M C; van Westen, G J P; Li, Q; IJzerman, A P

    2011-01-01

    G protein-coupled receptors (GPCRs) are the major drug target of medicines on the market today. Therefore, much research is and has been devoted to the elucidation of the function and three-dimensional structure of this large family of membrane proteins, which includes multiple conserved transmembrane domains connected by intra- and extracellular loops. In the last few years, the less conserved extracellular loops have garnered increasing interest, particularly after the publication of several GPCR crystal structures that clearly show the extracellular loops to be involved in ligand binding. This review will summarize the recent progress made in the clarification of the ligand binding and activation mechanism of class-A GPCRs and the role of extracellular loops in this process. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Power-Hardware-In-the-Loop (PHIL) Test of VSC-based HVDC connection for Offshore Wind Power Plants (WPPs)

    DEFF Research Database (Denmark)

    Sharma, Ranjan; Cha, Seung-Tae; Wu, Qiuwei

    2011-01-01

    This paper presents a power-hardware-in-the-loop (PHIL) test for an offshore wind power plant (WPP) interconnected to the onshore grid by a VSC-based HVDC connection. The intention of the PHIL test is to verify the control coordination between the plant side converter of the HVDC connection...... the successful control coordination between the WPP and the plant side VSC converter of the HVDC connection of the WPP....

  10. Mathematical Modeling of Loop Heat Pipes

    Science.gov (United States)

    Kaya, Tarik; Ku, Jentung; Hoang, Triem T.; Cheung, Mark L.

    1998-01-01

    The primary focus of this study is to model steady-state performance of a Loop Heat Pipe (LHP). The mathematical model is based on the steady-state energy balance equations at each component of the LHP. The heat exchange between each LHP component and the surrounding is taken into account. Both convection and radiation environments are modeled. The loop operating temperature is calculated as a function of the applied power at a given loop condition. Experimental validation of the model is attempted by using two different LHP designs. The mathematical model is tested at different sink temperatures and at different elevations of the loop. Tbc comparison of the calculations and experimental results showed very good agreement (within 3%). This method proved to be a useful tool in studying steady-state LHP performance characteristics.

  11. Long-life fatigue test results for two nickel-base structural alloys

    International Nuclear Information System (INIS)

    Mowbray, D.F.; Giaquinto, E.V.; Mehringer, F.J.

    1978-11-01

    The results are reported of fatigue tests on two nickel--base alloys, hot-cold-worked and stress-relieved nickel--chrome--iron Alloy 600 and mill-annealed nickel--chrome--moly--iron Alloy 625 in which S-N data were obtained in the life range of 10 6 to 10 10 cycles. The tests were conducted in air at 600 0 F, in the reversed membrane loading mode, at a frequency of approx. 1850 Hz. An electromagnetic, closed loop servo-controlled machine was built to perform the tests. A description of the machine is given

  12. Construction of the blowdown and condensation loop

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choon Kyung; Song, Chul Kyung; Cho, Seok; Chun, S. Y.; Chung, Moon Ki

    1997-12-01

    The blowdown and condensation loop (B and C loop) has been constructed to get experimental data for designing the safety depressurization system (SDS) and steam sparger which are considered to implement in the Korea Next Generation Reactor (KNGR). In this report, system description on the B and C loop is given in detail, which includes the drawings and technical specification of each component, instrumentation and control system, and the operational procedures and the results of the performance testing. (author). 7 refs., 11 tabs., 48 figs.

  13. Home-Based Risk of Falling Assessment Test Using a Closed-Loop Balance Model.

    Science.gov (United States)

    Ayena, Johannes C; Zaibi, Helmi; Otis, Martin J-D; Menelas, Bob-Antoine J

    2016-12-01

    The aim of this study is to improve and facilitate the methods used to assess risk of falling at home among older people through the computation of a risk of falling in real time in daily activities. In order to increase a real time computation of the risk of falling, a closed-loop balance model is proposed and compared with One-Leg Standing Test (OLST). This balance model allows studying the postural response of a person having an unpredictable perturbation. Twenty-nine volunteers participated in this study for evaluating the effectiveness of the proposed system which includes seventeen elder participants: ten healthy elderly ( 68.4 ±5.5 years), seven Parkinson's disease (PD) subjects ( 66.28 ±8.9 years), and twelve healthy young adults ( 28.27 ±3.74 years). Our work suggests that there is a relationship between OLST score and the risk of falling based on center of pressure measurement with four low cost force sensors located inside an instrumented insole, which could be predicted using our suggested closed-loop balance model. For long term monitoring at home, this system could be included in a medical electronic record and could be useful as a diagnostic aid tool.

  14. A detailed BWR recirculation loop model for RELAP

    Energy Technology Data Exchange (ETDEWEB)

    Araiza-Martínez, Enrique, E-mail: enrique.araiza@inin.gob.mx; Ortiz-Villafuerte, Javier, E-mail: javier.ortiz@inin.gob.mx; Castillo-Durán, Rogelio, E-mail: rogelio.castillo@inin.gob.mx

    2017-01-15

    Highlights: • A new detailed BWR recirculation loop model was developed for RELAP. • All jet pumps, risers, manifold, suction and control valves, and recirculation pump are modeled. • Model is tested against data from partial blockage of two jet pumps. • For practical applications, simulation results showed good agreement with available data. - Abstract: A new detailed geometric model of the whole recirculation loop of a BWR has been developed for the code RELAP. This detailed model includes the 10 jet pumps, 5 risers, manifold, suction and control valves, and the recirculation pump, per recirculation loop. The model is tested against data from an event of partial blockage at the entrance nozzle of one jet pump in both recirculation loops. For practical applications, simulation results showed good agreement with data. Then, values of parameters considered as figure of merit (reactor power, dome pressure, core flow, among others) for this event are compared against those from the common 1 jet pump per loop model. The results show that new detailed model led to a closer prediction of the reported power change. The detailed recirculation loop model can provide more reliable boundary condition data to a CFD models for studies of, for example, flow induced vibration, wear, and crack initiation.

  15. Modeling and Closed Loop Flight Testing of a Fixed Wing Micro Air Vehicle

    Directory of Open Access Journals (Sweden)

    Harikumar Kandath

    2018-03-01

    Full Text Available This paper presents the nonlinear six degrees of freedom dynamic modeling of a fixed wing micro air vehicle. The static derivatives of the micro air vehicle are obtained through the wind tunnel testing. The propeller effects on the lift, drag, pitching moment and side force are quantified through wind tunnel testing. The dynamic derivatives are obtained through empirical relations available in the literature. The trim conditions are computed for a straight and constant altitude flight condition. The linearized longitudinal and lateral state space models are obtained about trim conditions. The variations in short period mode, phugoid mode, Dutch roll mode, roll subsidence mode and spiral mode with respect to different trim operating conditions is presented. A stabilizing static output feedback controller is designed using the obtained model. Successful closed loop flight trials are conducted with the static output feedback controller.

  16. Hardware-in-the-Loop environment for testing and commissioning of space controllers; Hardware-in-the-Loop Umgebung zum Test und zur Inbetriebnahme von Raumreglern

    Energy Technology Data Exchange (ETDEWEB)

    Adlhoch, Alexander; Becker, Martin [Hochschule Biberach (Germany). Inst. fuer Gebaeude- und Energiesysteme

    2012-07-01

    The energy-efficient and optimal functioning of room controllers in terms of indoor air climates is influenced mainly by the control algorithm and the optimal adjustment of the parameters of controllers used in terms of space requirements. In the practical operation, deficits in the function or parameters of the controller are hardly or only with great effort metrological detectable, but have a significant impact on the energy consumption and / or the indoor climate comfort. In a hardware-in-the-loop (HIL) environment, room controllers can be examined in terms of the function under defined conditions, and different controllers can be evaluated comparatively. It is also possible to adjust the parameters of the controller before the commissioning. The HiL environment presented in the contribution under consideration consists of a model of the controlled system, a hardware coupler and a real controller to be tested. Among the spatial models, it can be selected from a plurality of different types of space which in turn can be assigned by means of different spatial parameters and environmental models. These combinations enable a replication of a test scenario corresponding to the later application. The hardware coupler provides a selection of physical inputs and outputs as well as interfaces to different bus systems (for example KNX, LON, EnOcean) for connecting different types of controllers. The construction and operation of a HIL test stand for space controller is presented based on first practical control tests. At this, the focus is on the suitability of this test environment for a variety of different controllers as well as development assistance and assistance for the adjustment of parameters. The HiL environments developed in the joint research project HiL RHK1 for the testing of space controllers, controllers for HVAC systems and refrigeration technology controllers have been developed so that the HiL environments can be coupled to a multi-HIL environment. This

  17. Volatile organic carbon/air separation test using gas membranes

    International Nuclear Information System (INIS)

    King, C.V.; Kaschemekat, J.

    1993-08-01

    An estimated 900 metric tons of carbon tetrachloride were discharged to soil columns during the Plutonium Finishing Plant Operations at the Hanford Site. The largest percentage of this volatile organic compound was found in the vadose region of the 200 West Area. Using a Vacuum Extraction System, the volatile organic compound was drawn from the soil in an air mixture at a concentration of about 1,000 parts per million. The volatile organic compounds were absorbed from the air stream using granulated activated carbon canisters. A gas membrane separation system, developed by Membrane Technology and Research, Inc., was tested at the Vacuum Extraction System site to determine if the volatile organic compound load on the granulated activated carbon could be reduced. The Vacuum Extraction System condensed most of the volatile organic compound into liquid carbon tetrachloride and vented the residual gas stream into the granulated activated carbon. This system reduced the cost of operation about $5/kilogram of volatile organic compound removed

  18. High Temperature Operational Experiences of Helium Experimental Loop

    International Nuclear Information System (INIS)

    Kim, Chan Soo; Hong, Sung-Deok; Kim, Eung-Seon; Kim, Min Hwan

    2015-01-01

    The development of high temperature components of VHTR is very important because of its higher operation temperature than that of a common light water reactor and high pressure industrial process. The development of high temperature components requires the large helium loop. Many countries have high temperature helium loops or a plan for its construction. Table 1 shows various international state-of-the-art of high temperature and high pressure gas loops. HELP performance test results show that there is no problem in operation of HELP at the very high temperature experimental condition. These experimental results also provide the basic information for very high temperature operation with bench-scale intermediate heat exchanger prototype in HELP. In the future, various heat exchanger tests will give us the experimental data for GAMMA+ validation about transient T/H behavior of the IHX prototype and the optimization of the working fluid in the intermediate loop

  19. IR1 flow tube and In-Pile Test Section Pressure drop test for the 3-Pin Fuel Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. H.; Park, K. N.; Chi, D. Y.; Sim, B. S.; Park, S. K.; Lee, J. M.; Lee, C. Y.; Kim, H. N

    2006-02-15

    The in-pile Section (IPS) of 3-pin Fuel Test Loop(FTL) shall be installed in the vertical hole call IR1 of HANARO reactor core. In order to verify the pressure drop and flow rate both the inside region of IPS at the annular region between IPS and IR1 flow tube, a pressure drop was measured by varing the flow rate on both regions. The measured pressure drop in the annular region is 209kpa at 14.9kg/s which meets the limiting condition of operation of 200kpa. The measured pressure drop in side the IPS becomes 260.25kpa which is lower than the designed value of 306.65kpa. As the pressure drop is lower than the design value, it is quite conservative from the safety and operating point of view.

  20. Two-loop polygon Wilson loops in N = 4 SYM

    International Nuclear Information System (INIS)

    Anastasiou, C.; Brandhuber, A.; Heslop, P.; Spence, B.; Travaglini, G.; Khoze, V.V.

    2009-01-01

    We compute for the first time the two-loop corrections to arbitrary n-gon lightlike Wilson loops in N = 4 supersymmetric Yang-Mills theory, using efficient numerical methods. The calculation is motivated by the remarkable agreement between the finite part of planar six-point MHV amplitudes and hexagon Wilson loops which has been observed at two loops. At n = 6 we confirm that the ABDK/BDS ansatz must be corrected by adding a remainder function, which depends only on conformally invariant ratios of kinematic variables. We numerically compute remainder functions for n = 7,8 and verify dual conformal invariance. Furthermore, we study simple and multiple collinear limits of the Wilson loop remainder functions and demonstrate that they have precisely the form required by the collinear factorisation of the corresponding two-loop n-point amplitudes. The number of distinct diagram topologies contributing to the n-gon Wilson loops does not increase with n, and there is a fixed number of 'master integrals', which we have computed. Thus we have essentially computed general polygon Wilson loops, and if the correspondence with amplitudes continues to hold, all planar n-point two-loop MHV amplitudes in the N = 4 theory.

  1. Response of the primary piping loop to an HCDA

    International Nuclear Information System (INIS)

    Chang, Y.W.; Moneim, M.T.A.; Wang, C.Y.; Gvildys, J.

    1975-01-01

    The paper describes a method for analyzing the response of the primary piping loop that consists of straight pipes, elbows, and other components connected in series and subject to hypothetical core disruptive accident (HCDA) loads at both ends of the loop. The complete hydrodynamic equations in two-dimensions, that include both the nonlinear convective and viscous dissipation terms are used for the fluid dynamics together with the implicit ICE technique. The external walls of the pipes and components are treated as thin shells in which the analysis accounts for the membrane and bending strength of the wall, elastic-plastic material behavior, as well as large deformation under the effect of transient loading conditions. In the straight pipes, the flow is assumed to be axisymmetric; in the elbow regions, the two dimensions considered are the r and theta directions. The flow in the other components is also assumed to be axisymmetric; the components are modeled as a circular cylinder, in which the radius of the cylinder can be varied to conform with the outside shape of the component and the flow area inside can be changed independently from the outside shape. However, they must remain axially symmetric. The method is applied to a piping loop which consists of six elastic-plastic pipes and five rigid elbows connected in series and subjected to pressure pulses at both ends of the loop

  2. Identification of Bacillus thuringiensis Cry3Aa toxin domain II loop 1 as the binding site of Tenebrio molitor cadherin repeat CR12.

    Science.gov (United States)

    Zúñiga-Navarrete, Fernando; Gómez, Isabel; Peña, Guadalupe; Amaro, Itzel; Ortíz, Ernesto; Becerril, Baltazar; Ibarra, Jorge E; Bravo, Alejandra; Soberón, Mario

    2015-04-01

    Bacillus thuringiensis Cry toxins exert their toxic effect by specific recognition of larval midgut proteins leading to oligomerization of the toxin, membrane insertion and pore formation. The exposed domain II loop regions of Cry toxins have been shown to be involved in receptor binding. Insect cadherins have shown to be functionally involved in toxin binding facilitating toxin oligomerization. Here, we isolated a VHH (VHHA5) antibody by phage display that binds Cry3Aa loop 1 and competed with the binding of Cry3Aa to Tenebrio molitor brush border membranes. VHHA5 also competed with the binding of Cry3Aa to a cadherin fragment (CR12) that was previously shown to be involved in binding and toxicity of Cry3Aa, indicating that Cry3Aa binds CR12 through domain II loop 1. Moreover, we show that a loop 1 mutant, previously characterized to have increased toxicity to T. molitor, displayed a correlative enhanced binding affinity to T. molitor CR12 and to VHHA5. These results show that Cry3Aa domain II loop 1 is a binding site of CR12 T. molitor cadherin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. PG-100 helium loop in the MR reactor

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoj, N.N.; Yakovlev, V.V.; Tikhonov, N.I.

    1983-01-01

    Main systems and production equipment units of PG-100 helium loop in the MR reactor are described. Possible long-term synchronizing operation of loop and reactor as well as possibility of carrying out life-time tests of spherical fuel elements and materials are shown. Serviceability of spherical fuel elements under conditions similar to the ones of HTGR-50 operation as well as high serviceability of cleanup system accepted for HTGR are verified. Due to low radiation dose the loop is operated without limits, helium losses in the loop don't exceed 0.5%/24 h, taking account of experimental gas sampling

  4. Two-phase flow patterns recognition and parameters estimation through natural circulation test loop image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, R.N.; Libardi, R.M.P.; Masotti, P.H.F.; Sabundjian, G.; Andrade, D.A.; Umbehaun, P.E.; Torres, W.M.; Conti, T.N.; Macedo, L.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Nuclear Engineering Center], e-mail: rnavarro@ipen.br

    2009-07-01

    Visualization of natural circulation test loop cycles is used to study two-phase flow patterns associated with phase transients and static instabilities of flow. Experimental studies on natural circulation flow were originally related to accidents and transient simulations relative to nuclear reactor systems with light water refrigeration. In this regime, fluid circulation is mainly caused by a driving force ('thermal head') which arises from density differences due to temperature gradient. Natural circulation phenomenon has been important to provide residual heat removal in cases of 'loss of pump power' or plant shutdown in nuclear power plant accidents. The new generation of compact nuclear reactors includes natural circulation of their refrigerant fluid as a security mechanism in their projects. Two-phase flow patterns have been studied for many decades, and the related instabilities have been object of special attention recently. Experimental facility is an all glass-made cylindrical tubes loop which contains about twelve demineralized water liters, a heat source by an electrical resistor immersion heater controlled by a Variac, and a helicoidal heat exchanger working as cold source. Data is obtained through thermo-pairs distributed over the loop and CCD cameras. Artificial intelligence based algorithms are used to improve (bubble) border detection and patterns recognition, in order to estimate and characterize, phase transitions patterns and correlate them with the periodic static instability (chugging) cycle observed in this circuit. Most of initial results show good agreement with previous numerical studies in this same facility. (author)

  5. Two-phase flow patterns recognition and parameters estimation through natural circulation test loop image analysis

    International Nuclear Information System (INIS)

    Mesquita, R.N.; Libardi, R.M.P.; Masotti, P.H.F.; Sabundjian, G.; Andrade, D.A.; Umbehaun, P.E.; Torres, W.M.; Conti, T.N.; Macedo, L.A.

    2009-01-01

    Visualization of natural circulation test loop cycles is used to study two-phase flow patterns associated with phase transients and static instabilities of flow. Experimental studies on natural circulation flow were originally related to accidents and transient simulations relative to nuclear reactor systems with light water refrigeration. In this regime, fluid circulation is mainly caused by a driving force ('thermal head') which arises from density differences due to temperature gradient. Natural circulation phenomenon has been important to provide residual heat removal in cases of 'loss of pump power' or plant shutdown in nuclear power plant accidents. The new generation of compact nuclear reactors includes natural circulation of their refrigerant fluid as a security mechanism in their projects. Two-phase flow patterns have been studied for many decades, and the related instabilities have been object of special attention recently. Experimental facility is an all glass-made cylindrical tubes loop which contains about twelve demineralized water liters, a heat source by an electrical resistor immersion heater controlled by a Variac, and a helicoidal heat exchanger working as cold source. Data is obtained through thermo-pairs distributed over the loop and CCD cameras. Artificial intelligence based algorithms are used to improve (bubble) border detection and patterns recognition, in order to estimate and characterize, phase transitions patterns and correlate them with the periodic static instability (chugging) cycle observed in this circuit. Most of initial results show good agreement with previous numerical studies in this same facility. (author)

  6. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes

    KAUST Repository

    Geise, Geoffrey M.

    2014-08-26

    © the Partner Organisations 2014. Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The

  7. Alternative loop rings

    CERN Document Server

    Goodaire, EG; Polcino Milies, C

    1996-01-01

    For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously. One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups. Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group ri

  8. Sodium characterization during the starting period of a sodium loop

    International Nuclear Information System (INIS)

    Lievens, F.; Parmentier, C.; Soenen, M.

    1976-01-01

    A sodium loop for analytical chemistry studies has been built by S.C.K./C.E.N. at Mol Belgium. Its first working period was used to test analytical methods, to characterize the sodium and to define the operating parameters of the loop. This report covers the working parameters of the loop, the characterization of the filling sodium and its purity evolution during the first working period of the loop

  9. Concept-Development of a Structure Supported Membrane for Deployable Space Applications - From Nature to Manufacture and Testing

    Science.gov (United States)

    Zander, Martin; Belvin, W. K.

    2012-01-01

    Current space applications of membrane structures include large area solar power arrays, solar sails, antennas, and numerous other large aperture devices like the solar shades of the new James Webb Space Telescope. These expandable structural systems, deployed in-orbit to achieve the desired geometry, are used to collect, reflect and/or transmit electromagnetic radiation. This work, a feasibility study supporting a diploma thesis, describes the systematic process for developing a biologically inspired concept for a structure supported (integrated) membrane, that features a rip stop principle, makes self-deployment possible and is part of an ultra-light weight space application. Novel manufacturing of membrane prototypes and test results are presented for the rip-stop concepts. Test data showed that the new membrane concept has a higher tear resistance than neat film of equivalent mass.

  10. Evaluation of thin film ceria membranes for syngas membrane reactors—Preparation, characterization and testing

    DEFF Research Database (Denmark)

    Kaiser, Andreas; Foghmoes, Søren Preben Vagn; Chatzichristodoulou, Christodoulos

    2011-01-01

    Gadolinium doped ceria (Ce0.1Gd0.9O1.95−δ, CGO10) was investigated as oxygen separation membrane material for application in syngas production. Planar, thin film CGO10 membranes were fabricated by tape casting and lamination on porous NiO-YSZ supports and subsequent co-sintering. High oxygen fluxes......-stoichiometry profile in the 30μm thin CGO membrane under operation reveal that due to oxygen permeation in the membrane the largest non-stoichiometry at the permeate (fuel) side is more than a factor of 6 times smaller at 850°C than that expected for CGO10 at equilibrium. The related relative expansion of the thin...... film CGO membrane should therefore lie below the expansion limit of 0.1% expected to be critical for mechanical stability and thereby allows for operation at high temperatures and low oxygen partial pressures....

  11. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  12. ECP measurements in the BWR-1 water loop relative to water composition changes

    Energy Technology Data Exchange (ETDEWEB)

    Kus, P.; Vsolak, R.; Kysela, J., E-mail: ksp@ujv.cz [Nuclear Research Inst. Rez plc, Husinec - Rez (Czech Republic); Hanawa, S.; Nakamura, T.; Uchida, S., E-mail: hanawa.satoshi@jaea.go.jp [Japan Atomic Energy Agency, Tokai-mura, Ibaraki (Japan)

    2010-07-01

    The goal of this study is to investigate the usage of ECP sensors in nuclear power plants. ECP sensors were tested using the LVR-15 reactor at the Nuclear Research Institute Rez plc (NRI) in the Czech Republic. The experiment took place on the BWR-1 loop, which was designed for investigating the behaviour of structural materials and radioactivity transport under BWR conditions. The BWR-1 loop facilitates irradiation experiments within a wide range of operating parameters (max. pressure of 10 MPa, max. temperature of 573 K and a neutron flux of 1.0* 10{sup 18} n/m{sup 2}s). This study involves the measurement of electrochemical potential (ECP). Corrosion potential is the main parameter for monitoring of water composition changes in nuclear power plants (NPP). The electrochemical potentials of stainless steel were measured under high temperatures in a test loop (BWR-1) under different water composition conditions. Total neutron flux was ∼10{sup -3} to ∼10{sup 12} n/cm{sup 2}s (>0.1 MeV) at a temperature of 560K, neutral pH, and water resistivity of 18.2 MOhm. ECP sensor response related to changes in water composition was monitored. Switching from NWC (normal water conditions) to HWC (hydrogen water conditions) was controlled using oxygen dosage. Water chemistry was monitored approx. 50 meters from the active channel. The active channel temperature was maintained within a range of 543 - 561 K from the start of irradiation for the entire duration of the experiment. A total of 24 reference electrodes composed of platinum (Pt), silver/silver chloride (Ag/AgCl) and a zircon membrane containing silver oxide (Ag{sub 2}O) powder were installed inside the active channel of the LVR-15 test reactor. The active channel (Field tube) was divided into four zones, with each zone containing six sensors. A mathematical radiolysis code model was created in cooperation with the Japan Atomic Energy Agency. (author)

  13. Loop-Mediated Isothermal Amplification Assay Targeting the MOMP Gene for Rapid Detection of Chlamydia psittaci Abortus Strain

    Directory of Open Access Journals (Sweden)

    Guo-Zhen Lin, Fu-Ying Zheng, Ji-Zhang Zhou, Guang-Hua Wang, Xiao-An Cao, Xiao-Wei Gong and Chang-Qing Qiu*

    2012-05-01

    Full Text Available For rapid detection of the Chlamydia psittaci abortus strain, a loop-mediated isothermal amplification (LAMP assay was developed and evaluated in this study. The primers for the LAMP assay were designed on the basis of the main outer membrane protein (MOMP gene sequence of C. psittaci. Analysis showed that the assay could detect the abortus strain of C. psittaci with adequate specificity. The sensitivity of the test was the same as that of the nested-conventional PCR and higher than that of chick embryo isolation. Testing of 153 samples indicated that the LAMP assay could detect the genome of the C. psittaci abortus strain effectively in clinical samples. This assay is a useful tool for rapid diagnosis of C. psittaci infection in sheep, swine and cattle.

  14. Random walk loop soups and conformal loop ensembles

    NARCIS (Netherlands)

    van de Brug, T.; Camia, F.; Lis, M.

    2016-01-01

    The random walk loop soup is a Poissonian ensemble of lattice loops; it has been extensively studied because of its connections to the discrete Gaussian free field, but was originally introduced by Lawler and Trujillo Ferreras as a discrete version of the Brownian loop soup of Lawler and Werner, a

  15. Perturbations in loop quantum cosmology

    International Nuclear Information System (INIS)

    Nelson, W; Agullo, I; Ashtekar, A

    2014-01-01

    The era of precision cosmology has allowed us to accurately determine many important cosmological parameters, in particular via the CMB. Confronting Loop Quantum Cosmology with these observations provides us with a powerful test of the theory. For this to be possible, we need a detailed understanding of the generation and evolution of inhomogeneous perturbations during the early, quantum gravity phase of the universe. Here, we have described how Loop Quantum Cosmology provides a completion of the inflationary paradigm, that is consistent with the observed power spectra of the CMB

  16. Role of the EHD2 unstructured loop in dimerization, protein binding and subcellular localization.

    Directory of Open Access Journals (Sweden)

    Kriti Bahl

    Full Text Available The C-terminal Eps 15 Homology Domain proteins (EHD1-4 play important roles in regulating endocytic trafficking. EHD2 is the only family member whose crystal structure has been solved, and it contains an unstructured loop consisting of two proline-phenylalanine (PF motifs: KPFRKLNPF. In contrast, despite EHD2 having nearly 70% amino acid identity with its paralogs, EHD1, EHD3 and EHD4, the latter proteins contain a single KPF or RPF motif, but no NPF motif. In this study, we sought to define the precise role of each PF motif in EHD2's homo-dimerization, binding with the protein partners, and subcellular localization. To test the role of the NPF motif, we generated an EHD2 NPF-to-NAF mutant to mimic the homologous sequences of EHD1 and EHD3. We demonstrated that this mutant lost both its ability to dimerize and bind to Syndapin2. However, it continued to localize primarily to the cytosolic face of the plasma membrane. On the other hand, EHD2 NPF-to-APA mutants displayed normal dimerization and Syndapin2 binding, but exhibited markedly increased nuclear localization and reduced association with the plasma membrane. We then hypothesized that the single PF motif of EHD1 (that aligns with the KPF of EHD2 might be responsible for both binding and localization functions of EHD1. Indeed, the EHD1 RPF motif was required for dimerization, interaction with MICAL-L1 and Syndapin2, as well as localization to tubular recycling endosomes. Moreover, recycling assays demonstrated that EHD1 RPF-to-APA was incapable of supporting normal receptor recycling. Overall, our data suggest that the EHD2 NPF phenylalanine residue is crucial for EHD2 localization to the plasma membrane, whereas the proline residue is essential for EHD2 dimerization and binding. These studies support the recently proposed model in which the EHD2 N-terminal region may regulate the availability of the unstructured loop for interactions with neighboring EHD2 dimers, thus promoting

  17. Mechanical evaluation of space closure loops in Orthodontics

    OpenAIRE

    Rodrigues, Eduardo Uggeri; Maruo, Hiroshi; Guariza Filho, Odilon; Tanaka, Orlando; Camargo, Elisa Souza

    2011-01-01

    This study evaluated the mechanical performance of teardrop-shaped loops and teardrop-shaped loops with helix used in orthodontic space closure. Sixty retraction loops made with 0.019" x 0.025" stainless steel (SS) and beta-titanium (BT) wires were used. They were attached to a testing machine to measure the magnitudes of the sagittal force and the load-deflection ratio necessary for 1 mm, 2 mm and 3 mm activation. The results demonstrated that the BT alloy presented significantly smaller mea...

  18. UAS-NAS Integrated Human in the Loop: Test Environment Report

    Science.gov (United States)

    Murphy, Jim; Otto, Neil; Jovic, Srba

    2015-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration in the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability (SSI), Human Systems Integration (HSI), and Communication to support reducing the barriers of UAS access to the NAS. This research was broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Sense and Avoid (SAA) performance standards, command and control performance standards, and human systems integration. The focus of the Test Infrastructure theme was to enable development and validation of airspace integration procedures and performance standards, including the execution of integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project developed an adaptable, scalable, and schedulable relevant test environment incorporating live, virtual, and constructive elements capable of validating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project planned to conduct three integrated events: a Human-in-the-Loop simulation and two Flight Test series that integrated key concepts, technologies and/or procedures in a relevant air traffic environment. Each of

  19. Evaluation of furosemide regimens in neonates treated with extracorporeal membrane oxygenation

    NARCIS (Netherlands)

    M.M.J. van der Vorst (Maria); E.D. Wildschut (Enno); R.J.M. Houmes (Robert Jan); S.J. Gischler (Saskia); J.E. Kist-Van Holthe (Joana); J. Burggraaf (Jacobus); A.J. van der Heijden (Bert); D. Tibboel (Dick)

    2006-01-01

    textabstractIntroduction: Loop diuretics are the most frequently used diuretics in patients treated with extracorporeal membrane oxygenation (ECMO). In patients after cardiopulmonary bypass (CPB) surgery, the use of continuous furosemide infusion is increasingly documented. Because ECMO and CPB are

  20. Renormalization of loop functions for all loops

    International Nuclear Information System (INIS)

    Brandt, R.A.; Neri, F.; Sato, M.

    1981-01-01

    It is shown that the vacuum expectation values W(C 1 ,xxx, C/sub n/) of products of the traces of the path-ordered phase factors P exp[igcontour-integral/sub C/iA/sub μ/(x)dx/sup μ/] are multiplicatively renormalizable in all orders of perturbation theory. Here A/sub μ/(x) are the vector gauge field matrices in the non-Abelian gauge theory with gauge group U(N) or SU(N), and C/sub i/ are loops (closed paths). When the loops are smooth (i.e., differentiable) and simple (i.e., non-self-intersecting), it has been shown that the generally divergent loop functions W become finite functions W when expressed in terms of the renormalized coupling constant and multiplied by the factors e/sup -K/L(C/sub i/), where K is linearly divergent and L(C/sub i/) is the length of C/sub i/. It is proved here that the loop functions remain multiplicatively renormalizable even if the curves have any finite number of cusps (points of nondifferentiability) or cross points (points of self-intersection). If C/sub γ/ is a loop which is smooth and simple except for a single cusp of angle γ, then W/sub R/(C/sub γ/) = Z(γ)W(C/sub γ/) is finite for a suitable renormalization factor Z(γ) which depends on γ but on no other characteristic of C/sub γ/. This statement is made precise by introducing a regularization, or via a loop-integrand subtraction scheme specified by a normalization condition W/sub R/(C-bar/sub γ/) = 1 for an arbitrary but fixed loop C-bar/sub γ/. Next, if C/sub β/ is a loop which is smooth and simple except for a cross point of angles β, then W(C/sub β/) must be renormalized together with the loop functions of associated sets S/sup i//sub β/ = ]C/sup i/ 1 ,xxx, C/sup i//sub p/i] (i = 2,xxx,I) of loops C/sup i//sub q/ which coincide with certain parts of C/sub β/equivalentC 1 1 . Then W/sub R/(S/sup i//sub β/) = Z/sup i/j(β)W(S/sup j//sub β/) is finite for a suitable matrix Z/sup i/j

  1. Mockup tests of void fraction in moderator cell and two-phase thermosiphon loop of cold neutron source in China Advanced Research Reactor

    International Nuclear Information System (INIS)

    Du Shejiao; Bi Qincheng; Chen Tingkuan; Feng Quanke; Li Xiaoming

    2004-01-01

    Full-scale mockup tests were carried out using freon-113 as a working fluid to verify the design of China Advanced Research Reactor (CARR) Cold neutron Source (CNS), which is a two-phase hydrogen thermosiphon loop consisting of an annular cylindrical moderator cell, two separated hydrogen transfer tubes and a condenser. The circulation characteristics, liquid level and void fraction in the moderator cell against the variation of the heat load were studied. The density ratio and the volumetric evaporating rate of the mockup test are kept the same as those of CARR CNS. The test results show that the mockup loop can establish stable circulation and has a self-regulating characteristic. Within the moderator cell, the inner shell contains only vapor and the outer shell contains the mixture of vapor-liquid with void fraction in a certain range. (authors)

  2. Removal of bacteriophages with different surface charges by diverse ceramic membrane materials in pilot spiking tests.

    Science.gov (United States)

    Hambsch, B; Bösl, M; Eberhagen, I; Müller, U

    2012-01-01

    This study examines mechanisms for removal of bacteriophages (MS2 and phiX174) by ceramic membranes without application of flocculants. The ceramic membranes considered included ultra- and microfiltration membranes of different materials. Phages were spiked into the feed water in pilot scale tests in a waterworks. The membranes with pore sizes of 10 nm provided a 2.5-4.0 log removal of the phages. For pore sizes of 50 nm, the log removal dropped to 0.96-1.8. The membrane with a pore size of 200 nm did not remove phages. So, the removal of both MS2- and phiX174-phages depended on the pore size of the membranes. But apart from pore size also other factors influence the removal of phages. Removal was 0.5-0.9 log higher for MS2-phages compared with phiX174-phages. Size exclusion seems to be the major but not the only mechanism which influences the efficiency of phage removal by ceramic membranes.

  3. PaTAVTT: A Hardware-in-the-Loop Scaled Platform for Testing Autonomous Vehicle Trajectory Tracking

    Directory of Open Access Journals (Sweden)

    Zhigang Xu

    2017-01-01

    Full Text Available With the advent of autonomous vehicles, in particular its adaptability to harsh conditions, the research and development of autonomous vehicles attract significant attention by not only academia but also practitioners. Due to the high risk, high cost, and difficulty to test autonomous vehicles under harsh conditions, the hardware-in-the-loop (HIL scaled platform has been proposed as it is a safe, inexpensive, and effective test method. This platform system consists of scaled autonomous vehicle, scaled roadway, monitoring center, transmission device, positioning device, and computers. This paper uses a case of the development process of tracking control for high-speed U-turn to build the tracking control function. Further, a simplified vehicle dynamics model and a trajectory tracking algorithm have been considered to build the simulation test. The experiment results demonstrate the effectiveness of the HIL scaled platform.

  4. Near-native protein loop sampling using nonparametric density estimation accommodating sparcity.

    Science.gov (United States)

    Joo, Hyun; Chavan, Archana G; Day, Ryan; Lennox, Kristin P; Sukhanov, Paul; Dahl, David B; Vannucci, Marina; Tsai, Jerry

    2011-10-01

    Unlike the core structural elements of a protein like regular secondary structure, template based modeling (TBM) has difficulty with loop regions due to their variability in sequence and structure as well as the sparse sampling from a limited number of homologous templates. We present a novel, knowledge-based method for loop sampling that leverages homologous torsion angle information to estimate a continuous joint backbone dihedral angle density at each loop position. The φ,ψ distributions are estimated via a Dirichlet process mixture of hidden Markov models (DPM-HMM). Models are quickly generated based on samples from these distributions and were enriched using an end-to-end distance filter. The performance of the DPM-HMM method was evaluated against a diverse test set in a leave-one-out approach. Candidates as low as 0.45 Å RMSD and with a worst case of 3.66 Å were produced. For the canonical loops like the immunoglobulin complementarity-determining regions (mean RMSD 7.0 Å), this sampling method produces a population of loop structures to around 3.66 Å for loops up to 17 residues. In a direct test of sampling to the Loopy algorithm, our method demonstrates the ability to sample nearer native structures for both the canonical CDRH1 and non-canonical CDRH3 loops. Lastly, in the realistic test conditions of the CASP9 experiment, successful application of DPM-HMM for 90 loops from 45 TBM targets shows the general applicability of our sampling method in loop modeling problem. These results demonstrate that our DPM-HMM produces an advantage by consistently sampling near native loop structure. The software used in this analysis is available for download at http://www.stat.tamu.edu/~dahl/software/cortorgles/.

  5. Near-native protein loop sampling using nonparametric density estimation accommodating sparcity.

    Directory of Open Access Journals (Sweden)

    Hyun Joo

    2011-10-01

    Full Text Available Unlike the core structural elements of a protein like regular secondary structure, template based modeling (TBM has difficulty with loop regions due to their variability in sequence and structure as well as the sparse sampling from a limited number of homologous templates. We present a novel, knowledge-based method for loop sampling that leverages homologous torsion angle information to estimate a continuous joint backbone dihedral angle density at each loop position. The φ,ψ distributions are estimated via a Dirichlet process mixture of hidden Markov models (DPM-HMM. Models are quickly generated based on samples from these distributions and were enriched using an end-to-end distance filter. The performance of the DPM-HMM method was evaluated against a diverse test set in a leave-one-out approach. Candidates as low as 0.45 Å RMSD and with a worst case of 3.66 Å were produced. For the canonical loops like the immunoglobulin complementarity-determining regions (mean RMSD 7.0 Å, this sampling method produces a population of loop structures to around 3.66 Å for loops up to 17 residues. In a direct test of sampling to the Loopy algorithm, our method demonstrates the ability to sample nearer native structures for both the canonical CDRH1 and non-canonical CDRH3 loops. Lastly, in the realistic test conditions of the CASP9 experiment, successful application of DPM-HMM for 90 loops from 45 TBM targets shows the general applicability of our sampling method in loop modeling problem. These results demonstrate that our DPM-HMM produces an advantage by consistently sampling near native loop structure. The software used in this analysis is available for download at http://www.stat.tamu.edu/~dahl/software/cortorgles/.

  6. Near-Native Protein Loop Sampling Using Nonparametric Density Estimation Accommodating Sparcity

    Science.gov (United States)

    Day, Ryan; Lennox, Kristin P.; Sukhanov, Paul; Dahl, David B.; Vannucci, Marina; Tsai, Jerry

    2011-01-01

    Unlike the core structural elements of a protein like regular secondary structure, template based modeling (TBM) has difficulty with loop regions due to their variability in sequence and structure as well as the sparse sampling from a limited number of homologous templates. We present a novel, knowledge-based method for loop sampling that leverages homologous torsion angle information to estimate a continuous joint backbone dihedral angle density at each loop position. The φ,ψ distributions are estimated via a Dirichlet process mixture of hidden Markov models (DPM-HMM). Models are quickly generated based on samples from these distributions and were enriched using an end-to-end distance filter. The performance of the DPM-HMM method was evaluated against a diverse test set in a leave-one-out approach. Candidates as low as 0.45 Å RMSD and with a worst case of 3.66 Å were produced. For the canonical loops like the immunoglobulin complementarity-determining regions (mean RMSD 7.0 Å), this sampling method produces a population of loop structures to around 3.66 Å for loops up to 17 residues. In a direct test of sampling to the Loopy algorithm, our method demonstrates the ability to sample nearer native structures for both the canonical CDRH1 and non-canonical CDRH3 loops. Lastly, in the realistic test conditions of the CASP9 experiment, successful application of DPM-HMM for 90 loops from 45 TBM targets shows the general applicability of our sampling method in loop modeling problem. These results demonstrate that our DPM-HMM produces an advantage by consistently sampling near native loop structure. The software used in this analysis is available for download at http://www.stat.tamu.edu/~dahl/software/cortorgles/. PMID:22028638

  7. Description of the sodium loop ML-3

    International Nuclear Information System (INIS)

    Torre, de la M.; Melches, I; Lapena, J.; Martinez, T.A.; Miguel, de D.; Duran, F.

    1979-01-01

    The sodium loop ML-3 is described. The main objective of this facility is to obtain mechanical property data for LMFBR materials in creep and low cycle fatigue testing in flowing sodium. ML-3 includes 10 test stations for creep and two for fatigue. It is possible to operate simultaneously at three different temperature levels. The maximum operating temperature is 650 deg C at flow velocities up to 5 m/s. The ML-3 loop has been located in a manner that permits the fill/dump tank cover gas and security systems to be shared with an earlier circuit, the ML-1. (author)

  8. Integrated Human-in-the-Loop Ground Testing - Value, History, and the Future

    Science.gov (United States)

    Henninger, Donald L.

    2016-01-01

    Systems for very long-duration human missions to Mars will be designed to operate reliably for many years and many of these systems will never be returned to Earth. The need for high reliability is driven by the requirement for safe functioning of remote, long-duration crewed systems and also by unsympathetic abort scenarios. Abort from a Mars mission could be as long as 450 days to return to Earth. The key to developing a human-in-the-loop architecture is a development process that allows for a logical sequence of validating successful development in a stepwise manner, with assessment of key performance parameters (KPPs) at each step; especially important are KPPs for technologies evaluated in a full systems context with human crews on Earth and on space platforms such as the ISS. This presentation will explore the implications of such an approach to technology development and validation including the roles of ground and space-based testing necessary to develop a highly reliable system for long duration human exploration missions. Historical development and systems testing from Mercury to the International Space Station (ISS) to ground testing will be reviewed. Current work as well as recommendations for future work will be described.

  9. High pressure experimental water loop

    International Nuclear Information System (INIS)

    Grenon, M.

    1958-01-01

    A high pressure experimental water loop has been made for studying the detection and evolution of cladding failure in a pressurized reactor. The loop has been designed for a maximum temperature of 360 deg. C, a maximum of 160 kg/cm 2 and flow rates up to 5 m 3 /h. The entire loop consists of several parts: a main circuit with a canned rotor circulation pump, steam pressurizer, heating tubes, two hydro-cyclones (one de-gasser and one decanter) and one tubular heat exchanger; a continuous purification loop, connected in parallel, comprising pressure reducing valves and resin pots which also allow studies of the stability of resins under pressure, temperature and radiation; following the gas separator is a gas loop for studying the recombination of the radiolytic gases in the steam phase. The preceding circuits, as well as others, return to a low pressure storage circuit. The cold water of the low pressure storage flask is continuously reintroduced into the high pressure main circuit by means of a return pump at a maximum head of 160 kg /cm 2 , and adjusted to the pressurizer level. This loop is also a testing bench for the tight high pressure apparatus. The circulating pump and the connecting flanges (Oak Ridge type) are water-tight. The feed pump and the pressure reducing valves are not; the un-tight ones have a system of leak recovery. To permanently check the tightness the circuit has been fitted with a leak detection system (similar to the HRT one). (author) [fr

  10. Irradiation of UO2 specimens with molten cores in a pressurized water loop. Test X-2-x

    International Nuclear Information System (INIS)

    Bain, A.S.

    1961-08-01

    Two Zircaloy-2 clad specimens containing stoichiometric UO 2 pellets were irradiated in a pressurized water loop for 379 hours at heat ratings sufficient to cause central melting of the UO 2 . There was no appearance of localized overheating or accelerated corrosion of the sheath, but the diametral increases were considerably larger than those observed in loop specimens irradiated at lower heat ratings. The length increases, however, were approximately the same as those measured for specimens at lower ratings. There was a clearly visible demarcation between UO 2 that had been molten and that which had not. The value of ∫ 500 o C Tm kdθ = 74 ± W/cm was essentially the same as that obtained from the short-duration tests in the Hydraulic Rabbit, indicating there is no marked decrease in thermal conductivity of the UO 2 fuel in irradiations up to 379 hours. (author)

  11. Membrane bioreactors' potential for ethanol and biogas production: a review.

    Science.gov (United States)

    Ylitervo, Päivi; Akinbomia, Julius; Taherzadeha, Mohammad J

    2013-01-01

    Companies developing and producing membranes for different separation purposes, as well as the market for these, have markedly increased in numbers over the last decade. Membrane and separation technology might well contribute to making fuel ethanol and biogas production from lignocellulosic materials more economically viable and productive. Combining biological processes with membrane separation techniques in a membrane bioreactor (MBR) increases cell concentrations extensively in the bioreactor. Such a combination furthermore reduces product inhibition during the biological process, increases product concentration and productivity, and simplifies the separation of product and/or cells. Various MBRs have been studied over the years, where the membrane is either submerged inside the liquid to be filtered, or placed in an external loop outside the bioreactor. All configurations have advantages and drawbacks, as reviewed in this paper. The current review presents an account of the membrane separation technologies, and the research performed on MBRs, focusing on ethanol and biogas production. The advantages and potentials of the technology are elucidated.

  12. Studying DNA looping by single-molecule FRET.

    Science.gov (United States)

    Le, Tung T; Kim, Harold D

    2014-06-28

    Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can also affect the apparent looping rate through mechanisms such as nonspecific binding. Here, we show how to measure dsDNA looping kinetics without ligase by detecting transient DNA loop formation by FRET (Fluorescence Resonance Energy Transfer). dsDNA molecules are constructed using a simple PCR-based protocol with a FRET pair and a biotin linker. The looping probability density known as the J factor is extracted from the looping rate and the annealing rate between two disconnected sticky ends. By testing two dsDNAs with different intrinsic curvatures, we show that the J factor is sensitive to the intrinsic shape of the dsDNA.

  13. Fast electrochemical membrane actuator: Design, fabrication and preliminary testing

    Science.gov (United States)

    Uvarov, I. V.; Postnikov, A. V.; Shlepakov, P. S.; Naumov, V. V.; Koroleva, O. M.; Izyumov, M. O.; Svetovoy, V. B.

    2017-11-01

    An actuator based on water electrolysis with a fast change of voltage polarity is presented. It demonstrates a new actuation principle allowing significant increase the operation frequency of the device due to fast termination of the produced gas. The actuator consists of a working chamber with metallic electrodes and supplying channels filled with an electrolyte. The chamber is formed in a layer of SU-8 and covered by a flexible polydimethylsiloxane membrane, which deforms as the pressure in the chamber increases. Design, fabrication procedure, and first tests of the actuator are described.

  14. Analysis of the October 5, 1979 lithium spill and fire in the Lithium Processing Test Loop

    International Nuclear Information System (INIS)

    Maroni, V.A.; Beatty, R.A.; Brown, H.L.; Coleman, L.F.; Foose, R.M.; McPheeters, C.C.; Slawecki, M.; Smith, D.L.; Van Deventer, E.H.; Weston, J.R.

    1981-12-01

    On October 5, 1979, the Lithium Processing Test Loop (LPTL) developed a lithium leak in the electromagnetic (EM) pump channel, which damaged the pump, its surrounding support structure, and the underlying floor pan. A thorough analysis of the causes and consequences of the pump failure was conducted by personnel from CEN and several other ANL divisions. Metallurgical analyses of the elliptical pump channel and adjacent piping revealed that there was a significant buildup of iron-rich crystallites and other solid material in the region of the current-carrying bus bars (region of high magnetic field), which may have resulted in a flow restriction that contributed to the deterioration of the channel walls. The location of the failure was in a region of high residual stress (due to cold work produced during channel fabrication); this failure is typical of other cold work/stress-related failures encountered in components operated in forced-circulation lithium loops. Another important result was the isolation of crystals of a compound characterized as Li/sub x/CrN/sub y/. Compounds of this type are believed to be responsible for much of the Fe, Cr, and Ni mass transfer encountered in lithium loops constructed of stainless steel. The importance of nitrogen in the mass-transfer mechanism has long been suspected, but the existence of stable ternary Li-M-N compounds (M = Fe, Cr, Ni) had not previously been verified

  15. LISA Pathfinder: OPD loop characterisation

    Science.gov (United States)

    Born, Michael; LPF Collaboration

    2017-05-01

    The optical metrology system (OMS) of the LISA Pathfinder mission is measuring the distance between two free-floating test masses with unprecedented precision. One of the four OMS heterodyne interferometers reads out the phase difference between the reference and the measurement laser beam. This phase from the reference interferometer is common to all other longitudinal interferometer read outs and therefore subtracted. In addition, the phase is fed back via the digital optical pathlength difference (OPD) control loop to keep it close to zero. Here, we analyse the loop parameters and compare them to on-ground measurement results.

  16. A LabVIEW model incorporating an open-loop arterial impedance and a closed-loop circulatory system.

    Science.gov (United States)

    Cole, R T; Lucas, C L; Cascio, W E; Johnson, T A

    2005-11-01

    While numerous computer models exist for the circulatory system, many are limited in scope, contain unwanted features or incorporate complex components specific to unique experimental situations. Our purpose was to develop a basic, yet multifaceted, computer model of the left heart and systemic circulation in LabVIEW having universal appeal without sacrificing crucial physiologic features. The program we developed employs Windkessel-type impedance models in several open-loop configurations and a closed-loop model coupling a lumped impedance and ventricular pressure source. The open-loop impedance models demonstrate afterload effects on arbitrary aortic pressure/flow inputs. The closed-loop model catalogs the major circulatory waveforms with changes in afterload, preload, and left heart properties. Our model provides an avenue for expanding the use of the ventricular equations through closed-loop coupling that includes a basic coronary circuit. Tested values used for the afterload components and the effects of afterload parameter changes on various waveforms are consistent with published data. We conclude that this model offers the ability to alter several circulatory factors and digitally catalog the most salient features of the pressure/flow waveforms employing a user-friendly platform. These features make the model a useful instructional tool for students as well as a simple experimental tool for cardiovascular research.

  17. Current operations and experiments at the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Bartlit, J.R.; Anderson, J.L.

    1985-01-01

    The Tritium Systems Test Assembly (TSTA) has continued to move toward operation of a fully-integrated, full-sized, computer-controlled fusion fuel processing loop. Concurrent, nonloop experiments have answered important questions on new components and issues such as palladium diffusion membranes, ceramic electrolysis cells, regenerable tritium getters, laser Raman spectroscopy, unregenerable tritium inventory on molecular sieves, tritium contamination problems and decontamination methods, and operating data on reliability, emissions, doses, and wastes generated. 4 refs., 2 figs

  18. Development of compact tritium confinement system using gas separation membrane

    International Nuclear Information System (INIS)

    Hayashi, Takumi; Okuno, Kenji

    1994-01-01

    In order to develop more compact and cost-effective tritium confinement system for fusion reactor, a new system using gas separation membranes has been studied at the Tritium Process Laboratory in the Japan Atomic Energy Research Institute. The preliminary result showed that the gas separation membrane system could reduce processing volume of tritium contaminated gas to more than one order of magnitude compared with the conventional system, and that most of tritiated water vapor (humidity) could be directly recovered by water condenser before passing through dryer such as molecular sieves. More detail investigations of gas separation characteristics of membrane were started to design ITER Atmospheric Detritiation System (ADS). Furthermore, a scaled polyimide membrane module (hollow-filament type) loop was just installed to investigate the actual tritium confinement performance under various ITER-ADS conditions. (author)

  19. Water chemistry of the JMTR IASCC irradiation loop system

    International Nuclear Information System (INIS)

    Hanawa, Satoshi; Oogiyanagi, Jin; Mori, Yuichiro; Saito, Junichi; Tsukada, Takashi

    2006-01-01

    Irradiation assisted stress corrosion cracking (IASCC) is recognized as an important degradation issue of the core-internal material for aged Boiling Water Reactors (BWRs). Therefore, irradiation loop system has been developed and installed in the Japan Materials Testing Reactor to perform the IASCC irradiation test. In the IASCC irradiation test, water chemistry of irradiation field is one of the most important key parameters because it affects initiation and propagation of cracks. This paper summarizes the measurement and evaluation method of water chemistry of IASCC irradiation loop system. (author)

  20. Protein intercalation in DNA as one of main modes of fixation of the most stable chromatin loop domains

    Directory of Open Access Journals (Sweden)

    М. I. Chopei

    2014-08-01

    Full Text Available The main mechanism of DNA track formation during comet assay of nucleoids, obtained after removal of cell membranes and most of proteins, is the extension to anode of negatively supercoiled DNA loops attached to proteins, remaining in nucleoid after lysis treatment. The composition of these residual protein structures and the nature of their strong interaction with the loop ends remain poorly studied. In this work we investigated the influence of chloroquine intercalation and denaturation of nucleoid proteins on the efficiency of electrophoretic track formation during comet assay. The results obtained suggest that even gentle protein denaturation is sufficient to reduce considerably the effectiveness of the DNA loop migration due to an increase in the loops size. The same effect was observed under local DNA unwinding upon chloroquine intercalation around the sites of the attachment of DNA to proteins. The topological interaction (protein intercalation into the double helix between DNA loop ends and nucleoid proteins is discussed.

  1. A Verification Study on the Loop-Breaking Logic of FTREX

    International Nuclear Information System (INIS)

    Choi, Jong Soo

    2008-01-01

    The logical loop problem in fault tree analysis (FTA) has been solved by manually or automatically breaking their circular logics. The breaking of logical loops is one of uncertainty sources in fault tree analyses. A practical method which can verify fault tree analysis results was developed by Choi. The method has the capability to handle logical loop problems. It has been implemented in a FORTRAN program which is called VETA (Verification and Evaluation of fault Tree Analysis results) code. FTREX, a well-known fault tree quantifier developed by KAERI, has an automatic loop-breaking logic. In order to make certain of the correctness of the loop-breaking logic of FTREX, some typical trees with complex loops are developed and applied to this study. This paper presents some verification results of the loop-breaking logic tested by the VETA code

  2. Adaptive transition rates in excitable membranes

    Directory of Open Access Journals (Sweden)

    Shimon Marom

    2009-02-01

    Full Text Available Adaptation of activity in excitable membranes occurs over a wide range of timescales. Standard computational approaches handle this wide temporal range in terms of multiple states and related reaction rates emanating from the complexity of ionic channels. The study described here takes a different (perhaps complementary approach, by interpreting ion channel kinetics in terms of population dynamics. I show that adaptation in excitable membranes is reducible to a simple Logistic-like equation in which the essential non-linearity is replaced by a feedback loop between the history of activation and an adaptive transition rate that is sensitive to a single dimension of the space of inactive states. This physiologically measurable dimension contributes to the stability of the system and serves as a powerful modulator of input-output relations that depends on the patterns of prior activity; an intrinsic scale free mechanism for cellular adaptation that emerges from the microscopic biophysical properties of ion channels of excitable membranes.

  3. Testing SUSY at the LHC: Electroweak and Dark matter fine tuning at two-loop order

    CERN Document Server

    Cassel, S; Ross, G G

    2010-01-01

    In the framework of the Constrained Minimal Supersymmetric Standard Model (CMSSM) we evaluate the electroweak fine tuning measure that provides a quantitative test of supersymmetry as a solution to the hierarchy problem. Taking account of current experimental constraints we compute the fine tuning at two-loop order and determine the limits on the CMSSM parameter space and the measurements at the LHC most relevant in covering it. Without imposing the LEPII bound on the Higgs mass, it is shown that the fine tuning computed at two-loop has a minimum $\\Delta=8.8$ corresponding to a Higgs mass $m_h=114\\pm 2$ GeV. Adding the constraint that the SUSY dark matter relic density should be within present bounds we find $\\Delta=15$ corresponding to $m_h=114.7\\pm 2$ GeV and this rises to $\\Delta=17.8$ ($m_h=115.9\\pm 2$ GeV) for SUSY dark matter abundance within 3$\\sigma$ of the WMAP constraint. We extend the analysis to include the contribution of dark matter fine tuning. In this case the overall fine tuning and Higgs mas...

  4. Hybrid Combustion-Gasification Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    } separation, and also syngas production from coal with the calcium sulfide (CaS)/calcium sulfate (CaSO{sub 4}) loop utilizing the PDU facility. The results of Phase I were reported in Reference 1, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase I Report' The objective for Phase II was to develop the carbonate loop--lime (CaO)/calcium carbonate (CaCO{sub 3}) loop, integrate it with the gasification loop from Phase I, and ultimately demonstrate the feasibility of hydrogen production from the combined loops. The results of this program were reported in Reference 3, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase II Report'. The objective of Phase III is to operate the pilot plant to obtain enough engineering information to design a prototype of the commercial Chemical Looping concept. The activities include modifications to the Phase II Chemical Looping PDU, solids transportation studies, control and instrumentation studies and additional cold flow modeling. The deliverable is a report making recommendations for preliminary design guidelines for the prototype plant, results from the pilot plant testing and an update of the commercial plant economic estimates.

  5. Two-loop hard-thermal-loop thermodynamics with quarks

    International Nuclear Information System (INIS)

    Andersen, Jens O.; Petitgirard, Emmanuel; Strickland, Michael

    2004-01-01

    We calculate the quark contribution to the free energy of a hot quark-gluon plasma to two-loop order using hard-thermal-loop (HTL) perturbation theory. All ultraviolet divergences can be absorbed into renormalizations of the vacuum energy and the HTL quark and gluon mass parameters. The quark and gluon HTL mass parameters are determined self-consistently by a variational prescription. Combining the quark contribution with the two-loop HTL perturbation theory free energy for pure glue we obtain the total two-loop QCD free energy. Comparisons are made with lattice estimates of the free energy for N f =2 and with exact numerical results obtained in the large-N f limit

  6. A Novel 100 kW Power Hardware-in-the-Loop Emulation Test Bench for Permanent Magnet Synchronous Machines with Nonlinear Magnetics

    OpenAIRE

    Schmitt, Alexander; Richter, Jan; Gommeringer, Mario; Wersal, Thomas; Braun, Michael

    2016-01-01

    This paper presents a high dynamic power hardware-inthe-loop (PHIL) emulation test bench to mimic arbitrary permanent magnet synchronous machines with nonlinear magnetics. The proposed PHIL test bench is composed of a high performance real-time simulation system to calculate the machine behaviour and a seven level modular multiphase multilevel converter to emulate the power flow of the virtual machine. The PHIL test bench is parametrized for an automotive synchronous machine and controlled by...

  7. Calculation of the thermal neutron flux depression in the loop VISA-1

    International Nuclear Information System (INIS)

    Martinc, R.

    1961-01-01

    Among other applications, the VISA-1 loop is to be used for thermal load testing of materials. For this type of testing one should know the maximum power generated in the loop. This power is determined from the maximum thermal neutron flux in the VK-5 channel and mean flux depression in the fissile component of the loop. Thermal neutron flux depression is caused by neutron absorption in the components of the loop, shape of the components and neutron leaking through gaps as well as properties of the surrounding medium of the core. All these parameters were taken into account for calculating the depression of thermal neutron flux in the VISA-1 loop. Two group diffusion theory was used. Fast neutron from the fission in the loop and slowed down were taken into account. Depression of the thermal neutron flux is expressed by depression factor which represents the ratio of the mean thermal neutron flux in the fissile loop component and the thermal neutron flux in the VK-5 without the loop. Calculation error was estimated and it was recommended to determine the depression factor experimentally as well [sr

  8. LoopIng: a template-based tool for predicting the structure of protein loops.

    KAUST Repository

    Messih, Mario Abdel; Lepore, Rosalba; Tramontano, Anna

    2015-01-01

    ) and significant enhancements for long loops (11-20 residues). The quality of the predictions is robust to errors that unavoidably affect the stem regions when these are modeled. The method returns a confidence score for the predicted template loops and has

  9. Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation

    OpenAIRE

    Jiříček, T.; Komárek, M.; Lederer, T.

    2017-01-01

    Self-sustained electrospun polyurethane nanofiber membranes were manufactured and tested on a direct-contact membrane distillation unit in an effort to find the optimum membrane thickness to maximize flux rate and minimize heat losses across the membrane. Also salt retention and flux at high salinities up to 100 g kg−1 were evaluated. Even though the complex structure of nanofiber layers has extreme specific surface and porosity, membrane performance was surprisingly predictable; the highest ...

  10. Summary of Test Results From a 1 kWe-Class Free-Piston Stirling Power Convertor Integrated With a Pumped NaK Loop

    Science.gov (United States)

    Briggs, Maxwell H.; Geng, Steven M.; Pearson, J. Boise; Godfroy, Thomas J.

    2010-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors was modified to operate with a NaK liquid metal pumped loop for thermal energy input. This was the first-ever attempt at powering a free-piston Stirling engine with a pumped liquid metal heat source and is a major FSP project milestone towards demonstrating technical feasibility. The tests included performance mapping the convertors over various hot and cold-end temperatures, piston amplitudes and NaK flow rates; and transient test conditions to simulate various start-up and fault scenarios. Performance maps of the convertors generated using the pumped NaK loop for thermal input show increases in power output over those measured during baseline testing using electric heating. Transient testing showed that the Stirling convertors can be successfully started in a variety of different scenarios and that the convertors can recover from a variety of fault scenarios.

  11. Astrocytic autoantibody of neuromyelitis optica (NMO-IgG) binds to aquaporin-4 extracellular loops, monomers, tetramers and high order arrays

    Science.gov (United States)

    Iorio, Raffaele; Fryer, James P.; Hinson, Shannon R.; Fallier-Becker, Petra; Wolburg, Hartwig; Pittock, Sean J.; Lennon, Vanda A.

    2012-01-01

    The principal central nervous system (CNS) water channel, aquaporin-4 (AQP4), is confined to astrocytic and ependymal membranes and is the target of a pathogenic autoantibody, neuromyelitis optica (NMO)-IgG. This disease-specific autoantibody unifies a spectrum of relapsing CNS autoimmune inflammatory disorders of which NMO exemplifies the classic phenotype. Multiple sclerosis and other immune-mediated demyelinating disorders of the CNS lack a distinctive biomarker. Two AQP4 isoforms, M1 and M23, exist as homotetrameric and heterotetrameric intramembranous particles (IMPs). Orthogonal arrays of predominantly M23 particles (OAPs) are an ultrastructural characteristic of astrocytic membranes. We used high-titered serum from 32 AQP4-IgG-seropositive patients and 85 controls to investigate the nature and molecular location of AQP4 epitopes that bind NMO-IgG, and the influence of supramolecular structure. NMO-IgG bound to denatured AQP4 monomers (68% of cases), to native tetramers and high order arrays (90% of cases), and to AQP4 in live cell membranes (100% of cases). Disease-specific epitopes reside in extracellular loop C more than in loops A or E. IgG binding to intracellular epitopes lacks disease specificity. These observations predict greater disease specificity and sensitivity for tissue-based and cell-based serological assays employing “native” AQP4 than assays employing denatured AQP4 and fragments. NMO-IgG binds most avidly to plasma membrane surface AQP4 epitopes formed by loop interactions within tetramers and by intermolecular interactions within high order structures. The relative abundance and localization of AQP4 high order arrays in distinct CNS regions may explain the variability in clinical phenotype of NMO spectrum disorders. PMID:22906356

  12. Mechanical evaluation of space closure loops in orthodontics.

    Science.gov (United States)

    Rodrigues, Eduardo Uggeri; Maruo, Hiroshi; Guariza Filho, Odilon; Tanaka, Orlando; Camargo, Elisa Souza

    2011-01-01

    This study evaluated the mechanical performance of teardrop-shaped loops and teardrop-shaped loops with helix used in orthodontic space closure. Sixty retraction loops made with 0.019" x 0.025" stainless steel (SS) and beta-titanium (BT) wires were used. They were attached to a testing machine to measure the magnitudes of the sagittal force and the load-deflection ratio necessary for 1 mm, 2 mm and 3 mm activation. The results demonstrated that the BT alloy presented significantly smaller mean values (p < 0.01) of sagittal force and load-deflection than the SS alloy. The loop with the highest mean value of sagittal force and load-deflection was the teardrop-shaped loop (p < 0.01). Differences were observed in the mean values of sagittal force and load-deflection among activations, and the highest mean value was found in the activation of 3 mm, while the smallest mean value was evident in the activation of 1 mm (p < 0.01). It could be concluded that the metallic alloy used and the presence of a helix in configuration of the loops may have a strong influence on the sagittal force produced and on the load-deflection ratio; the teardrop-shaped loops and teardrop-shaped loops with helix in BT presented the release of lighter forces; the teardrop-shaped loop in SS generated a high load-deflection ratio, providing high magnitudes of horizontal force during its deactivation.

  13. Mechanical evaluation of space closure loops in Orthodontics

    Directory of Open Access Journals (Sweden)

    Eduardo Uggeri Rodrigues

    2011-02-01

    Full Text Available This study evaluated the mechanical performance of teardrop-shaped loops and teardrop-shaped loops with helix used in orthodontic space closure. Sixty retraction loops made with 0.019" x 0.025" stainless steel (SS and beta-titanium (BT wires were used. They were attached to a testing machine to measure the magnitudes of the sagittal force and the load-deflection ratio necessary for 1 mm, 2 mm and 3 mm activation. The results demonstrated that the BT alloy presented significantly smaller mean values (p < 0.01 of sagittal force and load-deflection than the SS alloy. The loop with the highest mean value of sagittal force and load-deflection was the teardrop-shaped loop (p < 0.01. Differences were observed in the mean values of sagittal force and load-deflection among activations, and the highest mean value was found in the activation of 3 mm, while the smallest mean value was evident in the activation of 1 mm (p < 0.01. It could be concluded that the metallic alloy used and the presence of a helix in configuration of the loops may have a strong influence on the sagittal force produced and on the load-deflection ratio; the teardrop-shaped loops and teardrop-shaped loops with helix in BT presented the release of lighter forces; the teardrop-shaped loop in SS generated a high load-deflection ratio, providing high magnitudes of horizontal force during its deactivation.

  14. Closed-loop thrust and pressure profile throttling of a nitrous oxide/hydroxyl-terminated polybutadiene hybrid rocket motor

    Science.gov (United States)

    Peterson, Zachary W.

    Hybrid motors that employ non-toxic, non-explosive components with a liquid oxidizer and a solid hydrocarbon fuel grain have inherently safe operating characteristics. The inherent safety of hybrid rocket motors offers the potential to greatly reduce overall operating costs. Another key advantage of hybrid rocket motors is the potential for in-flight shutdown, restart, and throttle by controlling the pressure drop between the oxidizer tank and the injector. This research designed, developed, and ground tested a closed-loop throttle controller for a hybrid rocket motor using nitrous oxide and hydroxyl-terminated polybutadiene as propellants. The research simultaneously developed closed-loop throttle algorithms and lab scale motor hardware to evaluate the fidelity of the throttle simulations and algorithms. Initial open-loop motor tests were performed to better classify system parameters and to validate motor performance values. Deep-throttle open-loop tests evaluated limits of stable thrust that can be achieved on the test hardware. Open-loop tests demonstrated the ability to throttle the motor to less than 10% of maximum thrust with little reduction in effective specific impulse and acoustical stability. Following the open-loop development, closed-loop, hardware-in-the-loop tests were performed. The closed-loop controller successfully tracked prescribed step and ramp command profiles with a high degree of fidelity. Steady-state accuracy was greatly improved over uncontrolled thrust.

  15. Proton Exchange Membrane Fuel Cell Engineering Model Powerplant. Test Report: Benchmark Tests in Three Spatial Orientations

    Science.gov (United States)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    Proton exchange membrane (PEM) fuel cell technology is the leading candidate to replace the aging alkaline fuel cell technology, currently used on the Shuttle, for future space missions. This test effort marks the final phase of a 5-yr development program that began under the Second Generation Reusable Launch Vehicle (RLV) Program, transitioned into the Next Generation Launch Technologies (NGLT) Program, and continued under Constellation Systems in the Exploration Technology Development Program. Initially, the engineering model (EM) powerplant was evaluated with respect to its performance as compared to acceptance tests carried out at the manufacturer. This was to determine the sensitivity of the powerplant performance to changes in test environment. In addition, a series of tests were performed with the powerplant in the original standard orientation. This report details the continuing EM benchmark test results in three spatial orientations as well as extended duration testing in the mission profile test. The results from these tests verify the applicability of PEM fuel cells for future NASA missions. The specifics of these different tests are described in the following sections.

  16. Membrane dynamics of γ-secretase provides a molecular basis for Aβ binding and processing

    DEFF Research Database (Denmark)

    Somavarapu, Arun Kumar; Kepp, Kasper Planeta

    2017-01-01

    and explicit dynamics relevant to substrate processing remain unknown. We report a modeled structure utilizing the optimal multi-template information available, including loops and missing side chains, account of maturation cleavage, and explicit all-atom molecular dynamics in the membrane. We observe three...... interactions and induces shorter residence time and by inference releases Aβ peptides of longer lengths. Our simulations thus provide a molecular basis for substrate processing and changes in the Aβ42/Aβ40 ratio. Accordingly, selective binding to protect the semi-open “innocent” conformation provides......γ-secretase produces β-amyloid (Aβ) within its presenilin (PS1) subunit, mutations in which cause Alzheimer’s disease, and current therapies thus seek to modulate its activity. While the general structure is known from recent electron microscopy studies, direct loop- and membrane-interactions...

  17. Development and pilot testing of full-scale membrane distillation modules for deployment of waste heat

    NARCIS (Netherlands)

    Jansen, A.E.; Assink, J.W.; Hanemaaijer, J.H.; Medevoort, J. van; Sonsbeek, E. van

    2013-01-01

    Membrane distillation is an attractive technology for extracting fresh water from seawater. Newly developed modules have been used in pilot tests and bench scale tests to demonstrate the potential of producing excellent product water quality in a single step, little need for water pretreatment and a

  18. An Installation of IPS Bypass Line at the Fuel Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ho Young; Ahn, G. H.; Lee, M.; Kim, M. S.; Cho, S. H.; Han, J. S.; Hur, S. O. [KAERI, Daejeon (Korea, Republic of)

    2010-12-15

    The Fuel Test Loop(FTL) was installed for the national goal of self-supporting technology in the field of design and construction of nuclear power plant. The FTL with the fuel irradiation equipment is essential in developing, improving and inspecting the fuel of CANDU type or PWR type nuclear power plant. The FTL should be operated at the same conditions of commercial nuclear power plant such as temperature, pressure, flow rate, neutron flux and so on. Starting designing in December 2001, the FTL was installed from March 2007 to August 2008. Especially the In Pile Section(IPS) was installed at IR1 hole in August 2008. Until September 2009 after loading the test fuel, a series of power escalation tests (LSD, CSB1, CSB2, HSB, HOP) were conducted. And it was operated at the condition of CSB2 for the 8 cycles from October 2009 to July 2010. But it could not be normally operated in early 2010, because the high radiation released from irradiated materials due to the worn down bearing of main cooling pump. So, we removed the IPS and installed a newly designed IPS bypass line to prevent increasing high radiation. In this report we will present preliminary works, main works processes, devices of making work environments, a designing and manufacturing of IPS bypass line and a rack of IPS, installing know-hows, problems and solutions broke out during the work etc. We believe that our efforts to complete successful installing and operating of the FTL system will contribute for the efficient utilization of HANARO

  19. Regulation of multispanning membrane protein topology via post-translational annealing.

    Science.gov (United States)

    Van Lehn, Reid C; Zhang, Bin; Miller, Thomas F

    2015-09-26

    The canonical mechanism for multispanning membrane protein topogenesis suggests that protein topology is established during cotranslational membrane integration. However, this mechanism is inconsistent with the behavior of EmrE, a dual-topology protein for which the mutation of positively charged loop residues, even close to the C-terminus, leads to dramatic shifts in its topology. We use coarse-grained simulations to investigate the Sec-facilitated membrane integration of EmrE and its mutants on realistic biological timescales. This work reveals a mechanism for regulating membrane-protein topogenesis, in which initially misintegrated configurations of the proteins undergo post-translational annealing to reach fully integrated multispanning topologies. The energetic barriers associated with this post-translational annealing process enforce kinetic pathways that dictate the topology of the fully integrated proteins. The proposed mechanism agrees well with the experimentally observed features of EmrE topogenesis and provides a range of experimentally testable predictions regarding the effect of translocon mutations on membrane protein topogenesis.

  20. Synthesis, characterization and fuel cell performance tests of boric acid and boron phosphate doped, sulphonated and phosphonated poly(vinyl alcohol) based composite membranes

    Science.gov (United States)

    Şahin, Alpay; Ar, İrfan

    2015-08-01

    The aim of this study is to synthesize a composite membrane having high proton conductivity, ion exchange capacity and chemical stability. In order to achieve this aim, poly(vinyl alcohol) (PVA) based composite membranes are synthesized by using classic sol-gel method. Boric acid (H3BO3) and boron phosphate (BPO4) are added to the membrane matrix in different ratios in order to enhance the membrane properties. Characterization tests, i.e; FT-IR analysis, mechanical strength tests, water hold-up capacities, swelling properties, ion exchange capacities, proton conductivities and fuel cell performance tests of synthesized membranes are carried out. As a result of performance experiments highest performance values are obtained for the membrane containing 15% boron phosphate at 0.6 V and 750 mA/cm2. Water hold-up capacity, swelling ratio, ion exchange capacity and proton conductivity of this membrane are found as 56%, 8%, 1.36 meq/g and 0.37 S/cm, respectively. These values are close to the values obtained ones for perfluorosulphonic acid membranes. Therefore this membrane can be regarded as a promising candidate for usage in fuel cells.

  1. TSTA loop operation with 100 grams-level of tritium

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Hirata, Shingo; Naito, Taisei

    1988-10-01

    The first loop operation tests of Tritium Systems Test Assembly (TSTA) with 100 grams-level of tritium were carried out at Los Alamos National Laboratory(LANL) on June and July, 1987. The tests were one of the milestones for TSTA goal scheduled in June, 1987 through June, 1988. The objectives were (i) to operate TSTA process loop composed of tritium supply system, fuel gas purification system, hydrogen isotope separation system, etc, (ii) to demonstrate TSTA safety subsystems such as secondary containment system, tritium waste treatment system and tritium monitoring system, and (iii) to accumulate handling experience of a large amount of tritium. This report describes the plan and procedures of the milestone run done in June and the summary results especially on the safety aspects. Analysis of the emergency shutdown of the process loop, which happened in the June run, is also reported. A brief description of the process and safety subsystems as well as the summary of the TSTA safety analysis report is included. (author)

  2. Experimental studies and computational benchmark on heavy liquid metal natural circulation in a full height-scale test loop for small modular reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yong-Hoon, E-mail: chaotics@snu.ac.kr [Department of Energy Systems Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Cho, Jaehyun [Korea Atomic Energy Research Institute, 111 Daedeok-daero, 989 Beon-gil, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Lee, Jueun; Ju, Heejae; Sohn, Sungjune; Kim, Yeji; Noh, Hyunyub; Hwang, Il Soon [Department of Energy Systems Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of)

    2017-05-15

    Highlights: • Experimental studies on natural circulation for lead-bismuth eutectic were conducted. • Adiabatic wall boundaries conditions were established by compensating heat loss. • Computational benchmark with a system thermal-hydraulics code was performed. • Numerical simulation and experiment showed good agreement in mass flow rate. • An empirical relation was formulated for mass flow rate with experimental data. - Abstract: In order to test the enhanced safety of small lead-cooled fast reactors, lead-bismuth eutectic (LBE) natural circulation characteristics have been studied. We present results of experiments with LBE non-isothermal natural circulation in a full-height scale test loop, HELIOS (heavy eutectic liquid metal loop for integral test of operability and safety of PEACER), and the validation of a system thermal-hydraulics code. The experimental studies on LBE were conducted under steady state as a function of core power conditions from 9.8 kW to 33.6 kW. Local surface heaters on the main loop were activated and finely tuned by trial-and-error approach to make adiabatic wall boundary conditions. A thermal-hydraulic system code MARS-LBE was validated by using the well-defined benchmark data. It was found that the predictions were mostly in good agreement with the experimental data in terms of mass flow rate and temperature difference that were both within 7%, respectively. With experiment results, an empirical relation predicting mass flow rate at a non-isothermal, adiabatic condition in HELIOS was derived.

  3. Neocortical electrical stimulation for epilepsy : Closed-loop versus open-loop

    NARCIS (Netherlands)

    Vassileva, Albena; van Blooijs, Dorien; Leijten, Frans; Huiskamp, Geertjan

    2018-01-01

    The aim of this review is to evaluate whether open-loop or closed-loop neocortical electrical stimulation should be the preferred approach to manage seizures in intractable epilepsy. Twenty cases of open-loop neocortical stimulation with an implanted device have been reported, in 5 case studies.

  4. Gluons and gravitons at one loop from ambitwistor strings

    Science.gov (United States)

    Geyer, Yvonne; Monteiro, Ricardo

    2018-03-01

    We present new and explicit formulae for the one-loop integrands of scattering amplitudes in non-supersymmetric gauge theory and gravity, valid for any number of particles. The results exhibit the colour-kinematics duality in gauge theory and the double-copy relation to gravity, in a form that was recently observed in supersymmetric theories. The new formulae are expressed in a particular representation of the loop integrand, with only one quadratic propagator, which arises naturally from the framework of the loop-level scattering equations. The starting point in our work are the expressions based on the scattering equations that were recently derived from ambitwistor string theory. We turn these expressions into explicit formulae depending only on the loop momentum, the external momenta and the external polarisations. These formulae are valid in any number of spacetime dimensions for pure Yang-Mills theory (gluon) and its natural double copy, NS-NS gravity (graviton, dilaton, B-field), and we also present formulae in four spacetime dimensions for pure gravity (graviton). We perform several tests of our results, such as checking gauge invariance and directly matching our four-particle formulae to previously known expressions. While these tests would be elaborate in a Feynman-type representation of the loop integrand, they become straightforward in the representation we use.

  5. Perfluorinated Compounds as Test Media for Porous Membranes.

    Science.gov (United States)

    Clodt, Juliana I; Filiz, Volkan; Shishatskiy, Sergey

    2017-09-05

    We suggest a failure-free method of porous membranes characterization that gives the researcher the opportunity to compare and characterize properties of any porous membrane. This proposal is supported by an investigation of eight membranes made of different organic and inorganic materials, with nine different perfluorinated compounds. It was found that aromatic compounds, perfluorobenzene, and perfluorotoluene, used in the current study show properties different from other perfluorinated aliphatics. They demonstrate extreme deviation from the general sequence indicating the existence of π-π-interaction on the pore wall. The divergence of the flow for cyclic compounds from ideal e.g., linear compounds can be an indication of the pore dimension.

  6. Molten salt reactors. Synthesis of studies realized between 1973 and 1983. Experimental loop file

    International Nuclear Information System (INIS)

    1983-03-01

    Four test loops were developed for the experimental study of a molten salt reactor with lead salt direct contact. A molten salt loop, completely in graphite, including the pump, showed that this material is convenient for salt containment and circulation. Reactor components like flowmeters, electromagnetic pumps, pressure gauge, valves developed for liquid sodium, were tested with liquid lead. A water-mercury loop was built for lead-molten salt simulation studies. Finally a lead-salt loop (COMPARSE) was built to study the behaviour of salt particles carried by lead in the heat exchanger. [fr

  7. A Looping-Based Model for Quenching Repression.

    Directory of Open Access Journals (Sweden)

    Yaroslav Pollak

    2017-01-01

    Full Text Available We model the regulatory role of proteins bound to looped DNA using a simulation in which dsDNA is represented as a self-avoiding chain, and proteins as spherical protrusions. We simulate long self-avoiding chains using a sequential importance sampling Monte-Carlo algorithm, and compute the probabilities for chain looping with and without a protrusion. We find that a protrusion near one of the chain's termini reduces the probability of looping, even for chains much longer than the protrusion-chain-terminus distance. This effect increases with protrusion size, and decreases with protrusion-terminus distance. The reduced probability of looping can be explained via an eclipse-like model, which provides a novel inhibitory mechanism. We test the eclipse model on two possible transcription-factor occupancy states of the D. melanogaster eve 3/7 enhancer, and show that it provides a possible explanation for the experimentally-observed eve stripe 3 and 7 expression patterns.

  8. Development of metal fuel and study of construction materials (I-IV), Part V, Vol. II, Project of the device for irradiation of metal uranium in the reactor; 2. Construction of the loop for uranium radiation creep testing

    International Nuclear Information System (INIS)

    Mihajlovic, A.; Pavlovic, A.

    1965-11-01

    This volume includes the design description for construction of the loop for testing uranium radiation creep. It covers the following: construction of the loop head, protection closure; system for pressure regulation and uranium temperature regulation; system for recording samples dilatation and temperature. Testing of components and the loop on the whole is described as well as the safety reports

  9. Fabrication of electrospun nanofibrous membranes for membrane distillation application

    KAUST Repository

    Francis, Lijo

    2013-02-01

    Nanofibrous membranes of Matrimid have been successfully fabricated using an electrospinning technique under optimized conditions. Nanofibrous membranes are found to be highly hydrophobic with a high water contact angle of 130°. Field emission scanning electron microscopy and pore size distribution analysis revealed the big pore size structure of electrospun membranes to be greater than 2 μm and the pore size distribution is found to be narrow. Flat sheet Matrimid membranes were fabricated via casting followed by phase inversion. The morphology, pore size distribution, and water contact angle were measured and compared with the electrospun membranes. Both membranes fabricated by electrospinning and phase inversion techniques were tested in a direct contact membrane distillation process. Electrospun membranes showed high water vapor flux of 56 kg/m2-h, which is very high compared to the casted membrane as well as most of the fabricated and commercially available highly hydrophobic membranes. ©2013 Desalination Publications.

  10. Actions needed for RA reactor exploitation - I-IV, Part II, Design project VI-SA 1, Experimental loop for testing the EL-4 reactor fuel elements in the central vertical experimental channel of the RA reactor in Vinca

    International Nuclear Information System (INIS)

    Novakovic, M.

    1961-12-01

    The objective of installing the VISA-1 loop was testing the fuel elements of the EL-4 reactor. The fuel elements planned for testing are natural UO 2 with beryllium cladding, cooled by CO 2 under nominal pressure of 60 at and temperature 600 deg C. central vertical experimental channel of the RA reactor was chosen for installing a test loop cooled by CO 2 . This report contains the detailed design project of the testing loop with the control system and safety analysis of the planned experiment

  11. A multiple-pass ring oscillator based dual-loop phase-locked loop

    International Nuclear Information System (INIS)

    Chen Danfeng; Ren Junyan; Deng Jingjing; Li Wei; Li Ning

    2009-01-01

    A dual-loop phase-locked loop (PLL) for wideband operation is proposed. The dual-loop architecture combines a coarse-tuning loop with a fine-tuning one, enabling a wide tuning range and low voltage-controlled oscillator (VCO) gain without poisoning phase noise and reference spur suppression performance. An analysis of the phase noise and reference spur of the dual-loop PLL is emphasized. A novel multiple-pass ring VCO is designed for the dual-loop application. It utilizes both voltage-control and current-control simultaneously in the delay cell. The PLL is fabricated in Jazz 0.18-μm RF CMOS technology. The measured tuning range is from 4.2 to 5.9 GHz. It achieves a low phase noise of -99 dBc/Hz - 1 MHz offset from a 5.5 GHz carrier.

  12. A multiple-pass ring oscillator based dual-loop phase-locked loop

    Energy Technology Data Exchange (ETDEWEB)

    Chen Danfeng; Ren Junyan; Deng Jingjing; Li Wei; Li Ning, E-mail: dfchen@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2009-10-15

    A dual-loop phase-locked loop (PLL) for wideband operation is proposed. The dual-loop architecture combines a coarse-tuning loop with a fine-tuning one, enabling a wide tuning range and low voltage-controlled oscillator (VCO) gain without poisoning phase noise and reference spur suppression performance. An analysis of the phase noise and reference spur of the dual-loop PLL is emphasized. A novel multiple-pass ring VCO is designed for the dual-loop application. It utilizes both voltage-control and current-control simultaneously in the delay cell. The PLL is fabricated in Jazz 0.18-{mu}m RF CMOS technology. The measured tuning range is from 4.2 to 5.9 GHz. It achieves a low phase noise of -99 dBc/Hz - 1 MHz offset from a 5.5 GHz carrier.

  13. Automation of secondary loop operation in Indus-2 LCW plant

    International Nuclear Information System (INIS)

    Srinivas, L.; Pandey, R.M.; Yadav, R.P.; Gupta, S.; Gandhi, M.L.; Thakurta, A.C.

    2013-01-01

    Indus-2 Low Conductivity Water (LCW) plant has two loops, primary loop and secondary loop. The primary loop mainly supplies LCW to magnets, power supplies and RF systems at constant flow rate. The secondary loop extracts heat from the primary loop through heat exchangers to maintain the supply water temperature of the primary loop around a set value. The supply water temperature of the primary loop is maintained by operating the pumps and cooling towers in the secondary loop. The desired water flow rate in the secondary loop is met by the manual operation of the required number of the pumps. The automatic operation of the pumps and the cooling towers is proposed to replace the existing inefficient manual operation. It improves the operational reliability and ensures the optimum utilization of the pumps and the cooling towers. An algorithm has been developed using LabView programming to achieve optimized operation of the pumps and the cooling towers by incorporating First-In-First-Out (FIFO) logic. It also takes care of safety interlocks, and generates alarms. The program exchanges input and output signals of the plant using existing SCADA system. In this paper, the development of algorithm, its design and testing are elaborated. In the end, the results obtained thereof are discussed. (author)

  14. Morphing Wing-Tip Open Loop Controller and its Validation During Wind Tunnel Tests at the IAR-NRC

    Directory of Open Access Journals (Sweden)

    Mohamed Sadok GUEZGUEZ

    2016-09-01

    Full Text Available In this project, a wing tip of a real aircraft was designed and manufactured. This wing tip was composed of a wing and an aileron. The wing was equipped with a composite skin on its upper surface. This skin changed its shape (morphed by use of 4 electrical in-house developed actuators and 32 pressure sensors. These pressure sensors measure the pressures, and further the loads on the wing upper surface. Thus, the upper surface of the wing was morphed using these actuators with the aim to improve the aerodynamic performances of the wing-tip. Two types of ailerons were designed and manufactured: one aileron is rigid (non-morphed and one morphing aileron. This morphing aileron can change its shape also for the aerodynamic performances improvement. The morphing wing-tip internal structure is designed and manufactured, and is presented firstly in the paper. Then, the modern communication and control hardware are presented for the entire morphing wing tip equipped with actuators and sensors having the aim to morph the wing. The calibration procedure of the wing tip is further presented, followed by the open loop controller results obtained during wind tunnel tests. Various methodologies of open loop control are presented in this paper, and results obtained were obtained and validated experimentally through wind tunnel tests.

  15. Conceptual design of helium experimental loop

    International Nuclear Information System (INIS)

    Yu Xingfu; Feng Kaiming

    2007-01-01

    In a future demonstration fusion power station (DEMO), helium is envisaged as coolant for plasma facing components, such as blanket and dive,or. All these components have a very complex geometry, with many parallel cooling channels, involving a complex helium flow distribution. Test blanket modules (TBM) of this concept will under go various tests in the experimental reactor ITER. For the qualification of TBM, it is indispensable to test mock-ups in a helium loop under realistic pressure and temperature profiles, in order to validate design codes, especially regarding mass flow and heat transition processes in narrow cooling channels. Similar testing must be performed for DEMO blanket, currently under development. A Helium Experimental Loop (HELOOP) is planed to be built for TBM tests. The design parameter of temperature, pressure, flow rate is 550 degree C, 10 MPa, l kg/s respectively. In particular, HELOOP is able to: perform full-scale tests of TBM under realistic conditions; test other components of the He-cooling system in ITER; qualify the purification circuit; obtain information for the design of the ITER cooling system. The main requirements and characteristics of the HELOOP facility and a preliminary conceptual design are described in the paper. (authors)

  16. Hollow Fiber Space Water Membrane Evaporator Flight Prototype Design and Testing

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice; Vogel, Mtthew; Honas, Matt; Dillon, Paul; Colunga, Aaron; Truong, Lily; Porwitz, Darwin; Tsioulos, Gus

    2011-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform thermal control for advanced spacesuits and to take advantage of recent advances in micropore membrane technology. This results in a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. The current design was based on a previous design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape. This was developed into a full-scale prototype consisting of 14,300 tube bundled into 30 stacks, each of which is formed into a chevron shape and separated by spacers and organized into three sectors of 10 nested stacks. The new design replaced metal components with plastic ones, eliminated the spacers, and has a custom built flight like backpressure valve mounted on the side of the SWME housing to reduce backpressure when fully open. A number of tests were performed in order to improve the strength of the polyurethane header that holds the fibers in place while the system is pressurized. Vacuum chamber testing showed similar heat rejection as a function of inlet water temperature and water vapor backpressure was similar to the previous design. Other tests pushed the limits of tolerance to freezing and showed suitability to reject heat in a Mars pressure environment with and without a sweep gas. Tolerance to contamination by constituents expected to be found in potable water produced by distillation processes was tested in a conventional way by allowing constituents to accumulate in the coolant as evaporation occurs. For this purpose, the SWME cartridge has endured an equivalent of 30 EVAs exposure and demonstrated acceptable performance decline.

  17. Sequence-structure relationships in RNA loops: establishing the basis for loop homology modeling.

    Science.gov (United States)

    Schudoma, Christian; May, Patrick; Nikiforova, Viktoria; Walther, Dirk

    2010-01-01

    The specific function of RNA molecules frequently resides in their seemingly unstructured loop regions. We performed a systematic analysis of RNA loops extracted from experimentally determined three-dimensional structures of RNA molecules. A comprehensive loop-structure data set was created and organized into distinct clusters based on structural and sequence similarity. We detected clear evidence of the hallmark of homology present in the sequence-structure relationships in loops. Loops differing by structures. Thus, our results support the application of homology modeling for RNA loop model building. We established a threshold that may guide the sequence divergence-based selection of template structures for RNA loop homology modeling. Of all possible sequences that are, under the assumption of isosteric relationships, theoretically compatible with actual sequences observed in RNA structures, only a small fraction is contained in the Rfam database of RNA sequences and classes implying that the actual RNA loop space may consist of a limited number of unique loop structures and conserved sequences. The loop-structure data sets are made available via an online database, RLooM. RLooM also offers functionalities for the modeling of RNA loop structures in support of RNA engineering and design efforts.

  18. Polyazole hollow fiber membranes for direct contact membrane distillation

    KAUST Repository

    Maab, Husnul; Alsaadi, Ahmad Salem; Francis, Lijo; Livazovic, Sara; Ghaffour, NorEddine; Amy, Gary L.; Nunes, Suzana Pereira

    2013-01-01

    Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

  19. Polyazole hollow fiber membranes for direct contact membrane distillation

    KAUST Repository

    Maab, Husnul

    2013-08-07

    Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

  20. Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation

    Directory of Open Access Journals (Sweden)

    T. Jiříček

    2017-01-01

    Full Text Available Self-sustained electrospun polyurethane nanofiber membranes were manufactured and tested on a direct-contact membrane distillation unit in an effort to find the optimum membrane thickness to maximize flux rate and minimize heat losses across the membrane. Also salt retention and flux at high salinities up to 100 g kg−1 were evaluated. Even though the complex structure of nanofiber layers has extreme specific surface and porosity, membrane performance was surprisingly predictable; the highest flux was achieved with the thinnest membranes and the best energy efficiency was achieved with the thickest membranes. All membranes had salt retention above 99%. Nanotechnology offers the potential to find modern solutions for desalination of waste waters, by introducing new materials with revolutionary properties, but new membranes must be developed according to the target application.

  1. Diagnostics of high-speed liquid lithium jet for IFMIF/EVEDA lithium test loop

    International Nuclear Information System (INIS)

    Kanemura, Takuji; Kondo, Hiroo; Furukawa, Tomohiro; Sugiura, Hirokazu; Horiike, Hiroshi; Yamaoka, Nobuo; Ida, Mizuho; Nakamura, Kazuyuki; Matsushita, Izuru

    2011-01-01

    Regarding R and Ds on the International Fusion Materials Irradiation Facility (IFMIF), hydraulic stability of the liquid Li jet simulating the IFMIF Li target is planned to be validated using EVEDA Li Test Loop (ELTL). IFMIF is an accelerator-based deuteron-lithium (Li) neutron source for research and development of fusion reactor materials. The stable Li target is required in IFMIF to maintain the quality of the neutron fluence and integrity of the Li target itself. This paper presents diagnostics of the Li jet to be implemented in validation tests of the jet stability in ELTL, and those specifications and methodologies are introduced. In the tests, the following physical parameters need to be measured; thickness of the jet; surface structure (height, length/width and frequency of free-surface waves); local flow velocity at the free surface; and Li evaporation rate. With regard to measurement of jet thickness and the surface wave height, a contact-type liquid level sensor is to be used. As for measurement of wave velocity and visual understanding of detailed free-surface structure, a high-speed video camera is to be leveraged. With respect to Li evaporation measurement, weight change of specimens installed near the free surface and frequency change of a crystal quartz are utilized. (author)

  2. Construction of helium engineering demonstration loop (HENDEL M+A) for VHTR

    International Nuclear Information System (INIS)

    Shimomura, Saneaki; Tanaka, Toshiyuki; Nakano, Tadasuke

    1983-01-01

    The mother and adapter sections of the large structural component demonstration test loop, alias Helium Engineering Demonstration Loop, for the multipurpose, high temperature gas-cooled experimental reactor were completed in March, 1982. This facility was constructed by Fuji Electric Co., Ltd. and Kawasaki Heavy Industries Ltd. as the main contractors, and by the cooperation with Mitsubishi Heavy Industries Ltd. and Ishikawajima Harima Heavy Industries Co., Ltd. The HENDEL M+A is the testing facility of the largest scale in the world, which can handle 1000 deg C, 40 kgf/cm 2 G helium at a half flow rate of one core cooling loop of the experimental reactor. With the HENDEL M+A, the demonstration tests of fuel assembly stacks, in-core structures, large flow rate and high temperature equipment are planned. The HENDEL M+A comprises two mother loops, an adapter loop, and common auxiliary systems fon measurement and control (In), refining (Mp), makeup (Mu) and cooling water (Uc). The construction and function of such main equipment as a heater, circulators and internally insulated piping are described. The progress of the construction and the main experience during the construction, the process of operation and the performance are reported. (Kako, I.)

  3. Process, including membrane separation, for separating hydrogen from hydrocarbons

    Science.gov (United States)

    Baker, Richard W.; Lokhandwala, Kaaeid A.; He, Zhenjie; Pinnau, Ingo

    2001-01-01

    Processes for providing improved methane removal and hydrogen reuse in reactors, particularly in refineries and petrochemical plants. The improved methane removal is achieved by selective purging, by passing gases in the reactor recycle loop across membranes selective in favor of methane over hydrogen, and capable of exhibiting a methane/hydrogen selectivity of at least about 2.5 under the process conditions.

  4. Fabrication of bioinspired composite nanofiber membranes with robust superhydrophobicity for direct contact membrane distillation.

    Science.gov (United States)

    Liao, Yuan; Wang, Rong; Fane, Anthony G

    2014-06-03

    The practical application of membrane distillation (MD) for water purification is hindered by the absence of desirable membranes that can fulfill the special requirements of the MD process. Compared to the membranes fabricated by other methods, nanofiber membranes produced by electrospinning are of great interest due to their high porosity, low tortuosity, large surface pore size, and high surface hydrophobicity. However, the stable performance of the nanofiber membranes in the MD process is still unsatisfactory. Inspired by the unique structure of the lotus leaf, this study aimed to develop a strategy to construct superhydrophobic composite nanofiber membranes with robust superhydrophobicity and high porosity suitable for use in MD. The newly developed membrane consists of a superhydrophobic silica-PVDF composite selective skin formed on a polyvinylidene fluoride (PVDF) porous nanofiber scaffold via electrospinning. This fabrication method could be easily scaled up due to its simple preparation procedures. The effects of silica diameter and concentration on membrane contact angle, sliding angle, and MD performance were investigated thoroughly. For the first time, the direct contact membrane distillation (DCMD) tests demonstrate that the newly developed membranes are able to present stable high performance over 50 h of testing time, and the superhydrophobic selective layer exhibits excellent durability in ultrasonic treatment and a continuous DCMD test. It is believed that this novel design strategy has great potential for MD membrane fabrication.

  5. Results from tests of TFL Hydragard sampling loop

    International Nuclear Information System (INIS)

    Steimke, J.L.

    1995-03-01

    When the Defense Waste Processing Facility (DWPF) is operational, processed radioactive sludge will be transferred in batches to the Slurry Mix Evaporator (SME), where glass frit will be added and the contents concentrated by boiling. Batches of the slurry mixture are transferred from the SME to the Melter Feed Tank (MFT). Hydragard reg-sign sampling systems are used on the SME and the MFT for collecting slurry samples in vials for chemical analysis. An accurate replica of the Hydragard sampling system was built and tested in the thermal Fluids Laboratory (TFL) to determine the hydragard accuracy. It was determined that the original Hydragard valve frequently drew a non-representative sample stream through the sample vial that ranged from frit enriched to frit depleted. The Hydragard valve was modified by moving the plunger and its seat backwards so that the outer surface of the plunger was flush with the inside diameter of the transfer line when the valve was open. The slurry flowing through the vial accurately represented the composition of the slurry in the reservoir for two types of slurries, different dilution factors, a range of transfer flows and a range of vial flows. It was then found that the 15 ml of slurry left in the vial when the Hydragard valve was closed, which is what will be analyzed at DWPF, had a lower ratio of frit to sludge as characterized by the lithium to iron ratio than the slurry flowing through it. The reason for these differences is not understood at this time but it is recommended that additional experimentation be performed with the TFL Hydragard loop to determine the cause

  6. The Phillips Laboratory capillary pumped loop test facility

    Science.gov (United States)

    Gluck, Donald F.; Kaylor, Marc C.

    1996-03-01

    An ammonia capillary pumped loop (CPL) test facility has been designed, fabricated, subject to acceptance tests, and assembled at Phillips Laboratory. Its intent is to support a wide range of Air Force programs, bringing CPL technology to flight readiness for operational systems. The facility provides a high degree of modularity and flexibility with several heating and cooling options, and capability for elevation (+/- 15 in.), tilt (+/-60°) and transport length variation. It has a 182 by 44 by 84 inch envelope, an expected heat load capability of 2500 W, and a temperature range of 0 to 50 °C. The evaporator section has two plates with four capillary pumps (CPs) each, with a starter pump on one plate. The CPs are 5/8 in., with TAG aluminum 6063-T6 casing and UHMW polyethylene wicks. The active lengths are 15 and 30 inch with both 10 and 15 micron wicks. The individual CPs have thermal and hydraulic isolation capability, and are removable. The transport section consists of stainless steel lines in a serpentine configuration, a 216 in3 free volume reservoir, and a mechanical pump. The vapor transport line contains a capillary device (which can be bypassed) for vapor blockage during startup. The condenser consists of two separately valved, parallel cold plates each with a downstream noncondensible gas trap. Cooling of up to 1500 W at -50 °C is provided by an FTS Systems chiller using Flourinert FC-72. An enclosure/exhaust system is provided for safety and emergency venting of ammonia. An ammonia charge station performs or supports the functions of proof pressure, flushing with ammonia, purging with gaseous nitrogen, evacuation of all or part of the CPL to 20 microns, and charging. Instrumentation consists of over 116 thermocouples, five of which are internal; one absolute and six differential pressure transducers; eleven watt transducers, and a reservoir load cell. The data acquisition system consists of a temperature scanner, Bernoulli drive, and two Macintosh

  7. The Self-Calibration Test of flowmeter installed in STELLA(Sodium Integral Effect Test Loop for Safety Simulation and Assessment) facility

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Minhwan; Jeong, Ji-Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The objective of this study is to describe the procedure of the self-calibration test for the flowmeters and to analyze the result of the test. In this work, the test procedure of the self-calibration of two flowmeters (FT-101, FT-102) installed in STELLA facility was described and the test result was analyzed. In regard to the long-term SFR development plan, a large-scale sodium thermal-hydraulic test project is being progressed by KAERI. This project is called STELLA (Sodium Integral Effect Test Loop for Safety Simulation and Assessment), and it is proceeding by adopting the QA (Quality Assurance) program. Due to the specificity of an experiment using sodium(Na) categorized as Class 3(pyrophoric material and water-prohibiting substance) by the Safety Control of Dangerous Substances Act, it is necessary to apply QA in consideration of the sodium experiment environment in certain parts. The one of them is about calibration of measuring instrument such as a flowmeter, thermocouple and pressure gauge. It is described in the QAP (Quality Assurance Procedures) of KAERI that calibration work should be conducted in accordance with self-calibration procedures in a special case where conventional calibration is not practicable. The calibration of two flowmeters (FT-101, FT-102) installed in STELLA facility is the typical example. As a result of test, it was confirmed that the flowmeters meet the pass criterion. Therefore, it was concluded that the flowmeters maintain instrument capacity a year ago.

  8. ABJM Wilson loops in arbitrary representations

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Yasuyuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Honda, Masazumi [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst. and Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics

    2013-06-15

    We study vacuum expectation values (VEVs) of circular half BPS Wilson loops in arbitrary representations in ABJM theory. We find that those in hook representations are reduced to elementary integrations thanks to the Fermi gas formalism, which are accessible from the numerical studies similar to the partition function in the previous studies. For non-hook representations, we show that the VEVs in the grand canonical formalism can be exactly expressed as determinants of those in the hook representations. Using these facts, we can study the instanton effects of the VEVs in various representations. Our results are consistent with the worldsheet instanton effects studied from the topological string and a prescription to include the membrane instanton effects by shifting the chemical potential, which has been successful for the partition function.

  9. ABJM Wilson loops in arbitrary representations

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki; Moriyama, Sanefumi; Okuyama, Kazumi

    2013-06-01

    We study vacuum expectation values (VEVs) of circular half BPS Wilson loops in arbitrary representations in ABJM theory. We find that those in hook representations are reduced to elementary integrations thanks to the Fermi gas formalism, which are accessible from the numerical studies similar to the partition function in the previous studies. For non-hook representations, we show that the VEVs in the grand canonical formalism can be exactly expressed as determinants of those in the hook representations. Using these facts, we can study the instanton effects of the VEVs in various representations. Our results are consistent with the worldsheet instanton effects studied from the topological string and a prescription to include the membrane instanton effects by shifting the chemical potential, which has been successful for the partition function.

  10. Real-Time Hardware-in-the-Loop Laboratory Testing for Multisensor Sense and Avoid Systems

    Directory of Open Access Journals (Sweden)

    Giancarmine Fasano

    2013-01-01

    Full Text Available This paper focuses on a hardware-in-the-loop facility aimed at real-time testing of architectures and algorithms of multisensor sense and avoid systems. It was developed within a research project aimed at flight demonstration of autonomous non-cooperative collision avoidance for Unmanned Aircraft Systems. In this framework, an optionally piloted Very Light Aircraft was used as experimental platform. The flight system is based on multiple-sensor data integration and it includes a Ka-band radar, four electro-optical sensors, and two dedicated processing units. The laboratory test system was developed with the primary aim of prototype validation before multi-sensor tracking and collision avoidance flight tests. System concept, hardware/software components, and operating modes are described in the paper. The facility has been built with a modular approach including both flight hardware and simulated systems and can work on the basis of experimentally tested or synthetically generated scenarios. Indeed, hybrid operating modes are also foreseen which enable performance assessment also in the case of alternative sensing architectures and flight scenarios that are hardly reproducible during flight tests. Real-time multisensor tracking results based on flight data are reported, which demonstrate reliability of the laboratory simulation while also showing the effectiveness of radar/electro-optical fusion in a non-cooperative collision avoidance architecture.

  11. LOOP CALCULUS AND BELIEF PROPAGATION FOR Q-ARY ALPHABET: LOOP TOWER

    Energy Technology Data Exchange (ETDEWEB)

    CHERTKOV, MICHAEL [Los Alamos National Laboratory; CHERNYAK, VLADIMIR [Los Alamos National Laboratory

    2007-01-10

    Loop calculus introduced in [1], [2] constitutes a new theoretical tool that explicitly expresses symbol Maximum-A-Posteriori (MAP) solution of a general statistical inference problem via a solution of the Belief Propagation (BP) equations. This finding brought a new significance to the BP concept, which in the past was thought of as just a loop-free approximation. In this paper they continue a discussion of the Loop Calculus, partitioning the results into three Sections. In Section 1 they introduce a new formulation of the Loop Calculus in terms of a set of transformations (gauges) that keeping the partition function of the problem invariant. The full expression contains two terms referred to as the 'ground state' and 'excited states' contributions. The BP equations are interpreted as a special (BP) gauge fixing condition that emerges as a special orthogonality constraint between the ground state and excited states, which also selects loop contributions as the only surviving ones among the excited states. In Section 2 they demonstrate how the invariant interpretation of the Loop Calculus, introduced in Section 1, allows a natural extension to the case of a general q-ary alphabet, this is achieved via a loop tower sequential construction. The ground level in the tower is exactly equivalent to assigning one color (out of q available) to the 'ground state' and considering all 'excited' states colored in the remaining (q-1) colors, according to the loop calculus rule. Sequentially, the second level in the tower corresponds to selecting a loop from the previous step, colored in (q-1) colors, and repeating the same ground vs excited states splitting procedure into one and (q-2) colors respectively. The construction proceeds till the full (q-1)-levels deep loop tower (and the corresponding contributions to the partition function) are established. In Section 3 they discuss an ultimate relation between the loop calculus and the Bethe

  12. The accuracy of placental alpha-microglobuline-1 test in diagnosis of premature rupture of the membranes

    Directory of Open Access Journals (Sweden)

    Maryam Khooshideh

    2015-06-01

    Full Text Available Background: Premature rupture of membranes (PROM is a common obstetric issue during pregnancy which might lead to serious fetal or maternal problems. Therefore, an appropriate diagnosis and management of PROM are of significant importance in patients. Objective: The aim of this study was to determine the accuracy of placental alpha microglobuline-1 (PAMG-1 test in PROM diagnosis and compare this diagnostic method with other standard tests in diagnosis of PROM. Materials and Methods: In this prospective diagnostic accuracy study, patients with symptoms of membrane rupture in 16-39 weeks of gestation were involved. Three tests including Fern, Nitrazine and PAMG-1 were performed at the same time. Results: PROM was confirmed in 86 patients out of 100. The sensitivity and specificity were respectively 81.3% and 100% for Fern test, 93% and 92.8% for Nitrazine test, 98.9% and 92.8% for PAMG-1 test. PAMG-1 test showed higher sensitivity (98.9% with p<0.001 and accuracy (98% compared with conventional tests. Although PAMG-1showed a lower positive predictive value (PPV compared to conventional tests such as Fern test (100%, it was shown to be more accurate. Conclusion: The accuracy of PAMG-1 test was superior to both Fern and Nitrazine test in PROM diagnosis.

  13. Chimeric Proton-Pumping Rhodopsins Containing the Cytoplasmic Loop of Bovine Rhodopsin

    Science.gov (United States)

    Sasaki, Kengo; Yamashita, Takahiro; Yoshida, Kazuho; Inoue, Keiichi; Shichida, Yoshinori; Kandori, Hideki

    2014-01-01

    G-protein-coupled receptors (GPCRs) transmit stimuli to intracellular signaling systems. Rhodopsin (Rh), which is a prototypical GPCR, possesses an 11-cis retinal. Photoisomerization of 11-cis to all-trans leads to structural changes in the protein of cytoplasmic loops, activating G-protein. Microbial rhodopsins are similar heptahelical membrane proteins that function as bacterial sensors, light-driven ion-pumps, or light-gated channels. They possess an all-trans retinal, and photoisomerization to 13-cis triggers structural changes in protein. Despite these similarities, there is no sequence homology between visual and microbial rhodopsins, and microbial rhodopsins do not activate G-proteins. In this study, new chimeric proton-pumping rhodopsins, proteorhodopsin (PR) and Gloeobacter rhodopsin (GR) were designed by replacing cytoplasmic loops with bovine Rh loops. Although G-protein was not activated by the PR chimeras, all 12 GR chimeras activated G-protein. The GR chimera containing the second cytoplasmic loop of bovine Rh did not activate G-protein. However, the chimera with a second and third double-loop further enhanced G-protein activation. Introduction of an E132Q mutation slowed the photocycle 30-fold and enhanced activation. The highest catalytic activity of the GR chimera was still 3,200 times lower than bovine Rh but only 64 times lower than amphioxus Go-rhodopsin. This GR chimera showed a strong absorption change of the amide-I band on a light-minus-dark difference FTIR spectrum which could represent a larger helical opening, important for G-protein activation. The light-dependent catalytic activity of this GR chimera makes it a potential optogenetic tool for enzymatic activation by light. PMID:24621599

  14. Empirical Analysis of Closed-Loop Duopoly Advertising Strategies

    OpenAIRE

    Gary M. Erickson

    1992-01-01

    Closed-loop (perfect) equilibria in a Lanchester duopoly differential game of advertising competition are used as the basis for empirical investigation. Two systems of simultaneous nonlinear equations are formed, one from a general Lanchester model and one from a constrained model. Two empirical applications are conducted. In one involving Coca-Cola and Pepsi-Cola, a formal statistical testing procedure is used to detect whether closed-loop equilibrium advertising strategies are used by the c...

  15. Two-phase natural circulation experiments in a pressurized water loop with CANDU geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ardron, K.H.; Krishnan, V.S.; McGee, G.R.; Anderson, J.W.D.; Hawley, E.H.

    1984-07-01

    A series of tests has been performed in the RD-12 loop, a 10-MPa pressurized-water loop containing two active boilers, two pumps, and two, or four, heated horizontal channels arranged in a symmetrical figure-of-eight configuration characteristic of the CANDU reactor primary heat-transport system. In the tests, single-phase natural circulation was established in the loop and void was introduced by controlled draining, with the surge tank (pressurizer) valved out of the system. Results indicate that a stable, two-phase, natural circulation flow can usually be established. However, as the void fraction in the loop is increased, large-amplitude flow oscillations can occur. The initial flow oscillations in the two halves of the loop are usually very nearly 180/sup 0/ out-of-phase. However, as the loop inventory is further decreased, an in-phase oscillation component is observed. In tests with two parallel, heated channels in each half-loop, oscillations associated with mass transfer between the channel pairs are also observed. Although flow oscillations can lead to intermittent dryout of the upper elements of the heater-rod assemblies in the horizontal channels, natural circulation cooling appears to be effective until about 50% of the loop inventory is drained; sustained flow stratification then occurs in the heated channels, leading to heater temperature excursions. The paper reviews the experimental results obtained and describes the evolution of natural circulation flow in particular cases as voidage is progressively increased. The stability behavior is discussed briefly with reference to a simple stability model.

  16. Introduction to Loop Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  17. Results of the General Atomic deposition loop program

    International Nuclear Information System (INIS)

    Hanson, D.L.

    1976-01-01

    The transport behavior of fission products in flowing helium streams has been studied to determine their deposition and re-entrainment characteristics. Such information is required for the design and safety analysis of high-temperature gas-cooled reactors (HTGRs). A small high-pressure, high-temperature loop was constructed for deposition studies at near-HTGR conditions. Five loop experiments were performed to determine the plateout distribution of iodine, strontium, and cesium. In general, the plateout activity showed an exponential decrease with distance from the source with enhanced plateout at flow disturber locations (contractions, bends, etc.) and especially in a chill section where the surface was cooled. Blowdown tests were performed on selected loop specimens to determine the amount of re-entrainment caused by abnormally high wall shear stresses. The liftoff fraction (fractional amount removed) was shown to vary approximately linearly with the shear ratio (defined as the ratio of the steady state wall shear stress under blowdown conditions to that under normal operating conditions). Blowdown results are also reported for pipe sections taken from the GAIL-IV in-pile loop. Attempts were made to correlate these plateout data with the PAD code (Plateout Activity Distribution) which was developed for prediction of plateout distribution in an HTGR primary circuit. Because of inadequate modeling of the effects of the chill section, the agreement was generally poor. Consequently, to test further the PAD code, a review of the available plateout literature was made. Plateout distributions in the Peach Bottom and Dragon HTGRs and the Battelle Memorial Institute out-of-pile loop were successfully modeled

  18. Removal of CO2 in closed loop off-gas treatment systems

    International Nuclear Information System (INIS)

    Clemens, M.K.; Nelson, P.A.; Swift, W.M.

    1994-01-01

    A closed loop test system has been installed at Argonne National Laboratory (ANL) to demonstrate off-gas treatment, absorption, and purification systems to be used for incineration and vitrification of hazardous and mixed waste. Closed loop systems can virtually eliminate the potential for release of hazardous or toxic materials to the atmosphere during both normal and upset conditions. In initial tests, a 250,000 Btu/h (75 kW thermal) combustor was operated in an open loop to produce a combustion product gas. The CO 2 in these tests was removed by reaction with a fluidized bed of time to produce CaCO 3 . Subsequently, recirculation system was installed to allow closed loop operation with the addition of oxygen to the recycle stream to support combustion. Commercially marketed technologies for removal of CO 2 can be adapted for use on closed loop incineration systems. The paper also describes the Absorbent Solution Treatment (AST) process, based on modifications to commercially demonstrated gas purification technologies. In this process, a side loop system is added to the main loop for removing CO 2 in scrubbing towers using aqueous-based CO 2 absorbents. The remaining gas is returned to the incinerator with oxygen addition. The absorbent is regenerated by driving off the CO 2 and water vapor, which are released to the atmosphere. Contaminants are either recycled for further treatment or form precipitates which are removed during the purification and regeneration process. There are no direct releases of gases or particulates to the environment. The CO 2 and water vapor go through two changes of state before release, effectively separating these combustion products from contaminants released during incineration. The AST process can accept a wide range of waste streams. The system may be retrofitted to existing Facilities or included in the designs for new installations

  19. Design study on the helium engineering demonstration loop (HENDEL)

    International Nuclear Information System (INIS)

    Aochi, Tetsuo; Yasuno, Takehiko; Muto, Yasushi; Suzuki, Kunihiko

    1977-11-01

    Four reference studies made on Helium Engineering Demonstration Loop (HENDEL) are described. HENDEL is used in confirmation of the designs of VHTR components such as reactor structure, core structure, intermediate heat exchanger and piping. It consists of mother loop, adapter section and four test sections for fuel stack, reactor support and insulation structure, core structure and high temperature heat transfer component respectively. System and component designs of the mother and adapter section and preliminary designs of the four test sections are shown. And, the plans of operation, instrumentation, control, safety, utilities (electricity, cooling water and helium gas) and construction schedule of HENDEL and research and development of the test sections are also briefed. (auth.)

  20. Short-term adhesion and long-term biofouling testing of polydopamine and poly(ethylene glycol) surface modifications of membranes and feed spacers for biofouling control

    KAUST Repository

    Miller, Daniel J.

    2012-08-01

    Ultrafiltration, nanofiltration membranes and feed spacers were hydrophilized with polydopamine and polydopamine- g-poly(ethylene glycol) surface coatings. The fouling propensity of modified and unmodified membranes was evaluated by short-term batch protein and bacterial adhesion tests. The fouling propensity of modified and unmodified membranes and spacers was evaluated by continuous biofouling experiments in a membrane fouling simulator. The goals of the study were: 1) to determine the effectiveness of polydopamine and polydopamine- g-poly(ethylene glycol) membrane coatings for biofouling control and 2) to compare techniques commonly used in assessment of membrane biofouling propensity with biofouling experiments under practical conditions. Short-term adhesion tests were carried out under static, no-flow conditions for 1 h using bovine serum albumin, a common model globular protein, and Pseudomonas aeruginosa, a common model Gram-negative bacterium. Biofouling tests were performed in a membrane fouling simulator (MFS) for several days under flow conditions similar to those encountered in industrial modules with the autochthonous drinking water population and acetate dosage as organic substrate. Polydopamine- and polydopamine- g-poly(ethylene glycol)-modified membranes showed significantly reduced adhesion of bovine serum albumin and P. aeruginosa in the short-term adhesion tests, but no reduction of biofouling was observed during longer biofouling experiments with modified membranes and spacers. These results demonstrate that short-term batch adhesion experiments using model proteins or bacteria under static conditions are not indicative of biofouling, while continuous biofouling experiments showed that membrane surface modification by polydopamine and polydopamine- g-poly(ethylene glycol) is not effective for biofouling control. © 2012 Elsevier Ltd.

  1. Small RNA-based feedforward loop with AND-gate logic regulates extrachromosomal DNA transfer in Salmonella.

    Science.gov (United States)

    Papenfort, Kai; Espinosa, Elena; Casadesús, Josep; Vogel, Jörg

    2015-08-25

    Horizontal gene transfer via plasmid conjugation is a major driving force in microbial evolution but constitutes a complex process that requires synchronization with the physiological state of the host bacteria. Although several host transcription factors are known to regulate plasmid-borne transfer genes, RNA-based regulatory circuits for host-plasmid communication remain unknown. We describe a posttranscriptional mechanism whereby the Hfq-dependent small RNA, RprA, inhibits transfer of pSLT, the virulence plasmid of Salmonella enterica. RprA employs two separate seed-pairing domains to activate the mRNAs of both the sigma-factor σ(S) and the RicI protein, a previously uncharacterized membrane protein here shown to inhibit conjugation. Transcription of ricI requires σ(S) and, together, RprA and σ(S) orchestrate a coherent feedforward loop with AND-gate logic to tightly control the activation of RicI synthesis. RicI interacts with the conjugation apparatus protein TraV and limits plasmid transfer under membrane-damaging conditions. To our knowledge, this study reports the first small RNA-controlled feedforward loop relying on posttranscriptional activation of two independent targets and an unexpected role of the conserved RprA small RNA in controlling extrachromosomal DNA transfer.

  2. Phenylnaphthalene Derivatives as Heat Transfer Fluids for Concentrating Solar Power: Loop Experiments and Final Report

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Bell, Jason R [ORNL; Felde, David K [ORNL; Joseph III, Robert Anthony [ORNL; Qualls, A L [ORNL; Weaver, Samuel P [ORNL

    2013-02-01

    ORNL and subcontractor Cool Energy completed an investigation of higher-temperature, organic thermal fluids for solar thermal applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C showed that the material isomerized at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components such as the waste heat rejection exchanger may become coated or clogged and loop performance will decrease. Thus, pure 1-phenylnaphthalene does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the increased temperatures of interest. Hence a decision was made not to test the ORNL fluid in the loop at Cool Energy Inc. Instead, Cool Energy tested and modeled power conversion from a moderate-temperature solar loop using coupled Stirling engines. Cool Energy analyzed data collected on third and fourth generation SolarHeart Stirling engines operating on a rooftop solar field with a lower temperature (Marlotherm) heat transfer fluid. The operating efficiencies of the Stirling engines were determined at multiple, typical solar conditions, based on data from actual cycle operation. Results highlighted the advantages of inherent thermal energy storage in the power conversion system.

  3. Thermal performance test of hot gas ducts of helium engineering demonstration loop (HENDEL)

    International Nuclear Information System (INIS)

    Hishida, Makoto; Kunitomi, Kazuhiko; Ioka, Ikuo; Umenishi, Koji; Kondo, Yasuo; Tanaka, Toshiyuki; Shimomura, Hiroaki

    1984-01-01

    A hot gas duct provided with internal thermal insulation is supposed to be used for an experimental very high-temperature gas-cooled reactor (VHTR) which has been developed by the Japan Atomic Energy Research Institute (JAERI). This type of hot gas duct has not been used so far in industrial facilities, and only a couple of tests on such a large-scale model of hot gas duct have been conducted. The present test was to investigate the thermal performance of the hot gas ducts which are installed as parts of a helium engineering demonstration loop (HENDEL) of JAERI. Uniform temperature and heat flux distributions at the surface of the duct were observed, the experimental correlation being obtained for the effective thermal conductivity of the internal thermal insulation layer. The measured temperature distribution of the pressure tube was in good agreement with the calculation by a TRUMP heat transfer computer code. The temperature distribution of the inner tube of VHTR hot gas duct was evaluated, and no hot spot was detected. These results would be very valuable for the design and development of VHTR. (author)

  4. Flux Enhancement in Membrane Distillation Using Nanofiber Membranes

    Directory of Open Access Journals (Sweden)

    T. Jiříček

    2016-01-01

    Full Text Available Membrane distillation (MD is an emerging separation technology, whose largest application potential lies in the desalination of highly concentrated solutions, which are out of the scope of reverse osmosis. Despite many attractive features, this technology is still awaiting large industrial application. The main reason is the lack of commercially available membranes with fluxes comparable to reverse osmosis. MD is a thermal separation process driven by a partial vapour pressure difference. Flux, distillate purity, and thermal efficiency are always in conflict, all three being strictly connected with pore size, membrane hydrophobicity, and thickness. The world has not seen the ideal membrane yet, but nanofibers may offer a solution to these contradictory requirements. Membranes of electrospun PVDF were tested under various conditions on a direct contact (DCMD unit, in order to determine the optimum conditions for maximum flux. In addition, their performance was compared to commonly available PTFE, PE, and PES membranes. It was confirmed that thinner membranes have higher fluxes and a lower distillate purity and also higher energy losses via conduction across the membrane. As both mass and heat transfer are connected, it is best to develop new membranes with a target application in mind, for the specific membrane module and operational conditions.

  5. Operational characteristics of miniature loop heat pipe with flat evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Dongxing; Liu, Zhichun; Liu, Wei; Yang, Jinguo [Huazhong University of Science and Technology, School of Energy and Power Engineering, Wuhan, Hubei (China)

    2009-12-15

    Loop heat pipes are heat transfer devices whose operating principle is based on the evaporation and condensation of a working fluid, and which use the capillary pumping forces to ensure the fluid circulation. A series of tests have been carried out with a miniature loop heat pipe (mLHP) with flat evaporator and fin-and-tube type condenser. The loop is made of pure copper with stainless mesh wick and methanol as the working fluid. Detailed study is conducted on the start-up reliability of the mLHP at high as well as low heat loads. During the testing of mLHP under step power cycles, the thermal response presented by the loop to achieve steady state is very short. At low heat loads, temperature oscillations are observed throughout the loop. The amplitudes and frequencies of these fluctuations are large at evaporator wall and evaporator inlet. It is expected that the extent and nature of the oscillations occurrence is dependent on the thermal and hydrodynamic conditions inside the compensation chamber. The thermal resistance of the mLHP lies between 0.29 and 3.2 C/W. The effects of different liquid charging ratios and the tilt angles to the start-up and the temperature oscillation are studied in detail. (orig.)

  6. A keyboard control method for loop measurement

    International Nuclear Information System (INIS)

    Gao, Z.W.

    1994-01-01

    This paper describes a keyboard control mode based on the DEC VAX computer. The VAX Keyboard code can be found under running of a program was developed. During the loop measurement or multitask operation, it ables to be distinguished from a keyboard code to stop current operation or transfer to another operation while previous information can be held. The combining of this mode, the author successfully used one key control loop measurement for test Dual Input Memory module which is used in a rearrange Energy Trigger system for LEP 8 Bunch operation

  7. Experimental loop for SH2 (LECS)

    International Nuclear Information System (INIS)

    Strehar, N.R.; Bruzzoni, Pablo; Moras, J.J.; Cogozzo, E.O.

    1981-01-01

    An experimental loop is described for circulation of SH 2 that operates at 2 x 10 6 Pascal and 33 deg C. It was designed and constructed with the purpose of experimentally studying the hydraulic instability phenomenon that can be detected in cold isotopic exchange columns in the Girdler-Sulfide (GS) process of heavy water production. The main features of the different components of the loop are described, as well as the materials, the measurement and control instruments and the auxiliary equipment used, and finally the measuring methods to qualify and quantify the formation of froth. Furthermore, the loop's transportable metallic container is described, which allows to transport and connect it to CNEA's experimental heavy water plant or to any other heavy water plants using the GS method. Some tests made with inert gases that intended to verify the equipment's performance and to select the most adequate sieve trays for its operation are discussed. (M.E.L.) [es

  8. Application of neural network technology to setpoint control of a simulated reactor experiment loop

    International Nuclear Information System (INIS)

    Cordes, G.A.; Bryan, S.R.; Powell, R.H.; Chick, D.R.

    1991-01-01

    This paper describes the design, implementation, and application of artificial neural networks to achieve temperature and flow rate control for a simulation of a typical experiment loop in the Advanced Test Reactor (ATR) located at the Idaho National Engineering Laboratory (INEL). The goal of the project was to research multivariate, nonlinear control using neural networks. A loop simulation code was adapted for the project and used to create a training set and test the neural network controller for comparison with the existing loop controllers. The results for the best neural network design are documented and compared with existing loop controller action. The neural network was shown to be as accurate at loop control as the classical controllers in the operating region represented by the training set. 5 refs., 8 figs., 3 tabs

  9. Distribution of sizes of erased loops for loop-erased random walks

    OpenAIRE

    Dhar, Deepak; Dhar, Abhishek

    1997-01-01

    We study the distribution of sizes of erased loops for loop-erased random walks on regular and fractal lattices. We show that for arbitrary graphs the probability $P(l)$ of generating a loop of perimeter $l$ is expressible in terms of the probability $P_{st}(l)$ of forming a loop of perimeter $l$ when a bond is added to a random spanning tree on the same graph by the simple relation $P(l)=P_{st}(l)/l$. On $d$-dimensional hypercubical lattices, $P(l)$ varies as $l^{-\\sigma}$ for large $l$, whe...

  10. Vacuum membrane distillation of liquid desiccants Utilizing Hollow Fiber Membranes

    KAUST Repository

    Lefers, Ryan

    2018-01-31

    This paper documents the testing of a vacuum membrane distillation system intended for use with liquid desiccants. Liquid desiccants offer the possibility for low-energy, ambient temperature dehumidification. Effective desalination and purification of diluted desiccants outputs two important products: a concentrated desiccant for reuse in dehumidification and fresh water. In this study, vacuum membrane distillation was used in the laboratory to purify diluted liquid desiccants. Calcium chloride and magnesium chloride were the desiccants selected for testing. Desiccant solutions were pumped through the lumens of poly(vinylidene fluoride) (PVDF) hollow fiber membranes at varying feed inlet temperatures, solution velocity rates and vacuum set points during membrane distillation. An average flux of 8 kg m-2 h-1 was obtained using 30 wt% magnesium chloride solution at a temperature of 50 °C while applying vacuum to achieve 25 mbar absolute pressure on the air side of the membrane. The results are promising for the development of a full-scale vacuum membrane distillation process for desiccant solution regeneration and fresh water recovery. In addition, the recovered condensate was of sufficient quality for use in agricultural irrigation or drinking water.

  11. Vacuum membrane distillation of liquid desiccants Utilizing Hollow Fiber Membranes

    KAUST Repository

    Lefers, Ryan; Srivatsa Bettahalli, N.M.; Fedoroff, Nina V.; Nunes, Suzana Pereira; Leiknes, TorOve

    2018-01-01

    This paper documents the testing of a vacuum membrane distillation system intended for use with liquid desiccants. Liquid desiccants offer the possibility for low-energy, ambient temperature dehumidification. Effective desalination and purification of diluted desiccants outputs two important products: a concentrated desiccant for reuse in dehumidification and fresh water. In this study, vacuum membrane distillation was used in the laboratory to purify diluted liquid desiccants. Calcium chloride and magnesium chloride were the desiccants selected for testing. Desiccant solutions were pumped through the lumens of poly(vinylidene fluoride) (PVDF) hollow fiber membranes at varying feed inlet temperatures, solution velocity rates and vacuum set points during membrane distillation. An average flux of 8 kg m-2 h-1 was obtained using 30 wt% magnesium chloride solution at a temperature of 50 °C while applying vacuum to achieve 25 mbar absolute pressure on the air side of the membrane. The results are promising for the development of a full-scale vacuum membrane distillation process for desiccant solution regeneration and fresh water recovery. In addition, the recovered condensate was of sufficient quality for use in agricultural irrigation or drinking water.

  12. A hardware-in-the-loop simulation platform for prototyping and testing of wind generator controllers

    Energy Technology Data Exchange (ETDEWEB)

    Paquin, J.N.; Dufour, C.; Belanger, J. [OPAL-RT Technologies Inc., Montreal, PQ (Canada)

    2008-07-01

    Engineers from different specialized fields need to be involved in meeting the growing demand for integrated renewable energy sources into existing power grids. The integration of distributed generation (DG) sources significantly changes the characteristics of an entire network and requires analysis of power quality, transient response to fault occurrences, protection coordination studies and controller interaction studies. Power electronic converters are a considerable challenge. Accurately simulating fast switching devices requires the use of very small time steps to solve the system's equations. Off-line simulation is often used in the field. However, it is time consuming if no precision compromise has been made on models. In addition, off-line simulation tools do not offer the wide range of possibilities available with state-of-the-art distributed real-time simulators that combine the efforts of control engineers and specialists from wind turbine manufacturers, who need to test their controllers using hardware-in-the-loop (HIL), together with those of network planning engineers from public utilities, who will conduct interconnection, interaction and protection studies. This paper focused on the prototyping and testing of DG controllers using hardware-in-the-loop simulation. The model was described and consisted of a 10-turbine wind farm connected to a single feeder, simulated using an eMEGAsim real-time simulator equipped with 8-processor cores. One of the wind turbines was controlled using an externally emulated controller. It was modeled and simulated using a dual-processor core real-time simulator, which interacted with the plant model via analog and fast digital inputs and outputs. The effectiveness of the technology was demonstrated by comparing fully numerical simulation results with an HIL-connected DFIG controller simulation. The sampling effect of the digital simulator was correctly compensated for. The simulator could be driven directly by real

  13. Alternative energy efficient membrane bioreactor using reciprocating submerged membrane.

    Science.gov (United States)

    Ho, J; Smith, S; Roh, H K

    2014-01-01

    A novel membrane bioreactor (MBR) pilot system, using membrane reciprocation instead of air scouring, was operated at constant high flux and daily fluctuating flux to demonstrate its application under peak and diurnal flow conditions. Low and stable transmembrane pressure was achieved at 40 l/m(2)/h (LMH) by use of repetitive membrane reciprocation. The results reveal that the inertial forces acting on the membrane fibers effectively propel foulants from the membrane surface. Reciprocation of the hollow fiber membrane is beneficial for the constant removal of solids that may build up on the membrane surface and inside the membrane bundle. The membrane reciprocation in the reciprocating MBR pilot consumed less energy than coarse air scouring used in conventional MBR systems. Specific energy consumption for the membrane reciprocation was 0.072 kWh/m(3) permeate produced at 40 LMH flux, which is 75% less than for a conventional air scouring system as reported in literature without consideration of energy consumption for biological aeration (0.29 kWh/m(3)). The daily fluctuating flux test confirmed that the membrane reciprocation is effective to handle fluctuating flux up to 50 LMH. The pilot-scale reciprocating MBR system successfully demonstrated that fouling can be controlled via 0.43 Hz membrane reciprocation with 44 mm or higher amplitude.

  14. A simple blowdown code for SUPER-SARA loop conditions

    International Nuclear Information System (INIS)

    Fritz, G.

    1981-01-01

    The Super Sara test programme (SSTP) is aimed to study in pile the fuel and cluster behaviour under two types of accident conditions: - the ''Large break loss of coolant'' condition (LB-Loca), - the ''Severe fuel damage'' (SFD) in a boildown caused by a small break. BIVOL was developed for the LB-Loca situation. This code is made for a loop where essentially two volumes define the thermohydraulics during the blowdown. In the SUPERSARA loop these two volumes are represented by the hot leg and cold leg pipings together with the respective upper and lower plenum of the test section

  15. Summary of Test Results From a 1 kW(sub e)-Class Free-Piston Stirling Power Convertor Integrated With a Pumped NaK Loop

    Science.gov (United States)

    Briggs, Maxwell H.; Geng, Steven M.; Pearson, J. Boise; Godfroy, Thomas J.

    2010-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors was modified to operate with a NaK liquid metal pumped loop for thermal energy input. This was the first-ever attempt at powering a free-piston Stirling engine with a pumped liquid metal heat source and is a major FSP project milestone towards demonstrating technical feasibility. The tests included performance mapping the convertors over various hot and cold-end temperatures, piston amplitudes and NaK flow rates; and transient test conditions to simulate various start-up and fault scenarios. Performance maps of the convertors generated using the pumped NaK loop for thermal input show increases in power output over those measured during baseline testing using electric heating. Transient testing showed that the Stirling convertors can be successfully started in a variety of different scenarios and that the convertors can recover from a variety of fault scenarios.

  16. Sweep gas membrane distillation in a membrane contactor with metallic hollow fibers

    NARCIS (Netherlands)

    Shukla, Sushumna; Benes, Nieck Edwin; Vankelecom, I.F.J.; Mericq, J.P.; Belleville, M.P.; Hengl, N.; Sanchez Marcano, Jose

    2015-01-01

    This work revolves around the use of porous metal hollow fibers in membrane distillation. Various stages are covered, starting from membrane synthesis up to the testing of a pilot scale membrane module. Mechanically stable metal hollow fibers have been synthesized by phase inversion of a stainless

  17. An open loop equilibrator for continuous monitoring of radon at the groundwater-surface water interface

    International Nuclear Information System (INIS)

    Kil Yong Lee; Yoon Yeol Yoon; Soo Young Cho; Eunhee Lee; Sang-Ho Moon; Dong-Chan Koh; Kyoochul Ha; Yongcheol Kim; Kyung-Seok Ko

    2015-01-01

    A continuous monitoring system (CMS) using an open loop equilibrator for assessment of 222 Rn at the groundwater-surface water interface was developed and tested. For the characterization and validation of the system, three air loops (open loop, closed loop, and open bubble loop) were tested in relation to high and precise count rates, rapid response, and equilibration of radon. The water and air stream is fed to the equilibrator by an experimental setup with a commercial submersible water pump and the internal pump with built-in radon-in-air detector. Efficiency calibration of the CMS is done by simultaneous determination of a groundwater sample using liquid scintillation counting, and the RAD7 accessories RAD-H 2 O, BigBottle RAD-H 2 O. The higher count rates are provided by the closed loop. However, the open loop with bubbler (open bubble loop) provides the best precision count rates, rapid response, and equilibration time. The CMS allows radon determination in discrete water samples as well as continuous water streams. (author)

  18. PHOTOSPHERIC PROPERTIES OF WARM EUV LOOPS AND HOT X-RAY LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Kano, R. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Ueda, K. [Department of Astronomy, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tsuneta, S., E-mail: ryouhei.kano@nao.ac.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan)

    2014-02-20

    We investigate the photospheric properties (vector magnetic fields and horizontal velocity) of a well-developed active region, NOAA AR 10978, using the Hinode Solar Optical Telescope specifically to determine what gives rise to the temperature difference between ''warm loops'' (1-2 MK), which are coronal loops observed in EUV wavelengths, and ''hot loops'' (>3 MK), coronal loops observed in X-rays. We found that outside sunspots, the magnetic filling factor in the solar network varies with location and is anti-correlated with the horizontal random velocity. If we accept that the observed magnetic features consist of unresolved magnetic flux tubes, this anti-correlation can be explained by the ensemble average of flux-tube motion driven by small-scale random flows. The observed data are consistent with a flux tube width of ∼77 km and horizontal flow at ∼2.6 km s{sup –1} with a spatial scale of ∼120 km. We also found that outside sunspots, there is no significant difference between warm and hot loops either in the magnetic properties (except for the inclination) or in the horizontal random velocity at their footpoints, which are identified with the Hinode X-Ray Telescope and the Transition Region and Coronal Explorer. The energy flux injected into the coronal loops by the observed photospheric motion of the magnetic fields is estimated to be 2 × 10{sup 6} erg s{sup –1} cm{sup –2}, which is the same for both warm and hot loops. This suggests that coronal properties (e.g., loop length) play a more important role in giving rise to temperature differences of active-region coronal loops than photospheric parameters.

  19. Design and Testing of Bi-Functional, P-Loop-Targeted MDM2 Inhibitors

    National Research Council Canada - National Science Library

    Prives, Carol L; Stockwell, Brent R

    2007-01-01

    Our proposal is to design and evaluate a novel class of bifunctional MDM2 inhibitors, based on the discovery that nucleotides can bind to the P-loop of MDM2 and cause its relocalization to the nucleolus...

  20. Design and Testing of Bi-Functional, P-Loop-Targeted MDM2 Inhibitors

    National Research Council Canada - National Science Library

    Prives, Carol L

    2006-01-01

    This proposal is to design and evaluate a novel class of bifunctional MDM2 inhibitors, based on the discovery that nucleotides can bind to the P-loop of MDM2 and cause its relocalization to the nucleolus...

  1. Bidirectional neural interface: Closed-loop feedback control for hybrid neural systems.

    Science.gov (United States)

    Chou, Zane; Lim, Jeffrey; Brown, Sophie; Keller, Melissa; Bugbee, Joseph; Broccard, Frédéric D; Khraiche, Massoud L; Silva, Gabriel A; Cauwenberghs, Gert

    2015-01-01

    Closed-loop neural prostheses enable bidirectional communication between the biological and artificial components of a hybrid system. However, a major challenge in this field is the limited understanding of how these components, the two separate neural networks, interact with each other. In this paper, we propose an in vitro model of a closed-loop system that allows for easy experimental testing and modification of both biological and artificial network parameters. The interface closes the system loop in real time by stimulating each network based on recorded activity of the other network, within preset parameters. As a proof of concept we demonstrate that the bidirectional interface is able to establish and control network properties, such as synchrony, in a hybrid system of two neural networks more significantly more effectively than the same system without the interface or with unidirectional alternatives. This success holds promise for the application of closed-loop systems in neural prostheses, brain-machine interfaces, and drug testing.

  2. Revitalisation of Control and Data Acquisition Systems for Corrosion Test Loop

    International Nuclear Information System (INIS)

    Khairul Handono; Kiswanta; Edy Sumarno

    2008-01-01

    The replacement of control and data acquisition systems for Corrosion Test Loop (CTL) has been conducted. The aim of revitalisation for CTL is to increase controller system performance Kent 4000 which is based on PLC. On the other side revitalisation of acquisition data system is done to build computer based data retrieval system for transformation gauging of parameters in thermalhydraulic experiment of CTL. Previously, data collector system used indicator recorder analog, while data recording is done manually, which caused causing very slow response and the result is less accurate. To increase the user quality of data collector system, the data acquisition system is developed with application program Visual Basic and acquisition apparatus card of data. Result of the activity of revitalisation CTL is to obtain of control systems based on PLC and data acquisition system capable to present information in the form of temperature, pressure and cooling water level interactively, namely easy to read, quickly, realtime and accurate. This results give the improvement of control systems performance and data acquisition system which data storage of acquisition into hard disk in the form of file and further processed in the form of tables or graph to facilitate the analysis. (author)

  3. Battery algorithm verification and development using hardware-in-the-loop testing

    Science.gov (United States)

    He, Yongsheng; Liu, Wei; Koch, Brain J.

    Battery algorithms play a vital role in hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), extended-range electric vehicles (EREVs), and electric vehicles (EVs). The energy management of hybrid and electric propulsion systems needs to rely on accurate information on the state of the battery in order to determine the optimal electric drive without abusing the battery. In this study, a cell-level hardware-in-the-loop (HIL) system is used to verify and develop state of charge (SOC) and power capability predictions of embedded battery algorithms for various vehicle applications. Two different batteries were selected as representative examples to illustrate the battery algorithm verification and development procedure. One is a lithium-ion battery with a conventional metal oxide cathode, which is a power battery for HEV applications. The other is a lithium-ion battery with an iron phosphate (LiFePO 4) cathode, which is an energy battery for applications in PHEVs, EREVs, and EVs. The battery cell HIL testing provided valuable data and critical guidance to evaluate the accuracy of the developed battery algorithms, to accelerate battery algorithm future development and improvement, and to reduce hybrid/electric vehicle system development time and costs.

  4. Battery algorithm verification and development using hardware-in-the-loop testing

    Energy Technology Data Exchange (ETDEWEB)

    He, Yongsheng [General Motors Global Research and Development, 30500 Mound Road, MC 480-106-252, Warren, MI 48090 (United States); Liu, Wei; Koch, Brain J. [General Motors Global Vehicle Engineering, Warren, MI 48090 (United States)

    2010-05-01

    Battery algorithms play a vital role in hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), extended-range electric vehicles (EREVs), and electric vehicles (EVs). The energy management of hybrid and electric propulsion systems needs to rely on accurate information on the state of the battery in order to determine the optimal electric drive without abusing the battery. In this study, a cell-level hardware-in-the-loop (HIL) system is used to verify and develop state of charge (SOC) and power capability predictions of embedded battery algorithms for various vehicle applications. Two different batteries were selected as representative examples to illustrate the battery algorithm verification and development procedure. One is a lithium-ion battery with a conventional metal oxide cathode, which is a power battery for HEV applications. The other is a lithium-ion battery with an iron phosphate (LiFePO{sub 4}) cathode, which is an energy battery for applications in PHEVs, EREVs, and EVs. The battery cell HIL testing provided valuable data and critical guidance to evaluate the accuracy of the developed battery algorithms, to accelerate battery algorithm future development and improvement, and to reduce hybrid/electric vehicle system development time and costs. (author)

  5. In-pile loop experiments in water chemistry and corrosion

    International Nuclear Information System (INIS)

    Kysela, J.; Jindrich, K.; Masarik, V.; Fric, Z.; Chotivka, V.; Hamerska, H.; Vsolak, R.; Erben, O.

    1986-08-01

    Methods and techniques used were as follows: (a) Method of polarizing resistance for remote monitoring of instantaneous rate of uniform corrosion. (b) Out-of-pile loop at the temperature 350 degC, pressure 19 MPa, circulation 20 kgs/h, testing time 1000 h. (c) High temperature electromagnetic filter with classical solenoid and ball matrix for high pressure filtration tests. (d) High pressure and high temperature in-pile water loop with coolant flow rate 10 000 kgs/h, neutron flux in active channel 7x10 13 n/cm 2 .s, 16 MPa, 330 degC. (e) Evaluation of experimental results by chemical and radiochemical analysis of coolant, corrosion products and corrosion layer on surface. The results of measurements carried out in loop facilities can be summarized into the following conclusions: (a) In-pile and out-of-pile loops are suitable means of investigating corrosion processes and mass transport in the nuclear power plant primary circuit. (b) In studying transport phenomena in the loop, it is necessary to consider the differences in geometry of the loop and the primary circuit, mainly the ratio of irradiated and non-irradiated surfaces and volumes. (c) In the experimental facility simulating the WWER-type nuclear power plant primary circuit, solid suspended particles of a chemical composition corresponding most frequently to magnetite or nickel ferrite, though with non-stoichiometric composition Me x 2+ Fe 3-x 3+ O 4 , were found. (d) Continuous filtration of water by means of an electromagnetic filter removing large particles of corrosion products leads to a decrease in radioactivity of the outer epitactic layer only. The effect of filtration on the inner topotactic layer is negligible

  6. Improved Application of Local Models to Steel Corrosion in Lead-Bismuth Loops

    International Nuclear Information System (INIS)

    Zhang Jinsuo; Li Ning

    2003-01-01

    The corrosion of steels exposed to flowing liquid metals is influenced by local and global conditions of flow systems. The present study improves the previous local models when applied to closed loops by incorporating some global condition effects. In particular the bulk corrosion product concentration is calculated based on balancing the dissolution and precipitation in the entire closed loop. Mass transfer expressions developed in aqueous medium and an analytical expression are tested in the liquid-metal environments. The improved model is applied to a pure lead loop and produces results closer to the experimental data than the previous local models do. The model is also applied to a lead-bismuth eutectic (LBE) test loop. Systematic studies illustrate the effects of the flow rate, the oxygen concentration in LBE, and the temperature profile on the corrosion rate

  7. Loop versus end colostomy reversal: has anything changed?

    Science.gov (United States)

    Bruns, B R; DuBose, J; Pasley, J; Kheirbek, T; Chouliaras, K; Riggle, A; Frank, M K; Phelan, H A; Holena, D; Inaba, K; Diaz, J; Scalea, T M

    2015-10-01

    Though primary repair of colon injuries is preferred, certain injury patterns require colostomy creation. Colostomy reversal is associated with significant morbidity and healthcare cost. Complication rates may be influenced by technique of diversion (loop vs. end colostomy), though this remains ill-defined. We hypothesized that reversal of loop colostomies is associated with fewer complications than end colostomies. This is a retrospective, multi-institutional study (four, level-1 trauma centers) of patients undergoing colostomy takedown for trauma during the time period 1/2006-12/2012. Data were collected from index trauma admission and subsequent admission for reversal and included demographics and complications of reversal. Student's t test was used to compare continuous variables against loop versus end colostomy. Discrete variables were compared against both groups using Chi-squared tests. Over the 6-year study period, 218 patients underwent colostomy takedown after trauma with a mean age of 30; 190 (87%) were male, 162 (74%) had penetrating injury as their indication for colostomy, and 98 (45%) experienced at least one complication. Patients in the end colostomy group (n = 160) were more likely to require midline laparotomy (145 vs. 18, p colostomy (n = 58). Local takedown of a loop colostomy is safe and leads to shorter hospital stays, less intra-operative blood loss, and fewer complications when compared to end colostomy.

  8. Experimental test of an eco-evolutionary dynamic feedback loop between evolution and population density in the green peach aphid.

    Science.gov (United States)

    Turcotte, Martin M; Reznick, David N; Daniel Hare, J

    2013-05-01

    An eco-evolutionary feedback loop is defined as the reciprocal impacts of ecology on evolutionary dynamics and evolution on ecological dynamics on contemporary timescales. We experimentally tested for an eco-evolutionary feedback loop in the green peach aphid, Myzus persicae, by manipulating initial densities and evolution. We found strong evidence that initial aphid density alters the rate and direction of evolution, as measured by changes in genotype frequencies through time. We also found that evolution of aphids within only 16 days, or approximately three generations, alters the rate of population growth and predicts density compared to nonevolving controls. The impact of evolution on population dynamics also depended on density. In one evolution treatment, evolution accelerated population growth by up to 10.3% at high initial density or reduced it by up to 6.4% at low initial density. The impact of evolution on population growth was as strong as or stronger than that caused by a threefold change in intraspecific density. We found that, taken together, ecological condition, here intraspecific density, alters evolutionary dynamics, which in turn alter concurrent population growth rate (ecological dynamics) in an eco-evolutionary feedback loop. Our results suggest that ignoring evolution in studies predicting population dynamics might lead us to over- or underestimate population density and that we cannot predict the evolutionary outcome within aphid populations without considering population size.

  9. A continuous membrane microbioreactor system for development of integrated pectin modification and separation processes

    DEFF Research Database (Denmark)

    Zainal Alam, Muhd Nazrul Hisham Bin; Pinelo, Manuel; Samanta, Kama

    2011-01-01

    present a continuous membrane microbioreactor prototype for development of enzyme catalyzed degradation of pectin. Membrane reactors are becoming increasingly important for the novel ‘biorefining’ type of processes that either require product removal to avoid product inhibition or rest on partial...... hydrolysis of the substrate to obtain e.g. value-added oligosaccharides from complex biopolymers. The microbioreactor prototype was fabricated from poly(methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) and designed as a loop reactor (working volume approximately 190μL) integrated...... with a regenerated cellulose membrane for separation of low molecular weight products. The main technical considerations and challenges related to establishing the continuous membrane microbioreactor are discussed. The workability of the prototype was validated by comparing the process data at microscale to those...

  10. Solar chemical heat pipe in a closed loop

    International Nuclear Information System (INIS)

    Levy, M.

    1990-06-01

    The work on the solar CO 2 reforming of methane was completed. A computer program was developed for simulation of the whole process. The calculations agree reasonably well with the experimental results. The work was written up and submitted for publication in Solar Energy. A methanator was built and tested first with a CO/H 2 mixture from cylinders, and then with the products of the solar reformer. The loop was then closed by recirculating the products from the methanator into the solar reformer. Nine closed loop cycles were performed, so far, with the same original gas mixture. This is the first time that a closed loop solar chemical heat pipe was operated anywhere in the world. (author). 13 refs., 12 figs., 3 tabs

  11. Separation membrane development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.W. [Savannah River Technology Center, Aiken, SC (United States)

    1998-08-01

    A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.

  12. The topogenic function of S4 promotes membrane insertion of the voltage-sensor domain in the KvAP channel.

    Science.gov (United States)

    Mishima, Eriko; Sato, Yoko; Nanatani, Kei; Hoshi, Naomi; Lee, Jong-Kook; Schiller, Nina; von Heijne, Gunnar; Sakaguchi, Masao; Uozumi, Nobuyuki

    2016-12-01

    Voltage-dependent K + (K V ) channels control K + permeability in response to shifts in the membrane potential. Voltage sensing in K V channels is mediated by the positively charged transmembrane domain S4. The best-characterized K V channel, KvAP, lacks the distinct hydrophilic region corresponding to the S3-S4 extracellular loop that is found in other K + channels. In the present study, we evaluated the topogenic properties of the transmembrane regions within the voltage-sensing domain in KvAP. S3 had low membrane insertion activity, whereas S4 possessed a unique type-I signal anchor (SA-I) function, which enabled it to insert into the membrane by itself. S4 was also found to function as a stop-transfer signal for retention in the membrane. The length and structural nature of the extracellular S3-S4 loop affected the membrane insertion of S3 and S4, suggesting that S3 membrane insertion was dependent on S4. Replacement of charged residues within the transmembrane regions with residues of opposite charge revealed that Asp 72 in S2 and Glu 93 in S3 contributed to membrane insertion of S3 and S4, and increased the stability of S4 in the membrane. These results indicate that the SA-I function of S4, unique among K + channels studied to date, promotes the insertion of S3 into the membrane, and that the charged residues essential for voltage sensing contribute to the membrane-insertion of the voltage sensor domain in KvAP. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  13. Chemical decontamination for decommissioning purposes. (Vigorous decontamination tests of steel samples in a special test loop)

    International Nuclear Information System (INIS)

    Bregani, F.; Pascali, R.; Rizzi, R.

    1984-01-01

    The aim of the research activities described was to develop vigorous decontamination techniques for decommissioning purposes, taking into account the cost of treatment of the radwaste, to achieve possibly unrestricted release of the treated components, and to obtain know-how for in situ hard decontamination. The decontamination procedures for strong decontamination have been optimized in static and dynamic tests (DECO-loop). The best values have been found for: (i) hydrochloric acid: 4 to 5% vol. at low temperature, 0.7 to 1% vol. at high temperature (80 0 C); (ii) hydrofluoric plus nitric acid: 1.5% vol. HF + 5% vol. HNO 3 at low temperature; 0.3 to 0.5% vol. HF + 2.5 to 5% vol. HNO 3 at high temperature. High flow rates are not necessary, but a good re-circulation of the solution is needed. The final contamination levels, after total oxide removal, are in accordance with limits indicated for unrestricted release of materials in some countries. The arising of the secondary waste is estimated. Decontamination of a 10 m 2 surface would typically produce 0.5 to 3.0 kg of dry waste, corresponding to 1.6 to 10 kg of concrete conditioned waste

  14. Flow characteristics of natural circulation in a lead-bismuth eutectic loop

    Institute of Scientific and Technical Information of China (English)

    Chen-Chong Yue; Liu-Li Chen; Ke-Feng Lyu; Yang Li; Sheng Gao; Yue-Jing Liu; Qun-Ying Huang

    2017-01-01

    Lead and lead-alloys are proposed in future advanced nuclear system as coolant and spallation target.To test the natural circulation and gas-lift and obtain thermal-hydraulics data for computational fluid dynamics (CFD) and system code validation,a lead-bismuth eutectic rectangular loop,the KYLIN-Ⅱ Thermal Hydraulic natural circulation test loop,has been designed and constructed by the FDS team.In this paper,theoretical analysis on natural circulation thermal-hydraulic performance is described and the steady-state natural circulation experiment is performed.The results indicated that the natural circulation capability depends on the loop resistance and the temperature and center height differences between the hot and cold legs.The theoretical analysis results agree well with,while the CFD deviate from,the experimental results.

  15. Degradation of Polypropylene Membranes Applied in Membrane Distillation Crystallizer

    Directory of Open Access Journals (Sweden)

    Marek Gryta

    2016-03-01

    Full Text Available The studies on the resistance to degradation of capillary polypropylene membranes assembled in a membrane crystallizer were performed. The supersaturation state of salt was achieved by evaporation of water from the NaCl saturated solutions using membrane distillation process. A high feed temperature (363 K was used in order to enhance the degradation effects and to shorten the test times. Salt crystallization was carried out by the application of batch or fluidized bed crystallizer. A significant membrane scaling was observed regardless of the method of realized crystallization. The SEM-EDS, DSC, and FTIR methods were used for investigations of polypropylene degradation. The salt crystallization onto the membrane surface accelerated polypropylene degradation. Due to a polymer degradation, the presence of carbonyl groups on the membranes’ surface was identified. Besides the changes in the chemical structure a significant mechanical damage of the membranes, mainly caused by the internal scaling, was also found. As a result, the membranes were severely damaged after 150 h of process operation. A high level of salt rejection was maintained despite damage to the external membrane surface.

  16. Switch-loop flexibility affects transport of large drugs by the promiscuous AcrB multidrug efflux transporter.

    Science.gov (United States)

    Cha, Hi-jea; Müller, Reinke T; Pos, Klaas M

    2014-08-01

    Multidrug efflux transporters recognize a variety of structurally unrelated compounds for which the molecular basis is poorly understood. For the resistance nodulation and cell division (RND) inner membrane component AcrB of the AcrAB-TolC multidrug efflux system from Escherichia coli, drug binding occurs at the access and deep binding pockets. These two binding areas are separated by an 11-amino-acid-residue-containing switch loop whose conformational flexibility is speculated to be essential for drug binding and transport. A G616N substitution in the switch loop has a distinct and local effect on the orientation of the loop and on the ability to transport larger drugs. Here, we report a distinct phenotypical pattern of drug recognition and transport for the G616N variant, indicating that drug substrates with minimal projection areas of >70 Å(2) are less well transported than other substrates. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Operating experience with gas-bearing circulators in a high-pressure helium loop

    International Nuclear Information System (INIS)

    Sanders, J.P.; Gat, U.; Young, H.C.

    1988-01-01

    A high-pressure engineering test loop has been designed and constructed at the Oak Ridge National Laboratory for circulating helium through a test chamber at temperatures to 1,000 deg. C. The purpose of this loop is to determine the thermal and structural performance of proposed components for the primary loops of gas-cooled nuclear reactors. Three gas-bearing circulators, mounted in series, provide a maximum volumetric flow of 0.47 m 3 /s and a maximum head of 78 kJ/kg at operating pressures from 0.1 to 10.7 MPa. Control of gaseous impurities in the circulating gas was the significant operating requirement that dictated the choice of a circulator that is lubricated by the circulating gas. The motor for each circulator is contained within the pressure boundary, and it is cooled by circulating the gas in the motor cavity over water-cooled coils. Each motor is rated at 200 kW at a speed of 23,500 rpm. The circulators have been operated in the loop for more than 5,000 h. The flow of the gas in the loop is controlled by varying the speed of the circulators through the use of individual 250-kVA, solid state power supplies that can be continuously varied in frequency from 50 to 400 Hz. To prevent excessive wear on the gas bearings during startup, the circulator motor accelerates the rotor to 3,000 rpm in less than one second. During operation, no problems associated with the gas bearings, per se, were encountered; however, related problems pointed to design considerations that should be included in future applications of circulators of this type. The primary test that has been conducted in this loop required sustained operation for several weeks without interruption. After a number of unscheduled interruptions, the operating goals were attained. During part of this period, the loop was operated with only two circulators installed in the pressure vessels with a guard installed in the third vessel to protect the closure flange from the gas temperatures. Unattended

  18. Bacillus licheniformis BlaR1 L3 Loop Is a Zinc Metalloprotease Activated by Self-Proteolysis

    Science.gov (United States)

    Sépulchre, Jérémy; Amoroso, Ana; Joris, Bernard

    2012-01-01

    In Bacillus licheniformis 749/I, BlaP β-lactamase is induced by the presence of a β-lactam antibiotic outside the cell. The first step in the induction mechanism is the detection of the antibiotic by the membrane-bound penicillin receptor BlaR1 that is composed of two functional domains: a carboxy-terminal domain exposed outside the cell, which acts as a penicillin sensor, and an amino-terminal domain anchored to the cytoplasmic membrane, which works as a transducer-transmitter. The acylation of BlaR1 sensor domain by the antibiotic generates an intramolecular signal that leads to the activation of the L3 cytoplasmic loop of the transmitter by a single-point cleavage. The exact mechanism of L3 activation and the nature of the secondary cytoplasmic signal launched by the activated transmitter remain unknown. However, these two events seem to be linked to the presence of a HEXXH zinc binding motif of neutral zinc metallopeptidases. By different experimental approaches, we demonstrated that the L3 loop binds zinc ion, belongs to Gluzincin metallopeptidase superfamily and is activated by self-proteolysis. PMID:22623956

  19. On the Loop Current Penetration into the Gulf of Mexico

    Science.gov (United States)

    Weisberg, Robert H.; Liu, Yonggang

    2017-12-01

    The Gulf of Mexico Loop Current generally intrudes some distance into the Gulf of Mexico before shedding an anticyclonic eddy and retreating back to its more direct entry to exit pathway. The control of this aperiodic process remains only partially known. Here we describe the evolution of the Loop Current throughout the era of satellite altimetry, and offer a mechanistic hypothesis on Loop Current intrusion. As a complement to the known effects of Loop Current forcing on the west Florida shelf circulation, we argue that the west Florida shelf, in turn, impacts the Loop Current evolution. A Self-Organizing Map analysis shows that anomalous northward penetrations of the Loop Current into the Gulf of Mexico occur when the eastern side of Loop Current is positioned west from the southwest corner of the west Florida shelf, whereas the more direct inflow to outflow route occurs when the eastern side of the Loop Current comes in contact with the southwest corner of the west Florida shelf. In essence, we argue that the west Florida shelf anchors the Loop Current in its direct path configuration and that farther northward penetration into the Gulf of Mexico occurs when such anchoring is released. To test of this hypothesis heuristically, we estimate that the dissipation and buoyancy work due to known Loop Current forcing of the west Florida shelf circulation (when in contact with the southwest corner) may exceed the pressure work required for the Loop Current to advance against the ambient Gulf of Mexico fluid.Plain Language SummaryThe Gulf of Mexico Loop Current may intrude far into the Gulf of Mexico or take a more direct entry to exit pathway. Such Loop Current behaviors are described using remote observations by satellites, and a heuristic hypothesis on the control of Loop Current intrusion is presented. We argue that energy dissipation and buoyancy work by the west Florida shelf circulation, when the Loop Current contacts the southwest corner of the west Florida shelf

  20. Fuel clean-up: poisoning of palladium-silver membranes by gaseous impurities

    International Nuclear Information System (INIS)

    Chabot, J.; Lecomte, J.; Grumet, C.; Sannier, J.

    1988-01-01

    The feasibility of a permeation process using a palladium-silver alloy membrane, to separate deuterium and tritium from fusion reactor gaseous wastes needs demonstration owing to poisoning effects of impurities. A parametric investigation of the poisoning by the most important expected gaseous impurities (C0, C0 2 and CH 4 ) is carried out with the loop PALLAS, in function of membrane temperature (100 to 450 0 C), H 2 pressure (0.3 to 14 kPa) and impurity concentration (0.2 to 9.5 vol. %). The poisoning effect of C0 is a concern for the process while C0 2 and CH 4 appear to have no practical effect on the permeation rate. Depending on C0 concentration optimal operating temperatures of the membrane should lie between 250 and 375 0 C limits

  1. High Temperature Fluoride Salt Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Richard Burns [Univ. of Tennessee, Knoxville, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peretz, Fred J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    with 3 cm diameter graphite-based fuel pebbles slowly circulating up through the core. Molten salt coolant (FLiBe) at 700°C flows concurrently (at significantly higher velocity) with the pebbles and is used to remove heat generated in the reactor core (approximately 1280 W/pebble), and supply it to a power conversion system. Refueling equipment continuously sorts spent fuel pebbles and replaces spent or damaged pebbles with fresh fuel. By combining greater or fewer numbers of pebble channel assemblies, multiple reactor designs with varying power levels can be offered. The PB-AHTR design is discussed in detail in Reference [1] and is shown schematically in Fig. 1. Fig. 1. PB-AHTR concept (drawing taken from Peterson et al., Design and Development of the Modular PB-AHTR Proceedings of ICApp 08). Pebble behavior within the core is a key issue in proving the viability of this concept. This includes understanding the behavior of the pebbles thermally, hydraulically, and mechanically (quantifying pebble wear characteristics, flow channel wear, etc). The experiment being developed is an initial step in characterizing the pebble behavior under realistic PB-AHTR operating conditions. It focuses on thermal and hydraulic behavior of a static pebble bed using a convective salt loop to provide prototypic fluid conditions to the bed, and a unique inductive heating technique to provide prototypic heating in the pebbles. The facility design is sufficiently versatile to allow a variety of other experimentation to be performed in the future. The facility can accommodate testing of scaled reactor components or sub-components such as flow diodes, salt-to-salt heat exchangers, and improved pump designs as well as testing of refueling equipment, high temperature instrumentation, and other reactor core designs.

  2. Introduction to the study of an optimal control for irradiation loops of the reactor Pegase

    International Nuclear Information System (INIS)

    Guintrand, C.

    1968-07-01

    The control system under consideration is made up of: a regulation unit consisting of a conventional nonlinear looped circuit for static tests, a cycling unit operating in open loop for dynamic tests. After a definition of a mathematical model for an irradiation loop, the behaviour of the regulation unit is studied, first of all theoretically using three-dimensional topological methods, and then by analogue simulation. A prototype unit is under construction and its principal characteristics are given. Finally, as far as the cycling unit is concerned, the first tests involving self-instruction technique, are described. (author) [fr

  3. Identification of Loop D Domain Amino Acids in the Human Aquaporin-1 Channel Involved in Activation of the Ionic Conductance and Inhibition by AqB011

    Directory of Open Access Journals (Sweden)

    Mohamad Kourghi

    2018-04-01

    Full Text Available Aquaporins are integral proteins that facilitate the transmembrane transport of water and small solutes. In addition to enabling water flux, mammalian Aquaporin-1 (AQP1 channels activated by cyclic GMP can carry non-selective monovalent cation currents, selectively blocked by arylsulfonamide compounds AqB007 (IC50 170 μM and AqB011 (IC50 14 μM. In silico models suggested that ligand docking might involve the cytoplasmic loop D (between AQP1 transmembrane domains 4 and 5, but the predicted site of interaction remained to be tested. Work here shows that mutagenesis of two conserved arginine residues in loop D slowed the activation of the AQP1 ion conductance and impaired the sensitivity of the channel to block by AqB011. Substitution of residues in loop D with proline showed effects on ion conductance amplitude that varied with position, suggesting that the structural conformation of loop D is important for AQP1 channel gating. Human AQP1 wild type, AQP1 mutant channels with alanines substituted for two arginines (R159A+R160A, and mutants with proline substituted for single residues threonine (T157P, aspartate (D158P, arginine (R159P, R160P, or glycine (G165P were expressed in Xenopus laevis oocytes. Conductance responses were analyzed by two-electrode voltage clamp. Optical osmotic swelling assays and confocal microscopy were used to confirm mutant and wild type AQP1-expressing oocytes were expressed in the plasma membrane. After application of membrane-permeable cGMP, R159A+R160A channels had a significantly slower rate of activation as compared with wild type, consistent with impaired gating. AQP1 R159A+R160A channels showed no significant block by AqB011 at 50 μM, in contrast to the wild type channel which was blocked effectively. T157P, D158P, and R160P mutations had impaired activation compared to wild type; R159P showed no significant effect; and G165P appeared to augment the conductance amplitude. These findings provide evidence for the

  4. Membrane filtration device for studying compression of fouling layers in membrane bioreactors.

    Directory of Open Access Journals (Sweden)

    Mads Koustrup Jørgensen

    Full Text Available A filtration devise was developed to assess compressibility of fouling layers in membrane bioreactors. The system consists of a flat sheet membrane with air scouring operated at constant transmembrane pressure to assess the influence of pressure on resistance of fouling layers. By fitting a mathematical model, three model parameters were obtained; a back transport parameter describing the kinetics of fouling layer formation, a specific fouling layer resistance, and a compressibility parameter. This stands out from other on-site filterability tests as model parameters to simulate filtration performance are obtained together with a characterization of compressibility. Tests on membrane bioreactor sludge showed high reproducibility. The methodology's ability to assess compressibility was tested by filtrations of sludges from membrane bioreactors and conventional activated sludge wastewater treatment plants from three different sites. These proved that membrane bioreactor sludge showed higher compressibility than conventional activated sludge. In addition, detailed information on the underlying mechanisms of the difference in fouling propensity were obtained, as conventional activated sludge showed slower fouling formation, lower specific resistance and lower compressibility of fouling layers, which is explained by a higher degree of flocculation.

  5. Loop Amplitudes in Pure Yang-Mills from Generalised Unitarity

    OpenAIRE

    Brandhuber, Andreas; McNamara, Simon; Spence, Bill; Travaglini, Gabriele

    2005-01-01

    We show how generalised unitarity cuts in D = 4 - 2 epsilon dimensions can be used to calculate efficiently complete one-loop scattering amplitudes in non-supersymmetric Yang-Mills theory. This approach naturally generates the rational terms in the amplitudes, as well as the cut-constructible parts. We test the validity of our method by re-deriving the one-loop ++++, -+++, --++, -+-+ and +++++ gluon scattering amplitudes using generalised quadruple cuts and triple cuts in D dimensions.

  6. Loop amplitudes in pure Yang-Mills from generalised unitarity

    International Nuclear Information System (INIS)

    Brandhuber, Andreas; McNamara, Simon; Spence, Bill; Travaglini, Gabriele

    2005-01-01

    We show how generalised unitarity cuts in D = 4-2ε dimensions can be used to calculate efficiently complete one-loop scattering amplitudes in non-supersymmetric Yang-Mills theory. This approach naturally generates the rational terms in the amplitudes, as well as the cut-constructible parts. We test the validity of our method by re-deriving the one-loop ++++, -+++, --++, -+-+ and +++++ gluon scattering amplitudes using generalised quadruple cuts and triple cuts in D dimensions

  7. Loop amplitudes in pure Yang-Mills from generalised unitarity

    Energy Technology Data Exchange (ETDEWEB)

    Brandhuber, Andreas [Department of Physics, Queen Mary, University of London, Mile End Road, London, E1 4NS (United Kingdom); McNamara, Simon [Department of Physics, Queen Mary, University of London, Mile End Road, London, E1 4NS (United Kingdom); Spence, Bill [Department of Physics, Queen Mary, University of London, Mile End Road, London, E1 4NS (United Kingdom); Travaglini, Gabriele [Department of Physics, Queen Mary, University of London, Mile End Road, London, E1 4NS (United Kingdom)

    2005-10-15

    We show how generalised unitarity cuts in D = 4-2{epsilon} dimensions can be used to calculate efficiently complete one-loop scattering amplitudes in non-supersymmetric Yang-Mills theory. This approach naturally generates the rational terms in the amplitudes, as well as the cut-constructible parts. We test the validity of our method by re-deriving the one-loop ++++, -+++, --++, -+-+ and +++++ gluon scattering amplitudes using generalised quadruple cuts and triple cuts in D dimensions.

  8. Reflooding Experiment on BETA Test Loop: The Effects of Inlet Temperature on the Rewetting Velocity

    International Nuclear Information System (INIS)

    Khairul H; Anhar R Antariksawan; Edy Sumarno; Kiswanta; Giarno; Joko P; Ismu Handoyo

    2003-01-01

    Loss of Coolant Accident (LOCA) on Nuclear Reactor Plant is an important topic because this condition is a severe accident that can be postulated. The phenomenon of LOCA on Pressurized Water Reactor (PWR) can be divided in three stages, e.g.: blowdown, refill and reflood. In the view of Emergency Coolant System evaluation, the reflood is the most important stage. In this stage, an injection of emergency water coolant must be done in a way that the core can be flooded and the overheating can be avoid. The experiment of rewetting on BETA Test Loop had been conducted. The experiment using one heated rod of the test section to study effects of inlet temperature on the wetting velocity. Results of the series of experiments on 2,5 lt/min flow rate and variable of temperature : 28 o C, 38 o C, 50 o C, 58 o C it was noticed that for 58 o C inlet temperature of test section and 572 o C rod temperature the rewetting phenomenon has been observed. The time of refill was 32.81 sec and time of rewetting was 42.87 sec. (author)

  9. BSM-MBR: a benchmark simulation model to compare control and operational strategies for membrane bioreactors.

    Science.gov (United States)

    Maere, Thomas; Verrecht, Bart; Moerenhout, Stefanie; Judd, Simon; Nopens, Ingmar

    2011-03-01

    A benchmark simulation model for membrane bioreactors (BSM-MBR) was developed to evaluate operational and control strategies in terms of effluent quality and operational costs. The configuration of the existing BSM1 for conventional wastewater treatment plants was adapted using reactor volumes, pumped sludge flows and membrane filtration for the water-sludge separation. The BSM1 performance criteria were extended for an MBR taking into account additional pumping requirements for permeate production and aeration requirements for membrane fouling prevention. To incorporate the effects of elevated sludge concentrations on aeration efficiency and costs a dedicated aeration model was adopted. Steady-state and dynamic simulations revealed BSM-MBR, as expected, to out-perform BSM1 for effluent quality, mainly due to complete retention of solids and improved ammonium removal from extensive aeration combined with higher biomass levels. However, this was at the expense of significantly higher operational costs. A comparison with three large-scale MBRs showed BSM-MBR energy costs to be realistic. The membrane aeration costs for the open loop simulations were rather high, attributed to non-optimization of BSM-MBR. As proof of concept two closed loop simulations were run to demonstrate the usefulness of BSM-MBR for identifying control strategies to lower operational costs without compromising effluent quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Virtual grasping: closed-loop force control using electrotactile feedback.

    Science.gov (United States)

    Jorgovanovic, Nikola; Dosen, Strahinja; Djozic, Damir J; Krajoski, Goran; Farina, Dario

    2014-01-01

    Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously "unseen" objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control.

  11. Virtual Grasping: Closed-Loop Force Control Using Electrotactile Feedback

    Directory of Open Access Journals (Sweden)

    Nikola Jorgovanovic

    2014-01-01

    Full Text Available Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously “unseen” objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control.

  12. On loop extensions and cohomology of loops

    OpenAIRE

    Benítez, Rolando Jiménez; Meléndez, Quitzeh Morales

    2015-01-01

    In this paper are defined cohomology-like groups that classify loop extensions satisfying a given identity in three variables for association identities, and in two variables for the case of commutativity. It is considered a large amount of identities. This groups generalize those defined in works of Nishigori [2] and of Jhonson and Leedham-Green [4]. It is computed the number of metacyclic extensions for trivial action of the quotient on the kernel in one particular case for left Bol loops a...

  13. Experimental tests for the Babu-Zee two-loop model of Majorana neutrino masses

    International Nuclear Information System (INIS)

    Sierra, Diego Aristizabal; Hirsch, Martin

    2006-01-01

    The smallness of the observed neutrino masses might have a radiative origin. Here we revisit a specific two-loop model of neutrino mass, independently proposed by Babu and Zee. We point out that current constraints from neutrino data can be used to derive strict lower limits on the branching ratio of flavour changing charged lepton decays, such as μ→eγ. Non-observation of Br(μ→eγ) at the level of 10 -13 would rule out singly charged scalar masses smaller than 590 GeV (5.04 TeV) in case of normal (inverse) neutrino mass hierarchy. Conversely, decay branching ratios of the non-standard scalars of the model can be fixed by the measured neutrino angles (and mass scale). Thus, if the scalars of the model are light enough to be produced at the LHC or ILC, measuring their decay properties would serve as a direct test of the model as the origin of neutrino masses

  14. Experimental tests for the Babu-Zee two-loop model of Majorana neutrino masses

    International Nuclear Information System (INIS)

    Aristizabal, D.

    2006-01-01

    Abstract: The smallness of the observed neutrino masses might have a radiative origin. Here we revisit a specific two-loop model of neutrino mass, independently proposed by Babu and Zee. We point out that current constraints from neutrino data can be used to derive strict lower limits on the branching ratio of flavour changing charged lepton decays, such as μ → e γ. Non-observation of Br(μ → e γ) at the level of 10 -13 would rule out singly charged scalar masses smaller than 590 GeV (5.04 TeV) in case of normal (inverse) neutrino mass hierarchy. Conversely, decay branching ratios of the non-standard scalars of the model can be fixed by the measured neutrino angles (and mass scale). Thus, if the scalars of the model are light enough to be produced at the LHC or ILC, measuring their decay properties would serve as a direct test of the model as the origin of neutrino masses. (author)

  15. Sensitivity analysis on the interfacial drag in SPACE code to simulate UPTF separate effect test about loop seal clearance phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sukho; Lim, Sanggyu; You, Gukjong; Park, Youngsheop [Korea Hydro and Nuclear Power Company, Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    The nuclear thermal hydraulic system code known as SPACE (Safety and Performance Analysis CodE) was developed and its V and V (Verification and Validation) have been conducted using well-known SETs (Separate Effect Tests) and IETs (Integral Effect Tests). At the same time, the SBLOCA (Small Break Loss of Coolant Accident) methodology in accordance with Appendix K of 10CFR50 for the APR1400 (Advanced Power Reactor 1400) was developed and applied to regulatory body for licensing in 2013. Especially, the SBLOCA methodology developed using SPACE v2.14 code adopts inherent test matrix independent of V and V test to show its conservatism for important phenomena. In this paper, the predictability of SPACE code for UPTF (Upper Plenum Test Facility) test simulating loop seal clearance of SBLOCA important phenomena and the related sensitivity analysis are introduced.

  16. Feedback - closing the loop digitally

    International Nuclear Information System (INIS)

    Zagel, J.; Chase, B.

    1992-01-01

    Many feedback and feedforward systems are now using microprocessors within the loop. We describe the wide range of possibilities and problems that arise. We also propose some ideas for analysis and testing, including examples of motion control in the Flying Wire systems in Main Ring and Tevatron and Low Level RF control now being built for the Fermilab Linac upgrade. (author)

  17. Breakdown voltage at the electric terminals of GCFR-core flow test loop fuel rod simulators in helium and air

    International Nuclear Information System (INIS)

    Huntley, W.R.; Conley, T.B.

    1979-12-01

    Tests were performed to determine the ac and dc breakdown voltage at the terminal ends of a fuel rod simulator (FRS) in helium and air atmospheres. The tests were performed at low pressures (1 to 2 atm) and at temperatures from 20 to 350 0 C (68 to 660 0 F). The area of concern was the 0.64-mm (0.025-in.) gap between the coaxial conductor of the FRS and the sheaths of the four internal thermocouples as they exit the FRS. The tests were prformed to ensure a sufficient safety margin during Core Flow Test Loop (CFTL) operations that require potentials up to 350 V ac at the FRS terminals. The primary conclusion from the test results is that the CFTL cannot be operated safely if the terminal ends of the FRSs are surrounded by a helium atmosphere but can be operated safely in air

  18. Membrane processes

    Science.gov (United States)

    Staszak, Katarzyna

    2017-11-01

    The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

  19. Rapid Simulation of Flat Knitting Loops Based On the Yarn Texture and Loop Geometrical Model

    Directory of Open Access Journals (Sweden)

    Lu Zhiwen

    2017-06-01

    Full Text Available In order to create realistic loop primitives suitable for the fast computer-aided design (CAD of the flat knitted fabric, we have a research on the geometric model of the loop as well as the variation of the loop surface. Establish the texture variation model based on the changing process from the normal yarn to loop that provides the realistic texture of the simulative loop. Then optimize the simulative loop based on illumination variation. This paper develops the computer program with the optimization algorithm and achieves the loop simulation of different yarns to verify the feasibility of the proposed algorithm. Our work provides a fast CAD of the flat knitted fabric with loop simulation, and it is not only more realistic but also material adjustable. Meanwhile it also provides theoretical value for the flat knitted fabric computer simulation.

  20. Proteins mediating DNA loops effectively block transcription.

    Science.gov (United States)

    Vörös, Zsuzsanna; Yan, Yan; Kovari, Daniel T; Finzi, Laura; Dunlap, David

    2017-07-01

    Loops are ubiquitous topological elements formed when proteins simultaneously bind to two noncontiguous DNA sites. While a loop-mediating protein may regulate initiation at a promoter, the presence of the protein at the other site may be an obstacle for RNA polymerases (RNAP) transcribing a different gene. To test whether a DNA loop alters the extent to which a protein blocks transcription, the lac repressor (LacI) was used. The outcome of in vitro transcription along templates containing two LacI operators separated by 400 bp in the presence of LacI concentrations that produced both looped and unlooped molecules was visualized with scanning force microscopy (SFM). An analysis of transcription elongation complexes, moving for 60 s at an average of 10 nt/s on unlooped DNA templates, revealed that they more often surpassed LacI bound to the lower affinity O2 operator than to the highest affinity Os operator. However, this difference was abrogated in looped DNA molecules where LacI became a strong roadblock independently of the affinity of the operator. Recordings of transcription elongation complexes, using magnetic tweezers, confirmed that they halted for several minutes upon encountering a LacI bound to a single operator. The average pause lifetime is compatible with RNAP waiting for LacI dissociation, however, the LacI open conformation visualized in the SFM images also suggests that LacI could straddle RNAP to let it pass. Independently of the mechanism by which RNAP bypasses the LacI roadblock, the data indicate that an obstacle with looped topology more effectively interferes with transcription. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  1. Advanced Photovoltaic Inverter Control Development and Validation in a Controller-Hardware-in-the-Loop Test Bed

    Energy Technology Data Exchange (ETDEWEB)

    Prabakar, Kumaraguru [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Shirazi, Mariko [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Singh, Akanksha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chakraborty, Sudipta [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-07

    Penetration levels of solar photovoltaic (PV) generation on the electric grid have increased in recent years. In the past, most PV installations have not included grid-support functionalities. But today, standards such as the upcoming revisions to IEEE 1547 recommend grid support and anti-islanding functions-including volt-var, frequency-watt, volt-watt, frequency/voltage ride-through, and other inverter functions. These functions allow for the standardized interconnection of distributed energy resources into the grid. This paper develops and tests low-level inverter current control and high-level grid support functions. The controller was developed to integrate advanced inverter functions in a systematic approach, thus avoiding conflict among the different control objectives. The algorithms were then programmed on an off-the-shelf, embedded controller with a dual-core computer processing unit and field-programmable gate array (FPGA). This programmed controller was tested using a controller-hardware-in-the-loop (CHIL) test bed setup using an FPGA-based real-time simulator. The CHIL was run at a time step of 500 ns to accommodate the 20-kHz switching frequency of the developed controller. The details of the advanced control function and CHIL test bed provided here will aide future researchers when designing, implementing, and testing advanced functions of PV inverters.

  2. Investigation of a submerged membrane reactor for continuous biomass hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Malmali, Mohammadmahdi; Stickel, Jonathan; Wickramasinghe, S. Ranil

    2015-10-01

    Enzymatic hydrolysis of cellulose is one of the most costly steps in the bioconversion of lignocellulosic biomass. Use of a submerged membrane reactor has been investigated for continuous enzymatic hydrolysis of cellulose thus allowing for greater use of the enzyme compared to a batch process. Moreover, the submerged 0.65 μm polyethersulfone microfiltration membrane avoids the need to pump a cellulose slurry through an external loop. Permeate containing glucose is withdrawn at pressures slightly below atmospheric pressure. The membrane rejects cellulose particles and cellulase enzyme bound to cellulose. Our proof-of-concept experiments have been conducted using a modified, commercially available membrane filtration cell under low fluxes around 75 L/(m2 h). The operating flux is determined by the rate of glucose production. Maximizing the rate of glucose production involves optimizing mixing, reactor holding time, and the time the feed is held in the reactor prior to commencement of membrane filtration and continuous operation. When we maximize glucose production rates it will require that we operate it at low glucose concentration in order to minimize the adverse effects of product inhibition. Consequently practical submerged membrane systems will require a combined sugar concentration step in order to concentrate the product sugar stream prior to fermentation.

  3. Deconstructing the DGAT1 enzyme: membrane interactions at substrate binding sites.

    Directory of Open Access Journals (Sweden)

    Jose L S Lopes

    Full Text Available Diacylglycerol acyltransferase 1 (DGAT1 is a key enzyme in the triacylglyceride synthesis pathway. Bovine DGAT1 is an endoplasmic reticulum membrane-bound protein associated with the regulation of fat content in milk and meat. The aim of this study was to evaluate the interaction of DGAT1 peptides corresponding to putative substrate binding sites with different types of model membranes. Whilst these peptides are predicted to be located in an extramembranous loop of the membrane-bound protein, their hydrophobic substrates are membrane-bound molecules. In this study, peptides corresponding to the binding sites of the two substrates involved in the reaction were examined in the presence of model membranes in order to probe potential interactions between them that might influence the subsequent binding of the substrates. Whilst the conformation of one of the peptides changed upon binding several types of micelles regardless of their surface charge, suggesting binding to hydrophobic domains, the other peptide bound strongly to negatively-charged model membranes. This binding was accompanied by a change in conformation, and produced leakage of the liposome-entrapped dye calcein. The different hydrophobic and electrostatic interactions observed suggest the peptides may be involved in the interactions of the enzyme with membrane surfaces, facilitating access of the catalytic histidine to the triacylglycerol substrates.

  4. Interaction of monomeric Ebola VP40 protein with a plasma membrane: A coarse-grained molecular dynamics (CGMD) simulation study.

    Science.gov (United States)

    Mohamad Yusoff, Mohamad Ariff; Abdul Hamid, Azzmer Azzar; Mohammad Bunori, Noraslinda; Abd Halim, Khairul Bariyyah

    2018-06-01

    Ebola virus is a lipid-enveloped filamentous virus that affects human and non-human primates and consists of several types of protein: nucleoprotein, VP30, VP35, L protein, VP40, VP24, and transmembrane glycoprotein. Among the Ebola virus proteins, its matrix protein VP40 is abundantly expressed during infection and plays a number of critical roles in oligomerization, budding and egress from the host cell. VP40 exists predominantly as a monomer at the inner leaflet of the plasma membrane, and has been suggested to interact with negatively charged lipids such as phosphatidylinositol 4,5-bisphosphate (PIP 2 ) and phosphatidylserine (PS) via its cationic patch. The hydrophobic loop at the C-terminal domain has also been shown to be important in the interaction between the VP40 and the membrane. However, details of the molecular mechanisms underpinning their interactions are not fully understood. This study aimed at investigating the effects of mutation in the cationic patch and hydrophobic loop on the interaction between the VP40 monomer and the plasma membrane using coarse-grained molecular dynamics simulation (CGMD). Our simulations revealed that the interaction between VP40 and the plasma membrane is mediated by the cationic patch residues. This led to the clustering of PIP 2 around the protein in the inner leaflet as a result of interactions between some cationic residues including R52, K127, K221, K224, K225, K256, K270, K274, K275 and K279 and PIP 2 lipids via electrostatic interactions. Mutation of the cationic patch or hydrophobic loop amino acids caused the protein to bind at the inner leaflet of the plasma membrane in a different orientation, where no significant clustering of PIP 2 was observed around the mutated protein. This study provides basic understanding of the interaction of the VP40 monomer and its mutants with the plasma membrane. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Recent palladium membrane reactor development at the tritium systems test assembly

    International Nuclear Information System (INIS)

    Willms, R.S.; Birdsell, S.A.; Wilhelm, R.C.

    1995-01-01

    The palladium membrane reactor (PMR) is proving to be a simple and effective means for recovering hydrogen isotopes from fusion fuel impurities such as methane and water. This device directly combines two techniques which have long been utilized for hydrogen processing, namely catalytic shift reactions and palladium/silver permeators. A proof-of-principle (PMR) has been constructed and tested at the Tritium Systems Test Assembly of Los Alamos National Laboratory. The first tests with this device showed that is was effective for the proposed purpose. Initial work concluded that a nickel catalyst was an appropriate choice for use in a PMR. More detailed testing of the PMR with such a catalyst was performed and reported in other works. It was shown that a nickel catalyst-packed PMR did, indeed, recover hydrogen from water and methane with efficiencies approaching 100% in a single processing pass. These experiments were conducted over an extended period of time and no failure or need for regeneration was encountered. These positive results have prompted further PMR development. Topics addressed include alternate PMR geometries and initial testing of the PMR with tritium. These are the subjects of this paper

  6. Random walk loop soup

    OpenAIRE

    Lawler, Gregory F.; Ferreras, José A. Trujillo

    2004-01-01

    The Brownian loop soup introduced in Lawler and Werner (2004) is a Poissonian realization from a sigma-finite measure on unrooted loops. This measure satisfies both conformal invariance and a restriction property. In this paper, we define a random walk loop soup and show that it converges to the Brownian loop soup. In fact, we give a strong approximation result making use of the strong approximation result of Koml\\'os, Major, and Tusn\\'ady. To make the paper self-contained, we include a proof...

  7. Membranous nephropathy

    Science.gov (United States)

    ... skin-lightening creams Systemic lupus erythematosus , rheumatoid arthritis, Graves disease, and other autoimmune disorders The disorder occurs at ... diagnosis. The following tests can help determine the cause of membranous nephropathy: Antinuclear antibodies test Anti-double- ...

  8. Membrane topology analysis of HIV-1 envelope glycoprotein gp41

    Directory of Open Access Journals (Sweden)

    Xiao Dan

    2010-11-01

    Full Text Available Abstract Background The gp41 subunit of the HIV-1 envelope glycoprotein (Env has been widely regarded as a type I transmembrane protein with a single membrane-spanning domain (MSD. An alternative topology model suggested multiple MSDs. The major discrepancy between the two models is that the cytoplasmic Kennedy sequence in the single MSD model is assigned as the extracellular loop accessible to neutralizing antibodies in the other model. We examined the membrane topology of the gp41 subunit in both prokaryotic and mammalian systems. We attached topological markers to the C-termini of serially truncated gp41. In the prokaryotic system, we utilized a green fluorescent protein (GFP that is only active in the cytoplasm. The tag protein (HaloTag and a membrane-impermeable ligand specific to HaloTag was used in the mammalian system. Results In the absence of membrane fusion, both the prokaryotic and mammalian systems (293FT cells supported the single MSD model. In the presence of membrane fusion in mammalian cells (293CD4 cells, the data obtained seem to support the multiple MSD model. However, the region predicted to be a potential MSD is the highly hydrophilic Kennedy sequence and is least likely to become a MSD based on several algorithms. Further analysis revealed the induction of membrane permeability during membrane fusion, allowing the membrane-impermeable ligand and antibodies to cross the membrane. Therefore, we cannot completely rule out the possible artifacts. Addition of membrane fusion inhibitors or alterations of the MSD sequence decreased the induction of membrane permeability. Conclusions It is likely that a single MSD model for HIV-1 gp41 holds true even in the presence of membrane fusion. The degree of the augmentation of membrane permeability we observed was dependent on the membrane fusion and sequence of the MSD.

  9. Development of test method for assessing the bonding characteristics of membrane layers in wearing course laid on orthotropic steel bridge decks

    NARCIS (Netherlands)

    Liu, X.; Scarpas, A.; Li, J.; Tzimiris, G.; Hofman, R.; Voskuilen, J.

    2013-01-01

    In order to adequately characterize the adhesive bonding strength of the various membranes with surrounding materials on orthotropic steel decks and collect the necessary parameters for FE modeling, details of the Membrane Adhesion Test (MAT) are introduced. Analytical constitutive relations of the

  10. Double-winding Wilson loops in SU(N) Yang-Mills theory - A criterion for testing the confinement models -

    Science.gov (United States)

    Matsudo, Ryutaro; Kondo, Kei-Ichi; Shibata, Akihiro

    2018-03-01

    We examine how the average of double-winding Wilson loops depends on the number of color N in the SU(N) Yang-Mills theory. In the case where the two loops C1 and C2 are identical, we derive the exact operator relation which relates the doublewinding Wilson loop operator in the fundamental representation to that in the higher dimensional representations depending on N. By taking the average of the relation, we find that the difference-of-areas law for the area law falloff recently claimed for N = 2 is excluded for N ⩾ 3, provided that the string tension obeys the Casimir scaling for the higher representations. In the case where the two loops are distinct, we argue that the area law follows a novel law (N - 3)A1/(N - 1) + A2 with A1 and A2(A1 law when (N ⩾ 3). Indeed, this behavior can be confirmed in the two-dimensional SU(N) Yang-Mills theory exactly.

  11. Determination of the force systems produced by different configurations of tear drop orthodontic loops

    Directory of Open Access Journals (Sweden)

    Guilherme Thiesen

    2013-04-01

    Full Text Available OBJECTIVE: To determine the mechanical characteristics of teardrop loop with and without helix fabricated using different metal alloy compositions (stainless steel and beta-titanium, submitted to different intensities of bends preactivation (0º and 40º, and with different cross-sectional dimension of the wire used to build these loops (0.017 x 0.025-in and 0.019 x 0.025-in. METHODS: Eighty loops used to close spaces were submitted to mechanical tests. The magnitudes of horizontal force, the moment/force ratio, and the load/deflection ratio produced by the specimens were quantified. Loops were submitted to a total activation of 5.0 mm and the values were registered for each 1.0 mm of activation. For statistic data analysis, a analysis of variance was performed and a Tukey's Multiple Comparison test was used as supplement, considering a 5% level of significance. RESULTS: In general, teardrop loops with helix produced lower magnitudes of horizontal force and load/deflection ratio, and higher moment/force ratio than teardrop loops without helix. Among all analyzed variables, metal alloy composition presented greater influence in the horizontal force and in the load/deflection ratio. The moment/force ratio showed to be more influenced by the preactivation of loops for space closure.

  12. CO2 Acquisition Membrane (CAM)

    Science.gov (United States)

    Mason, Larry W.; Way, J. Douglas; Vlasse, Marcus

    2003-01-01

    The objective of CAM is to develop, test, and analyze thin film membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The membranes are targeted toward In Situ Resource Utilization (ISRU) applications that will operate in extraterrestrial environments and support future unmanned and human space missions. A primary application is the Sabatier Electrolysis process that uses Mars atmosphere CO2 as raw material for producing water, oxygen, and methane for rocket fuel and habitat support. Other applications include use as an inlet filter to collect and concentrate Mars atmospheric argon and nitrogen gases for habitat pressurization, and to remove CO2 from breathing gases in Closed Environment Life Support Systems (CELSS). CAM membrane materials include crystalline faujasite (FAU) zeolite and rubbery polymers such as silicone rubber (PDMS) that have been shown in the literature and via molecular simulation to favor adsorption and permeation of CO2 over nitrogen and argon. Pure gas permeation tests using commercial PDMS membranes have shown that both CO2 permeance and the separation factor relative to other gases increase as the temperature decreases, and low (Delta)P(Sub CO2) favors higher separation factors. The ideal CO2/N2 separation factor increases from 7.5 to 17.5 as temperature decreases from 22 C to -30 C. For gas mixtures containing CO2, N2, and Ar, plasticization decreased the separation factors from 4.5 to 6 over the same temperature range. We currently synthesize and test our own Na(+) FAU zeolite membranes using standard formulations and secondary growth methods on porous alumina. Preliminary tests with a Na(+) FAU membrane at 22 C show a He/SF6 ideal separation factor of 62, exceeding the Knudsen diffusion selectivity by an order of magnitude. This shows that the membrane is relatively free from large defects and associated non-selective (viscous flow) transport

  13. Web-based ground loop supervision system for the TJ-II Stellarator

    International Nuclear Information System (INIS)

    Pena, A. de la; Lapayese, F.; Pacios, L.; Carrasco, R.

    2005-01-01

    To minimize electromagnetic interferences in diagnostic and control signals, and to guarantee safe operation of TJ-II, ground loops must be avoided. In order to meet this goal, the whole grounding system of the TJ-II was split into multiple single branches that are connected at a single earth point located near the TJ-II structure in the torus hall. A real-time ground loop supervision system (GLSS) has been designed, manufactured and tested by the TJ-II control group for detecting unintentional short circuits between isolated grounded parts. A web server running on the real-time operating system OS-9 provides remote access to the real-time ground loops measurement. Ground loops monitoring and different operation modes can be configured via any web browser. This paper gives the detailed design of the whole TJ-II ground loop supervision system and its results during its operation

  14. Web-based ground loop supervision system for the TJ-II Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A. de la [Asociacion EURATOM-CIEMAT Para Fusion, Avd. Complutense 22, 28040 Madrid (Spain)]. E-mail: a.delapena@ciemat.es; Lapayese, F. [Asociacion EURATOM-CIEMAT Para Fusion, Avd. Complutense 22, 28040 Madrid (Spain); Pacios, L. [Asociacion EURATOM-CIEMAT Para Fusion, Avd. Complutense 22, 28040 Madrid (Spain); Carrasco, R. [Asociacion EURATOM-CIEMAT Para Fusion, Avd. Complutense 22, 28040 Madrid (Spain)

    2005-11-15

    To minimize electromagnetic interferences in diagnostic and control signals, and to guarantee safe operation of TJ-II, ground loops must be avoided. In order to meet this goal, the whole grounding system of the TJ-II was split into multiple single branches that are connected at a single earth point located near the TJ-II structure in the torus hall. A real-time ground loop supervision system (GLSS) has been designed, manufactured and tested by the TJ-II control group for detecting unintentional short circuits between isolated grounded parts. A web server running on the real-time operating system OS-9 provides remote access to the real-time ground loops measurement. Ground loops monitoring and different operation modes can be configured via any web browser. This paper gives the detailed design of the whole TJ-II ground loop supervision system and its results during its operation.

  15. Neutron transport in irradiation loops (IRENE loop)

    International Nuclear Information System (INIS)

    Sarsam, Maher.

    1980-09-01

    This thesis is composed of two parts with different aspects. Part one is a technical description of the loop and its main ancillary facilities as well as of the safety and operational regulations. The measurement methods on the model of the ISIS reactor and on the loop in the OSIRIS reactor are described. Part two deals with the possibility of calculating the powers dissipated by each rod of the fuel cluster, using appropriate computer codes, not only in the reflector but also in the core and to suggest a method of calculation [fr

  16. Full parabolic trough qualification from prototype to demonstration loop

    Science.gov (United States)

    Janotte, Nicole; Lüpfert, Eckhard; Pottler, Klaus; Schmitz, Mark

    2017-06-01

    On the example of the HelioTrough® collector development the full accompanying and supporting qualification program for large-scale parabolic trough collectors for solar thermal power plants is described from prototype to demonstration loop scale. In the evaluation process the actual state and the optimization potential are assessed. This includes the optical and geometrical performance determined by concentrator shape, deformation, assembly quality and local intercept factor values. Furthermore, its mechanical performance in terms of tracking accuracy and torsional stiffness and its thermal system performance on the basis of the overall thermal output and heat loss are evaluated. Demonstration loop tests deliver results of collector modules statistical slope deviation of 1.9 to 2.6 mrad, intercept factor above 98%, peak optical performance of 81.6% and heat loss coefficients from field tests. The benefit of such a closely monitored development lies in prompt feedback on strengths, weaknesses and potential improvements on the new product at any development stage from first module tests until demonstration loop evaluation. The product developer takes advantage of the achieved technical maturity, already before the implementation in a commercial power plant. The well-understood performance characteristics allow the reduction of safety margins making the new HelioTrough collector competitive from the start.

  17. NOMAGE4 activities 2011. Part II, Supercritical water loop

    Energy Technology Data Exchange (ETDEWEB)

    Vierstraete, P. (Ecole Nationale Superieure des mines, Paris (France)); Van Nieuwenhove, R. (Institutt for Energiteknikk, OECD Halden Reactor Project (HRP), Kjeller (Norway)); Lauritzen, B. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark))

    2012-01-15

    The supercritical water reactor (SCWR) is one of the six different reactor technologies selected for research and development under the Generation IV program. Several countries have shown interest to this concept but up to now, there exist no in-pile facilities to perform the required material and fuel tests. Working on this direction, the Halden Reactor Project has started an activity in collaboration with Risoe-DTU (with Mr. Rudi Van Nieuwenhove as the project leader) to study the feasibility of a SCW loop in the Halden Reactor, which is a Heavy Boiling Water Reactor (HBWR). The ultimate goal of the project is to design a loop allowing material and fuel test studies at significant mass flow with in-core instrumentation and chemistry control possibilities. The present report focusses on the main heat exchanger required for such a loop in the Halden Reactor. The goal of this heat exchanger is to assure a supercritical flow state inside the test section (the core side) and a subcritical flow state inside the pump section. The objective is to design the heat exchanger in order to optimize the efficiency of the heat transfer and to respect several requirements as the room available inside the reactor hall, the maximal total pressure drop allowed and so on. (Author)

  18. Loop space representation of quantum general relativity and the group of loops

    International Nuclear Information System (INIS)

    Gambini, R.

    1991-01-01

    The action of the constraints of quantum general relativity on a general state in the loop representation is coded in terms of loop derivatives. These differential operators are related to the infinitesimal generators of the group of loops and generalize the area derivative first considered by Mandelstam. A new sector of solutions of the physical states space of nonperturbative quantum general relativity is found. (orig.)

  19. Blanket testing in NET

    International Nuclear Information System (INIS)

    Chazalon, M.; Daenner, W.; Libin, B.

    1989-01-01

    The testing stages in NET for the performance assessment of the various breeding blanket concepts developed at the present time in Europe for DEMO (LiPb and ceramic blankets) and the requirements upon NET to perform these tests are reviewed. Typical locations available in NET for blanket testing are the central outboard segments and the horizontal ports of in-vessel sectors. These test positions will be connectable with external test loops. The number of test loops (helium, water, liquid metal) will be such that each major class of blankets can be tested in NET. The test positions, the boundary conditions and the external test loops are identified and the requirements for test blankets are summarized (author). 6

  20. Fermions and loops on graphs: I. Loop calculus for determinants

    International Nuclear Information System (INIS)

    Chernyak, Vladimir Y; Chertkov, Michael

    2008-01-01

    This paper is the first in a series devoted to evaluation of the partition function in statistical models on graphs with loops in terms of the Berezin/fermion integrals. The paper focuses on a representation of the determinant of a square matrix in terms of a finite series, where each term corresponds to a loop on the graph. The representation is based on a fermion version of the loop calculus, previously introduced by the authors for graphical models with finite alphabets. Our construction contains two levels. First, we represent the determinant in terms of an integral over anti-commuting Grassmann variables, with some reparametrization/gauge freedom hidden in the formulation. Second, we show that a special choice of the gauge, called the BP (Bethe–Peierls or belief propagation) gauge, yields the desired loop representation. The set of gauge fixing BP conditions is equivalent to the Gaussian BP equations, discussed in the past as efficient (linear scaling) heuristics for estimating the covariance of a sparse positive matrix

  1. TSTA loop operation with 100 grams-level of tritium

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Fukui, Hiroshi; Hirata, Shingo

    1988-12-01

    A fully integrated loop operation test of Tritium systems Test Assembly (TSTA) with 107 grams of tritium was completed at Los Alamos National Laboratory (LANL) in June, 1988. In this test, a compound cryopump with a charcoal panel was incorporated into the main process loop for the first time. The objectives were (i) to demonstrate the compound cryopump system with different flow rates and impurities, (ii) to demonstrate the regeneration of the compound cryopump system, (iii) to accumulate operating experience with other process systems such as the fuel cleanup system, the isotope separation system, the tritium supply and recovery system, etc. and (iv) to improve the data-base on TSTA safety systems such as the secondary containment system, tritium waste treatment system and tritium monitoring system. This report briefly describes characteristics of the main subsystems observed during the milestone run. (author)

  2. Performance of different hollow fiber membranes for seawater desalination using membrane distillation

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Amy, Gary L.

    2014-01-01

    Membrane distillation requires a highly porous hydrophobic membrane with low surface energy. In this paper, we compare the direct contact membrane distillation (DCMD) performances of four different types of in-house fabricated hollow fiber membranes and two different commercially available hollow fiber membranes. Hollow fiber membranes are fabricated using wet-jet phase inversion technique and the polymeric matrices used for the fabrication are polyvinylidine fluoride (PVDF) and polyvinyl chloride (PVC). Commercial hollow fiber membrane materials are made of polytetrafluoroethylene (PTFE) and polypropylene (PP). PVDF hollow fibers showed a superior performance among all the hollow fibers tested in the DCMD process and gave a water vapor flux of 31 kg m-2h-1 at a feed and coolant inlet temperatures of 80 and 20°C, respectively. Under the same conditions, the water vapor flux observed for PP, PTFE, and PVC hollow fiber membranes are 13, 11, and 6 kg m-2h-1, respectively, with 99.99% salt rejection observed for all membranes used.

  3. Performance of different hollow fiber membranes for seawater desalination using membrane distillation

    KAUST Repository

    Francis, Lijo

    2014-08-11

    Membrane distillation requires a highly porous hydrophobic membrane with low surface energy. In this paper, we compare the direct contact membrane distillation (DCMD) performances of four different types of in-house fabricated hollow fiber membranes and two different commercially available hollow fiber membranes. Hollow fiber membranes are fabricated using wet-jet phase inversion technique and the polymeric matrices used for the fabrication are polyvinylidine fluoride (PVDF) and polyvinyl chloride (PVC). Commercial hollow fiber membrane materials are made of polytetrafluoroethylene (PTFE) and polypropylene (PP). PVDF hollow fibers showed a superior performance among all the hollow fibers tested in the DCMD process and gave a water vapor flux of 31 kg m-2h-1 at a feed and coolant inlet temperatures of 80 and 20°C, respectively. Under the same conditions, the water vapor flux observed for PP, PTFE, and PVC hollow fiber membranes are 13, 11, and 6 kg m-2h-1, respectively, with 99.99% salt rejection observed for all membranes used.

  4. Best estimate probabilistic safety assessment results for the Westinghouse Advanced Loop Tester (WALT)

    International Nuclear Information System (INIS)

    Wang, Guoqiang; Xu, Yiban; Oelrich, Robert L. Jr.; Byers, William A.; Young, Michael Y.; Karoutas, Zeses E.

    2011-01-01

    The nuclear industry uses the probabilistic safety assessment (PSA) technique to improve safety decision making and operation. The methodology evaluates the system reliability, which is defined as the probability of system success, and the postulated accident/problematic scenarios of systems for the nuclear power plants or other facilities. The best estimate probabilistic safety assessment (BE-PSA) method of evaluating system reliability and postulated problematic scenarios will produce more detailed results of interest, such as best estimated reliability analysis and detailed thermal hydraulic calculations using a sub-channel or Computational Fluid Dynamics (CFD) code. The methodology is typically applied to reactors, but can also be applied to any system such as a test facility. In this paper, a BE-PSA method is introduced and used for evaluating the Westinghouse Advanced Loop Tester (WALT). The WALT test loop at the George Westinghouse Science and Technology Center (STC), which was completed in October 2005, is designed to be utilized to model the top grid span of a hot rod in a fuel assembly under the Pressurizer Water Reactor (PWR) normal operating conditions. In order to safely and successfully operate the WALT test loop and correctly use the WALT experimental data, it is beneficial to perform a probabilistic safety assessment and analyze the thermal hydraulic results for the WALT loop in detail. Since October 2005, a number of test runs have been performed on the WALT test facility designed and fabricated by Westinghouse Electric Company LLC. This paper briefly describes the BE-PSA method and performs BE-PSA for the WALT loop. Event trees linked with fault trees embedding thermal hydraulic analysis models, such as sub-channel and/or CFD models, were utilized in the analyses. Consequently, some selected useful experimental data and analysis results are presented for future guidance on WALT and/or other similar test facilities. For example, finding and

  5. Hanford Tank Farms Waste Feed Flow Loop Phase VI: PulseEcho System Performance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy WJ; Hopkins, Derek F.

    2012-11-21

    This document presents the visual and ultrasonic PulseEcho critical velocity test results obtained from the System Performance test campaign that was completed in September 2012 with the Remote Sampler Demonstration (RSD)/Waste Feed Flow Loop cold-test platform located at the Monarch test facility in Pasco, Washington. This report is intended to complement and accompany the report that will be developed by WRPS on the design of the System Performance simulant matrix, the analysis of the slurry test sample concentration and particle size distribution (PSD) data, and the design and construction of the RSD/Waste Feed Flow Loop cold-test platform.

  6. Flow-volume loops measured with electrical impedance tomography in pediatric patients with asthma.

    Science.gov (United States)

    Ngo, Chuong; Dippel, Falk; Tenbrock, Klaus; Leonhardt, Steffen; Lehmann, Sylvia

    2018-05-01

    Electrical impedance tomography (EIT) provides information on global and regional ventilation during tidal breathing and mechanical ventilation. During forced expiration maneuvers, the linearity of EIT and spirometric data has been documented in healthy persons. The present study investigates the potential diagnostic use of EIT in pediatric patients with asthma. EIT and spirometry were performed in 58 children with asthma (average age ± SD: 11.86 ± 3.13 years), and 58 healthy controls (average age ± SD: 12.12 ± 2.9 years). The correlation between EIT data and simultaneously acquired spirometric data were tested for FEV 1 , FEV 0.5 , MEF 75 , MEF 50 , and MEF 25 . Binary classification tests were performed for the EIT-derived Tiffeneau index FEV 1 /FVC and the bronchodilator test index ΔFEV 1 . Average flow-volume (FV) loops were generated for patients with pathologic spirometry to demonstrate the feasibility of EIT for graphic diagnosis of asthma. Spirometry and global EIT-based FV loops showed a strong correlation (P  0.9 in FEV 1 and FEV 0.5 ). In all criteria, the binary classification tests yielded high specificity (>93%), a high positive predictive value (≥75%) and a high negative predictive value (>80%), while sensitivity was higher in ΔFEV 1 (86.67%) and lower in FEV 1 /FVC (25% and 35.29%). A typical concave shape of the EIT-derived average FV loops was observed for asthmatic children with improvement after bronchospasmolysis. Global FV loops derived from EIT correlate well with spirometry. Positive bronchospasmolysis can be observed in EIT-derived FV loops. Flow-volume loops originated from EIT have a potential to visualize pulmonary function. © 2018 Wiley Periodicals, Inc.

  7. Design, Development, and Testing of a UAV Hardware-in-the-Loop Testbed for Aviation and Airspace Prognostics Research

    Science.gov (United States)

    Kulkarni, Chetan; Teubert, Chris; Gorospe, George; Burgett, Drew; Quach, Cuong C.; Hogge, Edward

    2016-01-01

    The airspace is becoming more and more complicated, and will continue to do so in the future with the integration of Unmanned Aerial Vehicles (UAVs), autonomy, spacecraft, other forms of aviation technology into the airspace. The new technology and complexity increases the importance and difficulty of safety assurance. Additionally, testing new technologies on complex aviation systems & systems of systems can be very difficult, expensive, and sometimes unsafe in real life scenarios. Prognostic methodology provides an estimate of the health and risks of a component, vehicle, or airspace and knowledge of how that will change over time. That measure is especially useful in safety determination, mission planning, and maintenance scheduling. The developed testbed will be used to validate prediction algorithms for the real-time safety monitoring of the National Airspace System (NAS) and the prediction of unsafe events. The framework injects flight related anomalies related to ground systems, routing, airport congestion, etc. to test and verify algorithms for NAS safety. In our research work, we develop a live, distributed, hardware-in-the-loop testbed for aviation and airspace prognostics along with exploring further research possibilities to verify and validate future algorithms for NAS safety. The testbed integrates virtual aircraft using the X-Plane simulator and X-PlaneConnect toolbox, UAVs using onboard sensors and cellular communications, and hardware in the loop components. In addition, the testbed includes an additional research framework to support and simplify future research activities. It enables safe, accurate, and inexpensive experimentation and research into airspace and vehicle prognosis that would not have been possible otherwise. This paper describes the design, development, and testing of this system. Software reliability, safety and latency are some of the critical design considerations in development of the testbed. Integration of HITL elements in

  8. Dechanneling by dislocation loops

    International Nuclear Information System (INIS)

    Chalant, Gerard.

    1976-09-01

    Ion implantation always induces the creation of dislocation loops. When the damage profile is determined by a backscattering technique, the dechanneling by these loops is implicitely at the origin of these measurements. The dechanneling of alpha particles by dislocation loops produced by the coalescence of quenched-in vacancies in aluminium is studied. The dechanneling and the concentration of loops were determined simultaneously. The dechanneling width around dislocation was found equal to lambda=6A, both for perfect and imperfect loops having a mean diameter d=250A. In the latter case, a dechanneling probability chi=0.34 was determined for the stacking fault, in good agreement with previous determination in gold. A general formula is proposed which takes into account the variation of lambda with the curvature (or the diameter d) of the loops. Finally, by a series of isothermal anneals, the self-diffusion energy ΔH of aluminium was measured. The value obtained ΔH=1.32+-0.10eV is in good agreement with the values obtained by other methods [fr

  9. EM Task 9 - Centrifugal membrane filtration

    International Nuclear Information System (INIS)

    Stepan, Daniel J.; Stevens, Bradley G.; Hetland, Melanie D.

    1999-01-01

    The overall project consists of several integrated research phases related to the applicability, continued development, demonstration, and commercialization of the SpinTek centrifugal membrane filtration process. Work performed during this reporting period consisted of Phase 2 evaluation of the SpinTek centrifugal membrane filtration technology and Phase 3, Technology Partnering. During Phase 1 testing conducted at the EERC using the SpinTek ST-IIL unit operating on a surrogate tank waste, a solids cake developed on the membrane surface. The solids cake was observed where linear membrane velocities were less than 17.5 ft/s and reduced the unobstructed membrane surface area up to 25%, reducing overall filtration performance. The primary goal of the Phase 2 research effort was to enhance filtration performance through the development and testing of alternative turbulence promoter designs. The turbulence promoters were designed to generate a shear force across the entire membrane surface sufficient to maintain a self-cleaning membrane capability and improve filtration efficiency and long-term performance. Specific Phase 2 research activities included the following: System modifications to accommodate an 11-in.-diameter, two-disk rotating membrane assembly; Development and fabrication of alternative turbulence promoter designs; Testing and evaluation of the existing and alternative turbulence promoters under selected operating conditions using a statistically designed test matrix; and Data reduction and analysis; The objective of Phase 3 research was to demonstrate the effectiveness of SpinTek's centrifugal membrane filtration as a pretreatment to remove suspended solids from a liquid waste upstream of 3M's WWL cartridge technology for the selective removal of technetium (Tc)

  10. Fusion between perinuclear virions and the outer nuclear membrane requires the fusogenic activity of herpes simplex virus gB.

    Science.gov (United States)

    Wright, Catherine C; Wisner, Todd W; Hannah, Brian P; Eisenberg, Roselyn J; Cohen, Gary H; Johnson, David C

    2009-11-01

    Herpesviruses cross nuclear membranes (NMs) in two steps, as follows: (i) capsids assemble and bud through the inner NM into the perinuclear space, producing enveloped virus particles, and (ii) the envelopes of these virus particles fuse with the outer NM. Two herpes simplex virus (HSV) glycoproteins, gB and gH (the latter, likely complexed as a heterodimer with gL), are necessary for the second step of this process. Mutants lacking both gB and gH accumulate in the perinuclear space or in herniations (membrane vesicles derived from the inner NM). Both gB and gH/gL are also known to act directly in fusing the virion envelope with host cell membranes during HSV entry into cells, i.e., both glycoproteins appear to function directly in different aspects of the membrane fusion process. We hypothesized that HSV gB and gH/gL also act directly in the membrane fusion that occurs during virus egress from the nucleus. Previous studies of the role of gB and gH/gL in nuclear egress involved HSV gB and gH null mutants that could potentially also possess gross defects in the virion envelope. Here, we produced recombinant HSV-expressing mutant forms of gB with single amino acid substitutions in the hydrophobic "fusion loops." These fusion loops are thought to play a direct role in membrane fusion by insertion into cellular membranes. HSV recombinants expressing gB with any one of four fusion loop mutations (W174R, W174Y, Y179K, and A261D) were unable to enter cells. Moreover, two of the mutants, W174Y and Y179K, displayed reduced abilities to mediate HSV cell-to-cell spread, and W174R and A261D exhibited no spread. All mutant viruses exhibited defects in nuclear egress, enveloped virions accumulated in herniations and in the perinuclear space, and fewer enveloped virions were detected on cell surfaces. These results support the hypothesis that gB functions directly to mediate the fusion between perinuclear virus particles and the outer NM.

  11. Coronal Loops: Evolving Beyond the Isothermal Approximation

    Science.gov (United States)

    Schmelz, J. T.; Cirtain, J. W.; Allen, J. D.

    2002-05-01

    Are coronal loops isothermal? A controversy over this question has arisen recently because different investigators using different techniques have obtained very different answers. Analysis of SOHO-EIT and TRACE data using narrowband filter ratios to obtain temperature maps has produced several key publications that suggest that coronal loops may be isothermal. We have constructed a multi-thermal distribution for several pixels along a relatively isolated coronal loop on the southwest limb of the solar disk using spectral line data from SOHO-CDS taken on 1998 Apr 20. These distributions are clearly inconsistent with isothermal plasma along either the line of sight or the length of the loop, and suggested rather that the temperature increases from the footpoints to the loop top. We speculated originally that these differences could be attributed to pixel size -- CDS pixels are larger, and more `contaminating' material would be expected along the line of sight. To test this idea, we used CDS iron line ratios from our data set to mimic the isothermal results from the narrowband filter instruments. These ratios indicated that the temperature gradient along the loop was flat, despite the fact that a more complete analysis of the same data showed this result to be false! The CDS pixel size was not the cause of the discrepancy; rather, the problem lies with the isothermal approximation used in EIT and TRACE analysis. These results should serve as a strong warning to anyone using this simplistic method to obtain temperature. This warning is echoed on the EIT web page: ``Danger! Enter at your own risk!'' In other words, values for temperature may be found, but they may have nothing to do with physical reality. Solar physics research at the University of Memphis is supported by NASA grant NAG5-9783. This research was funded in part by the NASA/TRACE MODA grant for Montana State University.

  12. Advanced multi-evaporator loop thermosyphon

    International Nuclear Information System (INIS)

    Mameli, M.; Mangini, D.; Vanoli, G.F.T.; Araneo, L.; Filippeschi, S.; Marengo, M.

    2016-01-01

    A novel prototype of multi-evaporator closed loop thermosyphon is designed and tested at different heaters position, inclinations and heat input levels, in order to prove that a peculiar arrangement of multiple heaters may be used in order to enhance the flow motion and consequently the thermal performance. The device consists in an aluminum tube (Inner/Outer tube diameter 3.0 mm/5.0 mm), bent into a planar serpentine with five U-turns and partially filled with FC-72, 50% vol. The evaporator zone is equipped with five heated patches (one for each U-turn) in series with respect to the flow path. In the first arrangement, heaters are wrapped on each bend symmetrically, while in the second layout heaters are located on the branch just above the U-turn, non-symmetrical with respect to the gravity direction, in order to promote the fluid circulation in a preferential direction. The condenser zone is cooled by forced air and equipped with a 50 mm transparent section for the flow pattern visualization. The non-symmetrical heater arrangement effectively promotes a stable fluid circulation and a reliable operation for a wider range of heat input levels and orientations with respect to the symmetrical case. In vertical position, the heat flux dissipation exceeds the pool boiling heat transfer limit for FC-72 by 75% and the tube wall temperatures in the evaporator zone are kept lower than 80 °C. Furthermore, the heat flux capability is up to five times larger with respect to the other existing wickless heat pipe technologies demonstrating the attractiveness of the new concept for electronic cooling thermal management. - Highlights: • A novel passive heat transfer device named Multi-Evaporator Loop Thermosyphon is tested. • The loop is investigated at different heating patterns, inclinations and heat power levels. • The non-symmetrical heating configuration promotes the fluid circulation within the loop. • The performance in terms of maximum heat flux exceeds the

  13. The Brownian loop soup

    OpenAIRE

    Lawler, Gregory F.; Werner, Wendelin

    2003-01-01

    We define a natural conformally invariant measure on unrooted Brownian loops in the plane and study some of its properties. We relate this measure to a measure on loops rooted at a boundary point of a domain and show how this relation gives a way to ``chronologically add Brownian loops'' to simple curves in the plane.

  14. MHD PbLi experiments in MaPLE loop at UCLA

    International Nuclear Information System (INIS)

    Courtessole, C.; Smolentsev, S.; Sketchley, T.; Abdou, M.

    2016-01-01

    Highlights: • The paper overviews the MaPLE facility at UCLA: one-of-a-few PbLi MHD loop in the world. • We present the progress achieved in development and testing of high-temperature PbLi flow diagnostics. • The most important MHD experiments carried out since the first loop operation in 2011 are summarized. - Abstract: Experiments on magnetohydrodynamic (MHD) flows are critical to understanding complex flow phenomena in ducts of liquid metal blankets, in particular those that utilize eutectic alloy lead–lithium as breeder/coolant, such as self-cooled, dual-coolant and helium-cooled lead–lithium blanket concepts. The primary goal of MHD experiments at UCLA using the liquid metal flow facility called MaPLE (Magnetohydrodynamic PbLi Experiment) is to address important MHD effects, heat transfer and flow materials interactions in blanket-relevant conditions. The paper overviews the one-of-a-kind MaPLE loop at UCLA and presents recent experimental activities, including the development and testing of high-temperature PbLi flow diagnostics and experiments that have been performed since the first loop operation in 2011. We also discuss MaPLE upgrades, which need to be done to substantially expand the experimental capabilities towards a new class of MHD flow phenomena that includes buoyancy effects.

  15. MHD PbLi experiments in MaPLE loop at UCLA

    Energy Technology Data Exchange (ETDEWEB)

    Courtessole, C., E-mail: cyril@fusion.ucla.edu; Smolentsev, S.; Sketchley, T.; Abdou, M.

    2016-11-01

    Highlights: • The paper overviews the MaPLE facility at UCLA: one-of-a-few PbLi MHD loop in the world. • We present the progress achieved in development and testing of high-temperature PbLi flow diagnostics. • The most important MHD experiments carried out since the first loop operation in 2011 are summarized. - Abstract: Experiments on magnetohydrodynamic (MHD) flows are critical to understanding complex flow phenomena in ducts of liquid metal blankets, in particular those that utilize eutectic alloy lead–lithium as breeder/coolant, such as self-cooled, dual-coolant and helium-cooled lead–lithium blanket concepts. The primary goal of MHD experiments at UCLA using the liquid metal flow facility called MaPLE (Magnetohydrodynamic PbLi Experiment) is to address important MHD effects, heat transfer and flow materials interactions in blanket-relevant conditions. The paper overviews the one-of-a-kind MaPLE loop at UCLA and presents recent experimental activities, including the development and testing of high-temperature PbLi flow diagnostics and experiments that have been performed since the first loop operation in 2011. We also discuss MaPLE upgrades, which need to be done to substantially expand the experimental capabilities towards a new class of MHD flow phenomena that includes buoyancy effects.

  16. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation

    KAUST Repository

    An, Alicia Kyoungjin

    2016-07-25

    This study investigated the applicability of membrane distillation (MD) to treat dyeing wastewater discharged by the textile industry. Four different dyes containing methylene blue (MB), crystal violet (CV), acid red 18 (AR), and acid yellow 36 (AY) were tested. Two types of hydrophobic membranes made of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) were used. The membranes were characterized by testing against each dye (foulant-foulant) and the membrane–dye (membrane-foulant) interfacial interactions and their mechanisms were identified. The MD membranes possessed negative charges, which facilitated the treatment of acid and azo dyes of the same charge and showed higher fluxes. In addition, PTFE membrane reduced the wettability with higher hydrophobicity of the membrane surface. The PTFE membrane evidenced especially its resistant to dye absorption, as its strong negative charge and chemical structure caused a flake-like (loose) dye–dye structure to form on the membrane surface rather than in the membrane pores. This also enabled the recovery of flux and membrane properties by water flushing (WF), thereby direct-contact MD with PTFE membrane treating 100 mg/L of dye mixtures showed stable flux and superior color removal during five days operation. Thus, MD shows a potential for stable long-term operation in conjunction with a simple membrane cleaning process, and its suitability in dyeing wastewater treatment.

  17. Experimental Validation of a Permeability Model for Enrichment Membranes

    International Nuclear Information System (INIS)

    Orellano, Pablo; Brasnarof, Daniel; Florido Pablo

    2003-01-01

    An experimental loop with a real scale diffuser, in a single enrichment-stage configuration, was operated with air at different process conditions, in order to characterize the membrane permeability.Using these experimental data, an analytical geometric-and-morphologic-based model was validated.It is conclude that a new set of independent measurements, i.e. enrichment, is necessary in order to fully characterize diffusers, because of its internal parameters are not univocally determinated with permeability experimental data only

  18. Modulation of friction dynamics in water by changing the combination of the loop- and graft-type poly(ethylene glycol) surfaces.

    Science.gov (United States)

    Seo, Ji-Hun; Tsutsumi, Yusuke; Kobari, Akinori; Shimojo, Masayuki; Hanawa, Takao; Yui, Nobuhiko

    2015-02-07

    A Velcro-like poly(ethylene glycol) (PEG) interface was prepared in order to control the friction dynamics of material surfaces. Graft- and loop-type PEGs were formed on mirror-polished Ti surfaces using an electrodeposition method with mono- and di-amine functionalized PEGs. The friction dynamics of various combinations of PEG surfaces (i.e., graft-on-graft, loop-on-loop, graft-on-loop, and loop-on-graft) were investigated by friction testing. Here, only the Velcro-like combinations (graft-on-loop and loop-on-graft) exhibited a reversible friction behavior (i.e., resetting the kinetic friction coefficient and the reappearance of the maximum static friction coefficient) during the friction tests. The same tendency was observed when the molecular weights of loop- and graft-type PEGs were tested at 1 k and 10 k, respectively. This indicates that a Velcro-like friction behavior could be induced by simply changing the conformation of PEGs, which suggests a novel concept of altering polymer surfaces for the effective control of friction dynamics.

  19. Mini-Membrane Evaporator for Contingency Spacesuit Cooling

    Science.gov (United States)

    Makinen, Janice V.; Bue, Grant C.; Campbell, Colin; Petty, Brian; Craft, Jesse; Lynch, William; Wilkes, Robert; Vogel, Matthew

    2015-01-01

    The next-generation Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is integrating a number of new technologies to improve reliability and functionality. One of these improvements is the development of the Auxiliary Cooling Loop (ACL) for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feedwater assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the full-sized AEMU PLSS cooling device, the Spacesuit Water Membrane Evaporator (SWME), but Mini-ME occupies only approximately 25% of the volume of SWME, thereby providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology, which relies upon a Secondary Oxygen Vessel; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a reduction in SOV size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The first iteration of Mini-ME was developed and tested in-house. Mini-ME is currently packaged in AEMU PLSS 2.0, where it is being tested in environments and situations that are representative of potential future Extravehicular Activities (EVA's). The second iteration of Mini-ME, known as Mini-ME2, is currently being developed to offer more heat rejection capability. The development of this contingency evaporative cooling system will contribute to a more robust and comprehensive AEMU PLSS.

  20. Advanced Hydrogen Transport Membrane for Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Joseph [Praxair, Inc., Tonawanda, NY (United States); Porter, Jason [Colorado School of Mines, Golden, CO (United States); Patki, Neil [Colorado School of Mines, Golden, CO (United States); Kelley, Madison [Colorado School of Mines, Golden, CO (United States); Stanislowski, Josh [Univ. of North Dakota, Grand Forks, ND (United States); Tolbert, Scott [Univ. of North Dakota, Grand Forks, ND (United States); Way, J. Douglas [Colorado School of Mines, Golden, CO (United States); Makuch, David [Praxair, Inc., Tonawanda, NY (United States)

    2015-12-23

    A pilot-scale hydrogen transport membrane (HTM) separator was built that incorporated 98 membranes that were each 24 inches long. This separator used an advanced design to minimize the impact of concentration polarization and separated over 1000 scfh of hydrogen from a hydrogen-nitrogen feed of 5000 scfh that contained 30% hydrogen. This mixture was chosen because it was representative of the hydrogen concentration expected in coal gasification. When tested with an operating gasifier, the hydrogen concentration was lower and contaminants in the syngas adversely impacted membrane performance. All 98 membranes survived the test, but flux was lower than expected. Improved ceramic substrates were produced that have small surface pores to enable membrane production and large pores in the bulk of the substrate to allow high flux. Pd-Au was chosen as the membrane alloy because of its resistance to sulfur contamination and good flux. Processes were developed to produce a large quantity of long membranes for use in the demonstration test.

  1. TREAT MK III Loop Thermoelastoplastic Stress Analysis for the L03 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, James M.

    1981-03-01

    The STRAW code was used to analyze the static response of a TREAT MK III loop subjected to thermal and mechanical loadings arising from an accident situation for the purpose of determining the defiections and stresses. This analysis provides safety support for the L03 reactivity accident study. The analysis was subdivided into two tasks: (1) an analysis of a flow blockage accident (Cases A and B), where all the energy is assumed deposited in the test leg, resulting in a temperature increase from 530°F to 1720°F, with a small internal pressure throughout the loop and (2) an analysis of a second flow blockage accident (Cases C and D), where again, all the energy is assumed to he deposited in the test leg, resulting in a temperature rise from 530°F to 1845°F, with a small internal pressure throughout the loop. The purpose of these two tasks was to determine if loop failure can occur with the thermal differential across the pump and test legs. Also of interest is whether an undesirable amount of loop lateral deflection will be caused by the thermal differential. A two dimensional analysis of the TREAT MK III loop was performed. The analysis accounted for material nonlinearities, both as a function of temperature and stress, and geometric nonlinearities arising from large deflections. Straight beam elements with annular cross sections were used to model the loop. The analyses show that the maximum strains are less than 21% of their failure strains for all subcases of Cases A and B. For all subcases of cases C and D, the maximum strains are less than 53% of their failure strains. The failure strain is 27.9% for the material at 530°F, 38.1% at 1720°F and 17.8% at 1845°F. Large lateral deflections are observed when the loop is not constrained except at its clamped support--as much as 8.6 inches. However, by accounting for the constraint of the concrete biological shield, the maximum lateral deflection was reduced to less than 0.05 inches at the points of concern.

  2. Physical model for membrane protrusions during spreading

    International Nuclear Information System (INIS)

    Chamaraux, F; Ali, O; Fourcade, B; Keller, S; Bruckert, F

    2008-01-01

    During cell spreading onto a substrate, the kinetics of the contact area is an observable quantity. This paper is concerned with a physical approach to modeling this process in the case of ameboid motility where the membrane detaches itself from the underlying cytoskeleton at the leading edge. The physical model we propose is based on previous reports which highlight that membrane tension regulates cell spreading. Using a phenomenological feedback loop to mimic stress-dependent biochemistry, we show that the actin polymerization rate can be coupled to the stress which builds up at the margin of the contact area between the cell and the substrate. In the limit of small variation of membrane tension, we show that the actin polymerization rate can be written in a closed form. Our analysis defines characteristic lengths which depend on elastic properties of the membrane–cytoskeleton complex, such as the membrane–cytoskeleton interaction, and on molecular parameters, the rate of actin polymerization. We discuss our model in the case of axi-symmetric and non-axi-symmetric spreading and we compute the characteristic time scales as a function of fundamental elastic constants such as the strength of membrane–cytoskeleton adherence

  3. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    International Nuclear Information System (INIS)

    McCulloch, R.W.; MacPherson, R.E.

    1983-03-01

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm 2 , 1000 0 C cladding temperature, and (2) 40 h at 40 W/cm 2 , 1200 0 C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370 0 C

  4. Membrane materials for storing biological samples intended for comparative nanotoxicological testing

    Science.gov (United States)

    Metelkin, A.; Kuznetsov, D.; Kolesnikov, E.; Chuprunov, K.; Kondakov, S.; Osipov, A.; Samsonova, J.

    2015-11-01

    The study is aimed at identifying the samples of most promising membrane materials for storing dry specimens of biological fluids (Dried Blood Spots, DBS technology). Existing sampling systems using cellulose fiber filter paper have a number of drawbacks such as uneven distribution of the sample spot, dependence of the spot spreading area on the individual biosample properties, incomplete washing-off of the sample due to partially inconvertible sorption of blood components on cellulose fibers, etc. Samples of membrane materials based on cellulose, polymers and glass fiber with applied biosamples were studied using methods of scanning electron microscopy, FT-IR spectroscopy and surface-wetting measurement. It was discovered that cellulose-based membrane materials sorb components of biological fluids inside their structure, while membranes based on glass fiber display almost no interaction with the samples and biological fluid components dry to films in the membrane pores between the structural fibers. This characteristic, together with the fact that membrane materials based on glass fiber possess sufficient strength, high wetting properties and good storage capacity, attests them as promising material for dry samples of biological fluids storage systems.

  5. Membrane materials for storing biological samples intended for comparative nanotoxicological testing

    International Nuclear Information System (INIS)

    Metelkin, A; Kuznetsov, D; Kolesnikov, E; Chuprunov, K; Kondakov, S; Osipov, A; Samsonova, J

    2015-01-01

    The study is aimed at identifying the samples of most promising membrane materials for storing dry specimens of biological fluids (Dried Blood Spots, DBS technology). Existing sampling systems using cellulose fiber filter paper have a number of drawbacks such as uneven distribution of the sample spot, dependence of the spot spreading area on the individual biosample properties, incomplete washing-off of the sample due to partially inconvertible sorption of blood components on cellulose fibers, etc. Samples of membrane materials based on cellulose, polymers and glass fiber with applied biosamples were studied using methods of scanning electron microscopy, FT-IR spectroscopy and surface-wetting measurement. It was discovered that cellulose-based membrane materials sorb components of biological fluids inside their structure, while membranes based on glass fiber display almost no interaction with the samples and biological fluid components dry to films in the membrane pores between the structural fibers. This characteristic, together with the fact that membrane materials based on glass fiber possess sufficient strength, high wetting properties and good storage capacity, attests them as promising material for dry samples of biological fluids storage systems. (paper)

  6. Design of a pressurized water loop heated by electric resistances

    International Nuclear Information System (INIS)

    Ribeiro, S.V.G.

    1981-01-01

    A pressurized water loop design is presented. Its operating pressure is 420 psi and we seek to simulate qualitatively some thermo-hydraulic phenomena of PWR reactors. The primary circuit simulator consists basically of two elements: 1)the test section housing 16 electric resistences dissipating a total power of 100 Kw; 2)the loop built of SCH40S 304L steel piping, consisting of the pump, a heat exchanger and the pressurizer. (Author) [pt

  7. FY 1995 progress report on the ANS thermal-hydraulic test loop operation and results

    Energy Technology Data Exchange (ETDEWEB)

    Siman-Tov, M.; Felde, D.K.; Farquharson, G.; McDuffee, J.L.; McFee, M.T.; Ruggles, A.E.; Wendel, M.W.; Yoder, G.L.

    1997-07-01

    The Thermal-Hydraulic Test Loop (THTL) is an experimental facility constructed to support the development of the Advanced Neutron Source Reactor (ANSR) at Oak Ridge National Laboratory (ORNL). The THTL facility was designed and built to provide known thermal-hydraulic (T/H) conditions for a simulated full-length coolant subchannel of the ANS reactor core, thus facilitating experimental determination of FE and CHF thermal limits under expected ANSR T/H conditions. Special consideration was given to allow operation of the system in a stiff mode (constant flow) and in a soft mode (constant pressure drop) for proper implementation of true FE and DNB experiments. The facility is also designed to examine other T/H phenomena, including onset of incipient boiling (IB), single-phase heat transfer coefficients and friction factors, and two-phase heat transfer and pressure drop characteristics. Tests will also be conducted that are representative of decay heat levels at both high pressure and low pressure as well as other quasi-equilibrium conditions encountered during transient scenarios. A total of 22 FE tests and 2 CHF tests were performed during FY 1994 and FY 1995 with water flowing vertically upward. Comparison of these data as well as extensive data from other investigators led to a proposed modification to the Saha and Zuber correlation for onset of significant void (OSV), applied to FE prediction. The modification takes into account a demonstrated dependence of the OSV or FE thermal limits on subcooling levels, especially in the low subcooling regime.

  8. FY 1995 progress report on the ANS thermal-hydraulic test loop operation and results

    International Nuclear Information System (INIS)

    Siman-Tov, M.; Felde, D.K.; Farquharson, G.; McDuffee, J.L.; McFee, M.T.; Ruggles, A.E.; Wendel, M.W.; Yoder, G.L.

    1997-07-01

    The Thermal-Hydraulic Test Loop (THTL) is an experimental facility constructed to support the development of the Advanced Neutron Source Reactor (ANSR) at Oak Ridge National Laboratory (ORNL). The THTL facility was designed and built to provide known thermal-hydraulic (T/H) conditions for a simulated full-length coolant subchannel of the ANS reactor core, thus facilitating experimental determination of FE and CHF thermal limits under expected ANSR T/H conditions. Special consideration was given to allow operation of the system in a stiff mode (constant flow) and in a soft mode (constant pressure drop) for proper implementation of true FE and DNB experiments. The facility is also designed to examine other T/H phenomena, including onset of incipient boiling (IB), single-phase heat transfer coefficients and friction factors, and two-phase heat transfer and pressure drop characteristics. Tests will also be conducted that are representative of decay heat levels at both high pressure and low pressure as well as other quasi-equilibrium conditions encountered during transient scenarios. A total of 22 FE tests and 2 CHF tests were performed during FY 1994 and FY 1995 with water flowing vertically upward. Comparison of these data as well as extensive data from other investigators led to a proposed modification to the Saha and Zuber correlation for onset of significant void (OSV), applied to FE prediction. The modification takes into account a demonstrated dependence of the OSV or FE thermal limits on subcooling levels, especially in the low subcooling regime

  9. Wilson loops in minimal surfaces

    International Nuclear Information System (INIS)

    Drukker, Nadav; Gross, David J.; Ooguri, Hirosi

    1999-01-01

    The AdS/CFT correspondence suggests that the Wilson loop of the large N gauge theory with N = 4 supersymmetry in 4 dimensions is described by a minimal surface in AdS 5 x S 5 . The authors examine various aspects of this proposal, comparing gauge theory expectations with computations of minimal surfaces. There is a distinguished class of loops, which the authors call BPS loops, whose expectation values are free from ultra-violet divergence. They formulate the loop equation for such loops. To the extent that they have checked, the minimal surface in AdS 5 x S 5 gives a solution of the equation. The authors also discuss the zig-zag symmetry of the loop operator. In the N = 4 gauge theory, they expect the zig-zag symmetry to hold when the loop does not couple the scalar fields in the supermultiplet. They will show how this is realized for the minimal surface

  10. Wilson loops and minimal surfaces

    International Nuclear Information System (INIS)

    Drukker, Nadav; Gross, David J.; Ooguri, Hirosi

    1999-01-01

    The AdS-CFT correspondence suggests that the Wilson loop of the large N gauge theory with N=4 supersymmetry in four dimensions is described by a minimal surface in AdS 5 xS 5 . We examine various aspects of this proposal, comparing gauge theory expectations with computations of minimal surfaces. There is a distinguished class of loops, which we call BPS loops, whose expectation values are free from ultraviolet divergence. We formulate the loop equation for such loops. To the extent that we have checked, the minimal surface in AdS 5 xS 5 gives a solution of the equation. We also discuss the zigzag symmetry of the loop operator. In the N=4 gauge theory, we expect the zigzag symmetry to hold when the loop does not couple the scalar fields in the supermultiplet. We will show how this is realized for the minimal surface. (c) 1999 The American Physical Society

  11. High-Temperature Structural Analysis Model of the Process Heat Exchanger for Helium Gas Loop (II)

    International Nuclear Information System (INIS)

    Song, Kee Nam; Lee, Heong Yeon; Kim, Chan Soo; Hong, Seong Duk; Park, Hong Yoon

    2010-01-01

    PHE (Process Heat Exchanger) is a key component required to transfer heat energy of 950 .deg. C generated in a VHTR (Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. Korea Atomic Energy Research Institute established the helium gas loop for the performance test of components, which are used in the VHTR, and they manufactured a PHE prototype to be tested in the loop. In this study, as part of the high temperature structural-integrity evaluation of the PHE prototype, which is scheduled to be tested in the helium gas loop, we carried out high-temperature structural-analysis modeling, thermal analysis, and thermal expansion analysis of the PHE prototype. The results obtained in this study will be used to design the performance test setup for the PHE prototype

  12. In pile helium loop ''COMEDIE''

    International Nuclear Information System (INIS)

    Abassin, J.J.; Blanchard, R.J.; Gentil, J.

    1981-01-01

    The SR1 test in the COMEDIE loop has permitted to demonstrate particularly the device operation reliability with a fuel loading. The post-irradiation examinations have pointed out the good filter efficiency and have enabled to determine the deposition profiles either for the activation products (e.g.: 51 Cr, 60 Co) or for the fission products (e.g.: sup(110m)Ag, 131 I, 134 Cs, 137 Cs). (author)

  13. Physical-chemical hydrodynamics of the processes of sorption-membrane technology of LRW treatment

    International Nuclear Information System (INIS)

    Alexander D Efanov; Pyotr N Martynov; Yuri D Boltoev; Ivan V Yagodkin; Nataliya G Bogdanovich; Sergey S Skvortsov; Alexander R Sokolovsky; Elena V Ignatova; Gennady V Grigoriev; Vitaly V Grigorov

    2005-01-01

    Full text of publication follows: Liquid radioactive NPP waste is generated, when radioactive water is collected and mixed from various routine and non-routine process measures being performed in accordance with the operating regulations of reactor units with water coolant. The main sources of LRW are the primary loop water coolant, deactivation, regeneration and rinse waters, waste laundry and showers water producing the initial averaged LRW as well as spent fuel element cooling pond water and water of biological protection tanks. LRW handling can be substantially advanced, in particular, through development and introduction of the non-conventional sorption-membrane technology of NPP LRW treatment, being developed at SSC RF IPPE. This technology makes use of natural inorganic sorbents (tripolite, zeolite, ion-exchange materials) and filtering nano-structured metallic and ceramic membranes (titanium, zirconium, chromium and other or their oxides, carbides and nitrides). The efficiency of the sorption membrane technology is associated just with the investigation of the physical-chemical processes of sorption, coagulation and sedimentation under the conditions of forced and free convection occurring in LRW. Besides, it is necessary to take into consideration that the hydrodynamics of the flows of LRW being decontaminated by membrane filtration depends on the structure and composition of the porous composition pare 'nano-structured membrane-substrate'. Neglecting these peculiarities can result in drastic reduction of the time of stable LRW filtration, reduction of the operability resource of filtration systems or in quick mechanical destruction of porous materials. The paper presents the investigation results on: -the effect of the convection flows being generated by air bubbling or LRW stirring by agitator on the static sorption conditions (sorption time, medium pH, sorbent dispersity, sorbent concentration in liquid medium) and on the efficiency of extraction by

  14. Recovery of real dye bath wastewater using integrated membrane process: considering water recovery, membrane fouling and reuse potential of membranes.

    Science.gov (United States)

    Balcik-Canbolat, Cigdem; Sengezer, Cisel; Sakar, Hacer; Karagunduz, Ahmet; Keskinler, Bulent

    2017-11-01

    It has been recognized by the whole world that textile industry which produce large amounts of wastewater with strong color and toxic organic compounds is a major problematical industry requiring effective treatment solutions. In this study, reverse osmosis (RO) membranes were tested on biologically treated real dye bath wastewater with and without pretreatment by nanofiltration (NF) membrane to recovery. Also membrane fouling and reuse potential of membranes were investigated by multiple filtrations. Obtained results showed that only NF is not suitable to produce enough quality to reuse the wastewater in a textile industry as process water while RO provide successfully enough permeate quality. The results recommend that integrated NF/RO membrane process is able to reduce membrane fouling and allow long-term operation for real dye bath wastewater.

  15. BPS Wilson loops and Bremsstrahlung function in ABJ(M): a two loop analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Marco S. [Institut für Physik, Humboldt-Universität zu Berlin,Newtonstraße 15, 12489 Berlin (Germany); Griguolo, Luca [Dipartimento di Fisica e Scienze della Terra, Università di Parmaand INFN Gruppo Collegato di Parma,Viale G.P. Usberti 7/A, 43100 Parma (Italy); Leoni, Matias [Physics Department, FCEyN-UBA & IFIBA-CONICETCiudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina); Penati, Silvia [Dipartimento di Fisica, Università di Milano-Bicoccaand INFN, Sezione di Milano-Bicocca,Piazza della Scienza 3, I-20126 Milano (Italy); Seminara, Domenico [Dipartimento di Fisica, Università di Firenzeand INFN Sezione di Firenze,via G. Sansone 1, 50019 Sesto Fiorentino (Italy)

    2014-06-19

    We study a family of circular BPS Wilson loops in N=6 super Chern-Simons-matter theories, generalizing the usual 1/2-BPS circle. The scalar and fermionic couplings depend on two deformation parameters and these operators can be considered as the ABJ(M) counterpart of the DGRT latitudes defined in N=4 SYM. We perform a complete two-loop analysis of their vacuum expectation value, discuss the appearance of framing-like phases and propose a general relation with cohomologically equivalent bosonic operators. We make an all-loop proposal for computing the Bremsstrahlung function associated to the 1/2-BPS cusp in terms of these generalized Wilson loops. When applied to our two-loop result it reproduces the known expression. Finally, we comment on the generalization of this proposal to the bosonic 1/6-BPS case.

  16. METAL:LIC target failure diagnostics by means of liquid metal loop vibrations monitoring

    International Nuclear Information System (INIS)

    Dementjevs, S.; Barbagallo, F.; Wohlmuther, M.; Thomsen, K.; Zik, A.; Nikoluskins, R.

    2014-01-01

    A target mock-up, developed as an European Spallation Source comparative solution, (METAL:LIC) has been tested in a dedicated lead bismuth eutectic (LBE) loop in the Institute of Physics at the University of Latvia. In particular, the feasibility of diagnostic vibration monitoring has been investigated. The loop parameters were: operation temperature 300°C; tubing ∅100 mm, overall length 8 m; electromagnetic pump based on permanent magnets, flow rate 180 kg/s. With sufficient static pressure of a few bars, cavitation was avoided. The vibrations in the loop were measured and analyzed. Several vibrational characteristics of the set-up were derived including resonance frequencies and the dependence of excited vibrations on flow conditions and the pump rotation speed. A high sensitivity to obstructions in the loop has been confirmed, and several indicators for target failure diagnostics were tested and compared. A problem in the electromagnetic pump's gear box has been detected in a very early state long before it manifested itself in the operation of the loop. The vibration monitoring has been demonstrated as a sensitive and reliable probe for the target failure diagnostics. (author)

  17. Porous polybenzimidazole membranes doped with phosphoric acid: Preparation and application in high-temperature proton-exchange-membrane fuel cells

    International Nuclear Information System (INIS)

    Li, Jin; Li, Xiaojin; Yu, Shuchun; Hao, Jinkai; Lu, Wangting; Shao, Zhigang; Yi, Baolian

    2014-01-01

    Highlights: • Porous polybenzimidazole membrane was prepared with glucose as porogen. • Phosphoric acid content was as high as 15.7 mol H 3 PO 4 per PBI repeat unit. • 200 h Constant current density test was carried out at 150 °C. • Degradation was due to the gap between membrane and catalyst layer. - Abstract: In this paper, the preparation and characterization of porous polybenzimidazole membranes doped with phosphoric acid were reported. For the preparation of porous polybenzimidazole membranes, glucose and saccharose were selected as porogen and added into PBI resin solution before solvent casting. The prepared porous PBI membranes had high proton conductivity and high content of acid doping at room temperature with 15.7 mol H 3 PO 4 per PBI repeat unit, much higher than pure PBI membrane at the same condition. Further, the performance and stability of the porous PBI membrane in high-temperature proton-exchange-membrane fuel cells was tested. It was found that the cell performance remained stable during 200 h stability test under a constant current discharge of 0.5 A cm −2 except for the last fifty hours. The decay in the last fifty hours was ascribed to the delamination between the catalyst layer and membrane increasing the charge-transfer resistance

  18. Neuroelectric Tuning of Cortical Oscillations by Apical Dendrites in Loop Circuits

    Directory of Open Access Journals (Sweden)

    David LaBerge

    2017-06-01

    Full Text Available Bundles of relatively long apical dendrites dominate the neurons that make up the thickness of the cerebral cortex. It is proposed that a major function of the apical dendrite is to produce sustained oscillations at a specific frequency that can serve as a common timing unit for the processing of information in circuits connected to that apical dendrite. Many layer 5 and 6 pyramidal neurons are connected to thalamic neurons in loop circuits. A model of the apical dendrites of these pyramidal neurons has been used to simulate the electric activity of the apical dendrite. The results of that simulation demonstrated that subthreshold electric pulses in these apical dendrites can be tuned to specific frequencies and also can be fine-tuned to narrow bandwidths of less than one Hertz (1 Hz. Synchronous pulse outputs from the circuit loops containing apical dendrites can tune subthreshold membrane oscillations of neurons they contact. When the pulse outputs are finely tuned, they function as a local “clock,” which enables the contacted neurons to synchronously communicate with each other. Thus, a shared tuning frequency can select neurons for membership in a circuit. Unlike layer 6 apical dendrites, layer 5 apical dendrites can produce burst firing in many of their neurons, which increases the amplitude of signals in the neurons they contact. This difference in amplitude of signals serves as basis of selecting a sub-circuit for specialized processing (e.g., sustained attention within the typically larger layer 6-based circuit. After examining the sustaining of oscillations in loop circuits and the processing of spikes in network circuits, we propose that cortical functioning can be globally viewed as two systems: a loop system and a network system. The loop system oscillations influence the network system’s timing and amplitude of pulse signals, both of which can select circuits that are momentarily dominant in cortical activity.

  19. A Loop Region in the N-Terminal Domain of Ebola Virus VP40 Is Important in Viral Assembly, Budding, and Egress

    Directory of Open Access Journals (Sweden)

    Emmanuel Adu-Gyamfi

    2014-10-01

    Full Text Available Ebola virus (EBOV causes viral hemorrhagic fever in humans and can have clinical fatality rates of ~60%. The EBOV genome consists of negative sense RNA that encodes seven proteins including viral protein 40 (VP40. VP40 is the major Ebola virus matrix protein and regulates assembly and egress of infectious Ebola virus particles. It is well established that VP40 assembles on the inner leaflet of the plasma membrane of human cells to regulate viral budding where VP40 can produce virus like particles (VLPs without other Ebola virus proteins present. The mechanistic details, however, of VP40 lipid-interactions and protein-protein interactions that are important for viral release remain to be elucidated. Here, we mutated a loop region in the N-terminal domain of VP40 (Lys127, Thr129, and Asn130 and find that mutations (K127A, T129A, and N130A in this loop region reduce plasma membrane localization of VP40. Additionally, using total internal reflection fluorescence microscopy and number and brightness analysis we demonstrate these mutations greatly reduce VP40 oligomerization. Lastly, VLP assays demonstrate these mutations significantly reduce VLP release from cells. Taken together, these studies identify an important loop region in VP40 that may be essential to viral egress.

  20. Closed Loop Experiment Manager (CLEM—An Open and Inexpensive Solution for Multichannel Electrophysiological Recordings and Closed Loop Experiments

    Directory of Open Access Journals (Sweden)

    Hananel Hazan

    2017-10-01

    Full Text Available There is growing need for multichannel electrophysiological systems that record from and interact with neuronal systems in near real-time. Such systems are needed, for example, for closed loop, multichannel electrophysiological/optogenetic experimentation in vivo and in a variety of other neuronal preparations, or for developing and testing neuro-prosthetic devices, to name a few. Furthermore, there is a need for such systems to be inexpensive, reliable, user friendly, easy to set-up, open and expandable, and possess long life cycles in face of rapidly changing computing environments. Finally, they should provide powerful, yet reasonably easy to implement facilities for developing closed-loop protocols for interacting with neuronal systems. Here, we survey commercial and open source systems that address these needs to varying degrees. We then present our own solution, which we refer to as Closed Loop Experiments Manager (CLEM. CLEM is an open source, soft real-time, Microsoft Windows desktop application that is based on a single generic personal computer (PC and an inexpensive, general-purpose data acquisition board. CLEM provides a fully functional, user-friendly graphical interface, possesses facilities for recording, presenting and logging electrophysiological data from up to 64 analog channels, and facilities for controlling external devices, such as stimulators, through digital and analog interfaces. Importantly, it includes facilities for running closed-loop protocols written in any programming language that can generate dynamic link libraries (DLLs. We describe the application, its architecture and facilities. We then demonstrate, using networks of cortical neurons growing on multielectrode arrays (MEA that despite its reliance on generic hardware, its performance is appropriate for flexible, closed-loop experimentation at the neuronal network level.

  1. Kekuatan Geser dan Pola Patahan Loop Space Maintainer yang Dibuat dengan Teknik Spot Welding Elektrik

    Directory of Open Access Journals (Sweden)

    Elin Karlina

    2015-10-01

    Full Text Available The aim of this research was to study the effect of spot variations on shear strength of spot welds in an electric loop space maintainer. Stainless steel wire of 0.8 mm diameter and nickel chromium crwon for lower second molar of temporary teeth were used. A loop 1 cm wide, made of 3.5 cm stainless steel wire, was welded with 3 dots on the crown using an electric spot welder. Each dot for each group took different spot variations from 1 X – 4 X. A loop space maintainer made with the usual materials and techniques as applied at the IKGA FKG UI Clinic was used as a control, with a torch as heat source. Ten specimens each were prepared for shear testing and three spesimens each for metallography. Universal testing machine was used for shear strength testing at a crosshead speed of 0.5 mm/min, and SEM/EDS was used for metallography and fractography. The data were statistically analyzed with one-way ANOVA at p = 0.05, and Tukey post hoc test. The results show that the shear strength of the welded loop space maintainer was higher than that of a soldered loop space maintainer, although the difference was not statistically significant with spot variation 1 X. SEM/EDS analysis suggests that a new alloy forms at the contact area of welded and soldered loop space maintainer. Fractography of the joints suggests that welds are better than soldered joints, with higher ductility and toughness, as can be seen from the dimpled pattern of the welded joint and cleavage patterns in the control joints. In conclusion, the loop space maintainer is better made by welding than by soldering.

  2. Fermilab tevatron five refrigerator system tests

    International Nuclear Information System (INIS)

    Rode, C.; Ferry, R.; Leiniger, M.; Makara, J.; Misek, J.; Mizicko, D.; Richied, D.; Theilacker, J.

    1982-01-01

    The Fermilab Tevatron refrigeration system is described with the layout illustrated. The compressor control loops, the refrigerator control loops, and magnet control loops (two per refrigerator) are described and each illustrated. The mobile purifier is described. A five refrigerator test is presented, using two compressor buildings, satellite refrigerator concept test and the test current to the writing. The configuration of the five refrigerator test is diagramed

  3. The Complete Four-Loop Four-Point Amplitude in N

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Z.; Carrasco, J.J.M.; /UCLA; Dixon, Lance J.; /SLAC /CERN; Johansson, H.; /Saclay, SPhT; Roiban, R.; /Penn State U.

    2010-08-25

    We present the complete four-loop four-point amplitude in N = 4 super-Yang-Mills theory, for a general gauge group and general D-dimensional covariant kinematics, and including all non-planar contributions. We use the method of maximal cuts - an efficient application of the unitarity method - to construct the result in terms of 50 four-loop integrals. We give graphical rules, valid in D-dimensions, for obtaining various non-planar contributions from previously-determined terms. We examine the ultraviolet behavior of the amplitude near D = 11/2. The non-planar terms are as well-behaved in the ultraviolet as the planar terms. However, in the color decomposition of the three- and four-loop amplitude for an SU(N{sub c}) gauge group, the coefficients of the double-trace terms are better behaved in the ultraviolet than are the single-trace terms. The results from this paper were an important step toward obtaining the corresponding amplitude in N = 8 supergravity, which confirmed the existence of cancellations beyond those needed for ultraviolet finiteness at four loops in four dimensions. Evaluation of the loop integrals near D = 4 would permit tests of recent conjectures and results concerning the infrared behavior of four-dimensional massless gauge theory.

  4. Shuttling of G protein subunits between the plasma membrane and intracellular membranes.

    Science.gov (United States)

    Chisari, Mariangela; Saini, Deepak Kumar; Kalyanaraman, Vani; Gautam, Narasimhan

    2007-08-17

    Heterotrimeric G proteins (alphabetagamma) mediate the majority of signaling pathways in mammalian cells. It is long held that G protein function is localized to the plasma membrane. Here we examined the spatiotemporal dynamics of G protein localization using fluorescence recovery after photobleaching, fluorescence loss in photobleaching, and a photoswitchable fluorescent protein, Dronpa. Unexpectedly, G protein subunits shuttle rapidly (t1/2 plasma membrane and intracellular membranes. We show that consistent with such shuttling, G proteins constitutively reside in endomembranes. Furthermore, we show that shuttling is inhibited by 2-bromopalmitate. Thus, contrary to present thought, G proteins do not reside permanently on the plasma membrane but are constantly testing the cytopl