Overview of Hole GT2A: Drilling middle gabbro in Wadi Tayin massif, Oman ophiolite
Takazawa, E.; Kelemen, P. B.; Teagle, D. A. H.; Coggon, J. A.; Harris, M.; Matter, J. M.; Michibayashi, K.
2017-12-01
Hole GT2A (UTM: 40Q 655960.7E / 2529193.5N) was drilled by the Oman Drilling Project (OmDP) into Wadi Gideah of Wadi Tayin massif in the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole GT2A was diamond cored in 25 Dec 2016 to 18 Jan 2017 to a total depth of 406.77 m. The outer surfaces of the cores were imaged and described on site before being curated, boxed and shipped to the IODP drill ship Chikyu, where they underwent comprehensive visual and instrumental analysis. 33 shipboard scientists were divided into six teams (Igneous, Alteration, Structural, Geochem, Physical Properties, Paleomag) to describe and analyze the cores. Hole GT2A drilled through the transition between foliated and layered gabbro. The transition zone occurs between 50 and 150 m curation corrected depth (CCD). The top 50 m of Hole GT2A is foliated gabbro whereas the bottom 250 m consists of layered gabbro. Brittle fracture is observed throughout the core. Intensity of alteration vein decreases from the top to the bottom of the hole. On the basis of changes in grain size and/or modal abundance and/or appearance/disappearance of igneous primary mineral(s) five lithological units are defined in Hole GT2A (Unit I to V). The uppermost part of Hole GT2A (Unit I) is dominated by fine-grained granular olivine gabbro intercalated with less dominant medium-grained granular olivine gabbro and rare coarse-grained varitextured gabbro. The lower part of the Hole (Units II, III and V) is dominated by medium-grained olivine gabbro, olivine melagabbro and olivine-bearing gabbro. Modally-graded rhythmic layering with
Destroying black holes with test bodies
Energy Technology Data Exchange (ETDEWEB)
Jacobson, Ted [Center for Fundamental Physics, University of Maryland, College Park, MD 20742-4111 (United States); Sotiriou, Thomas P, E-mail: jacobson@umd.ed, E-mail: T.Sotiriou@damtp.cam.ac.u [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)
2010-04-01
If a black hole can accrete a body whose spin or charge would send the black hole parameters over the extremal limit, then a naked singularity would presumably form, in violation of the cosmic censorship conjecture. We review some previous results on testing cosmic censorship in this way using the test body approximation, focusing mostly on the case of neutral black holes. Under certain conditions a black hole can indeed be over-spun or over-charged in this approximation, hence radiative and self-force effects must be taken into account to further test cosmic censorship.
Testing black hole candidates with electromagnetic radiation
Bambi, Cosimo
2017-04-01
Astrophysical black hole candidates are thought to be the Kerr black holes of general relativity, but there is not yet direct observational evidence that the spacetime geometry around these objects is described by the Kerr solution. The study of the properties of the electromagnetic radiation emitted by gas or stars orbiting these objects can potentially test the Kerr black hole hypothesis. This paper reviews the state of the art of this research field, describing the possible approaches to test the Kerr metric with current and future observational facilities and discussing current constraints.
Testing quantum gravity through dumb holes
Energy Technology Data Exchange (ETDEWEB)
Pourhassan, Behnam, E-mail: b.pourhassan@du.ac.ir [School of Physics, Damghan University, Damghan (Iran, Islamic Republic of); Faizal, Mir, E-mail: f2mir@uwaterloo.ca [Department of Physics and Astronomy, University of Lethbridge, Lethbridge, AB T1K 3M4 (Canada); Irving K. Barber School of Arts and Sciences, University of British Columbia - Okanagan, Kelowna, BC V1V 1V7 (Canada); Capozziello, Salvatore, E-mail: capozzie@na.infn.it [Dipartimento di Fisica, Università di Napoli ”Frederico II” Complesso Universitario di Monte S. Angelo, Edificio G, Via Cinthia, I-80126 Napoli (Italy); Gran Sasso Science Institute (INFN), Via F. Crispi 7, I-67100 L’ Aquila (Italy)
2017-02-15
We propose a method to test the effects of quantum fluctuations on black holes by analyzing the effects of thermal fluctuations on dumb holes, the analogs for black holes. The proposal is based on the Jacobson formalism, where the Einstein field equations are viewed as thermodynamical relations, and so the quantum fluctuations are generated from the thermal fluctuations. It is well known that all approaches to quantum gravity generate logarithmic corrections to the entropy of a black hole and the coefficient of this term varies according to the different approaches to the quantum gravity. It is possible to demonstrate that such logarithmic terms are also generated from thermal fluctuations in dumb holes. In this paper, we claim that it is possible to experimentally test such corrections for dumb holes, and also obtain the correct coefficient for them. This fact can then be used to predict the effects of quantum fluctuations on realistic black holes, and so it can also be used, in principle, to experimentally test the different approaches to quantum gravity.
Black hole based tests of general relativity
International Nuclear Information System (INIS)
Yagi, Kent; Stein, Leo C
2016-01-01
General relativity has passed all solar system experiments and neutron star based tests, such as binary pulsar observations, with flying colors. A more exotic arena for testing general relativity is in systems that contain one or more black holes. Black holes are the most compact objects in the Universe, providing probes of the strongest-possible gravitational fields. We are motivated to study strong-field gravity since many theories give large deviations from general relativity only at large field strengths, while recovering the weak-field behavior. In this article, we review how one can probe general relativity and various alternative theories of gravity by using electromagnetic waves from a black hole with an accretion disk, and gravitational waves from black hole binaries. We first review model-independent ways of testing gravity with electromagnetic/gravitational waves from a black hole system. We then focus on selected examples of theories that extend general relativity in rather simple ways. Some important characteristics of general relativity include (but are not limited to) (i) only tensor gravitational degrees of freedom, (ii) the graviton is massless, (iii) no quadratic or higher curvatures in the action, and (iv) the theory is four-dimensional. Altering a characteristic leads to a different extension of general relativity: (i) scalar–tensor theories, (ii) massive gravity theories, (iii) quadratic gravity, and (iv) theories with large extra dimensions. Within each theory, we describe black hole solutions, their properties, and current and projected constraints on each theory using black hole based tests of gravity. We close this review by listing some of the open problems in model-independent tests and within each specific theory. (paper)
Hole expansion test of third generation steels
Agirre, Julen; Mendiguren, Joseba; Galdos, Lander; de Argandoña, Eneko Sáenz
2017-10-01
The trend towards the implementation of new materials in the chassis of the automobiles is considerably making more complex the manufacturing of the components that built it up. In this scenario materials with higher strengths and lower formabilities are daily faced by tool makers and component producers what reduces the process windows and makes the forming processes to be in the limits of the materials. One of the concerns that tool makers must face during the definition of the tools is the expansion ratios that the holes in the sheet may reach before producing a breakage due to the stretching of the material (also known as edge cracks). For the characterization of such limits, a standard test, the hole expansion test, can be applied so that the limits of the material are known. At the present study, hole expansion tests of a third generation steel, Fortiform1050 with a thickness of 1.2 millimeters have been carried out and compared them to a mild steel, DX54D with a thickness of 0.6 millimeters. A comparison for each material in terms of technology used to punch the hole, mechanical punching vs laser cutting has also been conducted. In addition, the measurement technique (online measurement vs offline measurement) followed in the Hole Expansion Ratio (HER) identification has also been analyzed. Finally, differences between both materials and techniques are presented.
Slim hole drilling and testing strategies
Nielson, Dennis L.; Garg, Sabodh K.; Goranson, Colin
2017-12-01
The financial and geologic advantages of drilling slim holes instead of large production wells in the early stages of geothermal reservoir assessment has been understood for many years. However, the practice has not been fully embraced by geothermal developers. We believe that the reason for this is that there is a poor understanding of testing and reservoir analysis that can be conducted in slim holes. In addition to reservoir engineering information, coring through the cap rock and into the reservoir provides important data for designing subsequent production well drilling and completion. Core drilling requires significantly less mud volume than conventional rotary drilling, and it is typically not necessary to cure lost circulation zones (LCZ). LCZs should be tested by either production or injection methods as they are encountered. The testing methodologies are similar to those conducted on large-diameter wells; although produced and/or injected fluid volumes are much less. Pressure, temperature and spinner (PTS) surveys in slim holes under static conditions can used to characterize temperature and pressure distribution in the geothermal reservoir. In many cases it is possible to discharge slim holes and obtain fluid samples to delineate the geochemical properties of the reservoir fluid. Also in the latter case, drawdown and buildup data obtained using a downhole pressure tool can be employed to determine formation transmissivity and well properties. Even if it proves difficult to discharge a slim hole, an injection test can be performed to obtain formation transmissivity. Given the discharge (or injection) data from a slimhole, discharge properties of a large-diameter well can be inferred using wellbore modeling. Finally, slim hole data (pressure, temperature, transmissivity, fluid properties) together with reservoir simulation can help predict the ability of the geothermal reservoir to sustain power production.
Parallel hole collimator acceptance tests for SPECT and planar studies.
Babicheva, R; Bennie, N; Collins, L; Gruenewald, S
1997-12-01
Several methods of determining gamma-camera collimators hole alignment and integrity were compared. Four collimators were tested: two new cast collimators and two used foil collimators, one with damage to the protective surface. The most sensitive tests for collimator damage were found to be the collimated x-ray source, COR offset test and collimator hole alignment test.
Parallel hole collimator acceptance tests for SPECT and planar studies
Energy Technology Data Exchange (ETDEWEB)
Babicheva, R. [Lidcombe Hospital, Bankstown, NSW (Australia). Department of Nuclear Medicine and Ultrasound; Bennie, N. [Diasonic Pty Ltd, Lane Cove, NSW (Australia); Collins, L. [Westmead Hospital, Westmead, NSW (Australia). Medical Physics Department; Gruenewald, S [Westmead Hospital, Westmead, NSW (Australia). Department of Nuclear Medicine and Ultrasound
1997-12-01
Several methods of determining gamma-camera collimators hole alignment and integrity were compared. Four collimators were tested: two new cast collimators and two used foil collimators, one with damage to the protective surface. The most sensitive tests for collimator damage were found to be the collimated x-ray source, centre of rotation offset test and collimator hole alignment test 6 refs., 2 tabs., 3 figs.
Destroying charged black holes in higher dimensions with test particles
Wu, Bin; Liu, Weiyang; Tang, Hao; Yue, Rui-Hong
2017-07-01
A possible way to destroy the Tangherlini Reissner-Nordström black hole is discussed in the spirit of Wald’s gedanken experiment. By neglecting radiation and self force effects, the absorbing condition and destruction condition of the test point particle which is capable of destroying the black hole are obtained. We find that it is impossible to challenge the weak cosmic censorship for an initially extremal black hole in all dimensions. Instead, it is shown that the near extremal black hole will turn into a naked singularity in this particular process, in which case the allowed range of the particle’s energy is very narrow. The result indicates that the self-force effects may well change the outcome of the calculation.
Geologic investigations of drill hole sloughing problems, Nevada Test Site
International Nuclear Information System (INIS)
Drellack, S.L. Jr.; Davies, W.J.; Gonzales, J.L.; Hawkins, W.L.
1983-01-01
Severe sloughing zones encountered while drilling large diameter emplacement holes in Yucca Flat, Nevada Test Site, have been identified, correlated and predicted through detailed geologic investigations. In central and southeastern Area 7 and in northern Area 3, the unstable zones are a very fine-grained, well-sorted, unconsolidated sand deposit, probably eolian in origin, which will readily flow into large diameter drill holes. Other areas exhibit hole erosion related to poor induration or extensive zeolitization of the Tertiary tuff units which are very friable and porous. By examining drill hole samples, geophysical logs, caliper logs and drilling histories, these problem zones can be characterized, correlated and then projected into nearby sites. Maps have been generated to show the depth, thickness and areal extent of these strata. In some cases, they are local and have a lenticular geometry, while in others they are quite extensive. The ability to predict such features can enhance the quality of the hole construction and completion operations to avoid costly delays and the loss of valuable testing real estate. The control of hole enlargements will also eliminate related containment concerns, such as stemming uncertainties
Atlantic coastal plain geothermal test holes, New Jersey. Hole completion reports
Energy Technology Data Exchange (ETDEWEB)
Cobb, L.B.; Radford, L.; Glascock, M.
1979-03-01
A description of the Atlantic Coastal Plains Geothermal Drilling Program and data for the following Geothermal test holes drilled in New Jersey are summarized: Site No. 40, Fort Monmouth; Site No. 41, Sea Girt; Site No. 39-A, Forked River; Site No. 38, Atlantic City; and Site No. 36, Cape May.
Black holes a laboratory for testing strong gravity
Bambi, Cosimo
2017-01-01
This textbook introduces the current astrophysical observations of black holes, and discusses the leading techniques to study the strong gravity region around these objects with electromagnetic radiation. More importantly, it provides the basic tools for writing an astrophysical code and testing the Kerr paradigm. Astrophysical black holes are an ideal laboratory for testing strong gravity. According to general relativity, the spacetime geometry around these objects should be well described by the Kerr solution. The electromagnetic radiation emitted by the gas in the inner part of the accretion disk can probe the metric of the strong gravity region and test the Kerr black hole hypothesis. With exercises and examples in each chapter, as well as calculations and analytical details in the appendix, the book is especially useful to the beginners or graduate students who are familiar with general relativity while they do not have any background in astronomy or astrophysics.
Landmann, Christian; Fink, Barbara; Schwab, Wilfried
2007-07-01
Fragaria x ananassa UDP-glucose:cinnamate glucosyltransferase (FaGT2) catalyzes the formation of cinnamic acid and p-coumaric acid glucose esters during strawberry fruit ripening. Here, the ripening and oxidative stress induced enzyme was further characterized by testing a range of structurally different substrates of natural and unnatural origin in vitro and comparing their kinetic parameters to elucidate its additional biological functions. The accepted substrates ranged from derivatives of cinnamic acid and benzoic acid to heterocyclic and aliphatic compounds resulting in the formation of O- and S-glucose esters, as well as O-glucosides. In planta assays confirmed the formation of glucose derivatives after injection of the substrates into strawberry fruits. Common chemical and structural features required for activity were the easy subtraction of a proton from the glucosylation site and the conjugation of the formed anion with pi-electrons as best realized in the simplest substrate sorbic acid. In addition to cinnamic acid, the natural compounds anthranilic acid, trans-2-hexenoic acid, nicotinic acid and 2,5-dimethyl-4-hydroxy-3[2H]-furanone were glucosylated in vitro. But FaGT2 was also capable of efficiently converting xenobiotic substances like the herbicide 2,4,5-trichlorophenol and the herbicide analogue 3,5-dichloro-4-hydroxybenzoic acid. The results suggest that FaGT2 is involved in the detoxification of xenobiotics in accordance to its induction by oxidative stress.
Parallel hole collimator acceptance tests for SPECT and planar studies
Energy Technology Data Exchange (ETDEWEB)
Babicheva, R.R.; Bennie, D.N.; Collins, L.T.; Gruenwald, S.M. [Westmead Hospital, Westmead, NSW (Australia)
1998-06-01
Full text: Different kinds of collimator damage can occur either during shipping or from regular use. Imperfections of construction along the strips or their connections give rise to nonperpendicular hole alignments to the crystal face and can produce potential problems such as ring artifacts and image degradation. Gamma camera collimator hole alignments and integrity were compared in four parallel hole high resolution collimators-two new cast and two used foil collimators, one with damage to the protective surface. [1] The point source flood image of the defective collimator was non-circular as were the images of cast collimators. The image of new foil collimator was circular. [2] High count sheet flood did not show any imperfections. [3] Bone mineral densitometer was used to perform collimated X-ray beam. The collimator was placed on the scanning bed with an X-ray cassette placed directly above it. The damaged area was well demonstrated. [4] The COR offset test was taken at two extreme radii. The offset value with the defective collimator is increased by 0.53 pixel or 129% with increase of COR from radius 14 cm to 28cm. [5] The collimator hole alignment test involves performing multiple measurements of COR along the length of the collimator, and checking for variations in COR with both position of source and angle of rotation. The maximum variation in COR of the defective collimator hole alignment was 1.13 mm. Collimators require testing when new and at regular intervals, or following damage. The point source test can be used for foil collimators. The most sensitive tests were collimated X-ray source, COR offset test and collimator hole alignment
Slant hole completion test (1991) sidetrack ``as built`` report
Energy Technology Data Exchange (ETDEWEB)
Myal, F.R.
1992-05-01
During the summer of 1990, a slant hole test well, funded by the US Department of Energy, was drilled to 9,466 ft to evaluate the effectiveness of directional drilling in the tight, naturally fractured gas sands and coals of the Mesaverde Group. The surface location of the SHCT No. 1 is 700 ft south of the DOE Multiwell Experiment (MWX) site in Section 34, T6S, R94W, Garfield County, Colorado, approximately 7.5 miles west of Rifle. Mechanical problems following cementing of a production liner resulted in loss of the completion interval, and operations were suspended. In early 1991, DOE decided to sidetrack the hole to permit production testing of the lost interval. The sidetrack was designed to parallel the original wellbore, but to be drilled 1,000 ft to the east to minimize the chances of encountering formation damage from the original hole. The sidetrack, like the original hole, was to intersect the paludal lenticular sands and coals at 60{degrees} and to penetrate the underlying Cozzette sand horizonally. The sidetrack was spudded May 12, 1991. After re-entering the well in late 1991, early production testing of the Cozzette showed that the 300 ft of in-pay horizontal hole can produce at rate 5 to 10 times higher than vertical wells in the same area. This report contains the geological summary and sidetrack drilling operations summary.
A single hole tracer test to determine longitudinal dispersion
International Nuclear Information System (INIS)
Noy, D.J.; Holmes, D.C.
1986-03-01
The paper concerns a single hole tracer test to determine longitudinal dispersion, which is an important parameter in assessing the suitability of a site for radioactive waste disposal. The theory, equipment and procedure for measuring longitudinal dispersion in a single borehole is described. Results are presented for field trials conducted in an aquifer, where the technique produced good results. The measured value of longitudinal dispersion, from a single hole test, relates only to a limited volume of rock immediately adjacent to the borehole. (U.K.)
Proposed experimental test of the theory of hole superconductivity
Hirsch, J. E.
2016-06-01
The theory of hole superconductivity predicts that in the reversible transition between normal and superconducting phases in the presence of a magnetic field there is charge flow in direction perpendicular to the normal-superconductor phase boundary. In contrast, the conventional BCS-London theory of superconductivity predicts no such charge flow. Here we discuss an experiment to test these predictions.
Interference of propylene glycol with the hole-board test
Silva, Adriana Lourenço da; Elisabetsky, Elaine
2001-01-01
Experimental drugs and/or plant extracts are often dissolved in solvents, including propylene glycol. Nevertheless, there is evidence for psychoactive properties of this alcohol. In this study we found that in the hole-board test 10% propylene glycol did not modify the head-dipping behavior. However, 30% propylene glycol induced an increase in the number of head-dips (46.92 ± 2.37 compared to 33.83 ± 4.39, P
Lithology and Stratigraphy of Holes Drilled in LANL-Use Areas of the Nevada Test Site
Energy Technology Data Exchange (ETDEWEB)
Lance B. Prothro; Sigmund L. Drellack, Jr.; Brian M. Allen
1999-07-01
Geologic data for ten holes drilled in areas used by Los Alamos National Laboratory at the Nevada Test Site are presented in this report. The holes include emplacement holes, instrumentation holes, and Underground Test Area wells drilled during calendar years 1991 through 1995. For each hole a stratigraphic log, a detailed lithologic log, and one or two geologic cross sections are presented, along with a supplemental data sheet containing information about the drilling operations, geology, or references. For three of the holes, graphic data summary sheets with geologic and geophysical data are provided as plates.
Modeling cross-hole slug tests in an unconfined aquifer
Malama, Bwalya; Kuhlman, Kristopher L.; Brauchler, Ralf; Bayer, Peter
2016-09-01
A modified version of a published slug test model for unconfined aquifers is applied to cross-hole slug test data collected in field tests conducted at the Widen site in Switzerland. The model accounts for water-table effects using the linearized kinematic condition. The model also accounts for inertial effects in source and observation wells. The primary objective of this work is to demonstrate applicability of this semi-analytical model to multi-well and multi-level pneumatic slug tests. The pneumatic perturbation was applied at discrete intervals in a source well and monitored at discrete vertical intervals in observation wells. The source and observation well pairs were separated by distances of up to 4 m. The analysis yielded vertical profiles of hydraulic conductivity, specific storage, and specific yield at observation well locations. The hydraulic parameter estimates are compared to results from prior pumping and single-well slug tests conducted at the site, as well as to estimates from particle size analyses of sediment collected from boreholes during well installation. The results are in general agreement with results from prior tests and are indicative of a sand and gravel aquifer. Sensitivity analysis show that model identification of specific yield is strongest at late-time. However, the usefulness of late-time data is limited due to the low signal-to-noise ratios.
Interference of propylene glycol with the hole-board test.
Da Silva, A L; Elisabetsky, E
2001-04-01
Experimental drugs and/or plant extracts are often dissolved in solvents, including propylene glycol. Nevertheless, there is evidence for psychoactive properties of this alcohol. In this study we found that in the hole-board test 10% propylene glycol did not modify the head-dipping behavior. However, 30% propylene glycol induced an increase in the number of head-dips (46.92 +/- 2.37 compared to 33.83 +/- 4.39, P<0.05, ANOVA/Student-Newman-Keuls), an effect comparable to that obtained with 0.5 mg/kg diazepam (from 33.83 +/- 4.39 to 54 +/- 3.8, P<0.01, ANOVA/Student-Newman-Keuls). These results demonstrate that 30% propylene glycol has significant anxiolytic effects in this model and therefore cannot be used as an innocuous solvent.
Interference of propylene glycol with the hole-board test
Directory of Open Access Journals (Sweden)
Lourenço da Silva A.
2001-01-01
Full Text Available Experimental drugs and/or plant extracts are often dissolved in solvents, including propylene glycol. Nevertheless, there is evidence for psychoactive properties of this alcohol. In this study we found that in the hole-board test 10% propylene glycol did not modify the head-dipping behavior. However, 30% propylene glycol induced an increase in the number of head-dips (46.92 ± 2.37 compared to 33.83 ± 4.39, P<0.05, ANOVA/Student-Newman-Keuls, an effect comparable to that obtained with 0.5 mg/kg diazepam (from 33.83 ± 4.39 to 54 ± 3.8, P<0.01, ANOVA/Student-Newman-Keuls. These results demonstrate that 30% propylene glycol has significant anxiolytic effects in this model and therefore cannot be used as an innocuous solvent.
Testing the black hole "no-hair" hypothesis
Cardoso, Vitor
2016-01-01
Black holes in General Relativity are very simple objects. This property, that goes under the name of "no-hair," has been refined in the last few decades and admits several versions. The simplicity of black holes makes them ideal testbeds of fundamental physics and of General Relativity itself. Here we discuss the no-hair property of black holes, how it can be measured in the electromagnetic or gravitational window, and what it can possibly tell us about our universe.
Selected stratigraphic data for drill holes located in Frenchman Flat, Nevada Test Site. Rev. 1
International Nuclear Information System (INIS)
Drellack, S.L. Jr.
1997-02-01
Stratigraphic data are presented in tabular form for 72 holes drilled in Frenchman Flat, Nevada Test Site, between 1950 and 1993. Three pairs of data presentations are included for each hole: depth to formation tops, formation thicknesses, and formation elevations are presented in both field (English) and metric units. Also included for each hole, where available, are various construction data (hole depth, hole diameter, surface location coordinates) and certain information of hydrogeologic significance (depth to water level, top of zeolitization). The event name is given for holes associated with a particular nuclear test. An extensive set of footnotes is included, which indicates data sources and provides other information. The body of the report describes the stratigraphic setting of Frenchman Flat, gives drill-hole naming conventions and database terminology, and provides other background and reference material
REDSHIFT EVOLUTION IN BLACK HOLE-BULGE RELATIONS: TESTING C IV-BASED BLACK HOLE MASSES
International Nuclear Information System (INIS)
Greene, Jenny E.; Peng, Chien Y.; Ludwig, Randi R.
2010-01-01
We re-examine claims for redshift evolution in black hole-bulge scaling relations based on lensed quasars. In particular, we refine the black hole (BH) mass estimates using measurements of Balmer lines from near-infrared spectroscopy obtained with Triplespec at Apache Point Observatory. In support of previous work, we find a large scatter between Balmer and UV line widths, both Mg IIλλ2796, 2803 and C IVλλ1548, 1550. There is tentative evidence that C III]λ1909, despite being a blend of multiple transitions, may correlate well with Mg II, although a larger sample is needed for a real calibration. Most importantly, we find no systematic changes in the estimated BH masses for the lensed sample based on Balmer lines, providing additional support to the interpretation that black holes were overly massive compared to their host galaxies at high redshift.
Testing Hawking Particle Creation by Black Holes Through Correlation Measurements
Balbinot, R.; Carusotto, I.; Fabbri, A.; Recati, A.
Hawking's prediction of thermal radiation by black holes has been shown by Unruh to be expected also in condensed matter systems. We show here that in a black hole-like configuration realized in a BEC this particle-creation does indeed take place and can be unambiguously identified via a characteristic pattern in the density-density correlations. This opens the concrete possibility of the experimental verification of this effect.
Improved approximate inspirals of test bodies into Kerr black holes
International Nuclear Information System (INIS)
Gair, Jonathan R; Glampedakis, Kostas
2006-01-01
We present an improved version of the approximate scheme for generating inspirals of test bodies into a Kerr black hole recently developed by Glampedakis, Hughes and Kennefick. Their original 'hybrid' scheme was based on combining exact relativistic expressions for the evolution of the orbital elements (the semilatus rectum p and eccentricity e) with an approximate, weak-field, formula for the energy and angular momentum fluxes, amended by the assumption of constant inclination angle ι during the inspiral. Despite the fact that the resulting inspirals were overall well behaved, certain pathologies remained for orbits in the strong-field regime and for orbits which are nearly circular and/or nearly polar. In this paper we eliminate these problems by incorporating an array of improvements in the approximate fluxes. First, we add certain corrections which ensure the correct behavior of the fluxes in the limit of vanishing eccentricity and/or 90 deg. inclination. Second, we use higher order post-Newtonian formulas, adapted for generic orbits. Third, we drop the assumption of constant inclination. Instead, we first evolve the Carter constant by means of an approximate post-Newtonian expression and subsequently extract the evolution of ι. Finally, we improve the evolution of circular orbits by using fits to the angular momentum and inclination evolution determined by Teukolsky-based calculations. As an application of our improved scheme, we provide a sample of generic Kerr inspirals which we expect to be the most accurate to date, and for the specific case of nearly circular orbits we locate the critical radius where orbits begin to decircularize under radiation reaction. These easy-to-generate inspirals should become a useful tool for exploring LISA data analysis issues and may ultimately play a role in the detection of inspiral signals in the LISA data
Testing Mass Determinations of Supermassive Black Holes via Stellar Kinematics
Cappellari, Michele; M. McDermid, Richard; Bacon, R.; L. Davies, Roger; T. de Zeeuw, P.; Emsellem, Eric; Falcón-Barroso, Jesús; Krajnović, Davor; Kuntschner, Harald; Peletier, R.F.; Sarzi, Marc; C. E. van den Bosch, Remco; van de Ven, Glenn; Debattista, Victor P.; Popescu, Cristina C.
We investigate the accuracy of mass determinations MBH of supermassive black holes in galaxies using dynamical models of the stellar kinematics. We compare 10 of our MBH measurements, using integral-field OASIS kinematics, to published values. For a sample of 25 galaxies we confront our new MBH
Testing effective string models of black holes with fixed scalars
International Nuclear Information System (INIS)
Krasnitz, M.; Klebanov, I.R.
1997-01-01
We solve the problem of mixing between the fixed scalar and metric fluctuations. First, we derive the decoupled fixed scalar equation for the four-dimensional black hole with two different charges. We proceed to the five-dimensional black hole with different electric (one-brane) and magnetic (five-brane) charges, and derive two decoupled equations satisfied by appropriate mixtures of the original fixed scalar fields. The resulting greybody factors are proportional to those that follow from coupling to dimension (2,2) operators on the effective string. In general, however, the string action also contains couplings to chiral operators of dimension (1,3) and (3,1), which cause disagreements with the semiclassical absorption cross sections. Implications of this for the effective string models are discussed. copyright 1997 The American Physical Society
Logging in the campus: borehole research and monitoring in a test hole in Barcelona (Spain)
Jurado, M. J.; Crespo, J.; Espallargas, R.
2012-04-01
Almera-1 hole was drilled for research purposes in the University of Barcelona campus area. The hole is 214m deep and was drilled in Quaternary to Paleozoic rocks in a urban area, next to the Institute of Earth Sciences (CSIC) borehole research lab. The main objectives for drilling a research hole were both the study of the poorly known subsurface geology and structure in this urban area and the construction of a dedicated infrastructure for logging tools tests, calibrations and long term monitoring. A direct connection to the lab was built to facilitate long term measuring experiments tool powering and data monitoring. A second auxiliary hole, Almera-2 50m deep was drilled to carry out cross-hole and tomographic experiments and hydrological monitoring. The upper section of Almera-1 hole is cased with PVC and the lowermost is an open hole section in paleozoic rock. The entire hole was logged in open hole mode (before casing) and also after the hole was cased in order to study the effect of the PVC casing on different logging tools responses (total and spectral gamma radioactivity through casing, acoustic televiewer through casing, full wave sonic through casing and magnetic susceptibility through casing). The comparison shows the effect on each of these tools response of the PVC casing. Also how the tools responses are more or less affected by the attenuation caused by the PVC of the rock signal and how this is more or less critical in the diverse lithologies represented in the Almera-1 hole. Wireline drilling was used to obtain best core recovery and to carry out log-core comparative analyses for logging tool response calibration and log-core correlation. The results obtained in the study of gamma ray (total and spectral), magnetic susceptibility and acoustic petrophysics are shown.
The current ability to test theories of gravity with black hole shadows
Mizuno, Yosuke; Younsi, Ziri; Fromm, Christian M.; Porth, Oliver; De Laurentis, Mariafelicia; Olivares, Hector; Falcke, Heino; Kramer, Michael; Rezzolla, Luciano
2018-04-01
Our Galactic Centre, Sagittarius A*, is believed to harbour a supermassive black hole, as suggested by observations tracking individual orbiting stars1,2. Upcoming submillimetre very-long baseline interferometry images of Sagittarius A* carried out by the Event Horizon Telescope collaboration (EHTC)3,4 are expected to provide critical evidence for the existence of this supermassive black hole5,6. We assess our present ability to use EHTC images to determine whether they correspond to a Kerr black hole as predicted by Einstein's theory of general relativity or to a black hole in alternative theories of gravity. To this end, we perform general-relativistic magnetohydrodynamical simulations and use general-relativistic radiative-transfer calculations to generate synthetic shadow images of a magnetized accretion flow onto a Kerr black hole. In addition, we perform these simulations and calculations for a dilaton black hole, which we take as a representative solution of an alternative theory of gravity. Adopting the very-long baseline interferometry configuration from the 2017 EHTC campaign, we find that it could be extremely difficult to distinguish between black holes from different theories of gravity, thus highlighting that great caution is needed when interpreting black hole images as tests of general relativity.
Lithium and valproate prevent methylphenidate-induced mania-like behaviors in the hole board test.
Souza, L S; Silva, E F; Santos, W B; Asth, L; Lobão-Soares, B; Soares-Rachetti, V P; Medeiros, I U; Gavioli, E C
2016-08-26
Manic bipolar is diagnosed by psychomotor agitation, increased goal-directed activity, insomnia, grandiosity, excessive speech, and risky behavior. Animal studies aimed to modeling mania are commonly based in psychostimulants-induced hyperlocomotion. The exploration of other behaviors related with mania is mandatory to investigate this phase of bipolar disorder in animals. In this study, the hole board apparatus was suggested for evaluating mania-like behaviors induced by the psychostimulant methylphenidate. The treatment with methylphenidate (10mg/kg, ip) increased locomotion in the open field test. The pretreatment with lithium (50mg/kg, ip) and valproate (400mg/kg, ip) significantly prevented the hyperlocomotion. In the hole-board test, methylphenidate increased interactions with the central and peripheral holes and the exploration of central areas. Lithium was more effective than valproate in preventing all the behavioral manifestations induced by the psychostimulant. These findings were discussed based on the ability of methylphenidate-treated mice mimicking two symptoms of mania in the hole board test: goal-directed action and risk-taking behavior. In conclusion, the results point to a new approach to study mania through the hole board apparatus. The hole board test appears to be a sensitive assay to detect the efficacy of antimanic drugs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Spin-multipole effects in binary black holes and the test-body limit
Vines, Justin; Steinhoff, Jan
2018-03-01
We discuss the effects of the black holes' spin-multipole structure in the orbital dynamics of binary black holes according to general relativity, focusing on the leading-post-Newtonian-order couplings at each order in an expansion in the black holes' spins. We first review previous widely confirmed results up through fourth order in spin, observe suggestive patterns therein, and discuss how the results can be extrapolated to all orders in spin with minimal information from the test-body limit. We then justify this extrapolation by providing a complete derivation within the post-Newtonian framework of a canonical Hamiltonian for a binary black hole, for generic orbits and spin orientations, which encompasses the leading post-Newtonian orders at all orders in spin. At the considered orders, the results reveal a precise equivalence between arbitrary-mass-ratio two-spinning-black-hole dynamics and the motion of a test black hole in a Kerr spacetime, as well as an intriguing relationship to geodesic motion in a Kerr spacetime.
Asymptotic description of a test particle around a Schwarzschild black hole
Rosales-Vera, Marco
2018-03-01
In this paper, the movement of a test particle around a Schwarzschild black hole is revisited. Using matched asymptotic expansions, approximate analytical expressions for the orbit of the test particle in the case of large eccentricity are found. The asymptotic solutions are compared with numerical and analytical results.
Slant hole completion test (1991) sidetrack as built'' report
Energy Technology Data Exchange (ETDEWEB)
Myal, F.R.
1992-05-01
During the summer of 1990, a slant hole test well, funded by the US Department of Energy, was drilled to 9,466 ft to evaluate the effectiveness of directional drilling in the tight, naturally fractured gas sands and coals of the Mesaverde Group. The surface location of the SHCT No. 1 is 700 ft south of the DOE Multiwell Experiment (MWX) site in Section 34, T6S, R94W, Garfield County, Colorado, approximately 7.5 miles west of Rifle. Mechanical problems following cementing of a production liner resulted in loss of the completion interval, and operations were suspended. In early 1991, DOE decided to sidetrack the hole to permit production testing of the lost interval. The sidetrack was designed to parallel the original wellbore, but to be drilled 1,000 ft to the east to minimize the chances of encountering formation damage from the original hole. The sidetrack, like the original hole, was to intersect the paludal lenticular sands and coals at 60{degrees} and to penetrate the underlying Cozzette sand horizonally. The sidetrack was spudded May 12, 1991. After re-entering the well in late 1991, early production testing of the Cozzette showed that the 300 ft of in-pay horizontal hole can produce at rate 5 to 10 times higher than vertical wells in the same area. This report contains the geological summary and sidetrack drilling operations summary.
The olfactory hole-board test in rats: a new paradigm to study aversion and preferences to odors.
Wernecke, Kerstin E A; Fendt, Markus
2015-01-01
Odors of biological relevance (e.g., predator odors, sex odors) are known to effectively influence basic survival needs of rodents such as anti-predatory defensiveness and mating behaviors. Research focused on the effects of these odors on rats' behavior mostly includes multi-trial paradigms where animals experience single odor exposures in subsequent, separated experimental sessions. In the present study, we introduce a modification of the olfactory hole-board test that allows studying the effects of different odors on rats' behavior within single trials. First, we demonstrated that the corner holes of the hole-board were preferentially visited by rats. The placement of different odors under the corner holes changed this hole preference. We showed that holes with carnivore urine samples were avoided, while corner holes with female rat urine samples were preferred. Furthermore, corner holes with urine samples from a carnivore, herbivore, and omnivore were differentially visited indicating that rats can discriminate these odors. To test whether anxiolytic treatment specifically modulates the avoidance of carnivore urine holes, we treated rats with buspirone. Buspirone treatment completely abolished the avoidance of carnivore urine holes. Taken together, our findings indicate that the olfactory hole-board test is a valuable tool for measuring avoidance and preference responses to biologically relevant odors.
The olfactory hole-board test in rats: a new paradigm to study aversion and preferences to odors
Directory of Open Access Journals (Sweden)
Kerstin eWernecke
2015-08-01
Full Text Available Odors of biological relevance (e.g. predator odors, sex odors are known to effectively influence basic survival needs of rodents such as anti-predatory defensiveness and mating behaviors. Research focused on the effects of these odors on rats’ behavior mostly includes multi-trial paradigms where animals experience single odor exposures in subsequent, separated experimental sessions. In the present study, we introduce a modification of the olfactory hole-board test that allows studying the effects of different odors on rats’ behavior within single trials. First, we demonstrated that the corner holes of the hole-board were preferentially visited by rats. The placement of different odors under the corner holes changed this hole preference. We showed that holes with carnivore urine samples were avoided, while corner holes with female rat urine samples were preferred. Furthermore, corner holes with urine samples from a carnivore, herbivore and omnivore were differentially visited indicating that rats can discriminate these odors. To test whether anxiolytic treatment specifically modulate the avoidance of carnivore urine holes, we treated rats with buspirone. Buspirone treatment completely abolished the avoidance of carnivore urine holes. Taken together, our findings indicate that the olfactory hole-board test is a valuable tool for measuring avoidance and preference responses to biologically-relevant odors.
Strong-field tests of gravity using pulsars and black holes
Kramer, M.; Backer, D.C.; Cordes, J.M.; Lazio, T.J.W.; Stappers, B.W.; Johnston, S.
2004-01-01
The sensitivity of the SKA enables a number of tests of theories of gravity. A Galactic Census of pulsars will discover most of the active pulsars in the Galaxy beamed toward us. In this census will almost certainly be pulsar black hole binaries as well as pulsars orbiting the super-massive black
Slug-tests in PP- and PVP-holes at Olkiluoto in 2004
International Nuclear Information System (INIS)
Tammisto, E.; Hellae, P.; Lahdenperae, J.
2005-12-01
As part of the program for the final disposal of the nuclear fuel waste, Posiva Oy investigates the hydrological conditions at the Olkiluoto island. The hydraulic conductivity in the shallow holes PP2, PP38 and PP39 were measured in July 2004 and PVP4A, PVP4B and PVP14 in June 2004, PVP11, PVP12 and PVP13 in December 2004 and PVP2 in January 2005. The length of PP-holes varies between 13 and 24 m and the measured sections (1 m) are located in the bedrock. PVP-holes have a length up to 10 m and the measured sections (2 m) are located in the overburden. The measurements were conducted using the slug-test technique. In the slug-test the hydraulic head in the borehole is abruptly changed either by pouring water in the borehole or by lowering the pressure sensor. The conductivity is interpreted based on the recovery of the water level. This report presents the field measurements and their interpretation. The interpretation has been done using the Hvorslev's method, but for the control also Thiem's equation was applied. According to the results hydraulic conductivities in PP-holes range from 10 -9 m/s to 10 -4 m/s and in PVP-holes from 10 -6 m/s to 10 -4 m/s. The range is almost the same as in measurements of year 2002. Also the results from holes measured both 2002 and 2004 are very close to each other. The results agree also with hydraulic conductivity information available from the pre-pumping done in connection of the groundwater sampling. (orig.)
Testing the Binary Black Hole Nature of a Compact Binary Coalescence.
Krishnendu, N V; Arun, K G; Mishra, Chandra Kant
2017-09-01
We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.
Standard test method for determining residual stresses by the hole-drilling strain-gage method
American Society for Testing and Materials. Philadelphia
2008-01-01
1.1 Residual Stress Determination: 1.1.1 This test method specifies a hole-drilling procedure for determining residual stress profiles near the surface of an isotropic linearly elastic material. The test method is applicable to residual stress profile determinations where in-plane stress gradients are small. The stresses may remain approximately constant with depth (“uniform” stresses) or they may vary significantly with depth (“non-uniform” stresses). The measured workpiece may be “thin” with thickness much less than the diameter of the drilled hole or “thick” with thickness much greater than the diameter of the drilled hole. Only uniform stress measurements are specified for thin workpieces, while both uniform and non-uniform stress measurements are specified for thick workpieces. 1.2 Stress Measurement Range: 1.2.1 The hole-drilling method can identify in-plane residual stresses near the measured surface of the workpiece material. The method gives localized measurements that indicate the...
Testing holographic conjectures of complexity with Born-Infeld black holes
Energy Technology Data Exchange (ETDEWEB)
Tao, Jun; Wang, Peng; Yang, Haitang [Sichuan University, Center for Theoretical Physics, College of Physical Science and Technology, Chengdu (China)
2017-12-15
In this paper, we use Born-Infeld black holes to test two recent holographic conjectures of complexity, the ''Complexity = Action'' (CA) duality and ''Complexity = Volume 2.0'' (CV) duality. The complexity of a boundary state is identified with the action of the Wheeler-deWitt patch in CA duality, while this complexity is identified with the spacetime volume of the WdW patch in CV duality. In particular, we check whether the Born-Infeld black holes violate the generalized Lloyd bound: C ≤ (2)/(πℎ) [(M - QΦ) - (M - QΦ){sub gs}], where gs stands for the ground state for a given electrostatic potential. We find that the ground states are either some extremal black hole or regular spacetime with nonvanishing charges. For Born-Infeld black holes, we compute the action growth rate at the late-time limit and obtain the complexities in CA and CV dualities. Near extremality, the generalized Lloyd bound is violated in both dualities. Near the charged regular spacetime, this bound is satisfied in CV duality but violated in CA duality. When moving away from the ground state on a constant potential curve, the generalized Lloyd bound tends to be saturated from below in CA duality. (orig.)
Testing the blazar sequence and black hole mass scaling with BL Lac objects
Plotkin, Richard M.; Markoff, Sera; Anderson, Scott F.; Kelly, Brandon C.; Körding, Elmar; Trager, Scott C.; Romero, Gustavo E.; Sunyaev, Rashid A.; Belloni, Tomaso
Jets from accreting black holes appear remarkably similar over eight orders of magnitude in black hole mass, with more massive black holes generally launching more powerful jets. For example, there is an observed correlation, termed the fundamental plane of black hole accretion, between black hole
Testing the blazar sequence and black hole mass scaling with BL Lac objects
Plotkin, R.M.; Markoff, S.; Anderson, S.F.; Kelly, B.C.; Körding, E.; Trager, S.C.
2010-01-01
Jets from accreting black holes appear remarkably similar over eight orders of magnitude in black hole mass, with more massive black holes generally launching more powerful jets. For example, there is an observed correlation, termed the fundamental plane of black hole accretion, between black hole
Directory of Open Access Journals (Sweden)
Alejandro Cárdenas-Avendaño
2016-09-01
Full Text Available The recent announcement of the detection of gravitational waves by the LIGO/Virgo Collaboration has opened a new window to test the nature of astrophysical black holes. Konoplya & Zhidenko have shown how the LIGO data of GW 150914 can constrain possible deviations from the Kerr metric. In this letter, we compare their constraints with those that can be obtained from accreting black holes by fitting their X-ray reflection spectrum, the so-called iron line method. We simulate observations with eXTP, a next generation X-ray mission, finding constraints much stronger than those obtained by Konoplya & Zhidenko. Our results can at least show that, contrary to what is quite commonly believed, it is not obvious that gravitational waves are the most powerful approach to test strong gravity. In the presence of high quality data and with the systematics under control, the iron line method may provide competitive constraints.
Energy Technology Data Exchange (ETDEWEB)
Cárdenas-Avendaño, Alejandro [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 200433 Shanghai (China); Programa de Matemática, Fundación Universitaria Konrad Lorenz, 110231 Bogotá (Colombia); Jiang, Jiachen [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 200433 Shanghai (China); Bambi, Cosimo, E-mail: bambi@fudan.edu.cn [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 200433 Shanghai (China); Theoretical Astrophysics, Eberhard-Karls Universität Tübingen, 72076 Tübingen (Germany)
2016-09-10
The recent announcement of the detection of gravitational waves by the LIGO/Virgo Collaboration has opened a new window to test the nature of astrophysical black holes. Konoplya & Zhidenko have shown how the LIGO data of GW 150914 can constrain possible deviations from the Kerr metric. In this letter, we compare their constraints with those that can be obtained from accreting black holes by fitting their X-ray reflection spectrum, the so-called iron line method. We simulate observations with eXTP, a next generation X-ray mission, finding constraints much stronger than those obtained by Konoplya & Zhidenko. Our results can at least show that, contrary to what is quite commonly believed, it is not obvious that gravitational waves are the most powerful approach to test strong gravity. In the presence of high quality data and with the systematics under control, the iron line method may provide competitive constraints.
Changes in emotional behavior of mice in the hole-board test after olfactory bulbectomy.
Saitoh, Akiyoshi; Hirose, Noritaka; Yamada, Mitsuhiko; Yamada, Misa; Nozaki, Chihiro; Oka, Takuma; Kamei, Junzo
2006-12-01
The most consistent behavioral change caused by olfactory bulbectomy (OBX) is a hyperemotional response to novel environmental stimuli. The aim of this study was to characterize the emotional behavior of OBX mice using the hole-board test. After the olfactory bulbs were lesioned, sham and OBX mice were housed in single cages for 14 days. The number of head-dips in the hole-board test in single-housed OBX mice was significantly greater than that in single-housed sham mice. The head-dipping behaviors in single-housed sham and OBX mice were reversed by treatment with diazepam, a typical benzodiazepine anxiolytic. (+/-)-8-Hydroxy-2-(di-n-propylamino) tetraline hydrobromide (8-OH-DPAT), a selective 5-HT(1A)-receptor agonist that has a non-benzodiazepine anxiolytic-like effect, and (+)-4-[(aR)-a-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethyl benzamide (SNC80), a delta-opioid-receptor agonist, also significantly reversed the number of head-dips in single-housed sham and OBX mice. In conclusion, we suggest that the single-housed OBX mice showed heightened emotional behavior (e.g., increase in head-dipping behavior) in the hole-board test. In addition, we suggest that the hyperemotional behavior characterized by head-dipping behavior in OBX mice was selectively reversed by benzodiazepine and non-benzodiazepine anxiolytics.
A massive binary black-hole system in OJ 287 and a test of general relativity.
Valtonen, M J; Lehto, H J; Nilsson, K; Heidt, J; Takalo, L O; Sillanpää, A; Villforth, C; Kidger, M; Poyner, G; Pursimo, T; Zola, S; Wu, J-H; Zhou, X; Sadakane, K; Drozdz, M; Koziel, D; Marchev, D; Ogloza, W; Porowski, C; Siwak, M; Stachowski, G; Winiarski, M; Hentunen, V-P; Nissinen, M; Liakos, A; Dogru, S
2008-04-17
Tests of Einstein's general theory of relativity have mostly been carried out in weak gravitational fields where the space-time curvature effects are first-order deviations from Newton's theory. Binary pulsars provide a means of probing the strong gravitational field around a neutron star, but strong-field effects may be best tested in systems containing black holes. Here we report such a test in a close binary system of two candidate black holes in the quasar OJ 287. This quasar shows quasi-periodic optical outbursts at 12-year intervals, with two outburst peaks per interval. The latest outburst occurred in September 2007, within a day of the time predicted by the binary black-hole model and general relativity. The observations confirm the binary nature of the system and also provide evidence for the loss of orbital energy in agreement (within 10 per cent) with the emission of gravitational waves from the system. In the absence of gravitational wave emission the outburst would have happened 20 days later.
Phase 2 and 3 Slim Hole Drilling and Testing at the Lake City, California Geothermal Field
Energy Technology Data Exchange (ETDEWEB)
Dick Benoit; David Blackwell; Joe Moore; Colin Goranson
2005-10-27
During Phases 2 and 3 of the Lake City GRED II project two slim holes were cored to depths of 1728 and 4727 ft. Injection and production tests with temperature and pressure logging were performed on the OH-1 and LCSH-5 core holes. OH-1 was permanently modified by cementing an NQ tubing string in place below a depth of 947 ft. The LCSH-1a hole was drilled in Quaternary blue clay to a depth of 1727 ft and reached a temperature of 193 oF at a depth of 1649 ft. This hole failed to find evidence of a shallow geothermal system east of the Mud Volcano but the conductive temperature profile indicates temperatures near 325 oF could be present below depth of 4000 ft. The LCSH-5 hole was drilled to a depth of 4727 ft and encountered a significant shallow permeability between depths of 1443 and 1923 ft and below 3955 ft. LCSH-5 drilled impermeable Quaternary fanglomerate to a depth of 1270 ft. Below 1270 ft the rocks consist primarily of Tertiary sedimentary rocks. The most significant formation deep in LCSH-5 appears to be a series of poikoilitic mafic lava flows below a depth of 4244 ft that host the major deep permeable fracture encountered. The maximum static temperature deep in LCSH-5 is 323 oF and the maximum flowing temperature is 329 oF. This hole extended the known length of the geothermal system by ¾ of a mile toward the north and is located over ½ mile north of the northernmost hot spring. The OH-1 hole was briefly flow tested prior to cementing the NQ rods in place. This flow test confirmed the zone at 947 ft is the dominant permeability in the hole. The waters produced during testing of OH-1 and LCSH-5 are generally intermediate in character between the deep geothermal water produced by the Phipps #2 well and the thermal springs. Geothermometers applied to deeper fluids tend to predict higher subsurface temperatures with the maximum being 382 oF from the Phipps #2 well. The Lake City geothermal system can be viewed as having shallow (elevation > 4000 ft and
The effects of angelica essential oil in social interaction and hole-board tests.
Min, Li; Chen, Si Wei; Li, Wei Jing; Wang, Rui; Li, Yu Lei; Wang, Wen Juan; Mi, Xiao Juan
2005-08-01
In our previous studies, we have demonstrated the anxiolytic effects of angelica essential oil in three anxiety models using mice. This study aimed to characterize the similar behavior effects of angelica essential oil in the social interaction test of anxiety and the hole-board test of exploration and locomotor activity in rats. These results indicate that angelica essential oil possessed a wide range of anxiolytic properties. In the social interaction test, angelica essential oil decreased aggressive behaviors at the doses of 21 and 42 mg/kg, while the doses of 21 and 42 mg/kg significantly increased social interaction time of the high light, unfamiliar test condition and 21 mg/kg could also prolong social interaction time of the high light, familiar test condition. In the hole-board test, angelica essential oil at 10.5 mg/kg significantly increased head-dipping counts and duration. Thus, our findings suggest the potential usefulness of angelica essential oil against various types of anxiety-related disorders and social failure.
Cao, Zheng; Nampalliwar, Sourabh; Bambi, Cosimo; Dauser, Thomas; García, Javier A
2018-02-02
Recently, we have extended the x-ray reflection model relxill to test the spacetime metric in the strong gravitational field of astrophysical black holes. In the present Letter, we employ this extended model to analyze XMM-Newton, NuSTAR, and Swift data of the supermassive black hole in 1H0707-495 and test deviations from a Kerr metric parametrized by the Johannsen deformation parameter α_{13}. Our results are consistent with the hypothesis that the spacetime metric around the black hole in 1H0707-495 is described by the Kerr solution.
Testing General Relativity with the Reflection Spectrum of the Supermassive Black Hole in 1H0707-495
Cao, Zheng; Nampalliwar, Sourabh; Bambi, Cosimo; Dauser, Thomas; García, Javier A.
2018-02-01
Recently, we have extended the x-ray reflection model relxill to test the spacetime metric in the strong gravitational field of astrophysical black holes. In the present Letter, we employ this extended model to analyze XMM-Newton, NuSTAR, and Swift data of the supermassive black hole in 1H0707-495 and test deviations from a Kerr metric parametrized by the Johannsen deformation parameter α13. Our results are consistent with the hypothesis that the spacetime metric around the black hole in 1H0707-495 is described by the Kerr solution.
Childs, D. W.; Kim, C.-H.
1985-01-01
Test results are presented for nine annular seals which use a roughened stator and smooth rotor to yield an increase in net damping as compared to conventional smooth-rotor/smooth-stator annular seals. Round-hole roughness patterns are used to achieve the desired stator roughness. The results presented demonstrate that the maximum net damping is achieved by (a) a hole pattern which takes up about 34 percent of the surface area, and (b) hole depths which are about three times the radial clearances. When compared to a smooth seal, the optimum configuration increases net damping by 37 percent, while reducing leakage by 46 percent and direct stiffness by 23 percent. Comparisons of experiment to theory are generally satisfactory for hole-patterns near the optimum area ratio of 34 percent. However, the theory is unsatisfactory for seals which have a substantially higher percentage of the surface area taken up by holes.
Slug-tests in PP- and PVP-holes at Olkiluoto in 2006
International Nuclear Information System (INIS)
Keskitalo, K.; Lindgren, S.
2007-11-01
As part of the program for the final disposal of the nuclear fuel waste, Posiva Oy investigates the hydrological conditions at the Olkiluoto island. The hydraulic conductivity in the shallow holes OL-PP5, OL-PP9, OL-PP36, OL-PP39, OL-PVP4A, OL-PVP4B, OL-PVP6A, OL-PVP6B and OL-PVP14 was measured in summer 2006. The length of PP-holes varies between 12 and 15 m, and the test sections (1 m) are located in the bedrock. PVP-tubes have a length up to 10 m, and the test sections (2 m) are located in the overburden. The measurements were done using the slug-test technique. In the slug-test, the hydraulic head in the borehole is abruptly changed either by pouring water into the borehole or by lowering the pressure sensor. The conductivity is interpreted based on the recovery of the water level. This report presents the field measurements and their interpretation. The interpretation has been done using the Hvorslev's method, and for reference, conductivity has also been calculated according to Thiem's equation. According to the results, hydraulic conductivity in PP-holes ranges from 10 -9 m/s to 10 -6 m/s and in PVP-tubes from 10 -8 m/s to 10 -5 m/s. The range is similar as observed in measurements of years 2002, 2004 and 2005. In general the results are consistent with the results obtained in earlier measurements. Some exceptions exist in OL-PP9, where the conductivity is lower than in the 2005 measurements, but still at the same level as in the 2002 measurements. Also, the results agree with hydraulic conductivity interpreted from the pre-pumping done in connection with the groundwater sampling. (orig.)
Simmons, G. G.; Bennett, Caroline R.; Barrett-Gonzalez, Ron; Matamoros, Adolfo B.; Rolfe, Stanley T.
2013-04-01
This paper outlines the design, modeling and testing of a new class of tool intended for the treatment of crack-arrest holes to improve fatigue life. By integrating a stack of high-power piezoelectric elements in a compression caliper, this Piezoelectric Impact Compressive Kinetic (PICK) tool can be used to clamp very tightly on either side of an aluminum plug, which is inserted in a crack-arrest hole. Ultrasonic vibrations at high compression loads applied by the piezoelectric stack dynamically cold work both the aluminum plug and the inside of the crack-arrest hole. This paper describes the overall design of the tool, the configuration of the aluminum plug, and the effect of dynamic vibrations on the plug and on the surface of the crack-arrest hole. The system was driven at various resonance modes during the coldworking process. Several 3.2-mm (1/8-in.) thick steel specimens with 3.2-mm (1/8-in.) diameter crack-arrest holes were treated ultrasonically with the PICK tool. Dynamic fatigue tests showed that fatigue lives of the specimens was increased substantially as a result of the ultrasonic treatment. Microhardness and neutron diffraction testing confirmed that the tool induced high levels of cold working at the edge of the hole and increased the grain density, with a regular decay as a function of distance from the edge of the hole.
International Nuclear Information System (INIS)
A. Umari; J.D. Earle; M.F. Fahy
2006-01-01
As part of the effort to understand the flow and transport characteristics downgradient from the proposed high-level radioactive waste geologic repository at Yucca Mountain, Nevada, single- and cross-hole tracer tests were conducted from December 2004 through October 2005 in boreholes at the Nye County 22 well complex. The results were analyzed for transport properties using both numerical and analytical solutions of the governing advection dispersion equation. Preliminary results indicate effective flow porosity values ranging from 1.0 x 10 -2 for an individual flow path to 2.0 x 10 -1 for composite flow paths, longitudinal dispersivity ranging from 0.3 to 3 m, and a transverse horizontal dispersivity of 0.03 m. Individual flow paths identified from the cross-hole testing indicate some solute diffusion into the stagnant portion of the alluvial aquifer
Some doubts about the basic concept of hole-board test.
Bilkei-Gorzó, A; Gyertyán, I
1996-01-01
Hole board test is a generally used method for screening the potential anxiolytic character of drugs. The test is based on the assumption, that head-dipping activity of the animals is inversely proportional to their anxiety state. We tested this assumption by measuring the head-dipping activity of animals in environments with different levels of aversive character (illumination). The anxiolytic chlordiazepoxide significantly elevated head-dipping activity in moderately aversive environment, it was not active in non-aversive environment, and it exhibited inhibitory activity in highly aversive environment. When the latency of the first head-dip was measured, we found that the proportion of animals with short latency was significantly increased in moderately and highly aversive environments. It is concluded, that the inverse relation between anxiety state and head-dipping activity is true only in a certain range of anxiety level. In more aversive situations, when the anxiety level of the animals is high, the holes nay represent a possible way to escape from the aversive environment instead of an explorable object. In this case the relation between anxiety state and head-dipping activity is directly and not inversely proportional.
Exploiting the hidden symmetry of spinning black holes: conservation laws and numerical tests
Witzany, Vojtěch
2018-01-01
The Kerr black hole is stationary and axisymmetric, which leads to conservation of energy and azimuthal angular momentum along the orbits of free test particles in its vicinity, but also to conservation laws for the evolution of continuum matter fields. However, the Kerr space-time possesses an additional 'hidden symmetry', which exhibits itself in an unexpected conserved quantity along geodesics known as the Carter constant. We investigate the possibility of using this hidden symmetry to obtain conservation laws and other identities that could be used to test astrophysical simulations of the evolution of matter fields near spinning black holes. After deriving such identities, we set up a simple numerical toy model on which we demonstrate how they can detect the violations of evolution equations in a numerical simulation. Even though one of the expressions we derive is in the form of a conservation law, we end up recommending an equivalent but simpler expression that is not in the form of a conservation law for practical implementation.
Effect of Matricaria recutita Hydroalcoholic Extract on Anxiety Behavior in Mice by Hole-Board Test
Directory of Open Access Journals (Sweden)
Mahnnaz Kesmati
2014-03-01
Full Text Available Background: 4TAn anxiolytic effect of chamomile has been shown in various studies. In the previous study was indicated that the 4TIranian specious of chamomile, Matricaria recutita (M. recutita hydro alcoholic4T extract acts 4Tsex dependent in the elevated plus maze. It showed anxiolytic effect in the presence and absence of male mice gonads but not in female mice. In this study we examined the anxiety model dependent of M. recutita in another unconditioned anxiety model, hole-board test, because there are various model for evaluating anxiety with specific properties. Materials and Methods: 4TAdult male and female of N-MARI mice (N=120 were prepared and each sex divided into 5 groups (each group consist of 12 animals: control group, saline and 3 experimental groups that received different doses (10, 30, and 50 mg/kg, intraperitoneally of 4TM. recutita4T hydro alcoholic extract. Hole-board instrument was used to anxiety measurement, and delay time, the devour number and maintained time in the holes, as anxiety indices in this device, were evaluated. Results: 4TThere were not any significant differences between anxiety indices in control and saline groups in both sexes. 4TM. recutita4T extract (10, 30 and 50 mg/kg via i.p. reduced significantly an anxiety in both male and female mice and an anxiolytic effects of 30 mg/kg than the other doses were considerably higher. Conclusion: 4TIt seems an anxiolytic effect of 4TM. recutita4T is independent to anxiety model and the similarity effect at male and female mice in this model emphasizes the validity of the model.4T
Fracture analyses and test of regions with nozzle and hole and curvature influence in nuclear vessel
International Nuclear Information System (INIS)
Wang Baisong; Xu Dinggen; Ye Weijuan; Hu Yinbiao; Liang Xingyun; Gu Shaode; Zhou Peiying
1993-08-01
For the calculations of stress intensity factor K 1 of surface crack in the regions with nozzle and hole and the curvature influence on nuclear vessel, a improved 3-D collapsed isoparametric singular element with quarter-points was presented. The square root singularity in the vertical planes of crack was derived. The methods of transitional element and calculating K 1 from displacements were extensively used in 3- D case. The SIF K 1 of the corner crack in inner wall of the nozzle of RPV (reactor pressure vessel) for a typical 300 MW nuclear plant was calculated, and it was verified by 3-D photo-elastic test and diffusion of light test. The engineering fracture analysis and evaluation of the outside surface crack in the circular are transitional region of the head flange of RPV are also completed
International Nuclear Information System (INIS)
Laura Pastor
2006-01-01
Corrective Action Unit (CAU) 542 is located in Areas 3, 8, 9, and 20 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 542 is comprised of eight corrective action sites (CASs): (1) 03-20-07, ''UD-3a Disposal Hole''; (2) 03-20-09, ''UD-3b Disposal Hole''; (3) 03-20-10, ''UD-3c Disposal Hole''; (4) 03-20-11, ''UD-3d Disposal Hole''; (5) 06-20-03, ''UD-6 and UD-6s Disposal Holes''; (6) 08-20-01, ''U-8d PS No.1A Injection Well Surface Release''; (7) 09-20-03, ''U-9itsy30 PS No.1A Injection Well Surface Release''; and (8) 20-20-02, ''U-20av PS No.1A Injection Well Surface Release''. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 30, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 542. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the CAI for CAU 542 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct radiological surveys. (3) Conduct geophysical surveys to
Slug-tests in PP- and PVP-holes at Olkiluoto in 2008
International Nuclear Information System (INIS)
Keskitalo, K.
2009-02-01
As part of the program for the final disposal of the nuclear fuel waste, Posiva Oy investigates the hydrological conditions at the Olkiluoto island. The hydraulic conductivity in the shallow holes OL-PP36, OL-PP39, OL-PVP4A, OL-PVP4B, OL-PVP6A, OL-PVP6B, OL-PVP14, OL-PVP21, OL-PVP22, OL-PVP23, OL-PVP24, OL-PVP25, OL-PVP26, OL-PVP27, OL-PVP28, OL-PVP29, OL-HP1, OL-HP2 and OL-HP4 was measured in summer 2008. The length of PP-holes was between 12 and 14 m, and the test sections (1 m) are located in the bedrock. PVP-tubes have an average length between 3 - 11 m, and the test sections (mostly 2 m) are located in the overburden. The measurements were done using the slug-test technique. In the slug-test, the hydraulic head in the borehole is abruptly changed either by pouring water into the borehole or by lowering the pressure sensor. The hydraulic conductivity is interpreted from the recovery of the water level. This report presents the field measurements and their interpretation. The interpretation has been done using the Hvorslev's method, and for reference, conductivity has also been calculated according to Thiem's equation. According to the results, hydraulic conductivity in PP-holes ranges from 10 -9 m/s to 10 -6 m/s and in PVP-tubes from 10 -8 m/s to 10 -5 m/s. The observed range is similar as in the previous measurements in 2002 and 2004 - 2007. In general, the results are consistent with the results obtained in earlier measurements. In OL-PVP14, there seems to be a lowering trend of the conductivity. In OL-PVP4A the results seem to have slight increase year after year. Also, the results agree with hydraulic conductivity interpreted from the pre-pumping done in connection with the groundwater sampling or installation of observation tubes. (orig.)
Ghosh, Abhirup; Johnson-McDaniel, Nathan K.; Ghosh, Archisman; Kant Mishra, Chandra; Ajith, Parameswaran; Del Pozzo, Walter; Berry, Christopher P. L.; Nielsen, Alex B.; London, Lionel
2018-01-01
Advanced LIGO’s recent observations of gravitational waves (GWs) from merging binary black holes have opened up a unique laboratory to test general relativity (GR) in the highly relativistic regime. One of the tests used to establish the consistency of the first LIGO event with a binary black hole merger predicted by GR was the inspiral-merger-ringdown consistency test. This involves inferring the mass and spin of the remnant black hole from the inspiral (low-frequency) part of the observed signal and checking for the consistency of the inferred parameters with the same estimated from the post-inspiral (high-frequency) part of the signal. Based on the observed rate of binary black hole mergers, we expect the advanced GW observatories to observe hundreds of binary black hole mergers every year when operating at their design sensitivities, most of them with modest signal to noise ratios (SNRs). Anticipating such observations, this paper shows how constraints from a large number of events with modest SNRs can be combined to produce strong constraints on deviations from GR. Using kludge modified GR waveforms, we demonstrate how this test could identify certain types of deviations from GR if such deviations are present in the signal waveforms. We also study the robustness of this test against reasonable variations of a variety of different analysis parameters.
A computer-assisted odorized hole-board for testing olfactory perception in mice.
Mandairon, Nathalie; Sultan, Sébastien; Rey, Nolwen; Kermen, Florence; Moreno, Mélissa; Busto, Germain; Farget, Vincent; Messaoudi, Belkacem; Thevenet, Marc; Didier, Anne
2009-06-15
The present paper describes a behavioral setup, designed and built in our laboratory, allowing the systematic and automatic recording of performances in a large number of olfactory behavioral tests. This computerized monitoring system has the capability of measuring different aspects of olfactory function in mice using different paradigms including threshold evaluation, generalization tasks, habituation/dishabituation, olfactory associative learning, short-term olfactory memory with or without a spatial component, and olfactory preferences. In this paper, we first describe the hole-board apparatus and its software and then give the experimental results obtained using this system. We demonstrate that one single, easy-to-run experimental setup is a powerful tool for the study of olfactory behavior in mice that has many advantages and broad applications.
International Nuclear Information System (INIS)
Frolov, Valeri P.; Mukohyama, Shinji
2011-01-01
The aim of this paper is to demonstrate that in models with large extra dimensions under special conditions one can extract information from the interior of 4D black holes. For this purpose we study an induced geometry on a test brane in the background of a higher-dimensional static black string or a black brane. We show that, at the intersection surface of the test brane and the bulk black string or brane, the induced metric has an event horizon, so that the test brane contains a black hole. We call it a brane hole. When the test brane moves with a constant velocity V with respect to the bulk black object, it also has a brane hole, but its gravitational radius r e is greater than the size of the bulk black string or brane r 0 by the factor (1-V 2 ) -1 . We show that bulk ''photon'' emitted in the region between r 0 and r e can meet the test brane again at a point outside r e . From the point of view of observers on the test brane, the events of emission and capture of the bulk photon are connected by a spacelike curve in the induced geometry. This shows an example in which extra dimensions can be used to extract information from the interior of a lower-dimensional black object. Instead of the bulk black string or brane, one can also consider a bulk geometry without a horizon. We show that nevertheless the induced geometry on the moving test brane can include a brane hole. In such a case the extra dimensions can be used to extract information from the complete region of the brane-hole interior. We discuss thermodynamic properties of brane holes and interesting questions which arise when such an extra-dimensional channel for the information mining exists.
Hufen, Heike Sibyl
2006-01-01
Untersuchung des Einflusses einer Abänderung des etablierten Testsystems modifiziertes Hole-Board und der Auswirkung verschiedener Habituierungsprotokolle auf Kognition und Verhalten von Ratten in dem Verhaltenstest. Einführung eines verkürzten Habituierungsprotokolls und des neu entwickelten doppelten Hole-Board-Tests als Test für Kognition und Verhalten. Die Veränderung am Testsystem ruft bei der Ratte die Wahl einer veränderten Verhaltensstrategie hervor, die Einführung eines nur eintägige...
Head-dipping by rats with lesions of superior colliculus during extended testing in hole-board.
Dean, P; Redgrave, P
1983-06-01
It has previously been shown that rats with large lesions of the superior colliculus fail to head-dip during a 5 min hole-board test. To investigate whether this was a permanent deficit in exploratory behaviour arising from inability to produce the appropriate responses, collicular rats were tested in a hole-board for 60 min or more. The period before their first head-dip (mean 27 min 40 sec) was much longer than for unoperated animals (mean 22 sec), but subsequently the collicular rats showed a pattern of head-dipping that was similar (although not identical) to that of the control rats. It appears that rats with lesions of the superior colliculus are not permanently prevented from exploring the hole-board by inability to produce the required response, but rather that they may have difficulty in discovering certain features of novel environments.
International Nuclear Information System (INIS)
Yuan, Hui; Zhu, Hao; Badwan, Ahmad; Ioannou, Dimitris E.; Li, Qiliang; Richter, Curt A.; Kirillov, Oleg
2014-01-01
A gate assisted Kelvin test structure based on Si nanowire field effect transistors has been designed and fabricated for the characterization of the transistor source/drain contacts. Because the Si nanowire field effect transistors exhibit ambipolar characteristics with electron current slightly lower than the hole current, we can select the type of carriers (electrons or holes) flowing through the same contacts and adjust the current by the applied gate voltage. In this way, we are able to measure the characteristics of the same contact with either pure electron or hole flow. In addition, we found that the nanowire contacts behave very differently depending on the current flow directions. This indicates that the source and drain contact resistance can be dramatically different. Such a gate assisted Kelvin Test structure will lead to future metrology and applications in nanoelectronics.
Maldonado, Florian; Muller, D.C.; Morrison, J.N.
1979-01-01
The UE25a-3 drill hole, located in the Calico Hills area, southwestern part of the Nevada Test Site, was drilled as part of an effort to evaluate the Calico Hills area as a possible nuclear waste repository site. The purpose of the drill hole was to verify the existence of an intrusive crystalline body in the subsurface and to determine the stratigraphy, structure, and nature of fractures of the cored rocks. Cored samples were obtained for mineral, chemical, and material property analyses.
Testing the relativistic Doppler boost hypothesis for supermassive black hole binary candidates
Charisi, Maria; Haiman, Zoltán; Schiminovich, David; D'Orazio, Daniel J.
2018-02-01
Supermassive black hole binaries (SMBHBs) should be common in galactic nuclei as a result of frequent galaxy mergers. Recently, a large sample of sub-parsec SMBHB candidates was identified as bright periodically variable quasars in optical surveys. If the observed periodicity corresponds to the redshifted binary orbital period, the inferred orbital velocities are relativistic (v/c ≈ 0.1). The optical and UV luminosities are expected to arise from gas bound to the individual BHs, and would be modulated by the relativistic Doppler effect. The optical and UV light curves should vary in tandem with relative amplitudes which depend on the respective spectral slopes. We constructed a control sample of 42 quasars with aperiodic variability, to test whether this Doppler colour signature can be distinguished from intrinsic chromatic variability. We found that the Doppler signature can arise by chance in ˜20% (˜37%) of quasars in the nUV (fUV) band. These probabilities reflect the limited quality of the control sample and represent upper limits on how frequently quasars mimic the Doppler brightness+colour variations. We performed separate tests on the periodic quasar candidates, and found that for the majority, the Doppler boost hypothesis requires an unusually steep UV spectrum or an unexpectedly large BH mass and orbital velocity. We conclude that at most ˜1/3rd of these periodic candidates can harbor Doppler-modulated SMBHBs.
Jacob, Rinku; Harikrishnan, K. P.; Misra, R.; Ambika, G.
2018-01-01
Recurrence networks and the associated statistical measures have become important tools in the analysis of time series data. In this work, we test how effective the recurrence network measures are in analyzing real world data involving two main types of noise, white noise and colored noise. We use two prominent network measures as discriminating statistic for hypothesis testing using surrogate data for a specific null hypothesis that the data is derived from a linear stochastic process. We show that the characteristic path length is especially efficient as a discriminating measure with the conclusions reasonably accurate even with limited number of data points in the time series. We also highlight an additional advantage of the network approach in identifying the dimensionality of the system underlying the time series through a convergence measure derived from the probability distribution of the local clustering coefficients. As examples of real world data, we use the light curves from a prominent black hole system and show that a combined analysis using three primary network measures can provide vital information regarding the nature of temporal variability of light curves from different spectroscopic classes.
Hobza, Christopher M.; Sibray, Steven S.
2014-01-01
Recently (2004) adopted legislation in Nebraska requires a sustainable balance between long-term supplies and uses of surface-water and groundwater and requires Natural Resources Districts to understand the effect of groundwater use on surface-water systems when developing a groundwater-management plan. The South Platte Natural Resources District (SPNRD) is located in the southern Nebraska Panhandle and overlies the nationally important High Plains aquifer. Declines in water levels have been documented, and more stringent regulations have been enacted to ensure the supply of ground-water will be sufficient to meet the needs of future generations. Because an improved understanding of the hydrogeologic characteristics of this aquifer system is needed to ensure sustainability of groundwater withdrawals, the U.S. Geological Survey, in cooperation with the SPNRD, Conservation and Survey Division of the University of Nebraska-Lincoln, and the Nebraska Environmental Trust, began a hydrogeologic study of the SPNRD to describe the lithology and thickness of the High Plains aquifer. This report documents these characteristics at 29 new test holes, 28 of which were drilled to the base of the High Plains aquifer. Herein the High Plains aquifer is considered to include all hydrologically connected units of Tertiary and Quaternary age. The depth to the base of aquifer was interpreted to range from 37 to 610 feet in 28 of the 29 test holes. At some locations, particularly northern Kimball County, the base-of-aquifer surface was difficult to interpret from drill cutting samples and borehole geophysical logs. The depth to the base of aquifer determined for test holes drilled for this report was compared with the base-of-aquifer surface interpreted by previous researchers. In general, there were greater differences between the base-of-aquifer elevation reported herein and those in previous studies for areas north of Lodgepole Creek compared to areas south of Lodgepole Creek. The
The archaeology of drill hole U20bc, Nevada Test Site, Nye County, Nevada
International Nuclear Information System (INIS)
McLane, A.R.; Hemphill, M.L.; Livingston, S.J.; Pippin, L.C.; Walsh, L.A.
1992-01-01
Impacts to four sites near drill hole U20bc on Pahute Mesa in the northwestern part of the Nevada Test Site were mitigated through data recovery. The work was done during 1988 by the Desert Research Institute for the Department of Energy, Nevada Field Office (DOE/NV)- The four sites that warranted data recovery were 26NY3171, 26NY3173, 26NY5561 and 26NY5566. These sites had previously been determined eligible to the National Register of Historic Places. They were temporary camps that contained lithic debitage, projectile points, milling stones and pottery, and therefore contributed significant information concerning the prehistory of the area. The study of the archaeological remains shows that the prehistoric people subsisted on plant foods and game animals as determined by the artifacts including manos, metates, pottery, lithic scrapers, and projectile points. The time sensitive arfifacts (pottery and diagnostic points) suggest that the region was used from about 12,000 B.P. to just before the historic period, possibly 150 years ago. DOE/NV has met its obligation to mitigate adverse impacts to the cultural resources at U20bc. Therefore, it is recommended that this project proceed as planned
Testing the Kerr Black Hole Hypothesis Using X-Ray Reflection Spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Bambi, Cosimo; Nampalliwar, Sourabh [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 200433 Shanghai (China); Cárdenas-Avendaño, Alejandro [Programa de Matemática, Fundación Universitaria Konrad Lorenz, 110231 Bogotá (Colombia); Dauser, Thomas [Remeis Observatory and ECAP, Universität Erlangen-Nürnberg, D-96049 Bamberg (Germany); García, Javier A., E-mail: bambi@fudan.edu.cn [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)
2017-06-20
We present the first X-ray reflection model for testing the assumption that the metric of astrophysical black holes is described by the Kerr solution. We employ the formalism of the transfer function proposed by Cunningham. The calculations of the reflection spectrum of a thin accretion disk are split into two parts: the calculation of the transfer function and the calculation of the local spectrum at any emission point in the disk. The transfer function only depends on the background metric and takes into account all the relativistic effects (gravitational redshift, Doppler boosting, and light bending). Our code computes the transfer function for a spacetime described by the Johannsen metric and can easily be extended to any stationary, axisymmetric, and asymptotically flat spacetime. Transfer functions and single line shapes in the Kerr metric are compared to those calculated from existing codes to check that we reach the necessary accuracy. We also simulate some observations with NuSTAR and LAD/eXTP and fit the data with our new model to show the potential capabilities of current and future observations to constrain possible deviations from the Kerr metric.
Charged Matter Tests of Cosmic Censorship for Extremal and Nearly-Extremal Black Holes
Sorce, Jonathan; Wald, Robert
2017-01-01
We investigate scenarios in which adding electrically charged matter to a black hole may cause it to become over-extremal, violating cosmic censorship. It has previously been shown that when the matter is localized as a point particle, no violation occurs for extremal black holes to lowest nonvanishing order in the particle's charge and mass. However, recent work has suggested that violations may be possible when the black hole deviates from extremality. We show that these potential violations always occur above lowest nonvanishing order, and conclude that no lowest-order violation can occur in the nearly-extremal case unless a violation also occurs in the extremal case. We also extend the previous results on point particles to show that no violations occur to second order in charge when an arbitrary charged matter configuration is added to an extremal Kerr black hole, provided only that the matter satisfies the null energy condition.
Interpretation of hole-to-surface resistivity measurements at Yucca Mountain, Nevada Test Site
International Nuclear Information System (INIS)
Daniels, J.J.; Scott, J.H.
1981-01-01
Hole-to-surface resistivity measurements at Yucca Mountain indicate the presence of many near-surface geologic inhomogeneities, with no definite indication of deep structural features. A resistive anomaly near drill hole UE25a-6 is interpreted as a thin, vertical, resistive body that nearly intersects the surface, and may be caused by a silicified, or calcified, fracture zone. A resistive anomaly near hole UE25a-7 is probably caused by a near surface, horizontal, lens-shaped body that may represent a devitrified zone in the Tiva Canyon Member. Many conductive anomalies were detected to the southwest of hole UE25a-4. However, these anomalies are interpreted to be caused by variations in the thickness of the surface alluvium
Energy Technology Data Exchange (ETDEWEB)
Purtymun, W.D.
1995-01-01
Hundreds of holes have been drilled into the Pajarito Plateau and surrounding test areas of the Los Alamos National Laboratory since the end of World War II. They range in depth from a few feet to more than 14,000 ft. The holes were drilled to provide geologic, hydrologic, and engineering information related to development of a water supply, to provide data on the likelihood or presence of subsurface contamination from hazardous and nuclear materials, and for engineering design for construction. The data contained in this report provide a basis for further investigations into the consequences of our past, present, and future interactions with the environment.
International Nuclear Information System (INIS)
Purtymun, W.D.
1995-01-01
Hundreds of holes have been drilled into the Pajarito Plateau and surrounding test areas of the Los Alamos National Laboratory since the end of World War II. They range in depth from a few feet to more than 14,000 ft. The holes were drilled to provide geologic, hydrologic, and engineering information related to development of a water supply, to provide data on the likelihood or presence of subsurface contamination from hazardous and nuclear materials, and for engineering design for construction. The data contained in this report provide a basis for further investigations into the consequences of our past, present, and future interactions with the environment
Test with different stress measurement methods in two orthogonal bore holes in Aespoe HRL
International Nuclear Information System (INIS)
Janson, Thomas; Stigsson, Martin
2002-12-01
Within the scope of work, to provide the necessary rock mechanics support for the site investigations, SKB has studied some available pieces of equipment for in situ stress measurements in deep boreholes. A project with the objective to compare three different pieces of equipment for in situ stress measurements under similar conditions has been carried out. The main objective for the project is to compare the three different pieces of equipment for in situ stress measurements and find a strategy for SKB's Site Investigations to determine the state of stress in the rock mass. Two units of equipment use the overcoring method while the third uses the hydraulic fracturing method. The overcoring was performed by AECL, using Deep Door stopper Gauge System (DDGS), and SwedPower, using their triaxial strain measuring instrument (Borre Probe). MeSy Geo Systeme GmbH performed the hydraulic fracturing. The DDGS system is a new method to SKB while the experience of the SwedPower overcoring and the hydraulic fracturing methods are long. The tests were performed in the same orthogonal boreholes at Aespoe Hard Rock Laboratory (HRL), Oskarshamn, Sweden. The measured results have been verified against known conditions at the Aespoe HRL. The results from the three in situ stress measurement methods rose more questions than answers. Which illustrate the complexity to determine the in situ stresses in a rock mass. To understand the difference in results and answer the questions, it was necessary to do deeper investigations such as laboratory tests and theoretical calculations such as geological structure model, analysis of the influence of a nearby fracture, P-wave measurements, uniaxial tests on small cores from the HQ-3 core, theoretical and numerical analyses of the hole bottom (theoretical strains, stress concentrations and microcracking), auditing of DDGS measurements results and assumptions in the DDGS analyse and microscopy investigations on the cores. The following conclusions
Black holes in many dimensions at the CERN Large Hadron Collider: testing critical string theory.
Hewett, JoAnne L; Lillie, Ben; Rizzo, Thomas G
2005-12-31
We consider black hole production at the CERN Large Hadron Collider (LHC) in a generic scenario with many extra dimensions where the standard model fields are confined to a brane. With approximately 20 dimensions the hierarchy problem is shown to be naturally solved without the need for large compactification radii. We find that in such a scenario the properties of black holes can be used to determine the number of extra dimensions, . In particular, we demonstrate that measurements of the decay distributions of such black holes at the LHC can determine if is significantly larger than 6 or 7 with high confidence and thus can probe one of the critical properties of string theory compactifications.
Black holes in many dimensions at the CERN large Hadron collider testing critical string theory
Hewett, J L; Rizzo, T G; Hewett, JoAnne L.; Lillie, Ben; Rizzo, Thomas G.
2005-01-01
We consider black hole production at the CERN Large Hadron Collider (LHC) in a generic scenario with many extra dimensions where the standard model fields are confined to a brane. With ~20 dimensions the hierarchy problem is shown to be naturally solved without the need for large compactification radii. We find that in such a scenario the properties of black holes can be used to determine the number of extra dimensions, n. In particular, we demonstrate that measurements of the decay distributions of such black holes at the LHC can determine if n is significantly larger than 6 or 7 with high confidence and thus can probe one of the critical properties of string theory compactifications.
Tests for the existence of black holes through gravitational wave echoes
Cardoso, Vitor; Pani, Paolo
2017-09-01
The existence of black holes and spacetime singularities is a fundamental issue in science. Despite this, observations supporting their existence are scarce, and their interpretation is unclear. In this Perspective we outline the case for black holes that has been made over the past few decades, and provide an overview of how well observations adjust to this paradigm. Unsurprisingly, we conclude that observational proof for black holes is, by definition, impossible to obtain. However, just like Popper's black swan, alternatives can be ruled out or confirmed to exist with a single observation. These observations are within reach. In the coming years and decades, we will enter an era of precision gravitational-wave physics with more sensitive detectors. Just as accelerators have required larger and larger energies to probe smaller and smaller scales, more sensitive gravitational-wave detectors will probe regions closer and closer to the horizon, potentially reaching Planck scales and beyond. What may be there, lurking?
The olfactory hole-board test in rats: a new paradigm to study aversion and preferences to odors
Wernecke, Kerstin E. A.; Fendt, Markus
2015-01-01
Odors of biological relevance (e.g., predator odors, sex odors) are known to effectively influence basic survival needs of rodents such as anti-predatory defensiveness and mating behaviors. Research focused on the effects of these odors on rats’ behavior mostly includes multi-trial paradigms where animals experience single odor exposures in subsequent, separated experimental sessions. In the present study, we introduce a modification of the olfactory hole-board test that allows studying the e...
International Nuclear Information System (INIS)
Gonzales, M.M.
1989-02-01
Between 1976 and 1988, many surveys were performed related to the Waste Isolation Pilot Plant and its geologic and hydrologic test holes, which are part of the hydrogeologic-characterization program. Among these surveys were two First-Order, Class I vertical surveys, a satellite survey, and a number of township-range surveys. An overview of the basic function, history, and methodology of each survey type is provided in this report along with a review and comparison of the two major test-hole surveys. Elevation and location data for 96 test holes and 4 shafts are also included. The comparison of the satellite survey to the township-range surveys showed that the latter have the following advantages: their data are more complete; their elevation data are more accurate; and their techniques can be used for surveying new wells, keeping the data set consistent. Therefore, the final township-range surveys were selected as the best source of elevation and location data to use in the WIPP hydrology program. 17 refs., 5 figs., 10 tabs
Near-infrared polarimetry as a tool for testing properties of accreting supermassive black holes
Czech Academy of Sciences Publication Activity Database
Zamaninasab, M.; Eckart, A.; Dovčiak, Michal; Karas, Vladimír; Schoedel, R.; Witzel, G.; Sabha, N.; García-Marín, M.; Kunneriath, D.; Muzic, K.; Straubmeier, C.; Valencia-S, M.; Zensus, J. A.
2011-01-01
Roč. 413, č. 1 (2011), s. 322-332 ISSN 0035-8711 R&D Projects: GA ČR GA205/07/0052 Institutional research plan: CEZ:AV0Z10030501 Keywords : polarimetry * black holes * relativity * galactic centre Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.900, year: 2011
Post-test examination of a copper electrode from deposition hole 5 in the Prototype Repository
International Nuclear Information System (INIS)
Rosborg, Bo
2013-04-01
Three copper electrodes have been exposed for eight years in the outer section of the Prototype Repository at Aespoe. The electrodes were installed in the upper bentonite block of deposition hole 5 in May 2003. Most of the time the temperature of the electrodes has been somewhat below 35 deg C. The electrodes were retrieved for post-test examination in September 2011. This report presents results from electrochemical measurements and the post-test examination of one of the electrodes. The corrosion potential of the examined copper electrode was -40 mV SHE (2011-02-04) when part of the concrete plug to the outer section of the repository had been removed and made measurements possible. When the back-fill in the deposition tunnel had been removed it was 25 mV SHE (2011-09-12). Finally, before letting loose the copper electrode from the retrieved bentonite block, the corrosion potential was found to be 165 mV SHE (2011-11-15) being a sign of air ingress to the electrode/ bentonite interface. It was immediately obvious from the appearance of the copper electrode, when part of the surrounding bentonite had been removed, that both Cu(I) and Cu(II) corrosion products existed on the electrode surface. X-ray diffraction measurements also verified the presence of cuprite, Cu 2 O, and malachite, Cu 2 (OH) 2 CO 3 , on the electrode; however, paratacamite, Cu 2 (OH) 3 Cl, was not found. The performed Fourier transform infrared and Raman spectroscopy confirmed these observations. The corrosion product film, of which cuprite is the main part, was quite uneven and porous. No unmistakable signs of pitting have been found. The appearance of the copper electrode reminded of the coupons from the retrieved LOT test parcels, but was different from the appearance of the surface on the full-size canisters. For the latter blue-green Cu(II) corrosion products have not or only rarely been observed from visual examination immediately after removing the surrounding bentonite. Differences that
Post-test examination of a copper electrode from deposition hole 5 in the Prototype Repository
Energy Technology Data Exchange (ETDEWEB)
Rosborg, Bo [Rosborg Consulting, Nykoeping (Sweden)
2013-04-15
Three copper electrodes have been exposed for eight years in the outer section of the Prototype Repository at Aespoe. The electrodes were installed in the upper bentonite block of deposition hole 5 in May 2003. Most of the time the temperature of the electrodes has been somewhat below 35 deg C. The electrodes were retrieved for post-test examination in September 2011. This report presents results from electrochemical measurements and the post-test examination of one of the electrodes. The corrosion potential of the examined copper electrode was -40 mV SHE (2011-02-04) when part of the concrete plug to the outer section of the repository had been removed and made measurements possible. When the back-fill in the deposition tunnel had been removed it was 25 mV SHE (2011-09-12). Finally, before letting loose the copper electrode from the retrieved bentonite block, the corrosion potential was found to be 165 mV SHE (2011-11-15) being a sign of air ingress to the electrode/ bentonite interface. It was immediately obvious from the appearance of the copper electrode, when part of the surrounding bentonite had been removed, that both Cu(I) and Cu(II) corrosion products existed on the electrode surface. X-ray diffraction measurements also verified the presence of cuprite, Cu{sub 2}O, and malachite, Cu{sub 2}(OH){sub 2}CO{sub 3}, on the electrode; however, paratacamite, Cu{sub 2}(OH){sub 3}Cl, was not found. The performed Fourier transform infrared and Raman spectroscopy confirmed these observations. The corrosion product film, of which cuprite is the main part, was quite uneven and porous. No unmistakable signs of pitting have been found. The appearance of the copper electrode reminded of the coupons from the retrieved LOT test parcels, but was different from the appearance of the surface on the full-size canisters. For the latter blue-green Cu(II) corrosion products have not or only rarely been observed from visual examination immediately after removing the surrounding
Hees, A; Do, T; Ghez, A M; Martinez, G D; Naoz, S; Becklin, E E; Boehle, A; Chappell, S; Chu, D; Dehghanfar, A; Kosmo, K; Lu, J R; Matthews, K; Morris, M R; Sakai, S; Schödel, R; Witzel, G
2017-05-26
We demonstrate that short-period stars orbiting around the supermassive black hole in our Galactic center can successfully be used to probe the gravitational theory in a strong regime. We use 19 years of observations of the two best measured short-period stars orbiting our Galactic center to constrain a hypothetical fifth force that arises in various scenarios motivated by the development of a unification theory or in some models of dark matter and dark energy. No deviation from general relativity is reported and the fifth force strength is restricted to an upper 95% confidence limit of |α|black hole. A sensitivity analysis for future measurements is also presented.
Testing the Black Hole No-hair Theorem with OJ287
Czech Academy of Sciences Publication Activity Database
Valtonen, M.J.; Mikkola, S.; Lehto, H.J.; Gopakumar, A.; Hudec, René; Poledníková, J.
2011-01-01
Roč. 742, č. 1 (2011), 22/1-22/12 ISSN 0004-637X R&D Projects: GA ČR GA205/08/1207 Grant - others:GA ČR(CZ) GA102/09/0997; GA MŠk(CZ) ME09027 Institutional research plan: CEZ:AV0Z10030501 Keywords : black hole physics * BL Lacertae objects Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 6.024, year: 2011
Geology of the UE17e drill hole, Area 17, Nevada Test Site
International Nuclear Information System (INIS)
Hodson, J.N.; Hoover, D.L.
1979-03-01
The UE17e drill hole, located at the northwest corner of Syncline Ridge, was cored from 3.05 m (10 ft) to a total depth of 914.4 m (3,000 ft) in unit J (Mississippian) of the Eleana (Devonian and Mississippian) to obtain samples for mineral, chemical, and physical-property analyses. UE17e penetrated 73.5 m (241 ft) of the quartzite subunit and 840.9 m (2,759 ft) of the argillite subunit of unit J. Less than 0.4 percent quartzite is present in the argillite subunit. Dips range from 12 0 to 18 0 . Twenty-three faults were observed in the core or on geophysical logs. Most of these faults affect only a few meters of the core and probably have displacements of a few meters. The majority of fractures are parallel to bedding planes. Fracture frequency ranges from 3.4 to 9.4 fractures per meter in the upper part of the cored interval and 1.4 to 5.9 fractures per meter in the lower part of the cored interval. The core index indicates that the lower part of the hole is more competent than the upper part. Lower competency in the upper part of the hole may be caused by weathering and/or near-surface stress relief. Physical, mechanical, and thermal property measurements indicate that bedding and fracturing are the major factors in variation of properties between samples. 17 figures, 10 tables
Black hole continuum spectra as a test of general relativity: quadratic gravity
Ayzenberg, Dimitry; Yunes, Nicolás
2017-06-01
Observations of the continuum spectrum emitted by accretion disks around black holes allows us to infer their properties, including possibly whether black holes are described by the Kerr metric. Some modified gravity theories do not admit the Kerr metric as a solution, and thus, continuum spectrum observations could be used to constrain these theories. We here investigate whether current and next generation x-ray observations of the black hole continuum spectrum can constrain such deviations from Einstein’s theory, focusing on two well-motivated modified quadratic gravity theories: dynamical Chern-Simons gravity and Einstein-dilaton-Gauss-Bonnet gravity. We do so by determining whether the non-Kerr deviations in the continuum spectrum introduced by these theories are larger than the observational error intrinsic to the observations. We find that dynamical Chern-Simons gravity cannot be constrained better than current bounds with current or next generation continuum spectrum observations. Einstein-dilaton-Gauss-Bonnet gravity, however, may be constrained better than current bounds with next generation telescopes, as long as the systematic error inherent in the accretion disk modeling is decreased below the predicted observational error.
International Nuclear Information System (INIS)
Carr, M.D.; Waddell, S.J.; Vick, G.S.; Stock, J.M.; Monsen, S.A.; Harris, A.G.; Cork, B.W.; Byers, F.M. Jr.
1986-01-01
Yucca Mountain in southern Nye County, Nevada, has been proposed as a potential site for the underground disposal of high-level nuclear waste. An exploratory drill hole designated UE25p No. 1 was drilled 3 km east of the proposed repository site to investigate the geology and hydrology of the rocks that underlie the Tertiary volcanic and sedimentary rock sequence forming Yucca Mountain. Silurian dolomite assigned to the Roberts Mountain and Lone Mountain Formations was intersected below the Tertiary section between a depth of approximately 1244 m (4080 ft) and the bottom of the drill hole at 1807 m (5923 ft). These formations are part of an important regional carbonate aquifer in the deep ground-water system. Tertiary units deeper than 1139 m (3733 ft) in drill hole UE25p No. 1 are stratigraphically older than any units previously penetrated by drill holes at Yucca Mountain. These units are, in ascending order, the tuff of Yucca Flat, an unnamed calcified ash-flow tuff, and a sequence of clastic deposits. The upper part of the Tertiary sequence in drill hole UE25p No. 1 is similar to that found in other drill holes at Yucca Mountain. The Tertiary sequence is in fault contact with the Silurian rocks. This fault between Tertiary and Paleozoic rocks may correlate with the Fran Ridge fault, a steeply westward-dipping fault exposed approximately 0.5 km east of the drill hole. Another fault intersects UE25p No. 1 at 873 m (2863 ft), but its surface trace is concealed beneath the valley west of the Fran Ridge fault. The Paintbrush Canyon fault, the trace of which passes less than 100 m (330 ft) east of the drilling site, intersects drill hole UE25p No. 1 at a depth of approximately 78 m (255 ft). The drill hole apparently intersected the west flank of a structural high of pre-Tertiary rocks, near the eastern edge of the Crater Flat structural depression
International Nuclear Information System (INIS)
Feast, M.W.
1981-01-01
This article deals with two questions, namely whether it is possible for black holes to exist, and if the answer is yes, whether we have found any yet. In deciding whether black holes can exist or not the central role in the shaping of our universe played by the forse of gravity is discussed, and in deciding whether we are likely to find black holes in the universe the author looks at the way stars evolve, as well as white dwarfs and neutron stars. He also discusses the problem how to detect a black hole, possible black holes, a southern black hole, massive black holes, as well as why black holes are studied
Observational tests of the Electro-Magnetic Black Hole Theory in Gamma-Ray Bursts
Ruffini, Remo
2002-01-01
The Relative Space-Time Transformation (RSTT) Paradigm and the Interpretation of the Burst Structure (IBS) Paradigm are applied to the analysis of the structure of the burst and afterglow of Gamma-Ray Bursts within the theory based on the vacuum polarization process occurring in an Electro-Magnetic Black Hole, the EMBH theory. This framework is applied to the study of the GRB991216 which is used as a prototype. The GRB-Supernova Time Sequence (GSTS) Paradigm, which introduces the concept of i...
Orbital evolution of a test particle around a black hole: Higher-order corrections
International Nuclear Information System (INIS)
Burko, Lior M.
2003-01-01
We study under certain assumptions the orbital evolution of a radiation-damped binary in the extreme mass ratio limit, and the resulting waveforms, to one order beyond what can be obtained using the conservation laws approach. The equations of motion are solved perturbatively in the mass ratio (or the corresponding parameter in the scalar field toy model), using the self-force, for quasicircular orbits around a Schwarzschild black hole. This approach is applied for the scalar model. Higher-order corrections yield a phase shift which, if included, may make gravitational-wave astronomy potentially highly accurate
Design and testing of a mesocosm-scale habitat for culturing the endangered Devils Hole Pupfish
Feuerbacher, Olin; Bonar, Scott A.; Barrett, Paul J.
2016-01-01
aptive propagation of desert spring fishes, whether for conservation or research, is often difficult, given the unique and often challenging environments these fish utilize in nature. High temperatures, low dissolved oxygen, minimal water flow, and highly variable lighting are some conditions a researcher might need to recreate to simulate their natural environments. Here we describe a mesocosm-scale habitat created to maintain hybrid Devils Hole × Ash Meadows Amargosa Pupfish (Cyprinodon diabolis × C. nevadensis mionectes) under conditions similar to those found in Devils Hole, Nevada. This 13,000-L system utilized flow control and natural processes to maintain these conditions rather than utilizing complex and expensive automation. We designed a rotating solar collector to control natural sunlight, a biological reactor to consume oxygen while buffering water quality, and a reverse-daylight photosynthesis sump system to stabilize nighttime pH and swings in dissolved oxygen levels. This system successfully controlled many desired parameters and helped inform development of a larger, more permanent desert fish conservation facility at the U.S. Fish and Wildlife Service’s Ash Meadows National Wildlife Refuge, Nevada. For others who need to raise fish from unique habitats, many components of the scalable and modular design of this system can be adapted at reasonable cost.
Test of a General Formula for Black Hole Gravitational Wave Kicks
van Meter, James R.; Miller, M. Coleman; Baker, John G.; Boggs, William D.; Kelly, Bernard J.
2010-01-01
Although the gravitational wave kick velocity in the orbital plane of coalescing black holes has been understood for some time, apparently conflicting formulae have been proposed for the dominant outof- plane kick, each a good fit to different data sets. This is important to resolve because it is only the out-of-plane kicks that can reach more than 500 km s-l and can thus eject merged remnants from galaxies. Using a different ansatz for the out-of-plane kick, we show that we can fit almost all existing data to better than 5%. This is good enough for any astrophysical calculation and shows that the previous apparent conflict was only because the two data sets explored different aspects of the kick parameter space.
Test the mergers of the primordial black holes by high frequency gravitational-wave detector
Energy Technology Data Exchange (ETDEWEB)
Li, Xin; Wang, Li-Li; Li, Jin [Chongqing University, Department of Physics, Chongqing (China)
2017-09-15
The black hole could have a primordial origin if its mass is less than 1M {sub CircleDot}. The mergers of these black hole binaries generate stochastic gravitational-wave background (SGWB). We investigate the SGWB in high frequency band 10{sup 8}-10{sup 10} Hz. It can be detected by high frequency gravitational-wave detector. Energy density spectrum and amplitude of the SGWB are derived. The upper limit of the energy density spectrum is around 10{sup -7}. Also, the upper limit of the amplitude ranges from 10{sup -31.5} to 10{sup -29.5}. The fluctuation of spacetime origin from gravitational wave could give a fluctuation of the background electromagnetic field in a high frequency gravitational-wave detector. The signal photon flux generated by the SGWB in the high frequency band 10{sup 8}-10{sup 10} Hz is derived, which ranges from 1 to 10{sup 2} s{sup -1}. The comparison between the signal photon flux generated by relic gravitational waves (RGWs) and the SGWB is also discussed in this paper. It is shown that the signal photon flux generated by the RGW, which is predicted by the canonical single-field slow-roll inflation models, is sufficiently lower than the one generated by the SGWB in the high frequency band 10{sup 8}-10{sup 10} Hz. Our results indicate that the SGWB in the high frequency band 10{sup 8}-10{sup 10} Hz is more likely to be detected by the high frequency gravitational-wave detector. (orig.)
Oades, R D
1982-02-01
An ability to distinguish relevance from irrelevance has been attributed to an attention-related mechanism and may be disturbed in thought-disordered schizophrenics. Stimulus choice strategies depend on such mechanisms (ia) and are anomalous in some schizophrenics. An impaired function of the ventral tegmentum (VTA) has been postulated for schizophrenia. The effects of VTA damage on the relevance/irrelevance distinction and strategy formation in rats has been studied. Over a 5 day-period food-deprived rats were given nine sessions of ten trials each on a 16-hole board. They searched for food pellets placed consistently in four holes. During testing the control group (C) reduced the number of empty holes visited more than the group with VTA damage. The proportion of repeated visits to relevant holes (had food) to irrelevant holes (never had food) increased for the C but not for the VTA group. The frequency with which a preferred sequence of food-hole visits was repeated during a session increased over sessions for the C but not the VTA group. The VTA group changed their preference between sessions more often. Animals with VTA damage were capable of simple learning, but were impaired when complexity increased. This may be due in part to a deficit in attention-related mechanisms. This encourages further study of the contribution of the VTA to putative attentional dysfunction and the use of the hole-board search task as a model for the study of cognitive function and dysfunction.
'Kludge' gravitational waveforms for a test-body orbiting a Kerr black hole
International Nuclear Information System (INIS)
Babak, Stanislav; Fang Hua; Gair, Jonathan R.; Glampedakis, Kostas; Hughes, Scott A.
2007-01-01
One of the most exciting potential sources of gravitational waves for low-frequency, space-based gravitational wave (GW) detectors such as the proposed Laser Interferometer Space Antenna (LISA) is the inspiral of compact objects into massive black holes in the centers of galaxies. The detection of waves from such 'extreme mass ratio inspiral' systems (EMRIs) and extraction of information from those waves require template waveforms. The systems' extreme mass ratio means that their waveforms can be determined accurately using black hole perturbation theory. Such calculations are computationally very expensive. There is a pressing need for families of approximate waveforms that may be generated cheaply and quickly but which still capture the main features of true waveforms. In this paper, we introduce a family of such kludge waveforms and describe ways to generate them. Different kinds of kludges have already been used to scope out data analysis issues for LISA. The models we study here are based on computing a particle's inspiral trajectory in Boyer-Lindquist coordinates, and subsequent identification of these coordinates with flat-space spherical polar coordinates. A gravitational waveform may then be computed from the multipole moments of the trajectory in these coordinates, using well-known solutions of the linearised gravitational perturbation equations in flat space time. We compute waveforms using a standard slow-motion quadrupole formula, a quadrupole/octupole formula, and a fast-motion, weak-field formula originally developed by Press. We assess these approximations by comparing to accurate waveforms obtained by solving the Teukolsky equation in the adiabatic limit (neglecting GW backreaction). We find that the kludge waveforms do extremely well at approximating the true gravitational waveform, having overlaps with the Teukolsky waveforms of 95% or higher over most of the parameter space for which comparisons can currently be made. Indeed, we find these
A simple test for the stability of a black hole by S-deformation
Kimura, Masashi
2017-12-01
We study a sufficient condition for proving the stability of a black hole when the master equation for linear perturbation takes the form of the Schrödinger equation. If the potential contains a small negative region, the S-deformation method is usually used to show the non-existence of an unstable mode. However, in some cases, it is hard to find an appropriate deformation function analytically because the only way found so far to find it is by trial-and-error. In this paper, we show that it is easy to find a regular deformation function by numerically solving the differential equation such that the deformed potential vanishes everywhere, when the spacetime is stable. Even if the spacetime is almost marginally stable, our method still works. We also discuss a simple toy model which can be solved analytically, and show that the condition for the non-existence of a bound state is the same as that for the existence of a regular solution for the differential equation in our method. From these results, we conjecture that our criteria is also a necessary condition.
Propagating mass accretion rate fluctuations in black hole X-ray binaries: quantitative tests
Rapisarda, S.; Ingram, A.; van der Klis, M.
2017-10-01
Over the past 20 years, a consistent phenomenology has been established to describe the variability properties of Black Hole X-ray Binaries (BHBs). However, the physics behind the observational data is still poorly understood. The recently proposed model PROPFLUC assumes a truncated disc/hot inner flow geometry, with mass accretion rate fluctuations propagating through a precessing inner flow. These two processes give rise respectively to broad band variability and QPO. Because of propagation, the emission from different regions of the disc/hot flow geometry is correlated. In our study we applied the model PROPFLUC on different BHBs (including XTE J1550-564 and Cygnus X-1) in different spectral states, fitting jointly the power spectra in two energy bands and the cross-spectrum between these two bands. This represents the first study to utilize quantitive fitting of a physical model simultaneously to observed power and cross-spectra. For the case of XTE J1550-564, which displays a strong QPO, we found quantitative and qualitative discrepancies between model predictions and data, whereas we find a good fit for the Cygnus X-1 data, which does not display a QPO. We conclude that the discrepancies are generic to the propagating fluctuations paradigm, and may be related to the mechanism originating the QPO.
Sesana, Alberto; Haiman, Zoltán; Kocsis, Bence; Kelley, Luke Zoltan
2018-03-01
The advent of time domain astronomy is revolutionizing our understanding of the universe. Programs such as the Catalina Real-time Transient Survey (CRTS) or the Palomar Transient Factory (PTF) surveyed millions of objects for several years, allowing variability studies on large statistical samples. The inspection of ≈250 k quasars in CRTS resulted in a catalog of 111 potentially periodic sources, put forward as supermassive black hole binary (SMBHB) candidates. A similar investigation on PTF data yielded 33 candidates from a sample of ≈35 k quasars. Working under the SMBHB hypothesis, we compute the implied SMBHB merger rate and we use it to construct the expected gravitational wave background (GWB) at nano-Hz frequencies, probed by pulsar timing arrays (PTAs). After correcting for incompleteness and assuming virial mass estimates, we find that the GWB implied by the CRTS sample exceeds the current most stringent PTA upper limits by almost an order of magnitude. After further correcting for the implicit bias in virial mass measurements, the implied GWB drops significantly but is still in tension with the most stringent PTA upper limits. Similar results hold for the PTF sample. Bayesian model selection shows that the null hypothesis (whereby the candidates are false positives) is preferred over the binary hypothesis at about 2.3σ and 3.6σ for the CRTS and PTF samples respectively. Although not decisive, our analysis highlights the potential of PTAs as astrophysical probes of individual SMBHB candidates and indicates that the CRTS and PTF samples are likely contaminated by several false positives.
Effects of nociceptin on the exploratory behavior of mice in the hole-board test.
Kamei, Junzo; Matsunawa, Yasuhiro; Miyata, Shigeo; Tanaka, Shun-ichi; Saitoh, Akiyoshi
2004-04-05
The effects of nociceptin on the exploratory behavior of mice were examined using an automatic hole-board apparatus. A low dose of nociceptin (0.01 nmol, i.c.v.) had an anxiolytic effect, as reflected by an increase in head-dipping behavior. However, high doses of nociceptin (1-5 nmol, i.c.v.) produced a dose-dependent anxiogenic effect, as reflected by a decrease in head-dipping behavior. Both the anxiolytic and anxiogenic effects of nociceptin were antagonized by nocistatin, an opioid receptor-like 1 (ORL1) receptor antagonist. Although a low dose (0.01 nmol, i.c.v.) of nociceptin significantly increased the rate of serotonin (5-hyroxytryptamine, 5-HT) turnover in the hippocampus, a high dose (5 nmol, i.c.v.) of nociceptin significantly decreased this turnover in the amygdala. Furthermore, the anxiolytic effect of nociceptin at a low dose was antagonized by N-[2-[4-(2-methoxyphenyl)-1-piperazinyl] ethyl]-N-(2-pyridinyl) cyclo-hexanecarboxamide 3HCl (WAY100635), a 5-HT1A receptor antagonist. On the other hand, the anxiogenic effect of nociceptin at a high dose was antagonized by R(+)-2-dipropylamino-8-hydroxy-1,2,3,4-tetrahydronaphthalene hydrobromide (8-OH-DPAT), a 5-HT1A receptor agonist. In conclusion, the results of this study suggest that nociceptin has dose-related anxiolytic and anxiogenic effects as a result of the activation of ORL1 receptors. The present results also suggest that a low dose of nociceptin has an anxiolytic effect via the activation of 5-HT ergic function in the hippocampus, while a high dose of nociceptin has an anxiogenic effect via the inhibition of 5-HT ergic function in the amygdala.
Gordan, Maria Lucia; Jungwirth, Bettina; Ohl, Frauke; Kellermann, Kristine; Kochs, Eberhard F; Blobner, Manfred
2012-11-01
While histological injury following cerebral ischemia has been extensively characterized in rodents, evidence on the effects on executive functioning is still missing. This study was designed to evaluate neuropsychological outcome following different severities of cerebral ischemia in rats with the modified hole board test or the Morris water maze. With institutional review board approval, anesthetized rats were exposed to bilateral carotid artery occlusion (BCAO) for escalating time intervals (0-12.5 min). Postoperatively cognitive performance was assessed using either the modified hole board test (mHB) or the Morris water maze (MWM). On postoperative day 14 rats were euthanized and intact neurons in five cerebral regions were counted. Rats of the 0 and 5 min groups showed normal functional outcome with mild histological damage after 5 min of BCAO. Following 7.5 min of BCAO the mHB test showed cognitive deficits reflecting histological damage of the hippocampus while the MWM revealed normal functional outcome. Rats of the 10 and 12.5 min groups showed cognitive deficits in both tests, motor dysfunction and behavioral alterations in the mHB test and profound histological damage. The results indicate that the mHB is not inferior to the MWM for the evaluation of cognitive impairment following incomplete forebrain ischemia in rats. As the mHB additionally investigates a variety of behavioral dimensions and motor parameters in the same test environment, it is advantageous for the evaluation of interacting and potentially confounding behavioral changes following cerebral ischemia in rats. Copyright © 2012. Published by Elsevier B.V.
Energy Technology Data Exchange (ETDEWEB)
David A. Strand
2004-09-01
This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 145: Wells and Storage Holes. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental samples. Corrective Action Unit 145 is located in Area 3 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 145 is comprised of the six Corrective Action Sites (CASs) listed below: (1) 03-20-01, Core Storage Holes; (2) 03-20-02, Decon Pad and Sump; (3) 03-20-04, Injection Wells; (4) 03-20-08, Injection Well; (5) 03-25-01, Oil Spills; and (6) 03-99-13, Drain and Injection Well. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) prior to evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. One conceptual site model with three release scenario components was developed for the six CASs to address all releases associated with the site. The sites will be investigated based on data quality objectives (DQOs) developed on June 24, 2004, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQOs process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 145.
International Nuclear Information System (INIS)
Boergesson, Lennart; Hernelind, Jan
2012-01-01
Document available in extended abstract form only. Three model shear tests of very high quality simulating a horizontal rock shear through a KBS-3V deposition hole in the centre of a canister were performed 1986. The tests simulated a deposition hole in the scale 1:10 with reference density of the buffer, very stiff confinement simulating the rock, and a solid bar of copper simulating the canister. The three tests were almost identical with exception of the rate of shear, which was varied between 0.031 and 160 mm/s, i.e. with a factor of more than 5000, and the density of the bentonite, which differed slightly. The tests were very well documented. Shear force, shear rate, total stress in the bentonite, strain in the copper and the movement of the top of the simulated canister were measured continuously during the shear. After finished shear the equipment was dismantled and careful sampling of the bentonite with measurement of water ratio and density were made. The deformed copper 'canister' was also carefully measured after the test. The tests have been modelled with the finite element code Abaqus with the same models and techniques that were used for the full scale cases in the Swedish safety assessment SR-Site. The results have been compared with the measured results, which has yielded very valuable information about the relevancy of the material models and the modelling technique. An elastic-plastic material model was used for the bentonite where the stress-strain relations have been derived from laboratory tests. The material model is also described in another article to this conference. The material model is made a function of both the density and the strain rate at shear. Since the shear is fast and takes place under undrained conditions, the density is not changed during the tests. However, strain rate varies largely with both the location of the elements and time. This can be taken into account in Abaqus by making the material model a function of the strain
Testing of Vegetable-Based dutting Fluid by Hole Making Operation
DEFF Research Database (Denmark)
Belluco, Walter; De Chiffre, Leonardo
2000-01-01
in connection with the development of vegetable based cutting oils. Results show that drilling and tapping qualify as operations in which cutting forces can be resolved within one test when they differ by less than 1 percent by taking 6 repetitions, and measurements could be repeated with relative standard...... development and testing of vegetable based oils of equal or better performance than a reference commercial mineral oil....
Quinn, Patryk M.; Cherry, John A.; Parker, Beth L.
2016-11-01
A method is presented for obtaining depth-discrete values of specific storage (Ss) from single-hole hydraulic tests in fractured rock boreholes using straddle packers (1.5-17 m test intervals). Low flow constant head (CH) step tests analyzed using the Thiem method provide transmissivity (T) values free from non-Darcian error. Short-term, constant-rate pumping tests (0.5-2 h) analyzed using the Cooper-Jacob approximation of the Theis method provide S from the hydraulic diffusivity using the Darcian T value from the CH step test. This synergistic use of two types of hydraulic tests avoids the common source of error when pumping tests (injection or withdrawal) are conducted at higher flow rates and thereby induce non-Darcian flow resulting in the underestimation of T. Other errors, such as well bore storage and leakage, can also substantially influence S by causing a shift in the time axis of the Cooper-Jacob semi-log plot. In this approach, the Darcian T values from the CH step tests are used in the analysis of the transient pumping test data for calculating S throughout the pumping test using the Cooper-Jacob approximation to minimize all of the aforementioned errors, resulting in more representative S values. The effect of these non-idealities on the measured drawdown is illustrated using the Theis equation with the Darcian T and S values to calculate drawdown for comparison to measured data. The Ss values for tests in sandstone obtained from this approach are more consistent with confined aquifer conditions than values derived from the traditional Cooper-Jacob method, and are within the range of field and lab values presented from a compilation of literature values for fractured sandstone. (10-7-10-5 m-1) This method for obtaining Ss values from short-interval, straddle packer tests improves the estimation of both K and Ss and provides opportunity to study their spatial distribution in fractured rock.
Calorimeter measures high nuclear heating rates and their gradients across a reactor test hole
Burwell, D.; Coombe, J. R.; Mc Bride, J.
1970-01-01
Pedestal-type calorimeter measures gamma-ray heating rates from 0.5 to 7.0 watts per gram of aluminum. Nuclear heating rate is a function of cylinder temperature change, measured by four chromel-alumel thermocouples attached to the calorimeter, and known thermoconductivity of the tested material.
Czech Academy of Sciences Publication Activity Database
Lukes-Gerakopoulos, Georgios; Harms, E.; Bernuzzi, S.; Nagar, A.
2017-01-01
Roč. 96, č. 6 (2017), 064051/1-064051/13 ISSN 2470-0010 R&D Projects: GA ČR(CZ) GJ17-06962Y Institutional support: RVO:67985815 Keywords : general-relativity * test particles * conserved quantities Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 4.568, year: 2016
Ohl, F; Sillaber, I; Binder, E; Keck, M E; Holsboer, F
2001-01-01
A variety of test procedures are used in preclinical research on behavioral pharmacology and to dissociate behavioral differences or pharmacologically induced behavioral alterations several independent tests are usually performed. In the present study we introduce a modified hole board procedure for mice which allows us to investigate a variety of behavioral parameters such as anxiety, risk assessment, exploration, locomotion, food-intake inhibition, novelty seeking, and arousal by using only one test. The modified hole board was established by investigating the behavior of two inbred mouse strains, C57BL/6 and BALB. Significant differences in terms of locomotor activity, general exploration, and other parameters were found. Moreover, strain-specific exploration strategies could be detected in the modified hole board. Further, the test was validated by investigating the effects of diazepam as standard anxiolytic on the behavior in both mouse strains. Acute administration of diazepam (1 and 3 mg/kg) induced strong sedative effects in a dose-dependent manner in C57BL/6 mice. In BALB mice, the lower dosage of diazepam showed an activating and anxiolytic action while the 3 mg dosage revealed a slight sedative but still anxiolytic effect in these animals. Taken together, the results demonstrate that the modified hole board enables to differentially investigate behavioral phenotypes and also pharmacologically-induced behavioral alterations in mice. Therefore, this new strategy allows to reduce the number of experimental animals and the time needed, thus, representing an effective screening-tool for behavioral investigations.
Kamei, Junzo; Hirose, Noritaka; Oka, Takuma; Miyata, Shigeo; Saitoh, Akiyoshi; Yamada, Mitsuhiko
2007-02-01
The most consistent behavioral changes caused by olfactory bulbectomy are hyperemotional responses such as hyperactivity in a novel environment. However, the changes in the emotional behavior of mice after undergoing olfactory bulbectomy have not yet been described in detail. The effects of methylphenidate on the hyperemotional behavior of olfactory bulbectomized (OBX) mice were examined by using the hole-board test. Mice (4-week-old) were subjected to olfactory bulbectomy, and the behavioral test was performed 2 weeks after surgery. OBX mice showed a significant increase in the number of head-dips as compared to the sham-operated mice. This increase was significantly decreased after treatment with methylphenidate (10 microg/kg, s.c.). The norepinephrine (NE) turnover ratio in the frontal cortex in OBX mice was significantly less than that in the sham-operated mice. However, the decreased NE ratio in OBX mice normalized after treatment with methylphenidate. Our results suggest that the increased head-dipping behavior in OBX mice might reflect an impulsive-like behavior. In addition, we proposed that the improvement in the noradrenergic abnormalities in the frontal cortex due to methylphenidate treatment may play a key role in the improvement of impulsive-like behaviors observed in OBX mice.
Haagensen, Annika Maria Juul; Klein, Anders Bue; Ettrup, Anders; Matthews, Lindsay R; Sørensen, Dorte Bratbo
2013-01-01
Consumption of a high energy diet, containing high amounts of saturated fat and refined sugar has been associated with impairment of cognitive function in rodents and humans. We sought to contrast the effect of a high fat/cholesterol, low carbohydrate diet and a low fat, high carbohydrate/sucrose diet, relative to a standard low fat, high carbohydrate minipig diet on spatial cognition with regards to working memory and reference memory in 24 male Göttingen minipigs performing in a spatial hole-board discrimination test. We found that both working memory and reference memory were impaired by both diets relative to a standard minipig diet high in carbohydrate, low in fat and sugar. The different diets did not impact levels of brain-derived neurotrophic factor in brain tissue and neither did they affect circulatory inflammation measured by concentrations of C-reactive protein and haptoglobin in serum. However, higher levels of triglycerides were observed for minipigs fed the diets with high fat/cholesterol, low carbohydrate and low fat, high carbohydrate/sucrose compared to minipigs fed a standard minipig diet. This might explain the observed impairments in spatial cognition. These findings suggest that high dietary intake of both fat and sugar may impair spatial cognition which could be relevant for mental functioning in humans.
Directory of Open Access Journals (Sweden)
Annika Maria Juul Haagensen
Full Text Available Consumption of a high energy diet, containing high amounts of saturated fat and refined sugar has been associated with impairment of cognitive function in rodents and humans. We sought to contrast the effect of a high fat/cholesterol, low carbohydrate diet and a low fat, high carbohydrate/sucrose diet, relative to a standard low fat, high carbohydrate minipig diet on spatial cognition with regards to working memory and reference memory in 24 male Göttingen minipigs performing in a spatial hole-board discrimination test. We found that both working memory and reference memory were impaired by both diets relative to a standard minipig diet high in carbohydrate, low in fat and sugar. The different diets did not impact levels of brain-derived neurotrophic factor in brain tissue and neither did they affect circulatory inflammation measured by concentrations of C-reactive protein and haptoglobin in serum. However, higher levels of triglycerides were observed for minipigs fed the diets with high fat/cholesterol, low carbohydrate and low fat, high carbohydrate/sucrose compared to minipigs fed a standard minipig diet. This might explain the observed impairments in spatial cognition. These findings suggest that high dietary intake of both fat and sugar may impair spatial cognition which could be relevant for mental functioning in humans.
International Nuclear Information System (INIS)
Gorbunova, Eh.M.; Ivanchenko, G.N.
2004-01-01
Performance of underground nuclear explosions (UNE) leads to irreversible changes in geological environment around the boreholes. In natural environment it was detected inhomogeneity of rock massif condition changes, which depended on characteristics of the underground nuclear explosion, anisotropy of medium and presence of faulting. Application of automated selection and statistic analysis of unstretched lineaments in high resolution space images using special software pack LESSA allows specifying the geologic-structural features of Semipalatinsk Test Site (STS), ranging selected fracture zones, outlining and analyzing post-explosion zone surface deformations. (author)
Anderson, B.I.; Collett, T.S.; Lewis, R.E.; Dubourg, I.
2008-01-01
Gas hydrates, which are naturally occurring ice-like combinations of gas and water, have the potential to provide vast amounts of natural gas from the world's oceans and polar regions. However, producing gas economically from hydrates entails major technical challenges. Proposed recovery methods such as dissociating or melting gas hydrates by heating or depressurization are currently being tested. One such test was conducted in northern Canada by the partners in the Mallik 2002 Gas Hydrate Production Research Well Program. This paper describes how resistivity logs were used to determine the size of the annular region of gas hydrate dissociation that occurred around the wellbore during the thermal test in the Mallik 5L-38 well. An open-hole logging suite, run prior to the thermal test, included array induction, array laterolog, nuclear magnetic resonance and 1.1-GHz electromagnetic propagation logs. The reservoir saturation tool was run both before and after the thermal test to monitor formation changes. A cased-hole formation resistivity log was run after the test.Baseline resistivity values in each formation layer (Rt) were established from the deep laterolog data. The resistivity in the region of gas hydrate dissociation near the wellbore (Rxo) was determined from electromagnetic propagation and reservoir saturation tool measurements. The radius of hydrate dissociation as a function of depth was then determined by means of iterative forward modeling of cased-hole formation resistivity tool response. The solution was obtained by varying the modeled dissociation radius until the modeled log overlaid the field log. Pretest gas hydrate production computer simulations had predicted that dissociation would take place at a uniform radius over the 13-ft test interval. However, the post-test resistivity modeling showed that this was not the case. The resistivity-derived dissociation radius was greatest near the outlet of the pipe that circulated hot water in the wellbore
Destroying extremal magnetized black holes
Siahaan, Haryanto M.
2017-07-01
The gedanken experiment by Wald to destroy a black hole using a test particle in the equatorial plane is adapted to the case of extremal magnetized black holes. We find that the presence of external magnetic fields resulting from the "Ernst magnetization" permits a test particle to have strong enough energy to destroy the black hole. However, the corresponding effective potentials show that such particles would never reach the horizon.
García-Marquez, C; Giralt, M; Armario, A
1987-10-27
The study concerned the effects of acute and chronic clomipramine administration to male rats on exploratory activity in a novel environment (hole-board) and on immobility in the forced swimming test. Acute clomipramine administration did not alter either exploratory activity on a hole-board as measured 3 or 20 h after drug administration, or immobility in the forced swimming test as measured 20 h after drug administration. Approximately 20 h after the last injection of clomipramine, the rats chronically treated with the drug showed reduced exploratory activity on the hole-board. In contrast, chronic clomipramine treatment significantly increased the activity in the forced swimming test. The effects of the drug on exploratory and forced swimming activities persisted for 14 days after the cessation of clomipramine administration. These data indicate that chronic clomipramine administration exerted profound and long-lasting effects on central nervous system function. The long-lasting action of the drug on behaviour in the forced swimming test might explain the long-term beneficial effect of antidepressant drugs in counteracting behavioral depression.
International Nuclear Information System (INIS)
Grams, W.H.; Gnirk, P.F.
1976-01-01
This report presents an analysis of the fabrication and field test requirements for a drilling machine that would be applicable to the drilling of large diameter holes for the emplacement of radioactive waste canisters in an underground repository. On the basis of a previous study in 1975 by RE/SPEC Inc. for the Oak Ridge National Laboratory, it was concluded that none of the commercially available machines were ideally suited for the desired drilling application, and that it was doubtful whether a machine with the required capabilities would become available as a standard equipment item. The results of the current study, as presented herein, provide a definitive basis for selecting the desired specifications, estimating the design, fabrication, and testing costs, and analyzing the cost-benefit characteristics of a custom-designed drilling machine for the emplacement hole drilling task
Casarrubea, Maurizio; Faulisi, Fabiana; Pensabene, Massimiliano; Mendola, Claudio; Dell'Utri, Riccardo; Cardaci, Maurizio; Santangelo, Andrea; Crescimanno, Giuseppe
2017-02-01
Little is known about the structural characteristics of the behavior of rats with enhanced anxiety level. To fill this gap, a study was undertaken where effects of an anxiogenic drug were examined on behavioral structure of rats tested in hole board. This study investigates effects of increased anxiety level on the structure of the behavior of rats tested in hole board METHODS: Different doses of FG7142 (1, 4, 8 mg/kg IP), a potent anxiety-inducing drug, were administered to three groups of male Wistar rats. A further group was administered saline. Experiments were recorded through a digital camera. Quantitative and multivariate approaches were applied. Percent distributions and durations showed increases of immobile sniffing, rearing, head dip, and edge sniff and a significant reduction of grooming activities and of walking. In addition, a decrease of head dip/edge sniff ratio was detected. Transition matrices evidenced that FG7142 provoked evident modifications of behavioral structure mainly of general exploration of environment and focused exploration of the hole. Finally, adjusted residuals showed a reduced effectiveness of FG7142 on transitions from head dip to edge sniff; on the contrary, transitions from edge sniff to head dip underwent evident dose-dependent changes. Present study provides a useful tool to analyze behavioral responses to different anxiety conditions. Accordingly, it is demonstrated that a condition of increased anxiety deeply modifies the structure of male Wistar rat's behavior in hole board. In addition, our results suggest that evaluation of head dip/edge sniff ratio can be considered a reliable index to appraise effects of pharmacological manipulation of anxiety and related behavioral elements.
Adams, Donald F.
1999-01-01
The attached data summarizes the work performed by the Composite Materials Research Group at the University of Wyoming funded by the NASA LaRC Research Grant NAG-1-1294. The work consisted primarily of tension, compression, open-hole compression and double cantilever beam fracture toughness testing performed an a variety of NASA LaRC composite materials. Tests were performed at various environmental conditions and pre-conditioning requirements. The primary purpose of this work was to support the LaRC material development efforts. The data summaries are arranged in chronological order from oldest to newest.
Putting BayesWave to the Test: Can BayesWave Detect Eccentric Black-Hole Binary Sources?
Cheeseboro, Belinda; Baker, Paul; McWilliams, Sean; Lenon, Amber; LIGO Collaboration
2017-01-01
The mission of the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) is to detect gravitational waves that are caused by the interaction of massive gravitating bodies such as coalescing black holes and neutron stars. Due to the detection of gravitational waves in the past year, we want to take it a step further and detect gravitational waves from eccentric black hole binary (eBBH) sources. Therefore, we propose BayesWave as the main algorithm for detecting and analyzing eBBH sources. We will explore the efficacy of using BayesWave to detect eBBH sources and discuss future modifications to BayesWave to improve these searches.
International Nuclear Information System (INIS)
Blandford, R.D.; Thorne, K.S.
1979-01-01
Following an introductory section, the subject is discussed under the headings: on the character of research in black hole astrophysics; isolated holes produced by collapse of normal stars; black holes in binary systems; black holes in globular clusters; black holes in quasars and active galactic nuclei; primordial black holes; concluding remarks on the present state of research in black hole astrophysics. (U.K.)
A direct gravitational lensing test for 10 exp 6 solar masses black holes in halos of galaxies
Wambsganss, Joachim; Paczynski, Bohdan
1992-01-01
We propose a method that will be able to detect or exclude the existence of 10 exp 6 solar masses black holes in the halos of galaxies. VLBA radio maps of two milliarcsecond jets of a gravitationally lensed quasar will show the signature of these black holes - if they exist. If there are no compact objects in this mass range along the line of sight, the two jets should be linear mappings of each other. If they are not, there must be compact objects of about 10 exp 6 solar masses in the halo of the galaxy that deform the images by gravitational deflection. We present numerical simulations for the two jets A and B of the double quasar 0957 + 561, but the method is valid for any gravitationally lensed quasar with structure on milliarcsecond scales. As a by-product from high-quality VLBA maps of jets A and B, one will be able to tell which features in the maps are intrinsic in the original jet and which are only an optical illusion, i.e., gravitational distortions by black holes along the line of sight.
National Research Council Canada - National Science Library
Carter, Janet M
1999-01-01
This report presents selected data on wells and test holes that were used in the construction of structure-contour maps of selected formations that contain major aquifers in the Black Hills area of western South Dakota...
White holes and eternal black holes
International Nuclear Information System (INIS)
Hsu, Stephen D H
2012-01-01
We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi-thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal. (paper)
Carter, J.M.
1999-01-01
This report presents selected data on wells and test holes that were used in the construction of structure-contour maps of selected formations that contain major aquifers in the Black Hills area of western South Dakota. Altitudes of the top of the Inyan Kara Group, Minnekahta Limestone, Minnelusa Formation, Madison Limestone, and Deadwood Formation are presented for the wells and test holes presented in this report.
Energy Technology Data Exchange (ETDEWEB)
Geldon, A.L.; Umari, A.M.A.; Earle, J.D.; Fahy, M.F.; Gemmell, J.M.; Darnell, J.
1998-09-01
A multiple-well interference (pumping) test was conducted in Miocene tuffaceous rocks at the C-hole complex at Yucca Mountain, Nev., from May 22 to June 12, 1995, by the US Geological Survey, in cooperation with the US Department of Energy. This pumping test was conducted as part of investigations to determine the suitability of Yucca Mountain as a potential site for the storage of high-level nuclear waste in a mined geologic repository. During the test, borehole UE-25 c{number_sign}3 was pumped for 10 days at an average rate of 17.9 liters per second. Drawdown in 6 observation wells completed in Miocene tuffaceous rocks 29.0--3,525.6 meters from the pumping well ranged from 0 to 0.42 meters 14,000 minutes after pumping started. The spatial distribution of this drawdown indicates that a northwest-trending zone of discontinuous faults might be affecting ground-water movement in the Miocene tuffaceous rocks near the C-holes. No drawdown was observed in a borehole completed in a regional Paleozoic carbonate aquifer 630.0 meters from the pumping well. Consequently, it could not be determined during the pumping test if the Miocene tuffaceous rocks are connected hydraulically to the regional aquifer. Analyses of drawdown and recovery indicate that the Miocene tuffaceous rocks in the vicinity of the C-holes have transmissivity values of 1,600--3,200 meters squared per day, horizontal hydraulic conductivity values of 6.5--13 meters per day, vertical hydraulic conductivity values of 0.2--1.7 meters per day, storativity values of 0.001--0.003, and specific yield values of 0.01--0.2.
Rao, V S; Santos, F A; Paula, W G; Silva, R M; Campos, A R
1999-05-01
The behavioral effects of methyl xanthines and their interactions with benzodiazepines have not been clearly established in animal models of anxiety. The present study extended the previous studies to determine the effects of acute and repeated administration of caffeine, a non-specific phosphodiesterase (PDE) inhibitor and pentoxyfylline, a specific type-4 phosphodiesterase (PDE4) inhibitor on (1) baseline anxiety-like behavior and (2) the response to an acute challenge with diazepam on anxiety-like behavior in the hole-board test. Mice were observed for the number of head-dips they made into the holes of the hole-board apparatus during a 5-min period, starting 30 min after acute (20 mg/kg) and repeated oral dose (20 mg/kg, twice a day for 4 days) administration of caffeine and pentoxifylline. In separate experiments, the response to an acute challenge with graded doses of diazepam (0.375 3 mg/kg, SC) was observed in naive mice or mice on acute and repeated dose regimen with methyl xanthines. Mice on acute but not after repeated dose regimen demonstrated a significantly increased number of hole-dips, indicating an anxiolytic-like effect of methylxanthines. Diazepam at the lower doses (0.375 and 0.75 mg/kg) but not at the highest doses (1.5 and 3 mg/kg) examined produced a significant anxiolytic-like effect. After an acute dose exposure of mice to caffeine and pentoxifylline, a rightward shift in the dose-response curve of diazepam was observed and particularly at 1.5 mg/kg dose, the net effect of diazepam was significantly enhanced which was, however, impaired upon repeated administration, more so with caffeine than with pentoxifylline. It is concluded that the xanthine drugs exert anxiolytic-like activity similar to diazepam in the hole-board test. In addition, they seem to modulate the anxiolytic effects of diazepam after both acute and repeated administration, probably as a result of an endogenous adenosinergic mechanism which may have therapeutic significance.
International Nuclear Information System (INIS)
Maldonado, F.; Muller, D.C.; Morrison, J.N.
1979-09-01
The UE25a-3 drill hole, located in the Calico Hills area, was drilled as part of an effort to evaluate the Calico Hills area as a possible nuclear waste repository site. The purpose of the drill hole was to verify the existence of an intrusive crystalline body in the subsurface and to determine the stratigraphy, structure, and nature of fractures of the cored rocks. Cored samples were obtained for mineral, chemical, and material property analyses. Numerous high-angle faults and brecciated zones were intersected by the drill hole. The units cored were intensely fractured with fracture analysis of the core consisting of frequency of fractures, dips of fractures, open and closed (sealed) fractures and types of fracture sealing or coating material. Twenty-four hundred and thirty fractures, representing approximately 30 percent of the fractures present, indicate an average fracture frequency of 13.2 fractures per meter, predominantly high-angle dips with 66 percent of the fractures closed. Fractures in the argillite interval are sealed or coated predominantly with kaolinite, nacrite, and dickite. Calcite, chlorite, and magnetite are present in fractures in the altered argillite interval. Fractures in the marble interval are sealed or coated with calcite, dolomite, and ferruginous clay. The core index indicates that the lower half of the drilled interval is more competent than the upper half. Borehole geophysical logs were run by the Birdwell Division of Seismograph Service Corporation for geologic correlations and lithologic characterizations. The logs include: caliper, density, resistivity, spontaneous potential, Vibroseis, 3-D velocity, neutron, and gamma-ray logs
Directory of Open Access Journals (Sweden)
Steven R. Cranmer
2009-09-01
Full Text Available Coronal holes are the darkest and least active regions of the Sun, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. This paper reviews measurements of the plasma properties in coronal holes and how these measurements are used to reveal details about the physical processes that heat the solar corona and accelerate the solar wind. It is still unknown to what extent the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wave-like fluctuations, and to what extent much of the mass and energy is input intermittently from closed loops into the open-field regions. Evidence for both paradigms is summarized in this paper. Special emphasis is also given to spectroscopic and coronagraphic measurements that allow the highly dynamic non-equilibrium evolution of the plasma to be followed as the asymptotic conditions in interplanetary space are established in the extended corona. For example, the importance of kinetic plasma physics and turbulence in coronal holes has been affirmed by surprising measurements from the UVCS instrument on SOHO that heavy ions are heated to hundreds of times the temperatures of protons and electrons. These observations point to specific kinds of collisionless Alfvén wave damping (i.e., ion cyclotron resonance, but complete theoretical models do not yet exist. Despite our incomplete knowledge of the complex multi-scale plasma physics, however, much progress has been made toward the goal of understanding the mechanisms ultimately responsible for producing the observed properties of coronal holes.
Ohl, Frauke; Roedel, Angelika; Binder, Elke; Holsboer, Florian
2003-01-01
We investigated the interaction between behavioural dimensions and cognitive performance in the inbred mouse strains C57BL/6 and DBA/2, which have previously been found to differ in cognitive performance and emotionality. Because it has never been evaluated whether cognitive performance and emotional behaviour are interrelated in these strains, we analysed various behavioural dimensions and cognitive functions in parallel using the modified hole board test. We could show that naive BL6 and DBA mice distinctly differed in terms of anxiety-related behaviour. Principal component analysis on the phenotyping data showed that anxiety-related behaviour was described by identical parameters and was not correlated to locomotion in the two strains. During cognitive testing, DBA mice habituated faster and performed better than BL6 mice. Principal component analysis indicated a close correlation between anxiety-related behaviour and cognitive performance in DBA mice, being associated with a highly successful cognitive performance. In BL6 mice, cognition was correlated to general exploration. This correlation turned out to be less successful in performing the modified hole board test. Our findings support the idea that high anxiety may interact with specific cognitive processing, thus offering a promising animal model for future preclinical research on the interaction of anxiety and cognition.
Centrella, Joan
2012-01-01
The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics
Furmann, John M.
2003-03-01
Black holes are difficult to study because they emit no light. To overcome this obstacle, scientists are trying to recreate a black hole in the laboratory. The article gives an overview of the theories of Einstein and Hawking as they pertain to the construction of the Large Hadron Collider (LHC) near Geneva, Switzerland, scheduled for completion in 2006. The LHC will create two beams of protons traveling in opposing directions that will collide and create a plethora of scattered elementary particles. Protons traveling in opposite directions at very high velocities may create particles that come close enough to each other to feel their compacted higher dimensions and create a mega force of gravity that can create tiny laboratory-sized black holes for fractions of a second. The experiments carried out with LHC will be used to test modern string theory and relativity.
International Nuclear Information System (INIS)
Lau, Stephen R
2004-01-01
For scalar, electromagnetic, or gravitational wave propagation on a fixed Schwarzschild black hole background, we consider the exact nonlocal radiation outer boundary conditions (ROBC) appropriate for a spherical outer boundary of finite radius enclosing the black hole. Such boundary conditions feature temporal integral convolution between each spherical harmonic mode of the wave field and a time-domain radiation kernel (TDRK). For each orbital angular integer l the associated TDRK is the inverse Laplace transform of a frequency-domain radiation kernel (FDRK). Drawing upon theory and numerical methods developed in a previous article, we numerically implement the ROBC via a rapid algorithm involving approximation of the FDRK by a rational function. Such an approximation is tailored to have relative error ε uniformly along the axis of imaginary Laplace frequency. Theoretically, ε is also a long-time bound on the relative convolution error. Via study of one-dimensional radial evolutions, we demonstrate that the ROBC capture the phenomena of quasinormal ringing and decay tails. We also consider a three-dimensional evolution based on a spectral code, one showing that the ROBC yield accurate results for the scenario of a wave packet striking the boundary at an angle. Our work is a partial generalization to Schwarzschild wave propagation and Heun functions of the methods developed for flatspace wave propagation and Bessel functions by Alpert, Greengard, and Hagstrom
Calmet, Xavier; Winstanley, Elizabeth
2014-01-01
Written by foremost experts, this short book gives a clear description of the physics of quantum black holes. The reader will learn about quantum black holes in four and higher dimensions, primordial black holes, the production of black holes in high energy particle collisions, Hawking radiation, black holes in models of low scale quantum gravity and quantum gravitational aspects of black holes.
Meidam, Jeroen; Tsang, Ka Wa; Goldstein, Janna; Agathos, Michalis; Ghosh, Archisman; Haster, Carl-Johan; Raymond, Vivien; Samajdar, Anuradha; Schmidt, Patricia; Smith, Rory; Blackburn, Kent; Del Pozzo, Walter; Field, Scott E.; Li, Tjonnie; Pürrer, Michael; Van Den Broeck, Chris; Veitch, John; Vitale, Salvatore
2018-02-01
Thanks to the recent discoveries of gravitational wave signals from binary black hole mergers by Advanced Laser Interferometer Gravitational Wave Observatory and Advanced Virgo, the genuinely strong-field dynamics of spacetime can now be probed, allowing for stringent tests of general relativity (GR). One set of tests consists of allowing for parametrized deformations away from GR in the template waveform models and then constraining the size of the deviations, as was done for the detected signals in previous work. In this paper, we construct reduced-order quadratures so as to speed up likelihood calculations for parameter estimation on future events. Next, we explicitly demonstrate the robustness of the parametrized tests by showing that they will correctly indicate consistency with GR if the theory is valid. We also check to what extent deviations from GR can be constrained as information from an increasing number of detections is combined. Finally, we evaluate the sensitivity of the method to possible violations of GR.
Hirose, Noritaka; Saitoh, Akiyoshi; Kamei, Junzo
2016-10-01
Olfactory bulbectomized (OB) mice produce agitated anxiety-like behaviors in the hole-board test, which was expressed by an increase in head-dipping counts and a decrease in head-dipping latencies. However, the associated mechanisms remain unclear. In the present study, MK-801 (10, 100μg/kg), a selective N-methyl-d-aspartate (NMDA) receptor antagonist, significantly and dose-dependently suppressed the increased head-dipping behaviors in OB mice, without affecting sham mice. Similar results were obtained with another selective NMDA receptor antagonist D-AP5 treatment in OB mice. On the other hand, muscimol, a selective aminobutyric acid type A (GABAA) receptor agonist produced no effects on these hyperemotional behaviors in OB mice at a dose (100μg/kg) that produced anxiolytic-like effects in sham mice. Interestingly, glutamine contents and glutamine/glutamate ratios were significantly increased in the amygdala and frontal cortex of OB mice compared to sham mice. Based on these results, we concluded that the glutamatergic NMDA receptors are involved in the expression of increased head-dipping behaviors in the hole-board tests of OB mice. Accordingly, the changes in glutamatergic transmission in frontal cortex and amygdala may play important roles in the expression of these abnormal behaviors in OB mice. Copyright © 2016. Published by Elsevier B.V.
International Nuclear Information System (INIS)
Lyutikov, Maxim; McKinney, Jonathan C.
2011-01-01
The 'no-hair' theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively ''frozen in'' the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes N B =eΦ ∞ /(πc(ℎ/2π)), where Φ ∞ ≅2π 2 B NS R NS 3 /(P NS c) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.
Mueller, S.; Koepke, J.; Garbe-Schoenberg, C. D.; Müller, T.; Mock, D.; Strauss, H.; Schuth, S.; Ildefonse, B.
2017-12-01
In the absence of a complete profile through fast-spreading oceanic crust in modern oceans, we established a reference profile through the whole paleocrust of the Sumail Ophiolite (Oman), which is regarded as the best analogue for fast-spreading oceanic crust on land. For establishing a coherent data set, we sampled the Wadi Gideah in the Wadi-Tayin massif from the mantle section up to the pillow basalts and performed different analytical and structural investigations on the same suite of samples (pool sample concept). The whole sample set contains about 400 samples focusing on both primary magmatic rocks and hydrothermal fault zones to characterize initial formation processes and cooling of the crust. The Wadi Gideah hosts the sites GT1A (lower crust) and GT2A (foliated / layered gabbro transition) where 400 m long cores have been drilled in the frame of the ICDP Oman Drilling Project (OmanDP). Thus, the Wadi Gideah crustal transect is well-suited for providing a reference frame for these two drill cores. Major and trace element data on minerals and rocks reveal in-situ crystallization in the deep crust, thus strongly supporting a hybrid accretion model that is characterized by sheeted sill intrusion in the lower part of the plutonic crust and gabbro glacier features in the upper section. This hybrid model is also supported by results on crystallographic preferred orientations (CPO) of the minerals within the gabbros, which call for distinct formation mechanisms in the upper and lower gabbro sections. A requirement for our hybrid model is significant hydrothermal cooling in the lower crust for the consumption of the latent heat of crystallization. This was facilitated by channelled hydrothermal flow zones, preserved today in faulted zones of extensively altered gabbro cutting both layered and foliated gabbros. These gabbros show higher Sr87/Sr86 ratios if compared to the background gabbro, the presence of late stage minerals (amphibole, oxides, orthopyroxene
Arenas, M Carmen; Daza-Losada, Manuel; Vidal-Infer, Antonio; Aguilar, Maria A; Miñarro, José; Rodríguez-Arias, Marta
2014-06-22
Novelty-seeking in rodents, defined as enhanced specific exploration of novel situations, is considered to predict the response of animals to drugs of abuse and, thus, allow "drug-vulnerable" individuals to be identified. The main objective of this study was to assess the predictive ability of two well-known paradigms of the novelty-seeking trait - novelty-induced locomotor activity (which distinguishes High- and Low-Responder mice, depending on their motor activity) and the hole-board test (which determines High- and Low-Novelty Seeker mice depending on the number of head dips they perform) - to identify subjects that would subsequently be more sensitive to the conditioned rewarding effects of cocaine in a population of young adult (PND 56) and adolescent (PND 35) OF1 mice of both sexes. Conditioned place preference (CPP), a useful tool for evaluating the sensitivity of individuals to the incentive properties of addictive drugs, was induced with a sub-threshold dose of cocaine (1 mg/kg, i.p.). Our results showed that novelty-induced motor activity had a greater predictive capacity to identify "vulnerable-drug" individuals among young-adult mice (PND 56), while the hole-board test was more effective in adolescents (PND 35). High-NR young-adults, which presented higher motor activity in the first ten minutes of the test (novelty-reactivity), were 3.9 times more likely to develop cocaine-induced CPP than Low-NR young-adults. When total activity (1h) was evaluated (novelty-habituation), only High-R (novelty-non-habituating) young-adult male and Low-R (novelty-habituating) female mice produced a high conditioning score. However, only High-Novelty Seeker male and female adolescents and Low-Novelty Seeker female young-adult animals (according to the hole-board test), acquired cocaine-induced CPP. These findings should contribute to the development of screening methods for identifying at-risk human drug users and prevention strategies for those with specific
International Nuclear Information System (INIS)
Carter, B.
1980-01-01
In years 1920 as a result of quantum mechanics principles governing the structure of ordinary matter, a sudden importance for a problem raised a long time ago by Laplace: what happens when a massive body becomes so dense that even light cannot escape from its gravitational field. It is difficult to conceive how could be avoided in the actual universe the accumulation of important masses of cold matter having been submitted to gravitational breaking down followed by the formation of what is called to day a black hole [fr
Trakhtenbrot, Benny
2017-08-01
We propose a pilot study to explore the role of major galaxy mergers in shaping the early history of the largest super-massive black holes (SMBHs). We will use HST's high sensitivity and resolution to map the stellar content of the host galaxies and close environments of six very luminous QSOs at z 4.8, for which we have obtained a rich collection of ground- and space-based data, including new ALMA data that probe the hosts' gas. Our previous analysis of these systems clearly shows fast SMBH and host galaxy growth, with some systems exhibiting extremely high star formation rates, SFR >2000 M_sol/yr, suggestive of merger-driven activity. Our new ALMA data show evidence for mergers among some of the lower-SFR objects, while presenting no clear evidence for mergers among some of the extreme SFR sources. The deep HST/WFC3-IR imaging data will allow us to look for two types of merger indicators: (1) disturbed star-forming sub-structures within the host galaxies of the QSOs, and (2) close, possibly interacting companions. Thus, the proposed HST observations will provide the only missing ingredient in our long-term effort to identify the dominant mechanism driving the early epoch of SMBH-host (co-)evolution. If successful, the combined HST and ALMA effort will be extended to a larger sample, based on our on-going ALMA cycle-4 observations of 12 additional systems.
XFEM Modelling of Multi-holes Plate with Single-row and Staggered Holes Configurations
Directory of Open Access Journals (Sweden)
Supar Khairi
2017-01-01
Full Text Available Joint efficiency is the key to composite structures assembly design, good structures response is dependent upon multi-holes behavior as subjected to remote loading. Current benchmarking work were following experimental testing series taken from literature on multi-holes problem. Eleven multi-hole configurations were investigated with various pitch and gage distance of staggered holes and non-staggered holes (single-row holes. Various failure modes were exhibited, most staggered holes demonstrates staggered crack path but non-staggered holes series displayed crack path along net-section plane. Stress distribution were carried out and good agreement were exhibited in experimental observation as reported in the respective literature. Consequently, strength prediction work were carried out under quasi-static loading, most showed discrepancy between 8% -31%, better prediction were exhibited in thicker and non-staggered holes plate combinations.
Gravitational polarizability of black holes
International Nuclear Information System (INIS)
Damour, Thibault; Lecian, Orchidea Maria
2009-01-01
The gravitational polarizability properties of black holes are compared and contrasted with their electromagnetic polarizability properties. The 'shape' or 'height' multipolar Love numbers h l of a black hole are defined and computed. They are then compared to their electromagnetic analogs h l EM . The Love numbers h l give the height of the lth multipolar 'tidal bulge' raised on the horizon of a black hole by faraway masses. We also discuss the shape of the tidal bulge raised by a test-mass m, in the limit where m gets very close to the horizon.
Geohydrologic and drill-hole data for test well USW H-4, Yucca Mountain, Nye County, Nevada
Whitfield, M.S.; Thordarson, William; Eshom, E.P.
1984-01-01
Data are presented on drilling operations, lithology, geophysical well logs, sidewall-core samples, water-level monitoring, pumping tests, injection tests, radioactive-tracer borehole flow survey, and water chemistry for test well USW H-4. The well is one of a series of test wells drilled in the southwestern part of the Nevada Test Site, Nye County, Nevada, in cooperation with the U.S. Department of Energy. These test wells are part of the Nevada Nuclear Waste Storage Investigations to identify sites for storage of high-level radioactive wastes. Test well USW H-4 was drilled in ash-flow tuff to a total depth of 1,219 meters. Depth to water below land surface was 519 meters or at an altitude of 730 meters above sea level. After test pumping at a rate of 17.4 liters per second for approximately 9 days, the drawdown was 4.85 meters. A radioactive borehole-flow survey indicated that the Bullfrog Member was the most productive geologic unit, producing 36.5 percent of the water in the well. The second most productive geologic unit was the Tram Member, which produced 32 percent of the water. The water in test well USW H-4 is predominantly a soft, sodium bicarbonate type of water typical of water produced in tuffaceous rocks in southern Nevada. (USGS)
Black hole critical phenomena without black holes
Indian Academy of Sciences (India)
Black holes; numerical relativity; nonlinear sigma. Abstract. Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. ... Theoretical and Computational Studies Group, Southampton College, Long Island University, Southampton, NY 11968, USA ...
Takeda, H; Tsuji, M; Matsumiya, T
1998-05-29
The effects of treatment with anxiogenic or anxiolytic agents and exposure to acute restraint stress on emotional behavior in mice were examined using an automatic hole-board apparatus. Changes in the emotional state of mice were evaluated in terms of changes in exploratory activity, i.e., total locomotor activity, numbers and duration of rearing and head-dipping, and latency to the first head-dipping. The typical benzodiazepine anxiolytics diazepam (0.05-0.5 mg/kg, i.p.) and chlordiazepoxide (0.5-4 mg/kg, i.p.) dose-dependently increased the number and duration of head-dips at doses that did not produce sedation. In contrast with these anxiolytics, the typical anxiogenic drugs N-methyl-beta-carboline-3-carboxamide (FG7142, 0.125-10 mg/kg, i.p.) and methyl-beta-carboline-3-carboxylate (beta-CCM, 0.1-2 mg/kg, i.p.) decreased both the number and duration of head-dips, and increased the latency to head-dipping. Moreover, decreases in the number and duration of head-dips, and an increase in the latency to head-dipping, were also observed in animals that were exposed to acute restraint stress. These effects of acute restraint stress were suppressed by treatment with diazepam at a dose that alone did not produce significant behavioral effects (0.1 mg/kg, i.p.). In addition, non-benzodiazepine anxiolytic flesinoxan (0.1 mg/kg, i.p.), a 5-HT1A receptor agonist, also had an effect on the restraint stress-induced decrease in head-dipping behavior. The present study shows that the changes in several exploratory behaviors could be objectively measured using our automatic hole-board apparatus. Therefore, this system can serve as a useful tool for evaluating the changes in various emotional states of animals. Moreover, we also found that treatment with anxiolytics or anxiogenics and exposure to acute restraint stress affected head-dipping behavior. These results suggest that changes in head-dipping behavior in the hole-board test may reflect the anxiogenic and/or anxiolytic
Are LIGO's Black Holes Made From Smaller Black Holes?
Kohler, Susanna
2017-05-01
all the hierarchical mergers are so-called major mergers i.e., the smaller black hole of the pair is at least 70% of the mass of the larger one.Distribution of spins for 4th-generation mergers, with two different mass ratios (q= 0.7 and q= 1) and initial first-generation spins (non-spinning and maximally spinning). [Fishbach et al. 2017]The authors find that hierarchical major mergers result in a distribution of spins with a distinctive shape, peaking at a spin of a 0.7 with relatively low contribution from spins below a 0.5. Intriguingly, this distribution is universal if you include several generations of mergers, the resulting spin distribution converges to the same shape every time. This is true regardless of the details of the hierarchical merger scenario, like the exact black hole mass ratio (as long as only major mergers occur) or the initial spin distributions.Testing the ModelWhat does this tell us? Since the hierarchical merger model predicts a very specific distribution of spins for the black holes detected by LIGO, we can compare future LIGO detections to see if theyre consistent with this model.The authors calculate the statistics to show that after order 100 LIGO detections, we should be able to tell whether these black holes are consistent with a hierarchical merger formation model or not. With luck, this could mean that we will have solved this mystery within a few years of advanced LIGO operations!CitationMaya Fishbach et al 2017 ApJL 840 L24. doi:10.3847/2041-8213/aa7045
Malinconico, M.L.; Sanford, W.E.; Wright, Horton W.J.J.
2009-01-01
Vitrinite reflectance data from the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville deep cores in the centralcrater moat of the Chesapeake Bay impact structure and the Cape Charles test holes on the central uplift show patterns of postimpact maximum-temperature distribution that result from a combination of conductive and advective heat flow. Within the crater-fill sediment-clast breccia sequence at Eyreville, an isoreflectance (-0.44% Ro) section (525-1096 m depth) is higher than modeled background coastal-plain maturity and shows a pattern typical of advective fluid flow. Below an intervening granite slab, a short interval of sediment-clast breccia (1371-1397 m) shows a sharp increase in reflectance (0.47%-0.91% Ro) caused by conductive heat from the underlying suevite (1397-1474 m). Refl ectance data in the uppermost suevite range from 1.2% to 2.1% Ro. However, heat conduction alone is not sufficient to affect the temperature of sediments more than 100 m above the suevite. Thermal modeling of the Eyreville suevite as a 390 ??C cooling sill-like hot rock layer supplemented by compaction- driven vertical fluid flow (0.046 m/a) of cooling suevitic fluids and deeper basement brines (120 ??C) upward through the sediment breccias closely reproduces the measured reflectance data. This scenario would also replace any marine water trapped in the crater fill with more saline brine, similar to that currently in the crater, and it would produce temperatures sufficient to kill microbes in sediment breccias within 450 m above the synimsuevite. A similar downhole maturity pattern is present in the sediment-clast breccia over the central uplift. High-reflectance (5%-9%) black shale and siltstone clasts in the suevite and sediment-clast breccia record a pre-impact (Paleozoic?) metamorphic event. Previously published maturity data in the annular trough indicate no thermal effect there from impact-related processes. ?? 2009 The
Nonisolated dynamic black holes and white holes
International Nuclear Information System (INIS)
McClure, M. L.; Anderson, Kaem; Bardahl, Kirk
2008-01-01
Modifying the Kerr-Schild transformation used to generate black and white hole spacetimes, new dynamic black and white holes are obtained using a time-dependent Kerr-Schild scalar field. Physical solutions are found for black holes that shrink with time and for white holes that expand with time. The black hole spacetimes are physical only in the vicinity of the black hole, with the physical region increasing in radius with time. The white hole spacetimes are physical throughout. Unlike the standard Schwarzschild solution the singularities are nonisolated, since the time dependence introduces a mass-energy distribution. The surfaces in the metrics where g tt =g rr =0 are dynamic, moving inward with time for the black holes and outward for the white holes, which leads to a question of whether these spacetimes truly have event horizons--a problem shared with Vaidya's cosmological black hole spacetimes. By finding a surface that shrinks or expands at the same rate as the null geodesics move, and within which null geodesics move inward or outward faster than the surfaces shrink or expand, respectively, it is verified that these do in fact behave like black and white holes
Introduction to General Relativity and Black Holes (2/5)
CERN. Geneva
2001-01-01
Conceptual foundations of General Relativity (GR). Uniqueness of GR. Mathematical framework: tensor calculus, Riemannian geometry, connection, 'spin' connection, curvature, Cartan's form calculus. Hilbert-Einstein action, Einstein equations. Weak gravitational fields. Post Newtonian Approximation. Gravitanional Waves. Exact solutions. Killing vectors. Experimental tests. Black Holes: extensions of the Schwarzschild solution; Kerr-Newman holes; no-hair theorems; energtics of black holes; the membrane approach; quantum mechanics of black holes; Bekenstein entropy; Hawking temperature; black holes and string theory.
Introduction to General Relativity and Black Holes (4/5)
CERN. Geneva
2001-01-01
Conceptual foundations of General Relativity (GR). Uniqueness of GR. Mathematical framework: tensor calculus, Riemannian geometry, connection, 'spin' connection, curvature, Cartan's form calculus. Hilbert-Einstein action, Einstein equations. Weak gravitational fields. Post Newtonian Approximation. Gravitanional Waves. Exact solutions. Killing vectors. Experimental tests. Black Holes: extensions of the Schwarzschild solution; Kerr-Newman holes; no-hair theorems; energtics of black holes; the membrane approach; quantum mechanics of black holes; Bekenstein entropy; Hawking temperature; black holes and string theory.
Introduction to General Relativity and Black Holes (3/5)
CERN. Geneva
2001-01-01
Conceptual foundations of General Relativity (GR). Uniqueness of GR. Mathematical framework: tensor calculus, Riemannian geometry, connection, 'spin' connection, curvature, Cartan's form calculus. Hilbert-Einstein action, Einstein equations. Weak gravitational fields. Post Newtonian Approximation. Gravitanional Waves. Exact solutions. Killing vectors. Experimental tests. Black Holes: extensions of the Schwarzschild solution; Kerr-Newman holes; no-hair theorems; energtics of black holes; the membrane approach; quantum mechanics of black holes; Bekenstein entropy; Hawking temperature; black holes and string theory.
Introduction to General Relativity and Black Holes (5/5)
CERN. Geneva
2001-01-01
Conceptual foundations of General Relativity (GR). Uniqueness of GR. Mathematical framework: tensor calculus, Riemannian geometry, connection, 'spin' connection, curvature, Cartan's form calculus. Hilbert-Einstein action, Einstein equations. Weak gravitational fields. Post Newtonian Approximation. Gravitanional Waves. Exact solutions. Killing vectors. Experimental tests. Black Holes: extensions of the Schwarzschild solution; Kerr-Newman holes; no-hair theorems; energtics of black holes; the membrane approach; quantum mechanics of black holes; Bekenstein entropy; Hawking temperature; black holes and string theory.
Introduction to General Relativity and Black Holes (1/5)
CERN. Geneva
2001-01-01
Conceptual foundations of General Relativity (GR). Uniqueness of GR. Mathematical framework: tensor calculus, Riemannian geometry, connection, 'spin' connection, curvature, Cartan's form calculus. Hilbert-Einstein action, Einstein equations. Weak gravitational fields. Post Newtonian Approximation. Gravitanional Waves. Exact solutions. Killing vectors. Experimental tests. Black Holes: extensions of the Schwarzschild solution; Kerr-Newman holes; no-hair theorems; energtics of black holes; the membrane approach; quantum mechanics of black holes; Bekenstein entropy; Hawking temperature; black holes and string theory.
Rock mechanical tests of the deep drill holes OL-KR1 and OL-KR12 at Olkiluoto 2006
International Nuclear Information System (INIS)
Niinimaeki, R.; Aaltonen, I.
2006-12-01
Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. The construction of the ONKALO access tunnel started in September 2004. The purpose of this work was to evaluate the effect of the hydrothermal illitisation to the strength of the rock. Tested core samples were taken from two drillholes. Uniaxial compressive strength was measured from the core samples of drillholes OL-KR1 and OLKR12. Part of the tested samples were fresh reference samples. (orig.)
Collins, Frank A.; Saude, Frank; Sep, Martin J.
1996-01-01
Tool designed for use in aligning holes in plates or other structural members to be joined by bolt through holes. Holes aligned without exerting forces perpendicular to planes of holes. Tool features screw-driven-wedge design similar to (but simpler than) that of some automotive exhaust-pipe-expanding tools.
International Nuclear Information System (INIS)
Penrose, R.
1980-01-01
Conditions for the formation of a black hole are considered, and the properties of black holes. The possibility of Cygnus X-1 as a black hole is discussed. Einstein's theory of general relativity in relation to the formation of black holes is discussed. (U.K.)
Deburring small intersecting holes
Energy Technology Data Exchange (ETDEWEB)
Gillespie, L.K.
1980-08-01
Deburring intersecting holes is one of the most difficult deburring tasks faced by many industries. Only 14 of the 37 major deburring processes are applicable to most intersecting hole applications. Only five of these are normally applicable to small or miniature holes. Basic process capabilities and techniques used as a function of hole sizes and intersection depths are summarized.
International Nuclear Information System (INIS)
Cherepashchuk, Anatolii M
2003-01-01
Methods and results of searching for stellar mass black holes in binary systems and for supermassive black holes in galactic nuclei of different types are described. As of now (June 2002), a total of 100 black hole candidates are known. All the necessary conditions Einstein's General Relativity imposes on the observational properties of black holes are satisfied for candidate objects available, thus further assuring the existence of black holes in the Universe. Prospects for obtaining sufficient criteria for reliably distinguishing candidate black holes from real black holes are discussed. (reviews of topical problems)
International Nuclear Information System (INIS)
Boergesson, L.; Hernelind, J.
1995-12-01
PNCs large scale laboratory test with an artificial deposition hole has been simulated with finite element calculations with the code ABAQUS. The test comprised water uptake from an artificial rock and heating of a canister in a deposition hole with the diameter 1 m during 5 months. Water content, pore pressure, and total pressure in the buffer was measured during the test. The given data of the material properties were supplemented with results from own laboratory tests in order to determine parameters required for the calculation. The vapour flow process, which is not included in ABAQUS, was implemented and added to the code. After calibration of the properties of the buffer material, a completely coupled thermo-hydro-mechanical calculation of the test was done. The calculated thermal and hydraulic results were in good agreement with measured values, while the prediction of the mechanical response was less good. 13 refs, 47 figs, 8 tabs
An electromagnetic hole separation survey tool
International Nuclear Information System (INIS)
Goldwire, H.C. Jr.
1993-01-01
The authors describe an electromagnetic survey tool developed by others, which can be used to accurately determine the offset distances between various points in nearby emplacement holes or adits (e.g., the satellite hole offset from an emplacement hole at the device horizon in a vertical geometry emplacement). The technique was demonstrated on a vertical event at the Nevada Test Site. The basic theory of operation, sample data, and analyzed results are presented and compared to results obtained by conventional survey means
Schmid, Sebastian; Jungwirth, Bettina; Gehlert, Verena; Blobner, Manfred; Schneider, Gerhard; Kratzer, Stephan; Kellermann, Kristine; Rammes, Gerhard
2017-05-01
The intracerebroventricular injection of beta-amyloid (Aβ) in mice allows the investigation of acute effects on cognitive function and cellular pathology. The aim of this investigation was to further characterize the time course of Aβ-induced cognitive and behavioural changes and to detect potential molecular mechanisms. Cannulas were implanted in the lateral cerebral ventricle. 14days after surgery the mice were injected with Aβ1-42 or phosphate buffered saline (PBS). Starting 2, 4 or 8 (PBS only 4) days after injection we evaluated cognitive and behavioural performance using the modified hole board test (mHBT). We determined tumour-necrosis factor alpha (TNF alpha) and caspase 3 by western blotting, on days 10, 12 and 16. Data were analysed using general linear modelling, Kruskall-Wallis and Mann-Whitney-U test. Aβ induced a decline in cognitive performance represented as an increased total number of wrong choices during the testing period from day 2-15 (p<0.05). Behavioural parameters were comparable between mice treated with Aβ and PBS. There was no difference regarding TNF alpha levels between the groups. Compared to day 16 Caspase 3 levels were increased on day 10 (p=0.004). Application of Aβ in the lateral ventricle of mice is associated with cognitive impairment of declarative memory in the mHBT. There is no interference caused by altered behaviour. Therefore, it represents a valid model for acute Aβ-mediated neurotoxic effects. Although the exact mechanisms remain unclear, changes in levels of Caspase 3 suggest apoptosis as an important factor for the development of cognitive dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
David Strand
2006-04-01
This Corrective Action Decision Document has been prepared for Corrective Action Unit (CAU) 145, Wells and Storage Holes in Area 3 of the Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 145 is comprised of the following corrective action sites (CASs): (1) 03-20-01, Core Storage Holes; (2) 03-20-02, Decon Pad and Sump; (3) 03-20-04, Injection Wells; (4) 03-20-08, Injection Well; (5) 03-25-01, Oil Spills; and (6) 03-99-13, Drain and Injection Well. The purpose of this Corrective Action Decision Document is to identify and provide the rationale for the recommendation of a corrective action alternative for the six CASs within CAU 145. Corrective action investigation activities were performed from August 1, 2005, through November 8, 2005, as set forth in the CAU 145 Corrective Action Investigation Plan and Record of Technical Change No. 1. Analytes detected during the Corrective Action Investigation (CAI) were evaluated against appropriate final action levels to identify the contaminants of concern for each CAS. The results of the CAI identified contaminants of concern at one of the six CASs in CAU 145 and required the evaluation of corrective action alternatives. Assessment of the data generated from investigation activities conducted at CAU 145 revealed the following: CASs 03-20-01, 03-20-02, 03-20-04, 03-20-08, and 03-99-13 do not contain contamination; and CAS 03-25-01 has pentachlorophenol and arsenic contamination in the subsurface soils. Based on the evaluation of analytical data from the CAI, review of future and current operations at the six CASs, and the detailed and comparative analysis of the potential corrective action alternatives, the following corrective actions are recommended for CAU 145. No further action is the preferred corrective action for CASs 03-20-01, 03-20-02, 03-20-04, 03-20-08, and 03-99-13. Close in place is the preferred corrective action
Accreting fluids onto regular black holes via Hamiltonian approach
Energy Technology Data Exchange (ETDEWEB)
Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Shahzad, M.U. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); University of Central Punjab, CAMS, UCP Business School, Lahore (Pakistan)
2017-08-15
We investigate the accretion of test fluids onto regular black holes such as Kehagias-Sfetsos black holes and regular black holes with Dagum distribution function. We analyze the accretion process when different test fluids are falling onto these regular black holes. The accreting fluid is being classified through the equation of state according to the features of regular black holes. The behavior of fluid flow and the existence of sonic points is being checked for these regular black holes. It is noted that the three-velocity depends on critical points and the equation of state parameter on phase space. (orig.)
Gravitational waves: History of black holes revealed by their spin
Sigurðsson, Steinn
2017-08-01
Four probable detections of gravitational waves have so far been reported, each associated with the merger of two black holes. Analysis of the signals allows formation theories of such black-hole systems to be tested. See Letter p.426
Noncommutative Black Holes at the LHC
Villhauer, Elena Michelle
2017-12-01
Based on the latest public results, 13 TeV data from the Large Hadron Collider at CERN has not indicated any evidence of hitherto tested models of quantum black holes, semiclassical black holes, or string balls. Such models have predicted signatures of particles with high transverse momenta. Noncommutative black holes remain an untested model of TeV-scale gravity that offers the starkly different signature of particles with relatively low transverse momenta. Considerations for a search for charged noncommutative black holes using the ATLAS detector will be discussed.
Tidal interactions with Kerr black holes
International Nuclear Information System (INIS)
Hiscock, W.A.
1977-01-01
The tidal deformation of an extended test body falling with zero angular momentum into a Kerr black hole is calculated. Numerical results for infall along the symmetry axis and in the equatorial plane of the black hole are presented for a range of values of a, the specific angular momentum of the black hole. Estimates of the tidal contribution to the gravitational radiation are also given. The tidal contribution in equatorial infall into a maximally rotating Kerr black hole may be of the same order as the center-of-mass contribution to the gravitational radiation
Particle accelerators inside spinning black holes.
Lake, Kayll
2010-05-28
On the basis of the Kerr metric as a model for a spinning black hole accreting test particles from rest at infinity, I show that the center-of-mass energy for a pair of colliding particles is generically divergent at the inner horizon. This shows not only that classical black holes are internally unstable, but also that Planck-scale physics is a characteristic feature within black holes at scales much larger that the Planck length. The novel feature of the divergence discussed here is that the phenomenon is present only for black holes with rotation, and in this sense it is distinct from the well-known Cauchy horizon instability.
Directory of Open Access Journals (Sweden)
M Nasehi
2012-05-01
Full Text Available
Background and Objectives: Cannabinoids produce a wide array of effects on different species and interact with different neurotransmitter systems in the brain. In the present study, the effects of histaminergic and cannabinoidregic systems as well as their interactions on anxiety-related behaviors were examined on mice. Methods: In this study, at first mice were anesthetized with intra-peritoneal injection of ketamine hydrochloride and xylazine. They were then placed in a stereotaxic apparatus. Two stainless-steel cannuale were placed one mm above CA1 regions of the dorsal hippocampus. After that, seventeen groups of animals were tested with hole board apparatus for measuring anxiety behavior. For the statistical analysis, One-way analysis of variance (ANOVA and Dunnett's test were used. Results: Intra-CA1 injection of WIN55,212-2 (0.1, 0.5µg/mice did not modify anxiety-related behaviors in mice. But administration of AM251 (25 and 50ng/mice, histamine or ranitidine (5µg/mice induced anxiogenic-like response. Also, co-administration of WIN55, 212-2 with histaminergic agents, decreased the anxiogenic-like response of histamine, but not that of ranitidine. Co-administration of an ineffective dose of AM251 with histaminergic drugs did not alter the response induced by these drugs. In all the experiments, locomotor activity was not significantly changed. Conclusion: These results showed that there may be a partial interaction between the cannabinoidergic and the histaminergic systems of the dorsal hippocampus on anxiety-like behaviors.
Directory of Open Access Journals (Sweden)
Zarrindast M.R
2011-01-01
Full Text Available Background and Objectives: Cannabinoids produce a wide array of effects on different species and interact with different neurotransmitter systems in the brain. In the present study, the effects of histaminergic and cannabinoidregic systems as well as their interactions on anxiety-related behaviors were examined on mice.Methods: In this study, at first mice were anesthetized with intra-peritoneal injection of ketamine hydrochloride and xylazine. They were then placed in a stereotaxic apparatus. Two stainless-steel cannuale were placed one mm above CA1 regions of the dorsal hippocampus. After that, seventeen groups of animals were tested with hole board apparatus for measuring anxiety behavior. For the statistical analysis, One-way analysis of variance (ANOVA and Dunnett's test were used.Results: Intra-CA1 injection of WIN55,212-2 (0.1, 0.5µg/mice did not modify anxiety-related behaviors in mice. But administration of AM251 (25 and 50ng/mice, histamine or ranitidine (5µg/mice induced anxiogenic-like response. Also, co-administration of WIN55, 212-2 with histaminergic agents, decreased the anxiogenic-like response of histamine, but not that of ranitidine. Co-administration of an ineffective dose of AM251 with histaminergic drugs did not alter the response induced by these drugs. In all the experiments, locomotor activity was not significantly changed. Conclusion: These results showed that there may be a partial interaction between the cannabinoidergic and the histaminergic systems of the dorsal hippocampus on anxiety-like behaviors.
Black holes from fluid mechanics
Lahiri, Subhaneil
2009-12-01
We use the AdS/CFT correspondence in a regime where the field theory is well described by fluid mechanics to study large black holes in asymptotically locally anti de Sitter spaces. In particular, we use the fluid description to study the thermodynamics of the black holes and the existence of exotic horizon topologies in higher dimensions. First we test this method by comparing large rotating black holes in global AdSD spaces to stationary solutions of the relativistic Navier-Stokes equations on SD-2. Reading off the equation of state of this fluid from the thermodynamics of non-rotating black holes, we proceed to construct the nonlinear spinning solutions of fluid mechanics that are dual to rotating black holes. In all known examples, the thermodynamics and the local stress tensor of our solutions are in precise agreement with the thermodynamics and boundary stress tensor of the spinning black holes. Our results yield predictions for the thermodynamics of all large black holes in all theories of gravity on AdS spaces, for example, IIB string theory on AdS5 x S 5 and M theory on AdS4 x S7 and AdS7 x S 4. We then construct solutions to the relativistic Navier-Stokes equations that describe the long wavelength collective dynamics of the deconfined plasma phase of N = 4 Yang Mills theory compactified down to d = 3 on a Scherk-Schwarz circle. Our solutions are stationary, axially symmetric spinning balls and rings of plasma. These solutions, which are dual to (yet to be constructed) rotating black holes and black rings in Scherk-Schwarz compactified AdS 5, and have properties that are qualitatively similar to those of black holes and black rings in flat five dimensional gravity. We also study the stability of these solutions to small fluctuations, which provides an indirect method for studying Gregory-Laflamme instabilities. We also extend the construction to higher dimensions, allowing one to study the existence of new black hole topologies and their phase diagram.
Black holes under external influence £
Indian Academy of Sciences (India)
KTF MFF UK
Abstract. The work on black holes immersed in external fields is reviewed in both test-field ap- proximation and within exact solutions. In particular we pay attention to the effect of the expulsion of the flux of external fields across charged and rotating black holes which are approaching extremal states. Recently this effect has ...
International Nuclear Information System (INIS)
Costa, Miguel S.; Perry, Malcolm J.
2000-01-01
We revisit the geometry representing l collinear Schwarzschild black holes. It is seen that the black holes' horizons are deformed by their mutual gravitational attraction. The geometry has a string like conical singularity that connects the holes but has nevertheless a well defined action. Using standard gravitational thermodynamics techniques we determine the free energy for two black holes at fixed temperature and distance, their entropy and mutual force. When the black holes are far apart the results agree with Newtonian gravity expectations. This analyses is generalized to the case of charged black holes. Then we consider black holes embedded in string/M-theory as bound states of branes. Using the effective string description of these bound states and for large separation we reproduce exactly the semi-classical result for the entropy, including the correction associated with the interaction between the holes
International Nuclear Information System (INIS)
Banerjee, Nabamita; Mandal, Ipsita; Sen, Ashoke
2009-01-01
Macroscopic entropy of an extremal black hole is expected to be determined completely by its near horizon geometry. Thus two black holes with identical near horizon geometries should have identical macroscopic entropy, and the expected equality between macroscopic and microscopic entropies will then imply that they have identical degeneracies of microstates. An apparent counterexample is provided by the 4D-5D lift relating BMPV black hole to a four dimensional black hole. The two black holes have identical near horizon geometries but different microscopic spectrum. We suggest that this discrepancy can be accounted for by black hole hair - degrees of freedom living outside the horizon and contributing to the degeneracies. We identify these degrees of freedom for both the four and the five dimensional black holes and show that after their contributions are removed from the microscopic degeneracies of the respective systems, the result for the four and five dimensional black holes match exactly.
Politzer, David
2015-01-01
The volume of air that goes in and out of a musical instrument's sound hole is related to the sound hole's contribution to the volume of the sound. Helmholtz's result for the simplest case of steady flow through an elliptical hole is reviewed. Measurements on multiple holes in sound box geometries and scales relevant to real musical instruments demonstrate the importance of a variety of effects. Electric capacitance of single flat plates is a mathematically identical problem, offering an alte...
Hayward, Sean A.
2008-01-01
This is a review of current theory of black-hole dynamics, concentrating on the framework in terms of trapping horizons. Summaries are given of the history, the classical theory of black holes, the defining ideas of dynamical black holes, the basic laws, conservation laws for energy and angular momentum, other physical quantities and the limit of local equilibrium. Some new material concerns how processes such as black-hole evaporation and coalescence might be described by a single trapping h...
International Nuclear Information System (INIS)
Gibbons, G.
1976-01-01
Recent work, which has been investigating the use of the concept of entropy with respect to gravitating systems, black holes and the universe as a whole, is discussed. The resulting theory of black holes assigns a finite temperature to them -about 10 -7 K for ordinary black holes of stellar mass -which is in complete agreement with thermodynamical concepts. It is also shown that black holes must continuously emit particles just like ordinary bodies which have a certain temperature. (U.K.)
Moss, I.G.; Shiiki, N.; Winstanley, E.
2000-01-01
Charged black hole solutions with pion hair are discussed. These can be\\ud used to study monopole black hole catalysis of proton decay.\\ud There also exist\\ud multi-black hole skyrmion solutions with BPS monopole behaviour.
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. What is black hole? Possible end phase of a star: A star is a massive, luminous ball of plasma having continuous nuclear burning. Star exhausts nuclear fuel →. White Dwarf, Neutron Star, Black Hole. Black hole's gravitational field is so powerful that even ...
Ballistic hole magnetic microscopy
Haq, E.; Banerjee, T.; Siekman, M.H.; Lodder, J.C.; Jansen, R.
2005-01-01
A technique to study nanoscale spin transport of holes is presented: ballistic hole magnetic microscopy. The tip of a scanning tunneling microscope is used to inject hot electrons into a ferromagnetic heterostructure, where inelastic decay creates a distribution of electron-hole pairs.
Massive Black Holes and Galaxies
CERN. Geneva
2016-01-01
Evidence has been accumulating for several decades that many galaxies harbor central mass concentrations that may be in the form of black holes with masses between a few million to a few billion time the mass of the Sun. I will discuss measurements over the last two decades, employing adaptive optics imaging and spectroscopy on large ground-based telescopes that prove the existence of such a massive black hole in the Center of our Milky Way, beyond any reasonable doubt. These data also provide key insights into its properties and environment. Most recently, a tidally disrupting cloud of gas has been discovered on an almost radial orbit that reached its peri-distance of ~2000 Schwarzschild radii in 2014, promising to be a valuable tool for exploring the innermost accretion zone. Future interferometric studies of the Galactic Center Black hole promise to be able to test gravity in its strong field limit.
Directory of Open Access Journals (Sweden)
Phillip M. Ligrani
1996-01-01
Full Text Available Experimental results are presented which describe the development and structure of flow downstream of a single row of holes with compound angle orientations producing film cooling at high blowing ratios. This film cooling configuration is important because similar arrangements are frequently employed on the first stage of rotating blades of operating gas turbine engines. With this configuration, holes are spaced 6d apart in the spanwise direction, with inclination angles of 24 degrees, and angles of orientation of 50.5 degrees. Blowing ratios range from 1.5 to 4.0 and the ratio of injectant to freestream density is near 1.0. Results show that spanwise averaged adiabatic effectiveness, spanwise-averaged iso-energetic Stanton number ratios, surveys of streamwise mean velocity, and surveys of injectant distributions change by important amounts as the blowing ratio increases. This is due to injectant lift-off from the test surface just downstream of the holes.
Drilling history core hole DC-8
Energy Technology Data Exchange (ETDEWEB)
1978-10-01
Core hole DC-8 was completed in August, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-8. Core hole DC-8 is located on the Hanford Site near the Wye Barricade and 50 feet northwest of rotary hole DC-7. The Hanford Site vation coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 mean sea level. The purpose of core hole DC-8 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing and cross-hole seismic shear and pressure wave velocity studies with rotary hole DC-7. The total depth of core hole DC-8 was 4100.5 feet. Core recovery exceeded 97 percent of the total footage cored.
Drilling history core hole DC-8
International Nuclear Information System (INIS)
1978-10-01
Core hole DC-8 was completed in August, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-8. Core hole DC-8 is located on the Hanford Site near the Wye Barricade and 50 feet northwest of rotary hole DC-7. The Hanford Site vation coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 mean sea level. The purpose of core hole DC-8 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing and cross-hole seismic shear and pressure wave velocity studies with rotary hole DC-7. The total depth of core hole DC-8 was 4100.5 feet. Core recovery exceeded 97 percent of the total footage cored
International Nuclear Information System (INIS)
Arsiwalla, Xerxes D.; Verlinde, Erik P.
2010-01-01
We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.'s multicenter supersymmetric black hole solutions provides a supergravity description of such backgrounds within which a black hole can be trapped within a confined volume. This construction is realized by solving for a levitating black hole over a magnetic dipole base. We comment on how such a construction is akin to a mechanical levitron.
Wijers, R.A.M.J.
1996-01-01
Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes
Formation of black hole and emission of gravitational waves.
Nakamura, Takashi
2006-12-01
Numerical simulations were performed for the formation process of rotating black holes. It is suggested that Kerr black holes are formed for wide ranges of initial parameters. The nature of gravitational waves from a test particle falling into a Kerr black hole as well as the development of 3D numerical relativity for the coalescing binary neutron stars are discussed.
2015-08-01
COUPON GEOMETRY AND LOADING CONFIGURATION ........................................... 2 3. ABAQUS ELASTO–PLASTIC INPUT DATA REQUIREMENTS...of the geometry of the LIF Hawk Filled Hole Coupon are provided in Section 2. The general elasto–plastic input data requirements for the Abaqus FEA... Abaqus elasto–plastic input data requirements The aluminium and titanium alloys used in the coupon and fastener material display linear- elastic
Dubois, Yohan; Devriendt, Julien; Slyz, Adrianne; Teyssier, Romain
2012-03-01
We develop a subgrid model for the growth of supermassive black holes (BHs) and their associated active galactic nucleus (AGN) feedback in hydrodynamical cosmological simulations. This model transposes previous attempts to describe BH accretion and AGN feedback with the smoothed particle hydrodynamics (SPH) technique to the adaptive mesh refinement framework. It also furthers their development by implementing a new jet-like outflow treatment of the AGN feedback which we combine with the heating mode traditionally used in the SPH approach. Thus, our approach allows one to test the robustness of the conclusions derived from simulating the impact of self-regulated AGN feedback on galaxy formation vis-à-vis the numerical method. Assuming that BHs are created in the early stages of galaxy formation, they grow by mergers and accretion of gas at a Eddington-limited Bondi accretion rate. However this growth is regulated by AGN feedback which we model using two different modes: a quasar-heating mode when accretion rates on to the BHs are comparable to the Eddington rate, and a radio-jet mode at lower accretion rates which not only deposits energy, but also deposits mass and momentum on the grid. In other words, our feedback model deposits energy as a succession of thermal bursts and jet outflows depending on the properties of the gas surrounding the BHs. We assess the plausibility of such a model by comparing our results to observational measurements of the co-evolution of BHs and their host galaxy properties, and check their robustness with respect to numerical resolution. We show that AGN feedback must be a crucial physical ingredient for the formation of massive galaxies as it appears to be able to efficiently prevent the accumulation of and/or expel cold gas out of haloes/galaxies and significantly suppress star formation. Our model predicts that the relationship between BHs and their host galaxy mass evolves as a function of redshift, because of the vigorous accretion
Spacetime and orbits of bumpy black holes
International Nuclear Information System (INIS)
Vigeland, Sarah J.; Hughes, Scott A.
2010-01-01
Our Universe contains a great number of extremely compact and massive objects which are generally accepted to be black holes. Precise observations of orbital motion near candidate black holes have the potential to determine if they have the spacetime structure that general relativity demands. As a means of formulating measurements to test the black hole nature of these objects, Collins and Hughes introduced ''bumpy black holes'': objects that are almost, but not quite, general relativity's black holes. The spacetimes of these objects have multipoles that deviate slightly from the black hole solution, reducing to black holes when the deviation is zero. In this paper, we extend this work in two ways. First, we show how to introduce bumps which are smoother and lead to better behaved orbits than those in the original presentation. Second, we show how to make bumpy Kerr black holes--objects which reduce to the Kerr solution when the deviation goes to zero. This greatly extends the astrophysical applicability of bumpy black holes. Using Hamilton-Jacobi techniques, we show how a spacetime's bumps are imprinted on orbital frequencies, and thus can be determined by measurements which coherently track the orbital phase of a small orbiting body. We find that in the weak field, orbits of bumpy black holes are modified exactly as expected from a Newtonian analysis of a body with a prescribed multipolar structure, reproducing well-known results from the celestial mechanics literature. The impact of bumps on strong-field orbits is many times greater than would be predicted from a Newtonian analysis, suggesting that this framework will allow observations to set robust limits on the extent to which a spacetime's multipoles deviate from the black hole expectation.
Outcomes of chronic macular hole surgical repair
Directory of Open Access Journals (Sweden)
Shripaad Y Shukla
2014-01-01
Full Text Available Purpose: To report visual and anatomic outcomes of chronic macular hole surgery, with analysis of pre-operative OCT-based hole size and post-operative closure type. Settings and Design: An IRB-approved, retrospective case series of 26 eyes of 24 patients who underwent surgery for stage 3 or 4 idiopathic chronic macular holes at a tertiary care referral center. Statistical Analysis: Student′s t-test. Results: Nineteen of 26 eyes (73% had visual improvement after surgery on most recent exam. Twenty-one of 26 eyes (81% achieved anatomic closure; 16 of 26 eyes (62% achieved type 1, and five of 26 eyes (19% achieved type 2 closure. Post-operative LogMAR VA for type 1 closure holes (0.49 was significantly greater than for type 2 closure and open holes (1.26, P < 0.003 and 1.10, P < 0.005, respectively, despite similar pre-operative VA (P = 0.51 and 0.68, respectively. Mean pre-operative hole diameter for eyes with type 1 closure, type 2 closure, and holes that remained open were 554, 929, and 1205 microns, respectively. Mean pre-operative hole diameter was significantly larger in eyes that remained open as compared to eyes with type 1 closure (P = 0.015. Conclusion: Vitrectomy to repair chronic macular holes can improve vision and achieve long-term closure. Holes of greater than 3.4 years duration were associated with a greater incidence of remaining open and type 2 closure. Larger holes (mean diameter of 1205 microns were more likely to remain open after repair.
Bumpy black holes from spontaneous Lorentz violation
International Nuclear Information System (INIS)
Dubovsky, Sergei; Tinyakov, Peter; Zaldarriaga, Matias
2007-01-01
We consider black holes in Lorentz violating theories of massive gravity. We argue that in these theories black hole solutions are no longer universal and exhibit a large number of hairs. If they exist, these hairs probe the singularity inside the black hole providing a window into quantum gravity. The existence of these hairs can be tested by future gravitational wave observatories. We generically expect that the effects we discuss will be larger for the more massive black holes. In the simplest models the strength of the hairs is controlled by the same parameter that sets the mass of the graviton (tensor modes). Then the upper limit on this mass coming from the inferred gravitational radiation emitted by binary pulsars implies that hairs are likely to be suppressed for almost the entire mass range of the super-massive black holes in the centers of galaxies
Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica
2016-01-01
Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.
Thermodynamic phase transition in the rainbow Schwarzschild black hole
International Nuclear Information System (INIS)
Gim, Yongwan; Kim, Wontae
2014-01-01
We study the thermodynamic phase transition in the rainbow Schwarzschild black hole where the metric depends on the energy of the test particle. Identifying the black hole temperature with the energy from the modified dispersion relation, we obtain the modified entropy and thermodynamic energy along with the modified local temperature in the cavity to provide well defined black hole states. It is found that apart from the conventional critical temperature related to Hawking-Page phase transition there appears an additional critical temperature which is of relevance to the existence of a locally stable tiny black hole; however, the off-shell free energy tells us that this black hole should eventually tunnel into the stable large black hole. Finally, we discuss the reason why the temperature near the horizon is finite in the rainbow black hole by employing the running gravitational coupling constant, whereas it is divergent near the horizon in the ordinary Schwarzschild black hole
International Nuclear Information System (INIS)
Horowitz, G.T.; Ross, S.F.
1997-01-01
It is shown that there are large static black holes for which all curvature invariants are small near the event horizon, yet any object which falls in experiences enormous tidal forces outside the horizon. These black holes are charged and near extremality, and exist in a wide class of theories including string theory. The implications for cosmic censorship and the black hole information puzzle are discussed. copyright 1997 The American Physical Society
Nonextremal stringy black hole
International Nuclear Information System (INIS)
Suzuki, K.
1997-01-01
We construct a four-dimensional BPS saturated heterotic string solution from the Taub-NUT solution. It is a nonextremal black hole solution since its Euler number is nonzero. We evaluate its black hole entropy semiclassically. We discuss the relation between the black hole entropy and the degeneracy of string states. The entropy of our string solution can be understood as the microscopic entropy which counts the elementary string states without any complications. copyright 1997 The American Physical Society
Holes help control temperature
Chhatpar, C. K.
1981-01-01
Study of passive thermal control for the Solar Terrestrial Subsatellite (STSS) has found that array of "see through" holes substantially improves performance of system. Holes in payload mounting plates allow line of sight radiative heat transfer between hot and cold ends of spacecraft and between mounting plates and ends. Temperature gradients between plates are thereby reduced, as is temperature of each plate. Holes and selected exterior paints and finishes keep payload cool for all orientations and operating modes of STSS.
Utilization of the irradiation holes in the core at HANARO
International Nuclear Information System (INIS)
Lee, Shoong Sung; Ahn, Guk Hoon
2008-01-01
HANARO is a multipurpose research reactor. The three hexagonal and four circular holes are reserved for the irradiation tests in the core. Twenty holes including two NTD(Neutron Transmutation Doping) holes, a LH(Large Hole) and NAA holes are located in the reflector tank. These hole have been used for radioisotope production, material and fuel irradiation tests, beam application research and neutron activation analysis. In the initial stage of normal operation, the using time of irradiation holes located in the core was less the 40% of the reactor operation day. To raise utilization of irradiation holes, the equipment and facilities have been developed such as various capsules. Another area for increasing the utilization of HANARO was the fuel irradiation tests to develop the new fuels. Various fuel irradiation tests have been performed. Recently, the usage time of the irradiation holes in the core was more than 90% of the reactor operation day. If the FTL starts an irradiation service, the irradiation holes in the core will be fully used. In this paper describes the status of utilization of irradiation holes in the core
Energy Technology Data Exchange (ETDEWEB)
Moore, L.M.; Byers, F.M. Jr.; Broxton, D.E.
1989-06-01
A thin-section operator-variance test was given to the 2 junior authors, petrographers, by the senior author, a statistician, using 16 thin sections cut from core plugs drilled by the US Geological Survey from drill hole USW VH-2 standard (HCQ) drill core. The thin sections are samples of Topopah Spring devitrified rhyolite tuff from four textural zones, in ascending order: (1) lower nonlithophysal, (2) lower lithopysal, (3) middle nonlithophysal, and (4) upper lithophysal. Drill hole USW-VH-2 is near the center of the Crater Flat, about 6 miles WSW of the Yucca Mountain in Exploration Block. The original thin-section labels were opaqued out with removable enamel and renumbered with alpha-numeric labels. The sliders were then given to the petrographer operators for quantitative thin-section modal (point-count) analysis of cryptocrystalline, spherulitic, granophyric, and void textures, as well as phenocryst minerals. Between operator variance was tested by giving the two petrographers the same slide, and within-operator variance was tested by the same operator the same slide to count in a second test set, administered at least three months after the first set. Both operators were unaware that they were receiving the same slide to recount. 14 figs., 6 tabs.
Science Teacher, 2005
2005-01-01
Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…
International Nuclear Information System (INIS)
Ravndal, F.
1978-01-01
Applying Einstein's theory of gravitation to black holes and their interactions with their surroundings leads to the conclusion that the sum of the surface areas of several black holes can never become less. This is shown to be analogous to entropy in thermodynamics, and the term entropy is also thus applied to black holes. Continuing, expressions are found for the temperature of a black hole and its luminosity. Thermal radiation is shown to lead to explosion of the black hole. Numerical examples are discussed involving the temperature, the mass, the luminosity and the lifetime of black mini-holes. It is pointed out that no explosions corresponding to the prediction have been observed. It is also shown that the principle of conservation of leptons and baryons is broken by hot black holes, but that this need not be a problem. The related concept of instantons is cited. It is thought that understanding of thermal radiation from black holes may be important for the development of a quantified gravitation theory. (JIW)
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. Black hole candidates. In the case of X-ray sources such as Cyg X-1, the mass of the compact object inferred from combined optical and X-ray data, suggest M_compact object > 3.4 M_sun => Black Hole! A remarkable discovery!! Thus X-ray emitting binary systems ...
de Boer, J.; Papadodimas, K.; Verlinde, E.
2009-01-01
Supersymmetric black holes are characterized by a large number of degenerate ground states. We argue that these black holes, like other quantum mechanical systems with such a degeneracy, are subject to a phenomenon which is called the geometric or Berry’s phase: under adiabatic variations of the
DEFF Research Database (Denmark)
Kragh, Helge Stjernholm
2016-01-01
Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015).......Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015)....
Arsiwalla, X.D.; Verlinde, E.P.
2010-01-01
We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.’s multicenter
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... In the following paper, certain black hole dynamic potentials have been developed definitively on the lines of classical thermodynamics. These potentials have been refined in view of the small differences in the equations of the laws of black hole dynamics as given by Bekenstein and those of ...
Cosmic censorship of rotating Anti-de Sitter black hole
Energy Technology Data Exchange (ETDEWEB)
Gwak, Bogeun; Lee, Bum-Hoon, E-mail: rasenis@sogang.ac.kr, E-mail: bhl@sogang.ac.kr [Center for Quantum Spacetime, Sogang University, Seoul 04107 (Korea, Republic of)
2016-02-01
We test the validity of cosmic censorship in the rotating anti-de Sitter black hole. For this purpose, we investigate whether the extremal black hole can be overspun by the particle absorption. The particle absorption will change the mass and angular momentum of the black hole, which is analyzed using the Hamilton-Jacobi equations consistent with the laws of thermodynamics. We have found that the mass of the extremal black hole increases more than the angular momentum. Therefore, the outer horizon of the black hole still exists, and cosmic censorship is valid.
Lifshitz topological black holes
International Nuclear Information System (INIS)
Mann, R.B.
2009-01-01
I find a class of black hole solutions to a (3+1) dimensional theory gravity coupled to abelian gauge fields with negative cosmological constant that has been proposed as the dual theory to a Lifshitz theory describing critical phenomena in (2+1) dimensions. These black holes are all asymptotic to a Lifshitz fixed point geometry and depend on a single parameter that determines both their area (or size) and their charge. Most of the solutions are obtained numerically, but an exact solution is also obtained for a particular value of this parameter. The thermodynamic behaviour of large black holes is almost the same regardless of genus, but differs considerably for small black holes. Screening behaviour is exhibited in the dual theory for any genus, but the critical length at which it sets in is genus-dependent for small black holes.
International Nuclear Information System (INIS)
Barack, Leor; Cutler, Curt
2007-01-01
Inspirals of stellar-mass compact objects (COs) into ∼10 6 M · black holes are especially interesting sources of gravitational waves for the planned Laser Interferometer Space Antenna (LISA). The orbits of these extreme-mass-ratio inspirals (EMRIs) are highly relativistic, displaying extreme versions of both perihelion precession and Lense-Thirring precession of the orbital plane. We investigate the question of whether the emitted waveforms can be used to strongly constrain the geometry of the central massive object, and in essence check that it corresponds to a Kerr black hole (BH). For a Kerr BH, all multipole moments of the spacetime have a simple, unique relation to M and S, the BH mass, and spin; in particular, the spacetime's mass quadrupole moment Q is given by Q=-S 2 /M. Here we treat Q as an additional parameter, independent of S and M, and ask how well observation can constrain its difference from the Kerr value. This was already estimated by Ryan, but for the simplified case of circular, equatorial orbits, and Ryan also neglected the signal modulations arising from the motion of the LISA satellites. We consider generic orbits and include the modulations due to the satellite motions. For this analysis, we use a family of approximate (basically post-Newtonian) waveforms, which represent the full parameter space of EMRI sources, and which exhibit the main qualitative features of true, general relativistic waveforms. We extend this parameter space to include (in an approximate manner) an arbitrary value of Q, and then construct the Fisher information matrix for the extended parameter space. By inverting the Fisher matrix, we estimate how accurately Q could be extracted from LISA observations of EMRIs. For 1 yr of coherent data from the inspiral of a 10M · black hole into rotating black holes of masses 10 5.5 M · , 10 6 M · , or 10 6.5 M · , we find Δ(Q/M 3 )∼10 -4 , 10 -3 , or 10 -2 , respectively (assuming total signal-to-noise ratio of 100
Black hole critical phenomena without black holes
Indian Academy of Sciences (India)
as a star or dispersing altogether. Were we engineers with advanced technology, we might attempt to find that critical amount of energy necessary to form a black hole. However, despite some fears to the contrary, such technology does not exist, so instead we investigate this critical regime numerically. The first step is to pick ...
Black hole critical phenomena without black holes
Indian Academy of Sciences (India)
denotes the partial derivatives of . The construction of a numerical method with which ... which configurations form black holes and which disperse (the only two options in this model). The problem in picturing such a space is that it is infinite ..... 4.1 The future: Less symmetry. The work described above all assumes spherical ...
International Nuclear Information System (INIS)
Hammermeister, D.P.; Kneiblher, C.R.; Klenke, J.
1985-01-01
The use of drilling and coring methods that minimize the disturbance of formation rock and core has permitted field calibration of neutron-moisture tools in relatively large diameter cased and uncased boreholes at Yucca Mountain, Nevada. For 5.5-inch diameter cased holes, there was reasonable agreement between a field calibration in alluvium-colluvium and a laboratory calibration in a chamber containing silica sand. There was little difference between moisture-content profiles obtained in a neutron-access hole with a hand-held neutron-moisture meter and an automated borehole-logging tool using laboratory-generated calibration curves. Field calibrations utilizing linear regression analyses and as many as 119 data pairs show a good correlation between neutron-moisture counts and volumetric water content for sections of uncased 6-inch diameter boreholes in nonwelded and bedded tuff. Regression coefficients ranged from 0.80 to 0.94. There were only small differences between calibration curves in 4.25- and 6-inch uncased sections of boreholes. Results of analyzing field calibration data to determine the effects of formation density on calibration curves were inconclusive. Further experimental and theoretical work is outlined
International Nuclear Information System (INIS)
Lemos, Jose P. S.; Zaslavskii, Oleg B.
2010-01-01
We trace the origin of the black hole entropy S, replacing a black hole by a quasiblack hole. Let the boundary of a static body approach its own gravitational radius, in such a way that a quasihorizon forms. We show that if the body is thermal with the temperature taking the Hawking value at the quasihorizon limit, it follows, in the nonextremal case, from the first law of thermodynamics that the entropy approaches the Bekenstein-Hawking value S=A/4. In this setup, the key role is played by the surface stresses on the quasihorizon and one finds that the entropy comes from the quasihorizon surface. Any distribution of matter inside the surface leads to the same universal value for the entropy in the quasihorizon limit. This can be of some help in the understanding of black hole entropy. Other similarities between black holes and quasiblack holes such as the mass formulas for both objects had been found previously. We also discuss the entropy for extremal quasiblack holes, a more subtle issue.
ULTRAMASSIVE BLACK HOLE COALESCENCE
International Nuclear Information System (INIS)
Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter
2015-01-01
Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC 1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC 1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production
Directory of Open Access Journals (Sweden)
Peter Distelmaier
2014-04-01
Full Text Available Purpose: The presented case raises questions regarding the favorable scheduling of planned postoperative care and the ideal observation interval to decide for reoperations in macular hole surgery. Furthermore a discussion about the use of short- and long-acting gas tamponades in macular hole surgery is encouraged. Methods: We present an interventional case report and a short review of the pertinent literature. Results: We report a case of spontaneous delayed macular hole closure after vitreoretinal surgery had been performed initially without the expected success. A 73-year-old male Caucasian patient presented at our clinic with a stage 2 macular hole in his left eye. He underwent 23-gauge pars plana vitrectomy and internal limiting membrane peeling with a 20% C2F6-gas tamponade. Sixteen days after the procedure, an OCT scan revealed a persistent stage 2 macular hole, and the patient was scheduled for reoperation. Surprisingly, at the date of planned surgery, which was another 11 days later, the macular hole had resolved spontaneously without any further intervention. Conclusions: So far no common opinion exists regarding the use of short- or long-acting gas in macular hole surgery. Our case of delayed macular hole closure after complete resorption of the gas tamponade raises questions about the need and duration of strict prone positioning after surgery. Furthermore short-acting gas might be as efficient as long-acting gas. We suggest to wait with a second intervention at least 4 weeks after the initial surgery, since a delayed macular hole closure is possible.
Hayward, Sean Alan
2013-01-01
Black holes, once just fascinating theoretical predictions of how gravity warps space-time according to Einstein's theory, are now generally accepted as astrophysical realities, formed by post-supernova collapse, or as supermassive black holes mysteriously found at the cores of most galaxies, powering active galactic nuclei, the most powerful objects in the universe. Theoretical understanding has progressed in recent decades with a wider realization that local concepts should characterize black holes, rather than the global concepts found in textbooks. In particular, notions such as trapping h
Energy Technology Data Exchange (ETDEWEB)
Kleihaus, Burkhard, E-mail: b.kleihaus@uni-oldenburg.de [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Kunz, Jutta [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Yazadjiev, Stoytcho [Department of Theoretical Physics, Faculty of Physics, Sofia University, Sofia 1164 (Bulgaria)
2015-05-11
In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
Probing strong-field general relativity near black holes
CERN. Geneva; Alvarez-Gaumé, Luís
2005-01-01
Nature has sprinkled black holes of various sizes throughout the universe, from stellar mass black holes in X-ray sources to supermassive black holes of billions of solar masses in quasars. Astronomers today are probing the spacetime near black holes using X-rays, and gravitational waves will open a different view in the near future. These tools give us an unprecedented opportunity to test ultra-strong-field general relativity, including the fundamental theorem of the uniqueness of the Kerr metric and Roger Penrose's cosmic censorship conjecture. Already, fascinating studies of spectral lines are showing the extreme gravitational lensing effects near black holes and allowing crude measurements of black hole spin. When the ESA-NASA gravitational wave detector LISA begins its observations in about 10 years, it will make measurements of dynamical spacetimes near black holes with an accuracy greater even than that which theoreticians can reach with their computations today. Most importantly, when gravitational wa...
Hole board food search task in rats: effects of hole depths and food deprivation.
Vawter, M P; Van Ree, J M
1989-05-01
The hole board food search task has been used in rats to analyse their learning ability and different types of memory, IC working and reference memory. In the present experiments the effects of hole depth and level of food deprivation in this task was investigated. No marked differences with respect to the performance, learning and memory were found when rats were tested with a hole depth of 2.8 and 3.8 cm. But when a hole depth of 1.8 cm was used, these parameters were changed, suggesting a decreased learning and memory under this condition. A higher level of food deprivation resulted in a better performance of the animals, but the processes implicated in learning and memory were less affected. The data indicated that both external and internal characteristics can influence the results of the hole board food search task, and thus the calculated scores for learning and memory.
Destroying a near-extremal Kerr-Newman black hole
International Nuclear Information System (INIS)
Saa, Alberto; Santarelli, Raphael
2011-01-01
We revisit here a previous argument due to Wald showing the impossibility of turning an extremal Kerr-Newman black hole into a naked singularity by plunging test particles across the black hole event horizon. We extend Wald's analysis to the case of near-extremal black holes and show that it is indeed possible to destroy their event horizon, giving rise to naked singularities, by pushing test particles toward the black hole as, in fact, it has been demonstrated explicitly by several recent works. Our analysis allows us to go a step further and to determine the optimal values, in the sense of keeping to a minimum the backreaction effects, of the test particle electrical charge and angular momentum necessary to destroy a given near-extremal Kerr-Newman black hole. We describe briefly a possible realistic scenario for the creation of a Kerr naked singularity from some recently discovered candidates to be rapidly rotating black holes in radio galaxies.
Directory of Open Access Journals (Sweden)
Sueli Mendonça Netto
Full Text Available Rauvolfia ligustrina Willd. ex Roem. & Schult. (Apocynaceae, popularly known as "arrebenta-boi" and "paratudo". In behavioral screening ethanol extract of R. ligustrina roots demonstrated depressant effect on the CNS and anticonvulsant properties. The purpose of this study was to characterize the putative anxiolytic-like effects of the ethanol extract of Rauvolfia ligustrina roots (EER using the elevated plus maze (EPM and the hole-board apparatus in rodents. This extract, administered intraperitoneally, in different doses (3.9, 7.8 and 15.6 mg/kg was able to increase significantly the number of entries (p < 0.05, as well as the time spent in the open arms of the EPM, indicating an anxiolytic-like effect. Additionally, EER-treated (3.9 and 7.8 mg/kg increased significantly the number of border visit and head-dipping. This data suggest an anxiolytic effect of EER in animal models of anxiety.
Ruffini, Remo; Wheeler, John A.
1971-01-01
discusses the cosmology theory of a black hole, a region where an object loses its identity, but mass, charge, and momentum are conserved. Include are three possible formation processes, theorized properties, and three way they might eventually be detected. (DS)
International Nuclear Information System (INIS)
Ahmed, Mainuddin
2005-01-01
A new solution of Einstein equation in general relativity is found. This solution solves an outstanding problem of thermodynamics and black hole physics. Also this work appears to conclude the interpretation of NUT spacetime. (author)
Barr, Ian A.; Bull, Anne; O'Brien, Eileen; Drillsma-Milgrom, Katy A.; Milgrom, Lionel R.
2016-07-01
Two-dimensional shadows formed by illuminating vortices are shown to be visually analogous to the gravitational action of black holes on light and surrounding matter. They could be useful teaching aids demonstrating some of the consequences of general relativity.
Monten, Ruben; Toldo, Chiara
2018-02-01
We present new AdS4 black hole solutions in N =2 gauged supergravity coupled to vector and hypermultiplets. We focus on a particular consistent truncation of M-theory on the homogeneous Sasaki–Einstein seven-manifold M 111, characterized by the presence of one Betti vector multiplet. We numerically construct static and spherically symmetric black holes with electric and magnetic charges, corresponding to M2 and M5 branes wrapping non-contractible cycles of the internal manifold. The novel feature characterizing these nonzero temperature configurations is the presence of a massive vector field halo. Moreover, we verify the first law of black hole mechanics and we study the thermodynamics in the canonical ensemble. We analyze the behavior of the massive vector field condensate across the small-large black hole phase transition and we interpret the process in the dual field theory.
International Nuclear Information System (INIS)
't Hooft, G.
1987-01-01
No particle theory can be complete without gravity. Einstein's theory of gravity is of the Euler-Lagrange form, but standard quantization procedure fails. In quantum gravity the higher order interactions have a dimensionality different form the fundamental ones, because Newton's constant G has dimensions and the renormalization procedure fails. Another problem with quantum gravity is even more mysterious. Suppose that we had regularized the gravitational forces at the small distance end in the way that the weak intermediate vector boson regularized the fundamental 4-fermion interaction vertex of the weak interactions. Then what we discover is that the gravitational forces are unstable. Given sufficiently large amount of matter, it can collapse under its own weight. Classical general relativity tells us what will happen: a black hole is formed. But how is this formulated in quantum theory. S. Hawking observed that when a field theory is quantized in the background metric of a black hole, the black hole actually emits particles in a completely random thermal way. Apparently black holes are just another form of matter unstable against Hawking decay. Unfortunately this picture cannot be complete. The problem is that the quantum version of black holes has infinite phase space, and other symptoms of a run-away solution. Black holes are the heaviest and most compact forms of matter that can be imagined. A complete particle theory can have nothing but a spectrum of black-hole like objects at it high-energy end. This is why it is believed that a resolution of the black hole problem will in time disclose the complete small-distance structure of our world. 6 references
International Nuclear Information System (INIS)
Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar
2015-01-01
We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory
The Thermodynamics of Black Holes
Directory of Open Access Journals (Sweden)
Wald Robert M.
2001-01-01
Full Text Available We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.
Energy Technology Data Exchange (ETDEWEB)
NONE
2002-02-01
Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for
International Nuclear Information System (INIS)
Guillot, J.
1979-01-01
Neutron hole states in the 207 Pb, 206 Pb, 205 Pb isotopes were studied up to 25 MeV excitation energy using the ( 3 He,α) reaction at 100MeV incident energy, with 100 keV energy resolution. Angular distributions for the low-lying levels and inner hole states have been analyzed with DWBA and spectroscopic factors extracted for 1 > 3 levels. Missing strengths for the first levels from 1i13/2 and 1h9/2 orbits are found in the bump located around 5MeV excitation energy. The fragmented bump observed around 8MeV excitation energy is attributed to 1h11/2 pick-up with 45% of the sum-rule limit. Finally, the structure extending up to 21 MeV excitation energy is attributed to 1g7/2+1g9/2 pick-up with 80% of the total strength. In 207 Pb, the four first isobaric analog states Tsub(>) = 45/2 are identifierd around 20MeV excitation energy. The second part of this work presents the first tests in (d,t) reaction at 108 MeV on 90 Zr and 208 Pb using the achromatic line of the Orsay synchrocyclotron [fr
Black holes in modified gravity (MOG)
Energy Technology Data Exchange (ETDEWEB)
Moffat, J.W. [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada)
2015-04-15
The field equations for scalar-tensor-vector gravity (STVG) or modified gravity (MOG) have a static, spherically symmetric black hole solution determined by the mass M with two horizons. The strength of the gravitational constant is G = G{sub N} (1 + α) where α is a parameter. A regular singularity-free MOG solution is derived using a nonlinear field dynamics for the repulsive gravitational field component and a reasonable physical energy-momentum tensor. The Kruskal-Szekeres completion of the MOG black hole solution is obtained. The Kerr-MOG black hole solution is determined by the mass M, the parameter α and the spin angular momentum J = Ma. The equations of motion and the stability condition of a test particle orbiting the MOG black hole are derived, and the radius of the black hole photosphere and the shadows cast by the Schwarzschild-MOG and Kerr-MOG black holes are calculated. A traversable wormhole solution is constructed with a throat stabilized by the repulsive component of the gravitational field. (orig.)
Determining the population properties of spinning black holes
Talbot, Colm; Thrane, Eric
2017-07-01
There are at least two formation scenarios consistent with the first gravitational-wave observations of binary black hole mergers. In field models, black hole binaries are formed from stellar binaries that may undergo common envelope evolution. In dynamic models, black hole binaries are formed through capture events in globular clusters. Both classes of models are subject to significant theoretical uncertainties. Nonetheless, the conventional wisdom holds that the distribution of spin orientations of dynamically merging black holes is nearly isotropic while field-model black holes prefer to spin in alignment with the orbital angular momentum. We present a framework in which observations of black hole mergers can be used to measure ensemble properties of black hole spin such as the typical black hole spin misalignment. We show how to obtain constraints on population hyperparameters using minimal assumptions so that the results are not strongly dependent on the uncertain physics of formation models. These data-driven constraints will facilitate tests of theoretical models and help determine the formation history of binary black holes using information encoded in their observed spins. We demonstrate that the ensemble properties of binary detections can be used to search for and characterize the properties of two distinct populations of black hole mergers.
Gao, Changjun; Lu, Youjun; Shen, You-Gen; Faraoni, Valerio
2018-01-01
The Hawking-Penrose singularity theorem states that a singularity forms inside a black hole in general relativity. To remove this singularity one must resort to a more fundamental theory. Using a corrected dynamical equation arising in loop quantum cosmology and braneworld models, we study the gravitational collapse of a perfect fluid sphere with a rather general equation of state. In the frame of an observer comoving with this fluid, the sphere pulsates between a maximum and a minimum size, avoiding the singularity. The exterior geometry is also constructed. There are usually an outer and an inner apparent horizon, resembling the Reissner-Nordström situation. For a distant observer the horizon crossing occurs in an infinite time and the pulsations of the black hole quantum "beating heart" are completely unobservable. However, it may be observable if the black hole is not spherical symmetric and radiates gravitational wave due to the quadrupole moment, if any.
Yang, Huan; Zimmerman, Aaron; Lehner, Luis
2015-02-27
We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.
Black hole gravitohydromagnetics
Punsly, Brian
2008-01-01
Black hole gravitohydromagnetics (GHM) is developed from the rudiments to the frontiers of research in this book. GHM describes plasma interactions that combine the effects of gravity and a strong magnetic field, in the vicinity (ergosphere) of a rapidly rotating black hole. This topic was created in response to the astrophysical quest to understand the central engines of radio loud extragalactic radio sources. The theory describes a "torsional tug of war" between rotating ergospheric plasma and the distant asymptotic plasma that extracts the rotational inertia of the black hole. The recoil from the struggle between electromagnetic and gravitational forces near the event horizon is manifested as a powerful pair of magnetized particle beams (jets) that are ejected at nearly the speed of light. These bipolar jets feed large-scale magnetized plasmoids on scales as large as millions of light years (the radio lobes of extragalactic radio sources). This interaction can initiate jets that transport energy fluxes exc...
Characterizing Black Hole Mergers
Baker, John; Boggs, William Darian; Kelly, Bernard
2010-01-01
Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.
Roldán-Molina, A; Nunez, Alvaro S; Duine, R A
2017-02-10
We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons-the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.
Hennigar, Robie A; Mann, Robert B; Tjoa, Erickson
2017-01-13
We present what we believe is the first example of a "λ-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid ^{4}He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.
Good, Michael R. R.; Ong, Yen Chin
2015-02-01
A (3 +1 )-dimensional asymptotically flat Kerr black hole angular speed Ω+ can be used to define an effective spring constant, k =m Ω+2. Its maximum value is the Schwarzschild surface gravity, k =κ , which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: 2 π T =κ -k . Hooke's law, in the extremal limit, provides the force F =1 /4 , which is consistent with the conjecture of maximum force in general relativity.
Hawking, Stephen W.
1995-01-01
One would expect spacetime to have a foam-like structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the non-trivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of $S^2\\times S^2$ and $K3$ bubbles. Comparison with the instantons for pair creation of black holes shows that the $S^2\\times S^2$ bubbles can be interpreted as closed loops of virtual black holes. It is ...
International Nuclear Information System (INIS)
Susskind, L.; Griffin, P.
1994-01-01
A light-front renormalization group analysis is applied to study matter which falls into massive black holes, and the related problem of matter with transplankian energies. One finds that the rate of matter spreading over the black hole's horizon unexpectedly saturates the causality bound. This is related to the transverse growth behavior of transplankian particles as their longitudinal momentum increases. This growth behavior suggests a natural mechanism to implement 't Hooft's scenario that the universe is an image of data stored on a 2 + 1 dimensional hologram-like projection
Energy Technology Data Exchange (ETDEWEB)
Bouhmadi-Lopez, Mariam; Cardoso, Vitor; Nerozzi, Andrea; Rocha, Jorge V, E-mail: mariam.bouhmadi@ist.utl.pt, E-mail: vitor.cardoso@ist.utl.pt, E-mail: andrea.nerozzi@ist.utl.pt, E-mail: jorge.v.rocha@ist.utl.pt [CENTRA, Department de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049 Lisboa (Portugal)
2011-09-22
A possible process to destroy a black hole consists on throwing point particles with sufficiently large angular momentum into the black hole. In the case of Kerr black holes, it was shown by Wald that particles with dangerously large angular momentum are simply not captured by the hole, and thus the event horizon is not destroyed. Here we reconsider this gedanken experiment for black holes in higher dimensions. We show that this particular way of destroying a black hole does not succeed and that Cosmic Censorship is preserved.
Growth of Primordial Black Holes
Harada, Tomohiro
Primordial black holes have important observational implications through Hawking evaporation and gravitational radiation as well as being a candidate for cold dark matter. Those black holes are assumed to have formed in the early universe typically with the mass scale contained within the Hubble horizon at the formation epoch and subsequently accreted mass surrounding them. Numerical relativity simulation shows that primordial black holes of different masses do not accrete much, which contrasts with a simplistic Newtonian argument. We see that primordial black holes larger than the 'super-horizon' primordial black holes have decreasing energy and worm-hole like struture, suggesting the formation through quamtum processes.
Classical and quantum gravity of brane black holes
International Nuclear Information System (INIS)
Gregory, Ruth; Ross, Simon F.; Zegers, Robin
2008-01-01
We test the holographic conjecture of brane black holes: that a full classical 5D solution will correspond to a quantum corrected 4D black hole. Using the Schwarzschild-AdS black string, we compare the braneworld back reaction at strong coupling with the calculation of the quantum stress tensor on Schwarzschild-AdS 4 at weak coupling. The two calculations give different results and provide evidence that the stress tensor at strong coupling is indeed different to the weak coupling calculations, and hence does not conform to our notion of a quantum corrected black hole. We comment on the implications for an asymptotically flat black hole.
Low-scale gravity black holes at LHC
Regos, E; Gamsizkan, H; Trocsanyi, Z
2009-01-01
We search for extra dimensions by looking for black holes at LHC. Theoretical investigations provide the basis for the collider experiments. We use black hole generators to simulate the experimental signatures (colour, charge, spectrum of emitted particles, missing transverse energy) of black holes at LHC in models with TeV scale quantum gravity, rotation, fermion splitting, brane tension and Hawking radiation. We implement the extra-dimensional simulations at the CMS data analysis and test further beyond standard models of black holes too.
Thermal stability of black holes with arbitrary hairs
Sinha, Aloke Kumar
2018-02-01
We have derived the criteria for thermal stability of charged rotating black holes, for horizon areas that are large relative to the Planck area (in these dimensions). In this paper, we generalized it for black holes with arbitrary hairs. The derivation uses results of loop quantum gravity and equilibrium statistical mechanics of the grand canonical ensemble and there is no explicit use of classical spacetime geometry at all in this analysis. The assumption is that the mass of the black hole is a function of its horizon area and all the hairs. Our stability criteria are then tested in detail against some specific black holes, whose metrics provide us with explicit relations for the dependence of the mass on the area and other hairs of the black holes. This enables us to predict which of these black holes are expected to be thermally unstable under Hawking radiation.
Numerically generated black-hole spacetimes: Interaction with gravitational waves
International Nuclear Information System (INIS)
Abrahams, A.; Bernstein, D.; Hobill, D.; Seidel, E.; Smarr, L.
1992-01-01
In this paper we present results from a new two-dimensional numerical relativity code used to study the interaction of gravitational waves with a black hole. The initial data correspond to a single black hole superimposed with time-symmetric gravitational waves (Brill waves). A gauge-invariant method is presented for extracting the gravitational waves from the numerically generated spacetime. We show that the interaction between the gravitational wave and the black hole excites the quasinormal modes of the black hole. An extensive comparison of these results is made to black-hole perturbation theory. For low-amplitude initial gravitational waves, we find excellent agreement between the theoretically predicted scrl=2 and scrl=4 wave forms and the wave forms generated by the code. Additionally, a code test is performed wherein the propagation of the wave on the black-hole background is compared to the evolution predicted by perturbation theory
Timelike geodesics around a charged spherically symmetric dilaton black hole
Directory of Open Access Journals (Sweden)
Blaga C.
2015-01-01
Full Text Available In this paper we study the timelike geodesics around a spherically symmetric charged dilaton black hole. The trajectories around the black hole are classified using the effective potential of a free test particle. This qualitative approach enables us to determine the type of orbit described by test particle without solving the equations of motion, if the parameters of the black hole and the particle are known. The connections between these parameters and the type of orbit described by the particle are obtained. To visualize the orbits we solve numerically the equation of motion for different values of parameters envolved in our analysis. The effective potential of a free test particle looks different for a non-extremal and an extremal black hole, therefore we have examined separately these two types of black holes.
Baker, John
2010-01-01
Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.
Neitzke, A.; Pioline, B.; Vandoren, S.
2007-01-01
Motivated by black hole physics in N = 2,D = 4 supergravity, we study the geometry of quaternionic-K¨ahler manifolds Mobtained by the c-map construction from projective special Kähler manifolds Ms. Improving on earlier treatments, we compute the Käahler potentials on the twistor space Z and Swann
International Nuclear Information System (INIS)
Borsten, L.
2011-01-01
An unexpected interplay between the seemingly disparate fields of M-theory and Quantum Information has recently come to light. We summarise these developments, culminating in a classification of 4-qubit entanglement from the physics of STU black holes. Based on work done in collaboration with D. Dahanayake, M. J. Duff, H. Ebrahim, A. Marrani and W. Rubens.
Borsten, L.
2011-07-01
An unexpected interplay between the seemingly disparate fields of M-theory and Quantum Information has recently come to light. We summarise these developments, culminating in a classification of 4-qubit entanglement from the physics of STU black holes. Based on work done in collaboration with D. Dahanayake, M. J. Duff, H. Ebrahim, A. Marrani and W. Rubens.
Quantum aspects of black holes
2015-01-01
Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.
Energy Technology Data Exchange (ETDEWEB)
Anabalón, Andrés, E-mail: andres.anabalon-at@uai.cl [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar (Chile); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile)
2015-03-26
We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.
Neutrino constraints that transform black holes into grey holes
International Nuclear Information System (INIS)
Ruderfer, M.
1982-01-01
Existing black hole theory is found to be defective in its neglect of the physical properties of matter and radiation at superhigh densities. Nongravitational neutrino effects are shown to be physically relevant to the evolution of astronomical black holes and their equations of state. Gravitational collapse to supernovae combined with the Davis and Ray vacuum solution for neutrinos limit attainment of a singularity and require black holes to evolve into ''grey holes''. These allow a better justification than do black holes for explaining the unique existence of galactic masses. (Auth.)
Indian Academy of Sciences (India)
most sensitive scientific instrument ever ... sion, expelling a lot of the mass, but leaving behind a black hole that is at least ... hole, and indeed such a phenomenon may explain the disappear- ance of a star in the galaxy N6946 [21]. The collapse of stars into black holes might account for some of the extraordinarily powerful ...
Warped products and black holes
International Nuclear Information System (INIS)
Hong, Soon-Tae
2005-01-01
We apply the warped product space-time scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstroem-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes
Rotating Black Holes and the Kerr Metric
Kerr, Roy Patrick
2008-10-01
Since it was first discovered in 1963 the Kerr metric has been used by relativists as a test-bed for conjectures on worm-holes, time travel, closed time-like loops, and the existence or otherwise of global Cauchy surfaces. More importantly, it has also used by astrophysicists to investigate the effects of collapsed objects on their local environments. These two groups of applications should not be confused. Astrophysical Black Holes are not the same as the Kruskal solution and its generalisations.
Scalar cosmological perturbations from inflationary black holes
Energy Technology Data Exchange (ETDEWEB)
Prokopec, Tomislav; Reska, Paul, E-mail: t.prokopec@uu.nl, E-mail: p.m.reska@uu.nl [Spinoza Institute and Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht (Netherlands)
2011-03-01
We study the correction to the scale invariant power spectrum of a scalar field on de Sitter space from small black holes that formed during a pre-inflationary matter dominated era. The formation probability of such black holes is estimated from primordial Gaussian density fluctuations. We determine the correction to the spectrum of scalar cosmological perturbations from the Keldysh propagator of a massless scalar field on Schwarzschild-de Sitter space. Our results suggest that the effect is strong enough to be tested — and possibly even ruled out — by observations.
The Geometry of Black Hole Singularities
Directory of Open Access Journals (Sweden)
Ovidiu Cristinel Stoica
2014-01-01
Full Text Available Recent results show that important singularities in General Relativity can be naturally described in terms of finite and invariant canonical geometric objects. Consequently, one can write field equations which are equivalent to Einstein's at nonsingular points but, in addition remain well-defined and smooth at singularities. The black hole singularities appear to be less undesirable than it was thought, especially after we remove the part of the singularity due to the coordinate system. Black hole singularities are then compatible with global hyperbolicity and do not make the evolution equations break down, when these are expressed in terms of the appropriate variables. The charged black holes turn out to have smooth potential and electromagnetic fields in the new atlas. Classical charged particles can be modeled, in General Relativity, as charged black hole solutions. Since black hole singularities are accompanied by dimensional reduction, this should affect Feynman's path integrals. Therefore, it is expected that singularities induce dimensional reduction effects in Quantum Gravity. These dimensional reduction effects are very similar to those postulated in some approaches to make Quantum Gravity perturbatively renormalizable. This may provide a way to test indirectly the effects of singularities, otherwise inaccessible.
Stationary black holes with stringy hair
Boos, Jens; Frolov, Valeri P.
2018-01-01
We discuss properties of black holes which are pierced by special configurations of cosmic strings. For static black holes, we consider radial strings in the limit when the number of strings grows to infinity while the tension of each single string tends to zero. In a properly taken limit, the stress-energy tensor of the string distribution is finite. We call such matter stringy matter. We present a solution of the Einstein equations for an electrically charged static black hole with the stringy matter, with and without a cosmological constant. This solution is a warped product of two metrics. One of them is a deformed 2-sphere, whose Gaussian curvature is determined by the energy density of the stringy matter. We discuss the embedding of a corresponding distorted sphere into a three-dimensional Euclidean space and formulate consistency conditions. We also found a relation between the square of the Weyl tensor invariant of the four-dimensional spacetime of the stringy black holes and the energy density of the stringy matter. In the second part of the paper, we discuss test stationary strings in the Kerr geometry and in its Kerr-NUT-(anti-)de Sitter generalizations. Explicit solutions for strings that are regular at the event horizon are obtained. Using these solutions, the stress-energy tensor of the stringy matter in these geometries is calculated. Extraction of the angular momentum from rotating black holes by such strings is also discussed.
Permeability of granular beds emplaced in vertical drill holes
International Nuclear Information System (INIS)
Griffiths, S.K.; Morrison, F.A. Jr.
1979-01-01
To determine the permeabilities of granular materials emplaced in vertical drill holes used for underground nuclear tests, an experiment at the USDOE Nevada Test Site (NTS) was conducted. As the hole is being filled, falling material increases pressure above and within the granular beds beneath. When the filling operation starts or stops, a transient pressure response occurs within the beds; measurements of this response in beds of various compositions were made. The permeabilities after emplacement were found by matching analytical predictions of the response to these data. This information is useful in assuring the containment of nuclear tests conducted in such drill holes
International Nuclear Information System (INIS)
Cvetič, M.; Gibbons, G.W.; Pope, C.N.
2017-01-01
The equations of null geodesics in the STU family of rotating black hole solutions of supergravity theory, which may be considered as deformations of the vacuum Kerr metric, are completely integrable. We propose that they be used as a foil to test, for example, with what precision the gravitational field external to the black hole at the centre of our galaxy is given by the Kerr metric. By contrast with some metrics proposed in the literature, the STU metrics satisfy by construction the dominant and strong energy conditions. Our considerations may be extended to include the effects of a cosmological term. We show that these metrics permit a straightforward calculation of the properties of black hole shadows.
Black holes in the presence of dark energy
International Nuclear Information System (INIS)
Babichev, E O; Dokuchaev, V I; Eroshenko, Yu N
2013-01-01
The new, rapidly developing field of theoretical research—studies of dark energy interacting with black holes (and, in particular, accreting onto black holes)–—is reviewed. The term 'dark energy' is meant to cover a wide range of field theory models, as well as perfect fluids with various equations of state, including cosmological dark energy. Various accretion models are analyzed in terms of the simplest test field approximation or by allowing back reaction on the black-hole metric. The behavior of various types of dark energy in the vicinity of Schwarzschild and electrically charged black holes is examined. Nontrivial effects due to the presence of dark energy in the black hole vicinity are discussed. In particular, a physical explanation is given of why the black hole mass decreases when phantom energy is being accreted, a process in which the basic energy conditions of the famous theorem of nondecreasing horizon area in classical black holes are violated. The theoretical possibility of a signal escaping from beneath the black hole event horizon is discussed for a number of dark energy models. Finally, the violation of the laws of thermodynamics by black holes in the presence of noncanonical fields is considered. (reviews of topical problems)
Learning about Black-Hole Formation from Gravitational Waves
Kesden, Michael H.
2017-01-01
The first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) discovered gravitational waves from two binary black-hole mergers. Although astrophysical black holes are simple objects fully characterized by their masses and spins, key features of binary black-hole formation such as mass transfer, natal kicks, and common-envelope evolution can misalign black-hole spins with the orbital angular momentum of the binary. These misaligned spins will precess as gravitational-wave emission causes the black holes to inspiral to separations at which the waves are detectable by observatories like LIGO. Spin precession modulates the amplitude and frequency of the gravitational waves observed by LIGO, allowing it to not only test general relativity but also reveal the secrets of black-hole formation. This talk will briefly describe those elements of binary black-hole formation responsible for initial spin misalignments, how spin precession and radiation reaction in general relativity determine how spins evolve from formation until the black holes enter LIGO’s sensitivity band, and how spin-induced gravitational-wave modulation in band can be used as a diagnostic of black-hole formation.
Di Fiore, V.; Cavuoto, G.; Tarallo, D.; Punzo, M.; Evangelista, L.
2016-05-01
A joint analysis of down-hole (DH) and multichannel analysis of surface waves (MASW) measurements offers a complete evaluation of shear wave velocity profiles, especially for sites where a strong lateral variability is expected, such as archeological sites. In this complex stratigraphic setting, the high "subsoil anisotropy" (i.e., sharp lithological changes due to the presence of anthropogenic backfill deposits and/or buried man-made structures) implies a different role for DH and MASW tests. This paper discusses some results of a broad experimental program conducted on the Palatine Hill, one of the most ancient areas of the city of Rome (Italy). The experiments were part of a project on seismic microzoning and consisted of 20 MASW and 11 DH tests. The main objective of this study was to examine the difficulties related to the interpretation of the DH and MASW tests and the reliability limits inherent in the application of the noninvasive method in complex stratigraphic settings. As is well known, DH tests provide good determinations of shear wave velocities (Vs) for different lithologies and man-made materials, whereas MASW tests provide average values for the subsoil volume investigated. The data obtained from each method with blind tests were compared and were correlated to site-specific subsurface conditions, including lateral variability. Differences between punctual (DH) and global (MASW) Vs measurements are discussed, quantifying the errors by synthetic comparison and by site response analyses. This study demonstrates that, for archeological sites, VS profiles obtained from the DH and MASW methods differ by more than 15 %. However, the local site effect showed comparable results in terms of natural frequencies, whereas the resolution of the inverted shear wave velocity was influenced by the fundamental mode of propagation.
Statistical mechanics of black holes
International Nuclear Information System (INIS)
Harms, B.; Leblanc, Y.
1992-01-01
We analyze the statistical mechanics of a gas of neutral and charged black holes. The microcanonical ensemble is the only possible approach to this system, and the equilibrium configuration is the one for which most of the energy is carried by a single black hole. Schwarzschild black holes are found to obey the statistical bootstrap condition. In all cases, the microcanonical temperature is identical to the Hawking temperature of the most massive black hole in the gas. U(1) charges in general break the bootstrap property. The problems of black-hole decay and of quantum coherence are also addressed
Moon, Taeyoon; Myung, Yun Soo; Son, Edwin J.
2011-01-01
We study the $f(R)$-Maxwell black hole imposed by constant curvature and its all thermodynamic quantities, which may lead to the Reissner-Nordstr\\"om-AdS black hole by redefining Newtonian constant and charge. Further, we obtain the $f(R)$-Yang-Mills black hole imposed by constant curvature, which is related to the Einstein-Yang-Mills black hole in AdS space. Since there is no analytic black hole solution in the presence of Yang-Mills field, we obtain asymptotic solutions. Then, we confirm th...
Polchinski, Joseph
2015-04-01
Our modern understanding of space, time, matter, and even reality itself arose from the three great revolutions of the early twentieth century: special relativity, general relativity, and quantum mechanics. But a century later, this work is unfinished. Many deep connections have been discovered, but the full form of a unified theory incorporating all three principles is not known. Thought experiments and paradoxes have often played a key role in figuring out how to fit theories together. For the unification of general relativity and quantum mechanics, black holes have been an important arena. I will talk about the quantum mechanics of black holes, the information paradox, and the latest version of this paradox, the firewall. The firewall points to a conflict between our current theories of spacetime and of quantum mechanics. It may lead to a new understanding of how these are connected, perhaps based on quantum entanglement.
Rotating black hole and quintessence
International Nuclear Information System (INIS)
Ghosh, Sushant G.
2016-01-01
We discuss spherically symmetric exact solutions of the Einstein equations for quintessential matter surrounding a black hole, which has an additional parameter (ω) due to the quintessential matter, apart from the mass (M). In turn, we employ the Newman-Janis complex transformation to this spherical quintessence black hole solution and present a rotating counterpart that is identified, for α = -e 2 ≠ 0 and ω = 1/3, exactly as the Kerr-Newman black hole, and as the Kerr black hole when α = 0. Interestingly, for a given value of parameter ω, there exists a critical rotation parameter (a = a E ), which corresponds to an extremal black hole with degenerate horizons, while for a < a E , it describes a nonextremal black hole with Cauchy and event horizons, and no black hole for a > a E . We find that the extremal value a E is also influenced by the parameter ω and so is the ergoregion. (orig.)
Internal structure of black holes
International Nuclear Information System (INIS)
Cvetic, Mirjam
2013-01-01
Full text: We review recent progress that sheds light on the internal structure of general black holes. We first summarize properties of general multi-charged rotating black holes both in four and five dimensions. We show that the asymptotic boundary conditions of these general asymptotically flat black holes can be modified such that a conformal symmetry emerges. These subtracted geometries preserve the thermodynamic properties of the original black holes and are of the Lifshitz type, thus describing 'a black hole in the asymptotically conical box'. Recent efforts employ solution generating techniques to construct interpolating geometries between the original black hole and their subtracted geometries. Upon lift to one dimension higher, these geometries lift to AdS 3 times a sphere, and thus provide a microscopic interpretation of the black hole entropy in terms of dual two-dimensional conformal field theory. (author)
International Nuclear Information System (INIS)
Boslough, J.
1985-01-01
This book is about the life and work of Stephen Hawking. It traces the development of his theories about the universe and particularly black holes, in a biographical context. Hawking's lecture 'Is the end in sight for theoretical physics' is presented as an appendix. In this, he discusses the possibility of achieving a complete, consistent and unified theory of the physical interactions which would describe all possible observations. (U.K.)
International Nuclear Information System (INIS)
Mathur, Samir D
2012-01-01
The idea of holography in gravity arose from the fact that the entropy of black holes is given by their surface area. The holography encountered in gauge/gravity duality has no such relation however; the boundary surface can be placed at an arbitrary location in AdS space and its area does not give the entropy of the bulk. The essential issues are also different between the two cases: in black holes we get Hawking radiation from the 'holographic surface' which leads to the information issue, while in gauge/gravity duality there is no such radiation. To resolve the information paradox we need to show that there are real degrees of freedom at the horizon of the hole; this is achieved by the fuzzball construction. In gauge/gravity duality we have instead a field theory defined on an abstract dual space; there are no gravitational degrees of freedom at the holographic boundary. It is important to understand the relations and differences between these two notions of holography to get a full understanding of the lessons from the information paradox.
Statistical black-hole thermodynamics
International Nuclear Information System (INIS)
Bekenstein, J.D.
1975-01-01
Traditional methods from statistical thermodynamics, with appropriate modifications, are used to study several problems in black-hole thermodynamics. Jaynes's maximum-uncertainty method for computing probabilities is used to show that the earlier-formulated generalized second law is respected in statistically averaged form in the process of spontaneous radiation by a Kerr black hole discovered by Hawking, and also in the case of a Schwarzschild hole immersed in a bath of black-body radiation, however cold. The generalized second law is used to motivate a maximum-entropy principle for determining the equilibrium probability distribution for a system containing a black hole. As an application we derive the distribution for the radiation in equilibrium with a Kerr hole (it is found to agree with what would be expected from Hawking's results) and the form of the associated distribution among Kerr black-hole solution states of definite mass. The same results are shown to follow from a statistical interpretation of the concept of black-hole entropy as the natural logarithm of the number of possible interior configurations that are compatible with the given exterior black-hole state. We also formulate a Jaynes-type maximum-uncertainty principle for black holes, and apply it to obtain the probability distribution among Kerr solution states for an isolated radiating Kerr hole
Thermal stability of charged rotating quantum black holes
Sinha, Aloke Kumar; Majumdar, Parthasarathi
2017-12-01
Criteria for thermal stability of charged rotating black holes of any dimension are derived for horizon areas that are large relative to the Planck area (in these dimensions). The derivation is based on generic assumptions of quantum geometry, supported by some results of loop quantum gravity, and equilibrium statistical mechanics of the Grand Canonical ensemble. There is no explicit use of classical spacetime geometry in this analysis. The only assumption is that the mass of the black hole is a function of its horizon area, charge and angular momentum. Our stability criteria are then tested in detail against specific classical black holes in spacetime dimensions 4 and 5, whose metrics provide us with explicit relations for the dependence of the mass on the charge and angular momentum of the black holes. This enables us to predict which of these black holes are expected to be thermally unstable under Hawking radiation.
Analogue Hawking radiation from astrophysical black-hole accretion
International Nuclear Information System (INIS)
Das, Tapas K
2004-01-01
We show that spherical accretion onto astrophysical black holes can be considered as a natural example of an analogue system. We provide, for the first time, an exact analytical scheme for calculating the analogue Hawking temperature and surface gravity for general relativistic accretion onto astrophysical black holes. Our calculation may bridge the gap between the theory of transonic astrophysical accretion and the theory of analogue Hawking radiation. We show that the domination of the analogue Hawking temperature over the actual Hawking temperature may be a real astrophysical phenomenon, though observational tests of this fact will at best be difficult and at worst might prove to be impossible. We also discuss the possibilities of the emergence of analogue white holes around astrophysical black holes. Our calculation is general enough to accommodate accreting black holes with any mass
Scalar clouds around Kerr–Sen black holes
International Nuclear Information System (INIS)
Huang, Yang; Liu, Dao-Jun; Zhai, Xiang-Hua; Li, Xin-Zhou
2017-01-01
In this paper, the behaviour of a charged massive scalar test field in the background of a Kerr–Sen black hole is investigated. A type of stationary solutions, dubbed scalar clouds, are obtained numerically and expressed by the existence lines in the parameter space. We show that for fixed background and a given set of harmonic indices, the mass and charge of the scalar clouds are limited in a finite region in the parameter space of the scalar field. Particularly, the maximum values of the mass and charge of the clouds around extremal Kerr–Sen black holes are independent of the angular velocity of the black hole, whereas those in the extremal Kerr–Newman background depend on the angular velocity. In addition, it is demonstrated that, as the static limit of the Kerr–Sen black hole, the Gibbons–Maeda–Garfinkle–Horowitz–Strominger black hole cannot support scalar cloud. (paper)
Black Holes, Worm Holes, and Future Space Propulsion
Barret, Chris
2000-01-01
NASA has begun examining the technologies needed for an Interstellar Mission. In 1998, a NASA Interstellar Mission Workshop was held at the California Institute of Technology to examine the technologies required. Since then, a spectrum of research efforts to support such a mission has been underway, including many advanced and futuristic space propulsion concepts which are being explored. The study of black holes and wormholes may provide some of the breakthrough physics needed to travel to the stars. The first black hole, CYGXI, was discovered in 1972 in the constellation Cygnus X-1. In 1993, a black hole was found in the center of our Milky Way Galaxy. In 1994, the black hole GRO J1655-40 was discovered by the NASA Marshall Space Flight center using the Gamma Ray Observatory. Today, we believe we have found evidence to support the existence of 19 black holes, but our universe may contain several thousands. This paper discusses the dead star states - - both stable and unstable, white dwarfs, neutron stars, pulsars, quasars, the basic features and types of black holes: nonspinning, nonspinning with charge, spinning, and Hawking's mini black holes. The search for black holes, gravitational waves, and Laser Interferometer Gravitational Wave Observatory (LIGO) are reviewed. Finally, concepts of black hole powered space vehicles and wormhole concepts for rapid interstellar travel are discussed in relation to the NASA Interstellar Mission.
Black hole mass formula in the membrane paradigm
Lemos, José P. S.; Zaslavskii, Oleg B.
2018-03-01
The membrane paradigm approach adopts a timelike surface, stretched out off the null event horizon, to study several important black hole properties. We use this powerful tool to give a direct derivation of the black hole mass formula in the static and stationary cases without and with electric field. Since here the membrane is a self-gravitating material system, we go beyond the usual applicability on test particles and test fields of the paradigm.
2004-01-01
[figure removed for brevity, see original site] Figure 1 At a rock called 'Clovis,' the rock abrasion tool on NASA's Mars Exploration Rover Spirit cut a 9-millimeter (0.35-inch) hole during the rover's 216th martian day, or sol (Aug. 11, 2004). The hole is the deepest drilled in a rock on Mars so far. This approximately true-color view was made from images taken by Spirit's panoramic camera on sol 226 (Aug. 21, 2004) at around 12:50 p.m. local true solar time -- early afternoon in Gusev Crater on Mars. To the right is a 'brush flower' of circles produced by scrubbing the surface of the rock with the abrasion tool's wire brush. Scientists used rover's Moessbauer spectrometer and alpha particle X-ray spectrometer to look for iron-bearing minerals and determine the elemental chemical composition of the rock. This composite combines images taken with the camera's 750-, 530-, and 430-nanometer filters. The grayish-blue hue in this image suggests that the interior of the rock contains iron minerals that are less oxidized than minerals on the surface. The diameter of the hole cut into the rock is 4.5 centimeters (1.8 inches). Data on the graph (Figure 1) from the alpha particle X-ray spectrometer instrument on the robotic arm of NASA's Mars Exploration Rover Spirit reveal the elemental chemistry of two rocks, 'Ebenezer' and 'Clovis,' (see PIA06914) in the 'Columbia Hills.' Scientists found, through comparison of the rocks' chemistry, that Ebenezer and Clovis have very different compositions from the rocks on the Gusev plains.
Dvali, Gia
2013-01-01
According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.
Quantum effects in black holes
International Nuclear Information System (INIS)
Frolov, V.P.
1979-01-01
A strict definition of black holes is presented and some properties with regard to their mass are enumerated. The Hawking quantum effect - the effect of vacuum instability in the black hole gravitational field, as a result of shich the black hole radiates as a heated body is analyzed. It is shown that in order to obtain results on the black hole radiation it is sufficient to predetermine the in-vacuum state at a time moment in the past, when the collapsing body has a large size, and its gravitational field can be neglected. The causes and the place of particle production by the black hole, and also the space-time inside the black hole, are considered
Particle creation by black holes
International Nuclear Information System (INIS)
Hawking, S.W.
1975-01-01
In the classical theory black holes can only absorb and not emit particles. However it is shown that quantum mechanical effects cause black holes to create and emit particles. This thermal emission leads to a slow decrease in the mass of the black hole and to its eventual disappearance: any primordial black hole of mass less than about 10 15 g would have evaporated by now. Although these quantum effects violate the classical law that the area of the event horizon of a black hole cannot decrease, there remains a Generalized Second Law: S + 1/4 A never decreases where S is the entropy of matter outside black holes and A is the sum of the surface areas of the event horizons. This shows that gravitational collapse converts the baryons and leptons in the collapsing body into entropy. It is tempting to speculate that this might be the reason why the Universe contains so much entropy per baryon. (orig.) [de
Six-dimensional localized black holes: Numerical solutions
International Nuclear Information System (INIS)
Kudoh, Hideaki
2004-01-01
To test the strong-gravity regime in Randall-Sundrum braneworlds, we consider black holes bound to a brane. In a previous paper, we studied numerical solutions of localized black holes whose horizon radii are smaller than the AdS curvature radius. In this paper, we improve the numerical method and discuss properties of the six-dimensional (6D) localized black holes whose horizon radii are larger than the AdS curvature radius. At a horizon temperature T≅1/2πl, the thermodynamics of the localized black hole undergo a transition with its character changing from a 6D Schwarzschild black hole type to a 6D black string type. The specific heat of the localized black holes is negative, and the entropy is greater than or nearly equal to that of the 6D black strings with the same thermodynamic mass. The large localized black holes show flattened horizon geometries, and the intrinsic curvature of the horizon four-geometry becomes negative near the brane. Our results indicate that the recovery mechanism of lower-dimensional Einstein gravity on the brane works even in the presence of the black holes
Visser, Matt; Volovik, Grigory E
2009-01-01
Physicists are pondering on the possibility of simulating black holes in the laboratory by means of various "analog models". These analog models, typically based on condensed matter physics, can be used to help us understand general relativity (Einstein's gravity); conversely, abstract techniques developed in general relativity can sometimes be used to help us understand certain aspects of condensed matter physics. This book contains 13 chapters - written by experts in general relativity, particle physics, and condensed matter physics - that explore various aspects of this two-way traffic.
Directory of Open Access Journals (Sweden)
Roberto Casadio
2015-10-01
Full Text Available We review some features of Bose–Einstein condensate (BEC models of black holes obtained by means of the horizon wave function formalism. We consider the Klein–Gordon equation for a toy graviton field coupled to a static matter current in a spherically-symmetric setup. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with a continuous occupation number. An attractive self-interaction is needed for bound states to form, the case in which one finds that (approximately one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The horizon wave function formalism is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons, resulting in agreement with the semiclassical calculations and which does not hold for a single very massive particle. The spectrum of these systems has two components: a discrete ground state of energy m (the bosons forming the black hole and a continuous spectrum with energy ω > m (representing the Hawking radiation and modeled with a Planckian distribution at the expected Hawking temperature. Assuming the main effect of the internal scatterings is the Hawking radiation, the N-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy M = Nm and Entropy 2015, 17 6894 a Planckian distribution for E > M at the same Hawking temperature. This can be used to compute the partition function and to find the usual area law for the entropy, with a logarithmic correction related to the Hawking component. The backreaction of modes with ω > m is also shown to reduce
Origin of supermassive black holes
Dokuchaev, V. I.; Eroshenko, Yu. N.; Rubin, S. G.
2007-01-01
The origin of supermassive black holes in the galactic nuclei is quite uncertain in spite of extensive set of observational data. We review the known scenarios of galactic and cosmological formation of supermassive black holes. The common drawback of galactic scenarios is a lack of time and shortage of matter supply for building the supermassive black holes in all galaxies by means of accretion and merging. The cosmological scenarios are only fragmentarily developed but propose and pretend to...
Black Holes in Higher Dimensions
Directory of Open Access Journals (Sweden)
Reall Harvey S.
2008-09-01
Full Text Available We review black-hole solutions of higher-dimensional vacuum gravity and higher-dimensional supergravity theories. The discussion of vacuum gravity is pedagogical, with detailed reviews of Myers–Perry solutions, black rings, and solution-generating techniques. We discuss black-hole solutions of maximal supergravity theories, including black holes in anti-de Sitter space. General results and open problems are discussed throughout.
Statistical Hair on Black Holes
International Nuclear Information System (INIS)
Strominger, A.
1996-01-01
The Bekenstein-Hawking entropy for certain BPS-saturated black holes in string theory has recently been derived by counting internal black hole microstates at weak coupling. We argue that the black hole microstate can be measured by interference experiments even in the strong coupling region where there is clearly an event horizon. Extracting information which is naively behind the event horizon is possible due to the existence of statistical quantum hair carried by the black hole. This quantum hair arises from the arbitrarily large number of discrete gauge symmetries present in string theory. copyright 1996 The American Physical Society
On black hole horizon fluctuations
International Nuclear Information System (INIS)
Tuchin, K.L.
1999-01-01
A study of the high angular momentum particles 'atmosphere' near the Schwarzschild black hole horizon suggested that strong gravitational interactions occur at invariant distance of the order of 3 √M [2]. We present a generalization of this result to the Kerr-Newman black hole case. It is shown that the larger charge and angular momentum black hole bears, the larger invariant distance at which strong gravitational interactions occur becomes. This invariant distance is of order 3 √((r + 2 )/((r + - r - ))). This implies that the Planckian structure of the Hawking radiation of extreme black holes is completely broken
Black holes and the multiverse
Energy Technology Data Exchange (ETDEWEB)
Garriga, Jaume [Departament de Fisica Fonamental i Institut de Ciencies del Cosmos, Universitat de Barcelona, Marti i Franques, 1, Barcelona, 08028 Spain (Spain); Vilenkin, Alexander; Zhang, Jun, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: jun.zhang@tufts.edu [Institute of Cosmology, Tufts University, 574 Boston Ave, Medford, MA, 02155 (United States)
2016-02-01
Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.
Thermodynamics of Accelerating Black Holes.
Appels, Michael; Gregory, Ruth; Kubizňák, David
2016-09-23
We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.
Braneworld Black Hole Gravitational Lensing
International Nuclear Information System (INIS)
Liang Jun
2017-01-01
A class of braneworld black holes, which I called as Bronnikov–Melnikov–Dehen (BMD) black holes, are studied as gravitational lenses. I obtain the deflection angle in the strong deflection limit, and further calculate the angular positions and magnifications of relativistic images as well as the time delay between different relativistic images. I also compare the results with those obtained for Schwarzschild and two braneworld black holes, i.e., the tidal Reissner-Nordström (R-N) and the Casadio–Fabbri–Mazzacurati (CFM) black holes. (paper)
Can Black Hole Relax Unitarily?
Solodukhin, S. N.
2005-03-01
We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.
How black holes saved relativity
Prescod-Weinstein, Chanda
2016-02-01
While there have been many popular-science books on the historical and scientific legacy of Albert Einstein's general theory of relativity, a gap exists in the literature for a definitive, accessible history of the theory's most famous offshoot: black holes. In Black Hole, the science writer Marcia Bartusiak aims for a discursive middle ground, writing solely about black holes at a level suitable for both high-school students and more mature readers while also giving some broader scientific context for black-hole research.
Nariai black holes with quintessence
Fernando, Sharmanthie
2014-01-01
In this paper we study the properties of Schwarzschild black hole surrounded by quintessence matter. The main objective of the paper is to show the existence of Nariai type black hole for special values of the parameters in the theory. The Nariai black hole with the quintessence has the topology $dS_2 \\times S_2$ with $dS_2$ with a different scalar curvature than what would be expected for the Schwarzschild-de Sitter degenerate black hole. Temperature and the entropy for the Schwarzschild-de ...
Energy Technology Data Exchange (ETDEWEB)
Lake, Matthew J. [The Institute for Fundamental Study, ' ' The Tah Poe Academia Institute' ' , Naresuan University, Phitsanulok (Thailand); Thailand Center of Excellence in Physics, Ministry of Education, Bangkok (Thailand); Harko, Tiberiu [Department of Physics, Babes-Bolyai University, Cluj-Napoca (Romania); Department of Mathematics, University College London (United Kingdom)
2017-10-15
The discovery of a large number of supermassive black holes (SMBH) at redshifts z > 6, when the Universe was only 900 million years old, raises the question of how such massive compact objects could form in a cosmologically short time interval. Each of the standard scenarios proposed, involving rapid accretion of seed black holes or black hole mergers, faces severe theoretical difficulties in explaining the short-time formation of supermassive objects. In this work we propose an alternative scenario for the formation of SMBH in the early Universe, in which energy transfer from superconducting cosmic strings piercing small seed black holes is the main physical process leading to rapid mass increase. As a toy model, the accretion rate of a seed black hole pierced by two antipodal strings carrying constant current is considered. Using an effective action approach, which phenomenologically incorporates a large class of superconducting string models, we estimate the minimum current required to form SMBH with masses of order M = 2 x 10{sup 9} M {sub CircleDot} by z = 7.085. This corresponds to the mass of the central black hole powering the quasar ULAS J112001.48+064124.3 and is taken as a test case scenario for early-epoch SMBH formation. For GUT scale strings, the required fractional increase in the string energy density, due to the presence of the current, is of order 10{sup -7}, so that their existence remains consistent with current observational bounds on the string tension. In addition, we consider an ''exotic'' scenario, in which an SMBH is generated when a small seed black hole is pierced by a higher-dimensional F-string, predicted by string theory. We find that both topological defect strings and fundamental strings are able to carry currents large enough to generate early-epoch SMBH via our proposed mechanism. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
A preferred mass range for primordial black hole formation and black holes as dark matter revisited
Georg, Julian; Watson, Scott
2017-09-01
Bird et al. [1] and Sasaki et al. [2] have recently proposed the intriguing possibility that the black holes detected by LIGO could be all or part of the cosmological dark matter. This offers an alternative to WIMPs and axions, where dark matter could be comprised solely of Standard Model particles. The mass range lies within an observationally viable window and the predicted merger rate can be tested by future LIGO observations. In this paper, we argue that non-thermal histories favor production of black holes near this mass range — with heavier ones unlikely to form in the early universe and lighter black holes being diluted through late-time entropy production. We discuss how this prediction depends on the primordial power spectrum, the likelihood of black hole formation, and the underlying model parameters. We find the prediction for the preferred mass range to be rather robust assuming a blue spectral index less than two. We consider the resulting relic density in black holes, and using recent observational constraints, establish whether they could account for all of the dark matter today.
Dance of Two Monster Black Holes
Kohler, Susanna
2016-03-01
This past December, researchers all over the world watched an outburst from the enormous black hole in OJ 287 an outburst that had been predicted years ago using the general theory of relativity.Outbursts from Black-Hole OrbitsOJ 287 is one of the largest supermassive black holes known, weighing in at 18 billion solar masses. Located about 3.5 billion light-years away, this monster quasar is bright enough that it was first observed as early as the 1890s. What makes OJ 287 especially interesting, however, is that its light curve exhibits prominent outbursts roughly every 12 years.Diagram illustrating the orbit of the secondary black hole (shown in blue) in OJ 287 from 2000 to 2023. We see outbursts (the yellow bubbles) every time the secondary black hole crosses the accretion disk (shown in red, ina side view) surrounding the primary (the black circle). [Valtonen et al. 2016]What causes the outbursts? Astronomers think that there is a second supermassive black hole, ~100 times smaller, inspiraling as it orbits the central monster and set to merge within the next 10,000 years. In this model, the primary black hole of OJ 287 is surrounded by a hot accretion disk. As the secondary black hole orbits the primary, it regularly punches through this accretion disk, heating the material and causing the release of expanding bubbles of hot gas pulled from the disk. This gas then radiates thermally, causing the outbursts we see.Attempts to model this scenario using Newtonian orbits all fail; the timing of the secondary black holes crossings through the accretion disk (as measured by when we see the outbursts) can only be explained by a model incorporating general-relativistic effects on the orbit. Careful observations and precise timing of these outbursts therefore provide an excellent test of general relativity.Watching a Predicted CrossingThe model of OJ 287 predicted another disk crossing in December 2015, so professional and amateur astronomers around the world readied more
Astrophysical flows near f(T) gravity black holes
Energy Technology Data Exchange (ETDEWEB)
Ahmed, Ayyesha K.; Jamil, Mubasher [National University of Sciences and Technology (NUST), Department of Mathematics, School of Natural Sciences (SNS), Islamabad (Pakistan); Azreg-Ainou, Mustapha [Baskent University, Baglica Campus, Engineering Faculty, Ankara (Turkey); Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom); Capozziello, Salvatore [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica, Naples (Italy); Gran Sasso Science Institute (INFN), L' Aquila (Italy); INFN Sezione di Napoli, Naples (Italy)
2016-05-15
In this paper, we study the accretion process for fluids flowing near a black hole in the context of f(T) teleparallel gravity. Specifically, by performing a dynamical analysis by a Hamiltonian system, we are able to find the sonic points. After that, we consider different isothermal test fluids in order to study the accretion process when they are falling onto the black hole. We find that these flows can be classified according to the equation of state and the black hole features. Results are compared in f(T) and f(R) gravity. (orig.)
Astrophysical flows near [Formula: see text] gravity black holes.
Ahmed, Ayyesha K; Azreg-Aïnou, Mustapha; Bahamonde, Sebastian; Capozziello, Salvatore; Jamil, Mubasher
In this paper, we study the accretion process for fluids flowing near a black hole in the context of f ( T ) teleparallel gravity. Specifically, by performing a dynamical analysis by a Hamiltonian system, we are able to find the sonic points. After that, we consider different isothermal test fluids in order to study the accretion process when they are falling onto the black hole. We find that these flows can be classified according to the equation of state and the black hole features. Results are compared in f ( T ) and f ( R ) gravity.
Innermost stable circular orbit of Kerr-MOG black hole
Energy Technology Data Exchange (ETDEWEB)
Lee, Hyun-Chul; Han, Yong-Jin [Soonchunhyang University, Department of Physics, Asan (Korea, Republic of)
2017-10-15
We study the innermost stable circular orbit (ISCO) of the metric of the Kerr black hole in modified gravity (Kerr-MOG black hole), which is one of the exact solutions of the field equation of modified gravity in the strong gravity regime. The Kerr-MOG metric is constructed; it is the commonly known Kerr metric in Boyer-Lindquist coordinates by adding a repulsive term like the Yukawa force, which is explained in quantum gravity. In this paper, we numerically calculate the circular orbit of a photon and the ISCO of a test particle of Kerr-MOG black holes. (orig.)
A Periodic Table for Black Hole Orbits
Levin, Janna; Perez-Giz, Gabe
2008-01-01
Understanding the dynamics around rotating black holes is imperative to the success of the future gravitational wave observatories. Although integrable in principle, test particle orbits in the Kerr spacetime can also be elaborate, and while they have been studied extensively, classifying their general properties has been a challenge. This is the first in a series of papers that adopts a dynamical systems approach to the study of Kerr orbits, beginning with equatorial orbits. We define a taxo...
Indian Academy of Sciences (India)
was discovered in the constellation Cygnus; a bright X-ray emit- ter associated with a twin-star system, and christened Cygnus X-. 1. It has a massive star and a black hole orbiting each other. With an optical telescope it is the companion star of the black hole which is visible, which produces stellar winds blowing away from.
Black holes and quantum mechanics
t Hooft, G.|info:eu-repo/dai/nl/074127888
2010-01-01
After a brief review of quantum black hole physics, it is shown how the dynamical properties of a quantum black hole may be deduced to a large extent from Standard Model Physics, extended to scales near the Planck length, and combined with results from perturbative quantum gravity. Together, these
DEFF Research Database (Denmark)
Vestergaard, Marianne
2004-01-01
The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized.......The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized....
ATLAS simulated black hole event
Pequenão, J
2008-01-01
The simulated collision event shown is viewed along the beampipe. The event is one in which a microscopic-black-hole was produced in the collision of two protons (not shown). The microscopic-black-hole decayed immediately into many particles. The colors of the tracks show different types of particles emerging from the collision (at the center).
Drilling miniature holes, Part III
Energy Technology Data Exchange (ETDEWEB)
Gillespie, L.K.
1978-07-01
Miniature components for precision electromechanical mechanisms such as switches, timers, and actuators typically require a number of small holes. Because of the precision required, the workpiece materials, and the geometry of the parts, most of these holes must be produced by conventional drilling techniques. The use of such techniques is tedious and often requires considerable trial and error to prevent drill breakage, minimize hole mislocation and variations in hole diameter. This study of eight commercial drill designs revealed that printed circuit board drills produced better locational and size repeatability than did other drills when centerdrilling was not used. Boring holes 1 mm in dia, or less, as a general rule did not improve hole location in brass or stainless steel. Hole locations of patterns of 0.66-mm holes can be maintained within 25.4-..mu..m diametral positional tolerance if setup misalignments can be eliminated. Size tolerances of +- 3.8 ..mu..m can be maintained under some conditions when drilling flat plates. While these levels of precision are possible with existing off-the-shelf drills, they may not be practical in many cases.
What, no black hole evaporation
International Nuclear Information System (INIS)
Hajicek, P.; Israel, W.
1980-01-01
Tipler has claimed that the inward flux of negative energy across the horizon which (according to the semi-classical approximation) accompanies the evaporation of a black hole would cause a solar mass black hole to evaporate in less than a second. It is shown that this claim is in error. (orig.)
Directory of Open Access Journals (Sweden)
HU Chun-yan
2017-04-01
Full Text Available The modeling air-cooled turbine blades specimens of DD6 single crystal superalloy with different distributions of cooling film holes were used to study the high cycle fatigue properties at room temperature. The SEM fracture observation was carried out. The results indicate that the cooling holes have significant effects on the high fatigue life of DD6 single crystal superalloy. The average life of non-hole specimens is four times of that of the three-row holes specimens under the same testing conditions. However, the distribution of cooling film holes has relatively less influence on fatigue life. The fracture of the specimens with non-hole is linear source by SEM analysis, but the cracks are found around the cooling film holes and the fracture of the specimens with single row to three rows is a typical multi-source rupture, and cracks all initiate from near film holes. According to fracture and crystallography theoretical conjecture, the cracks propagate along the {001} slip plane for non-hole, single-row holes and the middle location of the multi-row holes specimens. However, the cracks around the holes grow along the {111} slip plane for upper and lower holes of the specimens with multi-row holes. In addition, the distribution of stress field along cooling holes of four different specimens was analysed by FEM method. The results show that the fracture location and morphology of specimens are consistent well with numerical simulation analysis.
Magnetic fields around black holes
Garofalo, David A. G.
Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our
Directory of Open Access Journals (Sweden)
I. Cabrera-Munguia
2015-04-01
Full Text Available A 6-parametric asymptotically flat exact solution, describing a two-body system of asymmetric black dyons, is studied. The system consists of two unequal counterrotating Kerr–Newman black holes, endowed with electric and magnetic charges which are equal but opposite in sign, separated by a massless strut. The Smarr formula is generalized in order to take into account their contribution to the mass. The expressions for the horizon half-length parameters σ1 and σ2, as functions of the Komar parameters and of the coordinate distance, are displayed, and the thermodynamic properties of the two-body system are studied. Furthermore, the seven physical parameters satisfy a simple algebraic relation which can be understood as a dynamical scenario, in which the physical properties of one body are affected by the ones of the other body.
Joyce, Geoffrey F; Zissimopoulos, Julie; Goldman, Dana P
2013-12-01
Despite its success, Medicare Part D has been widely criticized for the gap in coverage, the so-called "doughnut hole". We compare the use of prescription drugs among beneficiaries subject to the coverage gap with usage among beneficiaries who are not exposed to it. We find that the coverage gap does, indeed, disrupt the use of prescription drugs among seniors with diabetes. But the declines in usage are modest and concentrated among higher cost, brand-name medications. Demand for high cost medications such as antipsychotics, antiasthmatics, and drugs of the central nervous system decline by 8-18% in the coverage gap, while use of lower cost medications with high generic penetration such as beta blockers, ACE inhibitors and antidepressants decline by 3-5% after reaching the gap. More importantly, lower adherence to medications is not associated with increases in medical service use. Copyright © 2013 Elsevier B.V. All rights reserved.
Bronnikov, K A; Fabris, J C
2006-06-30
We study self-gravitating, static, spherically symmetric phantom scalar fields with arbitrary potentials (favored by cosmological observations) and single out 16 classes of possible regular configurations with flat, de Sitter, and anti-de Sitter asymptotics. Among them are traversable wormholes, bouncing Kantowski-Sachs (KS) cosmologies, and asymptotically flat black holes (BHs). A regular BH has a Schwarzschild-like causal structure, but the singularity is replaced by a de Sitter infinity, giving a hypothetic BH explorer a chance to survive. It also looks possible that our Universe has originated in a phantom-dominated collapse in another universe, with KS expansion and isotropization after crossing the horizon. Explicit examples of regular solutions are built and discussed. Possible generalizations include k-essence type scalar fields (with a potential) and scalar-tensor gravity.
Energy Technology Data Exchange (ETDEWEB)
Hubeny, V.
2005-01-12
We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect--the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive. The magnitude of this effect is related to the size of the compactification manifold.
International Nuclear Information System (INIS)
Torn, K.
1976-01-01
Conceivable experimental investigations to prove the existence of black holes are discussed. Double system with a black hole turning around a star-satellite are in the spotlight. X-radiation emmited by such systems and resulting from accretion of the stellar gas by a black hole, and the gas heating when falling on the black hole might prove the model suggested. A source of strong X-radiation observed in the Cygnus star cluster and referred to as Cygnus X-1 may be thus identified as a black hole. Direct registration of short X-ray pulses with msec intervals might prove the suggestion. The lack of appropriate astrophysic facilities is pointed out to be the major difficulty on the way of experimental verifications
Compressibility of rotating black holes
International Nuclear Information System (INIS)
Dolan, Brian P.
2011-01-01
Interpreting the cosmological constant as a pressure, whose thermodynamically conjugate variable is a volume, modifies the first law of black hole thermodynamics. Properties of the resulting thermodynamic volume are investigated: the compressibility and the speed of sound of the black hole are derived in the case of nonpositive cosmological constant. The adiabatic compressibility vanishes for a nonrotating black hole and is maximal in the extremal case--comparable with, but still less than, that of a cold neutron star. A speed of sound v s is associated with the adiabatic compressibility, which is equal to c for a nonrotating black hole and decreases as the angular momentum is increased. An extremal black hole has v s 2 =0.9 c 2 when the cosmological constant vanishes, and more generally v s is bounded below by c/√(2).
Area spectrum of slowly rotating black holes
Myung, Yun Soo
2010-01-01
We investigate the area spectrum for rotating black holes which are Kerr and BTZ black holes. For slowly rotating black holes, we use the Maggiore's idea combined with Kunstatter's method to derive their area spectra, which are equally spaced.
Caged black holes: Black holes in compactified spacetimes. I. Theory
International Nuclear Information System (INIS)
Kol, Barak; Sorkin, Evgeny; Piran, Tsvi
2004-01-01
In backgrounds with compact dimensions there may exist several phases of black objects including a black hole and a black string. The phase transition between them raises questions and touches on fundamental issues such as topology change, uniqueness, and cosmic censorship. No analytic solution is known for the black hole, and moreover one can expect approximate solutions only for very small black holes, while phase transition physics happens when the black hole is large. Hence we turn to numerical solutions. Here some theoretical background to the numerical analysis is given, while the results will appear in a subsequent paper. The goals for a numerical analysis are set. The scalar charge and tension along the compact dimension are defined and used as improved order parameters which put both the black hole and the black string at finite values on the phase diagram. The predictions for small black holes are presented. The differential and the integrated forms of the first law are derived, and the latter (Smarr's formula) can be used to estimate the 'overall numerical error'. Field asymptotics and expressions for physical quantities in terms of the numerical values are supplied. The techniques include the 'method of equivalent charges', free energy, dimensional reduction, and analytic perturbation for small black holes
Conformal field theory interpretation of black hole quasinormal modes.
Birmingham, Danny; Sachs, Ivo; Solodukhin, Sergey N
2002-04-15
We obtain exact expressions for the quasinormal modes of various spin for the Bañados-Teitelboim-Zanelli black hole. These modes determine the relaxation time of black hole perturbations. Exact agreement is found between the quasinormal frequencies and the location of the poles of the retarded correlation function of the corresponding perturbations in the dual conformal field theory. This then provides a new quantitative test of the anti-de Sitter/conformal field theory correspondence.
Black hole decay as geodesic motion
International Nuclear Information System (INIS)
Gupta, Kumar S.; Sen, Siddhartha
2003-01-01
We show that a formalism for analyzing the near-horizon conformal symmetry of Schwarzschild black holes using a scalar field probe is capable of describing black hole decay. The equation governing black hole decay can be identified as the geodesic equation in the space of black hole masses. This provides a novel geometric interpretation for the decay of black holes. Moreover, this approach predicts a precise correction term to the usual expression for the decay rate of black holes
Black holes and quantum processes in them
International Nuclear Information System (INIS)
Frolov, V.P.
1976-01-01
The latest achievements in the physics of black holes are reviewed. The problem of quantum production in a strong gravitational field of black holes is considered. Another parallel discovered during investigation of interactions between black holes and between black holes and surrounding media, is also drawn with thermodynamics. A gravitational field of rotating black holes is considered. Some cosmological aspects of evaporation of small black holes are discussed as well as possibilities to observe them
Relativistic hydrodynamics in the presence of puncture black holes
International Nuclear Information System (INIS)
Faber, Joshua A.; Etienne, Zachariah B.; Shapiro, Stuart L.; Taniguchi, Keisuke; Baumgarte, Thomas W.
2007-01-01
Many of the recent numerical simulations of binary black holes in vacuum adopt the moving puncture approach. This successful approach avoids the need to impose numerical excision of the black hole interior and is easy to implement. Here we wish to explore how well the same approach can be applied to moving black hole punctures in the presence of relativistic hydrodynamic matter. First, we evolve single black hole punctures in vacuum to calibrate our Baumgarte-Shapiro-Shibata-Nakamura implementation and to confirm that the numerical solution for the exterior spacetime is invariant to any junk (i.e., constraint-violating) initial data employed in the black hole interior. Then we focus on relativistic Bondi accretion onto a moving puncture Schwarzschild black hole as a numerical test bed for our high-resolution shock-capturing relativistic hydrodynamics scheme. We find that the hydrodynamical equations can be evolved successfully in the interior without imposing numerical excision. These results help motivate the adoption of the moving puncture approach to treat the binary black hole-neutron star problem using conformal thin-sandwich initial data
Particle acceleration in Horava-Lifshitz black holes
International Nuclear Information System (INIS)
Sadeghi, J.; Pourhassan, B.
2012-01-01
In this paper we calculate the center-of-mass energy of two colliding test particles near the rotating and non-rotating Horava-Lifshitz black hole. For the case of a slowly rotating KS solution of Horava-Lifshitz black hole we compare our results with the case of Kerr black holes. We confirm the limited value of the center-of-mass energy for static black holes and unlimited value of the center-of-mass energy for rotating black holes. Numerically, we discuss temperature dependence of the center-of-mass energy on the black hole horizon. We obtain the critical angular momentum of particles. In this limit the center-of-mass energy of two colliding particles in the neighborhood of the rotating Horava-Lifshitz black hole could be arbitrarily high. We found appropriate conditions where the critical angular momentum could have an orbit outside the horizon. Finally, we obtain the center-of-mass energy corresponding to this circle orbit. (orig.)
Exponential fading to white of black holes in quantum gravity
International Nuclear Information System (INIS)
Barceló, Carlos; Carballo-Rubio, Raúl; Garay, Luis J
2017-01-01
Quantization of the gravitational field may allow the existence of a decay channel of black holes into white holes with an explicit time-reversal symmetry. The definition of a meaningful decay probability for this channel is studied in spherically symmetric situations. As a first nontrivial calculation, we present the functional integration over a set of geometries using a single-variable function to interpolate between black-hole and white-hole geometries in a bounded region of spacetime. This computation gives a finite result which depends only on the Schwarzschild mass and a parameter measuring the width of the interpolating region. The associated probability distribution displays an exponential decay law on the latter parameter, with a mean lifetime inversely proportional to the Schwarzschild mass. In physical terms this would imply that matter collapsing to a black hole from a finite radius bounces back elastically and instantaneously, with negligible time delay as measured by external observers. These results invite to reconsider the ultimate nature of astrophysical black holes, providing a possible mechanism for the formation of black stars instead of proper general relativistic black holes. The existence of both this decay channel and black stars can be tested in future observations of gravitational waves. (paper)
Baskaran, Subbiah; Ramachandran, Narayanan; Noever, David
1998-01-01
The use of probabilistic (PNN) and multilayer feed forward (MLFNN) neural networks are investigated for calibration of multi-hole pressure probes and the prediction of associated flow angularity patterns in test flow fields. Both types of networks are studied in detail for their calibration and prediction characteristics. The current formalism can be applied to any multi-hole probe, however the test results for the most commonly used five-hole Cone and Prism probe types alone are reported in this article.
Jellison, J.
1986-01-01
This work is an illustrated handbook containing the rationale and procedure for the evaluation of multilayer printed wiring board construction integrity with respect to plated-through holes in accordance with the requirements of MIL-P-55110D, Printed Wiring Boards. It is intended as a practical aid for those concerned with determining the construction integrity of multilayer boards for high reliability applications. Photomicrographs of cross sectioned holes illustrate defect types, acceptable and unacceptable conditions, and methods of measurement. A procedure for specimen preparation is given, and appropriate paragraphs of the military specification are included and explained.
Black holes: the membrane paradigm
International Nuclear Information System (INIS)
Thorne, K.S.; Price, R.H.; Macdonald, D.A.
1986-01-01
The physics of black holes is explored in terms of a membrane paradigm which treats the event horizon as a two-dimensional membrane embedded in three-dimensional space. A 3+1 formalism is used to split Schwarzschild space-time and the laws of physics outside a nonrotating hole, which permits treatment of the atmosphere in terms of the physical properties of thin slices. The model is applied to perturbed slowly or rapidly rotating and nonrotating holes, and to quantify the electric and magnetic fields and eddy currents passing through a membrane surface which represents a stretched horizon. Features of tidal gravitational fields in the vicinity of the horizon, quasars and active galalctic nuclei, the alignment of jets perpendicular to accretion disks, and the effects of black holes at the center of ellipsoidal star clusters are investigated. Attention is also given to a black hole in a binary system and the interactions of black holes with matter that is either near or very far from the event horizon. Finally, a statistical mechanics treatment is used to derive a second law of thermodynamics for a perfectly thermal atmosphere of a black hole
A nonsingular rotating black hole
International Nuclear Information System (INIS)
Ghosh, Sushant G.
2015-01-01
The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)
A Lovelock black hole bestiary
International Nuclear Information System (INIS)
Camanho, Xián O; Edelstein, José D
2013-01-01
We revisit the study of (A)dS black holes in Lovelock theories. We present a new tool that allows to attack this problem in full generality. In analyzing maximally symmetric Lovelock black holes with non-planar horizon topologies, many distinctive and interesting features are observed. Among them, the existence of maximally symmetric vacua does not support black holes in vast regions of the space of gravitational couplings, multi-horizon black holes and branches of solutions that suggest the existence of a rich diagram of phase transitions. The appearance of naked singularities seems unavoidable in some cases, raising the question about the fate of the cosmic censorship conjecture in these theories. There is a preferred branch of solutions for planar black holes, as well as for non-planar black holes with high enough mass or temperature. Our study clarifies the role of all branches of solutions, including asymptotically dS black holes, and whether they should be considered when studying these theories in the context of AdS/CFT. (paper)
Astrophysical black holes in screened modified gravity
International Nuclear Information System (INIS)
Davis, Anne-Christine; Jha, Rahul; Muir, Jessica; Gregory, Ruth
2014-01-01
Chameleon, environmentally dependent dilaton, and symmetron gravity are three models of modified gravity in which the effects of the additional scalar degree of freedom are screened in dense environments. They have been extensively studied in laboratory, cosmological, and astrophysical contexts. In this paper, we present a preliminary investigation into whether additional constraints can be provided by studying these scalar fields around black holes. By looking at the properties of a static, spherically symmetric black hole, we find that the presence of a non-uniform matter distribution induces a non-constant scalar profile in chameleon and dilaton, but not necessarily symmetron gravity. An order of magnitude estimate shows that the effects of these profiles on in-falling test particles will be sub-leading compared to gravitational waves and hence observationally challenging to detect
Astrophysical black holes in screened modified gravity
Energy Technology Data Exchange (ETDEWEB)
Davis, Anne-Christine; Jha, Rahul; Muir, Jessica [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom); Gregory, Ruth, E-mail: acd@damtp.cam.ac.uk, E-mail: r.a.w.gregory@durham.ac.uk, E-mail: r.jha@damtp.cam.ac.uk, E-mail: jlmuir@umich.edu [Centre for Particle Theory, South Road, Durham, DH1 3LE (United Kingdom)
2014-08-01
Chameleon, environmentally dependent dilaton, and symmetron gravity are three models of modified gravity in which the effects of the additional scalar degree of freedom are screened in dense environments. They have been extensively studied in laboratory, cosmological, and astrophysical contexts. In this paper, we present a preliminary investigation into whether additional constraints can be provided by studying these scalar fields around black holes. By looking at the properties of a static, spherically symmetric black hole, we find that the presence of a non-uniform matter distribution induces a non-constant scalar profile in chameleon and dilaton, but not necessarily symmetron gravity. An order of magnitude estimate shows that the effects of these profiles on in-falling test particles will be sub-leading compared to gravitational waves and hence observationally challenging to detect.
Unveiling the edge of time black holes, white holes, wormholes
Gribbin, John
1992-01-01
Acclaimed science writer John Gribbin recounts dramatic stories that have led scientists to believe black holes and their more mysterious kin are not only real, but might actually provide a passage to other universes and travel through time.
Quantum Mechanics of Black Holes
Witten, Edward
2012-08-01
The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.
Tunnelling from Goedel black holes
International Nuclear Information System (INIS)
Kerner, Ryan; Mann, R. B.
2007-01-01
We consider the spacetime structure of Kerr-Goedel black holes, analyzing their parameter space in detail. We apply the tunnelling method to compute their temperature and compare the results to previous calculations obtained via other methods. We claim that it is not possible to have the closed timelike curve (CTC) horizon in between the two black hole horizons and include a discussion of issues that occur when the radius of the CTC horizon is smaller than the radius of both black hole horizons
Black Holes: A Traveler's Guide
Pickover, Clifford A.
1998-03-01
BLACK HOLES A TRAVELER'S GUIDE Clifford Pickover's inventive and entertaining excursion beyond the curves of space and time. "I've enjoyed Clifford Pickover's earlier books . . . now he has ventured into the exploration of black holes. All would-be tourists are strongly advised to read his traveler's guide." -Arthur C. Clarke. "Many books have been written about black holes, but none surpass this one in arousing emotions of awe and wonder towards the mysterious structure of the universe." -Martin Gardner. "Bucky Fuller thought big. Arthur C. Clarke thinks big, but Cliff Pickover outdoes them both." -Wired. "The book is fun, zany, in-your-face, and refreshingly addictive." -Times Higher Education Supplement.
Orbital resonances around black holes.
Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja
2015-02-27
We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.
Quantum mechanics of black holes.
Witten, Edward
2012-08-03
The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.
Vacuum metastability with black holes
International Nuclear Information System (INIS)
Burda, Philipp; Gregory, Ruth; Moss, Ian G. annd
2015-01-01
We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.
Black holes and Higgs stability
Tetradis, Nikolaos
2016-09-20
We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.
Model problems for gravitationally perturbed black holes
International Nuclear Information System (INIS)
Price, R.H.; Thorne, K.S.; Macdonald, D.A.; Crowley, R.J.; Redmount, I.H.
1986-01-01
The membrane formalism is applied to various types of gravitational perturbations of a black hole. Attention is given to the disturbance of the horizon of a black hole by compact masses lowered toward a nonrotating hole and the deformations experienced by a rotating hole. Nonaxisymmetric gravitational tidal fields in rigid motion about a rotating hole are considered, along with the behavior of massive particle moving along the equator of a rotating hole, and the spindown of a rotating hole in an external tidal field. The extraction of rotational energy from a black hole by orbiting bodies is examined, as are superradiant scattering of gravitational waves and the quasi-normal modes of a black hole. The perturbations imparted to a black hole by a compact body plunging into the membrane (a stretched horizon) at a velocity close to the local light speed and by a radially accelerated particle above the horizon of a nonrotating hole are also explored
Parker, E. N.
1991-01-01
It has been shown that the coronal hole, and the associated high-speed stream in the solar wind, are powered by a heat input of the order of 500,000 ergs/sq cm s, with most of the heat injected in the first 1-2 solar radii, and perhaps 100,000 ergs/sq cm s introduced at distances of several solar radii to provide the high speed of the issuing solar wind. The traditional view has been that this energy is obtained from Alfven waves generated in the subphotospheric convection, which dissipate as they propagate outward, converting the wave energy into heat. This paper reviews the generation of waves and the known wave dissipation mechanisms, to show that the necessary Alfven waves are not produced under the conditions presently understood to exist in the sun, nor would such waves dissipate significantly in the first 1-2 solar radii if they existed. Wave dissipation occurs only over distances of the order of 5 solar radii or more.
International Nuclear Information System (INIS)
Narayan, Ramesh
2005-01-01
This paper reviews the current status of black hole (BH) astrophysics, focusing on topics of interest to a physics audience. Astronomers have discovered dozens of compact objects with masses greater than 3M o-dot , the likely maximum mass of a neutron star. These objects are identified as BH candidates. Some of the candidates have masses ∼5M o-dot -20M o-dot and are found in x-ray binaries, while the rest have masses ∼10 6 M o-dot -10 9.5 M o-dot and are found in galactic nuclei. A variety of methods are being tried to estimate the spin parameters of the candidate BHs. There is strong circumstantial evidence that many of the objects have event horizons, so there is good reason to believe that the candidates are true BHs. Recent MHD simulations of magnetized plasma accreting on rotating BHs seem to hint that relativistic jets may be produced by a magnetic analogue of the Penrose process
Erratic Black Hole Regulates Itself
2009-03-01
New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don
Phase transition for black holes with scalar hair and topological black holes
Myung, Yun Soo
2008-01-01
We study phase transitions between black holes with scalar hair and topological black holes in asymptotically anti-de Sitter spacetimes. As the ground state solutions, we introduce the non-rotating BTZ black hole in three dimensions and topological black hole with hyperbolic horizon in four dimensions. For the temperature matching only, we show that the phase transition between black hole with scalar hair (Martinez-Troncoso-Zanelli black hole) and topological black hole is second-order by usi...
Is black-hole ringdown a memory of its progenitor?
Kamaretsos, Ioannis; Hannam, Mark; Sathyaprakash, B S
2012-10-05
We perform an extensive numerical study of coalescing black-hole binaries to understand the gravitational-wave spectrum of quasinormal modes excited in the merged black hole. Remarkably, we find that the masses and spins of the progenitor are clearly encoded in the mode spectrum of the ringdown signal. Some of the mode amplitudes carry the signature of the binary's mass ratio, while others depend critically on the spins. Simulations of precessing binaries suggest that our results carry over to generic systems. Using Bayesian inference, we demonstrate that it is possible to accurately measure the mass ratio and a proper combination of spins even when the binary is itself invisible to a detector. Using a mapping of the binary masses and spins to the final black-hole spin allows us to further extract the spin components of the progenitor. Our results could have tremendous implications for gravitational astronomy by facilitating novel tests of general relativity using merging black holes.
Holographic description of a quantum black hole on a computer.
Hanada, Masanori; Hyakutake, Yoshifumi; Ishiki, Goro; Nishimura, Jun
2014-05-23
Black holes have been predicted to radiate particles and eventually evaporate, which has led to the information loss paradox and implies that the fundamental laws of quantum mechanics may be violated. Superstring theory, a consistent theory of quantum gravity, provides a possible solution to the paradox if evaporating black holes can actually be described in terms of standard quantum mechanical systems, as conjectured from the theory. Here, we test this conjecture by calculating the mass of a black hole in the corresponding quantum mechanical system numerically. Our results agree well with the prediction from gravity theory, including the leading quantum gravity correction. Our ability to simulate black holes offers the potential to further explore the yet mysterious nature of quantum gravity through well-established quantum mechanics. Copyright © 2014, American Association for the Advancement of Science.
Conformally invariant thermodynamics of a Maxwell-Dilaton black hole
Lopez-Monsalvo, C. S.; Nettel, F.; Quevedo, H.
2013-12-01
The thermodynamics of Maxwell-Dilaton black holes has been extensively studied. It has served as a fertile ground to test ideas about temperature through various definitions of surface gravity. In this paper, we make an independent analysis of this black hole solution in both, Einstein and Jordan, frames. We explore a set of definitions for the surface gravity and observe the different predictions they make for the near extremal configuration of this black hole. Finally, motivated by the singularity structure in the interior of the event horizon, we use a holographic argument to remove the micro-states from the disconnected region of this solution. In this manner, we construct a frame independent entropy from which we obtain a temperature which agrees with the standard results in the non-extremal regime, and has a desirable behaviour around the extremal configurations according to the third law of black hole mechanics.
Sorce, Jonathan; Wald, Robert M.
2017-11-01
We consider gedanken experiments to destroy an extremal or nearly extremal Kerr-Newman black hole by causing it to absorb matter with sufficient charge and/or angular momentum as compared with energy that it cannot remain a black hole. It was previously shown by one of us that such gedanken experiments cannot succeed for test particle matter entering an extremal Kerr-Newman black hole. We generalize this result here to arbitrary matter entering an extremal Kerr-Newman black hole, provided only that the nonelectromagnetic contribution to the stress-energy tensor of the matter satisfies the null energy condition. We then analyze the gedanken experiments proposed by Hubeny and others to overcharge and/or overspin an initially slightly nonextremal Kerr-Newman black hole. Analysis of such gedanken experiments requires that we calculate all effects on the final mass of the black hole that are second-order in the charge and angular momentum carried into the black hole, including all self-force effects. We obtain a general formula for the full second order correction to mass, δ2M , which allows us to prove that no gedanken experiments of the generalized Hubeny type can ever succeed in overcharging and/or overspinning a Kerr-Newman black hole, provided only that the nonelectromagnetic stress-energy tensor satisfies the null energy condition. Our analysis is based upon Lagrangian methods, and our formula for the second-order correction to mass is obtained by generalizing the canonical energy analysis of Hollands and Wald to the Einstein-Maxwell case. Remarkably, we obtain our formula for δ2M without having to explicitly compute self-force or finite size effects. Indeed, in an appendix, we show explicitly that our formula incorporates both the self-force and finite size effects for the special case of a charged body slowly lowered into an uncharged black hole.
Black holes and quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Hooft, G. ' t, E-mail: g.thooft@uu.n [Institute for Theoretical Physics, Utrecht University and Spinoza Institute, P.O. Box 80.195, 3508 TD Utrecht (Netherlands)
2010-07-15
After a brief review of quantum black hole physics, it is shown how the dynamical properties of a quantum black hole may be deduced to a large extent from Standard Model Physics, extended to scales near the Planck length, and combined with results from perturbative quantum gravity. Together, these interactions generate a Hilbert space of states on the black hole horizon, which can be investigated, displaying interesting systematics by themselves. To make such approaches more powerful, a study is made of the black hole complementarity principle, from which one may deduce the existence of a hidden form of local conformal invariance. Finally, the question is raised whether the principles underlying Quantum Mechanics are to be sharpened in this domain of physics as well. There are intriguing possibilities.
Black hole evaporation: a paradigm
International Nuclear Information System (INIS)
Ashtekar, Abhay; Bojowald, Martin
2005-01-01
A paradigm describing black hole evaporation in non-perturbative quantum gravity is developed by combining two sets of detailed results: (i) resolution of the Schwarzschild singularity using quantum geometry methods and (ii) time evolution of black holes in the trapping and dynamical horizon frameworks. Quantum geometry effects introduce a major modification in the traditional spacetime diagram of black hole evaporation, providing a possible mechanism for recovery of information that is classically lost in the process of black hole formation. The paradigm is developed directly in the Lorentzian regime and necessary conditions for its viability are discussed. If these conditions are met, much of the tension between expectations based on spacetime geometry and structure of quantum theory would be resolved
Impact of Holes on the Buckling of RHS Steel Column
Directory of Open Access Journals (Sweden)
Najla'a H. AL-Shareef
2018-03-01
Full Text Available This study presented an experimental and theoretical study on the effect of hole on the behavior of rectangular hollow steel columns subjected to axial compression load. Specimens were tested to investigated the ultimate capacity and the load- axial displacement behavior of steel columns. In this paper finite element analysis is done by using general purpose ANSYS 12.0 to investigate the behavior of rectangular hollow steel column with hole. In the experimental work, rectangular hollow steel columns with rounded corners were used in the constriction of the specimens which have dimensions of cross section (50*80mm and height of (250 and 500mm with thickness of (1.25,4 and 6mm with hole ((α*80*80mm when α is equal to (0.2,0.4,0.6 and 0.8. Twenty four columns under compression load were tested in order to investigate the effect of hole on the ultimate load of rectangular hollow steel column. The experimental results indicated that the typical failure mode for all the tested hollow specimen was the local buckling. The tested results indicated that the increasing of hole dimension leads to reduction in ultimate loads of tested column to 75%. The results show the reducing of load by 94.7% due to decreasing the thickness of column while the hole size is constant (0.2*80*80. The buckling load decreases by 84.62% when hole position changes from Lo=0.25L to 0.75L. Holes can be made in the middle of column with dimension up to 0.4 of column's length. The AISC (2005 presents the values closest to the experimental results for the nominal yielding compressive strength. The effect for increasing of slendeness ratio and thickness to area ratio(t/A leading to decreacing the critical stresses and the failure of column with large size of hole and (t/A ratio less than 0.74% was due to lacal buckling while the global buckling failure was abserve for column with small size of hole and (t/A ratio above than 0.74%. The compersion between the experimental
Hole dephasing caused by hole-hole interaction in a multilayered black phosphorus.
Li, Lijun; Khan, Muhammad Atif; Lee, Yoontae; Lee, Inyeal; Yun, Sun Jin; Youn, Doo-Hyeb; Kim, Gil-Ho
2017-11-01
We study the magnetotransport of holes in a multilayered black phosphorus in a temperature range of 1.9 to 21.5 K. We observed a negative magnetoresistance at magnetic fields up to 1.5 T. This negative magetoresistance was analyzed by weak localization theory in diffusive regime. At the lowest temperature and the highest carrier density we found a phase coherence length of 48 nm. The linear temperature dependence of the dephasing rate shows that the hole-hole scattering processes with small energy transfer are the dominant contribution in breaking the carrier phase coherence.
Terahertz superconducting plasmonic hole array
Tian, Zhen; Singh, Ranjan; Han, Jiaguang; Gu, Jianqiang; Xing, Qirong; Zhang, Weili
2010-01-01
We demonstrate thermally tunable superconductor hole array with active control over their resonant transmission induced by surface plasmon polaritons . The array was lithographically fabricated on high temperature YBCO superconductor and characterized by terahertz-time domain spectroscopy. We observe a clear transition from the virtual excitation of the surface plasmon mode to the real surface plasmon mode. The highly tunable superconducting plasmonic hole arrays may have promising applicatio...
Black holes from extended inflation
International Nuclear Information System (INIS)
Hsu, S.D.H.; Lawrence Berkeley Lab., CA
1990-01-01
It is argued that models of extended inflation, in which modified Einstein gravity allows a graceful exit from the false vacuum, lead to copious production of black holes. The critical temperature of the inflationary phase transition must be >10 8 GeV in order to avoid severe cosmological problems in a universe dominated by black holes. We speculate on the possibility that the interiors of false vacuum regions evolve into baby universes. (orig.)
Frampton, Paul H.
2009-01-01
While the energy of the universe has been established to be about 0.04 baryons, 0.24 dark matter and 0.72 dark energy, the cosmological entropy is almost entirely, about $(1 - 10^{-15})$, from black holes and only $10^{-15}$ from everything else. This identification of all dark matter as black holes is natural in statistical mechanics. Cosmological history of dark matter is discussed.
Newman, P. A.; Nash, E. R.; Douglass, A. R.; Kawa, S. R.
2003-01-01
Since 1979, the ozone hole has grown from near zero size to over 24 Million km2. This area is most strongly controlled by levels of inorganic chlorine and bromine oncentrations. In addition, dynamical variations modulate the size of the ozone hole by either cooling or warming the polar vortex collar region. We will review the size observations, the size trends, and the interannual variability of the size. Using a simple trajectory model, we will demonstrate the sensitivity of the ozone hole to dynamical forcing, and we will use these observations to discuss the size of the ozone hole during the 2002 Austral spring. We will further show how the Cly decreases in the stratosphere will cause the ozone hole to decrease by 1-1.5% per year. We will also show results from a 3-D chemical transport model (CTM) that has been continuously run since 1999. These CTM results directly show how strong dynamics acts to reduce the size of the ozone hole.
International Nuclear Information System (INIS)
Camenzind, M.
2005-01-01
While physicists have been grappling with the theory of black holes (BH), as shown by the many contributions to the Einstein year, astronomers have been successfully searching for real black holes in the Universe. Black hole astrophysics began in the 1960s with the discovery of quasars and other active galactic nuclei (AGN) in distant galaxies. Already in the 1960s it became clear that the most natural explanation for the quasar activity is the release of gravitational energy through accretion of gas onto supermassive black holes. The remnants of this activity have now been found in the centers of about 50 nearby galaxies. BH astrophysics received a new twist in the 1970s with the discovery of the X-ray binary (XRB) Cygnus X-1. The X-ray emitting compact object was too massive to be explained by a neutron star. Today, about 20 excellent BH candidates are known in XRBs. On the extragalactic scale, more than 100.000 quasars have been found in large galaxy surveys. At the redshift of the most distant ones, the Universe was younger than one billion year. The most enigmatic black hole candidates identified in the last years are the compact objects behind the Gamma-Ray Bursters. The formation of all these types of black holes is accompanied by extensive emission of gravitational waves. The detection of these strong gravity events is one of the biggest challenges for physicists in the near future. (author)
Black Hole Spin Measurement Uncertainty
Salvesen, Greg; Begelman, Mitchell C.
2018-01-01
Angular momentum, or spin, is one of only two fundamental properties of astrophysical black holes, and measuring its value has numerous applications. For instance, obtaining reliable spin measurements could constrain the growth history of supermassive black holes and reveal whether relativistic jets are powered by tapping into the black hole spin reservoir. The two well-established techniques for measuring black hole spin can both be applied to X-ray binaries, but are in disagreement for cases of non-maximal spin. This discrepancy must be resolved if either technique is to be deemed robust. We show that the technique based on disc continuum fitting is sensitive to uncertainties regarding the disc atmosphere, which are observationally unconstrained. By incorporating reasonable uncertainties into black hole spin probability density functions, we demonstrate that the spin measured by disc continuum fitting can become highly uncertain. Future work toward understanding how the observed disc continuum is altered by atmospheric physics, particularly magnetic fields, will further strengthen black hole spin measurement techniques.
Atomic structure in black hole
International Nuclear Information System (INIS)
Nagatani, Yukinori
2006-01-01
We propose that any black hole has atomic structure in its inside and has no horizon as a model of black holes. Our proposal is founded on a mean field approximation of gravity. The structure of our model consists of a (charged) singularity at the center and quantum fluctuations of fields around the singularity, namely, it is quite similar to that of atoms. Any properties of black holes, e.g. entropy, can be explained by the model. The model naturally quantizes black holes. In particular, we find the minimum black hole, whose structure is similar to that of the hydrogen atom and whose Schwarzschild radius is approximately 1.1287 times the Planck length. Our approach is conceptually similar to Bohr's model of the atomic structure, and the concept of the minimum Schwarzschild radius is similar to that of the Bohr radius. The model predicts that black holes carry baryon number, and the baryon number is rapidly violated. This baryon number violation can be used as verification of the model. (author)
Formation and Coalescence of Electron Solitary Holes
DEFF Research Database (Denmark)
Saeki, K.; Michelsen, Poul; Pécseli, H. L.
1979-01-01
Electron solitary holes were observed in a magnetized collisionless plasma. These holes were identified as Bernstein-Green-Kruskal equilibria, thus being purely kinetic phenomena. The electron hole does not damp even though its velocity is close to the electron thermal velocity. Two holes attract...
Black Hole Complementary Principle and Noncommutative Membrane
International Nuclear Information System (INIS)
Wei Ren
2006-01-01
In the spirit of black hole complementary principle, we have found the noncommutative membrane of Scharzchild black holes. In this paper we extend our results to Kerr black hole and see the same story. Also we make a conjecture that spacetimes are noncommutative on the stretched membrane of the more general Kerr-Newman black hole.
Accretion, primordial black holes and standard cosmology
Indian Academy of Sciences (India)
Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the conjecture that the primordial black holes ...
Black holes as parts of entangled systems
Basini, G.; Capozziello, S.; Longo, G.
A possible link between EPR-type quantum phenomena and astrophysical objects like black holes, under a new general definition of entanglement, is established. A new approach, involving backward time evolution and topology changes, is presented bringing to a definition of the system black hole-worm hole-white hole as an entangled system.
Corda, Christian
2013-12-01
Introducing a black hole (BH) effective temperature, which takes into account both the non-strictly thermal character of Hawking radiation and the countable behavior of emissions of subsequent Hawking quanta, we recently re-analysed BH quasi-normal modes (QNMs) and interpreted them naturally in terms of quantum levels. In this work we improve such an analysis removing some approximations that have been implicitly used in our previous works and obtaining the corrected expressions for the formulas of the horizon's area quantization and the number of quanta of area and hence also for Bekenstein-Hawking entropy, its subleading corrections and the number of micro-states, i.e. quantities which are fundamental to realize the underlying quantum gravity theory, like functions of the QNMs quantum "overtone" number n and, in turn, of the BH quantum excited level. An approximation concerning the maximum value of n is also corrected. On the other hand, our previous results were strictly corrected only for scalar and gravitational perturbations. Here we show that the discussion holds also for vector perturbations. The analysis is totally consistent with the general conviction that BHs result in highly excited states representing both the "hydrogen atom" and the "quasi-thermal emission" in quantum gravity. Our BH model is somewhat similar to the semi-classical Bohr's model of the structure of a hydrogen atom. The thermal approximation of previous results in the literature is consistent with the results in this paper. In principle, such results could also have important implications for the BH information paradox.
Black Hole Spectroscopy with Coherent Mode Stacking.
Yang, Huan; Yagi, Kent; Blackman, Jonathan; Lehner, Luis; Paschalidis, Vasileios; Pretorius, Frans; Yunes, Nicolás
2017-04-21
The measurement of multiple ringdown modes in gravitational waves from binary black hole mergers will allow for testing the fundamental properties of black holes in general relativity and to constrain modified theories of gravity. To enhance the ability of Advanced LIGO/Virgo to perform such tasks, we propose a coherent mode stacking method to search for a chosen target mode within a collection of multiple merger events. We first rescale each signal so that the target mode in each of them has the same frequency and then sum the waveforms constructively. A crucial element to realize this coherent superposition is to make use of a priori information extracted from the inspiral-merger phase of each event. To illustrate the method, we perform a study with simulated events targeting the ℓ=m=3 ringdown mode of the remnant black holes. We show that this method can significantly boost the signal-to-noise ratio of the collective target mode compared to that of the single loudest event. Using current estimates of merger rates, we show that it is likely that advanced-era detectors can measure this collective ringdown mode with one year of coincident data gathered at design sensitivity.
Analysis and simulation of BGK electron holes
Directory of Open Access Journals (Sweden)
L. Muschietti
1999-01-01
Full Text Available Recent observations from satellites crossing regions of magnetic-field-aligned electron streams reveal solitary potential structures that move at speeds much greater than the ion acoustic/thermal velocity. The structures appear as positive potential pulses rapidly drifting along the magnetic field, and are electrostatic in their rest frame. We interpret them as BGK electron holes supported by a drifting population of trapped electrons. Using Laplace transforms, we analyse the behavior of one phase-space electron hole. The resulting potential shapes and electron distribution functions are self-consistent and compatible with the field and particle data associated with the observed pulses. In particular, the spatial width increases with increasing amplitude. The stability of the analytic solution is tested by means of a two-dimensional particle-in-cell simulation code with open boundaries. We consider a strongly magnetized parameter regime in which the bounce frequency of the trapped electrons is much less than their gyrofrequency. Our investigation includes the influence of the ions, which in the frame of the hole appear as an incident beam, and impinge on the BGK potential with considerable energy. The nonlinear structure is remarkably resilient
Thermodynamics and luminosities of rainbow black holes
Energy Technology Data Exchange (ETDEWEB)
Mu, Benrong [Physics Teaching and Research section, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu (China); Wang, Peng; Yang, Haitang, E-mail: mubenrong@uestc.edu.cn, E-mail: pengw@scu.edu.cn, E-mail: hyanga@scu.edu.cn [Center for Theoretical Physics, College of Physical Science and Technology, Sichuan University, No. 24 South Section 1 Yihuan Road, Chengdu (China)
2015-11-01
Doubly special relativity (DSR) is an effective model for encoding quantum gravity in flat spacetime. As result of the nonlinearity of the Lorentz transformation, the energy-momentum dispersion relation is modified. One simple way to import DSR to curved spacetime is ''Gravity's rainbow'', where the spacetime background felt by a test particle would depend on its energy. Focusing on the ''Amelino-Camelia dispersion relation'' which is E{sup 2} = m{sup 2}+p{sup 2}[1−η(E/m{sub p}){sup n}] with n > 0, we investigate the thermodynamical properties of a Schwarzschild black hole and a static uncharged black string for all possible values of η and n in the framework of rainbow gravity. It shows that there are non-vanishing minimum masses for these two black holes in the cases with η < 0 and n ≥ 2. Considering effects of rainbow gravity on both the Hawking temperature and radius of the event horizon, we use the geometric optics approximation to compute luminosities of a 2D black hole, a Schwarzschild one and a static uncharged black string. It is found that the luminosities can be significantly suppressed or boosted depending on the values of η and n.
Alternate Explosions: Collapse and Accretion Events with Red Holes instead of Black Holes
Graber, James S.
1999-01-01
A red hole is "just like a black hole" except it lacks an event horizon and a singularity. As a result, a red hole emits much more energy than a black hole during a collapse or accretion event. We consider how a red hole solution can solve the "energy crisis" and power extremely energetic gamma ray bursts and hypernovae.
Regular black hole in three dimensions
Myung, Yun Soo; Yoon, Myungseok
2008-01-01
We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.
Thermodynamics of Horava-Lifshitz black holes
International Nuclear Information System (INIS)
Myung, Yun Soo; Kim, Yong-Wan
2010-01-01
We study black holes in the Horava-Lifshitz gravity with a parameter λ. For 1/3≤λ 3, the black holes behave the Reissner-Nordstroem type black hole in asymptotically flat spacetimes. Hence, these all are quite different from the Schwarzschild-AdS black hole of Einstein gravity. The temperature, mass, entropy, and heat capacity are derived for investigating thermodynamic properties of these black holes. (orig.)
Detecting Black Hole Binaries by Gaia
Yamaguchi, Masaki S.; Kawanaka, Norita; Bulik, Tomasz; Piran, Tsvi
2017-01-01
We study the prospect of the Gaia satellite to identify black hole binary systems by detecting the orbital motion of the companion stars. Taking into account the initial mass function, mass transfer, common envelope phase, interstellar absorption and identifiability of black holes, we estimate the number of black hole binaries detected by Gaia and their distributions with respect to the black hole mass for several models with different parameters. We find that $\\sim 300-6000$ black hole binar...
Metamorphopsia assessment before and after vitrectomy for macular hole
DEFF Research Database (Denmark)
Krøyer, Kristian; Christensen, Ulrik; la Cour, Morten
2009-01-01
PURPOSE: To evaluate the degree of metamorphopsia in 42 patients before and 6 months after vitrectomy for idiopathic unilateral macular hole. METHODS: Semicircular test and reference stimuli of variable diameters were applied in a binocular test that measured interocular size disparity in patient...
The reliability of the hole-board apparatus.
File, S E; Wardill, A G
1975-10-14
Two aspects of the reliability of the hole-board apparatus were investigated-the similarity between scores of different samples of the same population on their first exposure to the apparatus, and the test-retest reliability. Rats and mice were given a 5-min exposure to the hole-board and then retested for 5 min after 1, 2 or 8 days. Male rats and mice showed good initial exposure reliability, whereas the female mouse groups differed significantly. All animals showed a positive test-retest correlation (range 0.31-0.78), but a homogeneous group (e.g. all animals habituating) produced higher correlations (range 0.60-0.99). Comparison of scores on the two 5-min exposures showed that not all groups showed significant habituation, but the animals exposed to the hole-board for two 10-min periods showed both significant habituation and test-retest reliability.
Drilling history core hole DC-6 Hanford, Washington
International Nuclear Information System (INIS)
1978-06-01
Core hole DC-6 was completed in May 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scisson, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-6. Core hole DC-6 is located within the boundary of the Hanford Site at the old Hanford town site. The Hanford Site coordinates for DC-6 are North 54,127.17 feet and West 17,721.00 feet. The surface elevation is approximately 402 feet above sea level. The purpose of core hole DC-6 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection and to provide a borehole for hydrologic testing. The total depth of core hole DC-6 was 4336 feet. Core recovery was 98.4% of the total footage cored
Gravitational Rocket from the Merging Massive Black Hole Binaries
Choi, Dale
2006-01-01
Coalescing massive black hole binaries are expected to be among the most fascinating gravitational wave sources, observable by the NASA/ESA LISA detector. Not only will the merger events reveal the rich phenomenology of extremely strong and dynamical gravity deep inside the potential wells at the centers of galaxies (thus providing an excellent testing ground for general relativity), it will also make important contributions to the astrophysics of massive black hole evolutions. Typical black hole mergers involve asymmetric radiation of gravitational waves and lose linear momentum as well as energy and angular momentum. As a result, the merger remnant receives a kick from the GW emission: a gravitational rocket effect. High kick velocities (higher than the escape velocities of the host structure) would have a strong impact on our understanding of how massive black holes have evolved over time and, in particular, on the estimates of the merger rate for LISA. The main difficulties in calculations of the kick velocities has been in the last moments of the merger where the full theory of general relativity must be employed to accurately model the black hole dynamics. I describe a recent calculation of the kick velocities from numerical relativity simulations of the merging black hole binaries.
Absorption of scalars by extremal black holes in string theory
Moura, Filipe
2017-09-01
We show that the low frequency absorption cross section of minimally coupled test massless scalar fields by extremal spherically symmetric black holes in d dimensions is equal to the horizon area, even in the presence of string-theoretical α ' corrections. Classically one has the relation σ = 4 GS between that absorption cross section and the black hole entropy. By comparing in each case the values of the horizon area and Wald's entropy, we discuss the validity of such relation in the presence of higher derivative corrections for extremal black holes in many different contexts: in the presence of electric and magnetic charges; for nonsupersymmetric and supersymmetric black holes; in d=4 and d=5 dimensions. The examples we consider seem to indicate that this relation is not verified in the presence of α ' corrections in general, although being valid in some specific cases (electrically charged maximally supersymmetric black holes in d=5). We argue that the relation σ = 4 GS should in general be valid for the absorption cross section of scalar fields which, although being independent from the black hole solution, have their origin from string theory, and therefore are not minimally coupled.
Tidal stripping of stars near supermassive black holes
Directory of Open Access Journals (Sweden)
Blandford R.
2012-12-01
Full Text Available In a binary system composed of a supermassive black hole and a star orbiting the hole in an equatorial, circular orbit, the stellar orbit will shrink due to the action of gravitational radiation, until the star fills its Roche lobe outside the Innermost Stable Circular Orbit (ISCO of the hole or plunges into the hole. In the former case, gas will flow through the inner Lagrange point (L1 to the hole. If this tidal stripping process happens on a time scale faster than the thermal time scale but slower than the dynamical time scale, the entropy as a function of the interior mass is conserved. The star will evolve adiabatically, and, in most cases, will recede from the hole while filling its Roche lobe. We calculate how the stellar equilibrium properties change, which determines how the stellar orbital period and mass-transfer rate change through the “Roche evolution” for various types of stars in the relativistic regime. We envisage that the mass stream eventually hits the accretion disc, where it forms a hot spot orbiting the hole and may ultimately modulate the luminosity with the stellar orbital frequency. The ultimate goal is to probe the mass and spin of the hole and provide a test of general relativity in the strong-field regime from the resultant quasi-periodic signals. The observability of such a modulation is discussed along with a possible interpretation of an intermittent 1 hour period in the X-ray emission of RE J1034+ 396.
Violent flickering in Black Holes
2008-10-01
Unique observations of the flickering light from the surroundings of two black holes provide new insights into the colossal energy that flows at their hearts. By mapping out how well the variations in visible light match those in X-rays on very short timescales, astronomers have shown that magnetic fields must play a crucial role in the way black holes swallow matter. Flickering black hole ESO PR Photo 36/08 Flickering black hole Like the flame from a candle, light coming from the surroundings of a black hole is not constant -- it flares, sputters and sparkles. "The rapid flickering of light from a black hole is most commonly observed at X-ray wavelengths," says Poshak Gandhi, who led the international team that reports these results. "This new study is one of only a handful to date that also explore the fast variations in visible light, and, most importantly how these fluctuations relate to those in X-rays." The observations tracked the shimmering of the black holes simultaneously using two different instruments, one on the ground and one in space. The X-ray data were taken using NASA's Rossi X-ray Timing Explorer satellite. The visible light was collected with the high speed camera ULTRACAM, a visiting instrument at ESO's Very Large Telescope (VLT), recording up to 20 images a second. ULTRACAM was developed by team members Vik Dhillon and Tom Marsh. "These are among the fastest observations of a black hole ever obtained with a large optical telescope," says Dhillon. To their surprise, astronomers discovered that the brightness fluctuations in the visible light were even more rapid than those seen in X-rays. In addition, the visible-light and X-ray variations were found not to be simultaneous, but to follow a repeated and remarkable pattern: just before an X-ray flare the visible light dims, and then surges to a bright flash for a tiny fraction of a second before rapidly decreasing again. None of this radiation emerges directly from the black hole, but from the
Black holes, qubits and octonions
International Nuclear Information System (INIS)
Borsten, L.; Dahanayake, D.; Duff, M.J.; Ebrahim, H.; Rubens, W.
2009-01-01
We review the recently established relationships between black hole entropy in string theory and the quantum entanglement of qubits and qutrits in quantum information theory. The first example is provided by the measure of the tripartite entanglement of three qubits (Alice, Bob and Charlie), known as the 3-tangle, and the entropy of the 8-charge STU black hole of N=2 supergravity, both of which are given by the [SL(2)] 3 invariant hyperdeterminant, a quantity first introduced by Cayley in 1845. Moreover the classification of three-qubit entanglements is related to the classification of N=2 supersymmetric STU black holes. There are further relationships between the attractor mechanism and local distillation protocols and between supersymmetry and the suppression of bit flip errors. At the microscopic level, the black holes are described by intersecting D3-branes whose wrapping around the six compact dimensions T 6 provides the string-theoretic interpretation of the charges and we associate the three-qubit basis vectors, |ABC>(A,B,C=0 or 1), with the corresponding 8 wrapping cycles. The black hole/qubit correspondence extends to the 56 charge N=8 black holes and the tripartite entanglement of seven qubits where the measure is provided by Cartan's E 7 contains [SL(2)] 7 invariant. The qubits are naturally described by the seven vertices ABCDEFG of the Fano plane, which provides the multiplication table of the seven imaginary octonions, reflecting the fact that E 7 has a natural structure of an O-graded algebra. This in turn provides a novel imaginary octonionic interpretation of the 56=7x8 charges of N=8: the 24=3x8 NS-NS charges correspond to the three imaginary quaternions and the 32=4x8 R-R to the four complementary imaginary octonions. We contrast this approach with that based on Jordan algebras and the Freudenthal triple system. N=8 black holes (or black strings) in five dimensions are also related to the bipartite entanglement of three qutrits (3-state systems
Black hole spectroscopy: Systematic errors and ringdown energy estimates
Baibhav, Vishal; Berti, Emanuele; Cardoso, Vitor; Khanna, Gaurav
2018-02-01
The relaxation of a distorted black hole to its final state provides important tests of general relativity within the reach of current and upcoming gravitational wave facilities. In black hole perturbation theory, this phase consists of a simple linear superposition of exponentially damped sinusoids (the quasinormal modes) and of a power-law tail. How many quasinormal modes are necessary to describe waveforms with a prescribed precision? What error do we incur by only including quasinormal modes, and not tails? What other systematic effects are present in current state-of-the-art numerical waveforms? These issues, which are basic to testing fundamental physics with distorted black holes, have hardly been addressed in the literature. We use numerical relativity waveforms and accurate evolutions within black hole perturbation theory to provide some answers. We show that (i) a determination of the fundamental l =m =2 quasinormal frequencies and damping times to within 1% or better requires the inclusion of at least the first overtone, and preferably of the first two or three overtones; (ii) a determination of the black hole mass and spin with precision better than 1% requires the inclusion of at least two quasinormal modes for any given angular harmonic mode (ℓ , m ). We also improve on previous estimates and fits for the ringdown energy radiated in the various multipoles. These results are important to quantify theoretical (as opposed to instrumental) limits in parameter estimation accuracy and tests of general relativity allowed by ringdown measurements with high signal-to-noise ratio gravitational wave detectors.
Black holes: a slanted overview
International Nuclear Information System (INIS)
Vishveshwara, C.V.
1988-01-01
The black hole saga spanning some seventy years may be broadly divided into four phases, namely, (a) the dark ages when little was known about black holes even though they had come into existence quite early through the Schwarzschild solution, (b) the age of enlightenment bringing in deep and prolific discoveries, (c) the age of fantasy that cast black holes in all sorts of extraordinary roles, and (d) the golden age of relativistic astrophysics - to some extent similar to Dirac's characterisation of the development of quantum theory - in which black holes have been extensively used to elucidate a number of astrophysical phenomena. It is impossible to give here even the briefest outline of the major developments in this vast area. We shall only attempt to present a few aspects of black hole physics which have been actively pursued in the recent past. Some details are given in the case of those topics that have not found their way into text books or review articles. (author)
Cosmology with primordial black holes
International Nuclear Information System (INIS)
Lindley, D.
1981-09-01
Cosmologies containing a substantial amount of matter in the form of evaporating primordial black holes are investigated. A review of constraints on the numbers of such black holes, including an analysis of a new limit found by looking at the destruction of deuterium by high energy photons, shows that there must be a negligible population of small black holes from the era of cosmological nucleosynthesis onwards, but that there are no strong constraints before this time. The major part of the work is based on the construction of detailed, self-consistent cosmological models in which black holes are continually forming and evaporating The interest in these models centres on the question of baryon generation, which occurs via the asymmetric decay of a new type of particle which appears as a consequence of the recently developed Grand Unified Theories of elementary particles. Unfortunately, there is so much uncertainty in the models that firm conclusions are difficult to reach; however, it seems feasible in principle that primordial black holes could be responsible for a significant part of the present matter density of the Universe. (author)
Holley-Bockelmann, Kelly; Dunn, Glenna; Bellovary, Jillian M.; Christensen, Charlotte
2016-01-01
Luminous quasars detected at redshifts z > 6 require that the first black holes form early and grow to ~109 solar masses within one Gyr. Our work uses cosmological simulations to study the formation and early growth of direct collapse black holes. In the pre-reionization epoch, molecular hydrogen (H2) causes gas to fragment and form Population III stars, but Lyman-Werner radiation can suppress H2 formation and allow gas to collapse directly into a massive black hole. The critical flux required to inhibit H2 formation, Jcrit, is hotly debated, largely due to the uncertainties in the source radiation spectrum, H2 self-shielding, and collisional dissociation rates. Here, we test the power of the direct collapse model in a non-uniform Lyman-Werner radiation field, using an updated version of the SPH+N-body tree code Gasoline with H2 non-equilibrium abundance tracking, H2 cooling, and a modern SPH implementation. We vary Jcrit from 30 to 104 J21 to study the effect on seed black holes, focusing on black hole formation as a function of environment, halo mass, metallicity, and proximity of the Lyman-Werner source. We discuss the constraints on massive black hole occupation fraction in the quasar epoch, and implications for reionization, high-redshift X-ray background radiation, and gravitational waves.
CHAOTIC MOTION OF CHARGED PARTICLES IN AN ELECTROMAGNETIC FIELD SURROUNDING A ROTATING BLACK HOLE
International Nuclear Information System (INIS)
Takahashi, Masaaki; Koyama, Hiroko
2009-01-01
The observational data from some black hole candidates suggest the importance of electromagnetic fields in the vicinity of a black hole. Highly magnetized disk accretion may play an importance rule, and large-scale magnetic field may be formed above the disk surface. Then, we expect that the nature of the black hole spacetime would be revealed by magnetic phenomena near the black hole. We will start investigating the motion of a charged test particle which depends on the initial parameter setting in the black hole dipole magnetic field, which is a test field on the Kerr spacetime. Particularly, we study the spin effects of a rotating black hole on the motion of the charged test particle trapped in magnetic field lines. We make detailed analysis for the particle's trajectories by using the Poincare map method, and show the chaotic properties that depend on the black hole spin. We find that the dragging effects of the spacetime by a rotating black hole weaken the chaotic properties and generate regular trajectories for some sets of initial parameters, while the chaotic properties dominate on the trajectories for slowly rotating black hole cases. The dragging effects can generate the fourth adiabatic invariant on the particle motion approximately.
Stability of Circular Orbits around a Tidal Charged Black Hole
Sharif, M.; Kousar, L.
2018-01-01
We study the effects of the tidal charge on the equatorial circular motion of neutral test particles near a tidal charged black hole. This analysis investigates stable as well as unstable circular orbits in all possible configurations of nonextremal and extremal cases. It is found that a negative tidal charge will increase the energy and angular momentum of a neutral test particle moving around a black hole. We obtain a continuous region of stability for both extremal and nonextremal cases. We conclude that the region of stability as well as radius of last stable circular orbit shows increasing behavior for Q < 0.
NNWSI [Nevada Nuclear Waste Storage Investigations] hole histories
International Nuclear Information System (INIS)
1986-11-01
This report is a compilation of data from sixteen boreholes drilled under the guidance of the US Geological Survey to help identify the area's water table. The sixteen boreholes were drilled between April 1983 and November 1983 in Area 25, Nevada Test Site land and in Bureau of Land Management land adjacent to the Nevada Test Site. Data presented in the hole histories include all locations, daily activities, review of hole conditions, geophysical log lists, video tape lists, and microfiche copies of the geophysical logs run by the Fenix and Scisson, Inc. subcontractor
Quantum and thermodynamical aspects of black holes
International Nuclear Information System (INIS)
Sande e Lemos, J.P. de.
1982-08-01
The collapse of a spherically symmetric matter distribution resulting in Schwarzschild's black holes (BH) is discussed. Using Kerr metric, some dynamical results envolving test particles orbiting around BH with rotation are obtained. Quantum field theory is used to discuss the results obtained by Hawking in which one BH can emit a stationary flux of particles working a BH in a given temperature. Then, thermodynamics is introduced, some properties are verified and some phenomena of BH-radiation and BH-BH interaction are studied. (L.C.) [pt
2010-07-01
Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help
Black holes and galaxy formation
Propst, Raphael J
2010-01-01
Galaxies are the basic unit of cosmology. The study of galaxy formation is concerned with the processes that formed a heterogeneous universe from a homogeneous beginning. The physics of galaxy formation is complicated because it deals with the dynamics of stars, thermodynamics of gas and energy production of stars. A black hole is a massive object whose gravitational field is so intense that it prevents any form of matter or radiation to escape. It is hypothesized that the most massive galaxies in the universe- "elliptical galaxies"- grow simultaneously with the supermassive black holes at their centers, giving us much stronger evidence that black holes control galaxy formation. This book reviews new evidence in the field.
The black hole quantum atmosphere
Dey, Ramit; Liberati, Stefano; Pranzetti, Daniele
2017-11-01
Ever since the discovery of black hole evaporation, the region of origin of the radiated quanta has been a topic of debate. Recently it was argued by Giddings that the Hawking quanta originate from a region well outside the black hole horizon by calculating the effective radius of a radiating body via the Stefan-Boltzmann law. In this paper we try to further explore this issue and end up corroborating this claim, using both a heuristic argument and a detailed study of the stress energy tensor. We show that the Hawking quanta originate from what might be called a quantum atmosphere around the black hole with energy density and fluxes of particles peaked at about 4 MG, running contrary to the popular belief that these originate from the ultra high energy excitations very close to the horizon. This long distance origin of Hawking radiation could have a profound impact on our understanding of the information and transplanckian problems.
The black hole quantum atmosphere
Directory of Open Access Journals (Sweden)
Ramit Dey
2017-11-01
Full Text Available Ever since the discovery of black hole evaporation, the region of origin of the radiated quanta has been a topic of debate. Recently it was argued by Giddings that the Hawking quanta originate from a region well outside the black hole horizon by calculating the effective radius of a radiating body via the Stefan–Boltzmann law. In this paper we try to further explore this issue and end up corroborating this claim, using both a heuristic argument and a detailed study of the stress energy tensor. We show that the Hawking quanta originate from what might be called a quantum atmosphere around the black hole with energy density and fluxes of particles peaked at about 4MG, running contrary to the popular belief that these originate from the ultra high energy excitations very close to the horizon. This long distance origin of Hawking radiation could have a profound impact on our understanding of the information and transplanckian problems.
Geometric inequalities for black holes
Energy Technology Data Exchange (ETDEWEB)
Dain, Sergio [Universidad Nacional de Cordoba (Argentina)
2013-07-01
Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)
Geometric inequalities for black holes
International Nuclear Information System (INIS)
Dain, Sergio
2013-01-01
Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)
Black holes a very short introduction
Blundell, Katherine
2015-01-01
Black holes are a constant source of fascination to many due to their mysterious nature. Black Holes: A Very Short Introduction addresses a variety of questions, including what a black hole actually is, how they are characterized and discovered, and what would happen if you came too close to one. It explains how black holes form and grow—by stealing material that belongs to stars—as well as how many there may be in the Universe. It also explores the large black holes found in the centres of galaxies, and how black holes power quasars and lie behind other spectacular phenomena in the cosmos.
Heat transfer efficiency evaluation for outward and inward multi-flame-hole gas burner
Morita, Shin-ichi; Hayamizu, Yasutaka; Katayama, Takashi; Inaba, Hideo
2012-04-01
The purpose of this study is to understand the factor that influence the heating efficiency of the outward and inward multi-hole gas burner. The flame-hole angle and the distance from flame hole to heating object are chosen as the experimental parameters. The measurement of the flame temperature distribution is carried out on each experimental condition. The observation of combustion flame, by the Schlieren method, is done from the purpose to understand the combustion phenomenon on the heating efficiency. LPG (Liquefied petroleum gas) is used for the test fuel gas. The compositions of LPG are propane 97.5vol%, butane 0.2vol% and methane + ethylene 2.3vol%. The optimum ranges of the flame-hole angle and the distance from flame hole to heating object are clarified. The experimental correlation equations for the outward and inward multi-flame-hole gas burner are proposed.
Hydro-Period Influence on Kettle Hole Biogeochemistry in NE Germany
Kayler, Z. E.; Badrian, M.; Frackowski, A.; Nitzsche, K. N.; Rieckh, H.; Gessler, A.
2015-12-01
Hydro-Period Influence on Kettle Hole Biogeochemistry in NE Germany Kettle holes are glacially created ponds (Kettle holes are only seasonally connected to streams or groundwater and therefore they undergo pronounced short-term changes in the hydro-periods, i.e. water level fluctuations that include complete desiccation and rewetting. Little is known about kettle hole biogeochemistry in NE Germany, especially with regards to the hydro-period. We hypothesized that a connection exists between kettle hole hydro-period and sediment biogeochemistry. We surveyed kettle hole water in NE Germany over several years to capture the seasonal isotopic composition (δD, δ18O). Within a subset of the surveyed kettle holes we measured the δ13C and δ15N composition of sediments at two different depths from one season. Our objective was to link the abiotic influences demarked by the evaporative isotopic signal from kettle hole water, to biotic processes, such as microbial turnover and contributions of vegetation, imprinted in the δ13C and δ15N signals in sediment organic matter. Based on the upper sediment isotopic signal, we were able to classify two categories: permanently and temporarily filled kettle holes. Other kettle holes, for example those found in forests, were not as easily classified. Within the deeper sediment layers we found a distinct curve linear response between δ15N and C/N ratios, where temporarily filled kettle holes were consistently enriched, indicating a higher level of microbial transformation. We evaluated our evaporation estimates against the sediment-based classification to test evaporation as a major mechanism behind kettle hole biogeochemistry. While the temporarily filled kettle holes are the most biogeochemically dynamic, due in large part to their hydro-period, the mechanisms underlying the hydro-period and the concurrent effects on biogeochemical cycles are diverse.
Interior structure of rotating black holes. III. Charged black holes
International Nuclear Information System (INIS)
Hamilton, Andrew J. S.
2011-01-01
This paper extends to the case of charged rotating black holes the conformally stationary, axisymmetric, conformally separable solutions presented for uncharged rotating black holes in a companion paper. In the present paper, the collisionless fluid accreted by the black hole may be charged. The charge of the black hole is determined self-consistently by the charge accretion rate. As in the uncharged case, hyper-relativistic counterstreaming between ingoing and outgoing streams drives inflation at (just above) the inner horizon, followed by collapse. If both ingoing and outgoing streams are charged, then conformal separability holds during early inflation, but fails as inflation develops. If conformal separability is imposed throughout inflation and collapse, then only one of the ingoing and outgoing streams can be charged: the other must be neutral. Conformal separability prescribes a hierarchy of boundary conditions on the ingoing and outgoing streams incident on the inner horizon. The dominant radial boundary conditions require that the incident ingoing and outgoing number densities be uniform with latitude, but the charge per particle must vary with latitude such that the incident charge densities vary in proportion to the radial electric field. The subdominant angular boundary conditions require specific forms of the incident number- and charge-weighted angular motions. If the streams fall freely from outside the horizon, then the prescribed angular conditions can be achieved by the charged stream, but not by the neutral stream. Thus, as in the case of an uncharged black hole, the neutral stream must be considered to be delivered ad hoc to just above the inner horizon.
Dynamics of Coronal Hole Boundaries
International Nuclear Information System (INIS)
Higginson, A. K.; Zurbuchen, T. H.; Antiochos, S. K.; DeVore, C. R.; Wyper, P. F.
2017-01-01
Remote and in situ observations strongly imply that the slow solar wind consists of plasma from the hot, closed-field corona that is released onto open magnetic field lines. The Separatrix Web theory for the slow wind proposes that photospheric motions at the scale of supergranules are responsible for generating dynamics at coronal-hole boundaries, which result in the closed plasma release. We use three-dimensional magnetohydrodynamic simulations to determine the effect of photospheric flows on the open and closed magnetic flux of a model corona with a dipole magnetic field and an isothermal solar wind. A rotational surface motion is used to approximate photospheric supergranular driving and is applied at the boundary between the coronal hole and helmet streamer. The resulting dynamics consist primarily of prolific and efficient interchange reconnection between open and closed flux. The magnetic flux near the coronal-hole boundary experiences multiple interchange events, with some flux interchanging over 50 times in one day. Additionally, we find that the interchange reconnection occurs all along the coronal-hole boundary and even produces a lasting change in magnetic-field connectivity in regions that were not driven by the applied motions. Our results show that these dynamics should be ubiquitous in the Sun and heliosphere. We discuss the implications of our simulations for understanding the observed properties of the slow solar wind, with particular focus on the global-scale consequences of interchange reconnection.
Indian Academy of Sciences (India)
Current technologies have enabled glimpses at the many facetsof black holes, which we know to be plentiful in our cosmos.A panoramic view of the evidence for them is presented hereacross the large range of masses that they span. Author Affiliations. Prajval Shastri. Resonance – Journal of Science Education.
'Black holes': escaping the void.
Waldron, Sharn
2013-02-01
The 'black hole' is a metaphor for a reality in the psyche of many individuals who have experienced complex trauma in infancy and early childhood. The 'black hole' has been created by an absence of the object, the (m)other, so there is no internalized object, no (m)other in the psyche. Rather, there is a 'black hole' where the object should be, but the infant is drawn to it, trapped by it because of an intrinsic, instinctive need for a 'real object', an internalized (m)other. Without this, the infant cannot develop. It is only the presence of a real object that can generate the essential gravity necessary to draw the core of the self that is still in an undeveloped state from deep within the abyss. It is the moving towards a real object, a (m)other, that relativizes the absolute power of the black hole and begins a reformation of its essence within the psyche. © 2013, The Society of Analytical Psychology.
Stellar dynamics and black holes
Indian Academy of Sciences (India)
Stellar dynamics and black holes. DAVID MERRITT. Department of Physics, Rochester Institute of Technology, 78 Lomb Memorial Drive, Rochester,. NY 14623, USA. E-mail: merritt@astro.rit.edu. Abstract. Chandrasekhar's most important contribution to stellar dynamics was the concept of dynamical friction. I briefly review ...
Energy Technology Data Exchange (ETDEWEB)
Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-10-06
Pinhole photography has made major contributions to astrophysics through the use of “coded apertures”. Coded apertures were instrumental in locating gamma-ray bursts and proving that they originate in faraway galaxies, some from the birth of black holes from the first stars that formed just after the big bang.
Black Holes and Exotic Spinors
Directory of Open Access Journals (Sweden)
J. M. Hoff da Silva
2016-05-01
Full Text Available Exotic spin structures are non-trivial liftings, of the orthogonal bundle to the spin bundle, on orientable manifolds that admit spin structures according to the celebrated Geroch theorem. Exotic spin structures play a role of paramount importance in different areas of physics, from quantum field theory, in particular at Planck length scales, to gravity, and in cosmological scales. Here, we introduce an in-depth panorama in this field, providing black hole physics as the fount of spacetime exoticness. Black holes are then studied as the generators of a non-trivial topology that also can correspond to some inequivalent spin structure. Moreover, we investigate exotic spinor fields in this context and the way exotic spinor fields branch new physics. We also calculate the tunneling probability of exotic fermions across a Kerr-Sen black hole, showing that the exotic term does affect the tunneling probability, altering the black hole evaporation rate. Finally we show that it complies with the Hawking temperature universal law.
Dvali, Gia
2014-01-01
It is a common wisdom that properties of macroscopic bodies are well described by (semi)classical physics. As we have suggested this wisdom is not applicable to black holes. Despite being macroscopic, black holes are quantum objects. They represent Bose-Einstein condensates of N-soft gravitons at the quantum critical point, where N Bogoliubov modes become gapless. As a result, physics governing arbitrarily-large black holes (e.g., of galactic size) is a quantum physics of the collective Bogoiliubov modes. This fact introduces a new intrinsically-quantum corrections in form of 1/N, as opposed to exp(-N). These corrections are unaccounted by the usual semiclassical expansion in h and cannot be recast in form of a quantum back-reaction to classical metric. Instead the metric itself becomes an approximate entity. These 1/N corrections abolish the presumed properties of black holes, such as non existence of hair, and are the key to nullifying the so-called information paradox.
Improving accuracy of holes honing
Directory of Open Access Journals (Sweden)
Ivan М. Buykli
2015-03-01
Full Text Available Currently, in precision engineering industry tolerances for linear dimensions and tolerances on shape of surfaces of processing parts are steadily tightened These requirements are especially relevant in processing of holes. Aim of the research is to improve accuracy and to enhance the technological capabilities of holes honing process and, particularly, of blind holes honing. Based on formal logic the analysis of formation of processing errors is executed on the basis of consideration of schemes of irregularity of dimensional wear and tear along the length of the cutting elements. With this, the possibilities of compensating this irregularities and, accordingly, of control of accuracy of processing applied to the honing of both throughout and blind holes are specified. At the same time, a new method of honing is developed, it is protected by the patent of Ukraine for invention. The method can be implemented both on an existing machine tools at insignificant modernization of its system of processing cycle control and on newly designed ones.
Black Holes: A Selected Bibliography.
Fraknoi, Andrew
1991-01-01
Offers a selected bibliography pertaining to black holes with the following categories: introductory books; introductory articles; somewhat more advanced articles; readings about Einstein's general theory of relativity; books on the death of stars; articles on the death of stars; specific articles about Supernova 1987A; relevant science fiction…
Long hole waterjet drilling for gas drainage
Energy Technology Data Exchange (ETDEWEB)
Matt Stockwell; M. Gledhill; S. Hildebrand; S. Adam; Tim Meyer [CMTE (Australia)
2003-04-01
In-seam drilling for gas drainage is now an essential part of operations at many Australian underground coalmines. The objective of this project is to develop and trial a new drilling method for the accurate and efficient installation of long inseam boreholes (>1000 metres). This involves the integration of pure water-jet drilling technology (i.e. not water-jet assisted rotary drilling) developed by CMTE with conventional directional drilling technology. The system was similar to conventional directional drilling methods, but instead of relying on a down-hole-motor (DHM) rotating a mechanical drill bit for cutting, high pressure water-jets were used. The testing of the system did not achieve the full objectives set down in the project plan. A borehole greater than 1000 metres was not achieved. The first trial site had coal that was weathered, oxidized and dry. These conditions significantly affected the ability of the drilling tool to stay 'in-seam'. Due to the poor conditions at the first trial, many experimental objectives were forwarded to the second field trial. In the second trial drilling difficulties were experienced, this was due to the interaction between the confinement of the borehole and the dimensions of the down hole drilling assembly. This ultimately reduced the productivity of the system and the distance that could be drilled within the specified trial periods. Testing in the first field trial did not show any indication that the system would have this difficulty.
A Black Hole Spectral Signature
Titarchuk, Lev; Laurent, Philippe
2000-03-01
An accreting black hole is, by definition, characterized by the drain. Namely, the matter falls into a black hole much the same way as water disappears down a drain matter goes in and nothing comes out. As this can only happen in a black hole, it provides a way to see ``a black hole'', an unique observational signature. The accretion proceeds almost in a free-fall manner close to the black hole horizon, where the strong gravitational field dominates the pressure forces. In this paper we present analytical calculations and Monte-Carlo simulations of the specific features of X-ray spectra formed as a result of upscattering of the soft (disk) photons in the converging inflow (CI) into the black hole. The full relativistic treatment has been implemented to reproduce these spectra. We show that spectra in the soft state of black hole systems (BHS) can be described as the sum of a thermal (disk) component and the convolution of some fraction of this component with the CI upscattering spread (Greens) function. The latter boosted photon component is seen as an extended power-law at energies much higher than the characteristic energy of the soft photons. We demonstrate the stability of the power spectral index over a wide range of the plasma temperature 0 - 10 keV and mass accretion rates (higher than 2 in Eddington units). We also demonstrate that the sharp high energy cutoff occurs at energies of 200-400 keV which are related to the average energy of electrons mec2 impinging upon the event horizon. The spectrum is practically identical to the standard thermal Comptonization spectrum when the CI plasma temperature is getting of order of 50 keV (the typical ones for the hard state of BHS). In this case one can see the effect of the bulk motion only at high energies where there is an excess in the CI spectrum with respect to the pure thermal one. Furthermore we demonstrate that the change of spectral shapes from the soft X-ray state to the hard X-ray state is clearly to be
Black hole entropy, curved space and monsters
International Nuclear Information System (INIS)
Hsu, Stephen D.H.; Reeb, David
2008-01-01
We investigate the microscopic origin of black hole entropy, in particular the gap between the maximum entropy of ordinary matter and that of black holes. Using curved space, we construct configurations with entropy greater than the area A of a black hole of equal mass. These configurations have pathological properties and we refer to them as monsters. When monsters are excluded we recover the entropy bound on ordinary matter S 3/4 . This bound implies that essentially all of the microstates of a semiclassical black hole are associated with the growth of a slightly smaller black hole which absorbs some additional energy. Our results suggest that the area entropy of black holes is the logarithm of the number of distinct ways in which one can form the black hole from ordinary matter and smaller black holes, but only after the exclusion of monster states
Circuit board hole coordinate locator concept
Samuel, L. W.
1969-01-01
Fixed light source registers the x and y coordinates of holes in a fixed opaque template. A first surface parabolic mirror and a set of photocells are used to detect the passage of light through the individual holes.
Entropy of black holes with multiple horizons
He, Yun; Ma, Meng-Sen; Zhao, Ren
2018-05-01
We examine the entropy of black holes in de Sitter space and black holes surrounded by quintessence. These black holes have multiple horizons, including at least the black hole event horizon and a horizon outside it (cosmological horizon for de Sitter black holes and "quintessence horizon" for the black holes surrounded by quintessence). Based on the consideration that the two horizons are not independent each other, we conjecture that the total entropy of these black holes should not be simply the sum of entropies of the two horizons, but should have an extra term coming from the correlations between the two horizons. Different from our previous works, in this paper we consider the cosmological constant as the variable and employ an effective method to derive the explicit form of the entropy. We also try to discuss the thermodynamic stabilities of these black holes according to the entropy and the effective temperature.
Residual stress field of ballised holes
International Nuclear Information System (INIS)
Lai, Man On; He, Zhimin
2012-01-01
Ballising, involving pushing a slightly over-sized ball made of hard material through a hole, is a kind of cold working process. Applying ballising process to fastener holes produces compressive residual stress on the edge of the holes, and therefore increases the fatigue life of the components or structures. Quantification of the residual stress field is critical to define and precede the ballising process. In this article, the ballised holes are modeled as cold-expanded holes. Elastic-perfectly plastic theory is employed to analyze the holes with cold expansion process. For theoretical simplification, an axially symmetrical thin plate with a cold expanded hole is assumed. The elasticplastic boundaries and residual stress distribution surrounding the cold expanded hole are derived. With the analysis, the residual stress field can be obtained together with actual cold expansion process in which only the diameters of hole before and after cold expansion need to be measured. As it is a non-destructive method, it provides a convenient way to estimate the elastic-plastic boundaries and residual stresses of cold worked holes. The approach is later extended to the case involving two cold-worked holes. A ballised hole is looked upon as a cold expanded hole and therefore is investigated by the approach. Specimens ballised with different interference levels are investigated. The effects of interference levels and specimen size on residual stresses are studied. The overall residual stresses of plates with two ballised holes are obtained by superposing the residual stresses induced on a single ballised hole. The effects of distance between the centers of the two holes with different interference levels on the residual stress field are revealed
Bosonic instability of charged black holes
International Nuclear Information System (INIS)
Gaina, A.B.; Ternov, I.M.
1986-01-01
The processes of spontaneous and induced production and accumulation of charged bosons on quasibound superradiant levels in the field of Kerr-Newman black hole is analysed. It is shown that bosonic instability may be caused exclusively by the rotation of the black hole. Particulary, the Reissner-Nordstrom configuration is stable. In the case of rotating and charged black hole the bosonic instability may cause an increase of charge of the black hole
Black hole holography and mean field evolution
Lowe, David A.; Thorlacius, Larus
2018-01-01
Holographic theories representing black holes are expected to exhibit quantum chaos. We argue if the laws of quantum mechanics are expected to hold for observers inside such black holes, then such holographic theories must have a mean field approximation valid for typical black hole states, and for timescales approaching the scrambling time. Using simple spin models as examples, we examine the predictions of such an approach for observers inside black holes, and more speculatively inside cosmological horizons.
Black holes and traversible wormholes: a synthesis
Hayward, Sean A.
2002-01-01
A unified framework for black holes and traversible wormholes is described, where both are locally defined by outer trapping horizons, two-way traversible for wormholes and one-way traversible for black or white holes. In a two-dimensional dilaton gravity model, examples are given of: construction of wormholes from black holes; operation of wormholes for transport, including back-reaction; maintenance of an operating wormhole; and collapse of wormholes to black holes. In spherically symmetric...
Will black holes eventually engulf the Universe?
International Nuclear Information System (INIS)
Martin-Moruno, Prado; Jimenez Madrid, Jose A.; Gonzalez-Diaz, Pedro F.
2006-01-01
The Babichev-Dokuchaev-Eroshenko model for the accretion of dark energy onto black holes has been extended to deal with black holes with non-static metrics. The possibility that for an asymptotic observer a black hole with large mass will rapidly increase and eventually engulf the Universe at a finite time in the future has been studied by using reasonable values for astronomical parameters. It is concluded that such a phenomenon is forbidden for all black holes in quintessential cosmological models
Building blocks of a black hole
Bekenstein, Jacob D.; Gour, Gilad
2002-01-01
What is the nature of the energy spectrum of a black hole ? The algebraic approach to black hole quantization requires the horizon area eigenvalues to be equally spaced. As stressed long ago by by Mukhanov, such eigenvalues must be exponentially degenerate with respect to the area quantum number if one is to understand black hole entropy as reflecting degeneracy of the observable states. Here we construct the black hole states by means of a pair of "creation operators" subject to a particular...
Radiation from the LTB black hole
Firouzjaee, J. T.; Mansouri, Reza
2011-01-01
Does a dynamical black hole embedded in a cosmological FRW background emit Hawking radiation where a globally defined event horizon does not exist? What are the differences to the Schwarzschild black hole? What about the first law of black hole mechanics? We face these questions using the LTB cosmological black hole model recently published. Using the Hamilton-Jacobi and radial null geodesic-methods suitable for dynamical cases, we show that it is the apparent horizon which contributes to the...
Big-hole drilling - the state of the art
International Nuclear Information System (INIS)
Lackey, M.D.
1983-01-01
The art of big-hole drilling has been in a continual state of evolution at the Nevada Test Site since the start of underground testing in 1961. Emplacement holes for nuclear devices are still being drilled by the rotary-drilling process, but almost all the hardware and systems have undergone many changes during the intervening years. The current design of bits, cutters, and other big-hole-drilling hardware results from contributions of manufacturers and Test Site personnel. The dual-string, air-lift, reverse-circulation system was developed at the Test Site. Necessity was really the Mother of this invention, but this circulation system is worthy of consideration under almost any condition. Drill rigs for big-hole drilling are usually adaptations of large oil-well drill rigs with minor modifications required to handle the big bits and drilling assemblies. Steel remains the favorite shaft lining material, but a lot of thought is being given to concrete linings, especially precast concrete
A fitted for purpose slim-hole rig
International Nuclear Information System (INIS)
Sagot, A.; Dupuis, D.
1994-01-01
After testing new slim hole drill strings that are able to perform destructive drilling and wireline coring with positive drilling achievement and positive geological data acquisition, the construction of a purpose built rig will lead to substantial drilling cost breakthroughs and greatly reduce the environmental impact of the drilling operation
Evaluation of burned aspen communities in Jackson Hole, Wyoming
Charles E. Kay
2001-01-01
Aspen has been declining in Jackson Hole for many years, a condition generally attributed to the fact that lightning fires have been aggressively suppressed since the early 1900s. It is also believed that burning will successfully regenerate aspen stands despite high elk numbers. To test this hypothesis, I evaluated 467 burned and 495 adjacent, unburned aspen stands at...
Design study of hole positions and hole shapes for crack tip stress releasing
DEFF Research Database (Denmark)
Pedersen, Pauli
2004-01-01
The method of hole drilling near or at the crack tip is often used in fatigue damage repair. From a design optimization point of view, two questions are posed: Where should the hole(s) be drilled? And is there a better shape of the hole than a circular one? For the first question, we extend earli...
On black holes and gravitational waves
Loinger, Angelo
2002-01-01
Black holes and gravitational waves are theoretical entities of today astrophysics. Various observed phenomena have been associated with the concept of black hole ; until now, nobody has detected gravitational waves. The essays contained in this book aim at showing that the concept of black holes arises from a misinterpretation of general relativity and that gravitational waves cannot exist.
Compensating Scientism through "The Black Hole."
Roth, Lane
The focal image of the film "The Black Hole" functions as a visual metaphor for the sacred, order, unity, and eternal time. The black hole is a symbol that unites the antinomic pairs of conscious/unconscious, water/fire, immersion/emersion, death/rebirth, and hell/heaven. The black hole is further associated with the quest for…
Area spectra of near extremal black holes
International Nuclear Information System (INIS)
Chen, Deyou; Yang, Haitang; Zu, Xiaotao
2010-01-01
Motivated by Maggiore's new interpretation of quasinormal modes, we investigate area spectra of a near extremal Schwarzschild-de Sitter black hole and a higher-dimensional near extremal Reissner-Nordstrom-de Sitter black hole. The result shows that the area spectra are equally spaced and irrelevant to the parameters of the black holes. (orig.)
Extremal black holes in N=2 supergravity
Katmadas, S.
2011-01-01
An explanation for the entropy of black holes has been an outstanding problem in recent decades. A special case where this is possible is that of extremal black holes in N=2 supergravity in four and five dimensions. The best developed case is for black holes preserving some supersymmetry (BPS),
On Quantum Contributions to Black Hole Growth
Spaans, M.
2013-01-01
The effects of Wheeler’s quantum foam on black hole growth are explored from an astrophysical per- spective. Quantum fluctuations in the form of mini (10−5 g) black holes can couple to macroscopic black holes and allow the latter to grow exponentially in mass on a time scale of 109 years.
Black Hole Monodromy and Conformal Field Theory
Castro, A.; Lapan, J.M.; Maloney, A.; Rodriguez, M.J.
2013-01-01
The analytic structure of solutions to the Klein-Gordon equation in a black hole background, as represented by monodromy data, is intimately related to black hole thermodynamics. It encodes the "hidden conformal symmetry" of a nonextremal black hole, and it explains why features of the inner event
Black Hole Dynamic Potentials Koustubh Ajit Kabe
Indian Academy of Sciences (India)
In the following paper, certain black hole dynamic potentials have been ... the equations of the laws of black hole dynamics as given by Bekenstein and those ..... work. This makes K, the energy which is available for work in time-reversible pro- cesses (white holes) observing constancy of surface gravity. Since the area of the.
Accretion, primordial black holes and standard cosmology
Indian Academy of Sciences (India)
loops [8]. In 1974, Hawking discovered that the black holes emit thermal radiation due to quantum effects [9]. So the black holes get evaporated depending upon their masses. Smaller the masses of the PBHs, quicker they evaporate. But the density of a black hole varies inversely with its mass. So high density is needed for ...
Black holes under external inﬂuence
Indian Academy of Sciences (India)
In particular we pay attention to the effect of the expulsion of the ﬂux of external ﬁelds across charged and rotating black holes which are approaching extremal states. Recently this effect has been shown to occur for black hole solutions in string theory. We also discuss black holes surrounded by rings and disks and rotating ...
The fuzzball proposal for black holes
Skenderis, K.; Taylor, M.
2008-01-01
The fuzzball proposal states that associated with a black hole of entropy S, there are expS horizon-free non-singular solutions that asymptotically look like the black hole but generically differ from the black hole up to the horizon scale. These solutions, the fuzzballs, are considered to be the
Accretion, primordial black holes and standard cosmology
Indian Academy of Sciences (India)
Abstract. Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the con- jecture that the primordial ...
The stable problem of the black-hole connected region in the Schwarzschild black hole
Tian, Guihua
2005-01-01
The stability of the Schwarzschild black hole is studied. Using the Painlev\\'{e} coordinate, our region can be defined as the black-hole-connected region(r>2m, see text) of the Schwarzschild black hole or the white-hole-connected region(r>2m, see text) of the Schwarzschild black hole. We study the stable problems of the black-hole-connected region. The conclusions are: (1) in the black-hole-connected region, the initially regular perturbation fields must have real frequency or complex frequen...
Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes
Takahashi, Rohta
2004-01-01
Can we determine a spin parameter of a black hole by observation of a black hole shadow in an accretion disk? In order to answer this question, we make a qualitative analysis and a quantitative analysis of a shape and a position of a black hole shadow casted by a rotating black hole on an optically thick accretion disk and its dependence on an angular momentum of a black hole. We have found black hole shadows with a quite similar size and a shape for largely different black hole spin paramete...
Chandra Catches "Piranha" Black Holes
2007-07-01
Supermassive black holes have been discovered to grow more rapidly in young galaxy clusters, according to new results from NASA's Chandra X-ray Observatory. These "fast-track" supermassive black holes can have a big influence on the galaxies and clusters that they live in. Using Chandra, scientists surveyed a sample of clusters and counted the fraction of galaxies with rapidly growing supermassive black holes, known as active galactic nuclei (or AGN). The data show, for the first time, that younger, more distant galaxy clusters contained far more AGN than older, nearby ones. Galaxy clusters are some of the largest structures in the Universe, consisting of many individual galaxies, a few of which contain AGN. Earlier in the history of the universe, these galaxies contained a lot more gas for star formation and black hole growth than galaxies in clusters do today. This fuel allows the young cluster black holes to grow much more rapidly than their counterparts in nearby clusters. Illustration of Active Galactic Nucleus Illustration of Active Galactic Nucleus "The black holes in these early clusters are like piranha in a very well-fed aquarium," said Jason Eastman of Ohio State University (OSU) and first author of this study. "It's not that they beat out each other for food, rather there was so much that all of the piranha were able to really thrive and grow quickly." The team used Chandra to determine the fraction of AGN in four different galaxy clusters at large distances, when the Universe was about 58% of its current age. Then they compared this value to the fraction found in more nearby clusters, those about 82% of the Universe's current age. The result was the more distant clusters contained about 20 times more AGN than the less distant sample. AGN outside clusters are also more common when the Universe is younger, but only by factors of two or three over the same age span. "It's been predicted that there would be fast-track black holes in clusters, but we never
Black holes, qubits and octonions
Energy Technology Data Exchange (ETDEWEB)
Borsten, L. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom)], E-mail: leron.borsten@imperial.ac.uk; Dahanayake, D. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom)], E-mail: duminda.dahanayake@imperial.ac.uk; Duff, M.J. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom)], E-mail: m.duff@imperial.ac.uk; Ebrahim, H. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom); Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Theory Group, Martin Fisher School of Physics, Brandeis University, MS057, 415 South Street, Waltham, MA 02454 (United States)], E-mail: hebrahim@brandeis.edu; Rubens, W. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom)], E-mail: william.rubens06@imperial.ac.uk
2009-02-15
We review the recently established relationships between black hole entropy in string theory and the quantum entanglement of qubits and qutrits in quantum information theory. The first example is provided by the measure of the tripartite entanglement of three qubits (Alice, Bob and Charlie), known as the 3-tangle, and the entropy of the 8-charge STU black hole of N=2 supergravity, both of which are given by the [SL(2)]{sup 3} invariant hyperdeterminant, a quantity first introduced by Cayley in 1845. Moreover the classification of three-qubit entanglements is related to the classification of N=2 supersymmetric STU black holes. There are further relationships between the attractor mechanism and local distillation protocols and between supersymmetry and the suppression of bit flip errors. At the microscopic level, the black holes are described by intersecting D3-branes whose wrapping around the six compact dimensions T{sup 6} provides the string-theoretic interpretation of the charges and we associate the three-qubit basis vectors, |ABC>(A,B,C=0 or 1), with the corresponding 8 wrapping cycles. The black hole/qubit correspondence extends to the 56 charge N=8 black holes and the tripartite entanglement of seven qubits where the measure is provided by Cartan's E{sub 7} contains [SL(2)]{sup 7} invariant. The qubits are naturally described by the seven vertices ABCDEFG of the Fano plane, which provides the multiplication table of the seven imaginary octonions, reflecting the fact that E{sub 7} has a natural structure of an O-graded algebra. This in turn provides a novel imaginary octonionic interpretation of the 56=7x8 charges of N=8: the 24=3x8 NS-NS charges correspond to the three imaginary quaternions and the 32=4x8 R-R to the four complementary imaginary octonions. We contrast this approach with that based on Jordan algebras and the Freudenthal triple system. N=8 black holes (or black strings) in five dimensions are also related to the bipartite entanglement of
A novel double patterning approach for 30nm dense holes
Hsu, Dennis Shu-Hao; Wang, Walter; Hsieh, Wei-Hsien; Huang, Chun-Yen; Wu, Wen-Bin; Shih, Chiang-Lin; Shih, Steven
2011-04-01
Double Patterning Technology (DPT) was commonly accepted as the major workhorse beyond water immersion lithography for sub-38nm half-pitch line patterning before the EUV production. For dense hole patterning, classical DPT employs self-aligned spacer deposition and uses the intersection of horizontal and vertical lines to define the desired hole patterns. However, the increase in manufacturing cost and process complexity is tremendous. Several innovative approaches have been proposed and experimented to address the manufacturing and technical challenges. A novel process of double patterned pillars combined image reverse will be proposed for the realization of low cost dense holes in 30nm node DRAM. The nature of pillar formation lithography provides much better optical contrast compared to the counterpart hole patterning with similar CD requirements. By the utilization of a reliable freezing process, double patterned pillars can be readily implemented. A novel image reverse process at the last stage defines the hole patterns with high fidelity. In this paper, several freezing processes for the construction of the double patterned pillars were tested and compared, and 30nm double patterning pillars were demonstrated successfully. A variety of different image reverse processes will be investigated and discussed for their pros and cons. An economic approach with the optimized lithography performance will be proposed for the application of 30nm DRAM node.
Precessional Instability in Binary Black Holes with Aligned Spins.
Gerosa, Davide; Kesden, Michael; O'Shaughnessy, Richard; Klein, Antoine; Berti, Emanuele; Sperhake, Ulrich; Trifirò, Daniele
2015-10-02
Binary black holes on quasicircular orbits with spins aligned with their orbital angular momentum have been test beds for analytic and numerical relativity for decades, not least because symmetry ensures that such configurations are equilibrium solutions to the spin-precession equations. In this work, we show that these solutions can be unstable when the spin of the higher-mass black hole is aligned with the orbital angular momentum and the spin of the lower-mass black hole is antialigned. Spins in these configurations are unstable to precession to large misalignment when the binary separation r is between the values r(ud±)=(√(χ(1))±√(qχ(2)))(4)(1-q)(-2)M, where M is the total mass, q≡m(2)/m(1) is the mass ratio, and χ(1) (χ(2)) is the dimensionless spin of the more (less) massive black hole. This instability exists for a wide range of spin magnitudes and mass ratios and can occur in the strong-field regime near the merger. We describe the origin and nature of the instability using recently developed analytical techniques to characterize fully generic spin precession. This instability provides a channel to circumvent astrophysical spin alignment at large binary separations, allowing significant spin precession prior to merger affecting both gravitational-wave and electromagnetic signatures of stellar-mass and supermassive binary black holes.
Non-linear Q-clouds around Kerr black holes
Directory of Open Access Journals (Sweden)
Carlos Herdeiro
2014-12-01
Full Text Available Q-balls are regular extended ‘objects’ that exist for some non-gravitating, self-interacting, scalar field theories with a global, continuous, internal symmetry, on Minkowski spacetime. Here, analogous objects are also shown to exist around rotating (Kerr black holes, as non-linear bound states of a test scalar field. We dub such configurations Q-clouds. We focus on a complex massive scalar field with quartic plus hexic self-interactions. Without the self-interactions, linear clouds have been shown to exist, in synchronous rotation with the black hole horizon, along 1-dimensional subspaces – existence lines – of the Kerr 2-dimensional parameter space. They are zero modes of the superradiant instability. Non-linear Q-clouds, on the other hand, are also in synchronous rotation with the black hole horizon; but they exist on a 2-dimensional subspace, delimited by a minimal horizon angular velocity and by an appropriate existence line, wherein the non-linear terms become irrelevant and the Q-cloud reduces to a linear cloud. Thus, Q-clouds provide an example of scalar bound states around Kerr black holes which, generically, are not zero modes of the superradiant instability. We describe some physical properties of Q-clouds, whose backreaction leads to a new family of hairy black holes, continuously connected to the Kerr family.
Estimating the final spin of a binary black hole coalescence
International Nuclear Information System (INIS)
Buonanno, Alessandra; Kidder, Lawrence E.; Lehner, Luis
2008-01-01
We present a straightforward approach for estimating the final black hole spin of a binary black hole coalescence with arbitrary initial masses and spins. Making some simple assumptions, we estimate the final angular momentum to be the sum of the individual spins plus the orbital angular momentum of a test particle orbiting at the last stable orbit around a Kerr black hole with a spin parameter of the final black hole. The formula we obtain is able to reproduce with reasonable accuracy the results from available numerical simulations, but, more importantly, it can be used to investigate what configurations might give rise to interesting dynamics. In particular, we discuss scenarios which might give rise to a flip in the direction of the total angular momentum of the system. By studying the dependence of the final spin upon the mass ratio and initial spins, we find that our simple approach suggests that it is not possible to spin-up a black hole to extremal values through merger scenarios irrespective of the mass ratio of the objects involved
Phase transition for black holes with scalar hair and topological black holes
International Nuclear Information System (INIS)
Myung, Yun Soo
2008-01-01
We study phase transitions between black holes with scalar hair and topological black holes in asymptotically anti-de Sitter spacetimes. As the ground state solutions, we introduce the non-rotating BTZ black hole in three dimensions and topological black hole with hyperbolic horizon in four dimensions. For the temperature matching only, we show that the phase transition between black hole with scalar hair (Martinez-Troncoso-Zanelli black hole) and topological black hole is second-order by using differences between two free energies. However, we do not identify what order of the phase transition between scalar and non-rotating BTZ black holes occurs in three dimensions, although there exists a possible decay of scalar black hole to non-rotating BTZ black hole
Energy Technology Data Exchange (ETDEWEB)
Anderson, B. [Schlumberger-Doll Research, Ridgefield, CT (United States); Dubourg, I. [Etudes et Productions Schlumberger, Clamart (France); Collett, T.S. [United States Geological Survey, Denver, CO (United States); Lewis, R.E. [Schlumberger Oilfield Services, Oklahoma City, OK (United States)
2005-07-01
The physical response of a gas hydrate deposit to various advanced production methods was field tested at the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well. The annular radius of gas hydrate dissociation that occurred around the wellbore during the thermal test in the Mallik 5L-38 well was determined using iterative forward modelling of Cased Hole Formation Resistivity (CHFR) well logs. According to modeling results, the radius of gas hydrate dissociation had large local variations and was far from uniform. A comparison of CHFR modeling results and measured gas volumes at the surface suggest that most of the gas produced during the thermal test in the Mallik 5L-38 well was accurately measured at the surface. It was concluded that the CHFR modelling method is a promising method to evaluate future gas hydrate dissociation in single-wells.
Black Hole Mergers and Gravitational Waves: Opening the New Frontier
Centrella, Joan
2012-01-01
The final merger of two black holes produces a powerful burst of gravitational waves, emitting more energy than all the stars in the observable universe combined. Since these mergers take place in the regime of strong dynamical gravity, computing the gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For more than 30 years, scientists tried to simulate these mergers using the methods of numerical relativity. The resulting computer codes were plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. In the past several years, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will highlight these breakthroughs and the resulting 'gold rush' of new results that is revealing the dynamics of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.
The Distribution and Annihilation of Dark Matter Around Black Holes
Schnittman, Jeremy D.
2015-01-01
We use a Monte Carlo code to calculate the geodesic orbits of test particles around Kerr black holes, generating a distribution function of both bound and unbound populations of dark matter (DM) particles. From this distribution function, we calculate annihilation rates and observable gamma-ray spectra for a few simple DM models. The features of these spectra are sensitive to the black hole spin, observer inclination, and detailed properties of the DM annihilation cross-section and density profile. Confirming earlier analytic work, we find that for rapidly spinning black holes, the collisional Penrose process can reach efficiencies exceeding 600%, leading to a high-energy tail in the annihilation spectrum. The high particle density and large proper volume of the region immediately surrounding the horizon ensures that the observed flux from these extreme events is non-negligible.
Black Hole Mergers, Gravitational Waves, and Multi-Messenger Astronomy
Centrella, Joan M.
2010-01-01
The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as the space-based LISA. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. Although numerical codes designed to simulate black hole mergers were plagued for many years by a host of instabilities, recent breakthroughs have conquered these problems and opened up this field dramatically. This talk will focus on the resulting gold rush of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, astrophysics, and testing general relativity.
Numerical simulation research on cementing displacement in the expanding hole
Li, Xiaolin; Xin, Jingmin; Zou, Qiang
2017-05-01
Due to the influence of geofactor, drilling fluid and construction work, irregular boreholes appear during the drilling, which will lead to poor cementing quality. Taking the well as an example, according to the phenomenon of lower displacement efficiency and serious mixing slurry during cementing in the out of round oversized hole, simulation and experimental research are carried out, how the displacement capacity affects the displacement efficiency is analyzed and the mixing cement strength test is carried out. Finally it is proposed that combined displacement can be used during cementing in the out of round oversized hole. Before the out of round oversized hole, displace in normal pump capacity. When the displacement interface flow to the out of round oversized whole, small displacement capacity is used.
How well can ultracompact bodies imitate black hole ringdowns?
Glampedakis, Kostas; Pappas, George
2018-02-01
The ongoing observations of merging black holes by the instruments of the fledging gravitational wave astronomy has opened the way for testing the general-relativistic Kerr black hole metric and, at the same time, for probing the existence of more speculative horizonless ultracompact objects. In this paper we quantify the difference that these two classes of objects may exhibit in the post-merger ringdown signal. By considering rotating systems in general relativity and assuming an eikonal limit and a third-order Hartle-Thorne slow-rotation approximation, we provide the first calculation of the early ringdown frequency and damping time as a function of the body's multipolar structure. Using the example of a gravastar, we show that the main ringdown signal may differ by as much as a few percent with respect to that of a Kerr black hole, a deviation that could be probed by near-future Advanced LIGO/Virgo searches.
Exploring higher dimensional black holes at the Large Hadron Collider
International Nuclear Information System (INIS)
Harris, Christopher M.; Palmer, Matthew J.; Parker, Michael A.; Richardson, Peter; Sabetfakhri, Ali; Webber, Bryan R.
2005-01-01
In some extra dimension theories with a TeV fundamental Planck scale, black holes could be produced in future collider experiments. Although cross sections can be large, measuring the model parameters is difficult due to the many theoretical uncertainties. Here we discuss those uncertainties and then we study the experimental characteristics of black hole production and decay at a typical detector using the ATLAS detector as a guide. We present a new technique for measuring the temperature of black holes that applies to many models. We apply this technique to a test case with four extra dimensions and, using an estimate of the parton-level production cross section error of 20%, determine the Planck mass to 15% and the number of extra dimensions to ±0.75
Effective photon mass from black-hole formation
Directory of Open Access Journals (Sweden)
Slava Emelyanov
2017-06-01
Full Text Available We compute the value of effective photon mass mγ at one-loop level in QED in the background of small (1010 g≲M≪1016 g spherically symmetric black hole in asymptotically flat spacetime. This effect is associated with the modification of electron/positron propagator in presence of event horizon. Physical manifestations of black-hole environment are compared with those of hot neutral plasma. We estimate the distance to the nearest black hole from the upper bound on mγ obtained in the Coulomb-law test. We also find that corrections to electron mass me and fine structure constant α at one-loop level in QED are negligible in the weak gravity regime.
Measuring the Binary Black Hole Mass Spectrum with an Astrophysically Motivated Parameterization
Talbot, Colm; Thrane, Eric
2018-04-01
Gravitational-wave detections have revealed a previously unknown population of stellar mass black holes with masses above 20 M ⊙. These observations provide a new way to test models of stellar evolution for massive stars. By considering the astrophysical processes likely to determine the shape of the binary black hole mass spectrum, we construct a parameterized model to capture key spectral features that relate gravitational-wave data to theoretical stellar astrophysics. In particular, we model the signature of pulsational pair-instability supernovae, which are expected to cause all stars with initial mass 100 M ⊙ ≲ M ≲ 150 M ⊙ to form ∼40 M ⊙ black holes. This would cause a cutoff in the black hole mass spectrum along with an excess of black holes near 40 M ⊙. We carry out a simulated data study to illustrate some of the stellar physics that can be inferred using gravitational-wave measurements of binary black holes and demonstrate several such inferences that might be made in the near future. First, we measure the minimum and maximum stellar black hole mass. Second, we infer the presence of a peak due to pair-instability supernovae. Third, we measure the distribution of black hole mass ratios. Finally, we show how inadequate models of the black hole mass spectrum lead to biased estimates of the merger rate and the amplitude of the stochastic gravitational-wave background.
Suboccipital burr holes and craniectomies.
Ribas, Guilherme C; Rhoton, Albert L; Cruz, Oswaldo R; Peace, David
2005-08-15
The goal of this study was to delimit the external cranial projection of the transverse and sigmoid sinuses, and to establish initial strategic systematized burr hole sites for lateral infratentorial suboccipital approaches based on external cranial landmarks particularly related to the lambdoid, occipitomastoid, and parietomastoid sutures. The external cranial projection of the transverse and sigmoid sinuses was studied through their external outlining obtained with the aid of multiple small perforations made from inside to outside along the inner margins of the sinuses of 50 paired temporoparietooccipital regions in 25 dried adult human skulls. The burr hole placement was studied by evaluating the supratentorial, over-the-sinuses, and infratentorial components of 1-cm-diameter openings made at strategic sites identified in the initial part of the study, which was performed in another 50 paired temporoparietooccipital regions. The asterion and the midpoint of the inion-asterion line were found to be particularly related to the inferior half of the transverse sinus; the transverse and sigmoid sinuses' transition occurs 1 cm anteriorly to the asterion across the parietomastoid suture, and the most superior part of the sigmoid sinus is located anteriorly to the occipitomastoid suture, with its posterior margin crossing this suture posteriorly to the most superior aspect of the mastoid process, which is located at the most superior level of the mastoid notch. Burr holes made at the midpoint of the inion-asterion line, at the asterion, 1 cm anterior to the asterion, just inferiorly to the parietomastoid suture, and over the occipitomastoid suture at the most superior level of the mastoid notch are appropriate to expose the inferior half of the transverse sinus at its midpoint, the inferior half of the transverse sinus at its most lateral aspect, the transverse and sigmoid sinuses' transition, and the posterior margin of the basal aspect of the sigmoid sinus
Modified dispersion relations and black hole physics
International Nuclear Information System (INIS)
Ling Yi; Li Xiang; Hu Bo
2006-01-01
A modified formulation of the energy-momentum relation is proposed in the context of doubly special relativity. We investigate its impact on black hole physics. It turns out that such a modification will give corrections to both the temperature and the entropy of black holes. In particular, this modified dispersion relation also changes the picture of Hawking radiation greatly when the size of black holes approaches the Planck scale. It can prevent black holes from total evaporation, as a result providing a plausible mechanism to treat the remnant of black holes as a candidate for dark matter
Dyonic black hole in heterotic string theory
International Nuclear Information System (INIS)
Jatkar, D.P.; Mukherji, S.
1997-01-01
We study some features of the dyonic black hole solution in heterotic string theory on a six-torus. This solution has 58 parameters. Of these, 28 parameters denote the electric charge of the black hole, another 28 correspond to the magnetic charge, and the other two parameters are the mass and the angular momentum of the black hole. We discuss the extremal limit and show that in various limits it reduces to the known black hole solutions. The solutions saturating the Bogomolnyi bound are identified. An explicit solution is presented for the non-rotating dyonic black hole. (orig.)
Hawking radiation and strong gravity black holes
International Nuclear Information System (INIS)
Qadir, A.; Sayed, W.A.
1979-01-01
It is shown that the strong gravity theory of Salam et al. places severe restrictions on black hole evaporation. Two major implications are that: mini blck holes (down to masses approximately 10 -16 kg) would be stable in the present epoch; and that some suggested mini black hole mechanisms to explain astrophysical phenomena would not work. The first result implies that f-gravity appears to make black holes much safer by removing the possibility of extremely violent black hole explosions suggested by Hawking. (Auth.)
Black-hole creation in quantum cosmology
Energy Technology Data Exchange (ETDEWEB)
Zhong Chao, Wu [Rome, Univ. `La Sapienza` (Italy). International Center for Relativistic Astrophysics]|[Specola Vaticana, Vatican City State (Vatican City State, Holy See)
1997-11-01
It is proven that the probability of a black hole created from the de Sitter space-time background, at the Wkb level, is the exponential of one quarter of the sum of the black hole and cosmological horizon areas, or the total entropy of the universe. This is true not only for the spherically symmetric cases of the Schwarzschild or Reissner-Nordstroem black holes, but also for the rotating cases of the Kerr black hole and the rotating charged case of the Newman black hole. The de Sitter metric is the most probable evolution at the Planckian era of the universe.
Black hole entropy and quantum information
Duff, M J
2006-01-01
We review some recently established connections between the mathematics of black hole entropy in string theory and that of multipartite entanglement in quantum information theory. In the case of N=2 black holes and the entanglement of three qubits, the quartic [SL(2)]^3 invariant, Cayley's hyperdeterminant, provides both the black hole entropy and the measure of tripartite entanglement. In the case of N=8 black holes and the entanglement of seven qubits, the quartic E_7 invariant of Cartan provides both the black hole entropy and the measure of a particular tripartite entanglement encoded in the Fano plane.
Black holes on all scales: similarities and differences
Done, Chris
2015-04-01
I will review what we know about astrophysical black holes, from the stellar mass back holes formed from the death of massive stars, to the supermassive black holes in galaxy centres. Where material falls onto a black hole of any size, the enourmous gravitational energy released transforms these darkest objects in the Universe into the brightest. The luminous accretion flow lights up the regions of intensely curved spacetime, and its spectrum and variabilty carry the imprint of strong gravity as well as the geometry and dynamics of the emitting material. I will show how the stellar mass black holes form a homogeneous set, and how their large changes in mass accretion rate on easily observable timescales mean that they form a a template for how the spectrum and variability of the accretion flow, and its associated jet, change with mass accretion rate. They ubiquitously show a dramatic switch in both spectral, variability and jet properties as the mass accretion rate changes, probably associated with a change from a hot, geometrically thick flow to a cool, geometrically thin disc. Since the geometry and dynamics of the disc are well understood, these spectra give a clean test of Einstin's gravity in the strong field limit, with clear evidence for the existance of a last stable circular orbit. The hot flows are less well understood, but it is possible that the characteristic timescale for variabilty seen in these data is from Lens-Thirring (vertical) precession of the flow around the black hole. Scaling these models of a changing accretion flow up to the supermassive black holes can give an explanation for the multiple different types of unobscured AGN. However, as well as similarities, there are also some differences in the properties of the spectra, variability and particularly in the jet. A small subset of the most massive black holes have highly relativistic jets, with relativisitically emitting out to GeV or TeV energies. I show that the statistics of these jets
Black hole with quantum potential
Energy Technology Data Exchange (ETDEWEB)
Ali, Ahmed Farag, E-mail: ahmed.ali@fsc.bu.edu.eg [Department of Physics, Faculty of Science, Benha University, Benha 13518 (Egypt); Khalil, Mohammed M., E-mail: moh.m.khalil@gmail.com [Department of Electrical Engineering, Alexandria University, Alexandria 12544 (Egypt)
2016-08-15
In this work, we investigate black hole (BH) physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian) trajectories and hence form a quantum Raychaudhuri equation (QRE). From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which may introduce a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. Those corrections also turn the spacelike singularity of the black hole to be timelike, and hence this may ameliorate the information loss problem.
Black hole with quantum potential
Directory of Open Access Journals (Sweden)
Ahmed Farag Ali
2016-08-01
Full Text Available In this work, we investigate black hole (BH physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian trajectories and hence form a quantum Raychaudhuri equation (QRE. From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which may introduce a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. Those corrections also turn the spacelike singularity of the black hole to be timelike, and hence this may ameliorate the information loss problem.
International Nuclear Information System (INIS)
Carlitz, R.D.; Willey, R.S.
1987-01-01
We study the constraints placed by quantum mechanics upon the lifetime of a black hole. In the context of a moving-mirror analog model for the Hawking radiation process, we conclude that the period of Hawking radiation must be followed by a much longer period during which the remnant mass (of order m/sub P/) may be radiated away. We are able to place a lower bound on the time required for this radiation process, which translates into a lower bound for the lifetime of the black hole. Particles which are emitted during the decay of the remnant, like the particles which comprise the Hawking flux, may be uncorrelated with each other. But each particle emitted from the decaying remnant is correlated with one particle emitted as Hawking radiation. The state which results after the remnant has evaporated is one which locally appears to be thermal, but which on a much larger scale is marked by extensive correlations
Manschot, Jan; Sen, Ashoke
2012-01-01
Middle cohomology states on the Higgs branch of supersymmetric quiver quantum mechanics - also known as pure Higgs states - have recently emerged as possible microscopic candidates for single-centered black hole micro-states, as they carry zero angular momentum and appear to be robust under wall-crossing. Using the connection between quiver quantum mechanics on the Coulomb branch and the quantum mechanics of multi-centered black holes, we propose a general algorithm for reconstructing the full moduli-dependent cohomology of the moduli space of an arbitrary quiver, in terms of the BPS invariants of the pure Higgs states. We analyze many examples of quivers with loops, including all cyclic Abelian quivers and several examples with two loops or non-Abelian gauge groups, and provide supporting evidence for this proposal. We also develop methods to count pure Higgs states directly.
Black holes in magnetic monopoles
Lee, Kimyeong; Nair, V. P.; Weinberg, Erick J.
1991-01-01
We study magnetically charged classical solutions of a spontaneously broken gauge theory interacting with gravity. We show that nonsingular monopole solutions exist only if the Higgs field vacuum expectation value v is less than or equal to a critical value v sub cr, which is of the order of the Planck mass. In the limiting case, the monopole becomes a black hole, with the region outside the horizon described by the critical Reissner-Nordstrom solution. For v less than v sub cr, we find additional solutions which are singular at f = 0, but which have this singularity hidden within a horizon. These have nontrivial matter fields outside the horizon, and may be interpreted as small black holes lying within a magnetic monopole. The nature of these solutions as a function of v and of the total mass M and their relation to the Reissner-Nordstrom solutions is discussed.
Accelerating and rotating black holes
International Nuclear Information System (INIS)
Griffiths, J B; Podolsky, J
2005-01-01
An exact solution of Einstein's equations which represents a pair of accelerating and rotating black holes (a generalized form of the spinning C-metric) is presented. The starting point is a form of the Plebanski-Demianski metric which, in addition to the usual parameters, explicitly includes parameters which describe the acceleration and angular velocity of the sources. This is transformed to a form which explicitly contains the known special cases for either rotating or accelerating black holes. Electromagnetic charges and a NUT parameter are included, the relation between the NUT parameter l and the Plebanski-Demianski parameter n is given, and the physical meaning of all parameters is clarified. The possibility of finding an accelerating NUT solution is also discussed
Black Holes Shed Light on Galaxy Formation
2000-01-01
This videotape is comprised of several segments of animations on black holes and galaxy formation, and several segments of an interview with Dr. John Kormendy. The animation segments are: (1) a super massive black hole, (2) Centarus A active black hole found in a collision, (3) galaxy NGC-4261 (active black hole and jet model), (4) galaxy M-32 (orbits of stars are effected by the gravity of the black hole), (5) galaxy M-37 (motion of stars increases as mass of black hole increases), (6) Birth of active galactic nuclei, (7) the collision of two galaxy leads to merger of the black holes, (8) Centarus A and simulation of the collision of 2 galaxies. There are also several segments of an interview with John Kormendy. In these segments he discusses the two most important aspects of his recent black hole work: (1) the correlations between galaxies speed and the mass of the black holes, and (2) the existence of black holes and galactic formation. He also discusses the importance of the Hubble Space Telescope and the Space Telescope Imaging Spectrograph to the study of black holes. He also shows the methodology of processing images from the spectrograph in his office.
Plasma horizons of a charged black hole
International Nuclear Information System (INIS)
Hanni, R.S.
1977-01-01
The most promising way of detecting black holes seems to be through electromagnetic radiation emitted by nearby charged particles. The nature of this radiation depends strongly on the local electromagnetic field, which varies with the charge of the black hole. It has often been purported that a black hole with significant charge will not be observed, because, the dominance of the Coulomb interaction forces its neutralization through selective accretion. This paper shows that it is possible to balance the electric attraction of particles whose charge is opposite that of the black hole with magnetic forces and (assuming an axisymmetric, stationary solution) covariantly define the regions in which this is possible. A Kerr-Newman hole in an asymptotically uniform magnetic field and a current ring centered about a Reissner-Nordstroem hole are used as examples, because of their relevance to processes through which black holes may be observed. (Auth.)
Slow relaxation of rapidly rotating black holes
International Nuclear Information System (INIS)
Hod, Shahar
2008-01-01
We study analytically the relaxation phase of perturbed, rapidly rotating black holes. In particular, we derive a simple formula for the fundamental quasinormal resonances of near-extremal Kerr black holes. The formula is expressed in terms of the black hole physical parameters: ω=mΩ-i2πT BH (n+(1/2)), where T BH and Ω are the temperature and angular velocity of the black hole, and m is the azimuthal harmonic index of a corotating equatorial mode. This formula implies that the relaxation period τ∼1/ω of the black hole becomes extremely long as the extremal limit T BH →0 is approached. The analytically derived formula is shown to agree with direct numerical computations of the black hole resonances. We use our results to demonstrate analytically the fact that near-extremal Kerr black holes saturate the recently proposed universal relaxation bound.
Quantum information erasure inside black holes
International Nuclear Information System (INIS)
Lowe, David A.; Thorlacius, Larus
2015-01-01
An effective field theory for infalling observers in the vicinity of a quasi-static black hole is given in terms of a freely falling lattice discretization. The lattice model successfully reproduces the thermal spectrum of outgoing Hawking radiation, as was shown by Corley and Jacobson, but can also be used to model observations made by a typical low-energy observer who enters the black hole in free fall at a prescribed time. The explicit short distance cutoff ensures that, from the viewpoint of the infalling observer, any quantum information that entered the black hole more than a scrambling time earlier has been erased by the black hole singularity. This property, combined with the requirement that outside observers need at least of order the scrambling time to extract quantum information from the black hole, ensures that a typical infalling observer does not encounter drama upon crossing the black hole horizon in a theory where black hole information is preserved for asymptotic observers.
Black-hole bomb and superradiant instabilities
International Nuclear Information System (INIS)
Cardoso, Vitor; Dias, Oscar J.C.; Lemos, Jose P.S.; Yoshida, Shijun
2004-01-01
A wave impinging on a Kerr black hole can be amplified as it scatters off the hole if certain conditions are satisfied, giving rise to superradiant scattering. By placing a mirror around the black hole one can make the system unstable. This is the black-hole bomb of Press and Teukolsky. We investigate in detail this process and compute the growing time scales and oscillation frequencies as a function of the mirror's location. It is found that in order for the system black hole plus mirror to become unstable there is a minimum distance at which the mirror must be located. We also give an explicit example showing that such a bomb can be built. In addition, our arguments enable us to justify why large Kerr-AdS black holes are stable and small Kerr-AdS black holes should be unstable
Quantum information erasure inside black holes
Energy Technology Data Exchange (ETDEWEB)
Lowe, David A. [Department of Physics, Brown University,Providence, RI, 02912 (United States); Thorlacius, Larus [University of Iceland, Science Institute,Dunhaga 3, IS-107 Reykjavik (Iceland); The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics,Stockholm University, AlbaNova University Centre, 10691 Stockholm (Sweden)
2015-12-15
An effective field theory for infalling observers in the vicinity of a quasi-static black hole is given in terms of a freely falling lattice discretization. The lattice model successfully reproduces the thermal spectrum of outgoing Hawking radiation, as was shown by Corley and Jacobson, but can also be used to model observations made by a typical low-energy observer who enters the black hole in free fall at a prescribed time. The explicit short distance cutoff ensures that, from the viewpoint of the infalling observer, any quantum information that entered the black hole more than a scrambling time earlier has been erased by the black hole singularity. This property, combined with the requirement that outside observers need at least of order the scrambling time to extract quantum information from the black hole, ensures that a typical infalling observer does not encounter drama upon crossing the black hole horizon in a theory where black hole information is preserved for asymptotic observers.
Black-hole thermodynamics and Riemann surfaces
International Nuclear Information System (INIS)
Krasnov, Kirill
2003-01-01
We use the analytic continuation procedure proposed in our earlier works to study the thermodynamics of black holes in 2 + 1 dimensions. A general black hole in 2 + 1 dimensions has g handles hidden behind h horizons. The result of the analytic continuation of a black-hole spacetime is a hyperbolic 3-manifold having the topology of a handlebody. The boundary of this handlebody is a compact Riemann surface of genus G = 2g + h - 1. Conformal moduli of this surface encode in a simple way the physical characteristics of the black hole. The moduli space of black holes of a given type (g, h) is then the Schottky space at genus G. The (logarithm of the) thermodynamic partition function of the hole is the Kaehler potential for the Weil-Peterson metric on the Schottky space. The Bekenstein bound on the black-hole entropy leads us to conjecture a new strong bound on this Kaehler potential
International Nuclear Information System (INIS)
Debney, G.; Farnsworth, D.
1983-01-01
Motivated by the fact that 2m/r is of the order of magnitude unity for the observable universe, we explore the possibility that a Schwarzschild or black hole cosmological model is appropriate. Luminosity distance and frequency shifts of freely-falling, standard, monochromatic objects are viewed by a freely-falling observer. The observer is inside r=2m. The observer in such a world does not see the same universe as do astronomers. (author)
Gravitating discs around black holes
Czech Academy of Sciences Publication Activity Database
Karas, Vladimír; Huré, J.-M.; Semerák, O.
2004-01-01
Roč. 21, č. 7 (2004), R1-R5 ISSN 0264-9381 R&D Projects: GA ČR GA205/03/0902; GA AV ČR KSK1048102 Institutional research plan: CEZ:AV0Z1003909 Keywords : black holes * accretion discs * general relativity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.941, year: 2004
Directory of Open Access Journals (Sweden)
Aruna Rajagopal
2014-10-01
Full Text Available In the context of extended phase space, where the negative cosmological constant is treated as a thermodynamic pressure in the first law of black hole thermodynamics, we find an asymptotically AdS metric whose thermodynamics matches exactly that of the Van der Waals fluid. We show that as a solution of Einstein's equations, the corresponding stress energy tensor obeys (at least for certain range of metric parameters all three weak, strong, and dominant energy conditions.
Hawking, Stephen W; Perry, Malcolm J; Strominger, Andrew
2016-06-10
It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.
Entanglement Entropy of Black Holes
Directory of Open Access Journals (Sweden)
Sergey N. Solodukhin
2011-10-01
Full Text Available The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as ’t Hooft’s brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the black-hole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.
Glory scattering by black holes
International Nuclear Information System (INIS)
Matzner, R.A.; DeWitte-Morette, C.; Nelson, B.; Zhang, T.
1985-01-01
We present a physically motivated derivation of the JWKB backward glory-scattering cross section of massless waves by Schwarzschild black holes. The angular dependence of the cross section is identical with the one derived by path integration, namely, dsigma/dΩ = 4π 2 lambda -1 B/sub g/ 2 (dB mWπ, where lambda is the wavelength, B(theta) is the inverse of the classical deflection function CTHETA(B), B/sub g/ is the glory impact parameter, s is the helicity of the scattered wave, and J/sub 2s/ is the Bessel function of order 2s. The glory rings formed by scalar waves are bright at the center; those formed by polarized waves are dark at the center. For scattering of massless particles by a spherical black hole of mass M, B(theta)/Mapprox.3 √3 + 3.48 exp(-theta), theta > owigπ. The numerical values of dsigma/dΩ for this deflection function are found to agree with earlier computer calculations of glory cross sections from black holes
Effect of additional holes on transient thermal fatigue life of gas turbine casing
Directory of Open Access Journals (Sweden)
H. Bazvandi
2017-10-01
Full Text Available Gas turbines casings are susceptible to cracking at the edge of eccentric pin hole, which is the most likely position for crack initiation and propagation. This paper describes the improvement of transient thermal fatigue crack propagation life of gas turbines casings through the application of additional holes. The crack position and direction was determined using non-destructive tests. A series of finite element patterns were developed and tested in ASTM-A395 elastic perfectly-plastic ductile cast iron. The effect of arrangement of additional holes on transient thermal fatigue behavior of gas turbines casings containing hole edge cracks was investigated. ABAQUS finite element package and Zencrack fracture mechanics code were used for modeling. The effect of the reduction of transient thermal stress distribution around the eccentric pin hole on the transient thermal fatigue crack propagation life of the gas turbines casings was discussed. The result shows that transient thermal fatigue crack propagation life could be extended by applying additional holes of larger diameter and decreased by increasing the vertical distance, angle, and distance between the eccentric pin hole and the additional holes. The results from the numerical predictions were compared with experimental data.
DEFF Research Database (Denmark)
Bendixen, Carsten
2014-01-01
Bidrag med en kortfattet, introducerende, perspektiverende og begrebsafklarende fremstilling af begrebet test i det pædagogiske univers.......Bidrag med en kortfattet, introducerende, perspektiverende og begrebsafklarende fremstilling af begrebet test i det pædagogiske univers....
Probing Primordial Black Hole Dark Matter with Gravitational Waves.
Kovetz, Ely D
2017-09-29
Primordial black holes (PBHs) have long been suggested as a candidate for making up some or all of the dark matter in the Universe. Most of the theoretically possible mass range for PBH dark matter has been ruled out with various null observations of expected signatures of their interaction with standard astrophysical objects. However, current constraints are significantly less robust in the 20 M_{⊙}≲M_{PBH}≲100 M_{⊙} mass window, which has received much attention recently, following the detection of merging black holes with estimated masses of ∼30 M_{⊙} by LIGO and the suggestion that these could be black holes formed in the early Universe. We consider the potential of advanced LIGO (aLIGO) operating at design sensitivity to probe this mass range by looking for peaks in the mass spectrum of detected events. To quantify the background, which is due to black holes that are formed from dying stars, we model the shape of the stellar-black-hole mass function and calibrate its amplitude to match the O1 results. Adopting very conservative assumptions about the PBH and stellar-black-hole merger rates, we show that ∼5 yr of aLIGO data can be used to detect a contribution of >20 M_{⊙} PBHs to dark matter down to f_{PBH}99.9% confidence level. Combined with other probes that already suggest tension with f_{PBH}=1, the obtainable independent limits from aLIGO will thus enable a firm test of the scenario that PBHs make up all of dark matter.
DEFF Research Database (Denmark)
Jacobsen, Torben Krogsdal; Brøndsted, Povl
1997-01-01
A study of the strain redistribution around holes in two different cross-woven ceramic matrix composites is presented. The strain redistribution around holes in C-f/SiCm and SiCf/SiCm has been measured experimentally under plane stress conditions. Using micro-mechanics and Continuum Damage...... Mechanics, and an identification procedure based on a uni-axial tensile test and a shear test the strain redistribution around a hole or a notch due to matrix cracking can be predicted. Damage due to fiber breakage is not included in the model. Initial matrix damage in the C-f/SiCm material has...
Quantum capacity of quantum black holes
Adami, Chris; Bradler, Kamil
2014-03-01
The fate of quantum entanglement interacting with a black hole has been an enduring mystery, not the least because standard curved space field theory does not address the interaction of black holes with matter. We discuss an effective Hamiltonian of matter interacting with a black hole that has a precise analogue in quantum optics and correctly reproduces both spontaneous and stimulated Hawking radiation with grey-body factors. We calculate the quantum capacity of this channel in the limit of perfect absorption, as well as in the limit of a perfectly reflecting black hole (a white hole). We find that the white hole is an optimal quantum cloner, and is isomorphic to the Unruh channel with positive quantum capacity. The complementary channel (across the horizon) is entanglement-breaking with zero capacity, avoiding a violation of the quantum no-cloning theorem. The black hole channel on the contrary has vanishing capacity, while its complement has positive capacity instead. Thus, quantum states can be reconstructed faithfully behind the black hole horizon, but not outside. This work sheds new light on black hole complementarity because it shows that black holes can both reflect and absorb quantum states without violating the no-cloning theorem, and makes quantum firewalls obsolete.
Charged spinning black holes as particle accelerators
International Nuclear Information System (INIS)
Wei Shaowen; Liu Yuxiao; Guo Heng; Fu Chune
2010-01-01
It has recently been pointed out that the spinning Kerr black hole with maximal spin could act as a particle collider with arbitrarily high center-of-mass energy. In this paper, we will extend the result to the charged spinning black hole, the Kerr-Newman black hole. The center-of-mass energy of collision for two uncharged particles falling freely from rest at infinity depends not only on the spin a but also on the charge Q of the black hole. We find that an unlimited center-of-mass energy can be approached with the conditions: (1) the collision takes place at the horizon of an extremal black hole; (2) one of the colliding particles has critical angular momentum; (3) the spin a of the extremal black hole satisfies (1/√(3))≤(a/M)≤1, where M is the mass of the Kerr-Newman black hole. The third condition implies that to obtain an arbitrarily high energy, the extremal Kerr-Newman black hole must have a large value of spin, which is a significant difference between the Kerr and Kerr-Newman black holes. Furthermore, we also show that, for a near-extremal black hole, there always exists a finite upper bound for center-of-mass energy, which decreases with the increase of the charge Q.
Schwarzschild black hole in the background of the Einstein universe: some physical effects
International Nuclear Information System (INIS)
Ramachandra, B S; Vishveshwara, C V
2002-01-01
A prototype of an asymptotically non-flat black hole spacetime is that of a Schwarzschild black hole in the background of the Einstein universe, which is a special case of the representation of a black hole in a cosmological background given by Vaidya. Recently, this spacetime has been studied in detail by Nayak et al. They constructed a composite spacetime called the Vaidya-Einstein-Schwarzschild (VES) spacetime. We investigate some of the physical effects inherent to this spacetime. We carry out a background-black hole decomposition of the spacetime in order to separate out the effects due to the background spacetime and the black hole. The physical effects we study include the classical tests - the gravitational redshift, perihelion precession and light bending - and circular geodesics. A detailed classification of geodesics, in general, is also given
Bulk emission by higher-dimensional black holes: almost perfect blackbody radiation
International Nuclear Information System (INIS)
Hod, Shahar
2011-01-01
We study the Hawking radiation emitted into the bulk by (D + 1)-dimensional Schwarzschild black holes. It is well known that the black-hole spectrum departs from exact blackbody form due to the frequency dependence of the 'greybody' factors. For intermediate values of D (3 ≤ D ∼ > 1, the typical wavelengths in the black-hole spectrum are much shorter than the size of the black hole. In this regime, the greybody factors are well described by the geometric-optics approximation according to which they are almost frequency independent. Following this observation, we argue that for higher-dimensional black holes with D >> 1, the total power emitted into the bulk should be well approximated by the analytical formula for perfect blackbody radiation. We test the validity of this analytical prediction with numerical computations.
BSW process of the slowly evaporating charged black hole
Wang, Liancheng; He, Feng; Fu, Xiangyun
2015-01-01
In this paper, we study the BSW process of the slowly evaporating charged black hole. It can be found that the BSW process will also arise near black hole horizon when the evaporation of charged black hole is very slow. But now the background black hole does not have to be an extremal black hole, and it will be approximately an extremal black hole unless it is nearly a huge stationary black hole.
Boosting jet power in black hole spacetimes.
Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garrett, Travis
2011-08-02
The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.
Escape of Black Holes from the Brane
International Nuclear Information System (INIS)
Flachi, Antonino; Tanaka, Takahiro
2005-01-01
TeV-scale gravity theories allow the possibility of producing small black holes at energies that soon will be explored at the CERN LHC or at the Auger observatory. One of the expected signatures is the detection of Hawking radiation that might eventually terminate if the black hole, once perturbed, leaves the brane. Here, we study how the 'black hole plus brane' system evolves once the black hole is given an initial velocity that mimics, for instance, the recoil due to the emission of a graviton. The results of our dynamical analysis show that the brane bends around the black hole, suggesting that the black hole eventually escapes into the extra dimensions once two portions of the brane come in contact and reconnect. This gives a dynamical mechanism for the creation of baby branes
Hidden conformal symmetry of extremal black holes
International Nuclear Information System (INIS)
Chen Bin; Long Jiang; Zhang Jiaju
2010-01-01
We study the hidden conformal symmetry of extremal black holes. We introduce a new set of conformal coordinates to write the SL(2,R) generators. We find that the Laplacian of the scalar field in many extremal black holes, including Kerr(-Newman), Reissner-Nordstrom, warped AdS 3 , and null warped black holes, could be written in terms of the SL(2,R) quadratic Casimir. This suggests that there exist dual conformal field theory (CFT) descriptions of these black holes. From the conformal coordinates, the temperatures of the dual CFTs could be read directly. For the extremal black hole, the Hawking temperature is vanishing. Correspondingly, only the left (right) temperature of the dual CFT is nonvanishing, and the excitations of the other sector are suppressed. In the probe limit, we compute the scattering amplitudes of the scalar off the extremal black holes and find perfect agreement with the CFT prediction.
Information Retention by Stringy Black Holes
Ellis, John
2015-01-01
Building upon our previous work on two-dimensional stringy black holes and its extension to spherically-symmetric four-dimensional stringy black holes, we show how the latter retain information. A key r\\^ole is played by an infinite-dimensional $W_\\infty$ symmetry that preserves the area of an isolated black-hole horizon and hence its entropy. The exactly-marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole necessarily includes a contribution from $W_\\infty$ generators in its vertex function. This admixture manifests the transfer of information between the string black hole and external particles. We discuss different manifestations of $W_\\infty$ symmetry in black-hole physics and the connections between them.
Seeding black holes in cosmological simulations
Taylor, P.; Kobayashi, C.
2014-08-01
We present a new model for the formation of black holes in cosmological simulations, motivated by the first star formation. Black holes form from high density peaks of primordial gas, and grow via both gas accretion and mergers. Massive black holes heat the surrounding material, suppressing star formation at the centres of galaxies, and driving galactic winds. We perform an investigation into the physical effects of the model parameters, and obtain a `best' set of these parameters by comparing the outcome of simulations to observations. With this best set, we successfully reproduce the cosmic star formation rate history, black hole mass-velocity dispersion relation, and the size-velocity dispersion relation of galaxies. The black hole seed mass is ˜103 M⊙, which is orders of magnitude smaller than that which has been used in previous cosmological simulations with active galactic nuclei, but suggests that the origin of the seed black holes is the death of Population III stars.
What does a black hole look like?
Bailyn, Charles D
2014-01-01
Emitting no radiation or any other kind of information, black holes mark the edge of the universe--both physically and in our scientific understanding. Yet astronomers have found clear evidence for the existence of black holes, employing the same tools and techniques used to explore other celestial objects. In this sophisticated introduction, leading astronomer Charles Bailyn goes behind the theory and physics of black holes to describe how astronomers are observing these enigmatic objects and developing a remarkably detailed picture of what they look like and how they interact with their surroundings. Accessible to undergraduates and others with some knowledge of introductory college-level physics, this book presents the techniques used to identify and measure the mass and spin of celestial black holes. These key measurements demonstrate the existence of two kinds of black holes, those with masses a few times that of a typical star, and those with masses comparable to whole galaxies--supermassive black holes...
Charged topological black hole pair creation
International Nuclear Information System (INIS)
Mann, R.B.
1998-01-01
I examine the pair creation of black holes in space-times with a cosmological constant of either sign. I consider cosmological C-metrics and show that the conical singularities in this metric vanish only for three distinct classes of black hole metric, two of which have compact event horizons on each spatial slice. One class is a generalization of the Reissner-Nordstroem (anti-)de Sitter black holes in which the event horizons are the direct product of a null line with a 2-surface with topology of genus g. The other class consists of neutral black holes whose event horizons are the direct product of a null conoid with a circle. In the presence of a domain wall, black hole pairs of all possible types will be pair created for a wide range of mass and charge, including even negative mass black holes. I determine the relevant instantons and Euclidean actions for each case. (orig.)
Reversible Carnot cycle outside a black hole
International Nuclear Information System (INIS)
Xi-Hao, Deng; Si-Jie, Gao
2009-01-01
A Carnot cycle outside a Schwarzschild black hole is investigated in detail. We propose a reversible Carnot cycle with a black hole being the cold reservoir. In our model, a Carnot engine operates between a hot reservoir with temperature T 1 and a black hole with Hawking temperature T H . By naturally extending the ordinary Carnot cycle to the black hole system, we show that the thermal efficiency for a reversible process can reach the maximal efficiency 1 – T H /T 1 . Consequently, black holes can be used to determine the thermodynamic temperature by means of the Carnot cycle. The role of the atmosphere around the black hole is discussed. We show that the thermal atmosphere provides a necessary mechanism to make the process reversible. (general)
Hawking temperature of constant curvature black holes
International Nuclear Information System (INIS)
Cai Ronggen; Myung, Yun Soo
2011-01-01
The constant curvature (CC) black holes are higher dimensional generalizations of Banados-Teitelboim-Zanelli black holes. It is known that these black holes have the unusual topology of M D-1 xS 1 , where D is the spacetime dimension and M D-1 stands for a conformal Minkowski spacetime in D-1 dimensions. The unusual topology and time-dependence for the exterior of these black holes cause some difficulties to derive their thermodynamic quantities. In this work, by using a globally embedding approach, we obtain the Hawking temperature of the CC black holes. We find that the Hawking temperature takes the same form when using both the static and global coordinates. Also, it is identical to the Gibbons-Hawking temperature of the boundary de Sitter spaces of these CC black holes.