WorldWideScience

Sample records for test loop integrated

  1. Scaling analysis of the integral test loop to simulate Korean PWR plants

    International Nuclear Information System (INIS)

    Song, Chul Hwa; Park, C. K.; Lee, S. J. and others

    2001-03-01

    This report presents the results of scaling analysis on the integral test loop to simulate Korean PWR plants, which includes the scaling methodology, scaling priority and scaling distortion Based on the priority of the key test matrix, the scaling priority is drawn to apply to the design of the integral test loop. Scaling analysis on the test loop is done based on the design basis and performed by the so-called ''Modified Volume Scaling'' methodology. In the first stage of scaling analysis(global scaling), the specifications and capacity of the components in the major systems are determined by the volume scaling methodology. In the second stage of scaling, local phenomena scaling is performed on major thermal hydraulic phenomena in each component and reproduction of local thermal hydraulic phenomena is checked. According to the local phenomena scaling results, specifications and capacity of the components in a system are modified. Finally, scaling distortion, which might occur in a certain system, is analyzed. Scaling results in this report might be modified in the stage of detailed design of the integral test loop, which will be carried out in near future. More comprehensive analysis on scaling distortion shall be carried out based on manufacturing specifications and performance verification test results of the integral test loop

  2. Counter-part Test and Code Analysis of the Integral Test Loop, SNUF

    International Nuclear Information System (INIS)

    Park, Goon Cherl; Bae, B. U.; Lee, K. H.; Cho, Y. J.

    2007-02-01

    The thermal-hydraulic phenomena of Direct Vessel Injection (DVI) line Small-Break Loss-of-Coolant Accident (SBLOCA) in pressurized water reactor, APR1400, were investigated. The reduced-height and reduced-pressure integral test loop, SNUF (Seoul National University Facility), was constructed with scaling down the prototype. For the appropriate test conditions in the experiment of SNUF, the energy scaling methodology was suggested as scaling the coolant mass inventory and thermal power for the reduced-pressure condition. From the MARS code analysis, the energy scaling methodology was confirmed to show the reasonable transient when ideally scaled-down SNUF model was compared to the prototype model. In the experiments according to the conditions determined by energy scaling methodology, the phenomenon of downcomer seal clearing had a dominant role in decrease of the system pressure and increase of the coolant level of core. The experimental results was utilized to validate the calculation capability of MARS

  3. Coupled hydrodynamic-structural analysis of an integral flowing sodium test loop in the TREAT reactor

    International Nuclear Information System (INIS)

    Zeuch, W.R.; A-Moneim, M.T.

    1979-01-01

    A hydrodynamic-structural response analysis of the Mark-IICB loop was performed for the TREAT (Transient Reactor Test Facility) test AX-1. Test AX-1 is intended to provide information concerning the potential for a vapor explosion in an advanced-fueled LMFBR. The test will be conducted in TREAT with unirradiated uranium-carbide fuel pins in the Mark-IICB integral flowing sodium loop. Our analysis addressed the ability of the experimental hardware to maintain its containment integrity during the reference accident postulated for the test. Based on a thermal-hydraulics analysis and assumptions for fuel-coolant interaction in the test section, a pressure pulse of 144 MPa maximum pressure and pulse width of 1.32 ms has been calculated as the reference accident. The response of the test loop to the pressure transient was obtained with the ICEPEL and STRAW codes. Modelling of the test section was completed with STRAW and the remainder of the loop was modelled by ICEPEL

  4. UAS-NAS Integrated Human in the Loop: Test Environment Report

    Science.gov (United States)

    Murphy, Jim; Otto, Neil; Jovic, Srba

    2015-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration in the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability (SSI), Human Systems Integration (HSI), and Communication to support reducing the barriers of UAS access to the NAS. This research was broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Sense and Avoid (SAA) performance standards, command and control performance standards, and human systems integration. The focus of the Test Infrastructure theme was to enable development and validation of airspace integration procedures and performance standards, including the execution of integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project developed an adaptable, scalable, and schedulable relevant test environment incorporating live, virtual, and constructive elements capable of validating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project planned to conduct three integrated events: a Human-in-the-Loop simulation and two Flight Test series that integrated key concepts, technologies and/or procedures in a relevant air traffic environment. Each of

  5. Evaluation of Creep-Fatigue Integrity for High Temperature Pressure Vessel in a Sodium Test Loop

    International Nuclear Information System (INIS)

    Lee, Hyeong-Yeon; Lee, Dong-Won

    2014-01-01

    In this study, high temperature integrity evaluation on a pressure vessel of the expansion tank operating at elevated temperature of 510°C in the sodium test facility of the SEFLA(Sodium Thermal-hydraulic Experiment Loop for Finned-tube Sodium-to-Air heat exchanger) to be constructed at KAERI has been performed. Evaluations of creep fatigue damage based on a full 3D finite element analyses were conducted for the expansion tank according to the recent elevated temperature design codes of ASME Section III Subsection NH and French RCC-MRx. It was shown that the expansion tank maintains its integrity under the intended creep-fatigue loads. Quantitative code comparisons were conducted for the pressure vessel of austenitic stainless steel 316L

  6. Numerical Contour Integration for Loop Integrals

    OpenAIRE

    Kurihara, Y.; Kaneko, T.

    2005-01-01

    A fully numerical method to calculate loop integrals, a numerical contour-integration method, is proposed. Loop integrals can be interpreted as a contour integral in a complex plane for an integrand with multi-poles in the plane. Stable and efficient numerical integrations an along appropriate contour can be performed for tensor integrals as well as for scalar ones appearing in loop calculations of the standard model. Examples of 3- and 4-point diagrams in 1-loop integrals and 2- and 3-point ...

  7. One loop integrals reduction

    International Nuclear Information System (INIS)

    Sun Yi; Chang Haoran

    2012-01-01

    By further examining the symmetry of external momenta and masses in Feynman integrals, we fulfilled the method proposed by Battistel and Dallabona, and showed that recursion relations in this method can be applied to simplify Feynman integrals directly. (authors)

  8. Elaboration of a guideline for counterpart testing of integral loop systems

    International Nuclear Information System (INIS)

    Karwat, H.

    1988-01-01

    A previous study on the problems of scaling and extrapolation of experimental results indicated the necessity to overcome some uncertainty in the achievable code accuracy when applied to full size reactor systems. The empirical approach in simulating interfacial relationships within systems behaviour codes in combination with the liberty of nodalisation requires a careful assessment of the overall validity of the code verification concept. Several new test facilities are presently under construction to study fluid-dynamic effects of interest for the behaviour of PWRs under small break LOCA conditions in a larger dimension and with somewhat modified scaling considerations. The test results expected from these new facilities may be useful to assess the overall validity of the analytical simulation concept of the applied computer codes. Test facilities of interest within the European Community are the - LOBI Test Facility (vol. scaling 1/700) at JRC-Ispra - SPES Test Facility (vol. scaling 1/425) in Italy - BETHSY Facility (vol scaling 1/100) in France and outside Europe the - ROSA IV Facility (vol. scaling 1/50) in Japan. Main objective of the study was the elaboration of a guideline for the particular requirements of meaningful counterpart testing with the final aim to qualify the overall validity of code simulation concepts and the expected predictive accuracy of code applications for full size prototype PWRs

  9. Integrated Testing of a Carbon Dioxide Removal Assembly and a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization

    Science.gov (United States)

    Knox, J. C.; Mulloth, Lila; Frederick, Kenneth; Affleck, Dave

    2003-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The carbon dioxide removal assembly (CDRA) of ISS currently operates in an open loop mode without a compressor. This paper describes the integrated test results of a flight-like CDRA and a temperature-swing adsorption compressor (TSAC) for carbon dioxide removal and compression. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of CDRA.

  10. The Self-Calibration Test of flowmeter installed in STELLA(Sodium Integral Effect Test Loop for Safety Simulation and Assessment) facility

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Minhwan; Jeong, Ji-Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The objective of this study is to describe the procedure of the self-calibration test for the flowmeters and to analyze the result of the test. In this work, the test procedure of the self-calibration of two flowmeters (FT-101, FT-102) installed in STELLA facility was described and the test result was analyzed. In regard to the long-term SFR development plan, a large-scale sodium thermal-hydraulic test project is being progressed by KAERI. This project is called STELLA (Sodium Integral Effect Test Loop for Safety Simulation and Assessment), and it is proceeding by adopting the QA (Quality Assurance) program. Due to the specificity of an experiment using sodium(Na) categorized as Class 3(pyrophoric material and water-prohibiting substance) by the Safety Control of Dangerous Substances Act, it is necessary to apply QA in consideration of the sodium experiment environment in certain parts. The one of them is about calibration of measuring instrument such as a flowmeter, thermocouple and pressure gauge. It is described in the QAP (Quality Assurance Procedures) of KAERI that calibration work should be conducted in accordance with self-calibration procedures in a special case where conventional calibration is not practicable. The calibration of two flowmeters (FT-101, FT-102) installed in STELLA facility is the typical example. As a result of test, it was confirmed that the flowmeters meet the pass criterion. Therefore, it was concluded that the flowmeters maintain instrument capacity a year ago.

  11. Distributed and multi-core computation of 2-loop integrals

    International Nuclear Information System (INIS)

    De Doncker, E; Yuasa, F

    2014-01-01

    For an automatic computation of Feynman loop integrals in the physical region we rely on an extrapolation technique where the integrals of the sequence are obtained with iterated/repeated adaptive methods from the QUADPACK 1D quadrature package. The integration rule evaluations in the outer level, corresponding to independent inner integral approximations, are assigned to threads dynamically via the OpenMP runtime in the parallel implementation. Furthermore, multi-level (nested) parallelism enables an efficient utilization of hyperthreading or larger numbers of cores. For a class of loop integrals in the unphysical region, which do not suffer from singularities in the interior of the integration domain, we find that the distributed adaptive integration methods in the multivariate PARINT package are highly efficient and accurate. We apply these techniques without resorting to integral transformations and report on the capabilities of the algorithms and the parallel performance for a test set including various types of two-loop integrals

  12. New algorithms for one-loop integrals

    International Nuclear Information System (INIS)

    Oldenborgh, G.J. van; Vermaseren, J.A.M.

    1989-01-01

    New algorithms are presented for evaluating the scalar one loop integrals for three- and four-point functions for arbitrary masses and external momenta. These formulations are useful both for analytic integration and for numerical evaluation in a computer program. The expressions are very compact and provide for an easy isolation of asymptotic behaviour and potential numerical problems. The tensor integrals have also been rewritten according to new algorithms, making it very easy to express amplitudes in terms of scalar-loop integrals. (author). 2 figs.; 133 schems

  13. Scalar one-loop integrals for QCD

    International Nuclear Information System (INIS)

    Ellis, R. Keith; Zanderighi, Giulia

    2008-01-01

    We construct a basis set of infra-red and/or collinearly divergent scalar one-loop integrals and give analytic formulas, for tadpole, bubble, triangle and box integrals, regulating the divergences (ultra-violet, infra-red or collinear) by regularization in D = 4-2ε dimensions. For scalar triangle integrals we give results for our basis set containing 6 divergent integrals. For scalar box integrals we give results for our basis set containing 16 divergent integrals. We provide analytic results for the 5 divergent box integrals in the basis set which are missing in the literature. Building on the work of van Oldenborgh, a general, publicly available code has been constructed, which calculates both finite and divergent one-loop integrals. The code returns the coefficients of 1/ε 2 ,1/ε 1 and 1/ε 0 as complex numbers for an arbitrary tadpole, bubble, triangle or box integral

  14. Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

    Directory of Open Access Journals (Sweden)

    Hwang Bae

    2017-08-01

    Full Text Available Three small-break loss-of-coolant accident (SBLOCA tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor, i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal–hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are slightly different during the early stage of the transient after a break simulation. A safety injection using a high-pressure pump effectively cools down and recovers the inventory of a reactor coolant system. The global trends show reproducible results for an SBLOCA scenario with three different break locations. It was confirmed that the safety injection system is robustly safe enough to protect from a core uncovery.

  15. Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hwang; Ryu, Sung Uk; Yi, Sung Jae; Park, Hyun Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Dong Eok [Dept. of Precision Mechanical Engineering, Kyungpook National University, Sangju (Korea, Republic of)

    2017-08-15

    Three small-break loss-of-coolant accident (SBLOCA) tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor), i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal–hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are slightly different during the early stage of the transient after a break simulation. A safety injection using a high-pressure pump effectively cools down and recovers the inventory of a reactor coolant system. The global trends show reproducible results for an SBLOCA scenario with three different break locations. It was confirmed that the safety injection system is robustly safe enough to protect from a core uncovery.

  16. Gas Test Loop Booster Fuel Hydraulic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  17. Casimir forces from a loop integral formulation

    International Nuclear Information System (INIS)

    Babington, James

    2010-01-01

    We reformulate the Casimir force between bodies in non-trivial background media. The force may be written in terms of loop variables, the loop being a curve around the scattering sites. A natural path ordering of exponentials takes place when a particular representation of the scattering centres is given. The basic object to be evaluated is a reduced (or abbreviated) classical pseudo-action that can be operator valued, and can be obtained from a classical path integral description.

  18. Conceptional design of test loop for FIV in fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Sim, W. G.; Yang, J. S.; Kim, S. W. [Hannam Univ., Taejeon (Korea)

    2001-01-01

    It is urgent to develop the analytical model for the structural/mechanical integrity of fuel rod. In general, it is not easy to develop a pure analytical model. Occasionally, experimental results have been utilized for the model. Because of this reason, it is required to design proper test loop. Using the optimized test loop, with the optimized test loop, the dynamic behaviour of the rod will be evaluated and the critical flow velocity, which the rod loses the stability in, will be measured for the design of the rod. To verify the integrity of the fuel rod, it is required to evaluate the dynamic behaviour and the critical flow velocity with the test loop. The test results will be utilized to the design of the rod. Generally, the rod has a ground vibration due to turbulence in wide range of flow velocity and the amplitude of vibration becomes larger by the resonance, in a range of the velocity where occurs vortex. The rod loses stability in critical flow velocity caused by fluid-elastic instability. For the purpose of the present work to perform the conceptional design of the test loop, it is necessary (1) to understand the mechanism of the flow-induced vibration and the related experimental coefficients, (2) to evaluate the existing test loops for improving the loop with design parameters and (3) to decide the design specifications of the major equipments of the loop. 35 refs., 23 figs., 2 tabs. (Author)

  19. Automatic numerical integration methods for Feynman integrals through 3-loop

    International Nuclear Information System (INIS)

    De Doncker, E; Olagbemi, O; Yuasa, F; Ishikawa, T; Kato, K

    2015-01-01

    We give numerical integration results for Feynman loop diagrams through 3-loop such as those covered by Laporta [1]. The methods are based on automatic adaptive integration, using iterated integration and extrapolation with programs from the QUADPACK package, or multivariate techniques from the ParInt package. The Dqags algorithm from QuadPack accommodates boundary singularities of fairly general types. PARINT is a package for multivariate integration layered over MPI (Message Passing Interface), which runs on clusters and incorporates advanced parallel/distributed techniques such as load balancing among processes that may be distributed over a network of nodes. Results are included for 3-loop self-energy diagrams without IR (infra-red) or UV (ultra-violet) singularities. A procedure based on iterated integration and extrapolation yields a novel method of numerical regularization for integrals with UV terms, and is applied to a set of 2-loop self-energy diagrams with UV singularities. (paper)

  20. Hardware-in-the-Loop Testing

    Data.gov (United States)

    Federal Laboratory Consortium — RTC has a suite of Hardware-in-the Loop facilities that include three operational facilities that provide performance assessment and production acceptance testing of...

  1. Automated computation of one-loop integrals in massless theories

    International Nuclear Information System (INIS)

    Hameren, A. van; Vollinga, J.; Weinzierl, S.

    2005-01-01

    We consider one-loop tensor and scalar integrals, which occur in a massless quantum field theory, and we report on the implementation into a numerical program of an algorithm for the automated computation of these one-loop integrals. The number of external legs of the loop integrals is not restricted. All calculations are done within dimensional regularization. (orig.)

  2. Smart Home Hardware-in-the-Loop Testing

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Annabelle

    2017-07-12

    This presentation provides a high-level overview of NREL's smart home hardware-in-the-loop testing. It was presented at the Fourth International Workshop on Grid Simulator Testing of Energy Systems and Wind Turbine Powertrains, held April 25-26, 2017, hosted by NREL and Clemson University at the Energy Systems Integration Facility in Golden, Colorado.

  3. Operation of the hot test loop facilities

    International Nuclear Information System (INIS)

    Cheong, Moon Ki; Park, Choon Kyeong; Won, Soon Yeon; Yang, Sun Kyu; Cheong, Jang Whan; Cheon, Se Young; Song, Chul Hwa; Jeon, Hyeong Kil; Chang, Suk Kyu; Jeong, Heung Jun; Cho, Young Ro; Kim, Bok Duk; Min, Kyeong Ho

    1994-12-01

    The objective of this project is to obtain the available experimental data and to develop the measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics department have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within fuel bundle and to understand the characteristic of pressure drop required for improving the nuclear fuel and to develop the advanced measuring techniques. RCS Loop, which is used to measure the CHF, is presently under design and construction. B and C Loop is designed and constructed to assess the automatic depressurization safety system behavior. 4 tabs., 79 figs., 7 refs. (Author) .new

  4. TRAC-PF1/MOD1 calculations and data comparisons for MIST [Multi-Loop Integral System Test] small-break loss-of-coolant accidents with scaled 10 cm2 and 50 cm2 breaks

    International Nuclear Information System (INIS)

    Steiner, J.L.; Siebe, D.A.; Boyack, B.E.

    1987-01-01

    Los Alamos National Laboratory is a participant in the Integral System Test (IST) program initiated in June 1983 for the purpose of providing integral system test data on specific issues/phenomena relevant to post-small-break loss-of-coolant accidents (SBLOCAs), loss of feedwater and other transients in Babcock and Wilcox (B and W) plant designs. The Multi-Loop Integral System Test (MIST) facility is the largest single component in the IST program. MIST is a 2 x 4 (2 hot legs and steam generators, 4 cold legs and reactor-coolant pumps) representation of lowered-loop reactor systems of the B and W design. It is a full-height, full-pressure facility with 1/817 power and volume scaling. Two other experimental facilities are included in the IST program: test loops at the University of Maryland, College Park, and at Stanford Research Institute. The objective of the IST tests is to generate high-quality experimental data to be used for assessing thermal-hydraulic safety computer codes. Efforts are underway at Los Alamos to assess TRAC-PF1/MOD1 against data from each of the IST facilities. Calculations and data comparisons for TRAC-PF1/MOD1 assessment have been completed for two transients run in the MIST facility. These are the MIST nominal test. Test 3109AA, a scaled 10 cm 2 SBLOCA and Test 320201, a scaled 50 cm 2 SBLOCA. Only MIST assessment results are presented in this paper

  5. Integrated Evaluation of Closed Loop Air Revitalization System Components

    Science.gov (United States)

    Murdock, K.

    2010-01-01

    NASA s vision and mission statements include an emphasis on human exploration of space, which requires environmental control and life support technologies. This Contractor Report (CR) describes the development and evaluation of an Air Revitalization System, modeling and simulation of the components, and integrated hardware testing with the goal of better understanding the inherent capabilities and limitations of this closed loop system. Major components integrated and tested included a 4-Bed Modular Sieve, Mechanical Compressor Engineering Development Unit, Temperature Swing Adsorption Compressor, and a Sabatier Engineering and Development Unit. The requisite methodolgy and technical results are contained in this CR.

  6. Gauge and integrable theories in loop spaces

    International Nuclear Information System (INIS)

    Ferreira, L.A.; Luchini, G.

    2012-01-01

    We propose an integral formulation of the equations of motion of a large class of field theories which leads in a quite natural and direct way to the construction of conservation laws. The approach is based on generalized non-abelian Stokes theorems for p-form connections, and its appropriate mathematical language is that of loop spaces. The equations of motion are written as the equality of a hyper-volume ordered integral to a hyper-surface ordered integral on the border of that hyper-volume. The approach applies to integrable field theories in (1+1) dimensions, Chern-Simons theories in (2+1) dimensions, and non-abelian gauge theories in (2+1) and (3+1) dimensions. The results presented in this paper are relevant for the understanding of global properties of those theories. As a special byproduct we solve a long standing problem in (3+1)-dimensional Yang-Mills theory, namely the construction of conserved charges, valid for any solution, which are invariant under arbitrary gauge transformations.

  7. Gas Test Loop Functional and Technical Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Glen R. Longhurst; Soli T. Khericha; James L. Jones

    2004-09-01

    This document defines the technical and functional requirements for a gas test loop (GTL) to be constructed for the purpose of providing a high intensity fast-flux irradiation environment for developers of advanced concept nuclear reactors. This capability is needed to meet fuels and materials testing requirements of the designers of Generation IV (GEN IV) reactors and other programs within the purview of the Advanced Fuel Cycle Initiative (AFCI). Space nuclear power development programs may also benefit by the services the GTL will offer. The overall GTL technical objective is to provide developers with the means for investigating and qualifying fuels and materials needed for advanced reactor concepts. The testing environment includes a fast-flux neutron spectrum of sufficient intensity to perform accelerated irradiation testing. Appropriate irradiation temperature, gaseous environment, test volume, diagnostics, and access and handling features are also needed. This document serves to identify those requirements as well as generic requirements applicable to any system of this kind.

  8. Conceptural design of multipurpose sodium test loop

    International Nuclear Information System (INIS)

    Kim, W.C.; Lee, Y.W.; Nam, H.Y.; Chun, S.Y.; Kim, J.; Yuh, M.W.

    1982-01-01

    This report describes the conceptural design of the multipurpose sodium test loop (MSTL). This MSTL consists mainly of impurity control and measurement system, corrosion and masstransfer system and heat transfer system. Problems associated with liquid sodium coolant will be studied and operating experiences will be obtained by the use of this facility. This technology will be used to evaluate safety and reliability of large sodium facility in the future. The total cost excluding the cost of building construction is estimated to 175 thousand dollars. (Author)

  9. Supercritical water loop for in-pile materials testing

    Energy Technology Data Exchange (ETDEWEB)

    Ruzickova, M.; Vsolak, R.; Hajek, P.; Zychova, M.; Fukac, R. [Research Centre Rez Ltd., Husinec-Rez (Czech Republic)

    2011-07-01

    The Supercritical Water Loop (SCWL) has been designed and built within the HPLWR Phase 2 project, with the objective of testing materials under supercritical water conditions and radiation. The design parameters are set to 25MPa and 600{sup o}C in the testing area, where material samples shall be located. The loop has recently undergone pressure and leakage tests, during which the strength and tightness of the loop were proved. The loop has been also subjected to the first trial operation at nearly maximum operating parameters (temperature 550 {sup o}C was reached); loop operation was steady during several days. Presently, loop operation is envisaged in order to test the loop's long term operation ability. Samples of a material that needs further testing under out- of-pile conditions shall be exposed in the loop; the choice shall be made in agreement with the results of the WP4 - Materials of the HPLWR Phase 2 project. (author)

  10. New differential equations for on-shell loop integrals

    CERN Document Server

    Drummond, James M; Trnka, Jaroslav

    2011-01-01

    We present a novel type of differential equations for on-shell loop integrals. The equations are second-order and importantly, they reduce the loop level by one, so that they can be solved iteratively in the loop order. We present several infinite series of integrals satisfying such iterative differential equations. The differential operators we use are best written using momentum twistor space. The use of the latter was advocated in recent papers discussing loop integrals in N=4 super Yang-Mills. One of our motivations is to provide a tool for deriving analytical results for scattering amplitudes in this theory. We show that the integrals needed for planar MHV amplitudes up to two loops can be thought of as deriving from a single master topology. The master integral satisfies our differential equations, and so do most of the reduced integrals. A consequence of the differential equations is that the integrals we discuss are not arbitrarily complicated transcendental functions. For two specific two-loop integr...

  11. Conformal anomaly of generalized form factors and finite loop integrals

    CERN Document Server

    Chicherin, Dmitry

    2017-01-01

    We reveal a new mechanism of conformal symmetry breaking at Born level. It occurs in generalized form factors with several local operators and an on-shell state of massless particles. The effect is due to hidden singularities on collinear configurations of the momenta. This conformal anomaly is different from the holomorphic anomaly of amplitudes. We present a number of examples in four and six dimensions. We find an application of the new conformal anomaly to finite loop momentum integrals with one or more massless legs. The collinear region around a massless leg creates a contact anomaly, made visible by the loop integration. The anomalous conformal Ward identity for an $\\ell-$loop integral is a 2nd-order differential equation whose right-hand side is an $(\\ell-1)-$loop integral. We show several examples, in particular the four-dimensional scalar double box.

  12. Summary of ALSEP Test Loop Solvent Irradiation Testing

    Energy Technology Data Exchange (ETDEWEB)

    Peterman, Dean Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Olson, Lonnie Gene [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    Separating the minor actinide elements (americium and curium) from the fission product lanthanides is an important step in closing the nuclear fuel cycle. Isolating the minor actinides will allow transmuting them to short lived or stable isotopes in fast reactors, thereby reducing the long-term hazard associated with these elements. The Actinide Lanthanide Separation Process (ALSEP) is being developed by the DOE-NE Material Recovery and Waste Form Development Campaign to accomplish this separation with a single process. To develop a fundamental understanding of the solvent degradation mechanisms for the ALSEP Process, testing was performed in the INL Radiolysis/Hydrolysis Test Loop for the extraction section of the ALSEP flowsheet. This work culminated in the completion of the level two milestone (M2FT-16IN030102021) "Complete ALSEP test loop solvent irradiation test.” This report summarizes the testing performed and the impact of radiation on the ALSEP Process performance as a function of dose.

  13. Analysis of severe accidents on fast reactor test loop

    International Nuclear Information System (INIS)

    Cenerini, R.; Verzelletti, G.; Curioni, S.

    1975-01-01

    The Pec reactor is a sodium cooled fast reactor which is being designed for the primary purpose of accomodating closed sodium cooled test loops for the developmental and proof testing of fast reactor fuel assemblies. The test loops are located in the central test region of reactor. The basic function for which the loop is designed is burn-up to failure testing of fuel under advanced performance conditions. It is therefore necessary to design the loop for failure conditions. Basically two types of accidents can occur within the loops: rupture of gas plenum in the fuel pins and coolant starvation. Explosive tests on Pec loop, whose first set is described in this report, are devoted to investigate the effects of an accidental energy release on loop containment. The loop model reproduces in the test section the prototype dimensions in radial scale 1:1. Using a wire explosive charge of 300mm, the height of test section is sufficient for determining the containment capability of the loop that has a nearly constant deformation in a length of. 3-4 time the diameter. The inertial effects of the coolant column are reproduced by two tubes at the extremities of test section, closed with top plugs. Some tests has been performed by wrapping around the test section four layers of steel wire in order to evaluate the influence on the containment of tungsten wire that is foreseen in prototype loop. The influence of the coolant around the loop was evaluated by inserting the model in water. Dummy sub-assemblies was used and explosive substitutes the central rods. Piezoelectric pressure transducers were mounted on the three plugs and radial deformation was measured directly at different height. From experiments performed it resulted the importance of harmonic wires and inertial reaction of external water on loop containment; maximum containable energy is about 50 Cal with E.1 explosive

  14. UPTF loop seal tests and their RELAP simulation

    International Nuclear Information System (INIS)

    Tuomainen, M.; Tuunanen, J.

    1997-01-01

    In a pressurized water reactor the loop seals have an effect on the natural circulation. If a loop seal is filled with water it can cause a flow stagnation in the loop during two-phase natural circulation. Also the pressure loss over a filled loop seal is high, which lowers the water level in the core. Tests to investigate the loop seal behaviour were performed on a German Upper Plenum Test Facility (UPTF). The purpose of the tests was to study the amount of water in the loop seal under different steam flow rates. The tests were simulated with RELAP5/MOD3.2. With high steam flow rates the code had problems in simulating the amount of the water remaining in the pump elbow, but in general the agreement between the calculated results and the experimental data was good. (orig.)

  15. Loopedia, a database for loop integrals

    Science.gov (United States)

    Bogner, C.; Borowka, S.; Hahn, T.; Heinrich, G.; Jones, S. P.; Kerner, M.; von Manteuffel, A.; Michel, M.; Panzer, E.; Papara, V.

    2018-04-01

    Loopedia is a new database at loopedia.org for information on Feynman integrals, intended to provide both bibliographic information as well as results made available by the community. Its bibliometry is complementary to that of INSPIRE or arXiv in the sense that it admits searching for integrals by graph-theoretical objects, e.g. its topology.

  16. Reactor Simulator Integration and Testing

    Science.gov (United States)

    Schoenfield, M. P.; Webster, K. L.; Pearson, J. B.

    2013-01-01

    As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator (RxSim) test loop was designed and built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing were to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V because the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This Technical Memorandum summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained, which was lower than the predicted 750 K but 156 K higher than the cold temperature, indicating the design provided some heat regeneration. The annular linear induction pump tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  17. SAP crm integration testing

    OpenAIRE

    Černiavskaitė, Marija

    2017-01-01

    This Bachelor's thesis presents SAP CRM and integration systems testing analysis: investigation in SAP CRM and SAP PO systems, presentation of relationship between systems, introduction to third-party system (non-SAP) – Network Informational System (NIS) which has integration with SAP, presentation of best CRM testing practises, analysis and recommendation of integration testing. Practical integration testing is done in accordance to recommendations.

  18. Helium Loop for the HCPB Test Blanket Module

    International Nuclear Information System (INIS)

    Neuberger, H.; Boccaccini, L.V.; Ghidersa, B. E.; Jin, X.; Meyder, R.

    2006-01-01

    In the frame of the activities of the EU Breeder Blanket Programme and of the Test Blanket Working Group, the Helium loop for the Helium Cooled Pebble Bed Test Blanket Module (HCPB-TBM) in ITER has been investigated with regard to the layout definition, selection of components, control, dimensioning and integration. This paper presents the status of development. The loop design for the HCPB-TBM in ITER will mainly base on the experience gained from Helium Loop Karlsruhe (HELOKA) which is currently developed at the FZK for experiments under ITER relevant conditions. The ITER loop will be equipped with similar components like HELOKA and will mainly consist of a circulator with variable speed drive, a recuperator, an electric heater, a cooler, a dust filter and auxilary components e.g. pipework and valves. A Coolant Purification System (CPS) and a Pressure Control System (PCS) are foreseen to meet the requirements on coolant conditioning. To prepare a TBM for a new experimental campaign, a succession of operational states like '' cold maintenance '', '' baking '' and '' cold standby '' is required. Before a pulse operation, a '' hot stand-by '' state should be achieved providing the TBM with inlet coolant at nominal conditions. This operation modus is continued in the dwell time waiting for the successive pulse. A '' tritium out-gassing '' will be also required after several TBM-campaigns to remove the inventory rest of T in the beds for measurement purpose. The dynamic circuit behaviour during pulses, transition between different operational states as well as the behaviour in accident situations are investigated with RELAP. The main components of the loop will be accommodated inside the Tokamak Cooling Water System(TCWS)- vault from where the pipes require connection to the TBM which is attached to port 16 of the vacuum vessel. Therefore pipes across the ITER- building of about 110 m in length (each) are required. Additional equipment is also located in the port cell

  19. Solving recurrence relations for multi-loop Feynman integrals

    International Nuclear Information System (INIS)

    Smirnov, Vladimir A.; Steinhauser, Matthias

    2003-01-01

    We study the problem of solving integration-by-parts recurrence relations for a given class of Feynman integrals which is characterized by an arbitrary polynomial in the numerator and arbitrary integer powers of propagators, i.e., the problem of expressing any Feynman integral from this class as a linear combination of master integrals. We show how the parametric representation invented by Baikov [Phys. Lett. B 385 (1996) 404, Nucl. Instrum. Methods A 389 (1997) 347] can be used to characterize the master integrals and to construct an algorithm for evaluating the corresponding coefficient functions. To illustrate this procedure we use simple one-loop examples as well as the class of diagrams appearing in the calculation of the two-loop heavy quark potential

  20. Master integrals for the four-loop Sudakov form factor

    Directory of Open Access Journals (Sweden)

    Rutger H. Boels

    2016-01-01

    Full Text Available The light-like cusp anomalous dimension is a universal function in the analysis of infrared divergences. In maximally (N=4 supersymmetric Yang–Mills theory (SYM in the planar limit, it is known, in principle, to all loop orders. The non-planar corrections are not known in any theory, with the first appearing at the four-loop order. The simplest quantity which contains this correction is the four-loop two-point form factor of the stress tensor multiplet. This form factor was largely obtained in integrand form in a previous work for N=4 SYM, up to a free parameter. In this work, a reduction of the appearing integrals obtained by solving integration-by-parts (IBP identities using a modified version of Reduze is reported. The form factor is shown to be independent of the remaining parameter at integrand level due to an intricate pattern of cancellations after IBP reduction. Moreover, two of the integral topologies vanish after reduction. The appearing master integrals are cross-checked using independent algebraic-geometry techniques explored in the Mint package. The latter results provide the basis of master integrals applicable to generic form factors, including those in Quantum Chromodynamics. Discrepancies between explicitly solving the IBP relations and the MINT approach are highlighted. Remaining bottlenecks to completing the computation of the four-loop non-planar cusp anomalous dimension in N=4 SYM and beyond are identified.

  1. Master integrals for the four-loop Sudakov form factor

    Science.gov (United States)

    Boels, Rutger H.; Kniehl, Bernd A.; Yang, Gang

    2016-01-01

    The light-like cusp anomalous dimension is a universal function in the analysis of infrared divergences. In maximally (N = 4) supersymmetric Yang-Mills theory (SYM) in the planar limit, it is known, in principle, to all loop orders. The non-planar corrections are not known in any theory, with the first appearing at the four-loop order. The simplest quantity which contains this correction is the four-loop two-point form factor of the stress tensor multiplet. This form factor was largely obtained in integrand form in a previous work for N = 4 SYM, up to a free parameter. In this work, a reduction of the appearing integrals obtained by solving integration-by-parts (IBP) identities using a modified version of Reduze is reported. The form factor is shown to be independent of the remaining parameter at integrand level due to an intricate pattern of cancellations after IBP reduction. Moreover, two of the integral topologies vanish after reduction. The appearing master integrals are cross-checked using independent algebraic-geometry techniques explored in the Mint package. The latter results provide the basis of master integrals applicable to generic form factors, including those in Quantum Chromodynamics. Discrepancies between explicitly solving the IBP relations and the MINT approach are highlighted. Remaining bottlenecks to completing the computation of the four-loop non-planar cusp anomalous dimension in N = 4 SYM and beyond are identified.

  2. Supercritical CO2 test loop operation and first test results

    International Nuclear Information System (INIS)

    Wright, Steven A.; Pickard, Paul S.

    2009-01-01

    The DOE Office of Nuclear Energy is investigating advanced Brayton cycles for use with next generation nuclear power plants. The focus of this work is on the supercritical CO 2 Brayton cycle which has the potential for high efficiency, and for reduced capital costs due to very compact turbomachinery. Sandia has fabricated and is operating a supercritical CO 2 (S-CO 2 ) test loop to investigate the key technology issues associated with this cycle. This loop is part of a multi-year phased development program to develop a megawatt (MW) class closed S-CO 2 Brayton cycle to demonstrate the applicability of this cycle for DOE Gen-IV program. The current loop has been configured as both a compression loop and as simple heated but unrecuperated Brayton cycle. A second split-flow or re-compression Brayton cycle is currently under development that will use approximately 1 MW of heat to run the Brayton cycle. Early configurations of this split-flow Brayton cycle will be operational later this fiscal year. The key issues for this cycle include the fundamental issues of compressor fluid performance and system control near the critical point, but also the supporting technology issues of bearings, sealing technologies, and rotor windage losses which are also essential to achieving efficiency and cost objectives. These tests are providing the first measurements and information on these key supercritical CO 2 power conversion systems questions. Important data for all these issues has been obtained. This report presents the major results of the testing by showing and comparing the measured compressor performance map with the predicted performance. The compression loop uses a ∼50 kWe motor driven compressor to spin a 37 mm OD compressor at design speeds up to 75,000 rpm with a pressure ratio of 1.8 and a flow rate of 3.53 kg/s for a compressor inlet condition of 305.3 K and 7690 kPa. The most recent configuration of this loop has added a small turbine and 260 kW of heater power is

  3. A systematic and efficient method to compute multi-loop master integrals

    Science.gov (United States)

    Liu, Xiao; Ma, Yan-Qing; Wang, Chen-Yu

    2018-04-01

    We propose a novel method to compute multi-loop master integrals by constructing and numerically solving a system of ordinary differential equations, with almost trivial boundary conditions. Thus it can be systematically applied to problems with arbitrary kinematic configurations. Numerical tests show that our method can not only achieve results with high precision, but also be much faster than the only existing systematic method sector decomposition. As a by product, we find a new strategy to compute scalar one-loop integrals without reducing them to master integrals.

  4. Creating integral value for stakeholders in closed loop supply chains

    NARCIS (Netherlands)

    Schenkel, Maren; Krikke, Harold; Caniëls, Marjolein CJ; van der Laan, Erwin

    This paper contributes to the existing literature by researching integral value creation in closed loop supply chains (CLSCs). We distinguish between multiple types of business value, strategic success factors, and multiple groups of stakeholders that affect and are affected by CLSC activities. To

  5. Master integrals for the four-loop Sudakov form factor

    Energy Technology Data Exchange (ETDEWEB)

    Boels, Rutger; Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Yang, Gang [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Chinese Academy of Sciences, Beijing (China). Inst. of Theoretical Physics

    2015-08-15

    The light-like cusp anomalous dimension is a universal function in the analysis of infrared divergences. In maximally (N=4) supersymmetric Yang-Mills theory (SYM) in the planar limit, it is known, in principle, to all loop orders. The non-planar corrections are not known in any theory, with the first appearing at the four-loop order. Probably the simplest quantity which contains this correction is the four-loop two-point form factor of the stress tensor multiplet. This form factor was obtained in integrand form in a previous work for N=4 SYM, up to a single parameter. In this work, a reduction of the appearing integrals obtained by solving integration-by-parts (IBP) identities using (a tweaked version of) Reduze is reported. The form factor is shown to be independent of the remaining parameter at integrand level due to an intricate pattern of cancellations after IBP reduction. The appearing master integrals are cross-checked using algebraic techniques explored in the Mint package. The latter results provide the basis of master integrals applicable to generic form factors, including those in Quantum Chromodynamics. Remaining bottlenecks to completing the computation of the four-loop non-planar cusp anomalous dimension in N=4 SYM and beyond are identified.

  6. Master integrals for the four-loop Sudakov form factor

    International Nuclear Information System (INIS)

    Boels, Rutger; Kniehl, Bernd A.; Yang, Gang; Chinese Academy of Sciences, Beijing

    2015-08-01

    The light-like cusp anomalous dimension is a universal function in the analysis of infrared divergences. In maximally (N=4) supersymmetric Yang-Mills theory (SYM) in the planar limit, it is known, in principle, to all loop orders. The non-planar corrections are not known in any theory, with the first appearing at the four-loop order. Probably the simplest quantity which contains this correction is the four-loop two-point form factor of the stress tensor multiplet. This form factor was obtained in integrand form in a previous work for N=4 SYM, up to a single parameter. In this work, a reduction of the appearing integrals obtained by solving integration-by-parts (IBP) identities using (a tweaked version of) Reduze is reported. The form factor is shown to be independent of the remaining parameter at integrand level due to an intricate pattern of cancellations after IBP reduction. The appearing master integrals are cross-checked using algebraic techniques explored in the Mint package. The latter results provide the basis of master integrals applicable to generic form factors, including those in Quantum Chromodynamics. Remaining bottlenecks to completing the computation of the four-loop non-planar cusp anomalous dimension in N=4 SYM and beyond are identified.

  7. Xenon oscillation tests in four-loop PWR cores

    International Nuclear Information System (INIS)

    Aoki, Norihiko; Osaka, Kenichi; Shimada, Shoichiro; Tochihara, Hiroshi; Machii, Seigo

    1980-01-01

    The Kansai Electric Power Co.'s OHI Unit 1 and 2 are the first 4-loop PWRs in Japan which use 17 x 17 fuel assemblies and have essentially the same plant parameters. A 4-loop core has larger core radius and higher power density than those of 2- or 3-loop cores, and is less stable for Xe oscillation. It is therefore important to confirm that Xe oscillations in radial direction are sufficiently stable in a 4-loop core. Radial and axial Xe oscillation tests were performed during the startup physics tests of OHI Unit 1 and 2; Xe oscillation was induced by perturbation of control rods and the Xe effect on power distribution observed periodically. The test results show that the transverse Xe oscillation in the 4-loop core is sufficiently stable and that the agreement between the measurement and the calculated prediction is good. (author)

  8. Double parton scattering singularity in one-loop integrals

    Science.gov (United States)

    Gaunt, Jonathan R.; Stirling, W. James

    2011-06-01

    We present a detailed study of the double parton scattering (DPS) singularity, which is a specific type of Landau singularity that can occur in certain one-loop graphs in theories with massless particles. A simple formula for the DPS singular part of a four-point diagram with arbitrary internal/external particles is derived in terms of the transverse momentum integral of a product of light cone wavefunctions with tree-level matrix elements. This is used to reproduce and explain some results for DPS singularities in box integrals that have been obtained using traditional loop integration techniques. The formula can be straightforwardly generalised to calculate the DPS singularity in loops with an arbitrary number of external particles. We use the generalised version to explain why the specific MHV and NMHV six-photon amplitudes often studied by the NLO multileg community are not divergent at the DPS singular point, and point out that whilst all NMHV amplitudes are always finite, certain MHV amplitudes do contain a DPS divergence. It is shown that our framework for calculating DPS divergences in loop diagrams is entirely consistent with the `two-parton GPD' framework of Diehl and Schafer for calculating proton-proton DPS cross sections, but is inconsistent with the `double PDF' framework of Snigirev.

  9. High Temperature Fluoride Salt Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Richard Burns [Univ. of Tennessee, Knoxville, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peretz, Fred J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    with 3 cm diameter graphite-based fuel pebbles slowly circulating up through the core. Molten salt coolant (FLiBe) at 700°C flows concurrently (at significantly higher velocity) with the pebbles and is used to remove heat generated in the reactor core (approximately 1280 W/pebble), and supply it to a power conversion system. Refueling equipment continuously sorts spent fuel pebbles and replaces spent or damaged pebbles with fresh fuel. By combining greater or fewer numbers of pebble channel assemblies, multiple reactor designs with varying power levels can be offered. The PB-AHTR design is discussed in detail in Reference [1] and is shown schematically in Fig. 1. Fig. 1. PB-AHTR concept (drawing taken from Peterson et al., Design and Development of the Modular PB-AHTR Proceedings of ICApp 08). Pebble behavior within the core is a key issue in proving the viability of this concept. This includes understanding the behavior of the pebbles thermally, hydraulically, and mechanically (quantifying pebble wear characteristics, flow channel wear, etc). The experiment being developed is an initial step in characterizing the pebble behavior under realistic PB-AHTR operating conditions. It focuses on thermal and hydraulic behavior of a static pebble bed using a convective salt loop to provide prototypic fluid conditions to the bed, and a unique inductive heating technique to provide prototypic heating in the pebbles. The facility design is sufficiently versatile to allow a variety of other experimentation to be performed in the future. The facility can accommodate testing of scaled reactor components or sub-components such as flow diodes, salt-to-salt heat exchangers, and improved pump designs as well as testing of refueling equipment, high temperature instrumentation, and other reactor core designs.

  10. One-loop tensor integrals in dimensional regularisation

    International Nuclear Information System (INIS)

    Campbell, J.M.; Glover, E.W.N.; Miller, D.J.

    1997-01-01

    We show how to evaluate tensor one-loop integrals in momentum space avoiding the usual plague of Gram determinants. We do this by constructing combinations of n- and (n-1)-point scalar integrals that are finite in the limit of vanishing Gram determinant. These non-trivial combinations of dilogarithms, logarithms and constants are systematically obtained by either differentiating with respect to the external parameters - essentially yielding scalar integrals with Feynman parameters in the numerator - or by developing the scalar integral in D=6-2ε or higher dimensions. An additional advantage is that other spurious kinematic singularities are also controlled. As an explicit example, we develop the tensor integrals and associated scalar integral combinations for processes where the internal particles are massless and where up to five (four massless and one massive) external particles are involved. For more general processes, we present the equations needed for deriving the relevant combinations of scalar integrals. (orig.)

  11. Results from Carbon Dioxide Washout Testing Using a Suited Manikin Test Apparatus with a Space Suit Ventilation Test Loop

    Science.gov (United States)

    Chullen, Cinda; Conger, Bruce; McMillin, Summer; Vonau, Walt; Kanne, Bryan; Korona, Adam; Swickrath, Mike

    2016-01-01

    NASA is developing an advanced portable life support system (PLSS) to meet the needs of a new NASA advanced space suit. The PLSS is one of the most critical aspects of the space suit providing the necessary oxygen, ventilation, and thermal protection for an astronaut performing a spacewalk. The ventilation subsystem in the PLSS must provide sufficient carbon dioxide (CO2) removal and ensure that the CO2 is washed away from the oronasal region of the astronaut. CO2 washout is a term used to describe the mechanism by which CO2 levels are controlled within the helmet to limit the concentration of CO2 inhaled by the astronaut. Accumulation of CO2 in the helmet or throughout the ventilation loop could cause the suited astronaut to experience hypercapnia (excessive carbon dioxide in the blood). A suited manikin test apparatus (SMTA) integrated with a space suit ventilation test loop was designed, developed, and assembled at NASA in order to experimentally validate adequate CO2 removal throughout the PLSS ventilation subsystem and to quantify CO2 washout performance under various conditions. The test results from this integrated system will be used to validate analytical models and augment human testing. This paper presents the system integration of the PLSS ventilation test loop with the SMTA including the newly developed regenerative Rapid Cycle Amine component used for CO2 removal and tidal breathing capability to emulate the human. The testing and analytical results of the integrated system are presented along with future work.

  12. One-loop tensor Feynman integral reduction with signed minors

    DEFF Research Database (Denmark)

    Fleischer, Jochem; Riemann, Tord; Yundin, Valery

    2012-01-01

    We present an algebraic approach to one-loop tensor integral reduction. The integrals are presented in terms of scalar one- to four-point functions. The reduction is worked out explicitly until five-point functions of rank five. The numerical C++ package PJFry evaluates tensor coefficients in terms...... of the formalism is the immediate evaluation of complete contractions of the tensor integrals with external momenta. This leads to the problem of evaluating sums over products of signed minors with scalar products of chords. Chords are differences of external momenta. These sums may be evaluated analytically...

  13. Integrable systems twistors, loop groups, and Riemann surfaces

    CERN Document Server

    Hitchin, NJ; Ward, RS

    2013-01-01

    This textbook is designed to give graduate students an understanding of integrable systems via the study of Riemann surfaces, loop groups, and twistors. The book has its origins in a series of lecture courses given by the authors, all of whom are internationally known mathematicians and renowned expositors. It is written in an accessible and informal style, and fills a gap in the existing literature. The introduction by Nigel Hitchin addresses the meaning of integrability: how do werecognize an integrable system? His own contribution then develops connections with algebraic geometry, and inclu

  14. ac power control in the Core Flow Test Loop

    International Nuclear Information System (INIS)

    McDonald, D.W.

    1980-01-01

    This work represents a status report on a development effort to design an ac power controller for the Core Flow Test Loop. The Core Flow Test Loop will be an engineering test facility which will simulate the thermal environment of a gas-cooled fast-breeder reactor. The problems and limitations of using sinusoidal ac power to simulate the power generated within a nuclear reactor are addressed. The transformer-thyristor configuration chosen for the Core Flow Test Loop power supply is presented. The initial considerations, design, and analysis of a closed-loop controller prototype are detailed. The design is then analyzed for improved performance possibilities and failure modes are investigated at length. A summary of the work completed to date and a proposed outline for continued development completes the report

  15. Two Integrator Loop Filters: Generation Using NAM Expansion and Review

    Directory of Open Access Journals (Sweden)

    Ahmed M. Soliman

    2010-01-01

    Full Text Available Systematic synthesis method to generate a family of two integrator loop filters based on nodal admittance matrix (NAM expansion is given. Eight equivalent circuits are obtained; six of them are new. Each of the generated circuits uses two grounded capacitors and employs two current conveyors (CCII or two inverting current conveyors (ICCII or a combination of both. The NAM expansion is also used to generate eight equivalent grounded passive elements two integrator loop filters using differential voltage current conveyor (DVCC; six of them are new. Changing the input port of excitation, two new families of eight unity gain lowpass filter circuits each using two CCII or ICCII or combination of both or two DVCC are obtained.

  16. Reduction schemes for one-loop tensor integrals

    International Nuclear Information System (INIS)

    Denner, A.; Dittmaier, S.

    2006-01-01

    We present new methods for the evaluation of one-loop tensor integrals which have been used in the calculation of the complete electroweak one-loop corrections to e + e - ->4 fermions. The described methods for 3-point and 4-point integrals are, in particular, applicable in the case where the conventional Passarino-Veltman reduction breaks down owing to the appearance of Gram determinants in the denominator. One method consists of different variants for expanding tensor coefficients about limits of vanishing Gram determinants or other kinematical determinants, thereby reducing all tensor coefficients to the usual scalar integrals. In a second method a specific tensor coefficient with a logarithmic integrand is evaluated numerically, and the remaining coefficients as well as the standard scalar integral are algebraically derived from this coefficient. For 5-point tensor integrals, we give explicit formulas that reduce the corresponding tensor coefficients to coefficients of 4-point integrals with tensor rank reduced by one. Similar formulas are provided for 6-point functions, and the generalization to functions with more internal propagators is straightforward. All the presented methods are also applicable if infrared (soft or collinear) divergences are treated in dimensional regularization or if mass parameters (for unstable particles) become complex

  17. Integrated Test and Evaluation Flight Test 3 Flight Test Plan

    Science.gov (United States)

    Marston, Michael Lawrence

    2015-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration into the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability, Human Systems Integration (HSI), and Communication to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Sense and Avoid (SAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including the integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project will conduct a series of Human-in-the-Loop and Flight Test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity and complexity of the previous tests and

  18. Application of the X-in-the-Loop Testing Method in the FCV Hybrid Degree Test

    Directory of Open Access Journals (Sweden)

    Haiyu Gao

    2018-02-01

    Full Text Available With the development of fuel cell vehicle technology, an effective testing method that can be applied to develop and verify the fuel cell vehicle powertrain system is urgently required. This paper presents the X-in-the-Loop (XiL testing method in the fuel cell vehicle (FCV hybrid degree test to resolve the first and key issues for the powertrain system design, and the test process and scenarios were designed. The hybrid degree is redefined into the static hybrid degree for system architecture design and the dynamic hybrid degree for vehicle control strategy design, and an integrated testing platform was introduced and a testing application was implemented by following the designed testing flowchart with two loops. Experimental validations show that the sizing of the FCE (Fuel Cell Engine, battery pack, and traction motor with the powertrain architecture can be determined, the control strategy can be evaluated seamlessly, and a systematic powertrain testing solution can be achieved through the whole development process. This research has developed a new testing platform and proposed a novel testing method on the fuel cell vehicle powertrain system, which will be a contribution to fuel cell vehicle technology and its industrialization.

  19. The Construction Work Completion of the Fuel Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kook Nam; Lee, Chung Young; Chi, Dae Young; Park, Su Ki; Shim, Bong Sik; Ahn, Sung Ho; Kim, Hark Rho [KAERI, Daejeon (Korea, Republic of); Lee, Jong Min [Global Nuclear Engineering Company, Daejeon (Korea, Republic of)

    2007-07-01

    FTL(Fuel Test Loop) is a facility that confirms performance of nuclear fuel at a similar irradiation condition with that of nuclear power plant. FTL consists of In-Pile Test Section (IPS) and Out-Pile System (OPS). FTL construction work began on August, 2006 and ended on March, 2007. During Construction, ensuring the worker's safety was the top priority and installation of the FTL without hampering the integrity of the HANARO was the next one. Task Force Team was organized to do a construction systematically and the communication between members of the task force team was done through the CoP(community of Practice) notice board provided by the Institute. The installation works were done successfully overcoming the difficulties such as on the limited space, on the radiation hazard inside the reactor pool, and finally on the shortening of the shut down period of the HANARO. Without a sweet of the workers of the participating company of HEC(Hyundae Engineering Co, Ltd), HDEC(HyunDai Engineering and Construction Co. Ltd), equipment manufacturer, and the task force team, it is not possible to install the FTL facility within the planned shutdown period. The Commissioning of the FTL is on due to check the function and the performance of the equipment and the overall system as well. The FTL shall start operation with high burn up test fuels in early 2008 if the commissioning and licensing progress on schedule.

  20. Main technological test loops; Les grandes boucles technologiques

    Energy Technology Data Exchange (ETDEWEB)

    Perthuis, S. de [AREVA Framatome ANP, 92 - Paris La Defense (France); Morey, J.M. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Le Rouzic, J.F. [Electricite de France (EDF), 92 - Clamart (France)

    2005-07-01

    A technological test loop (TL) is a non-radioactive permanent test facility that simulates a part of power reactor. TL are built to help to design or to operate a nuclear reactor, they can be classified into 6 topics according to their purpose: 1) critical flux (allows the determination of the maximal heat flux a fuel rod can release without damage), 2) hydro-mechanics (for measuring pressure drop or flow rate distribution for instance), 3) component performance testing (for instance: valves, servomechanisms...), 4) accidental thermo-hydraulics (for the investigation of coolant loss or secondary circuit failures for instance), 5) helium technology (for investigating the behaviour of materials in presence of high temperature and high pressure helium), and 6) major reactor accidents (mainly for studying the behaviour of corium). The author reviews the technological test loops that are operated by Cea, EdF and Framatome-ANP. About 40 loops are reported. (A.C.)

  1. An Application Example Analysis of Quality Assurance Program for STELLA(Sodium Integral Effect Test Loop for Safety Simulation and Assessment) Project

    International Nuclear Information System (INIS)

    Jung, Minhwan; Gam, Dayoung; Eoh, Jae-Hyuk; Jeong, Ji-Young

    2015-01-01

    KAERI has been conducting various basic R and D activities in the field of nuclear technology. In addition, KAERI is now participating in the Generation IV International Forum (GIF), preparing for the development of key technologies for Generation IV nuclear energy system, including Sodium cooled Fast Reactor (SFR) development. All of the key technologies for SFR development need an appropriate level of QA activities to achieve the GIF safety and performance objectives. Therefore, QA activities have been conducted as an essential part of the national SFR project. As a result, QAM (Quality Assurance Manual) and QAP (Quality Assurance Procedures) have been developed for the SFR project, which are based on ASME NQA-1, KEPIC QAP and the GIF Quality Management System Guidelines. In this work, the introduction background and application examples of the QA program for the STELLA project were investigated. Application of the QA for the STELLA project has great significance because the QA has been mainly applied for the nuclear power plant area in operation, which helps ensure the reliability of the test data and completeness of the research performance. Nevertheless, developing more appropriate QA procedures remains a major task because some parts of them are not applicable to the Na-experiment

  2. An Application Example Analysis of Quality Assurance Program for STELLA(Sodium Integral Effect Test Loop for Safety Simulation and Assessment) Project

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Minhwan; Gam, Dayoung; Eoh, Jae-Hyuk; Jeong, Ji-Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    KAERI has been conducting various basic R and D activities in the field of nuclear technology. In addition, KAERI is now participating in the Generation IV International Forum (GIF), preparing for the development of key technologies for Generation IV nuclear energy system, including Sodium cooled Fast Reactor (SFR) development. All of the key technologies for SFR development need an appropriate level of QA activities to achieve the GIF safety and performance objectives. Therefore, QA activities have been conducted as an essential part of the national SFR project. As a result, QAM (Quality Assurance Manual) and QAP (Quality Assurance Procedures) have been developed for the SFR project, which are based on ASME NQA-1, KEPIC QAP and the GIF Quality Management System Guidelines. In this work, the introduction background and application examples of the QA program for the STELLA project were investigated. Application of the QA for the STELLA project has great significance because the QA has been mainly applied for the nuclear power plant area in operation, which helps ensure the reliability of the test data and completeness of the research performance. Nevertheless, developing more appropriate QA procedures remains a major task because some parts of them are not applicable to the Na-experiment.

  3. Water hammer characteristics of integral pressurized water reactor primary loop

    International Nuclear Information System (INIS)

    Zuo, Qiaolin; Qiu, Suizheng; Lu, Wei; Tian, Wenxi; Su, Guanghui; Xiao, Zejun

    2013-01-01

    Highlights: • Water hammer models developed for IPWR primary loop using MOC. • Good agreement between the developed code and the experiment. • The good agreement between WAHAP and Flowmaster can validate the equations in WAHAP. • The primary loop of IPWR suffers from slight water hammer impact. -- Abstract: The present work discussed the single-phase water hammer phenomenon, which was caused by the four-pump-alternate startup in an integral pressurized water reactor (IPWR). A new code named water hammer program (WAHAP) was developed independently based on the method of characteristic to simulate hydraulic transients in the primary system of IPWR and its components such as reactor core, once-through steam generators (OTSG), the main coolant pumps and so on. Experimental validation for the correctness of the equations and models in WAHAP was carried out and the models fit the experimental data well. Some important variables were monitored including transient volume flow rates, opening angle of valve disc and pressure drop in valves. The water hammer commercial software Flowmaster V7 was also employed to compare with WAHAP and the good agreement can validate the equations in WAHAP. The transient results indicated that the primary loop of IPWR suffers from slight water hammer impact under pump switching conditions

  4. Looping probabilities of elastic chains: a path integral approach.

    Science.gov (United States)

    Cotta-Ramusino, Ludovica; Maddocks, John H

    2010-11-01

    We consider an elastic chain at thermodynamic equilibrium with a heat bath, and derive an approximation to the probability density function, or pdf, governing the relative location and orientation of the two ends of the chain. Our motivation is to exploit continuum mechanics models for the computation of DNA looping probabilities, but here we focus on explaining the novel analytical aspects in the derivation of our approximation formula. Accordingly, and for simplicity, the current presentation is limited to the illustrative case of planar configurations. A path integral formalism is adopted, and, in the standard way, the first approximation to the looping pdf is obtained from a minimal energy configuration satisfying prescribed end conditions. Then we compute an additional factor in the pdf which encompasses the contributions of quadratic fluctuations about the minimum energy configuration along with a simultaneous evaluation of the partition function. The original aspects of our analysis are twofold. First, the quadratic Lagrangian describing the fluctuations has cross-terms that are linear in first derivatives. This, seemingly small, deviation from the structure of standard path integral examples complicates the necessary analysis significantly. Nevertheless, after a nonlinear change of variable of Riccati type, we show that the correction factor to the pdf can still be evaluated in terms of the solution to an initial value problem for the linear system of Jacobi ordinary differential equations associated with the second variation. The second novel aspect of our analysis is that we show that the Hamiltonian form of these linear Jacobi equations still provides the appropriate correction term in the inextensible, unshearable limit that is commonly adopted in polymer physics models of, e.g. DNA. Prior analyses of the inextensible case have had to introduce nonlinear and nonlocal integral constraints to express conditions on the relative displacement of the end

  5. Development of Integrated Orbit and Attitude Software-in-the-loop Simulator for Satellite Formation Flying

    Directory of Open Access Journals (Sweden)

    Han-Earl Park

    2013-03-01

    Full Text Available An integrated orbit and attitude control algorithm for satellite formation flying was developed, and an integrated orbit and attitude software-in-the-loop (SIL simulator was also developed to test and verify the integrated control algorithm. The integrated algorithm includes state-dependent Riccati equation (SDRE control algorithm and PD feedback control algorithm as orbit and attitude controller respectively and configures the two algorithms with an integrating effect. The integrated SIL simulator largely comprises an orbit SIL simulator for orbit determination and control, and attitude SIL simulator for attitude determination and control. The two SIL simulators were designed considering the performance and characteristics of related hardware-in-the-loop (HIL simulators and were combined into the integrated SIL simulator. To verify the developed integrated SIL simulator with the integrated control algorithm, an orbit simulation and integrated orbit and attitude simulation were performed for a formation reconfiguration scenario using the orbit SIL simulator and the integrated SIL simulator, respectively. Then, the two simulation results were compared and analyzed with each other. As a result, the user satellite in both simulations achieved successful formation reconfiguration, and the results of the integrated simulation were closer to those of actual satellite than the orbit simulation. The integrated orbit and attitude control algorithm verified in this study enables us to perform more realistic orbit control for satellite formation flying. In addition, the integrated orbit and attitude SIL simulator is able to provide the environment of easy test and verification not only for the existing diverse orbit or attitude control algorithms but also for integrated orbit and attitude control algorithms.

  6. Closed loop lab tests of NASA's Mini-Mast

    Science.gov (United States)

    Hsieh, C.; Kim, J. H.; Skelton, Robert E.

    1990-01-01

    A design strategy which integrates model reduction by modal cost analysis and a multiobjective controller synthesis algorithm is used to design controllers for NASA's Mini-Mast system. The necessary modeling and control algorithms are easily programmed in Matlab standard software. Hence, this method is very practical for controller design for large space structures. The design algorithm also presents a solution for the important problem of tuning multiple-loop controllers.

  7. Acceleration of Feynman loop integrals in high-energy physics on many core GPUs

    International Nuclear Information System (INIS)

    Yuasa, F; Ishikawa, T; Hamaguchi, N; Koike, T; Nakasato, N

    2013-01-01

    The current and future colliders in high-energy physics require theorists to carry out a large scale computation for a precise comparison between experimental results and theoretical ones. In a perturbative approach several methods to evaluate Feynman loop integrals which appear in the theoretical calculation of cross-sections are well established in the one-loop level, however, more studies are necessary for higher-order levels. Direct Computation Method (DCM) is developed to evaluate multi-loop integrals. DCM is based on a combination of multidimensional numerical integration and extrapolation on a sequence of integrals. It is a fully numerical method and is applicable to a wide class of integrals with various physics parameters. The computation time depends on physics parameters and the topology of loop diagrams and it becomes longer for the two-loop integrals. In this paper we present our approach to the acceleration of the two-loop integrals by DCM on multiple GPU boards

  8. Cosmological perturbation theory using the FFTLog: formalism and connection to QFT loop integrals

    Science.gov (United States)

    Simonović, Marko; Baldauf, Tobias; Zaldarriaga, Matias; Carrasco, John Joseph; Kollmeier, Juna A.

    2018-04-01

    We present a new method for calculating loops in cosmological perturbation theory. This method is based on approximating a ΛCDM-like cosmology as a finite sum of complex power-law universes. The decomposition is naturally achieved using an FFTLog algorithm. For power-law cosmologies, all loop integrals are formally equivalent to loop integrals of massless quantum field theory. These integrals have analytic solutions in terms of generalized hypergeometric functions. We provide explicit formulae for the one-loop and the two-loop power spectrum and the one-loop bispectrum. A chief advantage of our approach is that the difficult part of the calculation is cosmology independent, need be done only once, and can be recycled for any relevant predictions. Evaluation of standard loop diagrams then boils down to a simple matrix multiplication. We demonstrate the promise of this method for applications to higher multiplicity/loop correlation functions.

  9. Utilizing a Suited Manikin Test Apparatus and Space Suit Ventilation Loop to Evaluate Carbon Dioxide Washout

    Science.gov (United States)

    Chullen, Cinda; Conger, Bruce; Korona, Adam; Kanne, Bryan; McMillin, Summer; Paul, Thomas; Norcross, Jason; Alonso, Jesus Delgado; Swickrath, Mike

    2015-01-01

    NASA is pursuing technology development of an Advanced Extravehicular Mobility Unit (AEMU) which is an integrated assembly made up of primarily a pressure garment system and a portable life support subsystem (PLSS). The PLSS is further composed of an oxygen subsystem, a ventilation subsystem, and a thermal subsystem. One of the key functions of the ventilation system is to remove and control the carbon dioxide (CO2) delivered to the crewmember. Carbon dioxide washout is the mechanism by which CO2 levels are controlled within the space suit helmet to limit the concentration of CO2 inhaled by the crew member. CO2 washout performance is a critical parameter needed to ensure proper and robust designs that are insensitive to human variabilities in a space suit. A suited manikin test apparatus (SMTA) was developed to augment testing of the PLSS ventilation loop in order to provide a lower cost and more controlled alternative to human testing. The CO2 removal function is performed by the regenerative Rapid Cycle Amine (RCA) within the PLSS ventilation loop and its performance is evaluated within the integrated SMTA and Ventilation Loop test system. This paper will provide a detailed description of the schematics, test configurations, and hardware components of this integrated system. Results and analysis of testing performed with this integrated system will be presented within this paper.

  10. Seismic proving test of BWR primary loop recirculation system

    International Nuclear Information System (INIS)

    Sato, H.; Shigeta, M.; Karasawa, Y.

    1987-01-01

    The seismic proving test of BWR Primary Loop Recirculation system is the second test to use the large-scale, high-performance vibration table of Tadotsu Engineering Laboratory. The purpose of this test is to prove the seismic reliability of the primary loop recirculation system (PLR), one of the most important safety components in the BWR nuclear plants, and also to confirm the adequacy of seismic analysis method used in the current seismic design. To achieve the purpose, the test was conducted under conditions and scale as near as possible to actual systems. The strength proving test was carried out with the test model mounted on the vibration table in consideration of basic design earthquake ground motions and other conditions to confirm the soundness of structure and the strength against earthquakes. Detailed analysis and analytic evaluation of the data obtained from the test was conducted to confirm the adequacy of the seismic analysis method and earthquake response analysis method used in the current seismic design. Then, on the basis of the results obtained, the seismic safety and reliability of BWR primary loop recirculation of the actual plants was fully evaluated

  11. Testing of cobalt-free alloys for valve applications using a special test loop

    International Nuclear Information System (INIS)

    Benhamou, C.

    1992-01-01

    Considering that use of cobalt alloys should be avoided as far as possible in PWR components, a programme aimed at establishing the performance of cobalt-free alloys has been performed for valve applications, where cobalt alloys are mainly used. Referring to past work, two types of cobalt-free alloys were selected: Ni-Cr-B-Si and Ni-Cr-Fe alloys. Cobalt-free valves' behaviour has been evaluated comparatively with cobalt valves by implementation of a programme in a special PWR test loop. At the issue of the loop test programme, which included endurance, thermal shock and erosion tests, cobalt-free alloys candidate to replace cobalt alloys are proposed in relation with valve type (globe valve and swing check valve). The following was established: (i) Colmonoy 4-26 (Ni-Cr-B-Si alloy) and Cenium Z20 (Ni-Cr-Fe alloy) deposited by plasma arc process were found suitable for use in 3inch swing check valves; (ii) for integral parts acting as guide rings, Nitronic 60 and Cesium Z20/698 were tested successfully; (iii) for small-bore components such as 2inch globe valves, no solution can yet be proposed; introduction of cobalt-free alloys is dependent on the development of automatic advanced arc surfacing techniques applied to small-bore components

  12. Test of Flow Characteristics in Tubular Fuel Assembly I - Establishment of test loop and measurement validation test

    International Nuclear Information System (INIS)

    Park, Jong Hark; Chae, H. T.; Park, C.; Kim, H.

    2005-12-01

    Tubular type fuel has been developed as one of candidates for Advanced HANARO Reactor(AHR). It is necessary to test the flow characteristics such as velocity in each flow channels and pressure drop of tubular type fuel. A hydraulic test-loop to examine the hydraulic characteristics for a tubular type fuel has been designed and constructed. It consists of three parts; a) piping-loop including pump and motor, magnetic flow meter and valves etc, b) test-section part where a simulated tubular type fuel is located, and 3) data acquisition system to get reading signals from sensors or instruments. In this report, considerations during the design and installation of the facility and the selection of data acquisition sensors and instruments are described in detail. Before doing the experiment to measure the flow velocities in flow channels, a preliminary tests have been done for measuring the coolant velocities using pitot-tube and for validating the measurement accuracy as well. Local velocities of the radial direction in circular tubes are measured at regular intervals of 60 degrees by three pitot-tubes. Flow rate inside the circular flow channel can be obtained by integrating the velocity distribution in radial direction. The measured flow rate was compared to that of magnetic flow meter. According to the results, two values had a good agreement, which means that the measurement of coolant velocity by using pitot-tube and the flow rate measured by the magnetic flow meter are reliable. Uncertainty analysis showed that the error of velocity measurement by pitot-tube is less than ±2.21%. The hydraulic test-loop also can be adapted to others such as HANARO 18 and 36 fuel, in-pile system of FTL(Fuel Test Loop), etc

  13. Advanced Hybrid Spacesuit Concept Featuring Integrated Open Loop and Closed Loop Ventilation Systems

    Science.gov (United States)

    Daniel, Brian A.; Fitzpatrick, Garret R.; Gohmert, Dustin M.; Ybarra, Rick M.; Dub, Mark O.

    2013-01-01

    A document discusses the design and prototype of an advanced spacesuit concept that integrates the capability to function seamlessly with multiple ventilation system approaches. Traditionally, spacesuits are designed to operate both dependently and independently of a host vehicle environment control and life support system (ECLSS). Spacesuits that operate independent of vehicle-provided ECLSS services must do so with equipment selfcontained within or on the spacesuit. Suits that are dependent on vehicle-provided consumables must remain physically connected to and integrated with the vehicle to operate properly. This innovation is the design and prototype of a hybrid spacesuit approach that configures the spacesuit to seamlessly interface and integrate with either type of vehicular systems, while still maintaining the ability to function completely independent of the vehicle. An existing Advanced Crew Escape Suit (ACES) was utilized as the platform from which to develop the innovation. The ACES was retrofitted with selected components and one-off items to achieve the objective. The ventilation system concept was developed and prototyped/retrofitted to an existing ACES. Components were selected to provide suit connectors, hoses/umbilicals, internal breathing system ducting/ conduits, etc. The concept utilizes a lowpressure- drop, high-flow ventilation system that serves as a conduit from the vehicle supply into the suit, up through a neck seal, into the breathing helmet cavity, back down through the neck seal, out of the suit, and returned to the vehicle. The concept also utilizes a modified demand-based breathing system configured to function seamlessly with the low-pressure-drop closed-loop ventilation system.

  14. Integrated Usability Testing

    Directory of Open Access Journals (Sweden)

    Andrei Ternauciuc

    2015-11-01

    Full Text Available It is essential to regularly test the usability of a learning management system, in order to ensure a fast adoption by new users and rapidly shift the focus from the platform to the content and the learning experience. Quantitative testing yields the most reliable results due to the large number of data points acquired, but lacks the in-depth analysis of the qualitative research from a controlled testing setup. We are proposing in this paper an integrated usability testing tool, which can replace a certain type of laboratory testing, where the users’ actions on the real platform are measured and analyzed. We conducted tests with the tool and compared the results with a small scale laboratory test using the same scenarios. The results seem to confirm the proposed tool as a viable alternative to the laboratory test.

  15. Complete algebraic reduction of one-loop tensor Feynman integrals

    International Nuclear Information System (INIS)

    Fleischer, J.; Riemann, T.

    2011-01-01

    We set up a new, flexible approach for the tensor reduction of one-loop Feynman integrals. The 5-point tensor integrals up to rank R=5 are expressed by 4-point tensor integrals of rank R-1, such that the appearance of the inverse 5-point Gram determinant is avoided. The 4-point tensor coefficients are represented in terms of 4-point integrals, defined in d dimensions, 4-2ε≤d≤4-2ε+2(R-1), with higher powers of the propagators. They can be further reduced to expressions which stay free of the inverse 4-point Gram determinants but contain higher-dimensional 4-point integrals with only the first power of scalar propagators, plus 3-point tensor coefficients. A direct evaluation of the higher-dimensional 4-point functions would avoid the appearance of inverse powers of the Gram determinants completely. The simplest approach, however, is to apply here dimensional recurrence relations in order to reduce them to the familiar 2- to 4-point functions in generic dimension d=4-2ε, introducing thereby coefficients with inverse 4-point Gram determinants up to power R for tensors of rank R. For small or vanishing Gram determinants--where this reduction is not applicable--we use analytic expansions in positive powers of the Gram determinants. Improving the convergence of the expansions substantially with Pade approximants we close up to the evaluation of the 4-point tensor coefficients for larger Gram determinants. Finally, some relations are discussed which may be useful for analytic simplifications of Feynman diagrams.

  16. Systematic Unit Testing in a Read-eval-print Loop

    DEFF Research Database (Denmark)

    Nørmark, Kurt

    2010-01-01

    Lisp programmers constantly carry out experiments in a read-eval-print loop.  The experimental activities convince the Lisp programmers that new or modified pieces of programs work as expected.  But the experiments typically do not represent systematic and comprehensive unit testing efforts.......  Rather, the experiments are quick and dirty one shot validations which do not add lasting value to the software, which is being developed.  In this paper we propose a tool that is able to collect, organize, and re-validate test cases, which are entered as expressions in a read-eval-print loop.......  The process of collecting the expressions and their results imposes only little extra work on the programmer.  The use of the tool provides for creation of test repositories, and it is intended to catalyze a much more systematic approach to unit testing in a read-eval-print loop.  In the paper we also discuss...

  17. The Asymptotic Expansion of Lattice Loop Integrals Around the Continuum Limit

    International Nuclear Information System (INIS)

    Becher, Thomas G

    2002-01-01

    We present a method of computing any one-loop integral in lattice perturbation theory by systematically expanding around its continuum limit. At any order in the expansion in the lattice spacing, the result can be written as a sum of continuum loop integrals in analytic regularization and a few genuine lattice integrals (''master integrals''). These lattice master integrals are independent of external momenta and masses and can be computed numerically. At the one-loop level, there are four master integrals in a theory with only bosonic fields, seven in HQET and sixteen in QED or QCD with Wilson fermions

  18. Mechanisms Engineering Test Loop - Phase 1 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Kultgen, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Hvasta, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Lisowski, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Toter, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Borowski, A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    This report documents the current status of the Mechanisms Engineering Test Loop (METL) as of the end of FY2016. Currently, METL is in Phase I of its design and construction. Once operational, the METL facility will test small to intermediate-scale components and systems in order to develop advanced liquid metal technologies. Testing different components in METL is essential for the future of advanced fast reactors as it will provide invaluable performance data and reduce the risk of failures during plant operation.

  19. A systematization for one-loop 4D Feynman integrals

    International Nuclear Information System (INIS)

    Battistel, O.A.; Dallabona, G.

    2006-01-01

    We present a strategy for the systematization of manipulations and calculations involving divergent (or not) Feynman integrals, typical of the one-loop perturbative solutions of QFT, where the use of an explicit regularization is avoided. Two types of systematization are adopted. The divergent parts are put in terms of a small number of standard objects, and a set of structure functions for the finite parts is also defined. Some important properties of the finite structures, specially useful in the verification of relations among Green's functions, are identified. We show that, in fundamental (renormalizable) theories, all the finite parts of two-, three- and four-point functions can be written in terms of only three basic functions while the divergent parts require (only) five objects. The final results obtained within the proposed strategy can be easily converted into those corresponding to any specific regularization technique providing an unified point of view for the treatment of divergent Feynman integrals. Examples of physical amplitudes evaluation and their corresponding symmetry relations verification are presented as well as generalizations of our results for the treatment of Green's functions having an arbitrary number of points are considered. (orig.)

  20. A Novel Sigma-Delta Modulator with Fractional-Order Digital Loop Integrator

    Directory of Open Access Journals (Sweden)

    Chi Xu

    2017-01-01

    Full Text Available This paper proposes using a fractional-order digital loop integrator to improve the robust stability of Sigma-Delta modulator, thus extending the integer-order Sigma-Delta modulator to a non-integer-order (fractional-order one in the Sigma-Delta ADC design field. The proposed fractional-order Sigma-Delta modulator has reasonable noise characteristics, dynamic range, and bandwidth; moreover the signal-to-noise ratio (SNR is improved remarkably. In particular, a 2nd-order digital loop integrator and a digital PIλDμ controller are combined to work as the fractional-order digital loop integrator, which is realized using FPGA; this will reduce the ASIC analog circuit layout design and chip testing difficulties. The parameters of the proposed fractional-order Sigma-Delta modulator are tuned by using swarm intelligent algorithm, which offers opportunity to simplify the process of tuning parameters and further improve the noise performance. Simulation results are given and they demonstrate the efficiency of the proposed fractional-order Sigma-Delta modulator.

  1. Hanford Tank Farms Waste Certification Flow Loop Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, Judith A.; Meyer, Perry A.; Scott, Paul A.; Adkins, Harold E.; Wells, Beric E.; Blanchard, Jeremy; Denslow, Kayte M.; Greenwood, Margaret S.; Morgen, Gerald P.; Burns, Carolyn A.; Bontha, Jagannadha R.

    2010-01-01

    A future requirement of Hanford Tank Farm operations will involve transfer of wastes from double shell tanks to the Waste Treatment Plant. As the U.S. Department of Energy contractor for Tank Farm Operations, Washington River Protection Solutions anticipates the need to certify that waste transfers comply with contractual requirements. This test plan describes the approach for evaluating several instruments that have potential to detect the onset of flow stratification and critical suspension velocity. The testing will be conducted in an existing pipe loop in Pacific Northwest National Laboratory’s facility that is being modified to accommodate the testing of instruments over a range of simulated waste properties and flow conditions. The testing phases, test matrix and types of simulants needed and the range of testing conditions required to evaluate the instruments are described

  2. Solar cooling in the hardware-in-the-loop test; Solare Kuehlung im Hardware-in-the-Loop-Test

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Sandra; Radosavljevic, Rada; Goebel, Johannes; Gottschald, Jonas; Adam, Mario [Fachhochschule Duesseldorf (Germany). Erneuerbare Energien und Energieeffizienz E2

    2012-07-01

    The first part of the BMBF-funded research project 'Solar cooling in the hardware-in-the-loop test' (SoCool HIL) deals with the simulation of a solar refrigeration system using the simulation environment Matlab / Simulink with the toolboxes Stateflow and Carnot. Dynamic annual simulations and DoE supported parameter variations were used to select meaningful system configurations, control strategies and dimensioning of components. The second part of this project deals with hardware-in-the-loop tests using the 17.5 kW absorption chiller of the company Yazaki Europe Limited (Hertfordshire, United Kingdom). For this, the chiller is operated on a test bench in order to emulate the behavior of other system components (solar circuit with heat storage, recooling, buildings and cooling distribution / transfer). The chiller is controlled by a simulation of the system using MATLAB / Simulink / Carnot. Based on the knowledge on the real dynamic performance of the chiller the simulation model of the chiller can then be validated. Further tests are used to optimize the control of the chiller to the current cooling load. In addition, some changes in system configurations (for example cold backup) are tested with the real machine. The results of these tests and the findings on the dynamic performance of the chiller are presented.

  3. High-pressure test loop design and application

    International Nuclear Information System (INIS)

    Burnette, R.D.; Graves, J.N.; Blair, P.G.; Baldwin, N.L.

    1980-07-01

    A high-pressure test loop (HPTL) has been constructed for the purpose of performing a number of chemistry experiments at simulated HTGR conditions of temperature, pressure, flow, and impurity content. The HPTL can be used to develop, modify, and verify computer codes for a variety of chemical processes involving gas phase transport in the reactor. Processes such as graphite oxidation, fission product transport, fuel reactions, purification systems, and dust entrainment can be studied at high pressure, which would largely eliminate difficulties in correlating existing laboratory data and reactor conditions

  4. Post test evaluation of natural circulation in FFTF secondary loops

    International Nuclear Information System (INIS)

    Beaver, T.R.; Turner, D.M.; Additon, S.L.

    1980-02-01

    Two transient tests in one of the FFTF secondary heat transport loops were performed (March to May 1979) in order to verify that the transition to natural convective flow could be effected from near isothermal refueling conditions without excessive cooling at the air dump heat exchangers. Following the tests, the best estimate computer model was calibrated against the data, yielding in the process insights about the loop parameters and the probable suitability of the model structure. Key empirical parameters of pressure drop and heat loss were found to be at 62% and 81% of the pretest safety evaluation model parameter values, respectively. Pretest piping thermal transport and flow calculational models required no further revision to produce good agreement with the test data. Additional detail in the air dump heat exchanger heat loss model, accounting for long structural thermal time constants, was found to be necessary to obtain model agreement with transient outlet temperature data. The pretest model had conservatively employed steady state heat losses for transient calculations

  5. Irradiation Testing Vehicles for Fast Reactors from Open Test Assemblies to Closed Loops

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States); Grandy, Christopher [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-15

    A review of irradiation testing vehicle approaches and designs that have been incorporated into past Sodium-Cooled Fast Reactors (SFRs) or envisioned for incorporation has been carried out. The objective is to understand the essential features of the approaches and designs so that they can inform test vehicle designs for a future U.S. Fast Test Reactor. Fast test reactor designs examined include EBR-II, FFTF, JOYO, BOR-60, PHÉNIX, JHR, and MBIR. Previous designers exhibited great ingenuity in overcoming design and operational challenges especially when the original reactor plant’s mission changed to an irradiation testing mission as in the EBRII reactor plant. The various irradiation testing vehicles can be categorized as: Uninstrumented open assemblies that fit into core locations; Instrumented open test assemblies that fit into special core locations; Self-contained closed loops; and External closed loops. A special emphasis is devoted to closed loops as they are regarded as a very desirable feature of a future U.S. Fast Test Reactor. Closed loops are an important technology for irradiation of fuels and materials in separate controlled environments. The impact of closed loops on the design of fast reactors is also discussed in this report.

  6. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  7. How to integrate divergent integrals: a pure numerical approach to complex loop calculations

    International Nuclear Information System (INIS)

    Caravaglios, F.

    2000-01-01

    Loop calculations involve the evaluation of divergent integrals. Usually [G. 't Hooft, M. Veltman, Nucl. Phys. B 44 (1972) 189] one computes them in a number of dimensions different than four where the integral is convergent and then one performs the analytical continuation and considers the Laurent expansion in powers of ε=n-4. In this paper we discuss a method to extract directly all coefficients of this expansion by means of concrete and well defined integrals in a five-dimensional space. We by-pass the formal and symbolic procedure of analytic continuation; instead we can numerically compute the integrals to extract directly both the coefficient of the pole 1/ε and the finite part

  8. arXiv Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case

    CERN Document Server

    Abreu, Samuel; Duhr, Claude; Gardi, Einan

    2017-12-15

    We construct a diagrammatic coaction acting on one-loop Feynman graphs and their cuts. The graphs are naturally identified with the corresponding (cut) Feynman integrals in dimensional regularization, whose coefficients of the Laurent expansion in the dimensional regulator are multiple polylogarithms (MPLs). Our main result is the conjecture that this diagrammatic coaction reproduces the combinatorics of the coaction on MPLs order by order in the Laurent expansion. We show that our conjecture holds in a broad range of nontrivial one-loop integrals. We then explore its consequences for the study of discontinuities of Feynman integrals, and the differential equations that they satisfy. In particular, using the diagrammatic coaction along with information from cuts, we explicitly derive differential equations for any one-loop Feynman integral. We also explain how to construct the symbol of any one-loop Feynman integral recursively. Finally, we show that our diagrammatic coaction follows, in the special case of o...

  9. Numerical Modeling of an Integrated Vehicle Fluids System Loop for Pressurizing a Cryogenic Tank

    Science.gov (United States)

    LeClair, A. C.; Hedayat, A.; Majumdar, A. K.

    2017-01-01

    This paper presents a numerical model of the pressurization loop of the Integrated Vehicle Fluids (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance to reduce system weight and enhance reliability, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) conducted tests to verify the functioning of the IVF system using a flight-like tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to support the test program. This paper presents the simulation of three different test series, comparison of numerical prediction and test data and a novel method of presenting data in a dimensionless form. The paper also presents a methodology of implementing a compressor map in a system level code.

  10. Molten Salt Test Loop (MSTL) system customer interface document.

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.; Briggs, Ronald D.

    2013-09-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate %E2%80%9Csolar salt%E2%80%9D and can circulate the salt at pressure up to 40 bar (600psi), temperature to 585%C2%B0C, and flow rate of 44-50kg/s(400-600GPM) depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

  11. The Application of Hardware in the Loop Testing for Distributed Engine Control

    Science.gov (United States)

    Thomas, George L.; Culley, Dennis E.; Brand, Alex

    2016-01-01

    The essence of a distributed control system is the modular partitioning of control function across a hardware implementation. This type of control architecture requires embedding electronics in a multitude of control element nodes for the execution of those functions, and their integration as a unified system. As the field of distributed aeropropulsion control moves toward reality, questions about building and validating these systems remain. This paper focuses on the development of hardware-in-the-loop (HIL) test techniques for distributed aero engine control, and the application of HIL testing as it pertains to potential advanced engine control applications that may now be possible due to the intelligent capability embedded in the nodes.

  12. Feasibility of Outpatient Fully Integrated Closed-Loop Control

    Science.gov (United States)

    Kovatchev, Boris P.; Renard, Eric; Cobelli, Claudio; Zisser, Howard C.; Keith-Hynes, Patrick; Anderson, Stacey M.; Brown, Sue A.; Chernavvsky, Daniel R.; Breton, Marc D.; Farret, Anne; Pelletier, Marie-Josée; Place, Jérôme; Bruttomesso, Daniela; Del Favero, Simone; Visentin, Roberto; Filippi, Alessio; Scotton, Rachele; Avogaro, Angelo; Doyle, Francis J.

    2013-01-01

    OBJECTIVE To evaluate the feasibility of a wearable artificial pancreas system, the Diabetes Assistant (DiAs), which uses a smart phone as a closed-loop control platform. RESEARCH DESIGN AND METHODS Twenty patients with type 1 diabetes were enrolled at the Universities of Padova, Montpellier, and Virginia and at Sansum Diabetes Research Institute. Each trial continued for 42 h. The United States studies were conducted entirely in outpatient setting (e.g., hotel or guest house); studies in Italy and France were hybrid hospital–hotel admissions. A continuous glucose monitoring/pump system (Dexcom Seven Plus/Omnipod) was placed on the subject and was connected to DiAs. The patient operated the system via the DiAs user interface in open-loop mode (first 14 h of study), switching to closed-loop for the remaining 28 h. Study personnel monitored remotely via 3G or WiFi connection to DiAs and were available on site for assistance. RESULTS The total duration of proper system communication functioning was 807.5 h (274 h in open-loop and 533.5 h in closed-loop), which represented 97.7% of the total possible time from admission to discharge. This exceeded the predetermined primary end point of 80% system functionality. CONCLUSIONS This study demonstrated that a contemporary smart phone is capable of running outpatient closed-loop control and introduced a prototype system (DiAs) for further investigation. Following this proof of concept, future steps should include equipping insulin pumps and sensors with wireless capabilities, as well as studies focusing on control efficacy and patient-oriented clinical outcomes. PMID:23801798

  13. arXiv Conformal anomaly of generalized form factors and finite loop integrals

    CERN Document Server

    Chicherin, Dmitry

    We reveal a new mechanism of conformal symmetry breaking at Born level. It occurs in generalized form factors with several local operators and an on-shell state of massless particles. The effect is due to hidden singularities on collinear configurations of the momenta. This conformal anomaly is different from the holomorphic anomaly of amplitudes. We present a number of examples in four and six dimensions. We find an application of the new conformal anomaly to finite loop momentum integrals with one or more massless legs. The collinear region around a massless leg creates a contact anomaly, made visible by the loop integration. The anomalous conformal Ward identity for an $\\ell-$loop integral is a 2nd-order differential equation whose right-hand side is an $(\\ell-1)-$loop integral. We show several examples, in particular the four-dimensional scalar double box.

  14. Three- and two-point one-loop integrals in heavy particle effective theories

    International Nuclear Information System (INIS)

    Bouzas, A.O.

    2000-01-01

    We give a complete analytical computation of three- and two-point loop integrals occurring in heavy particle theories, involving a velocity change, for arbitrary real values of the external masses and residual momenta. (orig.)

  15. Evaluating two-loop massive operator matrix elements with Mellin-Barnes integrals

    International Nuclear Information System (INIS)

    Bierenbaum, I.; Bluemlein, J.; Klein, S.

    2006-07-01

    We calculate massive 5-propagator 2-loop integrals for operator matrix elements in the light-cone expansion, using Mellin-Barnes techniques and representations through generalized hypergeometric functions. (Orig.)

  16. CLOSED LOOP AOCS TESTING OF AN AUTONOMOUS STAR TRACKER

    DEFF Research Database (Denmark)

    Jørgensen, John Leif

    1999-01-01

    . It is a fully autonomous star tracker intended as a high accuracy attitude reference onboard spacecrafts. The ASC consists of a miniaturized but powerful microcomputer driving from one to four CCD-based camera heads. The use of multiple camera heads may relieve several constraints on the AOCS, such as increased...... maximum attitude rate of change, and a "don't-care" inertial pointing, because multiple cameras may be arranged such that simultaneous blinding by the Sun and Earth are highly unlikely.On the other hand, to stimulate an old-fashioned star tracker, it only took a single moving light source, whereas...... not even a high quality star pattern generator may be able to pass the outlier rejection filtering of the ASC thus efficiently precluding artificial stimuli during AIT tests. In order to circumvent this impasse, the ASC has a series of build-in features enabling simple, yet comprehensive, closed loop...

  17. Mathematical model of the Drosophila circadian clock: loop regulation and transcriptional integration.

    Science.gov (United States)

    Fathallah-Shaykh, Hassan M; Bona, Jerry L; Kadener, Sebastian

    2009-11-04

    Eukaryotic circadian clocks include interconnected positive and negative feedback loops. The clock-cycle dimer (CLK-CYC) and its homolog, CLK-BMAL1, are key transcriptional activators of central components of the Drosophila and mammalian circadian networks, respectively. In Drosophila, negative loops include period-timeless and vrille; positive loops include par domain protein 1. Clockwork orange (CWO) is a recently discovered negative transcription factor with unusual effects on period, timeless, vrille, and par domain protein 1. To understand the actions of this protein, we introduced a new system of ordinary differential equations to model regulatory networks. The model is faithful in the sense that it replicates biological observations. CWO loop actions elevate CLK-CYC; the transcription of direct targets responds by integrating opposing signals from CWO and CLK-CYC. Loop regulation and integration of opposite transcriptional signals appear to be central mechanisms as they also explain paradoxical effects of period gain-of-function and null mutations.

  18. Outcomes from the First Wingman Software in the Loop Integration Event: January 2017

    Science.gov (United States)

    2017-06-28

    ARL-TN-0830 ● June 2017 US Army Research Laboratory Outcomes from the First Wingman Software- in-the-Loop Integration Event ...ARL-TN-0830 ● JUNE 2017 US Army Research Laboratory Outcomes from the First Wingman Software- in-the-Loop Integration Event : January 2017... Event : January 2017 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Kristin E Schaefer, Ralph W Brewer, E

  19. Conceptual Design for a High-Temperature Gas Loop Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    James B. Kesseli

    2006-08-01

    This report documents an early-stage conceptual design for a high-temperature gas test loop. The objectives accomplished by the study include, (1) investigation of existing gas test loops to determine ther capabilities and how the proposed system might best complement them, (2) development of a preliminary test plan to help identify the performance characteristics required of the test unit, (3) development of test loop requirements, (4) development of a conceptual design including process flow sheet, mechanical layout, and equipment specifications and costs, and (5) development of a preliminary test loop safety plan.

  20. Open-Loop Flight Testing of COBALT GN&C Technologies for Precise Soft Landing

    Science.gov (United States)

    Carson, John M., III; Amzajerdian, Farzin; Seubert, Carl R.; Restrepo, Carolina I.

    2017-01-01

    A terrestrial, open-loop (OL) flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) platform was conducted onboard the Masten Xodiac suborbital rocket testbed, with support through the NASA Advanced Exploration Systems (AES), Game Changing Development (GCD), and Flight Opportunities (FO) Programs. The COBALT platform integrates NASA Guidance, Navigation and Control (GN&C) sensing technologies for autonomous, precise soft landing, including the Navigation Doppler Lidar (NDL) velocity and range sensor and the Lander Vision System (LVS) Terrain Relative Navigation (TRN) system. A specialized navigation filter running onboard COBALT fuzes the NDL and LVS data in real time to produce a precise navigation solution that is independent of the Global Positioning System (GPS) and suitable for future, autonomous planetary landing systems. The OL campaign tested COBALT as a passive payload, with COBALT data collection and filter execution, but with the Xodiac vehicle Guidance and Control (G&C) loops closed on a Masten GPS-based navigation solution. The OL test was performed as a risk reduction activity in preparation for an upcoming 2017 closed-loop (CL) flight campaign in which Xodiac G&C will act on the COBALT navigation solution and the GPS-based navigation will serve only as a backup monitor.

  1. Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop

    CERN Document Server

    Anastasiou, C; Bucherer, S; Daleo, A; Kunszt, Zoltán; Anastasiou, Charalampos; Beerli, Stefan; Bucherer, Stefan; Daleo, Alejandro; Kunszt, Zoltan

    2007-01-01

    We compute all two-loop master integrals which are required for the evaluation of next-to-leading order QCD corrections in Higgs boson production via gluon fusion. Many two-loop amplitudes for 2 -> 1 processes in the Standard Model and beyond can be expressed in terms of these integrals using automated reduction techniques. These integrals also form a subset of the master integrals for more complicated 2 -> 2 amplitudes with massive propagators in the loops. As a first application, we evaluate the two-loop amplitude for Higgs boson production in gluon fusion via a massive quark. Our result is the first independent check of the calculation of Spira, Djouadi, Graudenz and Zerwas. We also present for the first time the two-loop amplitude for gg -> h via a massive squark.

  2. Gas Test Loop Facilities Alternatives Assessment Report Rev 1

    Energy Technology Data Exchange (ETDEWEB)

    William J. Skerjanc; William F. Skerjanc

    2005-07-01

    An important task in the Gas Test Loop (GTL) conceptual design was to determine the best facility to serve as host for this apparatus, which will allow fast-flux neutron testing in an existing nuclear facility. A survey was undertaken of domestic and foreign nuclear reactors and accelerator facilities to arrive at that determination. Two major research reactors in the U.S. were considered in detail, the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR), each with sufficient power to attain the required neutron fluxes. HFIR routinely operates near its design power limit of 100 MW. ATR has traditionally operated at less than half its design power limit of 250 MW. Both of these reactors should be available for at least the next 30 years. The other major U.S. research reactor, the Missouri University Research Reactor, does not have sufficient power to reach the required neutron flux nor do the smaller research reactors. Of the foreign reactors investigated, BOR-60 is perhaps the most attractive. Monju and BN 600 are power reactors for their respective electrical grids. Although the Joyo reactor is vigorously campaigning for customers, local laws regarding transport of radioactive material mean it would be very difficult to retrieve test articles from either Japanese reactor for post irradiation examination. PHENIX is scheduled to close in 2008 and is fully booked until then. FBTR is limited to domestic (Indian) users only. Data quality is often suspect in Russia. The only accelerator seriously considered was the Fuel and Material Test Station (FMTS) currently proposed for operation at Los Alamos National Laboratory. The neutron spectrum in FMTS is similar to that found in a fast reactor, but it has a pronounced high-energy tail that is atypical of fast fission reactor spectra. First irradiation in the FMTS is being contemplated for 2008. Detailed review of these facilities resulted in the recommendation that the ATR would be the best host for the GTL.

  3. Closing the brain-to-brain loop in laboratory testing.

    Science.gov (United States)

    Plebani, Mario; Lippi, Giuseppe

    2011-07-01

    Abstract The delivery of laboratory services has been described 40 years ago and defined with the foremost concept of "brain-to-brain turnaround time loop". This concept consists of several processes, including the final step which is the action undertaken on the patient based on laboratory information. Unfortunately, the need for systematic feedback to improve the value of laboratory services has been poorly understood and, even more risky, poorly applied in daily laboratory practice. Currently, major problems arise from the unavailability of consensually accepted quality specifications for the extra-analytical phase of laboratory testing. This, in turn, does not allow clinical laboratories to calculate a budget for the "patient-related total error". The definition and use of the term "total error" refers only to the analytical phase, and should be better defined as "total analytical error" to avoid any confusion and misinterpretation. According to the hierarchical approach to classify strategies to set analytical quality specifications, the "assessment of the effect of analytical performance on specific clinical decision-making" is comprehensively at the top and therefore should be applied as much as possible to address analytical efforts towards effective goals. In addition, an increasing number of laboratories worldwide are adopting risk management strategies such as FMEA, FRACAS, LEAN and Six Sigma since these techniques allow the identification of the most critical steps in the total testing process, and to reduce the patient-related risk of error. As a matter of fact, an increasing number of laboratory professionals recognize the importance of understanding and monitoring any step in the total testing process, including the appropriateness of the test request as well as the appropriate interpretation and utilization of test results.

  4. Four loop massless propagators: An algebraic evaluation of all master integrals

    Energy Technology Data Exchange (ETDEWEB)

    Baikov, P.A., E-mail: baikov@theory.sinp.msu.r [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119991 (Russian Federation); Chetyrkin, K.G., E-mail: konstantin.chetyrkin@kit.ed [Institut fuer Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), D-76128 Karlsruhe (Germany)] [Institute for Nuclear Research, Russian Academy of Sciences, Moscow 117312 (Russian Federation)

    2010-10-01

    The old 'glue-and-cut' symmetry of massless propagators, first established in Ref. (Chetyrkin and Tkachov, 1981), leads -after reduction to master integrals is performed - to a host of non-trivial relations between the latter. The relations constrain the master integrals so tightly that they all can be analytically expressed in terms of only few, essentially trivial, watermelon-like integrals. As a consequence we arrive at explicit analytical results for all master integrals appearing in the process of reduction of massless propagators at three and four loops. The transcendental structure of the results suggests a clean explanation of the well-known mystery of the absence of even zetas ({zeta}{sub 2n}) in the Adler function and other similar functions essentially reducible to massless propagators. Once a reduction of massless propagators at five loops is available, our approach should be also applicable for explicitly performing the corresponding five-loop master integrals.

  5. Four loop massless propagators: An algebraic evaluation of all master integrals

    International Nuclear Information System (INIS)

    Baikov, P.A.; Chetyrkin, K.G.

    2010-01-01

    The old 'glue-and-cut' symmetry of massless propagators, first established in Ref. (Chetyrkin and Tkachov, 1981), leads -after reduction to master integrals is performed - to a host of non-trivial relations between the latter. The relations constrain the master integrals so tightly that they all can be analytically expressed in terms of only few, essentially trivial, watermelon-like integrals. As a consequence we arrive at explicit analytical results for all master integrals appearing in the process of reduction of massless propagators at three and four loops. The transcendental structure of the results suggests a clean explanation of the well-known mystery of the absence of even zetas (ζ 2n ) in the Adler function and other similar functions essentially reducible to massless propagators. Once a reduction of massless propagators at five loops is available, our approach should be also applicable for explicitly performing the corresponding five-loop master integrals.

  6. The two-loop master integrals for qq-bar→VV

    International Nuclear Information System (INIS)

    Gehrmann, Thomas; Manteuffel, Andreas von; Tancredi, Lorenzo; Weihs, Erich

    2014-01-01

    We compute the full set of two-loop Feynman integrals appearing in massless two-loop four-point functions with two off-shell legs with the same invariant mass. These integrals allow to determine the two-loop corrections to the amplitudes for vector boson pair production at hadron colliders, qq-bar→VV, and thus to compute this process to next-to-next-to-leading order accuracy in QCD. The master integrals are derived using the method of differential equations, employing a canonical basis for the integrals. We obtain analytical results for all integrals, expressed in terms of multiple polylogarithms. We optimize our results for numerical evaluation by employing functions which are real valued for physical scattering kinematics and allow for an immediate power series expansion

  7. Evolution of A Distributed Live, Virtual, Constructive Environment for Human in the Loop Unmanned Aircraft Testing

    Science.gov (United States)

    Murphy, James R.; Otto, Neil M.

    2017-01-01

    NASA's Unmanned Aircraft Systems Integration in the National Airspace System Project is conducting human in the loop simulations and flight testing intended to reduce barriers associated with enabling routine airspace access for unmanned aircraft. The primary focus of these tests is interaction of the unmanned aircraft pilot with the display of detect and avoid alerting and guidance information. The project's integrated test and evaluation team was charged with developing the test infrastructure. As with any development effort, compromises in the underlying system architecture and design were made to allow for the rapid prototyping and open-ended nature of the research. In order to accommodate these design choices, a distributed test environment was developed incorporating Live, Virtual, Constructive, (LVC) concepts. The LVC components form the core infrastructure support simulation of UAS operations by integrating live and virtual aircraft in a realistic air traffic environment. This LVC infrastructure enables efficient testing by leveraging the use of existing assets distributed across multiple NASA Centers. Using standard LVC concepts enable future integration with existing simulation infrastructure.

  8. Closed Loop In-Reactor Assembly (CLIRA): a fast flux test facility test vehicle

    International Nuclear Information System (INIS)

    Oakley, D.J.

    1978-01-01

    The Closed Loop In-Reactor Assembly (CLIRA) is a test vehicle for in-core material and fuel experiments in the Fast Flux Test Facility (FFTF). The FFTF is a fast flux nuclear test reactor operated for the Department of Energy (DOE) by Westinghouse Hanford Company in Richland, Washington. The CLIRA is a removable/replaceable part of the Closed Loop System (CLS) which is a sodium coolant system providing flow and temperature control independent of the reactor coolant system. The primary purpose of the CLIRA is to provide a test vehicle which will permit testing of nuclear fuels and materials at conditions more severe than exist in the FTR core, and to isolate these materials from the reactor core

  9. Iterative and iterative-noniterative integral solutions in 3-loop massive QCD calculations

    International Nuclear Information System (INIS)

    Ablinger, J.; Radu, C.S.; Schneider, C.; Behring, A.; Imamoglu, E.; Van Hoeij, M.; Von Manteuffel, A.; Raab, C.G.

    2017-11-01

    Various of the single scale quantities in massless and massive QCD up to 3-loop order can be expressed by iterative integrals over certain classes of alphabets, from the harmonic polylogarithms to root-valued alphabets. Examples are the anomalous dimensions to 3-loop order, the massless Wilson coefficients and also different massive operator matrix elements. Starting at 3-loop order, however, also other letters appear in the case of massive operator matrix elements, the so called iterative non-iterative integrals, which are related to solutions based on complete elliptic integrals or any other special function with an integral representation that is definite but not a Volterra-type integral. After outlining the formalism leading to iterative non-iterative integrals,we present examples for both of these cases with the 3-loop anomalous dimension γ (2) qg and the structure of the principle solution in the iterative non-interative case of the 3-loop QCD corrections to the ρ-parameter.

  10. Iterative and iterative-noniterative integral solutions in 3-loop massive QCD calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Radu, C.S.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Behring, A. [RWTH Aachen Univ. (Germany). Inst. fuer Theoretische Teilchenphysik und Kosmologie; Bluemlein, J.; Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Imamoglu, E.; Van Hoeij, M. [Florida State Univ., Tallahassee, FL (United States). Dept. of Mathematics; Von Manteuffel, A. [Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Raab, C.G. [Johannes Kepler Univ., Linz (Austria). Inst. for Algebra

    2017-11-15

    Various of the single scale quantities in massless and massive QCD up to 3-loop order can be expressed by iterative integrals over certain classes of alphabets, from the harmonic polylogarithms to root-valued alphabets. Examples are the anomalous dimensions to 3-loop order, the massless Wilson coefficients and also different massive operator matrix elements. Starting at 3-loop order, however, also other letters appear in the case of massive operator matrix elements, the so called iterative non-iterative integrals, which are related to solutions based on complete elliptic integrals or any other special function with an integral representation that is definite but not a Volterra-type integral. After outlining the formalism leading to iterative non-iterative integrals,we present examples for both of these cases with the 3-loop anomalous dimension γ{sup (2)}{sub qg} and the structure of the principle solution in the iterative non-interative case of the 3-loop QCD corrections to the ρ-parameter.

  11. Major Achievements and Prospect of the ATLAS Integral Effect Tests

    OpenAIRE

    Ki-Yong Choi; Yeon-Sik Kim; Chul-Hwa Song; Won-Pil Baek

    2012-01-01

    A large-scale thermal-hydraulic integral effect test facility, ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), has been operated by KAERI. The reference plant of ATLAS is the APR1400 (Advanced Power Reactor, 1400 MWe). Since 2007, an extensive series of experimental works were successfully carried out, including large break loss of coolant accident tests, small break loss of coolant accident tests at various break locations, steam generator tube rupture tests, feed line ...

  12. Ares I Integrated Test Approach

    Science.gov (United States)

    Taylor, Jim

    2008-01-01

    This slide presentation reviews the testing approach that NASA is developing for the Ares I launch vehicle. NASA is planning a complete series of development, qualification and verification tests. These include: (1) Upper stage engine sea-level and altitude testing (2) First stage development and qualification motors (3) Upper stage structural and thermal development and qualification test articles (4) Main Propulsion Test Article (MPTA) (5) Upper stage green run testing (6) Integrated Vehicle Ground Vibration Testing (IVGVT) and (7) Aerodynamic characterization testing.

  13. Focal Dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE)

    OpenAIRE

    David ePerruchoud; Micah M Murray; Micah M Murray; Jeremie eLefebvre; Silvio eIonta

    2014-01-01

    Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, and the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characteriz...

  14. Focal dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE)

    OpenAIRE

    Perruchoud David; Murray Micah; Lefebvre Jeremie; Ionta Silvio

    2014-01-01

    Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized b...

  15. A quasi-finite basis for multi-loop Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Manteuffel, Andreas von [PRISMA Cluster of Excellence & Institute of PhysicsJohannes Gutenberg University, 55099 Mainz (Germany); Panzer, Erik [Institutes of Physics and Mathematics, Humboldt-Universität zu Berlin,Unter den Linden 6, 10099 Berlin (Germany); Institute des Hautes Études Scientifiques, Le Bois Marie,35 Route de Chartres, 91440 Bures-sur-Yvette (France); Schabinger, Robert M. [PRISMA Cluster of Excellence & Institute of PhysicsJohannes Gutenberg University, 55099 Mainz (Germany)

    2015-02-18

    We present a new method for the decomposition of multi-loop Euclidean Feynman integrals into quasi-finite Feynman integrals. These are defined in shifted dimensions with higher powers of the propagators, make explicit both infrared and ultraviolet divergences, and allow for an immediate and trivial expansion in the parameter of dimensional regularization. Our approach avoids the introduction of spurious structures and thereby leaves integrals particularly accessible to direct analytical integration techniques. Alternatively, the resulting convergent Feynman parameter integrals may be evaluated numerically. Our approach is guided by previous work by the second author but overcomes practical limitations of the original procedure by employing integration by parts reduction.

  16. Open spin chains in super Yang-Mills at higher loops: some potential problems with integrability

    International Nuclear Information System (INIS)

    Agarwal, Abhishek

    2006-01-01

    The super Yang-Mills duals of open strings attached to maximal giant gravitons are studied in perturbation theory. It is shown that non-BPS baryonic excitations of the gauge theory can be studied within the paradigm of open quantum spin chains even beyond the leading order in perturbation theory. The open spin chain describing the two loop mixing of non-BPS giant gravitons charged under an su(2) of the so(6) R symmetry group is explicitly constructed. It is also shown that although the corresponding open spin chain is integrable at the one loop order, there is a potential breakdown of integrability at two and higher loops. The study of integrability is performed using coordinate Bethe ansatz techniques

  17. The complete two-loop integrated jet thrust distribution in soft-collinear effective theory

    Energy Technology Data Exchange (ETDEWEB)

    von Manteuffel, Andreas; Schabinger, Robert M.; Zhu, Hua Xing

    2014-03-01

    In this work, we complete the calculation of the soft part of the two-loop integrated jet thrust distribution in e+e- annihilation. This jet mass observable is based on the thrust cone jet algorithm, which involves a veto scale for out-of-jet radiation. The previously uncomputed part of our result depends in a complicated way on the jet cone size, r, and at intermediate stages of the calculation we actually encounter a new class of multiple polylogarithms. We employ an extension of the coproduct calculus to systematically exploit functional relations and represent our results concisely. In contrast to the individual contributions, the sum of all global terms can be expressed in terms of classical polylogarithms. Our explicit two-loop calculation enables us to clarify the small r picture discussed in earlier work. In particular, we show that the resummation of the logarithms of r that appear in the previously uncomputed part of the two-loop integrated jet thrust distribution is inextricably linked to the resummation of the non-global logarithms. Furthermore, we find that the logarithms of r which cannot be absorbed into the non-global logarithms in the way advocated in earlier work have coefficients fixed by the two-loop cusp anomalous dimension. We also show that in many cases one can straightforwardly predict potentially large logarithmic contributions to the integrated jet thrust distribution at L loops by making use of analogous contributions to the simpler integrated hemisphere soft function.

  18. Results from tests of TFL Hydragard sampling loop

    International Nuclear Information System (INIS)

    Steimke, J.L.

    1995-03-01

    When the Defense Waste Processing Facility (DWPF) is operational, processed radioactive sludge will be transferred in batches to the Slurry Mix Evaporator (SME), where glass frit will be added and the contents concentrated by boiling. Batches of the slurry mixture are transferred from the SME to the Melter Feed Tank (MFT). Hydragard reg-sign sampling systems are used on the SME and the MFT for collecting slurry samples in vials for chemical analysis. An accurate replica of the Hydragard sampling system was built and tested in the thermal Fluids Laboratory (TFL) to determine the hydragard accuracy. It was determined that the original Hydragard valve frequently drew a non-representative sample stream through the sample vial that ranged from frit enriched to frit depleted. The Hydragard valve was modified by moving the plunger and its seat backwards so that the outer surface of the plunger was flush with the inside diameter of the transfer line when the valve was open. The slurry flowing through the vial accurately represented the composition of the slurry in the reservoir for two types of slurries, different dilution factors, a range of transfer flows and a range of vial flows. It was then found that the 15 ml of slurry left in the vial when the Hydragard valve was closed, which is what will be analyzed at DWPF, had a lower ratio of frit to sludge as characterized by the lithium to iron ratio than the slurry flowing through it. The reason for these differences is not understood at this time but it is recommended that additional experimentation be performed with the TFL Hydragard loop to determine the cause

  19. Unitarity cuts and Reduction to master integrals in d dimensions for one-loop amplitudes

    CERN Document Server

    Anastasiou, C; Feng, B; Kunszt, Z; Mastrolia, Pierpaolo; Anastasiou, Charalampos; Britto, Ruth; Feng, Bo; Kunszt, Zoltan; Mastrolia, Pierpaolo

    2007-01-01

    We present an alternative reduction to master integrals for one-loop amplitudes using a unitarity cut method in arbitrary dimensions. We carry out the reduction in two steps. The first step is a pure four-dimensional cut-integration of tree amplitudes with a mass parameter, and the second step is applying dimensional shift identities to master integrals. This reduction is performed at the integrand level, so that coefficients can be read out algebraically.

  20. TRUEX Radiolysis Testing Using the INL Radiolysis Test Loop: FY-2012 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean R. Peterman; Lonnie G. Olson; Richard D. Tillotson; Rocklan G. McDowell; Jack D. Law

    2012-09-01

    The INL radiolysis test loop has been used to evaluate the affect of radiolytic degradation upon the efficacy of the strip section of the TRUEX flowsheet for the recovery of trivalent actinides and lanthanides from acidic solution. The nominal composition of the TRUEX solvent used in this study is 0.2 M CMPO and 1.4 M TBP dissolved in n-dodecane and the nominal composition of the TRUEX strip solution is 1.5 M lactic acid and 0.050 M diethylenetriaminepentaacetic acid. Gamma irradiation of a mixture of TRUEX process solvent and stripping solution in the test loop does not adversely impact flowsheet performance as measured by stripping americium ratios. The observed increase in americium stripping distribution ratios with increasing absorbed dose indicates the radiolytic production of organic soluble degradation compounds.

  1. Design of Test Loops for Forced Convection Heat Transfer Studies at Supercritical State

    Science.gov (United States)

    Balouch, Masih N.

    Worldwide research is being conducted to improve the efficiency of nuclear power plants by using supercritical water (SCW) as the working fluid. One such SCW reactor considered for future development is the CANDU-Supercritical Water Reactor (CANDU-SCWR). For safe and accurate design of the CANDU-SCWR, a detailed knowledge of forced-convection heat transfer in SCW is required. For this purpose, two supercritical fluid loops, i.e. a SCW loop and an R-134a loop are developed at Carleton University. The SCW loop is designed to operate at pressures as high as 28 MPa, temperatures up to 600 °C and mass fluxes of up to 3000 kg/m2s. The R-134a loop is designed to operate at pressures as high as 6 MPa, temperatures up to 140 °C and mass fluxes in the range of 500-6000 kg/m2s. The test loops designs allow for up to 300 kW of heating power to be imparted to the fluid. Both test loops are of the closed-loop design, where flow circulation is achieved by a centrifugal pump in the SCW loop and three parallel-connected gear pumps in the R-134a loop, respectively. The test loops are pressurized using a high-pressure nitrogen cylinder and accumulator assembly, which allows independent control of the pressure, while simultaneously dampening pump induced pressure fluctuations. Heat exchangers located upstream of the pumps control the fluid temperature in the test loops. Strategically located measuring instrumentation provides information on the flow rate, pressure and temperature in the test loops. The test loops have been designed to accommodate a variety of test-section geometries, ranging from a straight circular tube to a seven-rod bundle, achieving heat fluxes up to 2.5 MW/m2 depending on the test-section geometry. The design of both test loops allows for easy reconfiguration of the test-section orientation relative to the gravitational direction. All the test sections are of the directly-heated design, where electric current passing through the pressure retaining walls of the

  2. Integrating Lean Exploration Loops Into Healthcare Facility Design.

    Science.gov (United States)

    Mazur, Lukasz M; Johnson, Kendra; Pooya, Pegah; Chadwick, Janet; McCreery, John

    2017-04-01

    To explore what, when, and how Lean methods and tools can add value during the programming phase of design through providing additional resources and support to project leadership and the architectural design team. This case study-based research took place at one large academic hospital during design efforts of a surgical tower to house 19 operating rooms (ORs) and support spaces including pre- and postop, central processing and distribution, and materials management. Surgical services project leadership asked for support from Lean practitioners during the design process. Lean exploration loops (LELs) were conducted to generate evidence to support stakeholders, as they made important decisions about the new building design. The analyses conducted during LELs were primarily focused on the relative advantages of a large footprint with few floors or a smaller footprint with more floors and support spaces not collocated adjacent to ORs on the same floor. LELs resulted in quantifications of key operational and design features (e.g., design preferences of employees and patients, horizontal distance travel, and elevator utilization studies), which in turn complemented the architectural design process and created an opportunities to gain buy-in and consensus from stakeholders through their active participation in many of the analyses. We found Lean tools and methods to be of most value during programming phase when focused on the high-level operational and design issues to help establish buy-in and consensus among stakeholders, while acknowledging that there is often not enough design detail to perform accurate analysis.

  3. The ISABELLE-4 loop: a PWR testing loop loaded and unloaded in the pool of the Osiris reactor

    International Nuclear Information System (INIS)

    Lucot, Michel.

    1982-09-01

    The installation for loading and unloading of fuel pencils in the pool of the Osiris reactor is presented. This installation includes an irradiation loop and an associated loading-unloading device immersed in the pool. The evolution of the characteristics and the conditions of the tested fuel pencils can be followed. Examinations can be made at any time during irradiation. Irradiation conditions can be changed for each irradiation period as a function of results obtained after analysis [fr

  4. Two-loop master integrals for γ*→3 jets: the planar topologies

    International Nuclear Information System (INIS)

    Gehrmann, T.; Remiddi, E.

    2001-01-01

    The calculation of the two-loop corrections to the three jet production rate and to event shapes in electron-positron annihilation requires the computation of a number of up to now unknown two-loop four-point master integrals with one off-shell and three on-shell legs. In this paper we compute those master integrals which correspond to planar topologies by solving differential equations in the external invariants which are fulfilled by the master integrals. We obtain the master integrals as expansions in ε=(4-d)/2, where d is the space-time dimension. The results are expressed in terms of newly introduced two-dimensional harmonic polylogarithms, whose properties are shortly discussed. For all two-dimensional harmonic polylogarithms appearing in the divergent parts of the integrals, expressions in terms of Nielsen's polylogarithms are given. The analytic continuation of our results to other kinematical situations is outlined

  5. COBALT: A GN&C Payload for Testing ALHAT Capabilities in Closed-Loop Terrestrial Rocket Flights

    Science.gov (United States)

    Carson, John M., III; Amzajerdian, Farzin; Hines, Glenn D.; O'Neal, Travis V.; Robertson, Edward A.; Seubert, Carl; Trawny, Nikolas

    2016-01-01

    The COBALT (CoOperative Blending of Autonomous Landing Technology) payload is being developed within NASA as a risk reduction activity to mature, integrate and test ALHAT (Autonomous precision Landing and Hazard Avoidance Technology) systems targeted for infusion into near-term robotic and future human space flight missions. The initial COBALT payload instantiation is integrating the third-generation ALHAT Navigation Doppler Lidar (NDL) sensor, for ultra high-precision velocity plus range measurements, with the passive-optical Lander Vision System (LVS) that provides Terrain Relative Navigation (TRN) global-position estimates. The COBALT payload will be integrated onboard a rocket-propulsive terrestrial testbed and will provide precise navigation estimates and guidance planning during two flight test campaigns in 2017 (one open-loop and closed- loop). The NDL is targeting performance capabilities desired for future Mars and Moon Entry, Descent and Landing (EDL). The LVS is already baselined for TRN on the Mars 2020 robotic lander mission. The COBALT platform will provide NASA with a new risk-reduction capability to test integrated EDL Guidance, Navigation and Control (GN&C) components in closed-loop flight demonstrations prior to the actual mission EDL.

  6. Production circulator fabrication and testing for core flow test loop. Final report, Phase III

    International Nuclear Information System (INIS)

    1981-05-01

    The performance testing of two production helium circulators utilizing gas film lubrication is described. These two centrifugal-type circulators plus an identical circulator prototype will be arranged in series to provide the helium flow requirements for the Core Flow Test Loop which is part of the Gas-Cooled Fast Breeder Reactor Program (GCFR) at the Oak Ridge National Laboratory. This report presents the results of the Phase III performance and supplemental tests, which were carried out by MTI during the period of December 18, 1980 through March 19, 1981. Specific test procedures are outlined and described, as are individual tests for measuring the performance of the circulators. Test data and run descriptions are presented

  7. Production circulator fabrication and testing for core flow test loop. Final report, Phase III

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    The performance testing of two production helium circulators utilizing gas film lubrication is described. These two centrifugal-type circulators plus an identical circulator prototype will be arranged in series to provide the helium flow requirements for the Core Flow Test Loop which is part of the Gas-Cooled Fast Breeder Reactor Program (GCFR) at the Oak Ridge National Laboratory. This report presents the results of the Phase III performance and supplemental tests, which were carried out by MTI during the period of December 18, 1980 through March 19, 1981. Specific test procedures are outlined and described, as are individual tests for measuring the performance of the circulators. Test data and run descriptions are presented.

  8. Comment on generalized Euler--Pochhammer integral representation for single-loop Feynman amplitudes

    International Nuclear Information System (INIS)

    Mano, K.

    1975-01-01

    Use of the F/subD/ function of Lauricella is suggested in obtaining the Euler-Pochhammer-type integral representation for the single-loop Feynman amplitude of arbitrary order. It is shown that the F/subD/ function is naturally suited in that it leads to a recurrence relation for the amplitude under consideration

  9. Integrating Closed-loop Supply Chains and Spare Parts Management at IBM

    NARCIS (Netherlands)

    M. Fleischmann (Moritz); J.A.E.E. van Nunen (Jo); B. Graeve

    2002-01-01

    textabstractEver more companies are recognizing the benefits of closed-loop supply chains that integrate product returns into business operations. IBM has been among the pioneers seeking to unlock the value dormant in these resources. We report on a project exploiting product returns as a source of

  10. An integral quadratic constraint approach to the robust performance estimation problem of guidance loops

    NARCIS (Netherlands)

    Weiss, M.

    2010-01-01

    The problem of evaluating the performance of an uncertain guidance loop system is considered, when the uncertainty is described in terms of an integral quadratic constraint. The idea of the approach proposed in this paper is to determine the set of all possible state vector values at the end of the

  11. IR finite one-loop box scalar integral with massless internal lines

    International Nuclear Information System (INIS)

    Duplancic, G.; Nizic, B.

    2002-01-01

    The IR finite one-loop box scalar integral with massless internal lines has been recalculated. The result is very compact, simple and valid for arbitrary values of the relevant kinematic variables. It is given in terms of only two dilogarithms and a few logarithms, all of very simple arguments. (orig.)

  12. Integrated S-band transmitter with on-chip DC-DC converter and control loop

    NARCIS (Netherlands)

    Brouzes, H.; Geurts, S.; Besselink, M.; Telli, A.; Hek, A.P. de; Bent, G. van der; Vliet, F.E. van

    2012-01-01

    A highly integrated high-power transmitter has been designed in a high breakdown GaAs MMIC technology. The transmitter includes, on top of an S-Band 10 W class-F HPA, a DC/DC converter and its associated gate driver, the full voltage regulation control loop, which provides a significant step for

  13. Simulation of an Integrated Gasification Combined Cycle with Chemical-Looping Combustion and CO2 sequestration

    OpenAIRE

    Jiménez Alvaro, Ángel; López Paniagua, Ignacio; González Fernández, M. Celina; Rodríguez Martín, Javier; Nieto Carlier, Rafael

    2014-01-01

    Chemical-looping combustion allows an integration of CO2 capture in a thermal power plant without energy penalty; secondly, a less exergy destruction in the combustion chemical transformation is achieved, leading to a greater overall thermal efficiency. This paper focus on the study of the energetic performance of this concept of combustion in an integrated gasification combined cycle power plant when synthesis gas is used as fuel for the gas turbines. After thermodynamic modelling and optimi...

  14. Loop containment (joint integrity) assessment Brayton Isotope Power System flight system

    International Nuclear Information System (INIS)

    1976-01-01

    The Brayton Isotope Power System (BIPS) contains a large number of joints. Since the failure of a joint would result in loss of the working fluid and consequential failure of the BIPS, the integrity of the joints is of paramount importance. The reliability of the ERDA BIPS loop containment (joint integrity) is evaluated. The conceptual flight system as presently configured is depicted. A brief description of the flight system is given

  15. Focal dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE)

    Science.gov (United States)

    Perruchoud, David; Murray, Micah M.; Lefebvre, Jeremie; Ionta, Silvio

    2014-01-01

    Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized by sensory and motor deficits in the absence of basic motor impairments. Despite the fundamental impact of sensory-motor integration mechanisms on daily life, the general principles of healthy and pathological anatomic–functional organization of sensory-motor integration remain to be clarified. Based on the available data from experimental psychology, neurophysiology, and neuroimaging, we propose a bio-computational model of sensory-motor integration: the Sensory-Motor Integrative Loop for Enacting (SMILE). Aiming at direct therapeutic implementations and with the final target of implementing novel intervention protocols for motor rehabilitation, our main goal is to provide the information necessary for further validating the SMILE model. By translating neuroscientific hypotheses into empirical investigations and clinically relevant questions, the prediction based on the SMILE model can be further extended to other pathological conditions characterized by impaired sensory-motor integration. PMID:24999327

  16. Focal Dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE

    Directory of Open Access Journals (Sweden)

    David ePerruchoud

    2014-06-01

    Full Text Available Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, and the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized by sensory and motor deficits in the absence of basic motor impairments. Despite the fundamental impact of sensory-motor integration mechanisms on daily life, the general principles of healthy and pathological anatomic-functional organization of sensory-motor integration remain to be clarified. Based on the available data from experimental psychology, neurophysiology, and neuroimaging, we propose a bio-computational model of sensory-motor integration: the Sensory-Motor Integrative Loop for Enacting (SMILE. Aiming at direct therapeutic implementations and with the final target of implementing novel intervention protocols for motor rehabilitation, our main goal is to provide the information necessary for further validating the SMILE model. By translating neuroscientific hypotheses into empirical investigations and clinically relevant questions, the prediction based on the SMILE model can be further extended to other pathological conditions characterized by impaired sensory-motor integration.

  17. Focal dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE).

    Science.gov (United States)

    Perruchoud, David; Murray, Micah M; Lefebvre, Jeremie; Ionta, Silvio

    2014-01-01

    Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized by sensory and motor deficits in the absence of basic motor impairments. Despite the fundamental impact of sensory-motor integration mechanisms on daily life, the general principles of healthy and pathological anatomic-functional organization of sensory-motor integration remain to be clarified. Based on the available data from experimental psychology, neurophysiology, and neuroimaging, we propose a bio-computational model of sensory-motor integration: the Sensory-Motor Integrative Loop for Enacting (SMILE). Aiming at direct therapeutic implementations and with the final target of implementing novel intervention protocols for motor rehabilitation, our main goal is to provide the information necessary for further validating the SMILE model. By translating neuroscientific hypotheses into empirical investigations and clinically relevant questions, the prediction based on the SMILE model can be further extended to other pathological conditions characterized by impaired sensory-motor integration.

  18. An Integrated Loop Model of Corrective Feedback and Oral English Learning: A Case of International Students in the United States

    Science.gov (United States)

    Lee, Eun Jeong

    2017-01-01

    The author in this study introduces an integrated corrective feedback (CF) loop to schematize the interplay between CF and independent practice in L2 oral English learning among advanced-level adult ESL students. The CF loop integrates insights from the Interaction, Output, and Noticing Hypotheses to show how CF can help or harm L2 learners'…

  19. Suppressing epileptic activity in a neural mass model using a closed-loop proportional-integral controller

    Science.gov (United States)

    Wang, Junsong; Niebur, Ernst; Hu, Jinyu; Li, Xiaoli

    2016-01-01

    Closed-loop control is a promising deep brain stimulation (DBS) strategy that could be used to suppress high-amplitude epileptic activity. However, there are currently no analytical approaches to determine the stimulation parameters for effective and safe treatment protocols. Proportional-integral (PI) control is the most extensively used closed-loop control scheme in the field of control engineering because of its simple implementation and perfect performance. In this study, we took Jansen’s neural mass model (NMM) as a test bed to develop a PI-type closed-loop controller for suppressing epileptic activity. A graphical stability analysis method was employed to determine the stabilizing region of the PI controller in the control parameter space, which provided a theoretical guideline for the choice of the PI control parameters. Furthermore, we established the relationship between the parameters of the PI controller and the parameters of the NMM in the form of a stabilizing region, which provided insights into the mechanisms that may suppress epileptic activity in the NMM. The simulation results demonstrated the validity and effectiveness of the proposed closed-loop PI control scheme. PMID:27273563

  20. A hardware-in-the-loop simulation platform for prototyping and testing of wind generator controllers

    Energy Technology Data Exchange (ETDEWEB)

    Paquin, J.N.; Dufour, C.; Belanger, J. [OPAL-RT Technologies Inc., Montreal, PQ (Canada)

    2008-07-01

    Engineers from different specialized fields need to be involved in meeting the growing demand for integrated renewable energy sources into existing power grids. The integration of distributed generation (DG) sources significantly changes the characteristics of an entire network and requires analysis of power quality, transient response to fault occurrences, protection coordination studies and controller interaction studies. Power electronic converters are a considerable challenge. Accurately simulating fast switching devices requires the use of very small time steps to solve the system's equations. Off-line simulation is often used in the field. However, it is time consuming if no precision compromise has been made on models. In addition, off-line simulation tools do not offer the wide range of possibilities available with state-of-the-art distributed real-time simulators that combine the efforts of control engineers and specialists from wind turbine manufacturers, who need to test their controllers using hardware-in-the-loop (HIL), together with those of network planning engineers from public utilities, who will conduct interconnection, interaction and protection studies. This paper focused on the prototyping and testing of DG controllers using hardware-in-the-loop simulation. The model was described and consisted of a 10-turbine wind farm connected to a single feeder, simulated using an eMEGAsim real-time simulator equipped with 8-processor cores. One of the wind turbines was controlled using an externally emulated controller. It was modeled and simulated using a dual-processor core real-time simulator, which interacted with the plant model via analog and fast digital inputs and outputs. The effectiveness of the technology was demonstrated by comparing fully numerical simulation results with an HIL-connected DFIG controller simulation. The sampling effect of the digital simulator was correctly compensated for. The simulator could be driven directly by real

  1. Numerical evaluation of Feynman loop integrals by reduction to tree graphs

    Energy Technology Data Exchange (ETDEWEB)

    Kleinschmidt, T.

    2007-12-15

    We present a method for the numerical evaluation of loop integrals, based on the Feynman Tree Theorem. This states that loop graphs can be expressed as a sum of tree graphs with additional external on-shell particles. The original loop integral is replaced by a phase space integration over the additional particles. In cross section calculations and for event generation, this phase space can be sampled simultaneously with the phase space of the original external particles. Since very sophisticated matrix element generators for tree graph amplitudes exist and phase space integrations are generically well understood, this method is suited for a future implementation in a fully automated Monte Carlo event generator. A scheme for renormalization and regularization is presented. We show the construction of subtraction graphs which cancel ultraviolet divergences and present a method to cancel internal on-shell singularities. Real emission graphs can be naturally included in the phase space integral of the additional on-shell particles to cancel infrared divergences. As a proof of concept, we apply this method to NLO Bhabha scattering in QED. Cross sections are calculated and are in agreement with results from conventional methods. We also construct a Monte Carlo event generator and present results. (orig.)

  2. Functional equations for one-loop master integrals for heavy-quark production and Bhabha scattering

    International Nuclear Information System (INIS)

    Kniehl, Bernd A.; Tarasov, Oleg V.

    2009-04-01

    The method for obtaining functional equations, recently proposed by one of the authors (O. V. Tarasov, 2008), is applied to one-loop box integrals needed in calculations of radiative corrections to heavy-quark production and Bhabha scattering. We present relationships between these integrals with different arguments and box integrals with all propagators being massless. It turns out that functional equations are rather useful for finding imaginary parts and performing analytic continuations of Feynman integrals. For the box master integral needed in Bhabha scattering, a new representation in terms of hypergeometric functions admitting one-fold integral representation is derived. The hypergeometric representation of a master integral for heavy-quark production follows from the functional equation. (orig.)

  3. Conceptual Design of Forced Convection Molten Salt Heat Transfer Testing Loop

    Energy Technology Data Exchange (ETDEWEB)

    Manohar S. Sohal; Piyush Sabharwall; Pattrick Calderoni; Alan K. Wertsching; S. Brandon Grover

    2010-09-01

    This report develops a proposal to design and construct a forced convection test loop. A detailed test plan will then be conducted to obtain data on heat transfer, thermodynamic, and corrosion characteristics of the molten salts and fluid-solid interaction. In particular, this report outlines an experimental research and development test plan. The most important initial requirement for heat transfer test of molten salt systems is the establishment of reference coolant materials to use in the experiments. An earlier report produced within the same project highlighted how thermophysical properties of the materials that directly impact the heat transfer behavior are strongly correlated to the composition and impurities concentration of the melt. It is therefore essential to establish laboratory techniques that can measure the melt composition, and to develop purification methods that would allow the production of large quantities of coolant with the desired purity. A companion report describes the options available to reach such objectives. In particular, that report outlines an experimental research and development test plan that would include following steps: •Molten Salts: The candidate molten salts for investigation will be selected. •Materials of Construction: Materials of construction for the test loop, heat exchangers, and fluid-solid corrosion tests in the test loop will also be selected. •Scaling Analysis: Scaling analysis to design the test loop will be performed. •Test Plan: A comprehensive test plan to include all the tests that are being planned in the short and long term time frame will be developed. •Design the Test Loop: The forced convection test loop will be designed including extensive mechanical design, instrument selection, data acquisition system, safety requirements, and related precautionary measures. •Fabricate the Test Loop. •Perform the Tests. •Uncertainty Analysis: As a part of the data collection, uncertainty analysis will

  4. Reduction method for dimensionally regulatedone-loop N-point Feynman integrals

    Science.gov (United States)

    Duplančić, G.; Nižić, B.

    2004-06-01

    We present a systematic method for reducing an arbitrary one-loop N-point massless Feynman integral with generic 4-dimensional momenta to a set comprised of eight fundamental scalar integrals: six box integrals in D = 6, a triangle integral in D = 4, and a general two-point integral in D space-time dimensions. All the divergences present in the original integral are contained in the general two-point integral and associated coefficients. The problem of vanishing of the kinematic determinants has been solved in an elegant and transparent manner. Being derived with no restrictions regarding the external momenta, the method is completely general and applicable for arbitrary kinematics. In particular, it applies to the integrals in which the set of external momenta contains subsets comprised of two or more collinear momenta, which are unavoidable when calculating one-loop contributions to the hard-scattering amplitude for exclusive hadronic processes at large-momentum transfer in PQCD. The iterative structure makes it easy to implement the formalism in an algebraic computer program.

  5. Real-Time Hardware-in-the-Loop Laboratory Testing for Multisensor Sense and Avoid Systems

    Directory of Open Access Journals (Sweden)

    Giancarmine Fasano

    2013-01-01

    Full Text Available This paper focuses on a hardware-in-the-loop facility aimed at real-time testing of architectures and algorithms of multisensor sense and avoid systems. It was developed within a research project aimed at flight demonstration of autonomous non-cooperative collision avoidance for Unmanned Aircraft Systems. In this framework, an optionally piloted Very Light Aircraft was used as experimental platform. The flight system is based on multiple-sensor data integration and it includes a Ka-band radar, four electro-optical sensors, and two dedicated processing units. The laboratory test system was developed with the primary aim of prototype validation before multi-sensor tracking and collision avoidance flight tests. System concept, hardware/software components, and operating modes are described in the paper. The facility has been built with a modular approach including both flight hardware and simulated systems and can work on the basis of experimentally tested or synthetically generated scenarios. Indeed, hybrid operating modes are also foreseen which enable performance assessment also in the case of alternative sensing architectures and flight scenarios that are hardly reproducible during flight tests. Real-time multisensor tracking results based on flight data are reported, which demonstrate reliability of the laboratory simulation while also showing the effectiveness of radar/electro-optical fusion in a non-cooperative collision avoidance architecture.

  6. Planar plane-wave matrix theory at the four loop order: integrability without BMN scaling

    International Nuclear Information System (INIS)

    Fischbacher, Thomas; Klose, Thomas; Plefka, Jan

    2005-01-01

    We study SU(N) plane-wave matrix theory up to fourth perturbative order in its large N planar limit. The effective hamiltonian in the closed su(2) subsector of the model is explicitly computed through a specially tailored computer program to perform large scale distributed symbolic algebra and generation of planar graphs. The number of graphs here was in the deep billions. The outcome of our computation establishes the four-loop integrability of the planar plane-wave matrix model. To elucidate the integrable structure we apply the recent technology of the perturbative asymptotic Bethe ansatz to our model. The resulting S-matrix turns out to be structurally similar but nevertheless distinct to the so far considered long-range spin-chain S-matrices of Inozemtsev, Beisert-Dippel-Staudacher and Arutyunov-Frolov-Staudacher in the AdS/CFT context. In particular our result displays a breakdown of BMN scaling at the four-loop order. That is, while there exists an appropriate identification of the matrix theory mass parameter with the coupling constant of the N=4 superconformal Yang-Mills theory which yields an eighth order lattice derivative for well separated impurities (naively implying BMN scaling) the detailed impurity contact interactions ruin this scaling property at the four-loop order. Moreover we study the issue of 'wrapping' interactions, which show up for the first time at this loop-order through a Konishi descendant length four operator. (author)

  7. Simulation of an integrated gasification combined cycle with chemical-looping combustion and carbon dioxide sequestration

    International Nuclear Information System (INIS)

    Jiménez Álvaro, Ángel; López Paniagua, Ignacio; González Fernández, Celina; Rodríguez Martín, Javier; Nieto Carlier, Rafael

    2015-01-01

    Highlights: • A chemical-looping combustion based integrated gasification combined cycle is simulated. • The energetic performance of the plant is analyzed. • Different hydrogen-content synthesis gases are under study. • Energy savings accounting carbon dioxide sequestration and storage are quantified. • A notable increase on thermal efficiency up to 7% is found. - Abstract: Chemical-looping combustion is an interesting technique that makes it possible to integrate power generation from fuels combustion and sequestration of carbon dioxide without energy penalty. In addition, the combustion chemical reaction occurs with a lower irreversibility compared to a conventional combustion, leading to attain a somewhat higher overall thermal efficiency in gas turbine systems. This paper provides results about the energetic performance of an integrated gasification combined cycle power plant based on chemical-looping combustion of synthesis gas. A real understanding of the behavior of this concept of power plant implies a complete thermodynamic analysis, involving several interrelated aspects as the integration of energy flows between the gasifier and the combined cycle, the restrictions in relation with heat balances and chemical equilibrium in reactors and the performance of the gas turbines and the downstream steam cycle. An accurate thermodynamic modeling is required for the optimization of several design parameters. Simulations to evaluate the energetic efficiency of this chemical-looping-combustion based power plant under diverse working conditions have been carried out, and a comparison with a conventional integrated gasification power plant with precombustion capture of carbon dioxide has been made. Two different synthesis gas compositions have been tried to check its influence on the results. The energy saved in carbon capture and storage is found to be significant and even notable, inducing an improvement of the overall power plant thermal efficiency of

  8. Reduction formalism for dimensionally regulated one-loop N-point integrals

    International Nuclear Information System (INIS)

    Binoth, T.; Guillet, J.Ph.; Heinrich, G.

    2000-01-01

    We consider one-loop scalar and tensor integrals with an arbitrary number of external legs relevant for multi-parton processes in massless theories. We present a procedure to reduce N-point scalar functions with generic 4-dimensional external momenta to box integrals in (4-2ε) dimensions. We derive a formula valid for arbitrary N and give an explicit expression for N=6. Further a tensor reduction method for N-point tensor integrals is presented. We prove that generically higher dimensional integrals contribute only to order ε for N≥5. The tensor reduction can be solved iteratively such that any tensor integral is expressible in terms of scalar integrals. Explicit formulas are given up to N=6

  9. Reduction formalism for dimensionally regulated one-loop N-point integrals

    Science.gov (United States)

    Binoth, T.; Guillet, J. Ph.; Heinrich, G.

    2000-04-01

    We consider one-loop scalar and tensor integrals with an arbitrary number of external legs relevant for multi-parton processes in massless theories. We present a procedure to reduce N-point scalar functions with generic 4-dimensional external momenta to box integrals in (4-2 ɛ) dimensions. We derive a formula valid for arbitrary N and give an explicit expression for N=6. Further a tensor reduction method for N-point tensor integrals is presented. We prove that generically higher dimensional integrals contribute only to order ɛ for N≥5. The tensor reduction can be solved iteratively such that any tensor integral is expressible in terms of scalar integrals. Explicit formulas are given up to N=6.

  10. The Integral Test Facility Karlstein

    Directory of Open Access Journals (Sweden)

    Stephan Leyer

    2012-01-01

    Full Text Available The Integral Test Facility Karlstein (INKA test facility was designed and erected to test the performance of the passive safety systems of KERENA, the new AREVA Boiling Water Reactor design. The experimental program included single component/system tests of the Emergency Condenser, the Containment Cooling Condenser and the Passive Core Flooding System. Integral system tests, including also the Passive Pressure Pulse Transmitter, will be performed to simulate transients and Loss of Coolant Accident scenarios at the test facility. The INKA test facility represents the KERENA Containment with a volume scaling of 1 : 24. Component heights and levels are in full scale. The reactor pressure vessel is simulated by the accumulator vessel of the large valve test facility of Karlstein—a vessel with a design pressure of 11 MPa and a storage capacity of 125 m3. The vessel is fed by a benson boiler with a maximum power supply of 22 MW. The INKA multi compartment pressure suppression Containment meets the requirements of modern and existing BWR designs. As a result of the large power supply at the facility, INKA is capable of simulating various accident scenarios, including a full train of passive systems, starting with the initiating event—for example pipe rupture.

  11. Transforming differential equations of multi-loop Feynman integrals into canonical form

    Science.gov (United States)

    Meyer, Christoph

    2017-04-01

    The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum field theory. It has been observed that in many instances a canonical basis can be chosen, which drastically simplifies the solution of the differential equation. In this paper, an algorithm is presented that computes the transformation to a canonical basis, starting from some basis that is, for instance, obtained by the usual integration-by-parts reduction techniques. The algorithm requires the existence of a rational transformation to a canonical basis, but is otherwise completely agnostic about the differential equation. In particular, it is applicable to problems involving multiple scales and allows for a rational dependence on the dimensional regulator. It is demonstrated that the algorithm is suitable for current multi-loop calculations by presenting its successful application to a number of non-trivial examples.

  12. Transforming differential equations of multi-loop Feynman integrals into canonical form

    International Nuclear Information System (INIS)

    Meyer, Christoph

    2017-01-01

    The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum field theory. It has been observed that in many instances a canonical basis can be chosen, which drastically simplifies the solution of the differential equation. In this paper, an algorithm is presented that computes the transformation to a canonical basis, starting from some basis that is, for instance, obtained by the usual integration-by-parts reduction techniques. The algorithm requires the existence of a rational transformation to a canonical basis, but is otherwise completely agnostic about the differential equation. In particular, it is applicable to problems involving multiple scales and allows for a rational dependence on the dimensional regulator. It is demonstrated that the algorithm is suitable for current multi-loop calculations by presenting its successful application to a number of non-trivial examples.

  13. Test results of reliable and very high capillary multi-evaporators / condenser loop

    Energy Technology Data Exchange (ETDEWEB)

    Van Oost, S.; Dubois, M.; Bekaert, G. [Societe Anonyme Belge de Construction Aeronautique - SABCA (Belgium)

    1996-12-31

    The paper present the results of various SABCA activities in the field of two-phase heat transport system. These results have been based on a critical review and analysis of the existing two-phase loop and of the future loop needs in space applications. The research and the development of a high capillary wick (capillary pressure up to 38 000 Pa) are described. These activities have led towards the development of a reliable high performance capillary loop concept (HPCPL), which is discussed in details. Several loop configurations mono/multi-evaporators have been ground tested. The presented results of various tests clearly show the viability of this concept for future applications. Proposed flight demonstrations as well as potential applications conclude this paper. (authors) 7 refs.

  14. Closing the Loop: Integrating Body, Muscle and Environment with Locomotion Central Pattern Generators

    Science.gov (United States)

    2013-06-30

    between the neural circuitry, body, and fluid environment for swimming locomotion , where the lamprey serves as a model system1,2,3,4,5,6,7,8. Our...REPORT Final Report: Closing the Loop: Integrating Body, Muscle and Environment with Locomotion Central Pattern Generators 14. ABSTRACT 16. SECURITY...CLASSIFICATION OF: The role of sensory feedback is a central question in understanding vertebrate locomotion . Sensory feedback related to movement of

  15. Reduction method for one-loop tensor 5- and 6-point integrals revisited

    International Nuclear Information System (INIS)

    Diakonidis, Theodoros

    2009-01-01

    A complete analytical reduction of general one-loop Feynman integrals with five legs for tensors up to rank R=3 and six legs for tensors up to rank 4 is reviewed. An elegant formalism with extensive use of signed minors was developed for the cancellation of leading inverse Gram determinants. The resulting compact formulae allow both for a study of analytical properties and for efficient numerical programming. Here some special numerical examples are presented. (orig.)

  16. Sabatier Reactor System Integration with Microwave Plasma Methane Pyrolysis Post-Processor for Closed-Loop Hydrogen Recovery

    Science.gov (United States)

    Abney, Morgan B.; Miller, Lee A.; Williams, Tom

    2010-01-01

    The Carbon Dioxide Reduction Assembly (CRA) designed and developed for the International Space Station (ISS) represents the state-of-the-art in carbon dioxide reduction (CDRe) technology. The CRA produces water and methane by reducing carbon dioxide with hydrogen via the Sabatier reaction. The water is recycled to the Oxygen Generation Assembly (OGA) and the methane is vented overboard resulting in a net loss of hydrogen. The proximity to earth and the relative ease of logistics resupply from earth allow for a semi-closed system on ISS. However, long-term manned space flight beyond low earth orbit (LEO) dictates a more thoroughly closed-loop system involving significantly higher recovery of hydrogen, and subsequent recovery of oxygen, to minimize costs associated with logistics resupply beyond LEO. The open-loop ISS system for CDRe can be made closed-loop for follow-on missions by further processing methane to recover hydrogen. For this purpose, a process technology has been developed that employs a microwave-generated plasma to reduce methane to hydrogen and acetylene resulting in 75% theoretical recovery of hydrogen. In 2009, a 1-man equivalent Plasma Pyrolysis Assembly (PPA) was delivered to the National Aeronautics and Space Administration (NASA) for technical evaluation. The PPA has been integrated with a Sabatier Development Unit (SDU). The integrated process configuration incorporates a sorbent bed to eliminate residual carbon dioxide and water vapor in the Sabatier methane product stream before it enters the PPA. This paper provides detailed information on the stand-alone and integrated performance of both the PPA and SDU. Additionally, the integrated test stand design and anticipated future work are discussed.

  17. Package-X 2.0: A Mathematica package for the analytic calculation of one-loop integrals

    Science.gov (United States)

    Patel, Hiren H.

    2017-09-01

    This article summarizes new features and enhancements of the first major update of Package-X. Package-X 2.0 can now generate analytic expressions for arbitrarily high rank dimensionally regulated tensor integrals with up to four distinct propagators, each with arbitrary integer weight, near an arbitrary even number of spacetime dimensions, giving UV divergent, IR divergent, and finite parts at (almost) any real-valued kinematic point. Additionally, it can generate multivariable Taylor series expansions of these integrals around any non-singular kinematic point to arbitrary order. All special functions and abbreviations output by Package-X 2.0 support Mathematica's arbitrary precision evaluation capabilities to deal with issues of numerical stability. Finally, tensor algebraic routines of Package-X have been polished and extended to support open fermion chains both on and off shell. The documentation (equivalent to over 100 printed pages) is accessed through Mathematica's Wolfram Documentation Center and contains information on all Package-X symbols, with over 300 basic usage examples, 3 project-scale tutorials, and instructions on linking to FEYNCALC and LOOPTOOLS. Program files doi:http://dx.doi.org/10.17632/yfkwrd4d5t.1 Licensing provisions: CC by 4.0 Programming language: Mathematica (Wolfram Language) Journal reference of previous version: H. H. Patel, Comput. Phys. Commun 197, 276 (2015) Does the new version supersede the previous version?: Yes Summary of revisions: Extension to four point one-loop integrals with higher powers of denominator factors, separate extraction of UV and IR divergent parts, testing for power IR divergences, construction of Taylor series expansions of one-loop integrals, numerical evaluation with arbitrary precision arithmetic, manipulation of fermion chains, improved tensor algebraic routines, and much expanded documentation. Nature of problem: Analytic calculation of one-loop integrals in relativistic quantum field theory. Solution

  18. Diagnostics of high-speed liquid lithium jet for IFMIF/EVEDA lithium test loop

    International Nuclear Information System (INIS)

    Kanemura, Takuji; Kondo, Hiroo; Furukawa, Tomohiro; Sugiura, Hirokazu; Horiike, Hiroshi; Yamaoka, Nobuo; Ida, Mizuho; Nakamura, Kazuyuki; Matsushita, Izuru

    2011-01-01

    Regarding R and Ds on the International Fusion Materials Irradiation Facility (IFMIF), hydraulic stability of the liquid Li jet simulating the IFMIF Li target is planned to be validated using EVEDA Li Test Loop (ELTL). IFMIF is an accelerator-based deuteron-lithium (Li) neutron source for research and development of fusion reactor materials. The stable Li target is required in IFMIF to maintain the quality of the neutron fluence and integrity of the Li target itself. This paper presents diagnostics of the Li jet to be implemented in validation tests of the jet stability in ELTL, and those specifications and methodologies are introduced. In the tests, the following physical parameters need to be measured; thickness of the jet; surface structure (height, length/width and frequency of free-surface waves); local flow velocity at the free surface; and Li evaporation rate. With regard to measurement of jet thickness and the surface wave height, a contact-type liquid level sensor is to be used. As for measurement of wave velocity and visual understanding of detailed free-surface structure, a high-speed video camera is to be leveraged. With respect to Li evaporation measurement, weight change of specimens installed near the free surface and frequency change of a crystal quartz are utilized. (author)

  19. Summary of TRUEX Radiolysis Testing Using the INL Radiolysis Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Dean R. Peterman; Lonnie G. Olson; Rocklan G. McDowell; Gracy Elias; Jack D. Law

    2012-03-01

    The INL radiolysis and hydrolysis test loop has been used to evaluate the effects of hydrolytic and radiolytic degradation upon the efficacy of the TRUEX flowsheet for the recovery of trivalent actinides and lanthanides from acidic solution. Repeated irradiation and subsequent re-conditioning cycles did result in a significant decrease in the concentration of the TBP and CMPO extractants in the TRUEX solvent and a corresponding decrease in americium and europium extraction distributions. However, the build-up of solvent degradation products upon {gamma}-irradiation, had little impact upon the efficiency of the stripping section of the TRUEX flowsheet. Operation of the TRUEX flowsheet would require careful monitoring to ensure extraction distributions are maintained at acceptable levels.

  20. Safety report content and development for test loop facility on MARIA reactor

    International Nuclear Information System (INIS)

    Konechko, A.; Shumskij, A.M.; Mikul'ahin, V.E.

    1982-01-01

    A 600 kW test loop facility for investigatin.o safety problems is realized on MARIA reactor in Poland together with USSR organizations. Safety reports have been developed in two steps at the designstage. The 1st report being essentially a preliminary safety analysis was developed within the scope of the feasibility study. At the engineering design stage the preliminary test loop facility safety report had been prepared considering measures excluding the possibility of the MARIA reactor damage. The test loop facility safety report is fulfilled for normal, transient and emergency operation regimes. Separate safety basing for each group of experiments will be prepared. The report presents the test loop facility safety criteria coordinated by the nuclear safety comission. They contains the preliminary reports on the test loop facility safety. At the final stage of construction and at thecommitioning stage the start-up safety report will be developed which after required correction and adding up the putting into operation data will turn into operation safety report [ru

  1. Thermal analysis of lithium cooled natural circulation loop module for fuel rod testing in the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Eyler, L.L.; Kim, D.; Stover, R.L.; Beaver, T.R.

    1987-01-01

    Maximum heat removal capability of a lithium cooled natural circulation fuel rod test module design is determined. Loop geometry is optimized within limitations of design specifications for nominal operation temperatures, materials, and test module environment. Results provide test module operation limits and range of potential uncertainties. 3 refs., 12 figs

  2. Development of Failed Fuel Detection System for HANARO Fuel Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sung Ho; Sim, Bong Sik; Park, Su Ki; Chi, Dae Young; Park, Kook Nam; Lee, Chung Young; Lee, Jong Min; Kim, Hark Rho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-10-15

    FTL (Fuel Test Loop) is a test facility which could conduct fuel irradiation test at HANARO reactor. The FFDS (Failed Fuel Detection System) is installed in the FTL for detection of test fuel failure. The signals from the FFDS are interconnected with HANARO reactor protection system via FTL protection panels for reactor trip. In this paper, a design, manufacturing and functional test results of the FFDS are introduced.

  3. Controlled Chemistry Helium High Temperature Materials Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Richard N. WRight

    2005-08-01

    A system to test aging and environmental effects in flowing helium with impurity content representative of the Next Generation Nuclear Plant (NGNP) has been designed and assembled. The system will be used to expose microstructure analysis coupons and mechanical test specimens for up to 5,000 hours in helium containing potentially oxidizing or carburizing impurities controlled to parts per million levels. Impurity levels in the flowing helium are controlled through a feedback mechanism based on gas chromatography measurements of the gas chemistry at the inlet and exit from a high temperature retort containing the test materials. Initial testing will focus on determining the nature and extent of combined aging and environmental effects on microstructure and elevated temperature mechanical properties of alloys proposed for structural applications in the NGNP, including Inconel 617 and Haynes 230.

  4. Portland, Oregon Test Data Set Arterial Loop Detector Data

    Data.gov (United States)

    Department of Transportation — This set of data files was acquired under USDOT FHWA cooperative agreement DTFH61-11-H-00025 as one of the four test data sets acquired by the USDOT Data Capture and...

  5. Portland, Oregon Test Data Set Freeway Loop Detector Data

    Data.gov (United States)

    Department of Transportation — This set of data files was acquired under USDOT FHWA cooperative agreement DTFH61-11-H-00025 as one of the four test data sets acquired by the USDOT Data Capture and...

  6. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Baek, Won Pil; Song, C. H.; Kim, Y. S.

    2007-02-01

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform the tests for design, operation, and safety regulation of pressurized water reactors. In the first phase of this project (1997.8∼2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished. In the second phase (2002.4∼2005.2), an optimized design of the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) was established and the construction of the facility was almost completed. In the third phase (2005.3∼2007.2), the construction and commission tests of the ATLAS are to be completed and some first-phase tests are to be conducted

  7. The safety concept and classification for HANARO fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.

    1997-10-01

    The design and installation of the irradiation test facility for verification test of the fuel performance are very important in connection with maximization of the utilization of HANARO. The principle subjects of this study is to determine the safety concept and classification of HANARO FTL for the design of systems. HANARO FTL should be approved by KINS for installation and operation. And these irradiation for facilities will be designed and installed based upon the safety concept and classification results. (author). 14 refs., 12 tabs., 10 figs.

  8. Land and Undersea Field Testing of Very Low Frequency RF Antennas and Loop Transceivers

    Science.gov (United States)

    2017-12-01

    and extrapolated range. Similar capabilities of the SSC Pacific-built loop transceiver system were also determined. The report presents the mechanical ... shot of the Engineering tab. Test Commands sends command codes to the unit under control. Test Data sends text to other WFS units. The Text History...tab. Figure 3. Screen shot of the Engineering tab. Test Commands sends command codes to the unit under control. Test Data sends text to other WFS

  9. Sensory feedback in prosthetics: a standardized test bench for closed-loop control.

    Science.gov (United States)

    Dosen, Strahinja; Markovic, Marko; Hartmann, Cornelia; Farina, Dario

    2015-03-01

    Closing the control loop by providing sensory feedback to the user of a prosthesis is an important challenge, with major impact on the future of prosthetics. Developing and comparing closed-loop systems is a difficult task, since there are many different methods and technologies that can be used to implement each component of the system. Here, we present a test bench developed in Matlab Simulink for configuring and testing the closed-loop human control system in standardized settings. The framework comprises a set of connected generic blocks with normalized inputs and outputs, which can be customized by selecting specific implementations from a library of predefined components. The framework is modular and extensible and it can be used to configure, compare and test different closed-loop system prototypes, thereby guiding the development towards an optimal system configuration. The use of the test bench was demonstrated by investigating two important aspects of closed-loop control: performance of different electrotactile feedback interfaces (spatial versus intensity coding) during a pendulum stabilization task and feedforward methods (joystick versus myocontrol) for force control. The first experiment demonstrated that in the case of trained subjects the intensity coding might be superior to spatial coding. In the second experiment, the control of force was rather poor even with a stable and precise control interface (joystick), demonstrating that inherent characteristics of the prosthesis can be an important limiting factor when considering the overall effectiveness of the closed-loop control. The presented test bench is an important instrument for investigating different aspects of human manual control with sensory feedback.

  10. SRF cavity testing using a FPGA Self Excited Loop

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-08-30

    Various authors have previously studied the theory and practice of cavity testing, notably an extensive treatment by Powers [1] and Padamsee [2]. The advent of the digital Low Level RF (LLRF) electronics based on Field Programmable Logic Arrays (FPGA) provides various improvements over the rather complex systems used in the past as well as enabling new measurement techniques.In this document we reintroduce a technique that seems to have fallen out of practice in recent times, that is obtaining the coupling constant β through measurements from just one port, the reflected power port, of the directional coupler placed in front of the cavity.

  11. Design and analysis of heat exchanger networks for integrated Ca-looping systems

    International Nuclear Information System (INIS)

    Lara, Yolanda; Lisbona, Pilar; Martínez, Ana; Romeo, Luis M.

    2013-01-01

    Highlights: • Heat integration is essential to minimize energy penalties in calcium looping cycles. • A design and analysis of four heat exchanger networks is stated. • New design with higher power, lower costs and lower destroyed exergy than base case. - Abstract: One of the main challenges of carbon capture and storage technologies deals with the energy penalty associated with CO 2 separation and compression processes. Thus, heat integration plays an essential role in the improvement of these systems’ efficiencies. CO 2 capture systems based on Ca-looping process present a great potential for residual heat integration with a new supercritical power plant. The pinch methodology is applied in this study to define the minimum energy requirements of the process and to design four configurations for the required heat exchanger network. The Second Law of Thermodynamics represents a powerful tool for reducing the energy demand since identifying the exergy losses of the system serves to allocate inefficiencies. In parallel, an economic analysis is required to asses the cost reduction achieved by each configuration. This work presents a combination of pinch methodology with economic and exergetic analyses to select the more appropriate configuration of heat exchanger network. The lower costs and minor destroyed exergy obtained for the best proposed network result in a of 0.91% global energy efficiency increase

  12. Negative Regulators of an RNAi-Heterochromatin Positive Feedback Loop Safeguard Somatic Genome Integrity in Tetrahymena.

    Science.gov (United States)

    Suhren, Jan H; Noto, Tomoko; Kataoka, Kensuke; Gao, Shan; Liu, Yifan; Mochizuki, Kazufumi

    2017-03-07

    RNAi-mediated positive feedback loops are pivotal for the maintenance of heterochromatin, but how they are downregulated at heterochromatin-euchromatin borders is not well understood. In the ciliated protozoan Tetrahymena, heterochromatin is formed exclusively on the sequences that are removed from the somatic genome by programmed DNA elimination, and an RNAi-mediated feedback loop is important for assembling heterochromatin on the eliminated sequences. In this study, we show that the heterochromatin protein 1 (HP1)-like protein Coi6p, its interaction partners Coi7p and Lia5p, and the histone demethylase Jmj1p are crucial for confining the production of small RNAs and the formation of heterochromatin to the eliminated sequences. The loss of Coi6p, Coi7p, or Jmj1p causes ectopic DNA elimination. The results provide direct evidence for the existence of a dedicated mechanism that counteracts a positive feedback loop between RNAi and heterochromatin at heterochromatin-euchromatin borders to maintain the integrity of the somatic genome. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Supercritical water loop design for corrosion and water chemistry tests under irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ruzickova, Mariana; Hajek, Petr; Vsolak, Rudolf; Kysela, Jan [Nuclear Research Institute Rez plc, Reactor Services Division, Husinec (Czech Republic); Smida, Stepan [H and D Engineering, Praha (Czech Republic); Petr, Jan [Nuclear Research Institute Rez plc, Praha (Czech Republic)

    2008-03-15

    An experimental loop operating with water at supercritical conditions (25MPa, 600 .deg. C in the test section) is designed for operation in the research reactor LVR-15 in UJV Rez, Czech Republic. The loop should serve as an experimental facility for corrosion tests of materials for in-core as well as out-of-core structures, for testing and optimization of suitable water chemistry for a future HPLWR and for studies of radiolysis of water at supercritical conditions, which remains the domain where very few experimental data are available. At present, final necessary calculations (thermalhydraulic, neutronic, strength) are being performed on the irradiation channel, which is the most challenging part of the loop. The concept of the primary and auxiliary circuits has been completed. The design of the loop shall be finished in the course of the year 2007 to start the construction, out-of-pile testing to verify proper functioning of all systems and as such to be ready for in-pile tests by the end of the HPLWR Phase 2 European project by the end of 2009.

  14. Fabric strain sensor integrated with looped polymeric optical fiber with large angled V-shaped notches

    Science.gov (United States)

    Ying, D. Q.; Tao, X. M.; Zheng, W.; Wang, G. F.

    2013-01-01

    This paper presents an investigation of a new fabric strain sensor integrated with a looped polymeric optical fiber (POF) with V-shaped notches of large angle, which is capable of measuring repeated large strain up to 21%. A theoretical model is proposed to describe the sensing behavior based on reflection from the incident sides of the V-notch on a bent fiber. The relationship between the normalized output power of the sensor and the fabric strain is derived. Verification experiments demonstrate a good agreement obtained with the numerically simulated results. Further discussions on the effects of geometric parameters of the sensors shed new light on the optimization of the sensor performance.

  15. Development and testing of a planar, silicon mini-capillary pumped loop

    Science.gov (United States)

    Yerkes, Kirk L.; Pettigrew, Kenneth; Smith, Brian; Gamlen, Carol; Liepmann, Dorian

    2002-01-01

    A planar, silicon mini-capillary pumped loop (CPL) was designed, built, and tested using recent MEMS technology to provide integral cooling and temperature control for electronics. This design featured three silicon fusion bonded wafers incorporating an evaporator, condenser, liquid line and vapor line, all of which were dry plasma etched. Grooves were etched in the condenser and evaporator to provide passive capillary pumping. The finished device was bonded to an external reservoir via a through hole and was filled with a working fluid of water. The evaporator was bonded directly to an insulated gate bipolar transistor (IGBT) with a calorimeter epoxied above the condenser to control the temperature and monitor heat removal by the CPL. The mini-CPL was operated with an input heat load ranging from 3 to 10 W resulting in the junction temperature of the IGBT being reduced approximately 15 degrees Celsius from that of a solid Si substrate. The mini-CPL also performed as a thermal diode, turning on or off depending on the reservoir temperature. Work is in progress to understand the dynamics observed in the CPL as well as improve the CPL's performance. .

  16. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Baek, W. P.; Song, C. H.; Kim, Y. S. and others

    2005-02-01

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform various integral effect tests for design, operation, and safety regulation of pressurized water reactors. During the first phase of this project (1997.8∼2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished: a full-height, 1/300-volume-scaled full pressure facility for APR1400, an evolutionary pressurized water reactor that was developed by Korean industry. Main objectives of the present phase (2002.4∼2005.2), was to optimize the facility design and to construct the experimental facility. We have performed following researches: 1) Optimization of the basic design of the thermal-hydraulic integral effect test facility for PWRs - ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) - Reduced height design for APR1400 (+ specific design features of KSNP safety injection systems) - Thermal-hydraulic scaling based on three-level scaling methodology by Ishii et al. 2) Construction of the ATLAS facility - Detailed design of the test facility - Manufacturing and procurement of components - Installation of the facility 3) Development of supporting technology for integral effect tests - Development and application of advanced instrumentation technology - Preliminary analysis of test scenarios - Development of experimental procedures - Establishment and implementation of QA system/procedure

  17. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Baek, W. P.; Song, C. H.; Kim, Y. S. and others

    2005-02-15

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform various integral effect tests for design, operation, and safety regulation of pressurized water reactors. During the first phase of this project (1997.8{approx}2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished: a full-height, 1/300-volume-scaled full pressure facility for APR1400, an evolutionary pressurized water reactor that was developed by Korean industry. Main objectives of the present phase (2002.4{approx}2005.2), was to optimize the facility design and to construct the experimental facility. We have performed following researches: 1) Optimization of the basic design of the thermal-hydraulic integral effect test facility for PWRs - ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) - Reduced height design for APR1400 (+ specific design features of KSNP safety injection systems) - Thermal-hydraulic scaling based on three-level scaling methodology by Ishii et al. 2) Construction of the ATLAS facility - Detailed design of the test facility - Manufacturing and procurement of components - Installation of the facility 3) Development of supporting technology for integral effect tests - Development and application of advanced instrumentation technology - Preliminary analysis of test scenarios - Development of experimental procedures - Establishment and implementation of QA system/procedure.

  18. UAS Integration in the NAS Project: Integrated Test and Evaluation (IT&E) Flight Test 3. Revision E

    Science.gov (United States)

    Marston, Michael

    2015-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration into the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability, Human Systems Integration (HSI), and Communication to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Sense and Avoid (SAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including the integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project will conduct a series of Human-in-the-Loop and Flight Test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity and complexity of the previous tests and

  19. Numerical integration of massive two-loop Mellin-Barnes integrals in Minkowskian regions

    International Nuclear Information System (INIS)

    Dubovyk, Ievgen

    2016-07-01

    Mellin-Barnes (MB) techniques applied to integrals emerging in particle physics perturbative calculations are summarized. New versions of AMBRE packages which construct planar and nonplanar MB representations are shortly discussed. The numerical package MBnumerics.m is presented for the first time which is able to calculate with a high precision multidimensional MB integrals in Minkowskian regions. Examples are given for massive vertex integrals which include threshold effects and several scale parameters.

  20. Automated hybrid closed-loop control with a proportional-integral-derivative based system in adolescents and adults with type 1 diabetes: individualizing settings for optimal performance.

    Science.gov (United States)

    Ly, Trang T; Weinzimer, Stuart A; Maahs, David M; Sherr, Jennifer L; Roy, Anirban; Grosman, Benyamin; Cantwell, Martin; Kurtz, Natalie; Carria, Lori; Messer, Laurel; von Eyben, Rie; Buckingham, Bruce A

    2017-08-01

    Automated insulin delivery systems, utilizing a control algorithm to dose insulin based upon subcutaneous continuous glucose sensor values and insulin pump therapy, will soon be available for commercial use. The objective of this study was to determine the preliminary safety and efficacy of initialization parameters with the Medtronic hybrid closed-loop controller by comparing percentage of time in range, 70-180 mg/dL (3.9-10 mmol/L), mean glucose values, as well as percentage of time above and below target range between sensor-augmented pump therapy and hybrid closed-loop, in adults and adolescents with type 1 diabetes. We studied an initial cohort of 9 adults followed by a second cohort of 15 adolescents, using the Medtronic hybrid closed-loop system with the proportional-integral-derivative with insulin feed-back (PID-IFB) algorithm. Hybrid closed-loop was tested in supervised hotel-based studies over 4-5 days. The overall mean percentage of time in range (70-180 mg/dL, 3.9-10 mmol/L) during hybrid closed-loop was 71.8% in the adult cohort and 69.8% in the adolescent cohort. The overall percentage of time spent under 70 mg/dL (3.9 mmol/L) was 2.0% in the adult cohort and 2.5% in the adolescent cohort. Mean glucose values were 152 mg/dL (8.4 mmol/L) in the adult cohort and 153 mg/dL (8.5 mmol/L) in the adolescent cohort. Closed-loop control using the Medtronic hybrid closed-loop system enables adaptive, real-time basal rate modulation. Initializing hybrid closed-loop in clinical practice will involve individualizing initiation parameters to optimize overall glucose control. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Chemical decontamination for decommissioning purposes. (Vigorous decontamination tests of steel samples in a special test loop)

    International Nuclear Information System (INIS)

    Bregani, F.; Pascali, R.; Rizzi, R.

    1984-01-01

    The aim of the research activities described was to develop vigorous decontamination techniques for decommissioning purposes, taking into account the cost of treatment of the radwaste, to achieve possibly unrestricted release of the treated components, and to obtain know-how for in situ hard decontamination. The decontamination procedures for strong decontamination have been optimized in static and dynamic tests (DECO-loop). The best values have been found for: (i) hydrochloric acid: 4 to 5% vol. at low temperature, 0.7 to 1% vol. at high temperature (80 0 C); (ii) hydrofluoric plus nitric acid: 1.5% vol. HF + 5% vol. HNO 3 at low temperature; 0.3 to 0.5% vol. HF + 2.5 to 5% vol. HNO 3 at high temperature. High flow rates are not necessary, but a good re-circulation of the solution is needed. The final contamination levels, after total oxide removal, are in accordance with limits indicated for unrestricted release of materials in some countries. The arising of the secondary waste is estimated. Decontamination of a 10 m 2 surface would typically produce 0.5 to 3.0 kg of dry waste, corresponding to 1.6 to 10 kg of concrete conditioned waste

  2. Advanced Photovoltaic Inverter Functionality using 500 kW Power Hardware-in-Loop Complete System Laboratory Testing: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Mather, B. A.; Kromer, M. A.; Casey, L.

    2013-01-01

    With the increasing penetration of distribution connected photovoltaic (PV) systems, more and more PV developers and utilities are interested in easing future PV interconnection concerns by mitigating some of the impacts of PV integration using advanced PV inverter controls and functions. This paper describes the testing of a 500 kW PV inverter using Power Hardware-in-Loop (PHIL) testing techniques. The test setup is described and the results from testing the inverter in advanced functionality modes, not commonly used in currently interconnected PV systems, are presented. PV inverter operation under PHIL evaluation that emulated both the DC PV array connection and the AC distribution level grid connection are shown for constant power factor (PF) and constant reactive power (VAr) control modes. The evaluation of these modes was completed under varying degrees of modeled PV variability.

  3. Test Requirements and Conceptual Design for a Potassium Test Loop to Support an Advanced Potassium Rankine Cycle Power Conversion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, JR.G.L.

    2006-03-08

    Parameters for continuing the design and specification of an experimental potassium test loop are identified in this report. Design and construction of a potassium test loop is part of the Phase II effort of the project ''Technology Development Program for an Advanced Potassium Rankine Power Conversion System''. This program is supported by the National Aeronautics and Space Administration. Design features for the potassium test loop and its instrumentation system, specific test articles, and engineered barriers for ensuring worker safety and protection of the environment are described along with safety and environmental protection requirements to be used during the design process. Information presented in the first portion of this report formed the basis to initiate the design phase of the program; however, the report is a living document that can be changed as necessary during the design process, reflecting modifications as additional design details are developed. Some portions of the report have parameters identified as ''to be determined'' (TBD), reflecting the early stage of the overall process. In cases where specific design values are presently unknown, the report attempts to document the quantities that remain to be defined in order to complete the design of the potassium test loop and supporting equipment.

  4. The one-loop six-dimensional hexagon integral with three massive corners

    Energy Technology Data Exchange (ETDEWEB)

    Del Duca, Vittorio; /INFN /KIPAC, Menlo Park; Dixon, Lance J.; /SLAC /CERN; Drummond, James M.; /aff CERN /LAPTH, Annecy-le-Vieux; Duhr, Claude; /Durham U., IPPP /KIPAC, Menlo Park; Henn, Johannes M.; /Humboldt U., Berlin /KIPAC, Menlo Park; Smirnov, Vladimir A.; /Moscow State U.

    2011-11-04

    We compute the six-dimensional hexagon integral with three non-adjacent external masses analytically. After a simple rescaling, it is given by a function of six dual conformally invariant cross-ratios. The result can be expressed as a sum of 24 terms involving only one basic function, which is a simple linear combination of logarithms, dilogarithms, and trilogarithms of uniform degree three transcendentality. Our method uses differential equations to determine the symbol of the function, and an algorithm to reconstruct the latter from its symbol. It is known that six-dimensional hexagon integrals are closely related to scattering amplitudes in N = 4 super Yang-Mills theory, and we therefore expect our result to be helpful for understanding the structure of scattering amplitudes in this theory, in particular at two loops.

  5. Scoping erosion flow loop test results in support of Hanford WTP

    International Nuclear Information System (INIS)

    Duignan, M.; Imrich, K.; Fowley, M.; Restivo, M.; Reigel, M.

    2015-01-01

    The Waste Treatment and Immobilization Plant (WTP) will process Hanford Site tank waste by converting the waste into a stable glass form. Before the tank waste can be vitrified, the baseline plan is to process the waste through the Pretreatment (PT) Facility where it will be mixed in various process vessels using Pulse Jet Mixers (PJM) and transferred to the High Level Waste (HLW) or Low Activity Waste (LAW) vitrification facilities. The Department of Energy (DOE) and Defense Nuclear Facility Safety Board (DNFSB), as well as independent review groups, have raised concerns regarding the design basis for piping erosion in the PT Facility. Due to the complex nature of slurry erosion/corrosion wear and the unique conditions that exist within the PT Facility, additional testing has been recommended by these entities. Pipe loop testing is necessary to analyze the potential for localized wear at elbows and bends, close the outstanding PT and HLW erosion/corrosion technical issues, and underpin BNI's design basis for a 40-year operational life for black cell piping and vessels. SRNL is consulting with the DOE Office of River Protection (ORP) to resolve technical concerns related to piping erosion/corrosion (wear) design basis for PT. SRNL was tasked by ORP to start designing, building, and testing a flow loop to obtain long-term total-wear rate data using bounding simulant chemistry, operating conditions, and prototypical materials. The initial test involved a scoping paint loop to locate experimentally the potential high-wear locations. This information will provide a basis for the placement of the many sensitive wear measurement instruments in the appropriate locations so that the principal flow-loop test has the best chance to estimate long-term erosion and corrosion. It is important to note that the scoping paint loop test only utilized a bounding erosion simulant for this test. A full chemical simulant needs to be added for the complete test flow loop. The

  6. Experience with sodium purification on large-scale operational test loops in France

    International Nuclear Information System (INIS)

    Benoist, E.; Cambillard, M.; Quinet, J.L.

    1976-01-01

    The major characteristics of four large test loops operational in France are discussed and the sodium purification equipment used in conjunction with these test facilities and the purification monitoring devices and operational procedures are reviewed. Operating experience is also described with particular attention to three types of impurities: calcium from ''industrial grade'' sodium, oil from the mechanical pumps and hydrogen from the steam generators [fr

  7. Integrated, digital experiment transient control and safety protection of an in-pile test

    International Nuclear Information System (INIS)

    Thomas, R.W.; Whitacre, R.F.; Klingler, W.B.

    1982-01-01

    The Sodium Loop Safety Facility experimental program has demonstrated that in-pile loop fuel failure transient tests can be digitally controlled and protected with reliability and precision. This was done in four nuclear experiments conducted in the Engineering Test Reactor operated by EG and G Idaho, Inc., at the Idaho National Engineering Laboratory. Loop sodium flow and reactor power transients can be programmed to sponsor requirements and verified prior to the test. Each controller has redundancy, which reduces the effect of single failures occurring during test transients. Feedback and reject criteria are included in the reactor power control. Timed sequencing integrates the initiation of the controllers, programmed safety set-points, and other experiment actions (e.g., planned scram). Off-line and on-line testing is included. Loss-of-flow, loss-of-piping-integrity, boiling-window, transient-overpower, and local fault tests have been successfully run using this system

  8. High-Temperature Structural Analysis of a Small-Scale PHE Prototype under the Test Condition of a Small-Scale Gas Loop

    International Nuclear Information System (INIS)

    Song, K.; Hong, S.; Park, H.

    2012-01-01

    A process heat exchanger (PHE) is a key component for transferring the high-temperature heat generated from a very high-temperature reactor (VHTR) to a chemical reaction for the massive production of hydrogen. The Korea Atomic Energy Research Institute has designed and assembled a small-scale nitrogen gas loop for a performance test on VHTR components and has manufactured a small-scale PHE prototype made of Hastelloy-X alloy. A performance test on the PHE prototype is underway in the gas loop, where different kinds of pipelines connecting to the PHE prototype are tested for reducing the thermal stress under the expansion of the PHE prototype. In this study, to evaluate the high-temperature structural integrity of the PHE prototype under the test condition of the gas loop, a realistic and effective boundary condition imposing the stiffness of the pipelines connected to the PHE prototype was suggested. An equivalent spring stiffness to reduce the thermal stress under the expansion of the PHE prototype was computed from the bending deformation and expansion of the pipelines connected to the PHE. A structural analysis on the PHE prototype was also carried out by imposing the suggested boundary condition. As a result of the analysis, the structural integrity of the PHE prototype seems to be maintained under the test condition of the gas loop.

  9. The integration of water loop heat pump and building structural thermal storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Marseille, T.J.; Schliesing, J.S.

    1991-10-01

    Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

  10. Analyses of the Anticipated Operational Occurrences for the HANARO Fuel Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Sim, B. S.; Chi, D. Y.; Lee, C. Y.; Ahn, S. H

    2007-12-15

    The analyses of anticipated operational occurrences of the HANARO fuel test loop have been carried out by using the MARS/FTL{sub A} code, which is a modified version of the MARS code. A critical heat flux correlation on the three rods with triangular array was implemented in the MARS/FTL{sub A} code. The correlation was obtained from the critical heat fluxes measured at a test section, which is the same geometry of the in-pile test section of the HANARO fuel test loop. The anticipated operational occurrences of the HANARO fuel test loop are the inadvertent closure of the isolation valves, the over-power transient of the HANARO, the stuck open of the safety valves, and the loss of HANARO class IV power. A minimum DNBR (Departure from Nucleate Boiling Ratio) was predicted in the inadvertent closure of the isolation valves. It is indicated that the minimum DNBR of 1.85 is greater than the design limit DNBR of 1.39. The maximum coolant pressure calculated in the anticipated operational occurrences is also less than the 110 percents of the design pressure.

  11. Initial findings: The integration of water loop heat pump and building structural thermal storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Marseille, T.J.; Johnson, B.K.; Wallin, R.P.; Chiu, S.A.; Crawley, D.B.

    1989-01-01

    This report is one in a series of reports describing research activities in support of the US Department of Energy (DOE) Commercial Building System Integration Research Program. The goal of the program is to develop the scientific and technical basis for improving integrated decision-making during design and construction. Improved decision-making could significantly reduce buildings' energy use by the year 2010. The objectives of the Commercial Building System Integration Research Program are: to identify and quantify the most significant energy-related interactions among building subsystems; to develop the scientific and technical basis for improving energy related interactions in building subsystems; and to provide guidance to designers, owners, and builders for improving the integration of building subsystems for energy efficiency. The lead laboratory for this program is the Pacific Northwest Laboratory. A wide variety of expertise and resources from industry, academia, other government entities, and other DOE laboratories are used in planning, reviewing and conducting research activities. Cooperative and complementary research, development, and technology transfer activities with other interested organizations are actively pursued. In this report, the interactions of a water loop heat pump system and building structural mass and their effect on whole-building energy performance is analyzed. 10 refs., 54 figs., 1 tab.

  12. Major Achievements and Prospect of the ATLAS Integral Effect Tests

    Directory of Open Access Journals (Sweden)

    Ki-Yong Choi

    2012-01-01

    Full Text Available A large-scale thermal-hydraulic integral effect test facility, ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation, has been operated by KAERI. The reference plant of ATLAS is the APR1400 (Advanced Power Reactor, 1400 MWe. Since 2007, an extensive series of experimental works were successfully carried out, including large break loss of coolant accident tests, small break loss of coolant accident tests at various break locations, steam generator tube rupture tests, feed line break tests, and steam line break tests. These tests contributed toward an understanding of the unique thermal-hydraulic behavior, resolving the safety-related concerns and providing validation data for evaluation of the safety analysis codes and methodology for the advanced pressurized water reactor, APR1400. Major discoveries and lessons found in the past integral effect tests are summarized in this paper. As the demand for integral effect tests is on the rise due to the active national nuclear R&D program in Korea, the future prospects of the application of the ATLAS facility are also discussed.

  13. Major Achievements and Prospect of the ATLAS Integral Effect Tests

    International Nuclear Information System (INIS)

    Choi, K.; Kim, Y.; Song, C.; Baek, W.

    2012-01-01

    A large-scale thermal-hydraulic integral effect test facility, ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), has been operated by KAERI. The reference plant of ATLAS is the APR1400 (Advanced Power Reactor, 1400 MWe). Since 2007, an extensive series of experimental works were successfully carried out, including large break loss of coolant accident tests, small break loss of coolant accident tests at various break locations, steam generator tube rupture tests, feed line break tests, and steam line break tests. These tests contributed toward an understanding of the unique thermal-hydraulic behavior, resolving the safety-related concerns and providing validation data for evaluation of the safety analysis codes and methodology for the advanced pressurized water reactor, APR1400. Major discoveries and lessons found in the past integral effect tests are summarized in this paper. As the demand for integral effect tests is on the rise due to the active national nuclear R and D program in Korea, the future prospects of the application of the ATLAS facility are also discussed.

  14. Design, Development, and Testing of a UAV Hardware-in-the-Loop Testbed for Aviation and Airspace Prognostics Research

    Science.gov (United States)

    Kulkarni, Chetan; Teubert, Chris; Gorospe, George; Burgett, Drew; Quach, Cuong C.; Hogge, Edward

    2016-01-01

    The airspace is becoming more and more complicated, and will continue to do so in the future with the integration of Unmanned Aerial Vehicles (UAVs), autonomy, spacecraft, other forms of aviation technology into the airspace. The new technology and complexity increases the importance and difficulty of safety assurance. Additionally, testing new technologies on complex aviation systems & systems of systems can be very difficult, expensive, and sometimes unsafe in real life scenarios. Prognostic methodology provides an estimate of the health and risks of a component, vehicle, or airspace and knowledge of how that will change over time. That measure is especially useful in safety determination, mission planning, and maintenance scheduling. The developed testbed will be used to validate prediction algorithms for the real-time safety monitoring of the National Airspace System (NAS) and the prediction of unsafe events. The framework injects flight related anomalies related to ground systems, routing, airport congestion, etc. to test and verify algorithms for NAS safety. In our research work, we develop a live, distributed, hardware-in-the-loop testbed for aviation and airspace prognostics along with exploring further research possibilities to verify and validate future algorithms for NAS safety. The testbed integrates virtual aircraft using the X-Plane simulator and X-PlaneConnect toolbox, UAVs using onboard sensors and cellular communications, and hardware in the loop components. In addition, the testbed includes an additional research framework to support and simplify future research activities. It enables safe, accurate, and inexpensive experimentation and research into airspace and vehicle prognosis that would not have been possible otherwise. This paper describes the design, development, and testing of this system. Software reliability, safety and latency are some of the critical design considerations in development of the testbed. Integration of HITL elements in

  15. Design, development and test of a capillary pump loop heat pipe

    Science.gov (United States)

    Kroliczek, E. J.; Ku, J.; Ollendorf, S.

    1984-06-01

    The development of a capillary pump loop (CPL) heat pipe, including computer modeling and breadboard testing, is presented. The computer model is a SINDA-type thermal analyzer, combined with a pressure analyzer, which predicts the transients of the CPL heat pipe during operation. The breadboard is an aluminum/ammonia transport system which contains multiple parallel evaporator and condenser zones within a single loop. Test results have demonstrated the practicality and reliability of such a design, including heat load sharing among evaporators, liquid inventory/temperature control feature, and priming under load. Transport capability for this system is 65 KW-M with individual evaporator pumps managing up to 1.7 KW at a heat flux of 15 W/sq cm. The prediction of the computer model for heat transport capabilities is in good agreement with experimental results.

  16. Real-time open-loop frequency response analysis of flight test data

    Science.gov (United States)

    Bosworth, J. T.; West, J. C.

    1986-01-01

    A technique has been developed to compare the open-loop frequency response of a flight test aircraft real time with linear analysis predictions. The result is direct feedback to the flight control systems engineer on the validity of predictions and adds confidence for proceeding with envelope expansion. Further, gain and phase margins can be tracked for trends in a manner similar to the techniques used by structural dynamics engineers in tracking structural modal damping.

  17. Study on the high temperature, high pressure operation technique of fuel test loop

    International Nuclear Information System (INIS)

    Chi, Dae Young; Lee, Chung Young; Sim, Bong Shick; Kim, Jun Yun

    2001-04-01

    The project, 'Feasibility review on the installation of FTL in HANARO' charged by KISTEP has been performed for the technical evaluation of the steady state fuel test loop during 4 months from Dec. 2000 to Mar. 2001. This study describes the high temperature, high pressure technology of the FTL. This report includes the followings : - The construction of FTL - The operation schemes of the steady state - The operation procedures of FTL

  18. Study on the high temperature, high pressure operation technique of fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Dae Young; Lee, Chung Young; Sim, Bong Shick; Kim, Jun Yun

    2001-04-01

    The project, 'Feasibility review on the installation of FTL in HANARO' charged by KISTEP has been performed for the technical evaluation of the steady state fuel test loop during 4 months from Dec. 2000 to Mar. 2001. This study describes the high temperature, high pressure technology of the FTL. This report includes the followings : - The construction of FTL - The operation schemes of the steady state - The operation procedures of FTL.

  19. Hardware-in-the-Loop Testing of Utility-Scale Wind Turbine Generators

    Energy Technology Data Exchange (ETDEWEB)

    Schkoda, Ryan [Clemson Univ., SC (United States); Fox, Curtiss [Clemson Univ., SC (United States); Hadidi, Ramtin [Clemson Univ., SC (United States); Gevorgian, Vahan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wallen, Robb [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lambert, Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-26

    Historically, wind turbine prototypes were tested in the field, which was--and continues to be--a slow and expensive process. As a result, wind turbine dynamometer facilities were developed to provide a more cost-effective alternative to field testing. New turbine designs were tested and the design models were validated using dynamometers to drive the turbines in a controlled environment. Over the years, both wind turbine dynamometer testing and computer technology have matured and improved, and the two are now being joined to provide hardware-in-the-loop (HIL) testing. This type of testing uses a computer to simulate the items that are missing from a dynamometer test, such as grid stiffness, voltage, frequency, rotor, and hub. Furthermore, wind input and changing electric grid conditions can now be simulated in real time. This recent advance has greatly increased the utility of dynamometer testing for the development of wind turbine systems.

  20. The Analysis of Loop Seal Purge Time for the KHNP Pressurizer Safety Valve Test Facility Using the GOTHIC Code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ae; Kim, Chang Hyun; Kweon, Gab Joo; Park, Jong Woon [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2007-10-15

    The pressurizer safety valves (PSV) in Pressurized Water Reactors are required to provide the overpressure protection for the Reactor Coolant System (RCS) during the overpressure transients. Korea Hydro and Nuclear Power Company (KHNP) plans to build the PSV test facility for the purpose of providing the PSV pop-up characteristics and the loop seal dynamics for the new safety analysis. When the pressurizer safety valve is mounted in a loop seal configuration, the valve must initially pass the loop seal water prior to popping open on steam. The loop seal in the upstream of PSV prevents leakage of hydrogen gas or steam through the safety valve seat. This paper studies on the loop seal clearing dynamics using GOTHIC-7.2a code to verify the effects of loop seal purge time on the reactor coolant system overpressure.

  1. Integrated test schedule for buried waste integrated demonstration

    International Nuclear Information System (INIS)

    Brown, J.T.; McDonald, J.K.

    1992-05-01

    The Integrated Test Schedule incorporates the various schedules the Buried Waste Integrated Demonstration (BWID) supports into one document. This document contains the Federal Facilities Agreement and Consent Order schedules for the Idaho National Engineering Laboratory, Hanford Reservation, Oak Ridge Reservation, and Fernald Environmental Materials Center. Included in the Integrated Test Schedule is the Buried Waste Integrated Demonstration ''windows of opportunity'' schedule. The ''windows of opportunity'' schedule shows periods of time in which Buried Waste Integrated Demonstration Program-sponsored technology demonstrations could support key decisions in the Federal Facilities Agreement and Consent Order. Schedules for the Buried Waste Integrated Demonstration-sponsored technology task plans are categorized by technology area and divided by current fiscal year and out-year. Total estimated costs for Buried Waste Integrated Demonstration-sponsored Technology Task Plans for FY-92 through FY-97 are $74.756M

  2. EPRI flow-loop/in situ test program for motor-operated valves

    International Nuclear Information System (INIS)

    Hosler, J.F.; Dorfman, L.S.

    1994-01-01

    The Electric Power Research Institute is undertaking a comprehensive research program to develop and validate methods for predicting the performance of common motor-operated gate, global, and butterfly valves. To assess motor-operated valve (MOV) performance characteristics and provide a basis for methods validation, full-scale testing was conducted on 62 MOVs. Tests were performed in four flow-loop facilities and in nine nuclear units. Forty-seven gate, five globe, and 10 butterfly valves were tested under a wide range of flow and differential pressure conditions. The paper describes the test program scope, test configurations, instrumentation and data acquisition, testing approach, and data analysis methods. Key results are summarized

  3. An integrated nonlinear optical loop mirror in silicon photonics for all-optical signal processing

    Directory of Open Access Journals (Sweden)

    Zifei Wang

    2018-02-01

    Full Text Available The nonlinear optical loop mirror (NOLM has been studied for several decades and has attracted considerable attention for applications in high data rate optical communications and all-optical signal processing. The majority of NOLM research has focused on silica fiber-based implementations. While various fiber designs have been considered to increase the nonlinearity and manage dispersion, several meters to hundreds of meters of fiber are still required. On the other hand, there is increasing interest in developing photonic integrated circuits for realizing signal processing functions. In this paper, we realize the first-ever passive integrated NOLM in silicon photonics and demonstrate its application for all-optical signal processing. In particular, we show wavelength conversion of 10 Gb/s return-to-zero on-off keying (RZ-OOK signals over a wavelength range of 30 nm with error-free operation and a power penalty of less than 2.5 dB, we achieve error-free nonreturn to zero (NRZ-to-RZ modulation format conversion at 10 Gb/s also with a power penalty of less than 2.8 dB, and we obtain error-free all-optical time-division demultiplexing of a 40 Gb/s RZ-OOK data signal into its 10 Gb/s tributary channels with a maximum power penalty of 3.5 dB.

  4. NEXT Single String Integration Test Results

    Science.gov (United States)

    Soulas, George C.; Patterson, Michael J.; Pinero, Luis; Herman, Daniel A.; Snyder, Steven John

    2010-01-01

    As a critical part of NASA's Evolutionary Xenon Thruster (NEXT) test validation process, a single string integration test was performed on the NEXT ion propulsion system. The objectives of this test were to verify that an integrated system of major NEXT ion propulsion system elements meets project requirements, to demonstrate that the integrated system is functional across the entire power processor and xenon propellant management system input ranges, and to demonstrate to potential users that the NEXT propulsion system is ready for transition to flight. Propulsion system elements included in this system integration test were an engineering model ion thruster, an engineering model propellant management system, an engineering model power processor unit, and a digital control interface unit simulator that acted as a test console. Project requirements that were verified during this system integration test included individual element requirements ; integrated system requirements, and fault handling. This paper will present the results of these tests, which include: integrated ion propulsion system demonstrations of performance, functionality and fault handling; a thruster re-performance acceptance test to establish baseline performance: a risk-reduction PMS-thruster integration test: and propellant management system calibration checks.

  5. The One-Loop Six-Dimensional Hexagon Integral and its Relation to MHV Amplitudes in N=4 SYM

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Lance J.; /CERN /SLAC; Drummond, James M.; /CERN /Annecy, LAPTH; Henn, Johannes M.; /Humboldt U., Berlin

    2011-08-19

    We provide an analytic formula for the (rescaled) one-loop scalar hexagon integral {tilde {Phi}}{sub 6} with all external legs massless, in terms of classical polylogarithms. We show that this integral is closely connected to two integrals appearing in one- and two-loop amplitudes in planar N = 4 super-Yang-Mills theory, {Omega}{sup (1)} and {Omega}{sup (2)}. The derivative of {Omega}{sup (2)} with respect to one of the conformal invariants yields {tilde {Phi}}{sub 6}, while another first-order differential operator applied to {tilde {Phi}}{sub 6} yields {Omega}{sup (1)}. We also introduce some kinematic variables that rationalize the arguments of the polylogarithms, making it easy to verify the latter differential equation. We also give a further example of a six-dimensional integral relevant for amplitudes in N = 4 super-Yang-Mills.

  6. Two-phase flow patterns recognition and parameters estimation through natural circulation test loop image analysis

    International Nuclear Information System (INIS)

    Mesquita, R.N.; Libardi, R.M.P.; Masotti, P.H.F.; Sabundjian, G.; Andrade, D.A.; Umbehaun, P.E.; Torres, W.M.; Conti, T.N.; Macedo, L.A.

    2009-01-01

    Visualization of natural circulation test loop cycles is used to study two-phase flow patterns associated with phase transients and static instabilities of flow. Experimental studies on natural circulation flow were originally related to accidents and transient simulations relative to nuclear reactor systems with light water refrigeration. In this regime, fluid circulation is mainly caused by a driving force ('thermal head') which arises from density differences due to temperature gradient. Natural circulation phenomenon has been important to provide residual heat removal in cases of 'loss of pump power' or plant shutdown in nuclear power plant accidents. The new generation of compact nuclear reactors includes natural circulation of their refrigerant fluid as a security mechanism in their projects. Two-phase flow patterns have been studied for many decades, and the related instabilities have been object of special attention recently. Experimental facility is an all glass-made cylindrical tubes loop which contains about twelve demineralized water liters, a heat source by an electrical resistor immersion heater controlled by a Variac, and a helicoidal heat exchanger working as cold source. Data is obtained through thermo-pairs distributed over the loop and CCD cameras. Artificial intelligence based algorithms are used to improve (bubble) border detection and patterns recognition, in order to estimate and characterize, phase transitions patterns and correlate them with the periodic static instability (chugging) cycle observed in this circuit. Most of initial results show good agreement with previous numerical studies in this same facility. (author)

  7. Analysis of the October 5, 1979 lithium spill and fire in the Lithium Processing Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Maroni, V.A.; Beatty, R.A.; Brown, H.L.; Coleman, L.F.; Foose, R.M.; McPheeters, C.C.; Slawecki, M.; Smith, D.L.; Van Deventer, E.H.; Weston, J.R.

    1981-12-01

    On October 5, 1979, the Lithium Processing Test Loop (LPTL) developed a lithium leak in the electromagnetic (EM) pump channel, which damaged the pump, its surrounding support structure, and the underlying floor pan. A thorough analysis of the causes and consequences of the pump failure was conducted by personnel from CEN and several other ANL divisions. Metallurgical analyses of the elliptical pump channel and adjacent piping revealed that there was a significant buildup of iron-rich crystallites and other solid material in the region of the current-carrying bus bars (region of high magnetic field), which may have resulted in a flow restriction that contributed to the deterioration of the channel walls. The location of the failure was in a region of high residual stress (due to cold work produced during channel fabrication); this failure is typical of other cold work/stress-related failures encountered in components operated in forced-circulation lithium loops. Another important result was the isolation of crystals of a compound characterized as Li/sub x/CrN/sub y/. Compounds of this type are believed to be responsible for much of the Fe, Cr, and Ni mass transfer encountered in lithium loops constructed of stainless steel. The importance of nitrogen in the mass-transfer mechanism has long been suspected, but the existence of stable ternary Li-M-N compounds (M = Fe, Cr, Ni) had not previously been verified.

  8. Analysis of the October 5, 1979 lithium spill and fire in the Lithium Processing Test Loop

    International Nuclear Information System (INIS)

    Maroni, V.A.; Beatty, R.A.; Brown, H.L.; Coleman, L.F.; Foose, R.M.; McPheeters, C.C.; Slawecki, M.; Smith, D.L.; Van Deventer, E.H.; Weston, J.R.

    1981-12-01

    On October 5, 1979, the Lithium Processing Test Loop (LPTL) developed a lithium leak in the electromagnetic (EM) pump channel, which damaged the pump, its surrounding support structure, and the underlying floor pan. A thorough analysis of the causes and consequences of the pump failure was conducted by personnel from CEN and several other ANL divisions. Metallurgical analyses of the elliptical pump channel and adjacent piping revealed that there was a significant buildup of iron-rich crystallites and other solid material in the region of the current-carrying bus bars (region of high magnetic field), which may have resulted in a flow restriction that contributed to the deterioration of the channel walls. The location of the failure was in a region of high residual stress (due to cold work produced during channel fabrication); this failure is typical of other cold work/stress-related failures encountered in components operated in forced-circulation lithium loops. Another important result was the isolation of crystals of a compound characterized as Li/sub x/CrN/sub y/. Compounds of this type are believed to be responsible for much of the Fe, Cr, and Ni mass transfer encountered in lithium loops constructed of stainless steel. The importance of nitrogen in the mass-transfer mechanism has long been suspected, but the existence of stable ternary Li-M-N compounds (M = Fe, Cr, Ni) had not previously been verified

  9. Long Duration Life Test of Propylene Glycol Water Based Thermal Fluid Within Thermal Control Loop

    Science.gov (United States)

    Le, Hung; Hill, Charles; Stephan, Ryan A.

    2010-01-01

    Evaluations of thermal properties and resistance to microbial growth concluded that 50% Propylene Glycol (PG)-based fluid and 50% de-ionized water mixture was desirable for use as a fluid within a vehicle s thermal control loop. However, previous testing with a commercial mixture of PG and water containing phosphate corrosion inhibitors resulted in corrosion of aluminum within the test system and instability of the test fluid. This paper describes a follow-on long duration testing and analysis of 50% Propylene Glycol (PG)-based fluid and 50% de-ionized water mixture with inorganic corrosion inhibitors used in place of phosphates. The test evaluates the long-term fluid stability and resistance to microbial and chemical changes

  10. Process modelling and techno-economic analysis of natural gas combined cycle integrated with calcium looping

    Directory of Open Access Journals (Sweden)

    Erans María

    2016-01-01

    Full Text Available Calcium looping (CaL is promising for large-scale CO2 capture in the power generation and industrial sectors due to the cheap sorbent used and the relatively low energy penalties achieved with this process. Because of the high operating temperatures the heat utilisation is a major advantage of the process, since a significant amount of power can be generated from it. However, this increases its complexity and capital costs. Therefore, not only the energy efficiency performance is important for these cycles, but also the capital costs must be taken into account, i.e. techno-economic analyses are required in order to determine which parameters and configurations are optimal to enhance technology viability in different integration scenarios. In this study the integration scenarios of CaL cycles and natural gas combined cycles (NGCC are explored. The process models of the NGCC and CaL capture plant are developed to explore the most promising scenarios for NGCC-CaL integration with regards to efficiency penalties. Two scenarios are analysed in detail, and show that the system with heat recovery steam generator (HRSG before and after the capture plant exhibited better performance of 49.1% efficiency compared with that of 45.7% when only one HRSG is located after the capture plant. However, the techno-economic analyses showed that the more energy efficient case, with two HRSGs, implies relatively higher cost of electricity (COE, 44.1€/MWh, when compared to that of the reference plant system (33.1€/MWh. The predicted cost of CO2 avoided for the case with two HRSGS is 29.3 €/ton CO2.

  11. Hot-Loop Test for the Determination of Carbon Dioxide Production from Glucose by Lactic Acid Bacteria

    Science.gov (United States)

    Sperber, William H.; Swan, Janice

    1976-01-01

    A hot-loop test was found to be more rapid, convenient, and reliable for the detection of carbon dioxide production than were conventional methods such as displacement of agar plugs and precipitation in barium hydroxide. PMID:779651

  12. Flow and Heat Transfer Tests in New Loop at 2757 kPa (400 psi)

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-13

    A helium flow and heat transfer experiment has been designed for the new helium flow loop facility at LANL. This new facility is centered on an Aerzen GM 12.4 Root’s blower, selected for operation at higher pressure, up to 2757 kPa, and mass flow rate, up to 400 g/s. This replaces the previous Tuthill PD plus 3206 blower and loop limited to 2067 kPa (300 psi) and 100 g/s. The resistively heated test piece is comprised of 7 electric heaters with embedded thermocouples. The plant design for the Mo100 to Mo99 targets requires sharp bends and geometry changes in the helium flow tube immediately before and after the target. An idealized fully developed flow configuration with straight entry and exit will be tested and compared with an option that employs rectangular tubing to make the bend at a radius consistent with and practical for the actual plant design. The current plant design, with circular tubing and a sudden contraction to rectangular just prior to target entrance, will also be tested. This requires some modification of the test piece, as described in the report.

  13. Customer interface document for the Molten Salt Test Loop (MSTL) system.

    Energy Technology Data Exchange (ETDEWEB)

    Pettit, Kathleen; Kolb, William J.; Gill, David Dennis; Briggs, Ronald D.

    2012-03-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate 'solar salt' and can circulate the salt at pressure up to 600psi, temperature to 585 C, and flow rate of 400-600GPM depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

  14. Hardware in the loop simulation test platform of fuel cell backup system

    Directory of Open Access Journals (Sweden)

    Ma Tiancai

    2015-01-01

    Full Text Available Based on an analysis of voltage mechanistic model, a real-time simulation model of the proton exchange membrane (PEM fuel cell backup system is developed, and verified by the measurable experiment data. The method of online parameters identification for the model is also improved. Based on the software LabVIEW/VeriStand real-time environment and the PXI Express hardware system, the PEM fuel cell system controller hardware in the loop (HIL simulation plat-form is established. Controller simulation test results showed the accuracy of HIL simulation platform.

  15. Calibration and Application of the Field Instruments of a Fuel Test Loop

    International Nuclear Information System (INIS)

    Choi, Young-San; In, Won-Ho; Bae, Sang-Hoon; Kim, Sang-Jin; Jung, Hoan-Sung

    2007-01-01

    The Fuel Test Loop in HANARO is now in commissioning. The field instruments of the FTL were selected to secure stability and reliability of signals and they were self calibrated by the plant prior to the installation. The field instruments consist of thermometer, flowmeter, manometer, level meter and analyzer, and the standard measuring devices used for calibration were certified by the national calibration laboratory before use. This paper describes the calibration methods and results of field instruments for each parameter as well as any particulars and corrections identified during calibration. Also, it describes problems in using standard measuring devices employed for calibration

  16. Testing Superconductor Logic Integrated Circuits

    NARCIS (Netherlands)

    Arun, A.J.; Kerkhoff, Hans G.

    2005-01-01

    Superconductor logic has the potential of extremely low-power consumption and ultra-fast digital signal processing. Unfortunately, the obtained yield of the present processes is low and specific faults occur. This paper deals with fault-modelling, Design-for-Test structures, and ATPG for these

  17. Alternative loop rings

    CERN Document Server

    Goodaire, EG; Polcino Milies, C

    1996-01-01

    For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously. One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups. Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group ri

  18. Fully integrated low-noise readout circuit with automatic offset cancellation loop for capacitive microsensors.

    Science.gov (United States)

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-Il Dan; Ko, Hyoungho

    2015-10-14

    Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm². The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of -250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms.

  19. Advanced Photovoltaic Inverter Control Development and Validation in a Controller-Hardware-in-the-Loop Test Bed

    Energy Technology Data Exchange (ETDEWEB)

    Prabakar, Kumaraguru [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Shirazi, Mariko [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Singh, Akanksha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chakraborty, Sudipta [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-07

    Penetration levels of solar photovoltaic (PV) generation on the electric grid have increased in recent years. In the past, most PV installations have not included grid-support functionalities. But today, standards such as the upcoming revisions to IEEE 1547 recommend grid support and anti-islanding functions-including volt-var, frequency-watt, volt-watt, frequency/voltage ride-through, and other inverter functions. These functions allow for the standardized interconnection of distributed energy resources into the grid. This paper develops and tests low-level inverter current control and high-level grid support functions. The controller was developed to integrate advanced inverter functions in a systematic approach, thus avoiding conflict among the different control objectives. The algorithms were then programmed on an off-the-shelf, embedded controller with a dual-core computer processing unit and field-programmable gate array (FPGA). This programmed controller was tested using a controller-hardware-in-the-loop (CHIL) test bed setup using an FPGA-based real-time simulator. The CHIL was run at a time step of 500 ns to accommodate the 20-kHz switching frequency of the developed controller. The details of the advanced control function and CHIL test bed provided here will aide future researchers when designing, implementing, and testing advanced functions of PV inverters.

  20. Integration and Testing of IRMOS

    Science.gov (United States)

    MacKenty, J. W.; Ray, K.; Greenhouse, M. A.; Ohl, R. G.; Knutson, H. A.; Green, R. F.; IRMOS Team

    2003-12-01

    We are nearing completion of the Infrared Multi-Object spectrometer (IRMOS), a joint effort of the STScI, GSFC, and KPNO. IRMOS achieves simultaneous observations of up to 100 sources using a novel adjustable slit mask based on a Texas Instruments Digital Micromirror Device. This MEMS device provides a 848 x 600 element optical switch to select regions on the sky for spectroscopic observation. IRMOS is equipped with a 1024 x 1024 Rockwell Scientific HgCdTe Hawaii-1 detector array and gratings for R 300, 1000, and 3000 spectroscopy in the JHK bands (plus R 1000 in Z band). The IRMOS instrument has been assembled and is now in its final testing phase prior to delivery to KPNO in early 2004. We will discuss the current status and the measured performance of IRMOS.

  1. Natural Circulation High Pressure Loop Dynamics Around Operating Point, Tests and Modelling With Retran 02

    International Nuclear Information System (INIS)

    Masriera, N.A; Doval, A.S; Mazufri, C.M

    2000-01-01

    The Natural Circulation High Pressure Loop (CAPCN) reproduces in scale all the one-dimensional thermal-hydraulic phenomena occurring in the primary loop of CAREM-25 reactor.It plays an important role in the qualification process of calculating computer codes.This facility demanded to develop several technological solutions in order to achieve the measuring and control quality required by that process.This engineering and experimental development allowed completing the first stage of dynamic tests during 1998.The trends of recorded data were systematically evaluated in terms of the deviations of main variables in response to different perturbations.By this analysis a group of eight transients was selected, providing a Minimum Representative Set (MRS) of dynamic tests, allowing the evaluation of all dynamic phenomena.Each of these transients was simulated with RETRAN-02, using a spreadsheet to facilitate the consistent elaboration and modification of input files.Comparing measured data and computer simulations, it may be concluded that it is possible to reproduce the dynamic response of all the transients with a level of approximation quite homogeneous and generally acceptable.It is possible to identify the detailed physical models that fit better the dynamic phenomena, and which of the limitations of RETRAN code are more relevant

  2. Non-Parametric, Closed-Loop Testing of Autonomy in Unmanned Aircraft Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase II program aims to develop new methods to support safety testing for integration of Unmanned Aircraft Systems into the National Airspace (NAS)...

  3. Non-Parametric, Closed-Loop Testing of Autonomy in Unmanned Aircraft Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase I program aims to develop new methods to support safety testing for integration of Unmanned Aircraft Systems into the National Airspace (NAS) with...

  4. Modeling and Closed Loop Flight Testing of a Fixed Wing Micro Air Vehicle

    Directory of Open Access Journals (Sweden)

    Harikumar Kandath

    2018-03-01

    Full Text Available This paper presents the nonlinear six degrees of freedom dynamic modeling of a fixed wing micro air vehicle. The static derivatives of the micro air vehicle are obtained through the wind tunnel testing. The propeller effects on the lift, drag, pitching moment and side force are quantified through wind tunnel testing. The dynamic derivatives are obtained through empirical relations available in the literature. The trim conditions are computed for a straight and constant altitude flight condition. The linearized longitudinal and lateral state space models are obtained about trim conditions. The variations in short period mode, phugoid mode, Dutch roll mode, roll subsidence mode and spiral mode with respect to different trim operating conditions is presented. A stabilizing static output feedback controller is designed using the obtained model. Successful closed loop flight trials are conducted with the static output feedback controller.

  5. Functional Assessment of Battery Management System Tested on Hardware-in-the-Loop Simulator

    DEFF Research Database (Denmark)

    Kalogiannis, Theodoros; Stroe, Daniel-Ioan; Swierczynski, Maciej Jozef

    2017-01-01

    A Hardware-in-the-Loop (HIL) simulator renders possible to conduct on-line tests on Battery Management Systems (BMSs) with an emulated battery pack instead of a real one. In this case, the BMS can be repeatedly evaluated under the exact same experimental scenarios, with safety and accuracy......, or under a flexible and beyond the normal operation area range, with less cost and time efforts. For this purpose, a multi-cell Li-ion battery pack consisting of 32 cells in series has been implemented and validated based on experimental results, converted into C code and emulated through the HIL simulator....... The BMS under test is interacting in real-time with the emulated battery pack and several of its functions such as current, voltage and State of Charge (SOC) estimation are evaluated. Also, passive balancing experiments are conducted during charging in order to assess different balancing settings...

  6. Neurochemostat: A Neural Interface SoC with Integrated Chemometrics for Closed-Loop Regulation of Brain Dopamine

    Science.gov (United States)

    Bozorgzadeh, Bardia; Schuweiler, Douglas R.; Bobak, Martin J.; Garris, Paul A.; Mohseni, Pedram

    2016-01-01

    This paper presents a 3.3 × 3.2mm2 system-on-chip (SoC) fabricated in AMS 0.35µm 2P/4M CMOS for closed-loop regulation of brain dopamine. The SoC uniquely integrates neurochemical sensing, on-the-fly chemometrics, and feedback-controlled electrical stimulation to realize a “neurochemostat” by maintaining brain levels of electrically evoked dopamine between two user-set thresholds. The SoC incorporates a 90µW, custom-designed, digital signal processing (DSP) unit for real-time processing of neurochemical data obtained by 400V/s fast-scan cyclic voltammetry (FSCV) with a carbon-fiber microelectrode (CFM). Specifically, the DSP unit executes a chemometrics algorithm based upon principal component regression (PCR) to resolve in real time electrically evoked brain dopamine levels from pH change and CFM background-current drift, two common interferents encountered using FSCV with a CFM in vivo. Further, the DSP unit directly links the chemically resolved dopamine levels to the activation of the electrical microstimulator in on-off-keying (OOK) fashion. Measured results from benchtop testing, flow injection analysis (FIA), and biological experiments with an anesthetized rat are presented. PMID:26390501

  7. Closed Loop Fluid Delivery System

    Science.gov (United States)

    2014-02-28

    loop fluid delivery system (CLFDS) will integrate a vital signs monitor ( VSM ) and high speed infusion pump (Pump) to respond quickly to drops in...Interface (GUI) shows VSM data, allows the user to select from several injury types (head, uncontrolled hemorrhage, controlled hemorrhage, and three total...the bedrock for future Closed Loop Fluid System Pre-Market Approval application(s) to FDA. 6. Major Issues Clinical study testing revealed a

  8. Testing SUSY at the LHC: Electroweak and Dark matter fine tuning at two-loop order

    CERN Document Server

    Cassel, S; Ross, G G

    2010-01-01

    In the framework of the Constrained Minimal Supersymmetric Standard Model (CMSSM) we evaluate the electroweak fine tuning measure that provides a quantitative test of supersymmetry as a solution to the hierarchy problem. Taking account of current experimental constraints we compute the fine tuning at two-loop order and determine the limits on the CMSSM parameter space and the measurements at the LHC most relevant in covering it. Without imposing the LEPII bound on the Higgs mass, it is shown that the fine tuning computed at two-loop has a minimum $\\Delta=8.8$ corresponding to a Higgs mass $m_h=114\\pm 2$ GeV. Adding the constraint that the SUSY dark matter relic density should be within present bounds we find $\\Delta=15$ corresponding to $m_h=114.7\\pm 2$ GeV and this rises to $\\Delta=17.8$ ($m_h=115.9\\pm 2$ GeV) for SUSY dark matter abundance within 3$\\sigma$ of the WMAP constraint. We extend the analysis to include the contribution of dark matter fine tuning. In this case the overall fine tuning and Higgs mas...

  9. A Proportional Integral Derivative (PID Feedback Control without a Subsidiary Speed Loop

    Directory of Open Access Journals (Sweden)

    M. Aboelhassan

    2008-01-01

    Full Text Available The aim of this investigation is to design and describe the essential features of a brushless direct-current (BLDC motor. The static and dynamical state of the BLDC-Motor is designed and calculated.Within this frame-work, it has been shown that while working with the P-controller in conjunction with the subsidiary speed loop and PD-controller (with non-zero error in a steady state without a subsidiary speed loop, there is PID-controller without a subsidiary speed loop which has zero error in a steady state. The last part of this paper is dedicated to a simulation of the circle rounds of P and PID controllers with and without a subsidiary speed loop in MATLAB–SIMULINK to decide which of these controllers is suitable, available and reliable with a BLDC-Motor and their application in cutting tool machines in general. 

  10. Complex plane integration in the modelling of electromagnetic fields in layered media: part 1. Application to a very large loop

    International Nuclear Information System (INIS)

    Da Silva e Silva, Valdelírio; Régis, Cícero; Howard, Allen Q Jr

    2014-01-01

    This paper analyses the details of a procedure for the numerical integration of Hankel transforms in the calculation of the electromagnetic fields generated by a large horizontal loop over a 1D earth. The method performs the integration by deforming the integration path into the complex plane and applying Cauchy's theorem on a modified version of the integrand. The modification is the replacement of the Bessel functions J 0 and J 1 by the Hankel functions H 0 (1) and H 1 (1) respectively. The integration in the complex plane takes advantage of the exponentially decaying behaviour of the Hankel functions, allowing calculation on very small segments, instead of the infinite line of the original improper integrals. A crucial point in this problem is the location of the poles. The companion paper shows two methods to estimate the pole locations. We have used this method to calculate the fields of very large loops. Our results show that this method allows the estimation of the integrals with fewer evaluations of the integrand functions than other methods. (paper)

  11. Asymptotic theory of integrated conditional moment tests

    NARCIS (Netherlands)

    Bierens, H.J.; Ploberger, W.

    1995-01-01

    In this paper we derive the asymptotic distribution of the test statistic of a generalized version of the integrated conditional moment (ICM) test of Bierens (1982, 1984), under a class of Vn-local alternatives, where n is the sample size. The generalized version involved includes neural network

  12. A SOLAS challenge: How can we test test feedback loops involving air-sea exchange?

    Science.gov (United States)

    Huebert, B. J.

    2004-12-01

    It is now well accepted that the Earth System links biological and physical processes in the water, on land, and in the air, creating countless feedback loops and dependencies that are at best difficult to quantify. One example of interest to SOLAS scientists is the suspension and long-range transport of dust from Asia, which may or may not interact with acidic air pollutants, that may increase the biological availability of iron, thereby increasing primary productivity in parts of the Pacific. This could increase DMS emissions and modify the radiative impact of Pacific clouds, affecting the climate and the hydrological system that limits the amount of dust lofted each year. Air-sea exchange is central to many such feedbacks: Variations in productivity in upwelling waters off Peru probably change DMS emissions and modify the stratocumulus clouds that blanket that region, thereby feeding back to productivity. The disparate time and space scales of the controlling processes make it difficult to observationally constrain such systems without the use of multi-year time-series and intensive multiplatform process studies. Unfortunately, much of the infrastructure for funding Earth science is poorly suited for supporting multidisciplinary research. For example, NSF's program managers are organized into disciplines and sub-disciplines, and rely on disciplinary reviewer communities that are protective of their slices of the funding pie. It is easy to find authors of strong, innovative, cross-disciplinary (yet unsuccessful) proposals who say they'll never try it again, because there is so little institutional support for interfacial research. Facility issues also complicate multidisciplinary projects, since there are usually several allocating groups that don't want to commit their ships, airplanes, or towers until the other groups have done so. The result is that there are very few examples of major interdisciplinary projects, even though IGBP core programs have articulated

  13. Integration of a turbine expander with an exothermic reactor loop--Flow sheet development and application to ammonia production

    International Nuclear Information System (INIS)

    Greeff, I.L.; Visser, J.A.; Ptasinski, K.J.; Janssen, F.J.J.G.

    2003-01-01

    This paper investigates the direct integration of a gas turbine power cycle with an ammonia synthesis loop. Such a loop represents a typical reactor-separator system with a recycle stream and cold separation of the product from the recycle loop. The hot reaction products are expanded directly instead of raising steam in a waste heat boiler to drive a steam turbine. Two new combined power and chemicals production flow sheets are developed for the process. The flow sheets are simulated using the flow sheet simulator AspenPlus (licensed by Aspen Technology, Inc.) and compared to a simulated conventional ammonia synthesis loop. The comparison is based on energy as well as exergy analysis. It was found that the pressure ratio over the turbine expander plays an important role in optimisation of an integrated system, specifically due to the process comprising an equilibrium reaction. The inlet temperature to the reactor changes with changing pressure ratio, which in turn determines the conversion and consequently the heat of reaction that is available to produce power. In terms of the minimum work requirement per kg of product a 75% improvement over the conventional process could be obtained. The work penalty due to refrigeration needed for separation was also accounted for. Furthermore this integrated flow sheet also resulted in a decrease in exergy loss and the loss was more evenly distributed between the various unit operations. A detailed exergy analysis over the various unit operations proved to be useful in explaining the overall differences in exergy loss between the flow sheets

  14. Study on the requirement for the fuel test loop performance in the HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Chul; Kim, Hark Rho

    2000-06-01

    The requirement of the FTL (Fuel Test Loop) performance were investigated to reaffirm the technical feasibility of the FTL facility which is in consideration to install at the HANARO. LH hole in the reflector region and OR3 in the outer core region are considered as candidate sites for the IPS (In-Pile Section) for the analysis purpose. The achievable linear power at test fuel pin(s) and neutron flux levels at the cladding are analyzed in the IPS, which accommodates CANDU or PWR test fuel. The enrichment of test fuels is assumed as natural uranium for CANDU and 3.5% or 5% for PWR. The test fuel configuration is bundle or 7-pin in LH hole but 1-pin in OR site. For the CANDU test fuel, the target linear power of 60kW/m can not be achieved for all cases. For the PWR test fuel, the target linear power of 40kW/m is obtained at fuels located in the direction of the core for only the case of 5% bundle irradiation. From a sensitivity study, the linear power at test fuel is expected to increase at least 30% of the present results if the core bumup effect, optimization of the ratio of fuel-to-moderator number density, etc., are considered in the detail design. Thus, the linear power for PWR fuel is expected to reach the target value, and that for CANDU fuel will reach the target value if enriched fuel is used. The fast neutron flux at the test fuel cladding is estimated for most cases to be lower than one-third of the target value of 10{sup 1}4 n/cm{sup 2}-sec and expected not to reach the target value.

  15. Two-loop planar master integrals for Higgs →3 partons with full heavy-quark mass dependence

    International Nuclear Information System (INIS)

    Bonciani, Roberto; Duca, Vittorio Del; Frellesvig, Hjalte; Henn, Johannes M.; Moriello, Francesco; Smirnov, Vladimir A.

    2016-01-01

    We present the analytic computation of all the planar master integrals which contribute to the two-loop scattering amplitudes for Higgs→3 partons, with full heavy-quark mass dependence. These are relevant for the NNLO corrections to fully inclusive Higgs production and to the NLO corrections to Higgs production in association with a jet, in the full theory. The computation is performed using the differential equations method. Whenever possible, a basis of master integrals that are pure functions of uniform weight is used. The result is expressed in terms of one-fold integrals of polylogarithms and elementary functions up to transcendental weight four. Two integral sectors are expressed in terms of elliptic integrals. We show that by introducing a one-dimensional parametrization of the integrals the relevant second order differential equation can be readily solved, and the solution can be expressed to all orders of the dimensional regularization parameter in terms of iterated integrals over elliptic kernels. We express the result for the elliptic sectors in terms of two and three-fold iterated integrals, which we find suitable for numerical evaluations. This is the first time that four-point multiscale Feynman integrals have been computed in a fully analytic way in terms of elliptic integrals.

  16. Development of Integral Effect Test Facility P and ID and Technical Specification for SMART Fluid System

    International Nuclear Information System (INIS)

    Lee, Sang Il; Jung, Y. H.; Yang, H. J.; Song, S. Y.; Han, O. J.; Lee, B. J.; Kim, Y. A.; Lim, J. H.; Park, K. W.; Kim, N. G.

    2010-01-01

    SMART integral test loop is the thermal hydraulic test facility with a high pressure and temperature for simulating the major systems of the prototype reactor, SMART-330. The objective of this project is to conduct the basic design for constructing SMART ITL. The major results of this project include a series of design documents, technical specifications and P and ID. The results can be used as the fundamental materials for making the detailed design which is essential for manufacturing and installing SMART ITL

  17. Clinical governance in practice: closing the loop with integrated audit systems.

    Science.gov (United States)

    Taylor, L; Jones, S

    2006-04-01

    Clinical governance has been acknowledged as the driving force behind National Health Service (NHS) reform since the government white paper outlined a new style of NHS in the UK in 1997. The framework of clinical governance ensures that NHS organizations are accountable for continually improving the quality of their services and safeguarding high standards of care by creating an environment in which excellence in clinical care will develop. A major component of a clinical governance framework requires utilizing audit procedures, which assess the effectiveness of current systems and ultimately direct continual quality improvement. This paper describes the audit component of a local clinical governance framework designed for a unit based within an NHS trust, which has utilized a multidisciplinary approach to assess the effectiveness of a newly commissioned service and its impact on the residents and staff. The unit is a 12-bedded, low-secure-intensive rehabilitation unit for clients with severe and enduring mental illness. Using recognized and standardized psychometric outcome measures, information was collected on clinical symptoms, social functioning, social behaviour, quality of life, relationship quality with named nurses and medication side-effects. Additionally, confidential staff measures were included to assess levels of burnout, identify expressed emotion and assess staff perception of models of illness. The paper includes a comprehensive account of how managerial commitment, teaching processes and application of technology ensured prompt data collection and maintained the momentum through the audit timescale. Data analysis and presentation of data in both clinical reviews and in senior management meetings within the unit are discussed. Findings highlight the full integration of the audit system into the processes of the unit. Clinically, the paper highlights the enhancement of the knowledge base of the client group and the influence on clinical decision

  18. Integration and Testing of LCS Software

    Science.gov (United States)

    Wang, John

    2014-01-01

    Kennedy Space Center is in the midst of developing a command and control system for the launch of the next generation manned space vehicle. The Space Launch System (SLS) will launch using the new Spaceport Command and Control System (SCCS). As a member of the Software Integration and Test (SWIT) Team, command scripts, and bash scripts were written to assist in integration and testing of the Launch Control System (LCS), which is a component of SCCS. The short term and midterm tasks are for the most part completed. The long term tasks if time permits will require a presentation and demonstration.

  19. Thermal Vacuum Testing of a Helium Loop Heat Pipe for Large Area Cryocooling

    Science.gov (United States)

    Ku, Jentung; Robinson, Franklin

    2016-01-01

    A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.

  20. Multiloop integral system test (MIST): Final report

    International Nuclear Information System (INIS)

    Gloudemans, J.R.

    1991-04-01

    The Multiloop Integral System Test (MIST) is part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock and Wilcox designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the Babcock ampersand Wilcox Owners Group, the Electric Power Research Institute, and Babcock and Wilcox. The unique features of the Babcock and Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral facilities to address the thermal-hydraulic SBLOCA questions. MIST was specifically designed and constructed for this program, and an existing facility -- the Once Through Integral System (OTIS) -- was also used. Data from MIST and OTIS are used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predicting abnormal plant transients. The MIST program is reported in 11 volumes. Volumes 2 through 8 pertain to groups of Phase 3 tests by type; Volume 9 presents inter-group comparisons; Volume 10 provides comparisons between the RELAP5/MOD2 calculations and MIST observations, and Volume 11 (with addendum) presents the later Phase 4 tests. This is Volume 1 of the MIST final report, a summary of the entire MIST program. Major topics include, Test Advisory Group (TAG) issues, facility scaling and design, test matrix, observations, comparison of RELAP5 calculations to MIST observations, and MIST versus the TAG issues. MIST generated consistent integral-system data covering a wide range of transient interactions. MIST provided insight into integral system behavior and assisted the code effort. The MIST observations addressed each of the TAG issues. 11 refs., 29 figs., 9 tabs

  1. MTR and PWR/PHWR in-pile loop safety in integration with the operation of multipurpose reactor - GAS

    International Nuclear Information System (INIS)

    Suharno; Aji, Bintoro; Sugiyanto; Rohman, Budi; Zarkasi, Amin S.; Giarno

    1998-01-01

    MTR and PWR/PHWR In-Pile Loop safety analysis in integration with the operation of Multipurpose Reactor - Gas has been carried out and completed. The assessment is emphasized on the function of the interface systems from the dependence of the operation and the evaluation to the possibility of leakage or failure of the in-pile part inside the reactor pool and reactor core. The analysis is refers to the logic function of the interface system and the possibility of leakage or failure of the in-pile part inside reactor pool and reactor core to consider the integrity of the core qualitatively. The results show that in normal and in transient conditions , the interface system meet the function requirement in safe integrated operation of in-pile loop and reactor. And the results of the possibility analysis of the leakage shows that the possibility based on mechanically assessment is very low and the impact to core integrity is nothing or can be eliminated. The possible position for leakage is on the flen on which one meter above the top level of the core, therefore no influence of leakage to the core

  2. A novel network integrating a miRNA-203/SNAI1 feedback loop which regulates epithelial to mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Michèle Moes

    Full Text Available BACKGROUND: The majority of human cancer deaths are caused by metastasis. The metastatic dissemination is initiated by the breakdown of epithelial cell homeostasis. During this phenomenon, referred to as epithelial to mesenchymal transition (EMT, cells change their genetic and trancriptomic program leading to phenotypic and functional alterations. The challenge of understanding this dynamic process resides in unraveling regulatory networks involving master transcription factors (e.g. SNAI1/2, ZEB1/2 and TWIST1 and microRNAs. Here we investigated microRNAs regulated by SNAI1 and their potential role in the regulatory networks underlying epithelial plasticity. RESULTS: By a large-scale analysis on epithelial plasticity, we highlighted miR-203 and its molecular link with SNAI1 and the miR-200 family, key regulators of epithelial homeostasis. During SNAI1-induced EMT in MCF7 breast cancer cells, miR-203 and miR-200 family members were repressed in a timely correlated manner. Importantly, miR-203 repressed endogenous SNAI1, forming a double negative miR203/SNAI1 feedback loop. We integrated this novel miR203/SNAI1 with the known miR200/ZEB feedback loops to construct an a priori EMT core network. Dynamic simulations revealed stable epithelial and mesenchymal states, and underscored the crucial role of the miR203/SNAI1 feedback loop in state transitions underlying epithelial plasticity. CONCLUSION: By combining computational biology and experimental approaches, we propose a novel EMT core network integrating two fundamental negative feedback loops, miR203/SNAI1 and miR200/ZEB. Altogether our analysis implies that this novel EMT core network could function as a switch controlling epithelial cell plasticity during differentiation and cancer progression.

  3. Hardware in the Loop Testing of an Iodine-Fed Hall Thruster

    Science.gov (United States)

    Polzin, Kurt A.; Peeples, Steven R.; Cecil, Jim; Lewis, Brandon L.; Molina Fraticelli, Jose C.; Clark, James P.

    2015-01-01

    chamber (it is under 10(exp -6) torr at -75 C), making it possible to 'cryopump' the propellant with lower-cost recirculating refrigerant-based systems as opposed to using liquid nitrogen or low temperature gaseous helium cryopanels. In the present paper, we describe testing performed using an iodine-fed 200 W Hall thruster mounted to a thrust stand and operated in conjunction with MSFCs Small Projects Rapid Integration and Test Environment (SPRITE) Portable Hardware In the Loop (PHIL) hardware. This work is performed in support of the iodine satellite (iSAT) project, which aims to fly a 200-W iodine-fed thruster on a 12-U CubeSat. The SPRITE PHIL hardware allows a given vehicle to do a checkout of its avionics algorithm by allowing it to monitor and feed data to simulated sensors and effectors in a digital environment. These data are then used to determine the attitude of the vehicle and a separate computer is used to interpret the data set and visualize it using a 3D graphical interface. The PHIL hardware allows the testing of the vehicles bus by providing 'real' hardware interfaces (in the case of this test a real RS422 bus) and specific components can be modeled to show their interactions with the avionics algorithm (e.g. a thruster model). For the iSAT project the PHIL is used to visualize the operating cycle of the thruster and the subsequent effect this thrusting has on the attitude of the satellite over a given period of time. The test is controlled using software running on an Andrews Space Cortex 160 flight computer. This computer is the current baseline for a full iSAT mission. While the test could be conducted with a lab computer and software, the team chose to exercise the propulsion system with a representative CubeSat-class computer. For purposes of this test, the "flight" software monitored the propulsion and PPU systems, controlled operation of the thruster, and provided thruster state data to the PHIL simulation. Commands to operate the thruster were

  4. A lab-on-a-chip system with integrated sample preparation and loop-mediated isothermal amplification for rapid and quantitative detection of Salmonella spp. in food samples

    DEFF Research Database (Denmark)

    Sun, Yi; Than Linh, Quyen; Hung, Tran Quang

    2015-01-01

    Foodborne disease is a major public health threat worldwide. Salmonellosis, an infectious disease caused by Salmonella spp., is one of the most common foodborne diseases. Isolation and identification of Salmonella by conventional bacterial culture or molecular-based methods are time consuming...... and usually take a few hours to days to complete. In response to the demand for rapid on line or at site detection of pathogens, in this study, we describe for the first time an eight-chamber lab-on-a-chip (LOC) system with integrated magnetic beads-based sample preparation and loop-mediated isothermal...... was capable to detect Salmonella at concentration of 50 cells per test within 40 min. The simple design, together with high level of integration, isothermal amplification, and quantitative analysis of multiple samples in short time will greatly enhance the practical applicability of the LOC system for rapid...

  5. Integrated defense system framework and high fidelity hardware-in-the-loop sensor stimulators

    Science.gov (United States)

    Buford, James A., Jr.; Barnett, Thomas C., Jr.; Vatz, Bernard W., II; Williams, M. Joshua; Van Bebber, James; Burson, Cliff

    2008-04-01

    The Strategic Defense Center of the U.S. Army Aviation and Missile Research, Development and Engineering Center (AMRDEC), System Simulation and Development Directorate (SS&DD) provides modeling and simulation (M&S) tools, providing medium and hi-fi sensor stimulation, and test control frameworks to evaluate performance of integrated defense systems. These systems include hardware and software representations provided by and operated by Service Program Offices or their representatives. The representations are geographically distributed, but linked together to provide a dynamic, real-time, interactive test environment that is centrally controlled and synchronized through Global Positioning System (GPS) sources. The distributed nodes and the central control facility communicate through the Single Stimulation Framework (SSF). Operation of the SSF provides characterization and assessment of the integrated defense systems. This paper will summarize the concept, features, and functions of the SSF. The complex communications will be discussed, as well as the philosophy of stimulating the participating system components externally with consistent scenarios and truth state data that will bypass the simulation of these events by the individual participants.

  6. An Integrated Photoelectrochemical-Chemical Loop for Solar-Driven Overall Splitting of Hydrogen Sulfide

    DEFF Research Database (Denmark)

    Zong, Xu; Han, Jingfeng; Seger, Brian

    2014-01-01

    Abundant and toxic hydrogen sulfide (H2S) from industry and nature has been traditionally considered a liability. However, it represents a potential resource if valuable H-2 and elemental sulfur can be simultaneously extracted through a H2S splitting reaction. Herein a photochemical-chemical loop...

  7. Integrated open loop control and design of a food storage room

    NARCIS (Netherlands)

    van Mourik, S.; Zwart, Heiko J.; Keesman, K.J.

    2009-01-01

    Usually, control design in a food storage room takes place after the plant has been designed. However, the performance of the plant connected to the controller might be improved by simultaneous design of the plant and the controller. In the case of open loop control, expressions that describe the

  8. Appell functions and the scalar one-loop three-point integrals in Feynman diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Cabral-Rosetti, L G [Departamento de Posgrado, Centro Interdisciplinario de Investigacion y Docencia en Educacion Tecnica (CIIDET), Av. Universidad 282 Pte., Col. Centro, A. Postal 752, C.P. 76000, Santiago de Queretaro, Qro. (Mexico); Sanchis-Lozano, M A [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, 46100 Burjassot, Valencia (Spain)

    2006-05-15

    The scalar three-point function appearing in one-loop Feynman diagrams is compactly expressed in terms of a generalized hypergeometric function of two variables. Use is made of the connection between such Appell function and dilogarithms coming from a previous investigation. Special cases are obtained for particular values of internal masses and external momenta.

  9. Integrating a web-based system with business processes in closed loop supply chains

    NARCIS (Netherlands)

    A.I. Kokkinaki; R. Dekker (Rommert); R. Lee; C.P. Pappis (Costas)

    2001-01-01

    textabstractClosed Loop Supply Chains include operations for physical collection of end-of-use products, selection based on their configuration and/or condition and decision making for reuse, remanufacturing or recycling. Uncertainty factors regarding the time, place of origin, and status of

  10. The Impact of Curriculum Looping on Standardized Literacy and Mathematics Test Scores

    Science.gov (United States)

    Nessler, Ralph D.

    2010-01-01

    There is a lack of research on the practice of curriculum looping and student achievement. The purpose of this study was to examine academic achievement between students in looping classes and those in nonlooping classes. The theoretical model of this study was based on the social cognitive theory of Bandura and Maslow's hierarchy of needs theory.…

  11. Excitation power quantities in phase resonance testing of nonlinear systems with phase-locked-loop excitation

    Science.gov (United States)

    Peter, Simon; Leine, Remco I.

    2017-11-01

    Phase resonance testing is one method for the experimental extraction of nonlinear normal modes. This paper proposes a novel method for nonlinear phase resonance testing. Firstly, the issue of appropriate excitation is approached on the basis of excitation power considerations. Therefore, power quantities known from nonlinear systems theory in electrical engineering are transferred to nonlinear structural dynamics applications. A new power-based nonlinear mode indicator function is derived, which is generally applicable, reliable and easy to implement in experiments. Secondly, the tuning of the excitation phase is automated by the use of a Phase-Locked-Loop controller. This method provides a very user-friendly and fast way for obtaining the backbone curve. Furthermore, the method allows to exploit specific advantages of phase control such as the robustness for lightly damped systems and the stabilization of unstable branches of the frequency response. The reduced tuning time for the excitation makes the commonly used free-decay measurements for the extraction of backbone curves unnecessary. Instead, steady-state measurements for every point of the curve are obtained. In conjunction with the new mode indicator function, the correlation of every measured point with the associated nonlinear normal mode of the underlying conservative system can be evaluated. Moreover, it is shown that the analysis of the excitation power helps to locate sources of inaccuracies in the force appropriation process. The method is illustrated by a numerical example and its functionality in experiments is demonstrated on a benchmark beam structure.

  12. Analysis of fission product behavior in the Saclay Spitfire Loop Test SSL-1. [HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, D.D.; Haire, M.J.; Ballagny, A.

    1978-02-01

    The behavior of the fission metal cesium and the fission gases krypton and xenon in the Saclay Spitfire Loop SSL-1 test has been compared to that predicted using General Atomic reference data and computer code models. This is the first in a series of analyses planned in order to provide quantitative validation of HTGR fission product design methods. In this analysis, the first attempt to rigorously verify fission product design methods, the FIPERQ code was used to model the diffusion of cesium graphite and release to the coolant stream. The comparisons showed that the cesium profile shape in the graphite web and the partition coefficient between fuel rod matrix material and fuel element graphite were correctly modeled, although the overall release was significantly underpredicted. Uncertainties in the source term (fissile particle failure fraction) and total release to the coolant precluded an accurate appraisal of the validity of FIPERQ. However, several recommendations are presented to improve the applicability of future in-pile test data for the validation of fission metal release codes. The half-life dependence of fission gas release during irradiation was found to be in good agreement with the model used in the reference design materials, providing assurance that this aspect of the fission gas release predictions is properly modeled.

  13. Thermal performance test of hot gas ducts of helium engineering demonstration loop (HENDEL)

    International Nuclear Information System (INIS)

    Hishida, Makoto; Kunitomi, Kazuhiko; Ioka, Ikuo; Umenishi, Koji; Kondo, Yasuo; Tanaka, Toshiyuki; Shimomura, Hiroaki

    1984-01-01

    A hot gas duct provided with internal thermal insulation is supposed to be used for an experimental very high-temperature gas-cooled reactor (VHTR) which has been developed by the Japan Atomic Energy Research Institute (JAERI). This type of hot gas duct has not been used so far in industrial facilities, and only a couple of tests on such a large-scale model of hot gas duct have been conducted. The present test was to investigate the thermal performance of the hot gas ducts which are installed as parts of a helium engineering demonstration loop (HENDEL) of JAERI. Uniform temperature and heat flux distributions at the surface of the duct were observed, the experimental correlation being obtained for the effective thermal conductivity of the internal thermal insulation layer. The measured temperature distribution of the pressure tube was in good agreement with the calculation by a TRUMP heat transfer computer code. The temperature distribution of the inner tube of VHTR hot gas duct was evaluated, and no hot spot was detected. These results would be very valuable for the design and development of VHTR. (author)

  14. Two-loop planar master integrals for the production of off-shell vector bosons in hadron collisions

    International Nuclear Information System (INIS)

    Henn, Johannes M.; Melnikov, Kirill; Smirnov, Vladimir A.

    2014-01-01

    We describe the calculation of all planar master integrals that are needed for the computation of NNLO QCD corrections to the production of two off-shell vector bosons in hadron collisions. The most complicated representatives of integrals in this class are the two-loop four-point functions where two external lines are on the light-cone and two other external lines have different invariant masses. We compute these and other relevant integrals analytically using differential equations in external kinematic variables and express our results in terms of Goncharov polylogarithms. The case of two equal off-shellnesses, recently considered in ref. http://dx.doi.org/10.1007/JHEP08(2013)070, appears as a particular case of our general solution

  15. The NIRspec assembly integration and test status

    Science.gov (United States)

    Wettemann, Thomas; Ehrenwinkler, Ralf; Johnson, Thomas E.; Maschmann, Marc; Mosner, Peter; te Plate, Maurice; Rödel, Andreas

    2017-11-01

    The Near-Infrared Spectrograph (NIRSpec) is one of the four instruments on the James Webb Space Telescope (JWST) scheduled for launch in 2018. NIRSpec has been manufactured and tested by an European industrial consortium led by Airbus Defence and Space and delivered to the European Space Agency (ESA) and NASA in September 2013. Since then it has successfully been integrated into the JWST Integrated Science Instrument Module (ISIM) and is currently in ISIM Cryo-Vacuum Test#2. Since however two of its most important assemblies, the Focal Plane Assembly (FPA) and the Micro-Shutter Assembly (MSA) need to be replaced by new units we will present the status of the instrument, the status of its new flight assemblies in manufacturing and testing and give an outlook on the planned exchange activities and the following instrument re-verification.

  16. FY 1995 progress report on the ANS thermal-hydraulic test loop operation and results

    International Nuclear Information System (INIS)

    Siman-Tov, M.; Felde, D.K.; Farquharson, G.; McDuffee, J.L.; McFee, M.T.; Ruggles, A.E.; Wendel, M.W.; Yoder, G.L.

    1997-07-01

    The Thermal-Hydraulic Test Loop (THTL) is an experimental facility constructed to support the development of the Advanced Neutron Source Reactor (ANSR) at Oak Ridge National Laboratory (ORNL). The THTL facility was designed and built to provide known thermal-hydraulic (T/H) conditions for a simulated full-length coolant subchannel of the ANS reactor core, thus facilitating experimental determination of FE and CHF thermal limits under expected ANSR T/H conditions. Special consideration was given to allow operation of the system in a stiff mode (constant flow) and in a soft mode (constant pressure drop) for proper implementation of true FE and DNB experiments. The facility is also designed to examine other T/H phenomena, including onset of incipient boiling (IB), single-phase heat transfer coefficients and friction factors, and two-phase heat transfer and pressure drop characteristics. Tests will also be conducted that are representative of decay heat levels at both high pressure and low pressure as well as other quasi-equilibrium conditions encountered during transient scenarios. A total of 22 FE tests and 2 CHF tests were performed during FY 1994 and FY 1995 with water flowing vertically upward. Comparison of these data as well as extensive data from other investigators led to a proposed modification to the Saha and Zuber correlation for onset of significant void (OSV), applied to FE prediction. The modification takes into account a demonstrated dependence of the OSV or FE thermal limits on subcooling levels, especially in the low subcooling regime

  17. Testing integrated sensors for cooperative remote monitoring

    International Nuclear Information System (INIS)

    Filby, E.E.; Smith, T.E.; Albano, R.K.; Andersen, M.K.; Lucero, R.L.; Tolk, K.M.; Andrews, N.S.

    1996-01-01

    The Modular Integrated Monitoring System (MIMS) program, with Sandia National Laboratory (SNL) as the lead lab, was devised to furnish sensors and integrated multi-sensor systems for cooperative remote monitoring. The Idaho National Engineering Laboratory (INEL), via the Center for Integrated Monitoring and Control (CIMC), provides realistic field tests of the sensors and sensor-integration approach for the MIMS, and for other similar programs. This has two important goals: it helps insure that these systems are truly read for use, and provides a platform so they can be demonstrated for potential users. A remote monitoring test/demonstration has been initiated at the Idaho Chemical Processing Plant (ICPP) to track the movement of spent nuclear fuel from one storage location to another, using a straddle carrier and shielded cask combination. Radiation monitors, motion sensors, videocameras, and other devices from several US Department of Energy (DOE) labs and commercial vendors were linked on the network. Currently, project personnel are collecting raw data from this large array of sensors, without trying to program any special network activities or other responses. These data will be used to determine which devices can actually provide useful information for a cooperative monitoring situation, versus those that may be redundant

  18. Rocket Testing and Integrated System Health Management

    Science.gov (United States)

    Figueroa, Fernando; Schmalzel, John

    2005-01-01

    Integrated System Health Management (ISHM) describes a set of system capabilities that in aggregate perform: determination of condition for each system element, detection of anomalies, diagnosis of causes for anomalies, and prognostics for future anomalies and system behavior. The ISHM should also provide operators with situational awareness of the system by integrating contextual and timely data, information, and knowledge (DIaK) as needed. ISHM capabilities can be implemented using a variety of technologies and tools. This chapter provides an overview of ISHM contributing technologies and describes in further detail a novel implementation architecture along with associated taxonomy, ontology, and standards. The operational ISHM testbed is based on a subsystem of a rocket engine test stand. Such test stands contain many elements that are common to manufacturing systems, and thereby serve to illustrate the potential benefits and methodologies of the ISHM approach for intelligent manufacturing.

  19. A seal analyzer for testing container integrity

    International Nuclear Information System (INIS)

    McDaniel, P.; Jenkins, C.

    1988-01-01

    This paper reports on the development of laboratory and production seal analyzer that offers a rapid, nondestructive method of assuring the seal integrity of virtually any type of single or double sealed container. The system can test a broad range of metal cans, drums and trays, membrane-lidded vessels, flexible pouches, aerosol containers, and glass or metal containers with twist-top lids that are used in the chemical/pesticide (hazardous materials/waste), beverage, food, medical and pharmaceutical industries

  20. Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2010-01-01

    Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

  1. Bench Test Model of the Human Skull for Testing the Variable Frequency Pulse Phase-Locked Loop Instrument

    National Research Council Canada - National Science Library

    Burin, Amy

    1996-01-01

    The Variable Frequency Pulse Phase-Locked Loop (VFPPLL) instrument is currently being used to non-invasively evaluate the human skull for increases in intracranial distances brought about by increases in intracranial pressure...

  2. PDCI Wide-Area Damping Control: PSLF Simulations of the 2016 Open and Closed Loop Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wilches Bernal, Felipe [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pierre, Brian Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Elliott, Ryan Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schoenwald, David A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Byrne, Raymond H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Neely, Jason C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trudnowski, Daniel J. [Montana Tech of the Univ. of Montana, Butte, MT (United States); Donnelly, Matthew K. [Montana Tech of the Univ. of Montana, Butte, MT (United States)

    2017-03-01

    To demonstrate and validate the performance of the wide-are a damping control system, the project plans to conduct closed-loop tests on the PDCI in summer/fall 2016. A test plan details the open and closed loop tests to be conducted on the P DCI using the wide-area damping control system. To ensure the appropriate level of preparedness, simulations were performed in order to predict and evaluate any possible unsafe operations before hardware experiments are attempted. This report contains the result s from these simulations using the power system dynamics software PSLF (Power System Load Flow, trademark of GE). The simulations use the WECC (Western Electricity Coordinating Council) 2016 light summer and heavy summer base cases.

  3. Resistance temperature sensor aging degradation identification using LCSR (Loop Current Step Response) test

    International Nuclear Information System (INIS)

    Santos, Roberto Carlos dos; Goncalves, Iraci Martine Pereira

    2013-01-01

    Most critical process temperatures in nuclear power plants are measured using RTD (Resistance Temperature Detector) and thermocouples. In a PWR (Pressure Water Reactor) plant, the primary coolant temperature and feedwater temperature are measured using RTDs, and the temperature of the water that exits the reactor core is measured using thermocouples. These thermocouples are mainly used for temperature monitoring purposes and are therefore not generally subject to very stringent requirements for accuracy and response-time performance. In contrast, primary coolant RTDs typically feed the plant's control and safety systems and must, therefore, be very accurate and have good dynamic performance. The response time of RTDs and thermocouples has been characterized by a single parameter called the Plunge Time Constant. This is defined as the time it takes the sensor output to achieve 63.2 percent of its final value after a step change in temperature is impressed on its surface. This step change is typically achieved by suddenly immersing the sensor in a rotating tank of water, called Plunge Test. In nuclear reactors, however, plunge testing is inconvenient because the sensor must be removed from the reactor coolant piping and taken to a laboratory for testing. Nuclear reactor service conditions of 150 bar and 300°C are difficult to reproduce in the laboratory. Therefore, all laboratory tests are performed at much milder conditions, and the results are extrapolated to service conditions. This leads to significant errors in the measurement of sensor response times and an insitu test method called LCSR - Loop Current Step Response test was developed in the mid-1970s to measure remotely the response time of RTDs. In the LCSR method, the sensing element is heated by an electric current; the current causes Joule heating in the sensor and results in a temperature transient inside the sensor. The temperature transient in the element is recorded, and from this transient, the

  4. Integrating Testing and Interactive Theorem Proving

    Directory of Open Access Journals (Sweden)

    Harsh Raju Chamarthi

    2011-10-01

    Full Text Available Using an interactive theorem prover to reason about programs involves a sequence of interactions where the user challenges the theorem prover with conjectures. Invariably, many of the conjectures posed are in fact false, and users often spend considerable effort examining the theorem prover's output before realizing this. We present a synergistic integration of testing with theorem proving, implemented in the ACL2 Sedan (ACL2s, for automatically generating concrete counterexamples. Our method uses the full power of the theorem prover and associated libraries to simplify conjectures; this simplification can transform conjectures for which finding counterexamples is hard into conjectures where finding counterexamples is trivial. In fact, our approach even leads to better theorem proving, e.g. if testing shows that a generalization step leads to a false conjecture, we force the theorem prover to backtrack, allowing it to pursue more fruitful options that may yield a proof. The focus of the paper is on the engineering of a synergistic integration of testing with interactive theorem proving; this includes extending ACL2 with new functionality that we expect to be of general interest. We also discuss our experience in using ACL2s to teach freshman students how to reason about their programs.

  5. Integral test of JENDL fusion file

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Integral test of JENDL Fusion File (J-FF) is performed through analyses of available benchmark experiments. As a result, good agreement between the calculated results with J-FF and the measured data is observed as a whole. Thus, J-FF is qualified to be used for nuclear design of fusion reactors. Owing to the high quality evaluation of J-FF, cross section data in J-FF for many nuclides are recommended to be assigned as data in FENDL/E-2.0 in the IAEA Consultants` Meeting held at Karlsruhe, Germany, 24-28 June, 1996. (author)

  6. Advanced integrated battery testing and simulation

    Science.gov (United States)

    Liaw, Bor Yann; Bethune, Keith P.; Yang, Xiao Guang

    The recent rapid expansion in the use of portable electronics, computers, personal data assistants, cellular phones, power tools, and even electric and hybrid vehicles creates a strong demand on fast deployment of battery technologies at an unprecedented rate. To facilitate such a development integrated battery testing and simulation (IBTS) using computer modeling is an effective tool to improve our capability of rapid prototyping battery technology and facilitating concurrent product development. In this paper, we will present a state-of-the-art approach to use IBTS for improvements in battery cell design, operation optimization, and even charge control for advanced batteries.

  7. Integrate knowledge acquisition with target recognition through closed-loop ATR

    Science.gov (United States)

    Yu, Ssu-Hsin; McLaughlin, Pat; Zatezalo, Aleksandar; Hsiao, Kai-yuh; Boskovic, Jovan

    2015-05-01

    Automatic Target Recognition (ATR) algorithm performance is highly dependent on the sensing conditions under which the input data is collected. Open-loop fly-bys often produce poor results due to less than ideal measurement conditions. In addition, ATR algorithms must be extremely complicated to handle the diverse range of inputs with a resulting reduction in overall performance and increase in complexity. Our approach, closed-loop ATR (CL-ATR), focuses on improving the quality of information input to the ATR algorithms by optimizing motion, sensor settings and team (vehicle-vehicle-human) collaboration to dramatically improve classification accuracy. By managing the data collection guided by predicted ATR performance gain, we increase the information content of the data and thus dramatically improve ATR performance with existing ATR algorithms. CL-ATR has two major functions; first, an ATR utility function, which represents the performance sensitivity of ATR produced classification labels as a function of parameters that correlate to vehicle/sensor states. This utility function is developed off-line and is often available from the original ATR study as a confusion matrix, or it can be derived through simulation without direct access to the inner working of the ATR algorithm. The utility function is inserted into our CLATR framework to autonomously control the vehicle/sensor. Second, an on-board planner maps the utility function into vehicle position and sensor collection plans. Because we only require the utility function on-board, we can activate any ATR algorithm onto a unmanned aerial vehicle (UAV) platform no matter how complex. This pairing of ATR performance profiles with vehicle/sensor controls creates a unique and powerful active perception behavior.

  8. Integration Tests of the Muon System

    CERN Multimedia

    Cerutti, F; Palestini, S

    A complex large-size prototype of the Muon system is installed in the test area H8B in Prévessin; the set-up includes chambers belonging to the three layers of the Barrel Spectrometer (on the right in Figure 1), and chambers belonging to one octant of the End Cap Spectrometer (center and left side of Figure 1). Figure 1: Set-up of the Muon spectrometer integration test. The installation accurately reproduces the geometry of regions of the ATLAS Muon Spectrometer, with the H8 beam-line crossing the detectors at positions/angles corresponding to particles with polar angle of 75 ± 4 and 15 ± 4 degrees, respectively for the Barrel and the End Cap. A comprehensive test program is being carried out with this set-up, ranging from tests of support frames (octant of the MDT BigWheel and of the SmallWheel) and of handling/installation of tracking chambers, to real-size tests of the alignment systems, together with accurate studies of performance and calibration of the precision chambers, and with develo...

  9. Implementation of a hardware-in-the-loop facility for student test and evaluation

    Science.gov (United States)

    Mobley, Scott B.; Ballard, Gary; Brindley, Ryan; Gareri, Jeff

    2007-04-01

    Hardware-in-the-Loop (HWIL) test facilities offer the highest degree of system functional verification and performance evaluation outside of the actual operational environment. The design and analysis of HWIL simulators involves the coordinated efforts of numerous engineering fields, whose professionals possess the technical expertise, analytical skills, and insight regarding cross-discipline collaborative relationships which foster successful simulation development. As system complexity continues to increase, and as programmatic requirements allow for shorter simulation development schedules, the existing knowledge base associated with legacy HWIL simulation development will play a key role in the preparation, readiness, and efficiency of future HWIL engineering professionals. As a result, it is crucial that basic HWIL methods and concepts be specified in a formal, academic sense, and that realistic test facilities are made available to allow potential HWIL engineering students the opportunity to become acclimated to basic HWIL components and design considerations. To address this need, the United States Army Space and Missile Defense Command (SMDC), in coordination with the Auburn University Department of Aerospace Engineering, has funded an initiative to perform initial development of a graduate-level HWIL simulation option, including the provision of a functioning HWIL simulation facility located at the university. This facility, modeled after a conceptual ballistic missile interceptor, will possess the major elements of a HWIL simulation including a Six-Degree-of-Freedom (6-DOF) simulation of the missile dynamics, an electro-optical (EO) sensor implementation, a flight motion simulator (FMS), a scene generation system, and an in-band image projection system. Architectural implementations and distributed simulation elements will be modeled after existing U.S. Army missile simulation concepts. In concert with this activity, an academic emphasis on HWIL

  10. JWST Observatory Integration and Test Status

    Science.gov (United States)

    McElwain, Michael; Bowers, Charles; Kimble, Randy; Niedner, Malcolm; Smith, Erin; JWST Project Team

    2018-01-01

    The James Webb Space Telescope (JWST) is a large (6.5 m) segmented aperture telescope equipped with near- and mid-infrared instruments (0.6-28 microns), all of which are passively cooled to ~40 K by a 5-layer sunshield while the mid-infrared instrument is actively cooled to 7 K. There are currently two major paths of development: the telescope and science instruments, called OTIS, and the sunshield and spacecraft, called the spacecraft element. Over the past year, there has been tremendous progress on the integration and testing of these two systems. We will present the current status of the JWST hardware and estimated performance metrics based upon the test activities.

  11. Experimental studies and computational benchmark on heavy liquid metal natural circulation in a full height-scale test loop for small modular reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yong-Hoon, E-mail: chaotics@snu.ac.kr [Department of Energy Systems Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Cho, Jaehyun [Korea Atomic Energy Research Institute, 111 Daedeok-daero, 989 Beon-gil, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Lee, Jueun; Ju, Heejae; Sohn, Sungjune; Kim, Yeji; Noh, Hyunyub; Hwang, Il Soon [Department of Energy Systems Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of)

    2017-05-15

    Highlights: • Experimental studies on natural circulation for lead-bismuth eutectic were conducted. • Adiabatic wall boundaries conditions were established by compensating heat loss. • Computational benchmark with a system thermal-hydraulics code was performed. • Numerical simulation and experiment showed good agreement in mass flow rate. • An empirical relation was formulated for mass flow rate with experimental data. - Abstract: In order to test the enhanced safety of small lead-cooled fast reactors, lead-bismuth eutectic (LBE) natural circulation characteristics have been studied. We present results of experiments with LBE non-isothermal natural circulation in a full-height scale test loop, HELIOS (heavy eutectic liquid metal loop for integral test of operability and safety of PEACER), and the validation of a system thermal-hydraulics code. The experimental studies on LBE were conducted under steady state as a function of core power conditions from 9.8 kW to 33.6 kW. Local surface heaters on the main loop were activated and finely tuned by trial-and-error approach to make adiabatic wall boundary conditions. A thermal-hydraulic system code MARS-LBE was validated by using the well-defined benchmark data. It was found that the predictions were mostly in good agreement with the experimental data in terms of mass flow rate and temperature difference that were both within 7%, respectively. With experiment results, an empirical relation predicting mass flow rate at a non-isothermal, adiabatic condition in HELIOS was derived.

  12. A fuzzy-random programming for integrated closed-loop logistics network design by using priority-based genetic algorithm

    Directory of Open Access Journals (Sweden)

    Keyvan Kamandanipour

    2013-01-01

    Full Text Available Recovery of used products has steadily become interesting issue for research due to economic reasons and growing environmental or legislative concern. This paper presents a closed-loop logistics network design based on reverse logistics models. A mixed integer linear programming model is implemented to integrate logistics network design in order to prevent the sub-optimality caused by the separate design of the forward and reverse networks. The study presents a single product and multi-stage logistics network problem for the new and return products not only to determine subsets of logistics centers to be opened, but also to determine transportation strategy, which satisfies demand imposed by facilities and minimizes fixed opening and total shipping costs. Since the deterministic estimation of some parameters such as demand and rate of return of used products in closed loop logistics models is impractical, an uncertain programming is proposed. In this case, we assume there are several economic conditions with predefined probabilities calculated from historical data. Then by means of expert's opinion, a fuzzy variable is offered as customer's demand under each economic condition. In addition, demand and rate of return of products for each customer zone is presented by fuzzy-random variables, similarly. Therefore, a fuzzy-random programming is used and a priority-based genetic algorithm is proposed to solve large-scale problems.

  13. Megawatt-Scale Power Hardware-in-the-Loop Simulation Testing of a Power Conversion Module for Naval Applications

    Science.gov (United States)

    2015-06-21

    employed. For the phase-locked loops of the interface, the decoupled double synchronous reference frame (DDSRF) PLL was employed, using the double second...paper describes efforts to establish PHIL test capabilities for AC/DC converters to be employed for future advanced sensor and weapons systems...represent the characteristics of a DC/DC converter supplying a sensitive DC load. The AC load modules were intended to represent an aggregate mix of

  14. Innovation design of beta test loop system for heat transfer experiments in single-phase and two-phase flows

    International Nuclear Information System (INIS)

    Kiswanta; Edy Sumarno; Joko Prasetio W; Ainur Rosidi; G B Heru K

    2013-01-01

    Innovation design of BETA test loop has been done. BETA test loop is a research facility used as a support for experiments of reactor accident simulation. The innovation was performed to prepare experimental facilities in order to study flow of heat transfer in single-phase and two-phase flows. The design was executed by modifying new piping of UUB's primary system, addition of heat flux measurements and imaging thermal for easiness of experimental result analysis. UUB development and experiments were carried out to understand heat transfer process in the narrow gap of two-phase flow considering this phenomenon is one of the conditions postulated in PWR typed nuclear power plant accident scenario. The innovation design of BETA test loop is still in the planning stages so that the design has not been constructed. Piping systems made of SS-304 with the ability to use a maximum pressure of 10 bar with a diameter of % inch pipe to, from the calculation of minimal design that is 7.27 mm. If the tube SS-304 - ASTM B88 is the wall thickness of 0.083 inches. From this design it is indicated that the design is able to be fabricated and used for experimental study of heat transfer in single-phase and two-phase flows. (author)

  15. Testing of a Miniature Loop Heat Pipe Using a Thermal Electrical Cooler for Temperature Control

    Science.gov (United States)

    Ku, Jentung; Jeong, Soeng-II; Butler, Dan

    2004-01-01

    This paper describes the design and testing of a miniature LHP having a 7 mm O.D. evaporator with an integral CC. The vapor line and liquid line are made of 1.6mm stainless steel tubing. The evaporator and the CC are connected on the outer surface by a copper strap and a thermoelectric (TEC) is installed on the strap. The TEC is used to control the CC temperature by applying an electrical current for heating or cooling. Tests performed in ambient included start-up, power cycle, sink temperature cycle, and CC temperature control using TEC. The LHP demonstrated very robust operation in all tests where the heat load varied between 0.5W and 1OOW, and the sink temperature varied between 243K and 293K. The heat leak from the evaporator to the CC was extremely small. The TEC was able to control the CC temperature within +/-0.3K under all test conditions, and the required control heater power was less than 1W.

  16. The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior

    International Nuclear Information System (INIS)

    Perejón, Antonio; Romeo, Luis M.; Lara, Yolanda; Lisbona, Pilar; Martínez, Ana; Valverde, Jose Manuel

    2016-01-01

    Highlights: • The Calcium Looping (CaL) technology is a potentially low cost and highly efficient postcombustion CO 2 capture technology. • Energy integration and sorbent behavior play a relevant role on the process. • The industrial competitiveness of the process depends critically on the minimization of energy penalties. • It may be used in precombustion capture systems and other industrial processes such as cement production. • Sorbent deactivation must be assessed under realistic conditions involving high CO 2 concentration in the calciner. - Abstract: The Calcium Looping (CaL) technology, based on the multicyclic carbonation/calcination of CaO in gas–solid fluidized bed reactors at high temperature, has emerged in the last years as a potentially low cost technology for CO 2 capture. In this manuscript a critical review is made on the important roles of energy integration and sorbent behavior in the process efficiency. Firstly, the strategies proposed to reduce the energy demand by internal integration are discussed as well as process modifications aimed at optimizing the overall efficiency by means of external integration. The most important benefit of the high temperature CaL cycles is the possibility of using high temperature streams that could reduce significantly the energy penalty associated to CO 2 capture. The application of the CaL technology in precombustion capture systems and energy integration, and the coupling of the CaL technology with other industrial processes are also described. In particular, the CaL technology has a significant potential to be a feasible CO 2 capture system for cement plants. A precise knowledge of the multicyclic CO 2 capture behavior of the sorbent at the CaL conditions to be expected in practice is of great relevance in order to predict a realistic capture efficiency and energy penalty from process simulations. The second part of this manuscript will be devoted to this issue. Particular emphasis is put on the

  17. An integrated rotary microfluidic system with DNA extraction, loop-mediated isothermal amplification, and lateral flow strip based detection for point-of-care pathogen diagnostics.

    Science.gov (United States)

    Park, Byung Hyun; Oh, Seung Jun; Jung, Jae Hwan; Choi, Goro; Seo, Ji Hyun; Kim, Do Hyun; Lee, Eun Yeol; Seo, Tae Seok

    2017-05-15

    Point-of-care (POC) molecular diagnostics plays a pivotal role for the prevention and treatment of infectious diseases. In spite of recent advancement in microfluidic based POC devices, there are still rooms for development to realize rapid, automatic and cost-effective sample-to-result genetic analysis. In this study, we propose an integrated rotary microfluidic system that is capable of performing glass microbead based DNA extraction, loop mediated isothermal amplification (LAMP), and colorimetric lateral flow strip based detection in a sequential manner with an optimized microfluidic design and a rotational speed control. Rotation direction-dependent coriolis force and siphon valving structures enable us to perform the fluidic control and metering, and the use of the lateral flow strip as a detection method renders all the analytical processes for nucleic acid test simplified and integrated without the need of expensive instruments or human intervention. As a proof of concept for point-of-care DNA diagnostics, we identified the food-borne bacterial pathogen which was contaminated in water or milk. Not only monoplex Salmonella Typhimurium but also multiplex Salmonella Typhimurium and Vibrio parahaemolyticus were analysed on the integrated rotary genetic analysis microsystem with a limit of detection of 50 CFU in 80min. In addition, three multiple samples were simultaneously analysed on a single device. The sample-to-result capability of the proposed microdevice provides great usefulness in the fields of clinical diagnostics, food safety and environment monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Analytic result for the one-loop scalar pentagon integral with massless propagators

    International Nuclear Information System (INIS)

    Kniehl, Bernd A.; Tarasov, Oleg V.

    2010-01-01

    The method of dimensional recurrences proposed by one of the authors (O. V.Tarasov, 1996) is applied to the evaluation of the pentagon-type scalar integral with on-shell external legs and massless internal lines. For the first time, an analytic result valid for arbitrary space-time dimension d and five arbitrary kinematic variables is presented. An explicit expression in terms of the Appell hypergeometric function F 3 and the Gauss hypergeometric function 2 F 1 , both admitting one-fold integral representations, is given. In the case when one kinematic variable vanishes, the integral reduces to a combination of Gauss hypergeometric functions 2 F 1 . For the case when one scalar invariant is large compared to the others, the asymptotic values of the integral in terms of Gauss hypergeometric functions 2 F 1 are presented in d=2-2ε, 4-2ε, and 6-2ε dimensions. For multi-Regge kinematics, the asymptotic value of the integral in d=4-2ε dimensions is given in terms of the Appell function F 3 and the Gauss hypergeometric function 2 F 1 . (orig.)

  19. Analytic result for the one-loop scalar pentagon integral with massless propagators

    International Nuclear Information System (INIS)

    Kniehl, Bernd A.; Tarasov, Oleg V.

    2010-01-01

    The method of dimensional recurrences proposed by Tarasov (1996, 2000) is applied to the evaluation of the pentagon-type scalar integral with on-shell external legs and massless internal lines. For the first time, an analytic result valid for arbitrary space-time dimension d and five arbitrary kinematic variables is presented. An explicit expression in terms of the Appell hypergeometric function F 3 and the Gauss hypergeometric function 2 F 1 , both admitting one-fold integral representations, is given. In the case when one kinematic variable vanishes, the integral reduces to a combination of Gauss hypergeometric functions 2 F 1 . For the case when one scalar invariant is large compared to the others, the asymptotic values of the integral in terms of Gauss hypergeometric functions 2 F 1 are presented in d=2-2ε, 4-2ε, and 6-2ε dimensions. For multi-Regge kinematics, the asymptotic value of the integral in d=4-2ε dimensions is given in terms of the Appell function F 3 and the Gauss hypergeometric function 2 F 1 .

  20. Algorithmic transformation of multi-loop master integrals to a canonical basis with CANONICA

    Science.gov (United States)

    Meyer, Christoph

    2018-01-01

    The integration of differential equations of Feynman integrals can be greatly facilitated by using a canonical basis. This paper presents the Mathematica package CANONICA, which implements a recently developed algorithm to automatize the transformation to a canonical basis. This represents the first publicly available implementation suitable for differential equations depending on multiple scales. In addition to the presentation of the package, this paper extends the description of some aspects of the algorithm, including a proof of the uniqueness of canonical forms up to constant transformations.

  1. Stripline kicker for integrable optics test accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Sergey A.; Didenko, Alexander; Lebedev, Valeri; Valishev, Alexander

    2016-06-30

    We present a design of a stripline kicker for Integrable Optics Test Accelerator (IOTA). For its experimental program IOTA needs two full-aperture kickers, capable to create an arbitrary controllable kick in 2D. For that reason their strengths are variable in a wide range of amplitudes up to 16 mrad, and the pulse length 100 ns is less than a revolution period for electrons. In addition, the kicker should have a physical aperture of 40 mm for a proposed operation with proton beam, and an outer size of 70 mm to fit inside existing quadrupole magnets to save space in the ring. Computer simulations using CST Microwave Studio show high field uniformity and wave impedance close to 50 {\\Omega}.

  2. AZURITE : An algebraic geometry based package for finding bases of loop integrals

    Science.gov (United States)

    Georgoudis, Alessandro; Larsen, Kasper J.; Zhang, Yang

    2017-12-01

    For any given Feynman graph, the set of integrals with all possible powers of the propagators spans a vector space of finite dimension. We introduce the package AZURITE (A ZUR ich-bred method for finding master I nTE grals), which efficiently finds a basis of this vector space. It constructs the needed integration-by-parts (IBP) identities on a set of generalized-unitarity cuts. It is based on syzygy computations and analyses of the symmetries of the involved Feynman diagrams and is powered by the computer algebra systems SINGULAR and MATHEMATICA. It can moreover analytically calculate the part of the IBP identities that is supported on the cuts. In some cases, the basis obtained by AZURITE may be slightly overcomplete.

  3. Closed-Loop Lifecycle Management of Service and Product in the Internet of Things: Semantic Framework for Knowledge Integration

    Directory of Open Access Journals (Sweden)

    Min-Jung Yoo

    2016-07-01

    Full Text Available This paper describes our conceptual framework of closed-loop lifecycle information sharing for product-service in the Internet of Things (IoT. The framework is based on the ontology model of product-service and a type of IoT message standard, Open Messaging Interface (O-MI and Open Data Format (O-DF, which ensures data communication. (1 Background: Based on an existing product lifecycle management (PLM methodology, we enhanced the ontology model for the purpose of integrating efficiently the product-service ontology model that was newly developed; (2 Methods: The IoT message transfer layer is vertically integrated into a semantic knowledge framework inside which a Semantic Info-Node Agent (SINA uses the message format as a common protocol of product-service lifecycle data transfer; (3 Results: The product-service ontology model facilitates information retrieval and knowledge extraction during the product lifecycle, while making more information available for the sake of service business creation. The vertical integration of IoT message transfer, encompassing all semantic layers, helps achieve a more flexible and modular approach to knowledge sharing in an IoT environment; (4 Contribution: A semantic data annotation applied to IoT can contribute to enhancing collected data types, which entails a richer knowledge extraction. The ontology-based PLM model enables as well the horizontal integration of heterogeneous PLM data while breaking traditional vertical information silos; (5 Conclusion: The framework was applied to a fictive case study with an electric car service for the purpose of demonstration. For the purpose of demonstrating the feasibility of the approach, the semantic model is implemented in Sesame APIs, which play the role of an Internet-connected Resource Description Framework (RDF database.

  4. Closed-Loop Lifecycle Management of Service and Product in the Internet of Things: Semantic Framework for Knowledge Integration

    Science.gov (United States)

    Yoo, Min-Jung; Grozel, Clément; Kiritsis, Dimitris

    2016-01-01

    This paper describes our conceptual framework of closed-loop lifecycle information sharing for product-service in the Internet of Things (IoT). The framework is based on the ontology model of product-service and a type of IoT message standard, Open Messaging Interface (O-MI) and Open Data Format (O-DF), which ensures data communication. (1) Background: Based on an existing product lifecycle management (PLM) methodology, we enhanced the ontology model for the purpose of integrating efficiently the product-service ontology model that was newly developed; (2) Methods: The IoT message transfer layer is vertically integrated into a semantic knowledge framework inside which a Semantic Info-Node Agent (SINA) uses the message format as a common protocol of product-service lifecycle data transfer; (3) Results: The product-service ontology model facilitates information retrieval and knowledge extraction during the product lifecycle, while making more information available for the sake of service business creation. The vertical integration of IoT message transfer, encompassing all semantic layers, helps achieve a more flexible and modular approach to knowledge sharing in an IoT environment; (4) Contribution: A semantic data annotation applied to IoT can contribute to enhancing collected data types, which entails a richer knowledge extraction. The ontology-based PLM model enables as well the horizontal integration of heterogeneous PLM data while breaking traditional vertical information silos; (5) Conclusion: The framework was applied to a fictive case study with an electric car service for the purpose of demonstration. For the purpose of demonstrating the feasibility of the approach, the semantic model is implemented in Sesame APIs, which play the role of an Internet-connected Resource Description Framework (RDF) database. PMID:27399717

  5. Closed-Loop Lifecycle Management of Service and Product in the Internet of Things: Semantic Framework for Knowledge Integration.

    Science.gov (United States)

    Yoo, Min-Jung; Grozel, Clément; Kiritsis, Dimitris

    2016-07-08

    This paper describes our conceptual framework of closed-loop lifecycle information sharing for product-service in the Internet of Things (IoT). The framework is based on the ontology model of product-service and a type of IoT message standard, Open Messaging Interface (O-MI) and Open Data Format (O-DF), which ensures data communication. (1) BACKGROUND: Based on an existing product lifecycle management (PLM) methodology, we enhanced the ontology model for the purpose of integrating efficiently the product-service ontology model that was newly developed; (2) METHODS: The IoT message transfer layer is vertically integrated into a semantic knowledge framework inside which a Semantic Info-Node Agent (SINA) uses the message format as a common protocol of product-service lifecycle data transfer; (3) RESULTS: The product-service ontology model facilitates information retrieval and knowledge extraction during the product lifecycle, while making more information available for the sake of service business creation. The vertical integration of IoT message transfer, encompassing all semantic layers, helps achieve a more flexible and modular approach to knowledge sharing in an IoT environment; (4) Contribution: A semantic data annotation applied to IoT can contribute to enhancing collected data types, which entails a richer knowledge extraction. The ontology-based PLM model enables as well the horizontal integration of heterogeneous PLM data while breaking traditional vertical information silos; (5) CONCLUSION: The framework was applied to a fictive case study with an electric car service for the purpose of demonstration. For the purpose of demonstrating the feasibility of the approach, the semantic model is implemented in Sesame APIs, which play the role of an Internet-connected Resource Description Framework (RDF) database.

  6. Design of a right ventricular mock circulation loop as a test bench for right ventricular assist devices.

    Science.gov (United States)

    Mueller, Indra; Jansen-Park, So-Hyun; Neidlin, Michael; Steinseifer, Ulrich; Abel, Dirk; Autschbach, Rüdiger; Rossaint, Rolf; Schmitz-Rode, Thomas; Sonntag, Simon Johannes

    2017-04-01

    Right heart failure (RHF), e.g. due to pulmonary hypertension (PH), is a serious health issue with growing occurrence and high mortality rate. Limited efficacy of medication in advanced stages of the disease constitutes the need for mechanical circulatory support of the right ventricle (RV). An essential contribution to the process of developing right ventricular assist devices (RVADs) is the in vitro test bench, which simulates the hemodynamic behavior of the native circulatory system. To model healthy and diseased arterial-pulmonary hemodynamics in adults (mild and severe PH and RHF), a right heart mock circulation loop (MCL) was developed. Incorporating an anatomically shaped silicone RV and a silicone atrium, it not only enables investigations of hemodynamic values but also suction events or the handling of minimal invasive RVADs in an anatomical test environment. Ventricular pressure-volume loops of all simulated conditions as well as pressure and volume waveforms were recorded and compared to literature data. In an exemplary test, an RVAD was connected to the apex to further test the feasibility of studying such devices with the developed MCL. In conclusion, the hemodynamic behavior of the native system was well reproduced by the developed MCL, which is a useful basis for future RVAD tests.

  7. Breakdown voltage at the electric terminals of GCFR-core flow test loop fuel rod simulators in helium and air

    International Nuclear Information System (INIS)

    Huntley, W.R.; Conley, T.B.

    1979-12-01

    Tests were performed to determine the ac and dc breakdown voltage at the terminal ends of a fuel rod simulator (FRS) in helium and air atmospheres. The tests were performed at low pressures (1 to 2 atm) and at temperatures from 20 to 350 0 C (68 to 660 0 F). The area of concern was the 0.64-mm (0.025-in.) gap between the coaxial conductor of the FRS and the sheaths of the four internal thermocouples as they exit the FRS. The tests were prformed to ensure a sufficient safety margin during Core Flow Test Loop (CFTL) operations that require potentials up to 350 V ac at the FRS terminals. The primary conclusion from the test results is that the CFTL cannot be operated safely if the terminal ends of the FRSs are surrounded by a helium atmosphere but can be operated safely in air

  8. Breakdown voltage at the electric terminals of GCFR-core flow test loop fuel rod simulators in helium and air

    Energy Technology Data Exchange (ETDEWEB)

    Huntley, W.R.; Conley, T.B.

    1979-12-01

    Tests were performed to determine the ac and dc breakdown voltage at the terminal ends of a fuel rod simulator (FRS) in helium and air atmospheres. The tests were performed at low pressures (1 to 2 atm) and at temperatures from 20 to 350/sup 0/C (68 to 660/sup 0/F). The area of concern was the 0.64-mm (0.025-in.) gap between the coaxial conductor of the FRS and the sheaths of the four internal thermocouples as they exit the FRS. The tests were prformed to ensure a sufficient safety margin during Core Flow Test Loop (CFTL) operations that require potentials up to 350 V ac at the FRS terminals. The primary conclusion from the test results is that the CFTL cannot be operated safely if the terminal ends of the FRSs are surrounded by a helium atmosphere but can be operated safely in air.

  9. On the static loop modes in the marching-on-in-time solution of the time-domain electric field integral equation

    KAUST Repository

    Shi, Yifei

    2014-01-01

    When marching-on-in-time (MOT) method is applied to solve the time-domain electric field integral equation, spurious internal resonant and static loop modes are always observed in the solution. The internal resonant modes have recently been studied by the authors; this letter investigates the static loop modes. Like internal resonant modes, static loop modes, in theory, should not be observed in the MOT solution since they do not satisfy the zero initial conditions; their appearance is attributed to numerical errors. It is discussed in this letter that the dependence of spurious static loop modes on numerical errors is substantially different from that of spurious internal resonant modes. More specifically, when Rao-Wilton-Glisson functions and Lagrange interpolation functions are used as spatial and temporal basis functions, respectively, errors due to space-time discretization have no discernible impact on spurious static loop modes. Numerical experiments indeed support this discussion and demonstrate that the numerical errors due to the approximate solution of the MOT matrix system have dominant impact on spurious static loop modes in the MOT solution. © 2014 IEEE.

  10. Flica: a code for the thermodynamic study of a reactor or a test loop

    International Nuclear Information System (INIS)

    Fajeau, M.

    1969-01-01

    This code handles the thermal problems of water loops or reactor cores under the following conditions: High or low pressure, steady state or transient behavior, one or two phases - Three-dimensional thermodynamic study of the flow in cylindrical geometry - Unidimensional study of heat transfer in heating elements - Neutronic studies can be coupled and a schematic representation of the safety rod behavior is given. The number of cells described in a flow cross-section is presently less than 20. This code is the logical following of FLID and CACTUS of which it constitutes a synthesis. (author) [fr

  11. Container Closure Integrity Testing of Prefilled Syringes.

    Science.gov (United States)

    Peláez, Sarah S; Mahler, Hanns-Christian; Matter, Anja; Koulov, Atanas; Singh, Satish K; Germershaus, Oliver; Mathaes, Roman

    2018-04-04

    Prefilled syringes (PFSs) are increasingly preferred over vials as container closure systems (CCSs) for injectable drug products when facilitated or self-administration is required. However, PFSs are more complex compared to CCSs consisting of vial, rubber stopper and crimp cap. Container closure integrity (CCI) assurance and verification has been a specific challenge for PFSs as they feature several sealing areas. A comprehensive understanding of the CCS is necessary for an appropriate CCI assessment as well as for packaging development and qualification. A comprehensive CCI assessment of six different PFSs from three different manufacturers (including one polymeric PFS) was conducted using helium leak testing. PFS components were manipulated to systematically assess the contribution of the different sealing areas to CCI, namely rigid needle shield (RNS)/needle, RNS/tip cone and the individual ribs of a syringe plunger. The polymeric PFS required an equilibrium measurement for accurate CCIT. The different sealing areas and a single plunger rib were shown to provide adequate CCI. Acceptable tip cap movement until the point of CCI failure was estimated. The assessment of acceptable tip cap movement demonstrated the importance of considering the RNS/tip cone seal design to ensure CCI of the PFS upon post assembly possesses and shipment. Copyright © 2018. Published by Elsevier Inc.

  12. Fuskite® preliminary experimental tests based on permeation against vacuum for hydrogen recovery as a potential application in Pb15.7Li loop systems.

    Energy Technology Data Exchange (ETDEWEB)

    Sacristán, R., E-mail: mrosa.sacristan@sener.es [SENER Ingeniería y Sistemas, C/ Provença 392, 5a, 08025 Barcelona (Spain); Veredas, G. [EURATOM-CIEMAT Fusion Assoc., Fusion Technology Division, Av. Complutense 40, 28040 Madrid (Spain); Bonjoch, I. [SENER Ingeniería y Sistemas, C/ Provença 392, 5a, 08025 Barcelona (Spain); Peñalva, I. [UPV/EHU, Departamento de Ingeniería Nuclear y Mecánica de Fluidos, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Calderón, E. [SENER Ingeniería y Sistemas, C/ Provença 392, 5a, 08025 Barcelona (Spain); Alberro, G. [UPV/EHU, Departamento de Ingeniería Nuclear y Mecánica de Fluidos, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Balart, D. [SENER Ingeniería y Sistemas, Avda. Zugazarte 56, 48930 Las Arenas, Vizcaya (Spain); Sarrionandia-Ibarra, A. [UPV/EHU, Departamento de Ingeniería Nuclear y Mecánica de Fluidos, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Pérez, V. [SENER Ingeniería y Sistemas, Avda. Zugazarte 56, 48930 Las Arenas, Vizcaya (Spain); Ibarra, A. [EURATOM-CIEMAT Fusion Assoc., Fusion Technology Division, Av. Complutense 40, 28040 Madrid (Spain); Legarda, F. [UPV/EHU, Departamento de Ingeniería Nuclear y Mecánica de Fluidos, Alameda de Urquijo s/n, 48013 Bilbao (Spain)

    2014-10-15

    Highlights: • Full material characterization as far as hydrogen transport properties are concern. • Quantification of permeator leaks and material degasification. • Analysis of H{sub 2} recovered by means of permeation against vacuum in different conditions. • Hydrogen recovery efficiencies determination. - Abstract: Tritium recovery in fusion reactors is one of the main goals in R and D, as a limited inventory is available and its uneconomic production. That is the reason why efficient technologies are indispensable to be developed in order to achieve fast tritium recovery and its subsequent reuse in the system for increasing its self-sufficiency. In this work a flexible tritium recovery demonstrator prototype based on permeation against vacuum concept has been designed and manufactured, as well as all necessary equipment for a Pb15.7Li loop implementation in order to test and demonstrate that an in-pipe integrated solution is possible, and at the same time, to validate the manufacturing process. Thus, efficient rates for more optimized future models could be then extrapolated. The aim of this paper is to show the different testing results that have been carried out in this research project. These results include permeation properties of the material considered for the permeator, as long as it has been manufactured with a novel technique, Selective Laser Melting. They also include vacuum tests on the permeator to quantify possible leakages and to set up and analyze the capability to generate vacuum inside the permeator, and finally, permeation tests with the prototype, in a first stage with a gas mixture of hydrogen and argon inside the loop instead of Pb15.7Li.

  13. Special power supply and control system for the gas-cooled fast reactor-core flow test loop

    International Nuclear Information System (INIS)

    Hudson, T.L.

    1981-09-01

    The test bundle in the Gas-Cooled Fast Reactor-Core Flow Test Loop (GCFR-CFTL) requires a source of electrical power that can be controlled accurately and reliably over a wide range of steady-state and transient power levels and skewed power distributions to simulate GCFR operating conditions. Both ac and dc power systems were studied, and only those employing silicon-controlled rectifiers (SCRs) could meet the requirements. This report summarizes the studies, tests, evaluations, and development work leading to the selection. it also presents the design, procurement, testing, and evaluation of the first 500-kVa LMPL supply. The results show that the LMPL can control 60-Hz sine wave power from 200 W to 500 kVA

  14. Testing of a controller for an ETO-based STATCOM through controller hardware-in-the-loop simulation

    DEFF Research Database (Denmark)

    Langston, J.; Qi, L.; Steurer, M.

    2009-01-01

    a large-scale digital real time electromagnetic transients simulator. The STATCOM controller is interfaced to the simulation, providing firing pulses to the simulated STATCOM and receiving feedback of system voltages and currents. Notional wind speed data is used to simulate realistic behavior of the wind......The testing of a controller for a proposed 10 MVA STATCOM through hardware-in-the-loop experimentation is described in this paper. The electrical environment into which the STATCOM is to be inserted, including a significant portion of the utility network and a nearby wind farm are simulated using...

  15. Closed-loop model: An optimization of integrated thin-film magnetic devices

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghazaly, Amal, E-mail: amale@stanford.edu [Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Sato, Noriyuki [Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); White, Robert M. [Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Wang, Shan X. [Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States)

    2017-06-15

    Highlights: • An analytical model for inductance of thin-film magnetic devices was developed. • Different device topologies and magnetic permeabilities were addressed. • Inductance of various topologies were calculated and compared with simulation. • The model predicts simulated values with excellent accuracy. - Abstract: A generic analytical model has been developed to fully describe the flux closure through magnetic inductors. The model was applied to multiple device topologies including solenoidal single return path and dual return path inductors as well as spiral magnetic inductors for a variety of permeabilities and dimensions. The calculated inductance values from the analytical model were compared with simulated results for each of the analyzed device topologies and found to agree within 0.1 nH for the range of typical thin-film magnetic permeabilities (∼10{sup 2} to 10{sup 3}). Furthermore, the model can be used to evaluate behavior in other integrated or discrete magnetic devices with either non-isotropic or isotropic permeability and used to produce more efficient device designs in the future.

  16. Closed-loop model: An optimization of integrated thin-film magnetic devices

    International Nuclear Information System (INIS)

    El-Ghazaly, Amal; Sato, Noriyuki; White, Robert M.; Wang, Shan X.

    2017-01-01

    Highlights: • An analytical model for inductance of thin-film magnetic devices was developed. • Different device topologies and magnetic permeabilities were addressed. • Inductance of various topologies were calculated and compared with simulation. • The model predicts simulated values with excellent accuracy. - Abstract: A generic analytical model has been developed to fully describe the flux closure through magnetic inductors. The model was applied to multiple device topologies including solenoidal single return path and dual return path inductors as well as spiral magnetic inductors for a variety of permeabilities and dimensions. The calculated inductance values from the analytical model were compared with simulated results for each of the analyzed device topologies and found to agree within 0.1 nH for the range of typical thin-film magnetic permeabilities (∼10 2 to 10 3 ). Furthermore, the model can be used to evaluate behavior in other integrated or discrete magnetic devices with either non-isotropic or isotropic permeability and used to produce more efficient device designs in the future.

  17. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  18. Testing market integration for Kenyan pineapples. | Onyuma ...

    African Journals Online (AJOL)

    Highly integrated horticultural markets are likely to increase market efficiency through efficient resource allocation and price transmission which would result in lower ... We recommend deliberate efforts to promote market integration as a strategy for improving rural incomes since more incomes and profits would encourage ...

  19. Nondestructive testing of nuclear reactor components integrity

    International Nuclear Information System (INIS)

    Mala, M.; Miklos, M.

    2011-01-01

    Nuclear energy must respond to current challenges in the energy market. The significant parameters are increase of the nuclear fuel price, closed fuel cycle, reduction and safe and the final disposal of high level radioactive waste. Nowadays, the discussions on suitable energy mix are taking place not only here in Czech Republic, but also in many other European countries. It is necessary to establish an appropriate ratio among the production of electricity from conventional, nuclear and renewable energy sources. Also, it is necessary to find ways how to streamline the economy, central part of the nuclear fuel cycle and thereby to increase the competitiveness of nuclear energy. This streamlining can be carried out by improving utilization of existing nuclear fuel with maintaining a high degree of nuclear facilities safety. Increasing operational reliability and safety together with increasing utilization of nuclear fuel place increasing demands on monitoring of changes during fuel burnup. The potential fuel assembly damages in light water reactors are prevented by the introduction of new procedures and programs of the fuel assembly monitoring. One of them is the Post Irradiation Inspection Program (PIIP) which is a good tool for monitoring of chemical regime impact on the fuel assembly cladding behavior. Main nondestructive techniques that are used at nuclear power plants for the fuel assembly integrity evaluation are ultrasonic measurements, eddy current measurements, radiographic testing, acoustic techniques and others. Ultrasonic system is usual tool for leak fuel rod evaluation and it is also used at Temelin NPP. Since 2009, Temelin NPP has cooperated with Research Center Rez Ltd in frame of PIIP program at both units WWER 1000. This program was established for US VVantage6 fuel assemblies and also it continues for Russian TVSA-T fuel assemblies. (author)

  20. Power-Hardware-In-the-Loop (PHIL) Test of VSC-based HVDC connection for Offshore Wind Power Plants (WPPs)

    DEFF Research Database (Denmark)

    Sharma, Ranjan; Cha, Seung-Tae; Wu, Qiuwei

    2011-01-01

    This paper presents a power-hardware-in-the-loop (PHIL) test for an offshore wind power plant (WPP) interconnected to the onshore grid by a VSC-based HVDC connection. The intention of the PHIL test is to verify the control coordination between the plant side converter of the HVDC connection...... and the wind turbines within the WPP in order to ensure smooth operation of the WPP under both normal operating condition and operating conditions with grid faults. The PHIL test platform is comprised of a real time digital simulator (RTDS), a Spitzenberger Spies three phase 7.5 kW amplifier, a Danfoss VSC...... based converter and a chopper. The WPP is simulated in the RTDS which consists of a number of full scale converter wind turbines (FSCWTs). The simulated WPP interacts with the plant side converter through the Spitzenberger Spies amplifier. The interfacing between the RTDS and the Spitzenberger Spies...

  1. PaTAVTT: A Hardware-in-the-Loop Scaled Platform for Testing Autonomous Vehicle Trajectory Tracking

    Directory of Open Access Journals (Sweden)

    Zhigang Xu

    2017-01-01

    Full Text Available With the advent of autonomous vehicles, in particular its adaptability to harsh conditions, the research and development of autonomous vehicles attract significant attention by not only academia but also practitioners. Due to the high risk, high cost, and difficulty to test autonomous vehicles under harsh conditions, the hardware-in-the-loop (HIL scaled platform has been proposed as it is a safe, inexpensive, and effective test method. This platform system consists of scaled autonomous vehicle, scaled roadway, monitoring center, transmission device, positioning device, and computers. This paper uses a case of the development process of tracking control for high-speed U-turn to build the tracking control function. Further, a simplified vehicle dynamics model and a trajectory tracking algorithm have been considered to build the simulation test. The experiment results demonstrate the effectiveness of the HIL scaled platform.

  2. Robust and Accurate Closed-Loop Control of McKibben Artificial Muscle Contraction with a Linear Single Integral Action

    Directory of Open Access Journals (Sweden)

    Bertrand Tondu

    2014-06-01

    Full Text Available We analyze the possibility of taking advantage of artificial muscle’s own stiffness and damping, and substituting it for a classic proportional-integral-derivative controller (PID controller an I controller. The advantages are that there would only be one parameter to tune and no need for a dynamic model. A stability analysis is proposed from a simple phenomenological artificial muscle model. Step and sinus-wave tracking responses performed with pneumatic McKibben muscles are reported showing the practical efficiency of the method to combine accuracy and load robustness. In the particular case of the McKibben artificial muscle technology, we suggest that the dynamic performances in stability and load robustness would result from the textile nature of its braided sleeve and its internal friction which do not obey Coulomb’s third law, as verified by preliminary reported original friction experiments. Comparisons are reported between three kinds of braided sleeves made of rayon yarns, plastic, and thin metal wires, whose similar closed-loop dynamic performances are highlighted. It is also experimentally shown that a sleeve braided with thin metal wires can give high accuracy performance, in step as in tracking response. This would be due to a low static friction coefficient combined with a kinetic friction exponentially increasing with speed in accordance with hydrodynamic lubrication theory applied to textile physics.

  3. A Closed-Loop Proportional-Integral (PI) Control Software for Fully Mechanically Controlled Automated Electron Microscopic Tomography

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-23

    A closed-loop proportional-integral (PI) control software is provided for fully mechanically controlled automated electron microscopic tomography. The software is developed based on Gatan DigitalMicrograph, and is compatible with Zeiss LIBRA 120 transmission electron microscope. However, it can be expanded to other TEM instrument with modification. The software consists of a graphical user interface, a digital PI controller, an image analyzing unit, and other drive units (i.e.: image acquire unit and goniometer drive unit). During a tomography data collection process, the image analyzing unit analyzes both the accumulated shift and defocus value of the latest acquired image, and provides the results to the digital PI controller. The digital PI control compares the results with the preset values and determines the optimum adjustments of the goniometer. The goniometer drive unit adjusts the spatial position of the specimen according to the instructions given by the digital PI controller for the next tilt angle and image acquisition. The goniometer drive unit achieves high precision positioning by using a backlash elimination method. The major benefits of the software are: 1) the goniometer drive unit keeps pre-aligned/optimized beam conditions unchanged and achieves position tracking solely through mechanical control; 2) the image analyzing unit relies on only historical data and therefore does not require additional images/exposures; 3) the PI controller enables the system to dynamically track the imaging target with extremely low system error.

  4. Morphing Wing-Tip Open Loop Controller and its Validation During Wind Tunnel Tests at the IAR-NRC

    Directory of Open Access Journals (Sweden)

    Mohamed Sadok GUEZGUEZ

    2016-09-01

    Full Text Available In this project, a wing tip of a real aircraft was designed and manufactured. This wing tip was composed of a wing and an aileron. The wing was equipped with a composite skin on its upper surface. This skin changed its shape (morphed by use of 4 electrical in-house developed actuators and 32 pressure sensors. These pressure sensors measure the pressures, and further the loads on the wing upper surface. Thus, the upper surface of the wing was morphed using these actuators with the aim to improve the aerodynamic performances of the wing-tip. Two types of ailerons were designed and manufactured: one aileron is rigid (non-morphed and one morphing aileron. This morphing aileron can change its shape also for the aerodynamic performances improvement. The morphing wing-tip internal structure is designed and manufactured, and is presented firstly in the paper. Then, the modern communication and control hardware are presented for the entire morphing wing tip equipped with actuators and sensors having the aim to morph the wing. The calibration procedure of the wing tip is further presented, followed by the open loop controller results obtained during wind tunnel tests. Various methodologies of open loop control are presented in this paper, and results obtained were obtained and validated experimentally through wind tunnel tests.

  5. Mashup the OODA Loop

    National Research Council Canada - National Science Library

    Heier, Jeffrey E

    2008-01-01

    ...) processes via the Observe, Orient, Decide, and Act (OODA) Loop concept. As defined by Wikipedia, a mashup is a Website or application that combines the content from more than one source into an integrated presentation...

  6. An Examination of Three Tests of Visual-Motor Integration.

    Science.gov (United States)

    Aylward, Elizabeth H.; Schmidt, Steven

    1986-01-01

    Kindergarten children (N=103) were administered three tests of visual-motor integration: Bender Gestalt Test, Beery Developmental Test of Visual Motor Integration and Geometric Design subtest of the Wechsler Preschool and Primary Scale of Intelligence. Issues discussed include interscorer reliabilities, correlations among scores, correlations…

  7. Testing of an Integrated Reactor Core Simulator and Power Conversion System with Simulated Reactivity Feedback

    Science.gov (United States)

    Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.

    2010-01-01

    A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, Ohio. This is a closed-cycle system that incorporates an electrically heated reactor core module, turboalternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.

  8. The ξ/ξ2nd ratio as a test for Effective Polyakov Loop Actions

    Science.gov (United States)

    Caselle, Michele; Nada, Alessandro

    2018-03-01

    Effective Polyakov line actions are a powerful tool to study the finite temperature behaviour of lattice gauge theories. They are much simpler to simulate than the original (3+1) dimensional LGTs and are affected by a milder sign problem. However it is not clear to which extent they really capture the rich spectrum of the original theories, a feature which is instead of great importance if one aims to address the sign problem. We propose here a simple way to address this issue based on the so called second moment correlation length ξ2nd. The ratio ξ/ξ2nd between the exponential correlation length and the second moment one is equal to 1 if only a single mass is present in the spectrum, and becomes larger and larger as the complexity of the spectrum increases. Since both ξexp and ξ2nd are easy to measure on the lattice, this is an economic and effective way to keep track of the spectrum of the theory. In this respect we show using both numerical simulation and effective string calculations that this ratio increases dramatically as the temperature decreases. This non-trivial behaviour should be reproduced by the Polyakov loop effective action.

  9. The ξ/ξ2nd ratio as a test for Effective Polyakov Loop Actions

    Directory of Open Access Journals (Sweden)

    Caselle Michele

    2018-01-01

    Full Text Available Effective Polyakov line actions are a powerful tool to study the finite temperature behaviour of lattice gauge theories. They are much simpler to simulate than the original (3+1 dimensional LGTs and are affected by a milder sign problem. However it is not clear to which extent they really capture the rich spectrum of the original theories, a feature which is instead of great importance if one aims to address the sign problem. We propose here a simple way to address this issue based on the so called second moment correlation length ξ2nd. The ratio ξ/ξ2nd between the exponential correlation length and the second moment one is equal to 1 if only a single mass is present in the spectrum, and becomes larger and larger as the complexity of the spectrum increases. Since both ξexp and ξ2nd are easy to measure on the lattice, this is an economic and effective way to keep track of the spectrum of the theory. In this respect we show using both numerical simulation and effective string calculations that this ratio increases dramatically as the temperature decreases. This non-trivial behaviour should be reproduced by the Polyakov loop effective action.

  10. A UML-integrated test description language for component testing

    OpenAIRE

    Pickin, Simon; Jard, Claude; Heuillard, Thierry; Jézéquel, Jean-Marc; Desfray, Philippe

    2001-01-01

    International audience; A mass market in reusable components demands a high level of component quality, testing being a crucial part of software quality assurance. For components modelled in UML there are significant advantages to using UML also for the test description language. Since we wish to describe tests of non-trivial temporal ordering properties, we define our test description language based around UML interaction diagrams, seeking inspiration from the work on conformance testing of ...

  11. Assurance of Learning, "Closing the Loop": Utilizing a Pre and Post Test for Principles of Finance

    Science.gov (United States)

    Flanegin, Frank; Letterman, Denise; Racic, Stanko; Schimmel, Kurt

    2010-01-01

    Since there is no standard national Pre and Post Test for Principles of Finance, akin to the one for Economics, by authors created one by selecting questions from previously administered examinations. The Cronbach's Alpha of 0.851, exceeding the minimum of 0.70 for reliable pen and paper test, indicates that our Test can detect differences in…

  12. A closed expression for the UV-divergent parts of one-loop tensor integrals in dimensional regularization

    Science.gov (United States)

    Sulyok, G.

    2017-07-01

    Starting from the general definition of a one-loop tensor N-point function, we use its Feynman parametrization to calculate the ultraviolet (UV-)divergent part of an arbitrary tensor coefficient in the framework of dimensional regularization. In contrast to existing recursion schemes, we are able to present a general analytic result in closed form that enables direct determination of the UV-divergent part of any one-loop tensor N-point coefficient independent from UV-divergent parts of other one-loop tensor N-point coefficients. Simplified formulas and explicit expressions are presented for A-, B-, C-, D-, E-, and F-functions.

  13. Policy design in closed-loop supply chains for the integrated management of component recycling and spare parts supply in the electronics industry

    Science.gov (United States)

    Schroeter, Marcus; Spengler, Thomas

    2004-02-01

    The strategy to recover components from discarded electrical and electronic equipment to obtain spare parts is promising, especially during the final service phase. In that phase, the original product is no longer produced and the sources of new parts are often limited. Controlling those closed-loop supply chains is challenging. Decision makers have to choose when to acquire discarded equipment, when to recover used parts, and when to produce new parts. We developed a generic system dynamics model that provides a test for various proposed policies to control closed-loop supply chains with parts recovery and spare-parts supply.

  14. Testing device for PWR fuel irradiation Isabelle loop in the Osiris experimental reactor

    International Nuclear Information System (INIS)

    Lucot, Michel; Vidal, Henri.

    1979-01-01

    Description of an irradiation device to test PWR fuel pins in fast and thermal neutron flux. 1 to 4 pins can be irradiated in water under a pressure of 150 bar in a temperature range of 250-300 0 C, a flow of 200g/s and a power of 400W/cm for each pin. Tests include normal, exceptional, transient or accidental conditions. First tests are briefly described [fr

  15. Integrated Performance Testing Workshop, Modules 6 - 11

    Energy Technology Data Exchange (ETDEWEB)

    Leach, Janice; Torres, Teresa M.

    2012-10-01

    These modules cover performance testing of: Interior Detection Systems; Access Controls; Exterior Detection Systems; Video Assessment Systems; SNM / Contraband Detection Systems; Access Delay Elements

  16. Best Practices: Power Quality and Integrated Testing at JSC

    Science.gov (United States)

    Davis, Lydia

    2018-01-01

    This presentation discusses Best Practices for Power Quality and Integrated Testing at JSC in regards to electrical systems. These high-level charts include mostly generic information; however, a specific issue is discussed involving flight hardware that could have been discovered prior to flight with an integrated test.

  17. Ergonomic Investigation On The Layout And Design Of The Main Control Room Of (MCR)Reactor Thermalhydraulic Testing Loop

    International Nuclear Information System (INIS)

    DARLlS; WIDAGDO, SUHARYO

    2000-01-01

    Ergonomics investigation on the layout and design of the reactor thermalhydraulic testing loop main control room has been done. This reason is needed to be done as the primary step for evaluating of operator workload. The operator work load be influence on the operator performance, and finally would influencing the installation operation safety. Generally, the factors that is influencing on operator performance are the layout and design of MCR and its supporting physical environments factors for instance lighting, noising and climatic condition respectively. From investigation had been done, cod be identified that ergonomics point of view not implemented yet on the main control console design, especially on the alarm panel, and also found a little bit brightness problem. Otherwise the temperature and noise room are still in the tolerance boundary

  18. Integrated Performance Testing for Nonproliferation Support Project

    Energy Technology Data Exchange (ETDEWEB)

    Johns, Russell; Bultz, Garl Alan; Byers, Kenneth R.; Yaegle, William

    2013-08-20

    The objective of this workshop is to provide participants with training in testing techniques and methodologies for assessment of the performance of: Physical Protection system elements; Material Control and Accounting (MC&A) system elements.

  19. Hardware in the loop testing and evaluation of seaborne search radars

    CSIR Research Space (South Africa)

    Strydom, JJ

    2012-09-01

    Full Text Available for independent testing and evaluation of radar systems. The CSIR digital radio frequency memory (DRFM) hardware technology is used as the basis of these test systems. DRFM's are traditionally used for EW applications, but processing power of field programmable...-band radar. In these figures the red areas indicate very “spiky” clutter, whereas the blue areas indicate Rayleigh (Gaussian) clutter. Table 1 shows the conditions relating to the light clutter and heavy clutter scenarios. Table 1: Measurement parameters...

  20. Hardware-in-the-Loop Test for Automatic Voltage Regulator of Synchronous Condenser

    DEFF Research Database (Denmark)

    Nguyen, Ha Thi; Yang, Guangya; Nielsen, Arne Hejde

    2018-01-01

    Automatic voltage regulator (AVR) plays an important role in volt/var control of synchronous condenser (SC) in power systems. Test AVR performance in steady-state and dynamic conditions in real grid is expensive, low efficiency, and hard to achieve. To address this issue, we implement hardware...

  1. Qualification program for JHR fuel elements: Irradiation of the first JHR test assembly in the BR2-Evita loop

    International Nuclear Information System (INIS)

    Anselmet, M.-C.; Lemoine, P.; Koonen, E.; Benoit, P.; Gouat, P.; Claes, W.; Geens, F.; Miras, G.; Brisson, S.

    2010-01-01

    An experimental program has been designed by CEA to qualify the behaviour of the JHR fuel under conditions representative of the reactor operating ones. This program uses the SCK.CEN facilities, irradiating JHR lead test elements in the BR2 reactor, inside its central channel which has been particularly arranged for this objective (Evita loop). As a first step in the program, a two cycle irradiation (4 weeks by cycle) started mid-July 2009 and ended mid-November (EVITA-1). After a cooling phase, this first JHR lead test element will be submitted to post-irradiation examination. The second JHR test element began its irradiation in the first quarter of 2010; its unloading is planned before the end of 2010, after 5 cycles in the BR2 reactor. The results of these two experiments are expected as input information for the Safety Authority Report. This paper presents the qualification program with the objectives assigned to each phase (irradiation, examination). A first interpretation of the irradiation data for the first element is presented, so as the information available on the progress of the following phases of the programme. (author)

  2. Integration testing through reusing representative unit test cases for high-confidence medical software.

    Science.gov (United States)

    Shin, Youngsul; Choi, Yunja; Lee, Woo Jin

    2013-06-01

    As medical software is getting larger-sized, complex, and connected with other devices, finding faults in integrated software modules gets more difficult and time consuming. Existing integration testing typically takes a black-box approach, which treats the target software as a black box and selects test cases without considering internal behavior of each software module. Though it could be cost-effective, this black-box approach cannot thoroughly test interaction behavior among integrated modules and might leave critical faults undetected, which should not happen in safety-critical systems such as medical software. This work anticipates that information on internal behavior is necessary even for integration testing to define thorough test cases for critical software and proposes a new integration testing method by reusing test cases used for unit testing. The goal is to provide a cost-effective method to detect subtle interaction faults at the integration testing phase by reusing the knowledge obtained from unit testing phase. The suggested approach notes that the test cases for the unit testing include knowledge on internal behavior of each unit and extracts test cases for the integration testing from the test cases for the unit testing for a given test criteria. The extracted representative test cases are connected with functions under test using the state domain and a single test sequence to cover the test cases is produced. By means of reusing unit test cases, the tester has effective test cases to examine diverse execution paths and find interaction faults without analyzing complex modules. The produced test sequence can have test coverage as high as the unit testing coverage and its length is close to the length of optimal test sequences. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. A Novel Flux Estimator Based on Multiple Second-Order Generalized Integrators and Frequency-Locked Loop for Induction Motor Drives

    DEFF Research Database (Denmark)

    Zhao, Rende; Xin, Zhen; Loh, Poh Chiang

    2017-01-01

    Accurate flux estimation is essential for the implementation of a high-performance ac motor drive. However, it still faces some problems, which can better be projected by analyzing performances of existing flux estimators, implemented with either a pure integrator or a low-pass filter (LPF......). To solve the problems, an alternative flux estimator, implemented with a single second-order generalized integrator (SOGI) and a frequency-locked loop (FLL), is discussed for induction motor drives. The SOGI block included in this algorithm works for integrating the back-electromotive force, which unlike...... the pure integrator and LPF, does not experience saturation and significant dc offsets caused by different initial conditions. The single-SOGI-FLL estimator does not need additional magnitude and phase compensation, while its performance may deteriorate at low speed, caused by the inverse proportional...

  4. Laboratory-scale integrated ARP filter test

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. There is a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. This task attempted to simulate the entire ARP process, including multiple batches (5), washing, chemical cleaning, and blending the feed with heels and recycle streams. The objective of the tests was to determine whether one of these processes is causing excessive fouling of the crossflow or secondary filter. The authors conducted the tests with feed solutions containing 6.6 M sodium Salt Batch 6 simulant supernate with no MST.

  5. Studies of the steam generator degraded tubes behavior on BRUTUS test loop

    Energy Technology Data Exchange (ETDEWEB)

    Chedeau, C.; Rassineux, B. [EDF/DER/MTC, Moret Sur Loing (France); Flesch, B. [EDF/EPN/DMAINT, Paris (France)] [and others

    1997-04-01

    Studies for the evaluation of steam generator tube bundle cracks in PWR power plants are described. Global tests of crack leak rates and numerical calculations of crack opening area are discussed in some detail. A brief overview of thermohydraulic studies and the development of a mechanical probabilistic design code is also given. The COMPROMIS computer code was used in the studies to quantify the influence of in-service inspections and maintenance work on the risk of a steam generator tube rupture.

  6. A Critical Examination of Frequency-Fixed Second-Order Generalized Integrator-Based Phase-Locked Loops

    DEFF Research Database (Denmark)

    Golestan, Saeed; Mousazadeh Mousavi, Seyyed-Yousef; Guerrero, Josep M.

    2017-01-01

    /accuracy tradeoff. The SOGI-QSG based PLL (or briefly the SOGI-PLL), in its standard form, involves a frequency feedback loop for adjusting the SOGI resonance frequency under frequency drifts. Some recent research works have reported that the speed/accuracy tradeoff of the SOGI-PLL can be considerably enhanced...... by removing the frequency feedback loop. In these methods, the SOGI resonance frequency is fixed at the nominal frequency and a compensation strategy for correcting errors caused under off-nominal frequencies are presented. The main aim of this letter is to provide a critical analysis of frequency-fixed SOGI...

  7. Task force for integral test of High Energy nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    According to completion of the JENDL-High Energy file for neutron nuclear cross sections up to 50 MeV, a task force for integral test of high energy nuclear data was organized to discuss a guide line for integral test activities. A status of existing differential and integral experiments and how to perform such a test were discussed in the task force. Here the purpose and outline of the task force is explained with some future problems raised in discussion among the task member. (author)

  8. Testing for the Equality of Integration Orders of Multiple Series

    Directory of Open Access Journals (Sweden)

    Man Wang

    2016-12-01

    Full Text Available Testing for the equality of integration orders is an important topic in time series analysis because it constitutes an essential step in testing for (fractional cointegration in the bivariate case. For the multivariate case, there are several versions of cointegration, and the version given in Robinson and Yajima (2002 has received much attention. In this definition, a time series vector is partitioned into several sub-vectors, and the elements in each sub-vector have the same integration order. Furthermore, this time series vector is said to be cointegrated if there exists a cointegration in any of the sub-vectors. Under such a circumstance, testing for the equality of integration orders constitutes an important problem. However, for multivariate fractionally integrated series, most tests focus on stationary and invertible series and become invalid under the presence of cointegration. Hualde (2013 overcomes these difficulties with a residual-based test for a bivariate time series. For the multivariate case, one possible extension of this test involves testing for an array of bivariate series, which becomes computationally challenging as the dimension of the time series increases. In this paper, a one-step residual-based test is proposed to deal with the multivariate case that overcomes the computational issue. Under certain regularity conditions, the test statistic has an asymptotic standard normal distribution under the null hypothesis of equal integration orders and diverges to infinity under the alternative. As reported in a Monte Carlo experiment, the proposed test possesses satisfactory sizes and powers.

  9. Megawatt Scale Hardware-in-the-Loop Testing of a High Speed Generator

    Science.gov (United States)

    2012-02-01

    designed for 1.2 MW continuous and 2.5 MW intermittent power. The generator is a two-stage machine composed of a brushless DC exciter and main...used to rectify the voltage at the terminals of the machine, and a 2.5 MW bi-directional DC converter is used as a dynamic load for the generator...been used to conduct a number of PHIL tests ranging from a 5 MW prototype high temperature superconducting propulsion motor (Woodruff et al., 2005

  10. System integration test plan for HANDI 2000 business management system

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, D.

    1998-08-24

    This document presents the system integration test plan for the Commercial-Off-The-Shelf, PassPort and PeopleSoft software, and custom software created to work with the COTS products. The PP software is an integrated application for AP, Contract Management, Inventory Management, Purchasing and Material Safety Data Sheet. The PS software is an integrated application for Project Costing, General Ledger, Human Resources/Training, Payroll, and Base Benefits.

  11. Loop-mediated isothermal amplification (LAMP) test for specific and rapid detection of Brucella abortus in cattle.

    Science.gov (United States)

    Karthik, K; Rathore, Rajesh; Thomas, Prasad; Arun, T R; Viswas, K N; Agarwal, R K; Manjunathachar, H V; Dhama, Kuldeep

    2014-01-01

    Brucella abortus, the major causative agent of abortion in cattle and a zoonotic pathogen, needs to be diagnosed at an early stage. Loop-mediated isothermal amplification (LAMP) test is easy to perform and also promising to be adapted at field level. To develop a LAMP assay for specific and rapid detection of B. abortus from clinical samples of cattle. LAMP primers were designed targeting BruAb2_0168 region using specific software tool and LAMP was optimized. The developed LAMP was tested for its specificity with 3 Brucella spp. and 11 other non-Brucella spp. Sensitivity of the developed LAMP was also carried out with known quantity of DNA. Cattle whole blood samples and aborted fetal stomach contents were collected and used for testing with developed LAMP assay and results were compared with polymerase chain reaction (PCR). The developed LAMP assay works at 61 °C for 60 min and the detection limit was observed to be 100-fold more than the conventional PCR that is commonly used for diagnosis of B. abortus. Clinical sensitivity and specificity of the developed LAMP assay was 100% when compared with Rose Bengal plate test and standard tube agglutination test. SYB® green dye I was used to visualize the result with naked eye. The novelty of the developed LAMP assay for specifically detecting B. abortus infection in cattle along with its inherent rapidness and high sensitivity can be employed for detecting this economically important pathogen of cattle at field level as well be exploited for screening of human infections.

  12. CIVET: Continuous Integration, Verification, Enhancement, and Testing

    Energy Technology Data Exchange (ETDEWEB)

    2016-11-29

    A Git server (GitHub, GitLab, BitBucket) sends event notifications to the Civet server. These are either a " Pull Request" or a "Push" notification. Civet then checks the database to determine what tests need to be run and marks them as ready to run. Civet clients, running on dedicated machines, query the server for available jobs that are ready to run. When a client gets a job it executes the scripts attached to the job and report back to the server the output and exit status. When the client updates the server, the server will also update the Git server with the result of the job, as well as updating the main web page.

  13. Academic integrity "captured" by a personality-based test

    Directory of Open Access Journals (Sweden)

    Okanović Predrag

    2013-01-01

    Full Text Available The main goal of this study was to develop and validate a personality-based academic integrity test which could serve as a predictor of students’ academic dishonesty. A new Academic Integrity Test (AIT, based on methodological principles accepted in the field of work integrity, was created during this study. The test was developed on one student sample (N=350, and then validated on another (N=471. Validation of the AIT confirmed its relations with three dimensions previously found to be consistent correlates of work integrity measures - Conscientiousness, Aggressiveness and Neuroticism, with the addition of Negative Valence. The correlation between the AIT and a cognitive ability measure was not significant, which is in accordance with previous research. The test retained significant relations with the aforementioned personality measures in simulated applicant condition (except with Neuroticism, leading to the conclusion that the AIT maintains construct validity in situations susceptible to self-presentation.

  14. Mountaintop Surveillance Sensor Test Integration Center Facility, Kauai, Hawaii

    National Research Council Canada - National Science Library

    Craven, Tom

    2000-01-01

    .... All sites are located on the Island of Kauai, Hawaii. The tower originally installed and removed as part of the Mountaintop Sensor Integration and Test program would be reinstalled at PMRF-Kokee...

  15. Development and standardization of perafom integrated aptitude test

    African Journals Online (AJOL)

    / selection/ placement and the measurement of intelligence prompted the development of Perafom Integrated Aptitude Test (PIAT). Following the due psychometric process of item selection, PIAT comprises 40 items derived from several ...

  16. Operational test report for LERF Basin 242AL-44 integrity test

    International Nuclear Information System (INIS)

    Galioto, T.M.

    1994-01-01

    This operational test report documents the results of LERF operational testing per operational test procedure (OTP) TFPE-WP-0231, ''LERF Basin Integrity Testing.'' The primary purpose of the OTP was to resolve test exceptions generated as a result of TFPE-WP-0184. The TOP was prepared and performed in accordance with WHC-SD-534-OTP-002, ''Operational Test Plan for the 242-A Evaporator Upgrades and the Liquid Effluent Retention Facility.'' WHC-S-086, ''Specification for Operational Testing of the Liquid Effluent Retention Facility, Basin Integrity Testing,'' identified the test requirements and acceptance criteria. The completed, signed-off test procedure is contained in Appendix A. The test log is contained in Appendix B. Section 2.1 describes all the test exceptions written during performance of the Operational Test Procedure. The test revisions generated during the testing are discussed in Section 2.2. The dispositioned test exception forms are contained in Appendix C

  17. Actinide integral measurements in the CFRMF and integral tests for ENDF/B-V

    International Nuclear Information System (INIS)

    Anderl, R.A.

    1982-01-01

    Integral capture and/or fission rates have been reported earlier for several actinides irradiated in the fast neutron field of the Coupled Fast Reactivity Measurements Facility (CFRMF). These nuclides include 232 Th, 233 U, 235 U, 238 U, 237 Np, 239 Pu, 240 Pu, 242 Pu, 241 Am and 243 Am. This paper forucses on the utilization of these integral data for testing the respective cross sections on ENDF/B-V. Integral cross sections derived from the measured reaction rates are tabulated. Results are presented for cross-section data testing which includes integral testing based on a comparison of calculated and measured integral cross sections and testing based on least-squares-adjustment analyses

  18. Scaling, experiment, and code assessment on an integral testing facility

    International Nuclear Information System (INIS)

    Yang, J.; Choi, S.W.; Lim, J.; Lee, D.Y.; Rassame, S.; Hibiki, T.; Ishii, M.

    2011-01-01

    A series of integral tests simulating different types of Loss-Of-Coolant Accidents (LOCAs) for new Boiling Water Reactor (BWR) design were conducted on an integral test facility (Purdue University Multi-Dimensional Integral Test Assembly, PUMA) facility. The PUMA facility was built with a scaling methodology addressing both the conservation principles and constitutive laws. A systemic study about the safety evaluation of the advanced passively safe BWR design has been performed with the collaboration of experiments on the scaled-down test facility and RELAP5/Mod3.3 code simulation. Various types of LOCA tests were performed, such as Main Steam Line Break (MSLB), Bottom Drain Line Break (BDLB), Gravity-Driven Line Break (GDLB), and Feed Water Line Break (FWLB). (author)

  19. Renormalization of loop functions for all loops

    International Nuclear Information System (INIS)

    Brandt, R.A.; Neri, F.; Sato, M.

    1981-01-01

    It is shown that the vacuum expectation values W(C 1 ,xxx, C/sub n/) of products of the traces of the path-ordered phase factors P exp[igcontour-integral/sub C/iA/sub μ/(x)dx/sup μ/] are multiplicatively renormalizable in all orders of perturbation theory. Here A/sub μ/(x) are the vector gauge field matrices in the non-Abelian gauge theory with gauge group U(N) or SU(N), and C/sub i/ are loops (closed paths). When the loops are smooth (i.e., differentiable) and simple (i.e., non-self-intersecting), it has been shown that the generally divergent loop functions W become finite functions W when expressed in terms of the renormalized coupling constant and multiplied by the factors e/sup -K/L(C/sub i/), where K is linearly divergent and L(C/sub i/) is the length of C/sub i/. It is proved here that the loop functions remain multiplicatively renormalizable even if the curves have any finite number of cusps (points of nondifferentiability) or cross points (points of self-intersection). If C/sub γ/ is a loop which is smooth and simple except for a single cusp of angle γ, then W/sub R/(C/sub γ/) = Z(γ)W(C/sub γ/) is finite for a suitable renormalization factor Z(γ) which depends on γ but on no other characteristic of C/sub γ/. This statement is made precise by introducing a regularization, or via a loop-integrand subtraction scheme specified by a normalization condition W/sub R/(C-bar/sub γ/) = 1 for an arbitrary but fixed loop C-bar/sub γ/. Next, if C/sub β/ is a loop which is smooth and simple except for a cross point of angles β, then W(C/sub β/) must be renormalized together with the loop functions of associated sets S/sup i//sub β/ = ]C/sup i/ 1 ,xxx, C/sup i//sub p/i] (i = 2,xxx,I) of loops C/sup i//sub q/ which coincide with certain parts of C/sub β/equivalentC 1 1 . Then W/sub R/(S/sup i//sub β/) = Z/sup i/j(β)W(S/sup j//sub β/) is finite for a suitable matrix Z/sup i/j

  20. The development of a closed-loop flight controller with panel method integration for gust alleviation using biomimetic feathers on aircraft wings

    Science.gov (United States)

    Blower, Christopher J.; Lee, Woody; Wickenheiser, Adam M.

    2012-04-01

    This paper presents the development of a biomimetic closed-loop flight controller that integrates gust alleviation and flight control into a single distributed system. Modern flight controllers predominantly rely on and respond to perturbations in the global states, resulting in rotation or displacement of the entire aircraft prior to the response. This bio-inspired gust alleviation system (GAS) employs active deflection of electromechanical feathers that react to changes in the airflow, i.e. the local states. The GAS design is a skeletal wing structure with a network of featherlike panels installed on the wing's surfaces, creating the airfoil profile and replacing the trailing-edge flaps. In this study, a dynamic model of the GAS-integrated wing is simulated to compute gust-induced disturbances. The system implements continuous adjustment to flap orientation to perform corrective responses to inbound gusts. MATLAB simulations, using a closed-loop LQR integrated with a 2D adaptive panel method, allow analysis of the morphing structure's aerodynamic data. Non-linear and linear dynamic models of the GAS are compared to a traditional single control surface baseline wing. The feedback loops synthesized rely on inertial changes in the global states; however, variations in number and location of feather actuation are compared. The bio-inspired system's distributed control effort allows the flight controller to interchange between the single and dual trailing edge flap profiles, thereby offering an improved efficiency to gust response in comparison to the traditional wing configuration. The introduction of aero-braking during continuous gusting flows offers a 25% reduction in x-velocity deviation; other flight parameters can be reduced in magnitude and deviation through control weighting optimization. Consequently, the GAS demonstrates enhancements to maneuverability and stability in turbulent intensive environments.

  1. The application of loop-mediated isothermal amplification (LAMP) in food testing for bacterial pathogens and fungal contaminants.

    Science.gov (United States)

    Niessen, Ludwig; Luo, Jie; Denschlag, Carla; Vogel, Rudi F

    2013-12-01

    Bacterial pathogens and toxicants, parasites as well as mycotoxin producing fungi are the major biotic factors influencing the safety of food. Moreover, viral infections and prions may be present as quasi biotic challenging factors. A vast array of culture dependent analytical methods and protocols for food safety testing has been developed during the past decades. Presently, protocols involving molecular biological techniques such as PCR-based nucleic acid amplification and hybridization have become available for many of the known pathogens with their major advantages being rapidness, high sensitivity and specificity. However, this type of assays is still quite labor- and cost intensive and mostly cannot be operated directly in the field. Recently, loop-mediated isothermal amplification (LAMP) of DNA has emerged as an alternative to the use of PCR-based methods not only in food safety testing but also in a wide array of application. Its advantages over PCR-based techniques are even shorter reaction time, no need for specific equipment, high sensitivity and specificity as well as comparably low susceptibility to inhibitors present in sample materials which enables detection of the pathogens in sample materials even without time consuming sample preparation. The present article presents a critical review of the application of LAMP-based methods and their usefulness in detecting and identifying food borne bacterial pathogens and toxicants as well as mycotoxin producing food borne fungi as compared to other methods. Moreover does it elaborate on new developments in the design and automation of LAMP-based assays and their implications for the future developments of food testing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Autism and genius: is there a link? The involvement of central brain loops and hypotheses for functional testing.

    Science.gov (United States)

    Boso, M; Emanuele, E; Prestori, Francesca; Politi, P; Barale, F; D'Angelo, E

    2010-01-01

    Mental processing is the product of the huge number of synaptic interactions that occur in the brain. It is easier to understand how brain functions can deteriorate than how they might be boosted. Lying at the border between the humanities, cognitive science and neurophysiology, some mental diseases offer new angles on this problematic issue. Despite their social deficits, autistic subjects can display unexpected and extraordinary skills in numerous fields, including music, the arts, calculation and memory. The advanced skills found in a subgroup of people with autism may be explained by their special mental functioning, in particular by their weak central coherence, one of the pivotal characteristics of the disorder. As a result of the increasing interest in autistic talent, there has recently emerged a tendency to screen any eccentric artist or scientist for traits of the autistic spectrum. Following this trend, we analyze the eccentricity of the popular pianist Glenn Gould and briefly discuss the major functional hypotheses on autistic hyperfunctioning, advancing proposals for functional testing. In particular, the potential involvement of rhythm-entrained systems and cerebro-cerebellar loops opens up new perspectives for the investigation of autistic disorders and brain hyperfunctioning.

  3. An Improved Flux Observer for Field-Oriented Control of Induction Motors Based on Dual Second-Order Generalized Integrator Frequency-Locked Loop

    DEFF Research Database (Denmark)

    Xin, Zhen; Zhao, Rende; Blaabjerg, Frede

    2017-01-01

    and performance of the DSOGI-FLL based flux estimation method are analyzed in comparison with the SOGI-FLL, demonstrating its improved dynamic response. Simulations and experimental results on an 11-kW three-phase induction motor verify the excellent performance of the proposed DSOGI-FLL based flux estimation......Flux estimation is of great importance for high-performance motor drives. In order to improve flux estimation accuracy and reduce system complexity, a new flux estimation method based on Second-Order Generalized Integrator Frequency-Locked Loop (SOGI-FLL) was presented recently. Compared...

  4. Integration of computation and testing for reliability estimation

    International Nuclear Information System (INIS)

    Zhang Ruoxue; Mahadevan, Sankaran

    2001-01-01

    This paper develops a methodology to integrate reliability testing and computational reliability analysis for product development. The presence of information uncertainty such as statistical uncertainty and modeling error is incorporated. The integration of testing and computation leads to a more cost-efficient estimation of failure probability and life distribution than the tests-only approach currently followed by the industry. A Bayesian procedure is proposed to quantify the modeling uncertainty using random parameters, including the uncertainty in mechanical and statistical model selection and the uncertainty in distribution parameters. An adaptive method is developed to determine the number of tests needed to achieve a desired confidence level in the reliability estimates, by combining prior computational prediction and test data. Two kinds of tests -- failure probability estimation and life estimation -- are considered. The prior distribution and confidence interval of failure probability in both cases are estimated using computational reliability methods, and are updated using the results of tests performed during the product development phase

  5. An integrated service excellence model for military test and ...

    African Journals Online (AJOL)

    The purpose of this article is to introduce an Integrated Service Excellence Model (ISEM) for empowering the leadership core of the capital-intensive military test and evaluation facilities to provide strategic military test and evaluation services and to continuously improve service excellence by ensuring that all activities ...

  6. Integrated Test Scoring, Performance Rating and Assessment Records Keeping.

    Science.gov (United States)

    Cason, Gerald J.; And Others

    The Objective Test Scoring and Performance Rating (OTS-PR) system is a fully integrated set of 70 modular FORTRAN programs run on a VAX-8530 computer. Even with no knowledge of computers, the user can implement OTS-PR to score multiple-choice tests, include scores from external sources such as hand-scored essays or scores from nationally…

  7. Test-Taker Characteristics and Integrated Speaking Test Performance: A Path-Analytic Study

    Science.gov (United States)

    Huang, Heng-Tsung Danny; Hung, Shao-Ting Alan; Hong, He-Ting Vivian

    2016-01-01

    This study explored the relationships among language proficiency, two selected test-taker characteristics (i.e., topical knowledge and anxiety), and integrated speaking test performance. Data collection capitalized on three sets of instruments: three integrated tasks derived from TOEFL-iBT preparation materials, the state anxiety inventory created…

  8. Co-integration Rank Testing under Conditional Heteroskedasticity

    DEFF Research Database (Denmark)

    Cavaliere, Guiseppe; Rahbæk, Anders; Taylor, A.M. Robert

    We analyse the properties of the conventional Gaussian-based co-integrating rank tests of Johansen (1996) in the case where the vector of series under test is driven by globally stationary, conditionally heteroskedastic (martingale differ- ence) innovations. We first demonstrate that the limiting...... null distributions of the rank statistics coincide with those derived by previous authors who assume either i.i.d. or (strict and covariance) stationary martingale difference innovations. We then propose wild bootstrap implementations of the co-integrating rank tests and demonstrate that the associated...

  9. Research on integral thermal-hydraulic test facilities

    International Nuclear Information System (INIS)

    Liu Yusheng; Zhang Chunming; Ma Shuai; Zhang Pan

    2014-01-01

    Integral thermal-hydraulic test facilities, which have been necessary experimental platforms during the development of nuclear safety technology, could not only test and validate performance of new designed system, but also provide experimental data for development and validation of nuclear safety analysis codes. Typical integral thermal-hydraulic test facilities in the world are studied in this paper, of which the design parameters, system arrangements and functions are emphatically discussed. The results show that those integral thermal-hydraulic test facilities differ with each other in parameter scope and simulation function. Basing the fact that each facility has its advantages and disadvantages, it is better to take more factors into consideration in design of new facility. What is more, the design scheme could be optimized with new measurement technology and analysis software. (authors)

  10. Use of a Hands Free, Instantaneous, Closed-Loop Communication Device Improves Perception of Communication and Workflow Integration in an Academic Teaching Hospital: A Pilot Study.

    Science.gov (United States)

    Fang, Daniel Z; Patil, Teja; Belitskaya-Levy, Ilana; Yeung, Marianne; Posley, Keith; Allaudeen, Nazima

    2017-11-17

    Efficient and effective communication between providers is critical to quality patient care within a hospital system. Hands free communication devices (HFCD) allow instantaneous, closed-loop communication between physicians and other members of a multidisciplinary team, providing a communication advantage over traditional pager systems. HFCD have been shown to decrease emergency room interruptions, improve nursing communication, improve speed of information flow, and eliminate health care waste. We evaluated the integration of an HFCD with an existing alphanumeric paging system on an acute inpatient medicine service. We conducted a prospective, observational, survey-based study over twenty-four weeks in an academic tertiary care center with attending physicians and residents. Our intervention involved the implementation of an HFCD alongside the existing paging system. Fifty-six pre and post surveys evaluated the perception of improvement in communication and the integration of the HFCD into existing workflow. We saw significant improvements in the ability of an HFCD to help physicians communicate thoughts clearly, communicate thoughts effectively, reach team members, reach ancillary staff, and stay informed about patients. Physicians also reported better workflow integration during admissions, rounds, discharge, and teaching sessions. Qualitative data from post surveys demonstrated that the greatest strengths of the HFCD included the ability to reach colleagues and staff quickly, provide instant access to individuals of the care team, and improve overall communication. Integration of an instantaneous, hands free, closed loop communication system alongside the existing pager system can provide improvements in the perceptions of communication and workflow integration in an academic medicine service. Future studies are needed to correlate these subjective findings with objective measures of quality and safety.

  11. Das erweiterte X-in-the-Loop-Framework zur durchgängigen Integration von Optimierungsverfahren in den Produktentwicklungsprozess am Beispiel der Entwicklung energieeffizienter Fahrzeuge = The advanced X-in-the-Loop-Framework for continuous integration of optimization procedures into the product development process using examples of the development of fuel efficient vehicles

    OpenAIRE

    Schröter, Jens

    2013-01-01

    Die Anforderungen an die Individualmobilität steigen weiter an: So erwartet der Konsument innovative Fahrzeuge - bei gleichbleibenden Kosten. Gleichzeitig muss gesetzesinduziert die Abgasemission weiter reduziert und im Hinblick auf die schwindenden Ressourcen der Kraftstoffverbrauch gesenkt werden. Deshalb wird in der vorliegenden Arbeit das erweiterte X-in-the-Loop-Framework zur durchgängigen Integration von Optimierungsverfahren in den Produktentwicklungsprozess entwickelt und validiert.

  12. Integrating IMS Learning Design and IMS Question and Test Interoperability using CopperCore Service Integration

    NARCIS (Netherlands)

    Vogten, Hubert; Martens, Harrie; Nadolski, Rob; Tattersall, Colin; Van Rosmalen, Peter; Koper, Rob

    2006-01-01

    Please, cite this publication as: Vogten, H., Martens, H., Nadolski, R., Tattersall, C., van Rosmalen, P., & Koper, R. (2006). Integrating IMS Learning Design and IMS Question and Test Interoperability using CopperCore Service Integration. Proceedings of International Workshop in Learning Networks

  13. CopperCore Service Integration, Integrating IMS Learning Design and IMS Question and Test Interoperability

    NARCIS (Netherlands)

    Vogten, Hubert; Martens, Harrie; Nadolski, Rob; Tattersall, Colin; Van Rosmalen, Peter; Koper, Rob

    2006-01-01

    Vogten, H., Martens, H., Nadolski, R., Tattersall, C., Rosmalen, van, P., Koper, R., (2006). CopperCore Service Integration, Integrating IMS Learning Design and IMS Question and Test Interoperability. Proceedings of the 6th IEEE International Conference on Advanced Learning Technologies (pp.

  14. Loop-Mediated Isothermal Amplification for Laboratory Confirmation of Buruli Ulcer Disease-Towards a Point-of-Care Test.

    Directory of Open Access Journals (Sweden)

    Marcus Beissner

    2015-11-01

    Full Text Available As the major burden of Buruli ulcer disease (BUD occurs in remote rural areas, development of point-of-care (POC tests is considered a research priority to bring diagnostic services closer to the patients. Loop-mediated isothermal amplification (LAMP, a simple, robust and cost-effective technology, has been selected as a promising POC test candidate. Three BUD-specific LAMP assays are available to date, but various technical challenges still hamper decentralized application. To overcome the requirement of cold-chains for transport and storage of reagents, the aim of this study was to establish a dry-reagent-based LAMP assay (DRB-LAMP employing lyophilized reagents.Following the design of an IS2404 based conventional LAMP (cLAMP assay suitable to apply lyophilized reagents, a lyophylization protocol for the DRB-LAMP format was developed. Clinical performance of cLAMP was validated through testing of 140 clinical samples from 91 suspected BUD cases by routine assays, i.e. IS2404 dry-reagent-based (DRB PCR, conventional IS2404 PCR (cPCR, IS2404 qPCR, compared to cLAMP. Whereas qPCR rendered an additional 10% of confirmed cases and samples respectively, case confirmation and positivity rates of DRB-PCR or cPCR (64.84% and 56.43%; 100% concordant results in both assays and cLAMP (62.64% and 52.86% were comparable and there was no significant difference between the sensitivity of the assays (DRB PCR and cPCR, 86.76%; cLAMP, 83.82%. Likewise, sensitivity of cLAMP (95.83% and DRB-LAMP (91.67% were comparable as determined on a set of 24 samples tested positive in all routine assays.Both LAMP formats constitute equivalent alternatives to conventional PCR techniques. Provided the envisaged availability of field friendly DNA extraction formats, both assays are suitable for decentralized laboratory confirmation of BUD, whereby DRB-LAMP scores with the additional advantage of not requiring cold-chains. As validation of the assays was conducted in a third

  15. Integrated leak rate test results of JOYO reactor containment vessel

    International Nuclear Information System (INIS)

    Tamura, M.; Endo, J.

    1982-02-01

    Integrated leak rate tests of JOYO after the reactor coolant system had been filled with sodium have been performed two times since 1978 (February 1978 and December 1979). The tests were conducted with the in-containment sodium systems, primary argon cover gas system and air conditioning systems operating. Both the absolute pressure method and the reference chamber method were employed during the test. The results of both tests confirmed the functioning of the containment vessel, and leak rate limits were satisfied. In Addition, the adequancy of the test instrumentation system and the test method was demonstrated. Finally the plant conditions required to maintain reasonable accuracy for the leak rate testing of LMFBR were established. In this paper, the test conditions and the test results are described. (author)

  16. Simulation of integral local tests with high-burnup fuel

    International Nuclear Information System (INIS)

    Gyori, G.

    2011-01-01

    The behaviour of nuclear fuel under LOCA conditions may strongly depend on the burnup-dependent fuel characteristics, as it has been indicated by recent integral experiments. Fuel fragmentation and the associated fission gas release can influence the integral fuel behaviour, the rod rupture and the radiological release. The TRANSURANUS fuel performance code is a proper tool for the consistent simulation of burnup-dependent phenomena during normal operation and the thermo-mechanical behaviour of the fuel rod in a subsequent accident. The code has been extended with an empirical model for micro-cracking induced FGR and fuel fragmentation and verified against integral LOCA tests of international projects. (author)

  17. Multi-Megawatt-Scale Power-Hardware-in-the-Loop Interface for Testing Ancillary Grid Services by Converter-Coupled Generation

    Energy Technology Data Exchange (ETDEWEB)

    Koralewicz, Przemyslaw J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wallen, Robert B [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-21

    Power-hardware-in-the-loop (PHIL) is a simulation tool that can support electrical systems engineers in the development and experimental validation of novel, advanced control schemes that ensure the robustness and resiliency of electrical grids that have high penetrations of low-inertia variable renewable resources. With PHIL, the impact of the device under test on a generation or distribution system can be analyzed using a real-time simulator (RTS). PHIL allows for the interconnection of the RTS with a 7 megavolt ampere (MVA) power amplifier to test multi-megawatt renewable assets available at the National Wind Technology Center (NWTC). This paper addresses issues related to the development of a PHIL interface that allows testing hardware devices at actual scale. In particular, the novel PHIL interface algorithm and high-speed digital interface, which minimize the critical loop delay, are discussed.

  18. Multi-Megawatt-Scale Power-Hardware-in-the-Loop Interface for Testing Ancillary Grid Services by Converter-Coupled Generation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Koralewicz, Przemyslaw J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wallen, Robert B [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-26

    Power-hardware-in-the-loop (PHIL) is a simulation tool that can support electrical systems engineers in the development and experimental validation of novel, advanced control schemes that ensure the robustness and resiliency of electrical grids that have high penetrations of low-inertia variable renewable resources. With PHIL, the impact of the device under test on a generation or distribution system can be analyzed using a real-time simulator (RTS). PHIL allows for the interconnection of the RTS with a 7 megavolt ampere (MVA) power amplifier to test multi-megawatt renewable assets available at the National Wind Technology Center (NWTC). This paper addresses issues related to the development of a PHIL interface that allows testing hardware devices at actual scale. In particular, the novel PHIL interface algorithm and high-speed digital interface, which minimize the critical loop delay, are discussed.

  19. Technical and economic feasibility study for the reactivation of the integral test facility of IPEN/CNEN Nuclear Engineering Center

    International Nuclear Information System (INIS)

    Biaty, Flávia P.; Rocha, Marcelo da S.; Oliveira, Otávio L. de

    2017-01-01

    The Integral Test Facility of Nuclear Engineering Center (CEN/IPEN/CNEN-SP), known as 'Loop 70', is a semi-industrial thermal-hydraulic test facility and can operate as a BWR (Boiling Water Reactor) or a PWR (Pressurizing Water Reactor) mode. Designed and built in the 1980's, it is currently disabled. The experimental circuits ('test loop') are facilities that reproduce the thermohydraulic and fluid dynamic conditions that occur inside a reactor and are used to simulate the practical reality which it is not possible to be obtained through mathematical models. In this context, this research project aims the development of a Business Plan to analyze the technical and economic feasibility related to the reactivation of the facility. This methodology (adapted to the government sector) is a decision-making tool that will offer a wide perspective of the project, set the guidelines and actions that will define the future of the facility and provide a general rule to make investments on it. This paper presents the historic aspects to better understand the Loop 70's current situation. It also presents information about similar facilities around the world, services that can be offered (thermal-hydraulics parameters measurements, equipment qualification and transient analysis due accident situations), results of the strategic analysis (SWOT) performed, specific goals for each critical success or failure factor of the facility, financial aspects related to the reactivation and an overview of the facility's perspectives. (author)

  20. Technical and economic feasibility study for the reactivation of the integral test facility of IPEN/CNEN Nuclear Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    Biaty, Flávia P.; Rocha, Marcelo da S.; Oliveira, Otávio L. de, E-mail: flavia.biaty@usp.br, E-mail: msrocha@ipen.br, E-mail: otavioluis@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    The Integral Test Facility of Nuclear Engineering Center (CEN/IPEN/CNEN-SP), known as 'Loop 70', is a semi-industrial thermal-hydraulic test facility and can operate as a BWR (Boiling Water Reactor) or a PWR (Pressurizing Water Reactor) mode. Designed and built in the 1980's, it is currently disabled. The experimental circuits ('test loop') are facilities that reproduce the thermohydraulic and fluid dynamic conditions that occur inside a reactor and are used to simulate the practical reality which it is not possible to be obtained through mathematical models. In this context, this research project aims the development of a Business Plan to analyze the technical and economic feasibility related to the reactivation of the facility. This methodology (adapted to the government sector) is a decision-making tool that will offer a wide perspective of the project, set the guidelines and actions that will define the future of the facility and provide a general rule to make investments on it. This paper presents the historic aspects to better understand the Loop 70's current situation. It also presents information about similar facilities around the world, services that can be offered (thermal-hydraulics parameters measurements, equipment qualification and transient analysis due accident situations), results of the strategic analysis (SWOT) performed, specific goals for each critical success or failure factor of the facility, financial aspects related to the reactivation and an overview of the facility's perspectives. (author)

  1. Using the Integrated Vehicle Health Management Research Test and Integration Plan Wiki to Identify Synergistic Test Opportunities

    Science.gov (United States)

    Koelfgen, Syri J.; Faber, James J.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) and the aviation industry have recognized a need for developing a method to identify and combine resources to carry out research and testing more efficiently. The Integrated Vehicle Health Management (IVHM) Research Test and Integration Plan (RTIP) Wiki is a tool that is used to visualize, plan, and accomplish collaborative research and testing. Synergistic test opportunities are developed using the RTIP Wiki, and include potential common resource testing that combines assets and personnel from NASA, industry, academia, and other government agencies. A research scenario is linked to the appropriate IVHM milestones and resources detailed in the wiki, reviewed by the research team members, and integrated into a collaborative test strategy. The scenario is then implemented by creating a test plan when appropriate and the research is performed. The benefits of performing collaborative research and testing are achieving higher Technology Readiness Level (TRL) test opportunities with little or no additional cost, improved quality of research, and increased communication among researchers. In addition to a description of the method of creating these joint research scenarios, examples of the successful development and implementation of cooperative research using the IVHM RTIP Wiki are given.

  2. Wafer-level testing and test during burn-in for integrated circuits

    CERN Document Server

    Bahukudumbi, Sudarshan

    2010-01-01

    Wafer-level testing refers to a critical process of subjecting integrated circuits and semiconductor devices to electrical testing while they are still in wafer form. Burn-in is a temperature/bias reliability stress test used in detecting and screening out potential early life device failures. This hands-on resource provides a comprehensive analysis of these methods, showing how wafer-level testing during burn-in (WLTBI) helps lower product cost in semiconductor manufacturing.Engineers learn how to implement the testing of integrated circuits at the wafer-level under various resource constrain

  3. Integral Effect Tests in the PKL Facility with International Participation

    Energy Technology Data Exchange (ETDEWEB)

    Umminger, Klaus; Mull, Thomas; Brand, Bernhard [AREVA NP, Erlangen (Georgia)

    2009-08-15

    For over 30 years, investigations of the thermohydraulic behavior of pressurized-water reactors under accident conditions have been carried out in the PKL test facility at AREVA NP in Erlangen, Germany. The PKL facility models the entire primary side and significant parts of the secondary side of a of pressurized water reactor at a height scale of 1:1. Volumes, power ratings and mass flows are scaled with a ratio of 1:145. The experimental facility consists of four primary loops with circulation pumps and steam generators (SGs) arranged symmetrically around the reactor pressure vessel (RPV). The investigations carried out encompass a very broad spectrum from accident scenario simulations with large, medium, and small breaks, over the investigation of shutdown procedures after a wide variety of accidents, to the systematic investigation of complex thermohydraulic phenomena. The PKL tests began in the mid 1970s with the support of the German Research Ministry. Since the mid 1980s, the project has also been significantly supported by the German PWR operators. Since 2001, 25 partner organizations from 15 countries have taken part in the PKL investigations with the support and mediation of the OECD/NEA (Nuclear Energy Agency). After an overview of PKL history and a short description of the facility, this paper focuses on the investigations carried out since the beginning of the international cooperation, and shows, by means of some examples, what insights can be derived from the tests

  4. Integrated Data Collection Analysis (IDCA) Program - SSST Testing Methods

    Energy Technology Data Exchange (ETDEWEB)

    Sandstrom, Mary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Geoffrey W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pollard, Colin J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Warner, Kirstin F. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Remmers, Daniel L. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Sorensen, Daniel N. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Whinnery, LeRoy L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Phillips, Jason J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Shelley, Timothy J. [Bureau of Alcohol, Tobacco and Firearms (ATF), Huntsville, AL (United States); Reyes, Jose A. [Applied Research Associates, Tyndall AFB, FL (United States); Hsu, Peter C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, John G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-03-25

    The Integrated Data Collection Analysis (IDCA) program is conducting a proficiency study for Small- Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here are the methods used for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis during the IDCA program. These methods changed throughout the Proficiency Test and the reasons for these changes are documented in this report. The most significant modifications in standard testing methods are: 1) including one specified sandpaper in impact testing among all the participants, 2) diversifying liquid test methods for selected participants, and 3) including sealed sample holders for thermal testing by at least one participant. This effort, funded by the Department of Homeland Security (DHS), is putting the issues of safe handling of these materials in perspective with standard military explosives. The study is adding SSST testing results for a broad suite of different HMEs to the literature. Ultimately the study will suggest new guidelines and methods and possibly establish the SSST testing accuracies needed to develop safe handling practices for HMEs. Each participating testing laboratory uses identical test materials and preparation methods wherever possible. The testing performers involved are Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Indian Head Division, Naval Surface Warfare Center, (NSWC IHD), Sandia National Laboratories (SNL), and Air Force Research Laboratory (AFRL/RXQL). These tests are conducted as a proficiency study in order to establish some consistency in test protocols, procedures, and experiments and to compare results when these testing variables cannot be made consistent.

  5. Integrated testing and verification system for research flight software

    Science.gov (United States)

    Taylor, R. N.

    1979-01-01

    The MUST (Multipurpose User-oriented Software Technology) program is being developed to cut the cost of producing research flight software through a system of software support tools. An integrated verification and testing capability was designed as part of MUST. Documentation, verification and test options are provided with special attention on real-time, multiprocessing issues. The needs of the entire software production cycle were considered, with effective management and reduced lifecycle costs as foremost goals.

  6. Melcor benchmarking against integral severe fuel damage tests

    Energy Technology Data Exchange (ETDEWEB)

    Madni, I.K. [Brookhaven National Lab., Upton, NY (United States)

    1995-09-01

    MELCOR is a fully integrated computer code that models all phases of the progression of severe accidents in light water reactor nuclear power plants, and is being developed for the U.S. Nuclear Regulatory Commission (NRC) by Sandia National Laboratories (SNL). Brookhaven National Laboratory (BNL) has a program with the NRC to provide independent assessment of MELCOR, and a very important part of this program is to benchmark MELCOR against experimental data from integral severe fuel damage tests and predictions of that data from more mechanistic codes such as SCDAP or SCDAP/RELAP5. Benchmarking analyses with MELCOR have been carried out at BNL for five integral severe fuel damage tests, namely, PBF SFD 1-1, SFD 14, and NRU FLHT-2, analyses, and their role in identifying areas of modeling strengths and weaknesses in MELCOR.

  7. Present status of containment integrity tests at NUPEC

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaka, Hideo [Nuclear Power Engineering Corp., Tokyo (Japan)

    1998-05-01

    Objectives of Containment Integrity Tests (CIT) conducted at NUPEC are to demonstrate reactor containment vessel integrity during severe accident and to respond to Phase II accident management (AM) concerns regarding uncertainty of phenomena, raised by Japan Atomic Energy Safety Commission. CIT consists of experiments and analysis of debris cooling phenomena, hydrogen combustion behavior, fission products transport behavior and containment structural behavior. This paper summarizes the present status of CIT focusing the progress during fiscal year 1996. The progress is: a; UO{sub 2} debris falling jet behavior test to support ex-vessel debris cooling tests completed and the evaluation of typical FCI (fuel-coolant interactions) tests of debris dropping into pool under the most dominant severe accident scenarios under way, b; 1/10 scale BWR II containment vessel structural test completed, c; evaluation of tendon tensile force distribution based on a newly proposed friction coefficient to better predict 1/4 scale prestressed concrete containment vessel structural test completed, d; test facility modification of GIRAFFE-FP aiming at demonstration of effective aerosol FP (fission products) removal by containment spray under Phase II AM completed and the evaluation of preliminary test results under way, e; no leakage failure of any containment penetration below 500K and favorable FP trapping effect at leakage path confirmed, and f; large scale hydrogen combustion tests under AM conditions simulating transient hydrogen and steam generation completed. (J.P.N.)

  8. VISTA : thermal-hydraulic integral test facility for SMART reactor

    International Nuclear Information System (INIS)

    Choi, K. Y.; Park, H. S.; Cho, S.; Park, C. K.; Lee, S. J.; Song, C. H.; Chung, M. K.

    2003-01-01

    Preliminary performance tests were carried out using the thermal-hydraulic integral test facility, VISTA (Experimental Verification by Integral Simulation of Transients and Accidents), which has been constructed to simulate the SMART-P. The VISTA facility is an integral test facility including the primary and secondary systems as well as safety-related Passive Residual Heat Removal (PRHR) systems. Its scaled ratio with respect to the SMART-P is 1/1 in height and 1/96 in volume and heater power. Several steady states and power changing tests have been carried out to verify the overall thermal hydraulic primary and secondary characteristics in the range of 10% to 100% power operation. As for the preliminary results, the steady state conditions were found to coincide with the expected design values of the SMART-P. But the major thermal hydraulic parameters are greatly affected by the initial water level and the nitrogen pressure in the reactor's upper annular cavity. The power step/ramp changing tests are successfully carried out and the system responses are observed. The primary natural circulation operation is achieved, but advanced control logics need to be developed to reach the natural circulation mode without pressure excursion. In the PRHR transient tests, the natural circulation flow rate through the PRHR system was found to be about 10 percent in the early phases of PRHR operation

  9. Lost in Translation: the Case for Integrated Testing

    Science.gov (United States)

    Young, Aaron

    2017-01-01

    The building of a spacecraft is complex and often involves multiple suppliers and companies that have their own designs and processes. Standards have been developed across the industries to reduce the chances for critical flight errors at the system level, but the spacecraft is still vulnerable to the introduction of critical errors during integration of these systems. Critical errors can occur at any time during the process and in many cases, human reliability analysis (HRA) identifies human error as a risk driver. Most programs have a test plan in place that is intended to catch these errors, but it is not uncommon for schedule and cost stress to result in less testing than initially planned. Therefore, integrated testing, or "testing as you fly," is essential as a final check on the design and assembly to catch any errors prior to the mission. This presentation will outline the unique benefits of integrated testing by catching critical flight errors that can otherwise go undetected, discuss HRA methods that are used to identify opportunities for human error, lessons learned and challenges over ownership of testing will be discussed.

  10. Automatic integrated testing bench for tubes in translation

    International Nuclear Information System (INIS)

    Dufayet, J.P.; Perdijon, J.

    1976-01-01

    All the nondestructive tests required for receiving the cladding tubes intended for fast nuclear reactor are integrated on this bench: quality control by eddy currents and ultra-sounds, thickness and (inner and outer) diameter measurement. The linear displacement of the tube allows very high rates to be attained [fr

  11. 16 CFR 1511.5 - Structural integrity tests.

    Science.gov (United States)

    2010-01-01

    ... REGULATIONS REQUIREMENTS FOR PACIFIERS § 1511.5 Structural integrity tests. (a) Nipple. Hold the pacifier by the shield or guard, grasp the nipple end of the pacifier and gradually apply a tensile force to the pacifier nipple in any possible direction. The force shall be applied gradually, attaining but not...

  12. Double-winding Wilson loops in SU(N) Yang-Mills theory - A criterion for testing the confinement models -

    Science.gov (United States)

    Matsudo, Ryutaro; Kondo, Kei-Ichi; Shibata, Akihiro

    2018-03-01

    We examine how the average of double-winding Wilson loops depends on the number of color N in the SU(N) Yang-Mills theory. In the case where the two loops C1 and C2 are identical, we derive the exact operator relation which relates the doublewinding Wilson loop operator in the fundamental representation to that in the higher dimensional representations depending on N. By taking the average of the relation, we find that the difference-of-areas law for the area law falloff recently claimed for N = 2 is excluded for N ⩾ 3, provided that the string tension obeys the Casimir scaling for the higher representations. In the case where the two loops are distinct, we argue that the area law follows a novel law (N - 3)A1/(N - 1) + A2 with A1 and A2(A1 law when (N ⩾ 3). Indeed, this behavior can be confirmed in the two-dimensional SU(N) Yang-Mills theory exactly.

  13. Integration tests of the VLT telescope control system

    Science.gov (United States)

    Chiozzi, Gianluca; Wirenstrand, Krister; Ravensbergen, Martin; Gilli, Bruno

    1997-09-01

    The installation of the complete VLT telescope control system on the observatory is a complex task. It is important that the various components of the system have been carefully tested and integrated before. This paper presents the ESO strategy to pre-installation testing. In particular, results and experiences from pre-erection tests of the telescope structure are presented. In these tests, the complete telescope structure, including both axes with encoders and drives, has been built up at the premises of the European manufacturer (in Milan, Italy). These tests provide valuable input for the erection on Paranal. To this system, ESO added control electronics and software, which was tested with the telescope. The complete positioning of both main axes is under test, including slewing and tracking performance tests, as far as this is possible without using the sky. The VLT control software and most parts of the VLT control electronics have also been tested on the NTT on La Silla. Since the NTT upgrade software is practically a subset of the VLT software, the NTT tests have provided invaluable feedback for the VLT. The NTT tests are described in a separate paper presented at this conference. The paper also briefly discusses subsystem tests, and presents results from some of the subsystem tests performed in Europe.

  14. Hybrid Combustion-Gasification Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    } separation, and also syngas production from coal with the calcium sulfide (CaS)/calcium sulfate (CaSO{sub 4}) loop utilizing the PDU facility. The results of Phase I were reported in Reference 1, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase I Report' The objective for Phase II was to develop the carbonate loop--lime (CaO)/calcium carbonate (CaCO{sub 3}) loop, integrate it with the gasification loop from Phase I, and ultimately demonstrate the feasibility of hydrogen production from the combined loops. The results of this program were reported in Reference 3, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase II Report'. The objective of Phase III is to operate the pilot plant to obtain enough engineering information to design a prototype of the commercial Chemical Looping concept. The activities include modifications to the Phase II Chemical Looping PDU, solids transportation studies, control and instrumentation studies and additional cold flow modeling. The deliverable is a report making recommendations for preliminary design guidelines for the prototype plant, results from the pilot plant testing and an update of the commercial plant economic estimates.

  15. The C-Test: An Integrative Measure of Crystallized Intelligence

    Directory of Open Access Journals (Sweden)

    Purya Baghaei

    2015-05-01

    Full Text Available Crystallized intelligence is a pivotal broad ability factor in the major theories of intelligence including the Cattell-Horn-Carroll (CHC model, the three-stratum model, and the extended Gf-Gc (fluid intelligence-crystallized intelligence model and is usually measured by means of vocabulary tests and other verbal tasks. In this paper the C-Test, a text completion test originally proposed as a test of general proficiency in a foreign language, is introduced as an integrative measure of crystallized intelligence. Based on the existing evidence in the literature, it is argued that the construct underlying the C-Test closely matches the abilities underlying the language component of crystallized intelligence, as defined in the well-established theories of intelligence. It is also suggested that by carefully selecting texts from pertinent knowledge domains, the factual knowledge component of crystallized intelligence could also be measured by the C-Test.

  16. Actions needed for RA reactor exploitation - I-IV, Part II, Design project VI-SA 1, Experimental loop for testing the EL-4 reactor fuel elements in the central vertical experimental channel of the RA reactor in Vinca

    International Nuclear Information System (INIS)

    Novakovic, M.

    1961-12-01

    The objective of installing the VISA-1 loop was testing the fuel elements of the EL-4 reactor. The fuel elements planned for testing are natural UO 2 with beryllium cladding, cooled by CO 2 under nominal pressure of 60 at and temperature 600 deg C. central vertical experimental channel of the RA reactor was chosen for installing a test loop cooled by CO 2 . This report contains the detailed design project of the testing loop with the control system and safety analysis of the planned experiment

  17. Proton Injection into the Fermilab Integrable Optics Test Accelerator (IOTA)

    Energy Technology Data Exchange (ETDEWEB)

    Prebys, Eric [Fermilab; Antipov, Sergey [Chicago U.; Piekarz, Henryk [Fermilab; Valishev, A. [Fermilab

    2015-06-01

    The Integrable Optics Test Accelerator (IOTA) is an experimental synchrotron being built at Fermilab to test the concept of non-linear "integrable optics". These optics are based on a lattice including non-linear elements that satisfies particular conditions on the Hamiltonian. The resulting particle motion is predicted to be stable but without a unique tune. The system is therefore insensitive to resonant instabilities and can in principle store very intense beams, with space charge tune shifts larger than those which are possible in conventional linear synchrotrons. The ring will initially be tested with pencil electron beams, but this poster describes the ultimate plan to install a 2.5 MeV RFQ to inject protons, which will produce tune shifts on the order of unity. Technical details will be presented, as well as simulations of protons in the ring.

  18. Developing a Test Collection for the Evaluation of Integrated Search

    DEFF Research Database (Denmark)

    Lykke, Marianne; Larsen, Birger; Lund, Haakon

    2010-01-01

    he poster discusses the characteristics needed in an information retrieval (IR) test collection to facilitate the evaluation of integrated search, i.e. search across a range of different sources but with one search box and one ranked result list, and describes and analyses a new test collection...... constructed for this purpose. The test collection consists of approx. 18,000 monographic records, 160,000 papers and journal articles in PDF and 275,000 abstracts with a varied set of metadata and vocabularies from the physics domain, 65 topics based on real work tasks and corresponding graded relevance...

  19. Integrated testing strategy (ITS) for bioaccumulation assessment under REACH

    DEFF Research Database (Denmark)

    Lombardo, Anna; Roncaglioni, Alessandra; Benfentati, Emilio

    2014-01-01

    in a dossier. REACH promotes the use of alternative methods to replace, refine and reduce the use of animal (eco)toxicity testing. Within the EU OSIRIS project, integrated testing strategies (ITSs) have been developed for the rational use of non-animal testing approaches in chemical hazard assessment. Here we...... present an ITS for evaluating the bioaccumulation potential of organic chemicals. The scheme includes the use of all available data (also the non-optimal ones), waiving schemes, analysis of physicochemical properties related to the end point and alternative methods (both in silico and in vitro). In vivo...

  20. Vehicle Testing and Integration Facility; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-02

    Engineers at the National Renewable Energy Laboratory’s (NREL’s) Vehicle Testing and Integration Facility (VTIF) are developing strategies to address two separate but equally crucial areas of research: meeting the demands of electric vehicle (EV) grid integration and minimizing fuel consumption related to vehicle climate control. Dedicated to renewable and energy-efficient solutions, the VTIF showcases technologies and systems designed to increase the viability of sustainably powered vehicles. NREL researchers instrument every class of on-road vehicle, conduct hardware and software validation for EV components and accessories, and develop analysis tools and technology for the Department of Energy, other government agencies, and industry partners.

  1. Validity of Integrity Tests for Predicting Drug and Alcohol Abuse

    Science.gov (United States)

    1993-08-31

    drug and alcohol abuse in the workplace is probably about .30. 14. SUBJECT TERMS 15. NUMBER OF PAGES94 Drug Abuse , Alcohol...8217Rev 2 89’ toyAS’I 0 13 zoo Integrity and Substance A-buseý Va-idity of Integrity Tests for Predicting Drug and %Lcohol Abuse Frank L. Schmidt...nflegri’ty and S, c ,s EXECUTIVE SUMMARY STATEMENT OF THE PROBLEM: Drug and alcohol abuse is a major problem in the workplace . In this report,

  2. Topical Knowledge in L2 Speaking Assessment: Comparing Independent and Integrated Speaking Test Tasks

    Science.gov (United States)

    Huang, Heng-Tsung Danny; Hung, Shao-Ting Alan; Plakans, Lia

    2018-01-01

    Integrated speaking test tasks (integrated tasks) provide reading and/or listening input to serve as the basis for test-takers to formulate their oral responses. This study examined the influence of topical knowledge on integrated speaking test performance and compared independent speaking test performance and integrated speaking test performance…

  3. Glovebox characterization and barrier integrity testing using fluorescent powder

    International Nuclear Information System (INIS)

    Wahlquist, D.R.

    1996-01-01

    This paper presents a method for characterizing the spread of contamination and testing the barrier integrity of a new glovebox during material transfer operations and glove change-outs using fluorescent powder. Argonne National Laboratory-West has performed this test on several new gloveboxes prior to putting them into service. The test is performed after the glovebox has been leak tested and all systems have been verified to be operational. The purpose of the test is to show that bag-in/bag-out operations and glove change-outs can be accomplished without spreading the actual contaminated material to non-contaminated areas. The characterization test also provides information as to where contamination might be expected to build-up during actual operations. The fluorescent powder is used because it is easily detectable using an ultra-violet light and disperses in a similar fashion to radioactive material. The characterization and barrier integrity test of a glovebox using fluorescent powder provides a visual method of determining areas of potential contamination accumulation and helps evaluate the ability to perform clean transfer operations and glove change-outs

  4. Passive BWR integral LOCA testing at the Karlstein test facility INKA

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, Robert [AREVA GmbH, Erlangen (Germany); Wagner, Thomas [AREVA GmbH, Karlstein am Main (Germany); Leyer, Stephan [TH University of Applied Sciences, Deggendorf (Germany)

    2014-05-15

    KERENA is an innovative AREVA GmbH boiling water reactor (BWR) with passive safety systems (Generation III+). In order to verify the functionality of the reactor design an experimental validation program was executed. Therefore the INKA (Integral Teststand Karlstein) test facility was designed and erected. It is a mockup of the BWR containment, with integrated pressure suppression system. While the scaling of the passive components and the levels match the original values, the volume scaling of the containment compartments is approximately 1:24. The storage capacity of the test facility pressure vessel corresponds to approximately 1/6 of the KERENA RPV and is supplied by a benson boiler with a thermal power of 22 MW. In March 2013 the first integral test - Main Steam Line Break (MSLB) - was executed. The test measured the combined response of the passive safety systems to the postulated initiating event. The main goal was to demonstrate the ability of the passive systems to ensure core coverage, decay heat removal and to maintain the containment within defined limits. The results of the test showed that the passive safety systems are capable to bring the plant to stable conditions meeting all required safety targets with sufficient margins. Therefore the test verified the function of those components and the interplay between them. The test proved that INKA is an unique test facility, capable to perform integral tests of passive safety concepts under plant-like conditions. (orig.)

  5. SUSY-QCD corrections to e+e- → t anti bH- and the Bernstein-Tkachov method of loop integration

    International Nuclear Information System (INIS)

    Kniehl, B.A.

    2010-09-01

    The discovery of charged Higgs bosons is of particular importance, since their existence is predicted by supersymmetry and they are absent in the Standard Model (SM). If the charged Higgs bosons are too heavy to be produced in pairs at future linear colliders, single production associated with a top and a bottom quark is enhanced in parts of the parameter space. We present the next-to-leading-order calculation in supersymmetric QCD within the minimal supersymmetric SM (MSSM), completing a previous calculation of the SM-QCD corrections. In addition to the usual approach to perform the loop integration analytically, we apply a numerical approach based on the Bernstein-Tkachov theorem. In this framework, we avoid some of the generic problems connected with the analytical method. (orig.)

  6. Improvement of methane content in a hydrogenotrophic anaerobic digester via the proper operation of membrane module integrated into an external-loop.

    Science.gov (United States)

    Ojeda, Felipe; Bakonyi, Péter; Buitrón, Germán

    2017-12-01

    This work assessed the feasibility of a hydrogenotrophic biogas process integrated with a membrane module in the external-loop design. The major scope was to conduct the investigation from the perspective of the membrane unit and reveal how the operating strategy influences the efficiency of biogas formation. It was observed that the fermenter worked with an improved efficacy, indicated by the higher concentration of methane in the headspace (80-90%) when the gas loading intensity, defined as the ratio of inlet gas permeation rate and the circulation rate of the liquid phase, was adjusted to lower values (3-5.3×10 -3 ). Such results are implying that the mass transfer of H 2 into the reactor is dependent on this critical parameter. Moreover, attention should be paid to the fouling of the module under longer-term experiments to keep its performance at a sufficient level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Loop-to-loop coupling.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Lucero, Larry Martin; Langston, William L.; Salazar, Robert Austin; Coleman, Phillip Dale; Basilio, Lorena I.; Bacon, Larry Donald

    2012-05-01

    This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement. Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled powers and energies are compared. The energies are simply estimated from the coupled powers through approximations to the energy theorem. The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type) geometry that was used in an experimental setup. Simple magnetic field models are constructed and used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or several turns. Circuit elements are estimated and used to determine the coupled current and power (an equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from the power. The effect of additional loads in the form of attached leads, forming transmission lines, are considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider drives to the cables themselves and the resulting common-to-differential mode currents in the load.

  8. BWR Full Integral Simulation Test (FIST) program: facility description report

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, A G [ed.

    1984-09-01

    A new boiling water reactor safety test facility (FIST, Full Integral Simulation Test) is described. It will be used to investigate small breaks and operational transients and to tie results from such tests to earlier large-break test results determined in the TLTA. The new facility's full height and prototypical components constitute a major scaling improvement over earlier test facilities. A heated feedwater system, permitting steady-state operation, and a large increase in the number of measurements are other significant improvements. The program background is outlined and program objectives defined. The design basis is presented together with a detailed, complete description of the facility and measurements to be made. An extensive component scaling analysis and prediction of performance are presented.

  9. Integrated nonlinear regression analysis of tracer and well test data

    Energy Technology Data Exchange (ETDEWEB)

    Akin, Serhat [Petroleum and Natural Gas Engineering Department, Middle East Technical University, Inonu Bulvari 06531 Ankara (Turkey)

    2003-08-01

    One frequent observation from conventional pressure transient test analysis is that field data match mathematical models derived for homogeneous systems. This observation suggests that pressure data as presently interpreted may not contain details concerning certain reservoir heterogeneities. On the other hand, tracer tests may be more sensitive to heterogeneous elements present in the reservoir because of the convective nature of the flow test. In this study, a possible improvement of conventional pressure transient and tracer test analysis by integrating them using the nonlinear least square (LS) regression method is investigated. To achieve this goal, a correlation between permeability and dispersivity is used to couple the response of both tests. A multi-fracture tracer test model was coupled with double porosity pressure models using a commercial spreadsheet. The proposed method is tested using experimental well test and tracer test data obtained from a fractured geothermal reservoir model where fracture apertures and distributions were known. It has been observed that changing injection-production well depths resulted in different analyses primarily due to changing flow paths. The combination of multi-fracture tracer test model with dual-porosity pressure transient model described the physics of the experiments better than the others did. It has been also observed that the obtained solutions are highly constrained.

  10. Experimental Study of Single Phase Flow in a Closed-Loop Cooling System with Integrated Mini-Channel Heat Sink

    Directory of Open Access Journals (Sweden)

    Lei Ma

    2016-06-01

    Full Text Available The flow and heat transfer characteristics of a closed-loop cooling system with a mini-channel heat sink for thermal management of electronics is studied experimentally. The heat sink is designed with corrugated fins to improve its heat dissipation capability. The experiments are performed using variable coolant volumetric flow rates and input heating powers. The experimental results show a high and reliable thermal performance using the heat sink with corrugated fins. The heat transfer capability is improved up to 30 W/cm2 when the base temperature is kept at a stable and acceptable level. Besides the heat transfer capability enhancement, the capability of the system to transfer heat for a long distance is also studied and a fast thermal response time to reach steady state is observed once the input heating power or the volume flow rate are varied. Under different input heat source powers and volumetric flow rates, our results suggest potential applications of the designed mini-channel heat sink in cooling microelectronics.

  11. Towards optimization of chemical testing under REACH: A Bayesian network approach to Integrated Testing Strategies

    NARCIS (Netherlands)

    Jaworska, J.; Gabbert, S.G.M.; Aldenberg, T.

    2010-01-01

    Integrated Testing Strategies (ITSs) are considered tools for guiding resource efficient decision-making on chemical hazard and risk management. Originating in the mid-nineties from research initiatives on minimizing animal use in toxicity testing, ITS development still lacks a methodologically

  12. Test requirements for the integral effect test to simulate Korean PWR plants

    International Nuclear Information System (INIS)

    Song, Chul Hwa; Park, C. K.; Lee, S. J.; Kwon, T. S.; Yun, B. J.; Chung, M. K.

    2001-02-01

    In this report, the test requirements are described for the design of the integral effect test facility to simulate Korean PWR plants. Since the integral effect test facility should be designed so as to simulate various thermal hydraulic phenomena, as closely as possible, to be occurred in real plants during operation or anticipated transients, the design and operational characteristics of the reference plants (Korean Standard Nuclear Plant and Korean Next Generation Reactor)were analyzed in order to draw major components, systems, and functions to be satisfied or simulated in the test facility. The test matrix is set up by considering major safety concerns of interest and the test objectives to confirm and enhance the safety of the plants. And the analysis and prioritization of the test matrix leads to the general design requirements of the test facility. Based on the general design requirements, the design criteria is set up for the basic and detailed design of the test facility. And finally it is drawn the design requirements specific to the fluid system and measurement system of the test facility. The test requirements in this report will be used as a guideline to the scaling analysis and basic design of the test facility. The test matrix specified in this report can be modified in the stage of main testing by considering the needs of experiments and circumstances at that time

  13. Test requirements for the integral effect test to simulate Korean PWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chul Hwa; Park, C. K.; Lee, S. J.; Kwon, T. S.; Yun, B. J.; Chung, M. K

    2001-02-01

    In this report, the test requirements are described for the design of the integral effect test facility to simulate Korean PWR plants. Since the integral effect test facility should be designed so as to simulate various thermal hydraulic phenomena, as closely as possible, to be occurred in real plants during operation or anticipated transients, the design and operational characteristics of the reference plants (Korean Standard Nuclear Plant and Korean Next Generation Reactor)were analyzed in order to draw major components, systems, and functions to be satisfied or simulated in the test facility. The test matrix is set up by considering major safety concerns of interest and the test objectives to confirm and enhance the safety of the plants. And the analysis and prioritization of the test matrix leads to the general design requirements of the test facility. Based on the general design requirements, the design criteria is set up for the basic and detailed design of the test facility. And finally it is drawn the design requirements specific to the fluid system and measurement system of the test facility. The test requirements in this report will be used as a guideline to the scaling analysis and basic design of the test facility. The test matrix specified in this report can be modified in the stage of main testing by considering the needs of experiments and circumstances at that time.

  14. Testing Multimodal Integration Hypotheses with Application to Schizophrenia Data

    DEFF Research Database (Denmark)

    Axelsen, Martin Christian; Bak, Nikolaj; Hansen, Lars Kai

    2015-01-01

    of the present paper is to propose a method for assessing these inter-modality dependencies. The approach is based on two permutations of an analyzed data set, each exploring different dependencies between and within modalities. The method was tested on the Kaggle MLSP 2014 Schizophrenia Classification Challenge...... data set which is composed of features from functional magnetic resonance imaging (MRI) and structural MRI. The results support the use of a permutation strategy for testing conditional dependencies between modalities in a multimodal classification problem.......Multimodal data sets are getting more and more common. Integrating these data sets, the information from each modality can be combined to improve performance in classification problems. Fusion/integration of modalities can be done at several levels. The most appropriate fusion level is related...

  15. Integral test of JENDL-3.3 for fast reactors

    International Nuclear Information System (INIS)

    Chiba, Gou

    2003-01-01

    An integral test of JENDL-3.3 was performed for fast reactors. Various types of fast reactors were analyzed. Calculation values of the nuclear characteristics were greatly especially affected by the revisions of the cross sections of U-235 capture and elastic scattering reactions. The C/E values were improved for ZPPR cross where plutonium is mainly fueled, but not for BFS cores where uranium is mainly fueled. (author)

  16. Electrical Integrity Tests during Production of the LHC Dipoles

    CERN Document Server

    de Rijk, G; Cornelis, M; Fessia, P; Miles, J; Modena, M; Molinari, G; Rinn, J; Savary, F; Vlogaert, J

    2006-01-01

    For the LHC dipoles, mandatory electrical integrity tests are performed to qualify the cold mass (CM) at four production stages: individual pole, collared coil, CM before end cover welding and final CM. A description of the measurement equipment and its recent development are presented. After passing the demands set out in the specification, the results of the tests are transmitted to CERN where they are further analyzed. The paper presents the most important results of these measurements. We also report a review of the electrical non-conformities encountered e.g. interturn shorts and quench heater failure, their diagnostic and the cures.

  17. UAS Integration in the NAS Project: Integrated Test and LVC Infrastructure

    Science.gov (United States)

    Murphy, Jim; Hoang, Ty

    2015-01-01

    Overview presentation of the Integrated Test and Evaluation sub-project of the Unmanned Aircraft System (UAS) in the National Airspace System (NAS). The emphasis of the presentation is the Live, Virtual, and Constructive (LVC) system (a broadly used name for classifying modeling and simulation) infrastructure and use of external assets and connection.

  18. Intraoperatively Testing the Anastomotic Integrity of Esophagojejunostomy Using Methylene Blue.

    Science.gov (United States)

    Celik, S; Almalı, N; Aras, A; Yılmaz, Ö; Kızıltan, R

    2017-03-01

    Intraoperative testing of gastrointestinal anastomosis effectively ensures anastomotic integrity. This study investigated whether the routine use of methylene blue intraoperatively identified leaks to reduce the postoperative proportion of clinical leaks. This study retrospectively analyzed consecutive total gastrectomies performed from January 2007 to December 2014 in a university hospital setting by a general surgical group that exclusively used the methylene blue test. All surgeries were performed for gastric or junctional cancers (n = 198). All reconstructions (Roux-en Y esophagojejunostomy) were performed using a stapler. The methylene blue test was used in 108 cases (group 1) via a nasojejunal tube. No test was performed for the other 90 cases (group 2). Intraoperative leakage rate, postoperative clinical leakage rate, length of hospitalization, and mortality rate were the outcome measures. The intraoperative leakage rate was 7.4% in group 1. The postoperative clinical leakage rate was 8.6%. The postoperative clinical leakage rate was 3.7% in group 1 and 14.4% in group 2 (p = 0.007). There were no postoperative clinical leaks when an intraoperative leak led to concomitant intraoperative repair. The median length of hospital stay was 6 days in group 1 and 8 days in group 2 (p methylene blue test for esophagojejunostomy is a safe and reliable method for the assessment of anastomosis integrity, especially in cases with difficult esophagojejunostomic construction.

  19. System model of a natural circulation integral test facility

    Science.gov (United States)

    Galvin, Mark R.

    The Department of Nuclear Engineering and Radiation Health Physics (NE/RHP) at Oregon State University (OSU) has been developing an innovative modular reactor plant concept since being initiated with a Department of Energy (DoE) grant in 1999. This concept, the Multi-Application Small Light Water Reactor (MASLWR), is an integral pressurized water reactor (PWR) plant that utilizes natural circulation flow in the primary and employs advanced passive safety features. The OSU MASLWR test facility is an electrically heated integral effects facility, scaled from the MASLWR concept design, that has been previously used to assess the feasibility of the concept design safety approach. To assist in evaluating operational scenarios, a simulation tool that models the test facility and is based on both test facility experimental data and analytical methods has been developed. The tool models both the test facility electric core and a simulated nuclear core, allowing evaluation of a broad spectrum of operational scenarios to identify those scenarios that should be explored experimentally using the test facility or design-quality multi-physics tools. Using the simulation tool, the total cost of experimentation and analysis can be reduced by directing time and resources towards the operational scenarios of interest.

  20. Lessons learned from CIRFT testing on SNF vibration integrity study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jiang, Hao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Rob L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    A cyclic integrated reversible-bending fatigue tester (CIRFT) was developed to support U.S. NRC and DOE Used Fuel Disposition Campaign studies on high burn-up (HBU) spent nuclear fuel (SNF) transportation during normal conditions of transport (NCT). Two devices were developed; the first CIRFT was successfully installed and operated in the ORNL hot-cells in September 2013. Since hot cell testing commenced several HBU SNF samples from both Zr-4 and M5 clads were investigated. The second CIRFT device was developed in February 2014, and has been used to test clad/fuel surrogate rods (stainless steel with alumina pellet inserts). The second CIRFT machine has also been used for sensor development and test sensitivity analyses, as well as loading boundary condition parameter studies. The lessons learned from CIRFT testing will be presented in this paper.

  1. PANDA: A Multipurpose Integral Test Facility for LWR Safety Investigations

    Directory of Open Access Journals (Sweden)

    Domenico Paladino

    2012-01-01

    Full Text Available The PANDA facility is a large scale, multicompartmental thermal hydraulic facility suited for investigations related to the safety of current and advanced LWRs. The facility is multipurpose, and the applications cover integral containment response tests, component tests, primary system tests, and separate effect tests. Experimental investigations carried on in the PANDA facility have been embedded in international projects, most of which under the auspices of the EU and OECD and with the support of a large number of organizations (regulatory bodies, technical dupport organizations, national laboratories, electric utilities, industries worldwide. The paper provides an overview of the research programs performed in the PANDA facility in relation to BWR containment systems and those planned for PWR containment systems.

  2. Instrumentation with real-world considerations for integrated leakage testing

    International Nuclear Information System (INIS)

    Gibson, L.D.; Carp, J.

    1982-01-01

    In measuring leakage of containment structures, the precise determination of pressure, temperature, dewpoint and flow rate parameters is of critical importance. The change in these values over a specified test period provides the basis for computation of the leakage for a given pressurized volume. The performance of an Integrated Leak Rate Test (ILRT) on the containment is generally a critical path event that must be planned far in advance. The very nature of the test requires rapid, efficient acquisition and processing of data for determination, and sometimes correction, of leakages. Equipment selection is an important consideration which can directly affect the outcome of the test. The intent of this paper is to shed some light on the concerns of choosing an instrumentation package for the ILRT

  3. PANDA: A Multipurpose Integral Test Facility for LWR Safety Investigations

    International Nuclear Information System (INIS)

    Paladino, D.; Dreier, J.

    2012-01-01

    The PANDA facility is a large scale, multicompartmental thermal hydraulic facility suited for investigations related to the safety of current and advanced LWRs. The facility is multipurpose, and the applications cover integral containment response tests, component tests, primary system tests, and separate effect tests. Experimental investigations carried on in the PANDA facility have been embedded in international projects, most of which under the auspices of the EU and OECD and with the support of a large number of organizations (regulatory bodies, technical dupport organizations, national laboratories, electric utilities, industries) worldwide. The paper provides an overview of the research programs performed in the PANDA facility in relation to BWR containment systems and those planned for PWR containment systems.

  4. Development of an integrated closed loop control system with virtual reality monitoring for Prototype Robotic Articulated System (PRAS)

    International Nuclear Information System (INIS)

    Rastogi, Naveen; Dutta, Pramit; Gotewal, K.K.

    2015-01-01

    The Prototype Robotic Articulated System (PRAS) is a servo driven 4 degrees of freedom robotic arm capable of handling of upto 5 kg payload. A virtual reality based monitoring application has been developed in blender and was intergrated with the control system to read the joint values of the robotic arm at 10Hz and update the CAD model to visualize the robotic operations remotely. This paper presents the design details and implementation results of the integrated control system for PRAS

  5. Passive BWR integral LOCA testing at the Karlstein test facility INKA

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, Robert [AREVA GmbH, Erlangen (Germany); Wagner, Thomas [AREVA GmbH, Karlstein am Main (Germany); Leyer, Stephan [TH Univ. of Applied Sciences, Deggendorf (Germany)

    2014-07-01

    KERENA is an innovative AREVA GmbH boiling water reactor (BWR) with passive safety systems (Generation III+). In order to verify the functionality of the reactor design an experimental validation programme was executed. Therefore the INKA (Integral Teststand Karlstein) test facility was designed and erected. It is a mockup of the BWR containment with integrated pressure suppression system. In March 2013 the first integral test - Main Steam Line Break (MSLB) - was executed. The main target was to demonstrate the ability of the passive systems to ensure core coverage, decay heat removal and to maintain the containment within defined limits. The results of the test showed that the passive safety systems are capable to bring the plant to stable conditions meeting all required safety targets with sufficient margins. (orig.)

  6. Morphing wing system integration with wind tunnel testing =

    Science.gov (United States)

    Guezguez, Mohamed Sadok

    Preserving the environment is a major challenge for today's aviation industry. Within this context, the CRIAQ MDO 505 project started, where a multidisciplinary approach was used to improve aircraft fuel efficiency. This international project took place between several Canadian and Italian teams. Industrial teams are Bombardier Aerospace, Thales Canada and Alenia Aermacchi. The academic partners are from Ecole de Technologie Superieure, Ecole Polytechnique de Montreal and Naples University. Teams from 'CIRA' and IAR-NRC research institutes had, also, contributed on this project. The main objective of this project is to improve the aerodynamic performance of a morphing wing prototype by reducing the drag. This drag reduction is achieved by delaying the flow transition (from laminar to turbulent) by performing shape optimization of the flexible upper skin according to different flight conditions. Four linear axes, each one actuated by a 'BLDC' motor, are used to morph the skin. The skin displacements are calculated by 'CFD' numerical simulation based on flow parameters which are Mach number, the angle of attack and aileron's angle of deflection. The wing is also equipped with 32 pressure sensors to experimentally detect the transition during aerodynamic testing in the subsonic wind tunnel at the IAR-NRC in Ottawa. The first part of the work is dedicated to establishing the necessary fieldbus communications between the control system and the wing. The 'CANopen' protocol is implemented to ensure real time communication between the 'BLDC' drives and the real-time controller. The MODBUS TCP protocol is used to control the aileron drive. The second part consists of implementing the skin control position loop based on the LVDTs feedback, as well as developing an automated calibration procedure for skin displacement values. Two 'sets' of wind tunnel tests were carried out to, experimentally, investigate the morphing wing controller effect; these tests also offered the

  7. Integration of MSFC Usability Lab with Usability Testing

    Science.gov (United States)

    Cheng, Yiwei; Richardson, Sally

    2010-01-01

    As part of the Stage Analysis Branch, human factors engineering plays an important role in relating humans to the systems of hardware and structure designs of the new launch vehicle. While many branches are involved in the technical aspects of creating a launch vehicle, human factors connects humans to the scientific systems with the goal of improving operational performance and safety while reducing operational error and damage to the hardware. Human factors engineers use physical and computerized models to visualize possible areas for improvements to ensure human accessibility to components requiring maintenance and that the necessary maintenance activities can be accomplished with minimal risks to human and hardware. Many methods of testing are used to fulfill this goal, such as physical mockups, computerized visualization, and usability testing. In this analysis, a usability test is conducted to test how usable a website is to users who are and are not familiar with it. The testing is performed using participants and Morae software to record and analyze the results. This analysis will be a preliminary test of the usability lab in preparation for use in new spacecraft programs, NASA Enterprise, or other NASA websites. The usability lab project is divided into two parts: integration of the usability lab and a preliminary test of the usability lab.

  8. Structural testing of the technology integration box beam

    Science.gov (United States)

    Griffin, C. F.

    1992-01-01

    A full-scale section of a transport aircraft wing box was designed, analyzed, fabricated, and tested. The wing box section, which was called the technology integration box beam, contained blade stiffened covers and T-stiffened channel spars constructed using graphite/epoxy materials. Covers, spars, and the aluminum ribs were assembled using mechanical fasteners. The box beam was statically tested for several loading conditions to verify the stiffness and strength characteristics of the composite wing design. Failure of the box beam occurred at 125 percent of design limit load during the combined upbending and torsion ultimate design load test. It appears that the failure initiated at a stiffener runout location in the upper cover which resulted in rupture of the upper cover and portions of both spars.

  9. Ontological Analysis of Integrated Process Models: testing hypotheses

    Directory of Open Access Journals (Sweden)

    Michael Rosemann

    2001-11-01

    Full Text Available Integrated process modeling is achieving prominence in helping to document and manage business administration and IT processes in organizations. The ARIS framework is a popular example for a framework of integrated process modeling not least because it underlies the 800 or more reference models embedded in the world's most popular ERP package, SAP R/3. This paper demonstrates the usefulness of the Bunge-Wand-Weber (BWW representation model for evaluating modeling grammars such as those constituting ARIS. It reports some initial insights gained from pilot testing Green and Rosemann's (2000 evaluative propositions. Even when considering all five views of ARIS, modelers have problems representing business rules, the scope and boundary of systems, and decomposing models. However, even though it is completely ontologically redundant, users still find the function view useful in modeling.

  10. PWR station blackout transient simulation in the INER integral system test facility

    International Nuclear Information System (INIS)

    Liu, T.J.; Lee, C.H.; Hong, W.T.; Chang, Y.H.

    2004-01-01

    Station blackout transient (or TMLB' scenario) in a pressurized water reactor (PWR) was simulated using the INER Integral System Test Facility (IIST) which is a 1/400 volumetrically-scaled reduce-height and reduce-pressure (RHRP) simulator of a Westinghouse three-loop PWR. Long-term thermal-hydraulic responses including the secondary boil-off and the subsequent primary saturation, pressurization and core uncovery were simulated based on the assumptions of no offsite and onsite power, feedwater and operator actions. The results indicate that two-phase discharge is the major depletion mode since it covers 81.3% of the total amount of the coolant inventory loss. The primary coolant inventory has experienced significant re-distribution during a station blackout transient. The decided parameter to avoid the core overheating is not the total amount of the coolant inventory remained in the primary core cooling system but only the part of coolant left in the pressure vessel. The sequence of significant events during transient for the IIST were also compared with those of the ROSA-IV large-scale test facility (LSTF), which is a 1/48 volumetrically-scaled full-height and full-pressure (FHFP) simulator of a PWR. The comparison indicates that the sequence and timing of these events during TMLB' transient studied in the RHRP IIST facility are generally consistent with those of the FHFP LSTF. (author)

  11. MATISSE: alignment, integration, and test phase first results

    Science.gov (United States)

    Allouche, F.; Robbe-Dubois, S.; Lagarde, S.; Cruzalèbes, P.; Antonelli, P.; Bresson, Y.; Fantei-Caujolle, Y.; Marcotto, A.; Morel, S.; Beckmann, U.; Bettonvil, F.; Berio, Ph.; Heininger, M.; Lehmitz, M.; Agocs, T.; Brast, R.; Elswijk, E.; Ives, D.; Meixner, K.; Laun, W.; Mellein, M.; Neumann, U.; Bailet, C.; Clausse, J.-M.; Matter, A.; Meilland, A.; Millour, F.; Petrov, R. G.; Accardo, M.; Bristow, P.; Frahm, R.; Glindemann, A.; Gonzáles Herrera, J.-C.; Lizon, J.-L.; Schöller, M.; Graser, U.; Jaffe, W.; Lopez, B.

    2016-08-01

    MATISSE (Multi AperTure mid-Infrared SpectroScopic Experiment) is the spectro-interferometer for the VLTI of the European Southern Observatory, operating in near and mid-infrared, and combining up to four beams from the unit or the auxiliary telescopes. MATISSE will offer new breakthroughs in the study of circumstellar environments by allowing the multispectral mapping of the material distribution, the gas and essentially the dust. The instrument consists in a warm optical system (WOP) accepting four optical beams and relaying them after a dichroic splitting (for the L and M- and N- spectral bands) to cold optical benches (COB) located in two separate cryostats. The Observatoire de la Côte d'Azur is in charge of the WOP providing the spectral band separation, optical path equalization and modulation, pupil positioning, beam anamorphosis, beam commutation, and calibration. NOVA-ASTRON is in charge of the COB providing the functions of beam selection, reduction of thermal background emission, spatial filtering, pupil transfer, photometry and interferometry splitting, additional beam anamorphosis, spectral filtering, polarization selection, image dispersion, and image combination. The Max Planck Institut für Radio Astronomie is in charge of the operation and performance validation of the two detectors, a HAWAII-2RG from Teledyne for the L- and M- bands and a Raytheon AQUARIUS for the N-band. Both detectors are provided by ESO. The Max Planck Institut für Astronomie is in charge of the electronics and the cryostats for which the requirements on space limitations and vibration stability resulted on very specific and stringent decisions on the design. The integration and test of the COB: the two cryogenic systems, including the cold benches and the detectors, have been conducted at MPIA in parallel with the integration of the WOP at OCA. At the end of 2014, the complete instrument was integrated at OCA. Following this integration, a period of interface and alignment

  12. Integrating borehole logs and aquifer tests in aquifer characterization

    Science.gov (United States)

    Paillet, Frederick L.; Reese, R.S.

    2000-01-01

    Integration of lithologic logs, geophysical logs, and hydraulic tests is critical in characterizing heterogeneous aquifers. Typically only a limited number of aquifer tests can be performed, and these need to be designed to provide hydraulic properties for the principle aquifers in the system. This study describes the integration of logs and aquifer tests in the development of a hydrostratigraphic model for the surficial aquifer system in and around Big Cypress National Preserve in eastern Collier County, Florida. Borehole flowmeter tests provide qualitative permeability profiles in most of 26 boreholes drilled in the Study area. Flow logs indicate the depth of transmissive units, which are correlated across the study area. Comparison to published studies in adjacent areas indicates that the main limestone aquifer of the 000000Tamiami Formation in the study area corresponds with the gray limestone aquifer in western Dade County and the water table and lower Tamiami Aquifer in western Collier County. Four strategically located, multiwell aquifer tests are used to quantify the qualitative permeability profiles provided by the flowmeter log analysis. The hydrostratigraphic model based on these results defines the main aquifer in the central part of the study area as unconfined to semiconfined with a transmissivity as high as 30,000 m2/day. The aquifer decreases in transmissivity to less than 10,000 m2/day in some parts of western Collier County, and becomes confined to the east and northeast of the study area, where transmissivity decreases to below 5000 m2/day.Integration of lithologic logs, geophysical logs, and hydraulic tests is critical in characterizing heterogeneous aquifers. Typically only a limited number of aquifer tests can be performed, and these need to be designed to provide hydraulic properties for the principle aquifers in the system. This study describes the integration of logs and aquifer tests in the development of a hydrostratigraphic model for the

  13. Properties Important To Mixing For WTP Large Scale Integrated Testing

    International Nuclear Information System (INIS)

    Koopman, D.; Martino, C.; Poirier, M.

    2012-01-01

    Large Scale Integrated Testing (LSIT) is being planned by Bechtel National, Inc. to address uncertainties in the full scale mixing performance of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. External review boards have raised questions regarding the overall representativeness of simulants used in previous mixing tests. Accordingly, WTP requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in LSIT. Among the first tasks assigned to SRNL was to develop a list of waste properties that matter to pulse-jet mixer (PJM) mixing of WTP tanks. This report satisfies Commitment 5.2.3.1 of the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2010-2: physical properties important to mixing and scaling. In support of waste simulant development, the following two objectives are the focus of this report: (1) Assess physical and chemical properties important to the testing and development of mixing scaling relationships; (2) Identify the governing properties and associated ranges for LSIT to achieve the Newtonian and non-Newtonian test objectives. This includes the properties to support testing of sampling and heel management systems. The test objectives for LSIT relate to transfer and pump out of solid particles, prototypic integrated operations, sparger operation, PJM controllability, vessel level/density measurement accuracy, sampling, heel management, PJM restart, design and safety margin, Computational Fluid Dynamics (CFD) Verification and Validation (V and V) and comparison, performance testing and scaling, and high temperature operation. The slurry properties that are most important to Performance Testing and Scaling depend on the test objective and rheological classification of the slurry (i

  14. Integrity confirmation tests and post-irradiation test plan of the HTTR first-loading fuel

    International Nuclear Information System (INIS)

    Sawa, Kazuhiro; Sumita, Junya; Ueta, Shouhei; Suzuki, Shuichi; Tobita, Tsutomu; Saito, Takashi; Minato, Kazuo; Koya, Toshio; Sekino, Hajime

    2001-01-01

    Since the first-loading fuel of the High Temperature Engineering Test Reactor (HTTR) is the first mass-production High Temperature Gas-cooled Reactor (HTGR) fuel in Japan, their quality should be carefully inspected. For the quality control related to the fabrication process, Japan Atomic Energy Research Institute (JAERI) carried out the tests to certify the fuel integrity during operation. The tests comprise (1) as-fabricated SiC failure fraction measurement, (2) high-temperature heatup test of irradiated fuel and (3) accelerated irradiation test. For (1), the SiC failure fraction was measured independently in JAERI in addition to the measurement in the fabrication process. The measure failure fractions agreed within 95% confidence limit. In order to confirm the integrity of the SiC layer with respect to the 1,600degC criterion, the high-temperature heatup test of irradiated fuel compact was carried out. The results showed that no failed particle was present in the fuel compact after hating. The diffusion coefficient of metallic fission products in SiC layer was also examined in a series of post-irradiation heating tests. The measure diffusion coefficient of 137 Cs showed a good holding ability as those obtained for research and development fuel specimen. The measured fission gas release rate in accelerated irradiation test showed no additional failure up to 60 GWd/t which was about two times higher than 3 GWd/t of the maximum burnup in the HTTR core. Through the tests, integrity of as-fabricated first-loading fuel of the HTTR was finally confirmed. The future post-irradiation test plan, which will be carried out to confirm the fuel irradiation performance and to obtain the data on its irradiation characteristics in the core, is also described. (author)

  15. Mechanical Stability Study for Integrable Optics Test Accelerator at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, Mike [Fermilab; Andrews, Richard [Fermilab; Carlson, Kermit [Fermilab; Leibfritz, Jerry [Fermilab; Nobrega, Lucy [Fermilab; Valishev, Alexander [Fermilab

    2016-07-01

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p⁺) diagnostic test ring. A heavy low frequency steel floor girder is proposed as the primary tier for IOTA device component support. Two design lengths; (8) 4 m and (2) 2.8 m long girders with identical cross section completely encompass the ring. This study focuses on the 4 m length girder and the development of a working prototype. Hydrostatic Level Sensor (HLS), temperature, metrology and fast motion measurements characterize the anticipated mechanical stability of the IOTA ring.

  16. Design of Octupole Channel for Integrable Optics Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Sergey [Chicago U.; Carlson, Kermit [Fermilab; Castellotti, Riccardo [Unlisted, IT; Valishev, Alexander [Fermilab; Wesseln, Steven [Fermilab

    2016-06-01

    We present the design of octupole channel for Integrable Optics Test Accelerator (IOTA). IOTA is a test accelerator at Fermilab, aimed to conduct research towards high-intensity machines. One of the goals of the project is to demonstrate high nonlinear betatron tune shifts while retaining large dynamic aperture in a realistic accelerator design. At the first stage the tune shift will be attained with a special channel of octupoles, which creates a variable octupole potential over a 1.8 m length. The channel consists of 18 identical air-cooled octupole magnets. The magnets feature a simple low-cost design, while meeting the requirements on maximum gradient - up to 1.4 kG/cm³, and field quality - strength of harmonics below 1%. Numerical simulations show that the channel is capable of producing a nonlinear tune shift of 0.08 without restriction of dynamic aperture of the ring.

  17. RF and microwave integrated circuit development technology, packaging and testing

    CERN Document Server

    Gamand, Patrice; Kelma, Christophe

    2018-01-01

    RF and Microwave Integrated Circuit Development bridges the gap between existing literature, which focus mainly on the 'front-end' part of a product development (system, architecture, design techniques), by providing the reader with an insight into the 'back-end' part of product development. In addition, the authors provide practical answers and solutions regarding the choice of technology, the packaging solutions and the effects on the performance on the circuit and to the industrial testing strategy. It will also discuss future trends and challenges and includes case studies to illustrate examples. * Offers an overview of the challenges in RF/microwave product design * Provides practical answers to packaging issues and evaluates its effect on the performance of the circuit * Includes industrial testing strategies * Examines relevant RF MIC technologies and the factors which affect the choice of technology for a particular application, e.g. technical performance and cost * Discusses future trends and challen...

  18. Contribution to perfecting eddy current testing of steam generator tubes of sodium cooled breeders: description of the Monacault loop for the study of sodium deposit influence

    International Nuclear Information System (INIS)

    Lapicore, A.; Lemarquis, J.C.; Oberlin, C.; Pigeon, M.

    1981-12-01

    In the event of sodium-water reaction in the steam generator of a sodium cooled breeder reactor, it is essential to be able to monitor the local loss of thickness of the tubes located in the reaction area. A method for monitoring the tubes by an eddy current probe is being developed for Super Phenix. The sodium deposits on the outer wall of the tubes, as well as their prolonged contact with high temperature sodium are likely to bring about a change in the signals picked up. A test loop, Monacault, has been built in order to clarify the importance of these parameters (effect of sodium deposits, reproducibility of the wetting at different temperatures). It includes three test cells containing the sample tubes having a total of 61 standard defects to be tested. The first results on the wetting of tubes are given and discussed [fr

  19. Double-shell tank integrity assessments ultrasonic test equipment performance test

    Energy Technology Data Exchange (ETDEWEB)

    Pfluger, D.C.

    1996-09-26

    A double-shell tank (DST) inspection (DSTI) system was performance tested over three months until August 1995 at Pittsburgh, Pennsylvania, completing a contract initiated in February 1993 to design, fabricate, and test an ultrasonic inspection system intended to provide ultrasonic test (UT) and visual data to determine the integrity of 28 DSTs at Hanford. The DSTs are approximately one-million-gallon underground radioactive-waste storage tanks. The test was performed in accordance with a procedure (Jensen 1995) that included requirements described in the contract specification (Pfluger 1995). This report documents the results of tests conducted to evaluate the performance of the DSTI system against the requirements of the contract specification. The test of the DSTI system also reflects the performance of qualified personnel and operating procedures.

  20. Integrated testing strategy (ITS) for bioaccumulation assessment under REACH.

    Science.gov (United States)

    Lombardo, Anna; Roncaglioni, Alessandra; Benfentati, Emilio; Nendza, Monika; Segner, Helmut; Fernández, Alberto; Kühne, Ralph; Franco, Antonio; Pauné, Eduard; Schüürmann, Gerrit

    2014-08-01

    REACH (registration, evaluation, authorisation and restriction of chemicals) regulation requires that all the chemicals produced or imported in Europe above 1 tonne/year are registered. To register a chemical, physicochemical, toxicological and ecotoxicological information needs to be reported in a dossier. REACH promotes the use of alternative methods to replace, refine and reduce the use of animal (eco)toxicity testing. Within the EU OSIRIS project, integrated testing strategies (ITSs) have been developed for the rational use of non-animal testing approaches in chemical hazard assessment. Here we present an ITS for evaluating the bioaccumulation potential of organic chemicals. The scheme includes the use of all available data (also the non-optimal ones), waiving schemes, analysis of physicochemical properties related to the end point and alternative methods (both in silico and in vitro). In vivo methods are used only as last resort. Using the ITS, in vivo testing could be waived for about 67% of the examined compounds, but bioaccumulation potential could be estimated on the basis of non-animal methods. The presented ITS is freely available through a web tool. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Integrated Disposal Facility FY 2012 Glass Testing Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kerisit, Sebastien N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Krogstad, Eirik J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burton, Sarah D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bjornstad, Bruce N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Freedman, Vicky L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle MV [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crum, Jarrod V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-03-29

    PNNL is conducting work to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility for Hanford immobilized low-activity waste (ILAW). Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program, PNNL is implementing a strategy, consisting of experimentation and modeling, to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. Key activities in FY12 include upgrading the STOMP/eSTOMP codes to do near-field modeling, geochemical modeling of PCT tests to determine the reaction network to be used in the STOMP codes, conducting PUF tests on selected glasses to simulate and accelerate glass weathering, developing a Monte Carlo simulation tool to predict the characteristics of the weathered glass reaction layer as a function of glass composition, and characterizing glasses and soil samples exhumed from an 8-year lysimeter test. The purpose of this report is to summarize the progress made in fiscal year (FY) 2012 and the first quarter of FY 2013 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of LAW glasses.

  2. Basic tests on integrity evaluation for natural hexafluoride transporting container

    International Nuclear Information System (INIS)

    Gomi, Yoshio; Yamakawa, Hidetsugu; Kato, Osamu; Kobayashi, Seiichi

    1990-01-01

    In this study, the affected factors that needed to integrity evaluation for UF 6 transporting 48Y cylinder, were confirmed by basic tests and preliminary analysis. The factors were the sealing parts and external surface emissivity that ruled both the behavior under fire accident condition and the fire resistance capability of the cylinder, and the external pressure resistance capability at the sunk accident. The results obtained as follows. (1) Confirming tests for fire resistance of cylinder valve and plug, seat leakage of the valve caused at 150 degrees C. by unequal thermal expansion between the valve body and the stem. The tin-lead solder coating the tapered thread of valve and plug, melted at 200 degrees C., then the sealing boundary broke. (2) An external emissivity influence to radiation heat transfer measured with test pieces heated by electric oven. The covered paints of the specimen burned and separated, the emissivity changed 0.4 to 0.6, dependent on the surrounding temperature. Type 48Y cylinder filled with 12.5 tons of UF 6 and the measured emissivity was used the computer code analysis. The hydraulic breaking did not happen under the fire accident condition at 800 degrees C., for 30 minutes. (3) The external pressure test of the valve endured the hydrostatic pressure at 3000 meters, which corresponded to about five times the cylinder body buckling strength. (author)

  3. Integral test of JENDL-3.3 on fast reactors

    International Nuclear Information System (INIS)

    Chiba, Gou; Hazama, Taira

    2003-05-01

    An integral test has been carried out to evaluate a performance of evaluated nuclear data library JENDL-3.3, which was newly released, in a view of applying neutronics analyses of fast reactors. Japan Nuclear Cycle Development Institute has a large amount of data of critical assembly experiments (ZPPR, BFS, MOZART and FCA) and power reactor tests (JOYO). The database was utilized in this test. In plutonium loaded cores, an improvement was observed about 0.3% ε k in criticality and 5% in the non-leakage term of sodium void reactivity by a revision form JENDL-3.2 to -3.3. These results shoed that the revision is valid in plutonium loaded cores. In uranium loaded cores, dependence of C/E values on control rod position became smaller in control rod worth in ZPPR cores. On the other hand, C/E values became worse both in criticality (0.6%εk) and in sodium void reactivity (30%) in BFS cores. The main cause was a revision of uranium-235 capture cross section, and it could not be concluded whether the revision is valid or not in uranium loaded cores. It is necessary to carry out a validation test at other independent critical experiments in which uranium fuel is used. (author)

  4. Open-loop digital frequency multiplier

    Science.gov (United States)

    Moore, R. C.

    1977-01-01

    Monostable multivibrator is implemented by using digital integrated circuits where multiplier constant is too large for conventional phase-locked-loop integrated circuit. A 400 Hz clock is generated by divide-by-N counter from 1 Hz timing reference.

  5. An integrated system combining chemical looping hydrogen generation process and solid oxide fuel cell/gas turbine cycle for power production with CO2 capture

    Science.gov (United States)

    Chen, Shiyi; Xue, Zhipeng; Wang, Dong; Xiang, Wenguo

    2012-10-01

    In this paper, the solid oxide fuel cell/gas turbine (SOFC/GT) cycle is integrated with coal gasification and chemical looping hydrogen generation (CLHG) for electric power production with CO2 capture. The CLHG-SOFC/GT plant is configurated and the schematic process is modeled using Aspen Plus® software. Syngas, produced by coal gasification, is converted to hydrogen with CO2 separation through a three-reactors CLHG process. Hydrogen is then fueled to SOFC for power generation. The unreacted hydrogen from SOFC burns in a combustor and drives gas turbine. The heat of the gas turbine exhaust stream is recovered in HRSG for steam bottoming cycle. At a system pressure of 20 bar and a cell temperature of 900 °C, the CLHG-SOFC/GT plant has a net power efficiency of 43.53% with no CO2 emissions. The hybrid power plant performance is attractive because of high energy conversion efficiency and zero-CO2-emission. Key parameters that influence the system performance are also discussed, including system operating pressure, cell temperature, fuel utilization factor, steam reactor temperature, CO2 expander exhaust pressure and inlet gas preheating.

  6. Integrated circuit test-port architecture and method and apparatus of test-port generation

    Science.gov (United States)

    Teifel, John

    2016-04-12

    A method and apparatus are provided for generating RTL code for a test-port interface of an integrated circuit. In an embodiment, a test-port table is provided as input data. A computer automatically parses the test-port table into data structures and analyzes it to determine input, output, local, and output-enable port names. The computer generates address-detect and test-enable logic constructed from combinational functions. The computer generates one-hot multiplexer logic for at least some of the output ports. The one-hot multiplexer logic for each port is generated so as to enable the port to toggle between data signals and test signals. The computer then completes the generation of the RTL code.

  7. Loop quantum cosmology: Recent progress

    Indian Academy of Sciences (India)

    . These techniques and their implications can be illustrated and tested in simple sit- uations by introducing symmetries, which is the origin of loop quantum cosmology. The symmetry reduction can be done in such a way that the characteristic ...

  8. Massive loop corrections for collider physics

    Energy Technology Data Exchange (ETDEWEB)

    Yundin, Valery

    2012-02-01

    In this thesis we discuss the problem of evaluation of tensor integrals appearing in a typical one-loop Feynman diagram calculation. We present a computer library for the numerical evaluation of tensor integrals with up to 5 legs and arbitrary kinematics. The code implements algorithms based on the formalism which avoids the appearance of inverse Gram determinants in the reduction of pentagon diagrams. The Gram determinants of box integrals are isolated in the set of new basis integrals by using dimensional recurrence relations. These integrals are then evaluated by dimensional recurrence or expansion in small Gram determinant, which is improved by Pade extrapolation. A cache system allows reuse of identical building blocks and increases the efficiency. After describing the cross checks and accuracy tests, we show a sample application to the evaluation of five gluon helicity amplitudes, which is compared with the output of the program NGluon. In the last part the program is applied to the calculation of the one-loop virtual corrections to the muon pair production with hard photon emission. The computation method is explained, followed by a discussion of renormalization and pole structure. Finally, we present numerical results for differential cross sections with kinematics of the KLOE and BaBar detectors.

  9. Vibration and acoustic signatures of the water circulation pump in the pressurised LMR fuel element test loop at IPEN

    International Nuclear Information System (INIS)

    Holland, L.

    1985-01-01

    This report presents results of vibration and acoustic field measurements made on the water circulating pump in the IPEN - CNEN/Sao Paulo pressurised water loop. The use of such measurements to monitor the vibration of coolant circulating pumps of light water reactors is indicated. Measurements were made for defined water flows and pressures varying between 5 bar/5.22 ls sup(-1) and 40 bar/17,42ls sup(-1). Analyses of various recordings of two accelerometer signals and 1 microphone signal were made principally in the frequency range 0-5 KHz using a Nicolet 660 A Fourier analyser. Results of these analyses indicate that CPSD distributions might be more sensitive indicators of changes in pump operating conditions than the more frequently used PSD distributions. In addition, as an indicador of changing pump conditions the acoustic-vibration signal pair is perhaps a more sensitive indicator than the vibration-vibration signal pair. While coherence distributions are elearly sensitive to changing pump conditions, trends in the change of these distributions were not readily identified. It is recommended that more detailed analyses be made using pattern recognition techniques in conjunction with frequency zooming. (Author) [pt

  10. Field Evaluation of a High Throughput Loop Mediated Isothermal Amplification Test for the Detection of Asymptomatic Plasmodium Infections in Zanzibar.

    Science.gov (United States)

    Aydin-Schmidt, Berit; Morris, Ulrika; Ding, Xavier C; Jovel, Irina; Msellem, Mwinyi I; Bergman, Daniel; Islam, Atiqul; Ali, Abdullah S; Polley, Spencer; Gonzalez, Iveth J; Mårtensson, Andreas; Björkman, Anders

    2017-01-01

    New field applicable diagnostic tools are needed for highly sensitive detection of residual malaria infections in pre-elimination settings. Field performance of a high throughput DNA extraction system for loop mediated isothermal amplification (HTP-LAMP) was therefore evaluated for detecting malaria parasites among asymptomatic individuals in Zanzibar. HTP-LAMP performance was evaluated against real-time PCR on 3008 paired blood samples collected on filter papers in a community-based survey in 2015. The PCR and HTP-LAMP determined malaria prevalences were 1.6% (95%CI 1.3-2.4) and 0.7% (95%CI 0.4-1.1), respectively. The sensitivity of HTP-LAMP compared to PCR was 40.8% (CI95% 27.0-55.8) and the specificity was 99.9% (CI95% 99.8-100). For the PCR positive samples, there was no statistically significant difference between the geometric mean parasite densities among the HTP-LAMP positive (2.5 p/μL, range 0.2-770) and HTP-LAMP negative (1.4 p/μL, range 0.1-7) samples (p = 0.088). Two lab technicians analysed up to 282 samples per day and the HTP-LAMP method was experienced as user friendly. Although field applicable, this high throughput format of LAMP as used here was not sensitive enough to be recommended for detection of asymptomatic low-density infections in areas like Zanzibar, approaching malaria elimination.

  11. Autonomous Aerial Refueling Ground Test Demonstration—A Sensor-in-the-Loop, Non-Tracking Method

    Directory of Open Access Journals (Sweden)

    Chao-I Chen

    2015-05-01

    Full Text Available An essential capability for an unmanned aerial vehicle (UAV to extend its airborne duration without increasing the size of the aircraft is called the autonomous aerial refueling (AAR. This paper proposes a sensor-in-the-loop, non-tracking method for probe-and-drogue style autonomous aerial refueling tasks by combining sensitivity adjustments of a 3D Flash LIDAR camera with computer vision based image-processing techniques. The method overcomes the inherit ambiguity issues when reconstructing 3D information from traditional 2D images by taking advantage of ready to use 3D point cloud data from the camera, followed by well-established computer vision techniques. These techniques include curve fitting algorithms and outlier removal with the random sample consensus (RANSAC algorithm to reliably estimate the drogue center in 3D space, as well as to establish the relative position between the probe and the drogue. To demonstrate the feasibility of the proposed method on a real system, a ground navigation robot was designed and fabricated. Results presented in the paper show that using images acquired from a 3D Flash LIDAR camera as real time visual feedback, the ground robot is able to track a moving simulated drogue and continuously narrow the gap between the robot and the target autonomously.

  12. Testing the role of the Barbero-Immirzi parameter and the choice of connection in loop quantum gravity

    Science.gov (United States)

    Achour, Jibril Ben; Geiller, Marc; Noui, Karim; Yu, Chao

    2015-05-01

    We study the role of the Barbero-Immirzi parameter γ and the choice of connection in the construction of (a symmetry-reduced version of) loop quantum gravity. We start with the four-dimensional Lorentzian Holst action that we reduce to three dimensions in a way that preserves the presence of γ . In the time gauge, the phase space of the resulting three-dimensional theory mimics exactly that of the four-dimensional one. Its quantization can be performed, and on the kinematical Hilbert space spanned by SU(2) spin network states the spectra of geometric operators are discrete and γ dependent. However, because of the three-dimensional nature of the theory, its SU(2) Ashtekar-Barbero Hamiltonian constraint can be traded for the flatness constraint of an s l (2 ,C ) connection, and we show that this latter has to satisfy a linear simplicitylike condition analogous to the one used in the construction of spin foam models. The physically relevant solution to this constraint singles out the noncompact subgroup SU(1, 1), which in turn leads to the disappearance of the Barbero-Immirzi parameter and to a continuous length spectrum, in agreement with what is expected from Lorentzian three-dimensional gravity.

  13. On the scaling of pressure for integral test facilities

    International Nuclear Information System (INIS)

    Di Marzo, M.; Almenas, K.; Hsu, Y.Y.

    1991-01-01

    Two Small Break LOCA transients are compared to illustrate a scaling methodology for reduced pressure integral facilities. Mapping test 3004 is conducted in the MIST full pressure, full height facility. The counter-part test MIS0317 is scaled and performed in the reduced height, reduced pressure UMCP facility. Inventory is used as the chronological scale and pressure, normalized with the initial and system saturation pressures, is used as characteristic parameter to describe the system behavior. The appropriately normalized results conclusively demonstrate that: (a) the same phenomena are observed in the two facilities; (b) the sequence of events is analogous and (c) the trends described by the normalized pressure versus inventory traces are in good quantitative agreement. Each energy transport mode traversed by the two facilities is compared and the phenomena present are described in detail. The differences between the high and reduced pressure test are outlined. The findings clearly indicate that pressure and height can be scaled for transients where limited boundary conditions are applied (Auxiliary Feed Water only) and where the break is subcooled. A statement on sensitivity to the initial conditions is also included to define the limitations of the quantitative results. (orig.)

  14. Application of advanced non-destructive testing for testing the integrity of concrete foundations

    International Nuclear Information System (INIS)

    Nguyen Le Son; Nguyen Phuoc Lan; Pham The Hung; Vu Huy Thuc

    2004-01-01

    Solid foundations are integral important part of any structures. Obtaining accurate and timely information on the integrity of structural foundations is essential for project progress and success. Cross-hole sonic method has been widely accepted for quality assurance and quality control on projects with deep foundations, and to assess the integrity of other civil engineering structures. Under the framework of the basic VAEC project (2003) and project VIE/8/013, the Cross-hole sonic method (CHM) was evaluated at Center for Nuclear Techniques, Hochiminh City (CNT). Background information on principle and general description of the method as is typically applied in the evaluation of deep foundations are also summarized. A suitable experimental model of the shaft foundations was prepared, where the artificial defects can be controlled for the Cross-hole sonic logging was conducted by measuring the propagation time of ultrasonic signals between two probes in vertical holes in a shaft. The purpose of the test program is to evaluate the ability of the cross-hole sonic method to identify the defects present in the experimental model, to evaluate the capabilities of the method and the equipped system Cs-97, to improve the presentation of test results to meet requirements for interpreting the quality of drilled shafts by processing the data of Cs-97. The cross-hole sonic testing program is describe. Summarizes the results and analysis of the cross-hole sonic logging are presented to highlight both the applicability and limitations of the method. The cross-hole sonic logging evaluation is a valuable non-destructive method in assessing the integrity of deep foundations. The cross-hole sonic logging tests successfully determined the location and extent of the built-in defects on experimental model shaft. Minimum sizes of defects can be detected were about ≥ 10 cm Cs-97. Effects of the directions, detectable sizes and natures of defects were studied. The apparent velocities

  15. Integrity Testing of Pile Cover Using Distributed Fibre Optic Sensing

    Directory of Open Access Journals (Sweden)

    Yi Rui

    2017-12-01

    Full Text Available The integrity of cast-in-place foundation piles is a major concern in geotechnical engineering. In this study, distributed fibre optic sensing (DFOS cables, embedded in a pile during concreting, are used to measure the changes in concrete curing temperature profile to infer concrete cover thickness through modelling of heat transfer processes within the concrete and adjacent ground. A field trial was conducted at a high-rise building construction site in London during the construction of a 51 m long test pile. DFOS cables were attached to the reinforcement cage of the pile at four different axial directions to obtain distributed temperature change data along the pile. The monitoring data shows a clear development of concrete hydration temperature with time and the pattern of the change varies due to small changes in concrete cover. A one-dimensional axisymmetric heat transfer finite element (FE model is used to estimate the pile geometry with depth by back analysing the DFOS data. The results show that the estimated pile diameter varies with depth in the range between 1.40 and 1.56 m for this instrumented pile. This average pile diameter profile compares well to that obtained with the standard Thermal Integrity Profiling (TIP method. A parametric study is conducted to examine the sensitivity of concrete and soil thermal properties on estimating the pile geometry.

  16. Integrity Testing of Pile Cover Using Distributed Fibre Optic Sensing

    Science.gov (United States)

    Rui, Yi; Kechavarzi, Cedric; O’Leary, Frank; Barker, Chris; Nicholson, Duncan; Soga, Kenichi

    2017-01-01

    The integrity of cast-in-place foundation piles is a major concern in geotechnical engineering. In this study, distributed fibre optic sensing (DFOS) cables, embedded in a pile during concreting, are used to measure the changes in concrete curing temperature profile to infer concrete cover thickness through modelling of heat transfer processes within the concrete and adjacent ground. A field trial was conducted at a high-rise building construction site in London during the construction of a 51 m long test pile. DFOS cables were attached to the reinforcement cage of the pile at four different axial directions to obtain distributed temperature change data along the pile. The monitoring data shows a clear development of concrete hydration temperature with time and the pattern of the change varies due to small changes in concrete cover. A one-dimensional axisymmetric heat transfer finite element (FE) model is used to estimate the pile geometry with depth by back analysing the DFOS data. The results show that the estimated pile diameter varies with depth in the range between 1.40 and 1.56 m for this instrumented pile. This average pile diameter profile compares well to that obtained with the standard Thermal Integrity Profiling (TIP) method. A parametric study is conducted to examine the sensitivity of concrete and soil thermal properties on estimating the pile geometry. PMID:29257094

  17. Integrated automatic non-destructive testing in industrial production and in the operation of technical plant

    International Nuclear Information System (INIS)

    Hoeller, P.

    1989-01-01

    The article deals with non-destructive testing (NDT) in automated manufacture and in the automated operation of industrial plant. In both areas of application, the tests are coupled to the process (real time operation) and the results are used for the control of manufacture or of the course of the process. The control process can be coupled to the process in open loop or closed loop. The subject is explained by the following examples: 1) Automated testing of sheets in a steelworks. 2) Automatic NDT on machine parts in tempering and machining by the 3MA system (3MA: micro-magnetic, multi-parameter, micro-structure and stress analysis). 3) Automated ultrasonic testing in manufacture and in the operation of plants with the ALOK data collection and processing system (ALOK: amplitude, running time, location curves). 4) Automated wheel running surface test on Intercity experimental train, and 5) automated level measurement on BWR pressure vessels. (orig./MM) [de

  18. Development and verification test of integral reactor major components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. I.; Kim, Y. W.; Kim, J. H. and others

    1999-03-01

    The conceptual designs for SG, MCP, CEDM to be installed in the integral reactor SMART were developed. Three-dimensional CAD models for the major components were developed to visualize the design concepts. Once-through helical steam generator was conceptually designed for SMART. Canned motor pump was adopted in the conceptual design of MCP. Linear pulse motor type and ballscrew type CEDM, which have fine control capabilities were studied for adoption in SMART. In parallel with the structural design, the electro-magnetic design was performed for the sizing motors and electro-magnet. Prototypes for the CEDM and MCP sub-assemblies were developed and tested to verify the performance. The impeller design procedure and the computer program to analyze the dynamic characteristics of MCP rotor shaft were developed. The design concepts of SG, MCP, CEDM were also invetigated for the fabricability.

  19. Development and verification test of integral reactor major components

    International Nuclear Information System (INIS)

    Kim, J. I.; Kim, Y. W.; Kim, J. H. and others

    1999-03-01

    The conceptual designs for SG, MCP, CEDM to be installed in the integral reactor SMART were developed. Three-dimensional CAD models for the major components were developed to visualize the design concepts. Once-through helical steam generator was conceptually designed for SMART. Canned motor pump was adopted in the conceptual design of MCP. Linear pulse motor type and ballscrew type CEDM, which have fine control capabilities were studied for adoption in SMART. In parallel with the structural design, the electro-magnetic design was performed for the sizing motors and electro-magnet. Prototypes for the CEDM and MCP sub-assemblies were developed and tested to verify the performance. The impeller design procedure and the computer program to analyze the dynamic characteristics of MCP rotor shaft were developed. The design concepts of SG, MCP, CEDM were also invetigated for the fabricability

  20. The development of functional requirement for integrated test facility

    International Nuclear Information System (INIS)

    Sim, B.S.; Oh, I.S.; Cha, K.H.; Lee, H.C.

    1994-01-01

    An Integrated Test Facility (ITF) is a human factors experimental environment comprised of a nuclear power plant function simulator, man-machine interfaces (MMI), human performance recording systems, and signal control and data analysis systems. In this study, we are going to describe how the functional requirements are developed by identification of both the characteristics of generic advanced control rooms and the research topics of world-wide research interest in human factors community. The functional requirements of user interface developed in this paper together with those of the other elements will be used for the design and implementation of the ITF which will serve as the basis for experimental research on a line of human factors topics. (author). 15 refs, 1 fig

  1. Integrated leak rate testing of the fast flux test facility reactor containment building

    International Nuclear Information System (INIS)

    James, E.B.; Farabee, O.A.; Bliss, R.J.

    1978-01-01

    The initial Integrated Leak Rate Test (ILRT) of the Fast Flux Test Facility containment building was performed from May 27 to June 2, 1978. The test was conducted in air with systems vented and with the containment recirculating coolers in operation. 10 psig and 5 psig tests were run using the absolute pressure test method. The measured leakage rates were .033% Vol/24 hr. and -.0015% Vol/24 hrs. respectively. Subsequent verification tests at both 10 psig and 5 psig proved that the test equipment was operating properly and it was sensitive enough to detect leaks at low pressures. This ILRT was performed at a lower pressure than any previous ILRT on a reactor containment structure in the United States. While the initial design requirements for ice condenser containments called for a part pressure test at 6 psig, the tests were waived due to the apparent statistical problems of data analysis and the repeatability of the data itself at such low pressure. In contrast to this belief, both the 5 and 10 psig ILRT's were performed in a successful manner at FFTF

  2. IFMIF target and test cell - design and integration

    International Nuclear Information System (INIS)

    Heinzel, V.

    2007-01-01

    The International Fusion Material Irradiation Facility (IFMIF) aims at the qualification of appropriate materials for a Demonstration Fusion Power Plant (DEMO) to a fluence of up to 150 dpa (displacement per atom) at a DEMO typical neutron spectrum. It comprises two accelerators each providing a deuteron beam with 125 mA and 40 MeV. The deuterons strike a lithium target and create via stripping reactions neutrons. The neutrons are mainly forward directed into the High-Flux-Test-Module (HFTM). The Medium Flux-Test-Modules (MFTM) and the Low-Flux-Test-Modules (LFTM) are arranged in beam direction behind. In the HFTM a damage rate in steel of more than 20 dpa/fpy (displacement per atome per full power year) will be provide in a volume of 0.5 litre. The neutron spectrum is prone to produce helium and tritium in steel like in the first wall of a DEMO reactor. The Medium- Flux-Test-Modules are designed for creep fatigues in situ and tritium release test. The test modules are cooled with helium. The target is a lithium jet with a free surface towards the deuteron beams. The jet follows a concave curved so called back wall. Centrifugal forces increase the static pressure, which prevents lithium boiling at the beam tube pressure and the power release of 10 MW due to the deuteron beams. The target and Test Cell (TTC) houses the target and the test modules as well as the lithium supply tubes and a quench tank into which the lithium splashes after the target. The lithium containing components have a temperature of 250 to 350 C. Nuclear reactions mainly in beam direction contribute to heat releases in TTC components. The TTC is filled with a noble gas with almost atmospheric pressure. Natural convection transfers heat to the walls but also mitigates temperature peaks. The Forschungszentrum Karlsruhe (FZK) has developed or validated tools for: - The extended Monte Carlo Code McDeLicious for calculations of the neutron source term, dpa rates in the material specimens, activation

  3. Integrated testing strategies for toxicity employing new and existing technologies.

    Science.gov (United States)

    Combes, Robert D; Balls, Michael

    2011-07-01

    We have developed individual, integrated testing strategies (ITS) for predicting the toxicity of general chemicals, cosmetics, pharmaceuticals, inhaled chemicals, and nanoparticles. These ITS are based on published schemes developed previously for the risk assessment of chemicals to fulfil the requirements of REACH, which have been updated to take account of the latest developments in advanced in chemico modelling and in vitro technologies. In addition, we propose an ITS for neurotoxicity, based on the same principles, for incorporation in the other ITS. The technologies are deployed in a step-wise manner, as a basis for decision-tree approaches, incorporating weight-of-evidence stages. This means that testing can be stopped at the point where a risk assessment and/or classification can be performed, with labelling in accordance with the requirements of the regulatory authority concerned, rather than following a checklist approach to hazard identification. In addition, the strategies are intelligent, in that they are based on the fundamental premise that there is no hazard in the absence of exposure - which is why pharmacokinetic modelling plays a key role in each ITS. The new technologies include the use of complex, three-dimensional human cell tissue culture systems with in vivo-like structural, physiological and biochemical features, as well as dosing conditions. In this way, problems of inter-species extrapolation and in vitro/in vivo extrapolation are minimised. This is reflected in the ITS placing more emphasis on the use of volunteers at the whole organism testing stage, rather than on existing animal testing, which is the current situation. 2011 FRAME.

  4. Field Evaluation of a High Throughput Loop Mediated Isothermal Amplification Test for the Detection of Asymptomatic Plasmodium Infections in Zanzibar.

    Directory of Open Access Journals (Sweden)

    Berit Aydin-Schmidt

    Full Text Available New field applicable diagnostic tools are needed for highly sensitive detection of residual malaria infections in pre-elimination settings. Field performance of a high throughput DNA extraction system for loop mediated isothermal amplification (HTP-LAMP was therefore evaluated for detecting malaria parasites among asymptomatic individuals in Zanzibar.HTP-LAMP performance was evaluated against real-time PCR on 3008 paired blood samples collected on filter papers in a community-based survey in 2015.The PCR and HTP-LAMP determined malaria prevalences were 1.6% (95%CI 1.3-2.4 and 0.7% (95%CI 0.4-1.1, respectively. The sensitivity of HTP-LAMP compared to PCR was 40.8% (CI95% 27.0-55.8 and the specificity was 99.9% (CI95% 99.8-100. For the PCR positive samples, there was no statistically significant difference between the geometric mean parasite densities among the HTP-LAMP positive (2.5 p/μL, range 0.2-770 and HTP-LAMP negative (1.4 p/μL, range 0.1-7 samples (p = 0.088. Two lab technicians analysed up to 282 samples per day and the HTP-LAMP method was experienced as user friendly.Although field applicable, this high throughput format of LAMP as used here was not sensitive enough to be recommended for detection of asymptomatic low-density infections in areas like Zanzibar, approaching malaria elimination.

  5. Tree-loop duality relation beyond single poles

    International Nuclear Information System (INIS)

    Bierenbaum, Isabella; Buchta, Sebastian; Draggiotis, Petros; Malamos, Ioannis; Rodrigo, German

    2012-11-01

    We develop the Tree-Loop Duality Relation for two- and three-loop integrals with multiple identical propagators (multiple poles). This is the extension of the Duality Relation for single poles and multi-loop integrals derived in previous publications. We prove a generalization of the formula for single poles to multiple poles and we develop a strategy for dealing with higher-order pole integrals by reducing them to single pole integrals using Integration By Parts.

  6. The Revised Test of Visual-Motor Integration: Its Relation to the Test of Visual-Motor Integration and Bender Visual-Motor Gestalt Test for Regular Education Students.

    Science.gov (United States)

    Siewert, Julaine C.; Breen, Michael J.

    1983-01-01

    Compared three tests of visual-motor integration: The Revised Test of Visual-Motor Integration (VMI-R), the Test of Visual-Motor Integration (VMI), and the Bender Visual-Motor Gestalt Test (BG). Results showed significantly higher BG age equivalent scores. Highly significant correlations were found among all variables. (WAS)

  7. Integrating software into PRA: a test-based approach.

    Science.gov (United States)

    Li, Bin; Li, Ming; Smidts, Carol

    2005-08-01

    Probabilistic risk assessment (PRA) is a methodology to assess the probability of failure or success of a system's operation. PRA has been proved to be a systematic, logical, and comprehensive technique for risk assessment. Software plays an increasing role in modern safety critical systems. A significant number of failures can be attributed to software failures. Unfortunately, current probabilistic risk assessment concentrates on representing the behavior of hardware systems, humans, and their contributions (to a limited extent) to risk but neglects the contributions of software due to a lack of understanding of software failure phenomena. It is thus imperative to consider and model the impact of software to reflect the risk in current and future systems. The objective of our research is to develop a methodology to account for the impact of software on system failure that can be used in the classical PRA analysis process. A test-based approach for integrating software into PRA is discussed in this article. This approach includes identification of software functions to be modeled in the PRA, modeling of the software contributions in the ESD, and fault tree. The approach also introduces the concepts of input tree and output tree and proposes a quantification strategy that uses a software safety testing technique. The method is applied to an example system, PACS.

  8. The RADAR Test Methodology: Evaluating a Multi-Task Machine Learning System with Humans in the Loop

    Science.gov (United States)

    2006-10-01

    of ML benefit . 1.1 The Radar system Radar is specifically designed to assist with a suite of white-collar tasks. In most cases, the specific...A third condition where subjects utilize conventional off the shelf tools (COTS) allows estimates to be made on the overall benefit of integration...details, static websites, and an ecommerce vendor portal. The “corpus” consists of the email and world state content. The latter consists of facts

  9. Development and Implementation of a Hardware In-the-Loop Test Bed for Unmanned Aerial Vehicle Control Algorithms

    Science.gov (United States)

    Nyangweso, Emmanuel; Bole, Brian

    2014-01-01

    Successful prediction and management of battery life using prognostic algorithms through ground and flight tests is important for performance evaluation of electrical systems. This paper details the design of test beds suitable for replicating loading profiles that would be encountered in deployed electrical systems. The test bed data will be used to develop and validate prognostic algorithms for predicting battery discharge time and battery failure time. Online battery prognostic algorithms will enable health management strategies. The platform used for algorithm demonstration is the EDGE 540T electric unmanned aerial vehicle (UAV). The fully designed test beds developed and detailed in this paper can be used to conduct battery life tests by controlling current and recording voltage and temperature to develop a model that makes a prediction of end-of-charge and end-of-life of the system based on rapid state of health (SOH) assessment.

  10. Automated Overnight Closed-Loop Control Using a Proportional-Integral-Derivative Algorithm with Insulin Feedback in Children and Adolescents with Type 1 Diabetes at Diabetes Camp.

    Science.gov (United States)

    Ly, Trang T; Keenan, D Barry; Roy, Anirban; Han, Jino; Grosman, Benyamin; Cantwell, Martin; Kurtz, Natalie; von Eyben, Rie; Clinton, Paula; Wilson, Darrell M; Buckingham, Bruce A

    2016-06-01

    This study determined the feasibility and efficacy of an automated proportional-integral-derivative with insulin feedback (PID-IFB) controller in overnight closed-loop (OCL) control of children and adolescents with type 1 diabetes over multiple days in a diabetes camp setting. The Medtronic (Northridge, CA) Android™ (Google, Mountain View, CA)-based PID-IFB system consists of the Medtronic Minimed Revel™ 2.0 pump and Enlite™ sensor, a control algorithm residing on an Android phone, a translator, and remote monitoring capabilities. An inpatient study was completed for 16 participants to determine feasibility. For the camp study, subjects with type 1 diabetes were randomized to either OCL or sensor-augmented pump therapy (control conditions) per night for up to 6 nights at diabetes camp. During the camp study, 21 subjects completed 50 OCL nights and 52 control nights. Based on intention to treat, the median time spent in range, from 70 to 150 mg/dL, was greater during OCL at 66.4% (n = 55) versus 50.6% (n = 52) during the control period (P = 0.004). A per-protocol analysis allowed for assessment of algorithm performance with the median percentage time in range, 70-150 mg/dL, being 75.5% (n = 37) for OCL versus 47.6% (n = 32) for the control period (P < 0.001). There was less time spent in the hypoglycemic ranges <60 mg/dL and <70 mg/dL during OCL compared with the control period (P = 0.003 and P < 0.001, respectively). The PID-IFB controller is effective in improving time spent in range as well as reducing nocturnal hypoglycemia during the overnight period in children and adolescents with type 1 diabetes in a diabetes camp setting.

  11. Qualification of TRACE V5.0 Code against Fast Cooldown Transient in the PKL-III Integral Test Facility

    Directory of Open Access Journals (Sweden)

    Eugenio Coscarelli

    2013-01-01

    Full Text Available The present paper deals with the analytical study of the PKL experiment G3.1 performed using the TRACE code (version 5.0 patch1. The test G3.1 simulates a fast cooldown transient, namely, a main steam line break. This leads to a strong asymmetry caused by an increase of the heat transfer from the primary to the secondary side that induces a fast cooldown transient on the primary side-affected loop. The asymmetric overcooling effect requires an assessment of the reactor pressure vessel integrity considering PTS (pressurized thermal shock and an assessment of potential recriticality following entrainment of colder water into the core area. The aim of this work is the qualification of the heat transfer capabilities of the TRACE code from primary to secondary side in the intact and affected steam generators (SGs during the rapid depressurization and the boiloff in the affected SG against experimental data.

  12. The Holistic Integrity Test (HIT - quantified resilience analysis

    Directory of Open Access Journals (Sweden)

    Dobson Mike

    2016-01-01

    Full Text Available The Holistic Integrity Test (HIT - Quantified Resilience Analysis. Rising sea levels and wider climate change mean we face an increasing risk from flooding and other natural hazards. Tough economic times make it difficult to economically justify or afford the desired level of engineered risk reduction. Add to this significant uncertainty from a range of future predictions, constantly updated with new science. We therefore need to understand not just how to reduce the risk, but what could happen should above design standard events occur. In flood terms this includes not only the direct impacts (damage and loss of life, but the wider cascade impacts to infrastructure systems and the longer term impacts on the economy and society. However, understanding the “what if” is only the first part of the equation; a range of improvement measures to mitigate such effects need to be identified and implemented. These measures should consider reducing the risk, lessening the consequences, aiding the response, and speeding up the recovery. However, they need to be objectively assessed through quantitative analysis, which underpins them technically and economically. Without such analysis, it cannot be predicted how measures will perform if the extreme events occur. It is also vital to consider all possible hazards as measures for one hazard may hinder the response to another. The Holistic Integrity Test (HIT, uses quantitative system analysis and “HITs” the site, its infrastructure, contained dangers and wider regional system to determine how it copes with a range of severe shock events, Before, During and After the event, whilst also accounting for uncertainty (as illustrated in figure 1. First explained at the TINCE 2014 Nuclear Conference in Paris, it was explained in terms of a Nuclear Facility needing to analyse the site in response to post Fukushima needs; the hit is however universally applicable. The HIT has three key risk reduction goals: The

  13. The massless two-loop two-point function

    International Nuclear Information System (INIS)

    Bierenbaum, I.; Weinzierl, S.

    2003-01-01

    We consider the massless two-loop two-point function with arbitrary powers of the propagators and derive a representation from which we can obtain the Laurent expansion to any desired order in the dimensional regularization parameter ε. As a side product, we show that in the Laurent expansion of the two-loop integral only rational numbers and multiple zeta values occur. Our method of calculation obtains the two-loop integral as a convolution product of two primitive one-loop integrals. We comment on the generalization of this product structure to higher loop integrals. (orig.)

  14. Instrumented Test of Sensory Integration for Balance: A Validation Study.

    Science.gov (United States)

    Freeman, Lynn; Gera, Geetanjali; Horak, Fay B; Blackinton, Mary T; Besch, Mark; King, Laurie

    Abnormal postural sway is associated with an increase in risk of falls but is difficult for clinicians to accurately quantify without access to laboratory equipment. Instrumenting clinical outcome measures using body-worn movement monitors is a low-cost alternative. This is the first study to compare the modified Clinical Test of Sensory Integration for Balance (i-mCTSIB) to the laboratory test of the Sensory Organization Test (SOT) with dynamic posturography in a group of participants with Parkinson's disease (PD) and subtle balance limitations. The purpose of this study was to (1) determine the concurrent validity of the i-mCTSIB with the SOT (6 and 4 conditions) and (2) compare the i-mCTSIB and the SOT to differentiate between individuals with and without recent falls within the previous 6 months. This cross-sectional study examined 26 participants with idiopathic PD who had a Motor Unified Parkinson's Disease Rating Scale score of 32.7 (13.5) out of 108. The composite and conditions 1 and 4 of the i-mCTSIB and SOT scores were significantly correlated: composite scores r = -0.64 (P ≤ .001), C1 r = -0.43 (P = .03), C3 r = -0.60 (P ≤ .01), and C4 r = -0.54 (P ≤ .001). A significant difference was observed in mean i-mCTSIB composite scores between fallers and nonfallers (P = .04). In contrast, the SOT composite was not significantly different between fallers and nonfallers (P = 0.31). The results suggest that the i-mCTSIB may be a valid and clinically meaningful measure of sensory organization in persons with PD, even those with mild postural instability as measured by the median Hoehn and Yahr score (2.0). Future research should evaluate predictive validity of the i-mCTSIB for prospective falls. The instrumented mCTSIB with portable, body-worn movement allows clinicians to quantify abnormal postural sway without the ceiling effects of clinical balance testing or the expense and importability of force plate technology in the SOT. Instrumenting mCTSIB may also

  15. Integrated Stirling Convertor and Hall Thruster Test Conducted

    Science.gov (United States)

    Mason, Lee S.

    2002-01-01

    An important aspect of implementing Stirling Radioisotope Generators on future NASA missions is the integration of the generator and controller with potential spacecraft loads. Some recent studies have indicated that the combination of Stirling Radioisotope Generators and electric propulsion devices offer significant trip time and payload fraction benefits for deep space missions. A test was devised to begin to understand the interactions between Stirling generators and electric thrusters. An electrically heated RG- 350 (350-W output) Stirling convertor, designed and built by Stirling Technology Company of Kennewick, Washington, under a NASA Small Business Innovation Research agreement, was coupled to a 300-W SPT-50 Hall-effect thruster built for NASA by the Moscow Aviation Institute (RIAME). The RG-350 and the SPT-50 shown, were installed in adjacent vacuum chamber ports at NASA Glenn Research Center's Electric Propulsion Laboratory, Vacuum Facility 8. The Stirling electrical controller interfaced directly with the Hall thruster power-processing unit, both of which were located outside of the vacuum chamber. The power-processing unit accepted the 48 Vdc output from the Stirling controller and distributed the power to all the loads of the SPT-50, including the magnets, keeper, heater, and discharge. On February 28, 2001, the Glenn test team successfully operated the Hall-effect thruster with the Stirling convertor. This is the world's first known test of a dynamic power source with electric propulsion. The RG-350 successfully managed the transition from the purely resistive load bank within the Stirling controller to the highly capacitive power-processing unit load. At the time of the demonstration, the Stirling convertor was operating at a hot temperature of 530 C and a cold temperature of -6 C. The linear alternator was producing approximately 250 W at 109 Vac, while the power-processing unit was drawing 175 W at 48 Vdc. The majority of power was delivered to the

  16. Integrated development and testing plan for the plutonium immobilization project

    International Nuclear Information System (INIS)

    Kan, T.

    1998-01-01

    This integrated plan for the DOE Office of Fissile Materials Disposition (MD) describes the technology development and major project activities necessary to support the deployment of the immobilization approach for disposition of surplus weapons-usable plutonium. The plan describes details of the development and testing (D and T) tasks needed to provide technical data for design and operation of a plutonium immobilization plant based on the ceramic can-in-canister technology (''Immobilization Fissile Material Disposition Program Final Immobilization Form Assessment and Recommendation'', UCRL-ID-128705, October 3, 1997). The plan also presents tasks for characterization and performance testing of the immobilization form to support a repository licensing application and to develop the basis for repository acceptance of the plutonium form. Essential elements of the plant project (design, construction, facility activation, etc.) are described, but not developed in detail, to indicate how the D and T results tie into the overall plant project. Given the importance of repository acceptance, specific activities to be conducted by the Office of Civilian Radioactive Waste Management (RW) to incorporate the plutonium form in the repository licensing application are provided in this document, together with a summary of how immobilization D and T activities provide input to the license activity. The ultimate goal of the Immobilization Project is to develop, construct, and operate facilities that will immobilize from about 18 to 50 tonnes (MT) of U.S. surplus weapons usable plutonium materials in a manner that meets the ''spent fuel'' standard (Fissile Materials Storage and Disposition Programmatic Environmental Impact Statement Record of Decision, ''Storage and Disposition Final PEIS'', issued January 14, 1997, 62 Federal Register 3014) and is acceptable for disposal in a geologic repository. In the can-in-canister technology, this is accomplished by encapsulating the

  17. Integration Tests of the 4 kW-class High Voltage Hall Accelerator Power Processing Unit with the HiVHAc and the SPT-140 Hall Effect Thrusters

    Science.gov (United States)

    Kamhawi, Hani; Pinero, Luis; Haag, Thomas; Huang, Wensheng; Ahern, Drew; Liang, Ray; Shilo, Vlad

    2016-01-01

    NASAs Science Mission Directorate is sponsoring the development of a 4 kW-class Hall propulsion system for implementation in NASA science and exploration missions. The main components of the system include the High Voltage Hall Accelerator (HiVHAc), an engineering model power processing unit (PPU) developed by Colorado Power Electronics, and a xenon flow control module (XFCM) developed by VACCO Industries. NASA Glenn Research Center is performing integrated tests of the Hall thruster propulsion system. This presentation presents results from integrated tests of the PPU and XFCM with the HiVHAc engineering development thruster and a SPT-140 thruster provided by Space System Loral. The results presented in this paper demonstrate thruster discharge initiation, open-loop and closed-loop control of the discharge current with anode flow for both the HiVHAc and the SPT-140 thrusters. Integrated tests with the SPT-140 thruster indicated that the PPU was able to repeatedly initiate the thrusters discharge, achieve steady state operation, and successfully throttle the thruster between 1.5 and 4.5 kW. The measured SPT-140 performance was identical to levels reported by Space Systems Loral.

  18. Follow-up strategies after treatment (large loop excision of the transformation zone (LLETZ)) for cervical intraepithelial neoplasia (CIN): Impact of human papillomavirus (HPV) test.

    Science.gov (United States)

    van der Heijden, Esther; Lopes, Alberto D; Bryant, Andrew; Bekkers, Ruud; Galaal, Khadra

    2015-01-06

    Development of cancer of the cervix is a multi-step process as before cervical cancer develops, cervical cells undergo changes and become abnormal. These abnormalities are called cervical intraepithelial neoplasia (CIN) and are associated with increased risk of subsequent invasive cancer of the cervix. Oncogenic high-risk human papillomavirus (hrHPV), the causative agent of cervical cancer and its precursor lesions, is present in up to one-third of women following large loop excision of the transformation zone (LLETZ) treatment and is associated with increased risk of residual disease and disease recurrence. HPV testing may serve as a surveillance tool for identifying women at higher risk of recurrence. High-risk human papillomavirus testing will enable us to identify women at increased risk of residual or recurrent CIN and therefore will allow us to offer closer surveillance and early treatment, when indicated. • To evaluate the effectiveness and safety of hrHPV testing after large loop excision of the transformation zone (LLETZ) treatment• To determine optimal follow-up management strategies following LLETZ treatment according to hrHPV status We searched the Cochrane Gynacological Cancer Review Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), PubMed and PsycINFO up to August 2013. We searched registers of clinical trials, abstracts of scientific meetings and reference lists of included studies, and we contacted experts in the field. We searched for randomised control trials (RCTs) that compared follow-up management strategies following LLETZ treatment for CIN. Two review authors independently assessed whether potentially relevant studies met the inclusion criteria. No trials were found; therefore no data were analysed. The search identified 813 references on MEDLINE, 418 on EMBASE, 22 on CINAHL, 666 on PubMed, 291 on PsycINFO and

  19. Integrated Disposal Facility FY2011 Glass Testing Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Westsik, Joseph H.

    2011-09-29

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.

  20. Integrated Disposal Facility FY2011 Glass Testing Summary Report

    International Nuclear Information System (INIS)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Westsik, Joseph H.

    2011-01-01

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10 5 m 3 of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10 14 Bq total activity) of long-lived radionuclides, principally 99 Tc (t 1/2 = 2.1 x 10 5 ), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.

  1. Lateral Flow Loop-Mediated Isothermal Amplification Test with Stem Primers: Detection of Cryptosporidium Species in Kenyan Children Presenting with Diarrhea

    Directory of Open Access Journals (Sweden)

    Timothy S. Mamba

    2018-01-01

    Full Text Available Background. Cryptosporidium is a protozoan parasite and a major cause of diarrhea in children and immunocompromised patients. Current diagnostic methods for cryptosporidiosis such as microscopy have low sensitivity while techniques such as PCR indicate higher sensitivity levels but are seldom used in developing countries due to their associated cost. A loop-mediated isothermal amplification (LAMP technique, a method with shorter time to result and with equal or higher sensitivity compared to PCR, has been developed and applied in the detection of Cryptosporidium species. The test has a detection limit of 10 pg/µl (~100 oocysts/ml indicating a need for more sensitive diagnostic tools. This study developed a more sensitive lateral flow dipstick (LFD LAMP test based on SAM-1 gene and with the addition of a second set of reaction accelerating primers (stem primers. Results. The stem LFD LAMP test showed analytical sensitivity of 10 oocysts/ml compared to 100 oocysts/ml (10 pg/ul for each of the SAM-1 LAMP test and nested PCR. The stem LFD LAMP and nested PCR detected 29/39 and 25/39 positive samples of previously identified C. parvum and C. hominis DNA, respectively. The SAM-1 LAMP detected 27/39. On detection of Cryptosporidium DNA in 67 clinical samples, the stem LFD LAMP detected 16 samples and SAM-2 LAMP 14 and nested PCR identified 11. Preheating the templates increased detection by stem LFD LAMP to 19 samples. Time to results from master mix preparation step took ~80 minutes. The test was specific, and no cross-amplification was recorded with nontarget DNA. Conclusion. The developed stem LFD LAMP test is an appropriate method for the detection of C. hominis, C. parvum, and C. meleagridis DNA in human stool samples. It can be used in algorithm with other diagnostic tests and may offer promise as an effective diagnostic tool in the control of cryptosporidiosis.

  2. A Pilot Study of Visual-Motor Developmental Inter-Test Reliability: The Beery Developmental Test of Visual Motor Integration and the Bender Visual Motor Gestalt Test.

    Science.gov (United States)

    Porter, Gary L.; Binder, Dorothy M.

    1981-01-01

    To determine the intertest reliability of the Beery Developmental Test of Visual Motor Integration (VMI) and the Bender Visual Motor Gestalt Test (BGT), 64 six to nine year olds were administered both tests.

  3. Application of a Virtual Reactivity Feedback Control Loop in Non-Nuclear Testing of a Fast Spectrum Reactor

    Science.gov (United States)

    Bragg-Sitton, Shannon M.; Forsbacka, Matthew

    2004-01-01

    For a compact, fast-spectrum reactor, reactivity feedback is dominated by core deformation at elevated temperature. Given the use of accurate deformation measurement techniques, it is possible to simulate nuclear feedback in non-nuclear electrically heated reactor tests. Implementation of simulated reactivity feedback in response to measured deflection is being tested at the NASA Marshall Space Flight Center Early Flight Fission Test Facility (EFF-TF). During tests of the SAFE-100 reactor prototype, core deflection was monitored using a high resolution camera. "virtual" reactivity feedback was accomplished by applying the results of Monte Carlo calculations (MCNPX) to core deflection measurements; the computational analysis was used to establish the reactivity worth of van'ous core deformations. The power delivered to the SAFE-100 prototype was then dusted accordingly via kinetics calculations, The work presented in this paper will demonstrate virtual reactivity feedback as core power was increased from 1 kilowatt(sub t), to 10 kilowatts(sub t), held approximately constant at 10 kilowatts (sub t), and then allowed to decrease based on the negative thermal reactivity coefficient.

  4. Exceptional F(4) higher-spin theory in AdS{sub 6} at one-loop and other tests of duality

    Energy Technology Data Exchange (ETDEWEB)

    Günaydin, Murat [Institute for Gravitation and the Cosmos Physics Department, Pennsylvania State University, University Park, PA 16802 (United States); Skvortsov, Evgeny [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians University Munich, Theresienstr. 37, D-80333 Munich (Germany); Lebedev Institute of Physics, Leninsky ave. 53, 119991 Moscow (Russian Federation); Tran, Tung [Department of Physics, Brown University, Providence, Rhode Island 02912 (United States)

    2016-11-28

    We study the higher-spin gauge theory in six-dimensional anti-de Sitter space AdS{sub 6} that is based on the exceptional Lie superalgebra F(4). The relevant higher-spin algebra was constructed in http://arxiv.org/abs/1409.2185. We determine the spectrum of the theory and show that it contains the physical fields of the Romans F(4) gauged supergravity. The full spectrum consists of an infinite tower of unitary supermultiplets of F(4) which extend the Romans multiplet to higher spins plus a single short supermultiplet. Motivated by applications to this novel supersymmetric higher-spin theory as well as to other theories, we extend the known one-loop tests of AdS/CFT duality in various directions. The spectral zeta-function is derived for the most general case of fermionic and mixed-symmetry fields, which allows one to test the Type-A and B theories and supersymmetric extensions thereof in any dimension. We also study higher-spin doubletons and partially-massless fields. While most of the tests are successfully passed, the Type-B theory in all even dimensional anti-de Sitter spacetimes presents an interesting puzzle: the free energy as computed from the bulk is not equal to that of the free fermion on the CFT side, though there is some systematics to the discrepancy.

  5. The Predominance Of Integrative Tests Over Discrete Point Tests In Evaluating The Medical Students' General English Knowledge

    Directory of Open Access Journals (Sweden)

    maryam Heydarpour Meymeh

    2009-03-01

    Full Text Available Background and purpose: Multiple choice tests are the most common type of tests used in evaluating the general English knowledge of the students in most medical universities, however the efficacy of these tests are not examined precisely. Wecompare and examine the integrative tests and discrete point tests as measures of the English language knowledge of medical students.Methods: Three tests were given to 60 undergraduate physiotherapy and Audiology students in their second year of study (after passing their general English course. They were divided into 2 groups.The first test for both groups was an integrative test, writing. The second test was a multiple - choice test 0.(prepositions for group one and a multiple - choice test of tensesfor group two. The same items which were mostfi-equently used wrongly in thefirst test were used in the items of the second test. A third test, a TOEFL, was given to the subjects in order to estimate the correlation between this test and tests one and two.Results: The students performed better in the second test, discrete point test rather than the first which was an integrative test. The same grammatical mistakes in the composition were used correctly in the multiple choice tests by the students.Conclusion:Our findings show that student perform better in non-productive rather than productive test. Since being competent English language user is an expected outcome of university language courses it seems warranted to switch to integrative tests as a measure of English language competency.Keywords: INTEGRATIVE TESTS, ENGLISH LANGUAGE FOR MEDICINE, ACADEMIC ENGLISH

  6. Closing the feedback loop: engaging students in large first-year mathematics test revision sessions using pen-enabled screens

    Science.gov (United States)

    Donovan, Diane; Loch, Birgit

    2013-01-01

    How can active learning, peer learning and prompt feedback be achieved in large first-year mathematics classes? Further, what technologies may support these aims? In this article, we assert that test revision sessions in first-year mathematics held in a technology-enhanced lecture theatre can be highly interactive with students solving problems, learning from each other and receiving immediate feedback. This is facilitated by pen-enabled screens and synchronization software. We argue that the educational benefits achievable through the technology do outweigh the technological distractions, and that these benefits can be achieved by focused, targeted one-off sessions and not only by a semester-long, regular approach. Repeat mid-semester test revision sessions were offered on a non-compulsory basis using pen-enabled screens for all students. Students worked practice test questions and marked solutions to mathematical problems on the screens. Students' work was then displayed anonymously for their peers to see. Answers were discussed with the whole class. We discuss outcomes from two offerings of these sessions using student feedback and lecturer reflections and show the impact of participation on self-reported student confidence. Pedagogical approaches that the technology allowed for the first time in a large class are highlighted. Students responded uniformly positively.

  7. Integrated Moral Conviction Theory of Student Cheating: An Empirical Test

    Science.gov (United States)

    Roberts, Foster; Thomas, Christopher H.; Novicevic, Milorad M.; Ammeter, Anthony; Garner, Bart; Johnson, Paul; Popoola, Ifeoluwa

    2018-01-01

    In this article, we develop an "integrated moral conviction theory of student cheating" by integrating moral conviction with (a) the dual-process model of Hunt-Vitell's theory that gives primacy to individual ethical philosophies when moral judgments are made and (b) the social cognitive conceptualization that gives primacy to moral…

  8. Vehicle in the Loop (VIL); Simulations- und Testumgebung fuer Fahrerassistenzsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Bock, Th. [Lehrstuhl fuer Realzeit-Computersysteme, TU Muenchen (Germany); Siedersberger, K.H.; Zavrel, M.; Breu, A.; Maurer, M. [Audi AG, Ingolstadt (Germany)

    2005-07-01

    Up to now the reproducible and safe test of driver assistance systems proves to be very difficult. This is true especially for collision mitigation tests. In this article today's state of the art of test and simulation methods for driver assistance systems is summarised at first. Then a new simulation and test environment is presented: In future the function of driver assistance systems can be tested and evaluated economically, reproducibly and most important without danger for the test person and test vehicle. To achieve this the real test vehicle is integrated into a traffic simulation by means of a vehicle in the loop (VIL) configuration. The vehicle does not move in real traffic but on open spaces or blocked off roads. It resorts to synthetic sensor data of a partly simulated environment. Methods and instruments of the augmented reality integrate the test driver into the synthetic outside traffic. (orig.)

  9. Integrated Disposal Facility FY2010 Glass Testing Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Serne, R Jeffrey; Mattigod, Shas V.

    2010-09-30

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 × 105 m3 of glass (Puigh 1999). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 0.89 × 1018 Bq total activity) of long-lived radionuclides, principally 99Tc (t1/2 = 2.1 × 105), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessement (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2010 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses. The emphasis in FY2010 was the completing an evaluation of the most sensitive kinetic rate law parameters used to predict glass weathering, documented in Bacon and Pierce (2010), and transitioning from the use of the Subsurface Transport Over Reactive Multi-phases to Subsurface Transport Over Multiple Phases computer code for near-field calculations. The FY2010 activities also consisted of developing a Monte Carlo and Geochemical Modeling framework that links glass composition to alteration phase formation by 1) determining the structure of unreacted and reacted glasses for use as input information into Monte Carlo

  10. Integrated Disposal Facility FY2010 Glass Testing Summary Report

    International Nuclear Information System (INIS)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Serne, R. Jeffrey; Mattigod, Shas V.

    2010-01-01

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 A - 105 m 3 of glass (Puigh 1999). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 0.89 A - 1018 Bq total activity) of long-lived radionuclides, principally 99Tc (t1/2 = 2.1 A - 105), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessement (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2010 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses. The emphasis in FY2010 was the completing an evaluation of the most sensitive kinetic rate law parameters used to predict glass weathering, documented in Bacon and Pierce (2010), and transitioning from the use of the Subsurface Transport Over Reactive Multi-phases to Subsurface Transport Over Multiple Phases computer code for near-field calculations. The FY2010 activities also consisted of developing a Monte Carlo and Geochemical Modeling framework that links glass composition to alteration phase formation by (1) determining the structure of unreacted and reacted glasses for use as input information into Monte Carlo

  11. Small Unmanned Aircraft Systems Integration into the National Airspace System Visual-Line-of-Sight Human-in-the-Loop Experiment

    Science.gov (United States)

    Trujillo, Anna C.; Ghatas, Rania W.; Mcadaragh, Raymon; Burdette, Daniel W.; Comstock, James R.; Hempley, Lucas E.; Fan, Hui

    2015-01-01

    As part of the Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) project, research on integrating small UAS (sUAS) into the NAS was underway by a human-systems integration (HSI) team at the NASA Langley Research Center. Minimal to no research has been conducted on the safe, effective, and efficient manner in which to integrate these aircraft into the NAS. sUAS are defined as aircraft weighing 55 pounds or less. The objective of this human system integration team was to build a UAS Ground Control Station (GCS) and to develop a research test-bed and database that provides data, proof of concept, and human factors guidelines for GCS operations in the NAS. The objectives of this experiment were to evaluate the effectiveness and safety of flying sUAS in Class D and Class G airspace utilizing manual control inputs and voice radio communications between the pilot, mission control, and air traffic control. The design of the experiment included three sets of GCS display configurations, in addition to a hand-held control unit. The three different display configurations were VLOS, VLOS + Primary Flight Display (PFD), and VLOS + PFD + Moving Map (Map). Test subject pilots had better situation awareness of their vehicle position, altitude, airspeed, location over the ground, and mission track using the Map display configuration. This configuration allowed the pilots to complete the mission objectives with less workload, at the expense of having better situation awareness of other aircraft. The subjects were better able to see other aircraft when using the VLOS display configuration. However, their mission performance, as well as their ability to aviate and navigate, was reduced compared to runs that included the PFD and Map displays.

  12. TMACS Test Procedure TP010: Integration summary. Revision 5

    International Nuclear Information System (INIS)

    Spurling, D.G.

    1994-01-01

    The TMACS Soft Project Test Procedures translate the project's acceptance criteria into test steps. Software releases are certified when the affected Test Procedures are successfully performed and the customers authorize installation of these changes

  13. Toward an Integrated Optical Data System for Wind Tunnel Testing

    National Research Council Canada - National Science Library

    Ruyten, Wim

    1999-01-01

    ...) of the test article in a wind tunnel test. The theory for such P&A determinations is developed and applied to data from a recent pressure sensitive paint test in AEDC's 16 ft transonic wind tunnel...

  14. Test report : Dallas Integrated Corridor Management (ICM) demonstration project.

    Science.gov (United States)

    2015-05-01

    The Dallas Area Rapid Transit (DART) is leading the US 75 Integrated Corridor Management (ICM) : Demonstration Project for the Dallas region. Coordinated corridor operations and management is : predicated on being able to share transportation informa...

  15. Advances in prenatal screening for Down syndrome: II first trimester testing, integrated testing, and future directions.

    Science.gov (United States)

    Benn, Peter A

    2002-10-01

    The acceptability of prenatal screening and diagnosis of Down syndrome is dependent, in part, on the gestational age at which the testing is offered. First trimester screening could be advantageous if it has sufficient efficacy and can be effectively delivered. Two first trimester maternal serum screening markers, pregnancy-associated plasma protein-A (PAPP-A) and free beta-human chorionic gonadotropin (beta-hCG), are useful for identifying women at increased risk for fetal Down syndrome. In addition, measurement of an enlarged thickness of the subcutaneous fluid-filled space at the back of the neck of the developing fetus (referred to as nuchal translucency or NT) has been demonstrated to be an indicator for these high-risk pregnancies. When these three parameters are combined, estimates for Down syndrome efficacy exceed those currently attainable in the second trimester. Women who are screen-positive in the first trimester can elect to receive cytogenetic testing of a chorionic villus biopsy. The first trimester tests could also, theoretically, be combined with the second trimester maternal serum screening tests (integrated screening) to obtain even higher levels of efficacy. There are, however, several practical limitations to first trimester and integrated screening. These include scheduling of testing within relatively narrow gestational age intervals, availability of appropriately trained ultrasonographers for NT measurement, risks associated with chorionic villus biopsy, and costs. There is also increasing evidence that an enlarged NT measurement is indicative of a high risk for spontaneous abortion and for fetal abnormalities that are not detectable by cytogenetic analysis. Women whose fetuses show enlarged NT, therefore, need first trimester counseling regarding their Down syndrome risks and the possibility of other adverse pregnancy outcomes. Follow-up ultrasound and fetal echocardiography in the second trimester are also indicated. First trimester

  16. Integrated Mapping and Imaging at a Legacy Test Site (Invited)

    Science.gov (United States)

    Sussman, A. J.; Schultz-Fellenz, E. S.; Kelley, R. E.; Sweeney, J. J.; Vigil, S.; DiBenedetto, J.; Chipman, V.

    2013-12-01

    A team of multi-disciplinary geoscientists was tasked to characterize and evaluate a legacy nuclear detonation site in order to develop research locations with the long-term goal of improving treaty monitoring, verification, and other national security applications. There was a test at the site of interest that was detonated on June 12, 1985 in a vertical emplacement borehole at a depth of 608m below the surface in rhyolites. With announced yield of 20-150 kt, the event did not collapse to the surface and form a crater, but rather experienced a subsurface collapse with more subtle surface expressions of deformation. This result provides the team with an opportunity to evaluate a number of surface and subsurface inspection technologies in a broad context. The team collected ground-based visual observation, ground penetrating radar, electromagnetic, ground-based and airborne LiDAR, ground-based and airborne hyperspectral, gravity and magnetics, dc and induction electrical methods, and active seismic data during field campaigns in the summers of 2012 and 2013. Detection of features was performed using various approaches that were assessed for accuracy, efficiency and diversity of target features. For example, whereas the primary target of the ground-based visual observation survey was to map the surface features, the target of the gravity survey was to attempt the detection of a possible subsurface collapse zone which might be located as little as 200 meters below the surface. The datasets from surveys described above are integrated into a geographical information system (GIS) database for analysis and visualization. Other presentations during this session provide further details as to some of the work conducted. Work by Los Alamos National Laboratory and Lawrence Livermore National Laboratory was sponsored by the National Nuclear Security Administration Award No. DE-AC52-06NA25946/NST10-NCNS-PD00. Work by National Security Technologies, LLC, was performed under

  17. TMACS test procedure TP010: Integration summary. Revision 6

    International Nuclear Information System (INIS)

    Spurling, D.G.

    1994-01-01

    The TMACS Software Project Test Procedures translate the project's acceptance criteria into test steps. Software releases are certified when the affected Test Procedures are successfully performed and the customers authorize installation of these changes. This Test Procedure verifies that Test Procedures 1, 2, 3, 5 and 9 (WHC-SD-WM-TRP-105, 106, 107, 109 and 113) of TMACS Software Release 4.1 have been successfully completed

  18. Integrating non-animal test information into an adaptive testing strategy - skin sensitization proof of concept case.

    Science.gov (United States)

    Jaworska, Joanna; Harol, Artsiom; Kern, Petra S; Gerberick, G Frank

    2011-01-01

    There is an urgent need to develop data integration and testing strategy frameworks allowing interpretation of results from animal alternative test batteries. To this end, we developed a Bayesian Network Integrated Testing Strategy (BN ITS) with the goal to estimate skin sensitization hazard as a test case of previously developed concepts (Jaworska et al., 2010). The BN ITS combines in silico, in chemico, and in vitro data related to skin penetration, peptide reactivity, and dendritic cell activation, and guides testing strategy by Value of Information (VoI). The approach offers novel insights into testing strategies: there is no one best testing strategy, but the optimal sequence of tests depends on information at hand, and is chemical-specific. Thus, a single generic set of tests as a replacement strategy is unlikely to be most effective. BN ITS offers the possibility of evaluating the impact of generating additional data on the target information uncertainty reduction before testing is commenced.

  19. Loop Transfer Matrix and Loop Quantum Mechanics

    International Nuclear Information System (INIS)

    Savvidy, George K.

    2000-01-01

    The gonihedric model of random surfaces on a 3d Euclidean lattice has equivalent representation in terms of transfer matrix K(Q i ,Q f ), which describes the propagation of loops Q. We extend the previous construction of the loop transfer matrix to the case of nonzero self-intersection coupling constant κ. We introduce the loop generalization of Fourier transformation which allows to diagonalize transfer matrices, that depend on symmetric difference of loops only and express all eigenvalues of 3d loop transfer matrix through the correlation functions of the corresponding 2d statistical system. The loop Fourier transformation allows to carry out the analogy with quantum mechanics of point particles, to introduce conjugate loop momentum P and to define loop quantum mechanics. We also consider transfer matrix on 4d lattice which describes propagation of memebranes. This transfer matrix can also be diagonalized by using the generalized Fourier transformation, and all its eigenvalues are equal to the correlation functions of the corresponding 3d statistical system. In particular the free energy of the 4d membrane system is equal to the free energy of 3d gonihedric system of loops and is equal to the free energy of 2d Ising model. (author)

  20. Addressable Inverter Matrix Tests Integrated-Circuit Wafer

    Science.gov (United States)

    Buehler, Martin G.

    1988-01-01

    Addressing elements indirectly through shift register reduces number of test probes. With aid of new technique, complex test structure on silicon wafer tested with relatively small number of test probes. Conserves silicon area by reduction of area devoted to pads. Allows thorough evaluation of test structure characteristics and of manufacturing process parameters. Test structure consists of shift register and matrix of inverter/transmission-gate cells connected to two-by-ten array of probe pads. Entire pattern contained in square area having only 1.6-millimeter sides. Shift register is conventional static CMOS device using inverters and transmission gates in master/slave D flip-flop configuration.

  1. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    International Nuclear Information System (INIS)

    McCulloch, R.W.; MacPherson, R.E.

    1983-03-01

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm 2 , 1000 0 C cladding temperature, and (2) 40 h at 40 W/cm 2 , 1200 0 C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370 0 C

  2. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, R.W.; MacPherson, R.E.

    1983-03-01

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm/sup 2/, 1000/sup 0/C cladding temperature, and (2) 40 h at 40 W/cm/sup 2/, 1200/sup 0/C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370/sup 0/C.

  3. Loop-Mediated Isothermal Amplification Test for Trypanosoma gambiense Group 1 with Stem Primers: A Molecular Xenomonitoring Test for Sleeping Sickness

    Directory of Open Access Journals (Sweden)

    Zablon K. Njiru

    2017-01-01

    Full Text Available The World Health Organization has targeted Human African Trypanosomiasis (HAT for elimination by 2020 with zero incidence by 2030. To achieve and sustain this goal, accurate and easy-to-deploy diagnostic tests for Gambian trypanosomiasis which accounts for over 98% of reported cases will play a crucial role. Most needed will be tools for surveillance of pathogen in vectors (xenomonitoring since population screening tests are readily available. The development of new tests is expensive and takes a long time while incremental improvement of existing technologies that have potential for xenomonitoring may offer a shorter pathway to tools for HAT surveillance. We have investigated the effect of including a second set of reaction accelerating primers (stem primers to the standard T. brucei gambiense LAMP test format. The new test format was analyzed with and without outer primers. Amplification was carried out using Rotorgene 6000 and the portable ESE Quant amplification unit capable of real-time data output. The stem LAMP formats indicated shorter time to results (~8 min, were 10–100-fold more sensitive, and indicated higher diagnostic sensitivity and accuracy compared to the standard LAMP test. It was possible to confirm the predicted product using ESE melt curves demonstrating the potential of combining LAMP and real-time technologies as possible tool for HAT molecular xenomonitoring.

  4. Development and adaptation of conduction and radiation heat-transfer computer codes for the CFTL. [Core Flow Test Loop; RODCON; HOTTEL

    Energy Technology Data Exchange (ETDEWEB)

    Conklin, J.C.

    1981-08-01

    RODCON and HOTTEL are two computational methods used to calculate thermal and radiation heat transfer for the Core Flow Test Loop (CFTL) analysis efforts. RODCON was developed at ORNL to calculate the internal temperature distribution of the fuel rod simulator (FRS) for the CFTL. RODCON solves the time-dependent heat transfer equation in two-dimensional (R angle) cylindrical coordinates at an axial plane with user-specified radial material zones and time- and position-variant surface conditions at the FRS periphery. Symmetry of the FRS periphery boundary conditions is not necessary. The governing elliptic, partial differential heat equation is cast into a fully implicit, finite-difference form by approximating the derivatives with a forward-differencing scheme with variable mesh spacing. The heat conduction path is circumferentially complete, and the potential mathematical problem at the rod center can be effectively ignored. HOTTEL is a revision of an algorithm developed by C.B. Baxi at the General Atomic Company (GAC) to be used in calculating radiation heat transfer in a rod bundle enclosed in a hexagonal duct. HOTTEL uses geometric view factors, surface emissivities, and surface areas to calculate the gray-body or composite view factors in an enclosure having multiple reflections in a nonparticipating medium.

  5. Sodium tests on an integrated purification prototype for a sodium-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Abramson, R.

    1984-04-01

    This paper describes sodium tests performed on the integrated primary sodium purification prototype of the Creys Malville Super Phenix 1 fast breeder reactor. These tests comprised: - hydrostatic test, - thermal tests, - handling tests. They enabled a number of new technological arrangements to be qualified and provided the necessary information for the design and construction of the Super Phenix 1 purification units

  6. Novel technique for reliability testing of silicon integrated circuits

    NARCIS (Netherlands)

    Le Minh, P.; Wallinga, Hans; Woerlee, P.H.; van den Berg, Albert; Holleman, J.

    2001-01-01

    We propose a simple, inexpensive technique with high resolution to identify the weak spots in integrated circuits by means of a non-destructive photochemical process in which photoresist is used as the photon detection tool. The experiment was done to localize the breakdown link of thin silicon

  7. Testing the Box-Cox Parameter for an Integrated Process

    NARCIS (Netherlands)

    J. Huang (Jian); M. Kobayashi (Masahito); M.J. McAleer (Michael)

    2011-01-01

    textabstractThis paper analyses the constant elasticity of volatility (CEV) model suggested by Chan et al. (1992). The CEV model without mean reversion is shown to be the inverse Box-Cox transformation of integrated processes asymptotically. It is demonstrated that the maximum likelihood estimator

  8. Price transmission and market integration: a test of the central ...

    African Journals Online (AJOL)

    Global Journal of Pure and Applied Sciences ... of cassava products namely chips, chunks, white gari and yellow gari between a central market in Kano and peripheral/rural markets in Taraba, Benue, Nasarawa and Edo States, using standard econometric methods. Precisely, the co-integration methodology was followed.

  9. Prejudice towards Muslims in The Netherlands : Testing integrated threat theory

    NARCIS (Netherlands)

    Velasco González, Karina; Verkuyten, Maykel; Weesie, Jeroen; Poppe, Edwin

    2008-01-01

    This study uses integrated threat theory to examine Dutch adolescents’ (N ¼ 1; 187) prejudice towards Muslim minorities. One out of two participants was found to have negative feelings towards Muslims. Perceived symbolic and realistic threat and negative stereotypes were examined as mediators

  10. Price transmission and market integration: a test of the central ...

    African Journals Online (AJOL)

    Global Journal of Pure and Applied Sciences ... With this in mind, this paper investigates price transmission and market integration of cassava products namely chips, chunks, white gari and yellow gari between a central market in Kano and peripheral/rural markets in Taraba, Benue, Nasarawa and Edo States, using ...

  11. Development and Testing of an Integrated Sandia Cooler Thermoelectric Device (SCTD).

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A.; Staats, Wayne Lawrence,; Leick, Michael Thomas; Zimmerman, Mark D.; Radermacher, Reinhard; Martin, Cara; Nasuta, Dennis; Kalinowski, Paul; Hoffman, William

    2014-12-01

    This report describes a FY14 effort to develop an integrated Sandia Cooler T hermoelectric D evice (SCTD) . The project included a review of feasible thermoelectric (TE) cooling applications, baseline performance testing of an existing TE device, analysis and design development of an integrated SCTD assembly, and performance measurement and validation of the integrated SCTD prototype.

  12. Integration of HIV testing in tuberculosis drug resistance surveillance in Kazakhstan and Kenya

    NARCIS (Netherlands)

    Klinkenberg, E.; van den Hof, S.; Tursynbayeva, A.; Kipruto, H.; Wahogo, J.; Pak, S.; Kutwa, A.; L'Herminez, R.

    2012-01-01

    In Kenya and Kazakhstan, integration of human immunodeficiency virus (HIV) testing results into the routine surveillance of multidrug-resistant tuberculosis (MDR-TB) proved feasible and useful. The integration process improved overall data quality and data validation capacity, and integrated data

  13. Fermions and loops on graphs: I. Loop calculus for determinants

    International Nuclear Information System (INIS)

    Chernyak, Vladimir Y; Chertkov, Michael

    2008-01-01

    This paper is the first in a series devoted to evaluation of the partition function in statistical models on graphs with loops in terms of the Berezin/fermion integrals. The paper focuses on a representation of the determinant of a square matrix in terms of a finite series, where each term corresponds to a loop on the graph. The representation is based on a fermion version of the loop calculus, previously introduced by the authors for graphical models with finite alphabets. Our construction contains two levels. First, we represent the determinant in terms of an integral over anti-commuting Grassmann variables, with some reparametrization/gauge freedom hidden in the formulation. Second, we show that a special choice of the gauge, called the BP (Bethe–Peierls or belief propagation) gauge, yields the desired loop representation. The set of gauge fixing BP conditions is equivalent to the Gaussian BP equations, discussed in the past as efficient (linear scaling) heuristics for estimating the covariance of a sparse positive matrix

  14. Integrated Vibration and Acceleration Testing to Reduce Payload Mass, Cost and Mission Risk, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a capability to provide integrated acceleration, vibration, and shock testing using a state-of-the-art centrifuge, allowing for the test of...

  15. Automated Break-Out Box for use with Low Cost Spacecraft Integration and Test, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Electrical checkout and testing is a critical part of the overall spacecraft integration and test flow. Verifying proper harness and connector signal interfaces is...

  16. Determination Of Pile Quality Using Low Strain Integrity Testing And Automatic Signal Matching

    OpenAIRE

    Özüdoğru, Tolga Yılmaz

    2007-01-01

    Low strain pile integrity testing which utilizes one dimensional wave propagation theory makes it possible to detect major discontinuities or defects (cavities, cracks, decrease and increase in cross-section) within a pile quickly and economically. In this study, pile integrity testing data of 187 piles in two close sites located in Büyükçekmece are analyzed. The test method utilized in this project is the sonic echo method, and the test itself is specifically called the “Sonic Integrity Test...

  17. Tool for the Integrated Dynamic Numerical Propulsion System Simulation (NPSS)/Turbine Engine Closed-Loop Transient Analysis (TTECTrA) User's Guide

    Science.gov (United States)

    Chin, Jeffrey C.; Csank, Jeffrey T.

    2016-01-01

    The Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA ver2) is a control design tool thatenables preliminary estimation of transient performance for models without requiring a full nonlinear controller to bedesigned. The program is compatible with subsonic engine models implemented in the MATLAB/Simulink (TheMathworks, Inc.) environment and Numerical Propulsion System Simulation (NPSS) framework. At a specified flightcondition, TTECTrA will design a closed-loop controller meeting user-defined requirements in a semi or fully automatedfashion. Multiple specifications may be provided, in which case TTECTrA will design one controller for each, producing acollection of controllers in a single run. Each resulting controller contains a setpoint map, a schedule of setpointcontroller gains, and limiters; all contributing to transient characteristics. The goal of the program is to providesteady-state engine designers with more immediate feedback on the transient engine performance earlier in the design cycle.

  18. Generic 12-Bus Test System for Wind Power Integration Studies

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz; Altin, Müfit; Göksu, Ömer

    2012-01-01

    High wind power penetration levels into power systems requires an appropriate power system model when assessing impact on the overall system stability. The model should capture the wide range of dynamics related to the wind integration studies, such as voltage control, synchronizing power control......, inertial response, frequency control, damping of electromechanical oscillations, balanced and unbalanced fault management, etc. Hence, the power system components: conventional power plants with controls, transmission lines, transformers and loads should be represented accurately to achieve realistic power...... system characteristics. Additionally, the power system model should be simple and computationally manageable in order to simulate multiple scenarios with different control parameters in a reasonable time. In this paper, a generic power system model is presented in order to comprehend the wind integration...

  19. Summarisation of construction and commissioning experience for nuclear power integrated test facility

    International Nuclear Information System (INIS)

    Xiao Zejun; Jia Dounan; Jiang Xulun; Chen Bingde

    2003-01-01

    Since the foundation of Nuclear Power Institute of China, it has successively designed various engineering experimental facilities, and constructed nuclear power experimental research base, and accumulated rich construction experiences of nuclear power integrated test facility. The author presents experience on design, construction and commissioning of nuclear power integrated test facility

  20. Two loops in eleven dimensions

    CERN Document Server

    Green, Michael B.; Vanhove, Pierre; Green, Michael B.; Kwon, Hwang-h.; Vanhove, Pierre

    2000-01-01

    The two-loop Feynman diagram contribution to the four-graviton amplitude of eleven-dimensional supergravity compactified on a two-torus, T^2, is analyzed in detail. The Schwinger parameter integrations are re-expressed as integration over the moduli space of a second torus, \\hat T^2, which enables the leading low-momentum contribution to be evaluated in terms of maps of \\hat T^2 into T^2. The ultraviolet divergences associated with boundaries of moduli space are regularized in a manner that is consistent with the expected duality symmetries of string theory. This leads to an exact expression for terms of order contraction of four Weyl tensors), thereby extending earlier results for the R^4 term that were based on the one-loop eleven-dimensional amplitude. Precise agreement is found with terms in type IIA and IIB superstring theory that arise from the low energy expansion of the tree-level and one-loop string amplitudes and predictions are made for the coefficients of certain two-loop string theory terms as we...