WorldWideScience

Sample records for test fuel elements

  1. Compact Fuel Element Environment Test

    Science.gov (United States)

    Bradley, D. E.; Mireles, O. R.; Hickman, R. R.; Broadway, J. W.

    2012-01-01

    Deep space missions with large payloads require high specific impulse (I(sub sp)) and relatively high thrust to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average I(sub sp). Nuclear thermal rockets (NTRs) capable of high I(sub sp) thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3,000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements that employ high melting point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high-temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via noncontact radio frequency heating and expose samples to hydrogen for typical mission durations has been developed to assist in optimal material and manufacturing process selection without employing fissile material. This Technical Memorandum details the test bed design and results of testing conducted to date.

  2. REACTOR FUEL ELEMENTS TESTING CONTAINER

    Science.gov (United States)

    Whitham, G.K.; Smith, R.R.

    1963-01-15

    This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

  3. Research and Test Reactor Fuel Elements (RTRFE)

    International Nuclear Information System (INIS)

    Pace, Brett W.; Marinak, Edward A.

    1999-01-01

    BWX Technologies Inc. (BWXT) has experienced several production improvements over the past year. The homogeneity yields in 4.8 gU/cc U 3 Si 2 plates have increased over last year's already high yields. Through teamwork and innovative manufacturing techniques, maintaining high quality surface finishes on plates and elements is becoming easier and less expensive. Currently, BWXT is designing a fabrication development plan to reach a fuel loading of 9 gU/cc within 2 - 4 years. This development will involve a step approach requested by ANL to produce plates using U-8Mo at a loading of 6 gU/cc first and qualify the fuel at those levels. In achieving the goal of a very high-density fuel loading of 9 gU/cc, BWXT is considering employing several new, state of the art, ultrasonic testing techniques for fuel core evaluation. (author)

  4. The OSU Hydro-Mechanical Fuel Test Facility: Standard Fuel Element Testing

    Energy Technology Data Exchange (ETDEWEB)

    Wade R. Marcum; Brian G. Woods; Ann Marie Phillips; Richard G. Ambrosek; James D. Wiest; Daniel M. Wachs

    2001-10-01

    Oregon State University (OSU) and the Idaho National Laboratory (INL) are currently collaborating on a test program which entails hydro-mechanical testing of a generic plate type fuel element, or standard fuel element (SFE), for the purpose of qualitatively demonstrating mechanical integrity of uranium-molybdenum monolithic plates as compared to that of uranium aluminum dispersion, and aluminum fuel plates due to hydraulic forces. This test program supports ongoing work conducted for/by the fuel development program and will take place at OSU in the Hydro-Mechanical Fuel Test Facility (HMFTF). Discussion of a preliminary test matrix, SFE design, measurement and instrumentation techniques, and facility description are detailed in this paper.

  5. Failed MTR Fuel Element Detect in a Sipping Tests

    International Nuclear Information System (INIS)

    Zeituni, C.A.; Terremoto, L.A.A.; Silva, J.E.R. da

    2004-01-01

    This work describes sipping tests performed on Material Testing Reactor (MTR) fuel elements of the IEA-R1 research reactor, in order to find out which one failed in the core during a routine operation. Radioactive iodine isotopes 131 I and 133 I, employed as failure monitors, were detected in samples corresponding to the failed fuel element. The specific activity of each sample, as well as the average leaking rate, were measured for 137 Cs. The nuclear fuels U 3 O 8 - Al dispersion and U - Al alloy were compared concerning their measured average leaking rates of 137 Cs

  6. Failed MTR Fuel Element Detect in a Sipping Tests

    Energy Technology Data Exchange (ETDEWEB)

    Zeituni, C.A.; Terremoto, L.A.A.; da Silva, J.E.R.

    2004-10-06

    This work describes sipping tests performed on Material Testing Reactor (MTR) fuel elements of the IEA-R1 research reactor, in order to find out which one failed in the core during a routine operation. Radioactive iodine isotopes {sup 131}I and {sup 133}I, employed as failure monitors, were detected in samples corresponding to the failed fuel element. The specific activity of each sample, as well as the average leaking rate, were measured for {sup 137}Cs. The nuclear fuels U{sub 3}O{sub 8} - Al dispersion and U - Al alloy were compared concerning their measured average leaking rates of {sup 137}Cs.

  7. Sipping tests on a failed irradiated MTR fuel element

    International Nuclear Information System (INIS)

    Zeituni, C. A.; Terremoto, L. A. A.; Da Silva, J. E. R.

    2004-01-01

    This work describes sipping tests performed on Material Testing Reactor (MTR) fuel elements of the IEA-R1 research reactor, in order to find out which one failed in the core during a routine operation. Radioactive iodine isotopes 131 I and 133 I, employed as failure monitors, were detected in samples corresponding to the failed fuel element. The specific activity of each sample, as well as the average leaking rate, were measured for 137 Cs. The nuclear fuels U 3 O 8 - Al dispersion and U - Al alloy were compared concerning their measured average leaking rates of 137 Cs. (authors)

  8. Space reactor fuel element testing in upgraded TREAT

    International Nuclear Information System (INIS)

    Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W.Y.

    1993-01-01

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ∼60--80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ∼100 MW/L may be achievable

  9. Space reactor fuel element testing in upgraded TREAT

    Science.gov (United States)

    Todosow, Michael; Bezler, Paul; Ludewig, Hans; Kato, Walter Y.

    1993-01-01

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ˜60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ˜100 MW/L may be achievable.

  10. Sipping test on a failed MTR fuel element

    International Nuclear Information System (INIS)

    Terremoto, Luis Antonio Albiac; Zeituni, Carlos Alberto; Silva, Antonio Teixeira e; Perrotta, Jose Augusto; Silva, Jose Eduardo Rosa da

    2002-01-01

    This work describes sipping tests performed on MTR fuel elements of the IEA-R1 research reactor, in order to determinate which one failed in the core during a routine operation of the reactor. radioactive iodine isotopes 131 I and 133 I, employed as failure indicators, were detected in samples corresponding to the fuel element IEA-156. The specific activity of each sample, as well as the average leaking rate, were measured for 137 Cs. The nuclear fuels U 3 O 8 - Al dispersion and U - Al alloy were compared concerning their measured average leaking rates of 137 Cs. (author)

  11. Design verification testing for fuel element type CAREM

    International Nuclear Information System (INIS)

    Martin Ghiselli, A.; Bonifacio Pulido, K.; Villabrille, G.; Rozembaum, I.

    2013-01-01

    The hydraulic and hydrodynamic characterization tests are part of the design verification process of a nuclear fuel element prototype and its components. These tests are performed in a low pressure and temperature facility. The tests requires the definition of the simulation parameters for setting the test conditions, the results evaluation to feedback mathematical models, extrapolated the results to reactor conditions and finally to decide the acceptability of the tested prototype. (author)

  12. Postirradiation examination of Peach Bottom fuel test element FTE-4

    International Nuclear Information System (INIS)

    Wallroth, C.F.; Holzgraf, J.F.; Jensen, D.D.; Zumwalt, L.R.

    1977-07-01

    The report presents the irradiation results and their evaluation for Peach Bottom fuel test element FTE-4. It describes in detail the efforts by General Atomic Company over the last two years to establish a system for extracting meaningful performance information from a fuel test element. This has been done with the goal of making direct comparisons between as-measured data and core design code predictions. Special emphasis has been placed on determining the 95% confidence limits on most of the preirradiation and postirradiation measurements in order to allow a better comparison with GAUGE, FEVER, and TREVER code calculations which are used in HTGR core thermal and mechanical design

  13. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    Science.gov (United States)

    Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  14. Development and testing of the EDF-2 reactor fuel element

    International Nuclear Information System (INIS)

    Delpeyroux, P.

    1964-01-01

    This technical report reviews the work which has been necessary for defining the EDF-2 fuel element. After giving briefly the EDF-2 reactor characteristics and the preliminary choice of parameters which made it possible to draw up a draft plan for the fuel element, the authors consider the research proper: - Uranium studies: tests on the passage into the β phase of an internal crown of a tube, bending of the tube under the effect of a localized force, welding of the end-pellets and testing for leaks. The resistance of the tube to crushing and of the pellets to yielding under the external pressure have been studied in detail in another CEA report. - Can studies: conditions of production and leak proof testing of the can, resistance of the fins to creep due to the effect of the gas flow. - Studies of the extremities of the element: creep under compression and welding of the plugs to the can. - Cartridge studies: determination of the characteristics of the can fuel fixing grooves and of the canning conditions, verification of the resistance of the fuel element to thermal cycling, determination of the temperature drop at the can-fuel interface dealt with in more detail in another CEA report. - Studies of the whole assembly: this work which concerns the graphite jacket, the support and the cartridge vibrations has been carried out by the Mechanical and Thermal Study Service (Mechanics Section). In this field the Fuel Element Study Section has investigated the behaviour of the centering devices in a gas current. The outcome of this research is the defining of the plan of the element the production process and the production specifications. The validity of ail these out-of-pile tests will be confirmed by the in-pile tests already under way and by irradiation of the elements in the EDF-2 reactor itself. In conclusion the programme is given for improving the fuel element and for defining the fuel element for the second charge. (authors) [fr

  15. Modeling and Simulation of a Nuclear Fuel Element Test Section

    Science.gov (United States)

    Moran, Robert P.; Emrich, William

    2011-01-01

    "The Nuclear Thermal Rocket Element Environmental Simulator" test section closely simulates the internal operating conditions of a thermal nuclear rocket. The purpose of testing is to determine the ideal fuel rod characteristics for optimum thermal heat transfer to their hydrogen cooling/working fluid while still maintaining fuel rod structural integrity. Working fluid exhaust temperatures of up to 5,000 degrees Fahrenheit can be encountered. The exhaust gas is rendered inert and massively reduced in temperature for analysis using a combination of water cooling channels and cool N2 gas injectors in the H2-N2 mixer portion of the test section. An extensive thermal fluid analysis was performed in support of the engineering design of the H2-N2 mixer in order to determine the maximum "mass flow rate"-"operating temperature" curve of the fuel elements hydrogen exhaust gas based on the test facilities available cooling N2 mass flow rate as the limiting factor.

  16. Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)

    Science.gov (United States)

    Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.

    2013-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.

  17. FUEL ELEMENT

    Science.gov (United States)

    Bean, R.W.

    1963-11-19

    A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

  18. Vibration test and endurance test for HANARO 36-element fuel assembly

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo; Kim, Heon ll; Chung, Heung June

    1998-06-01

    Vibration test and endurance test for HANARO DU (depleted uranium) 36-element fuel assembly which was fabricated by KAERI were carried out based on the HANARO operation conditions. The endurance test of 22 days was added to the previous 18 days test. The vibration test was performed at various flow rates. Vibration frequency for the 36-element fuel assembly is between 11 to 14.5 Hz. And the maximum vibration displacement is less than 100 μm. From the endurance test result, it can be concluded that the appreciable fretting wear for the 36-element fuel assembly and the hexagonal flow tube was not observed. (author). 4 refs., 5 tabs., 29 figs

  19. Fuel element

    International Nuclear Information System (INIS)

    Hirose, Yasuo.

    1982-01-01

    Purpose: To increase the plenum space in a fuel element used for a liquid metal cooled reactor. Constitution: A fuel pellet is secured at one end with an end plug and at the other with a coil spring in a tubular container. A mechanism for fixing the coil spring composed of a tubular unit is mounted by friction with the inner surface of the tubular container. Accordingly, the recoiling force of the coil spring can be retained by fixing mechanism with a small volume, and since a large amount of plenum space can be obtained, the internal pressure rise in the cladding tube can be suppressed even if large quantities of fission products are discharged. (Kamimura, M.)

  20. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  1. Reactor tests and post-reactor examination of HTGR fuel elements and coated particles

    International Nuclear Information System (INIS)

    Degaltsev, Yu.G.; Khrulev, A.A.; Mosevitskii, I.S.; Ponomarev-Stepnoi, N.N.; Tikhonov, N.I.; Yakovlev, V.V.

    1990-01-01

    Tests and examinations of HTGR fuel elements performed recently at I.V.Kurchatov AEI have been directed to solve the following problems: determination of correspondence of the operability characteristics of fuel elements and coated particles from different lots to requirements to be imposed on VGM and VG-400 designs being developed; comparison of the characteristics of fuel elements manufactured using two different technologies of matrix graphite (KPD and GSP) as well as coated particles of various designs and material composition; investigation of fuel element operability under severe accident conditions; investigation of processes occurring in fuel element and coated particle, resulting in formation of defects and release of GFP; construction of physical models of fuel element behaviour in the reactor on this basis. Tests and investigations were performed for fuel elements manufactured using the KPD and GSP technologies. For solving the above problems the experimental basis and methods described herein were used. The present paper is a short review of works covering these problems, with main emphasis being made on description and analysis of fuel element and coated particle tests under non-nominal accident and severe accident conditions. Such tests are of specific interest. While tests for confirming operability under nominal conditions are necessary for justification of the design characteristics and must be supported by sufficient statistics, tests for severe conditions have at least two objectives: 1) estimation of the limits of fuel element operability depending on the basing affecting factors (temperatures burnup, etc.); 2) getting the data for studying processes resulting in loss of operability; on the basis of these data physical models of fuel element operability and accident sequence in the reactor unit may be constructed and verified. The experiments presented herein are the first stage of such investigations on determination of influence of the

  2. Conceptual design of experimental LFR fuel element for testing in TRIGA reactor, ACPR zone

    International Nuclear Information System (INIS)

    Nastase, D.; Olteanu, G.; Ioan, M.; Pauna, E.

    2013-01-01

    In the pulsed area of the TRIGA reactor (ACPR zone), the irradiation tests called ''rapid insertions of reactivity on different types of nuclear fuel elements'' are usually realized. During these tests, in the fuel element high powers for a relatively short period of time (about few milliseconds) are generated. The generated heat in fuel pellets raise their central temperature to values over 100 deg C. The conceptual design of an experimental fuel element proposed to be developed and presented in this paper must fulfill a couple of requirements, as follows: to ensure full compatibility with irradiation device sample holder (compatibility is achieved through reduced length of the fuel stack pellets - this way assures a flow flattening on the entire length of the fuel element); to be compatible with the project of irradiated fuel bundle in Lead cooled Fast Reactors (LFR). (authors)

  3. Calculation of fuel element temperature TRIGA 2000 reactor in sipping test tubes using CFD

    International Nuclear Information System (INIS)

    Sudjatmi KA

    2013-01-01

    It has been calculated the fuel element temperature in the sipping test of Bandung TRIGA 2000 reactor. The calculation needs to be done to ascertain that the fuel element temperatures are below or at the limit of the allowable temperature fuel elements during reactor operation. ensuring that the implementation of the test by using this device, the temperature is still within safety limits. The calculation is done by making a model sipping test tubes containing a fuel element surrounded by 9 fuel elements. according to the position sipping test tubes in the reactor core. by using Gambit. Dimensional model adapted to the dimensions of the tube and the fuel element in the reactor core of Bandung TRIGA 2000 reactor. Sipping test Operation for each fuel element performed for 30 minutes at 300 kW power. Calculations were performed using CFD software and as input adjusted parameters of TRIGA 2000 reactor. Simulations carried out on the operation of the 30, 60, 90, 120, 150, 180 and 210 minutes. The calculation result shows that the temperature of the fuel in tubes sipping test of 236.06 °C, while the temperature of the wall is 87.58 °C. The maximum temperature in the fuel center of TRIGA 2000 reactor in normal operation is 650 °C. and the boiling is not allowed in the reactor. So it can be concluded that the operation of the sipping test device are is very safe because the fuel center temperature is below the temperature limits the allowable fuel under normal operating conditions as well as the fuel element wall temperature is below the boiling temperature of water. (author)

  4. LMFBR fuel-design environment for endurance testing, primarily of oxide fuel elements with local faults

    International Nuclear Information System (INIS)

    Warinner, D.K.

    1980-01-01

    The US Department of Energy LMFBR Lines-of-Assurance are briefly stated and local faults are given perspective with an historical review and definition to help define the constraints of LMFBR fuel-element designs. Local-fault-propagation (fuel-element failure-propagation and blockage propagation) perceptions are reviewed. Fuel pin designs and major LMFBR parameters affecting pin performance are summarized. The interpretation of failed-fuel data is aided by a discussion of the effects of nonprototypicalities. The fuel-pin endurance expected in the US, USSR, France, UK, Japan, and West Germany is outlined. Finally, fuel-failure detection and location by delayed-neutron and gaseous-fission-product monitors are briefly discussed to better realize the operational limits

  5. Design criteria -- Modification of fuel element test facilities. 1706-KER Project CGI-839

    Energy Technology Data Exchange (ETDEWEB)

    Rudock, E.R.

    1959-08-27

    The following criteria outlines the basis, objectives, and fundamental methods that shall govern the preparation of final design for ``Project CGI-839, Modification to Fuel Element Test Facilities -- 1706 KER.`` These modifications will provide the equipment to test NPR size fuel elements in the KER recirculating loops. The 1706-KER Recirculation Test Facility of KE Reactor is operated to obtain experimental data regarding high temperature reactor coolant technology and high temperature fuel element testing. The facility consists of four in-pile recirculating loops. These loops will permit testing of fuel elements with the existing process tubes of 2.1 inches I.D. To provide adequate in-reactor fuel element test facilities to support the development of NPR fuel, two KER loops, {number_sign}3 and {number_sign}4 will be converted to provide a process tube of 2.7 inches ID that will be operated at typical NPR irradiation conditions. The remaining loops No. 1 and 2, will be modified to provide additional flow and heat transfer capacity for greater flexibility in the testing of high temperature fuel elements smaller than the NPR size. New pumps, heat exchangers, and minor piping modifications will be required in all loops.

  6. Fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A new fuel can with a loose bottom and head is described. The fuel bar is attached to the loose bottom and head with two grid poles keeping the distance between bottom and head. A bow-shaped handle is attached to the head so that the fuel bar can be lifted from the can

  7. Test design description Volume 2, Part 1. IFR-1 metal fuel irradiation test (AK-181) element as-built data

    Energy Technology Data Exchange (ETDEWEB)

    Dodds, N. E.

    1986-06-01

    The IFR-1 Test, designated as the AK-181 Test Assembly, will be the first irradiation test of wire wrapped, sodium-bonded metallic fuel elements in the Fast Flux Test Facility (FFTF). The test is part of the Integral Fast Reactor (IFR) fuels program conducted by Argonne National Laboratory (ANL) in support of the Innovative Reactor Concepts Program sponsored by the US Department of Energy (DOE). One subassembly, containing 169 fuel elements, will be irradiated for 600 full power days to achieve 10 at.% burnup. Three metal fuel alloys (U-10Zr, U-8Pu-10Zr) will be irradiated in D9 cladding tubes. The metal fuel elements have a fuel-smeared density of 75% and each contains five slugs. The enriched zone contains three slugs and is 36-in. long. One 6.5-in. long depleted uranium axial blanket slug (DU-10Zr) was loaded at each end of the enriched zone. the fuel elements were fabricated at ANL-W and delivered to Westinghouse-Hanford for wirewrapping and assembly into the test article. This Test Design Description contains relevant data on compositions, densities, dimensions and weights for the cast fuel slugs and completed fuel elements. The elements conform to the requirements in MG-22, "Users` Guide for the Irradiation of Experiments in the FTR."

  8. 77 FR 16868 - Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test...

    Science.gov (United States)

    2012-03-22

    ... Fuel Elements for Use in Research and Test Reactors AGENCY: Nuclear Regulatory Commission. ACTION... Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test Reactors.'' This guide describes... plate-type uranium-aluminum fuel elements used in research and test reactors (RTRs). DATES: Submit...

  9. Nuclear Cryogenic Propulsion Stage (NCPS) Fuel Element Testing in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    Science.gov (United States)

    Emrich, William J., Jr.

    2017-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). Last year NTREES was successfully used to satisfy a testing milestone for the Nuclear Cryogenic Propulsion Stage (NCPS) project and met or exceeded all required objectives.

  10. Evaluation of bonding in Kamini plate type fuel elements using ultrasonic immersion testing and metallography

    International Nuclear Information System (INIS)

    Muralidhar, S.; Pandey, V.D.; Mahule, K.N.; Prasad, G.J.; Ghosh, J.K.; Ganguly, C.

    1989-01-01

    Plate type fuel elements have been fabricated for the neutron source reactor 'KAMINI' in the Radiometallurgy Division. These plate fuel elements have been fabricated using the picture frame technique. An important step in the evaluation of the quality of the plate fuel elements is the non-destructive inspection of bonding between the clad plates and the meat and the picture frame. From the available techniques for lack of bond inspection, a choice was made to use the ultrasonic immersion testing technique. This report records the experience gained in the development of the ultrasonic immersion testing technique for the evaluation of bonding in these fuel plates, with a back-up support of metallography. (author). 7 refs., 9 figs

  11. Nuclear fuel elements design, fabrication and performance

    CERN Document Server

    Frost, Brian R T

    1982-01-01

    Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overvie

  12. 78 FR 33132 - Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test...

    Science.gov (United States)

    2013-06-03

    ... Fuel Elements for Use in Research and Test Reactors AGENCY: Nuclear Regulatory Commission. ACTION... Regulatory Guide (RG) 2.3, ``Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in... assurance program for verifying the quality of plate-type uranium-aluminum fuel elements used in research...

  13. Performance testing of refractory alloy-clad fuel elements for space reactors

    International Nuclear Information System (INIS)

    Dutt, D.S.; Cox, C.M.; Karnesky, R.A.; Millhollen, M.K.

    1985-01-01

    Two fast reactor irradiation tests, SP-1 and SP-2, provide a unique and self-consistent data set with which to evaluate the technical feasibility of potential fuel systems for the SP-100 space reactor. Fuel pins fabricated with leading cladding candidates (Nb-1Zr, PWC-11, and Mo-13Re) and fuel forms (UN and UO 2 ) are operated at temperatures typical of those expected in the SP-100 design. The first US fast reactor irradiated, refractory alloy clad fuel pins, from the SP-1 test, reached 1 at. % burnup in EBR-II in March 1985. At that time selected pins were discharged for interim examination. These examinations confirmed the excellent performance of the Nb-1Zr clad uranium oxide and uranium nitride fuel elements, which are the baseline fuel systems for two SP-100 reactor concepts

  14. Fuel element loading system

    International Nuclear Information System (INIS)

    Arya, S.P; s.

    1978-01-01

    A nuclear fuel element loading system is described which conveys a plurality of fuel rods to longitudinal passages in fuel elements. Conveyor means successively position the fuel rods above the longitudinal passages in axial alignment therewith and adapter means guide the fuel rods from the conveyor means into the longitudinal passages. The fuel elements are vibrated to cause the fuel rods to fall into the longitudinal passages through the adapter means

  15. Enhanced Low-Enriched Uranium Fuel Element for the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pope, M. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); DeHart, M. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Morrell, S. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jamison, R. K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nef, E. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nigg, D. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    Under the current US Department of Energy (DOE) policy and planning scenario, the Advanced Test Reactor (ATR) and its associated critical facility (ATRC) will be reconfigured to operate on low-enriched uranium (LEU) fuel. This effort has produced a conceptual design for an Enhanced LEU Fuel (ELF) element. This fuel features monolithic U-10Mo fuel foils and aluminum cladding separated by a thin zirconium barrier. As with previous iterations of the ELF design, radial power peaking is managed using different U-10Mo foil thicknesses in different plates of the element. The lead fuel element design, ELF Mk1A, features only three fuel meat thicknesses, a reduction from the previous iterations meant to simplify manufacturing. Evaluation of the ELF Mk1A fuel design against reactor performance requirements is ongoing, as are investigations of the impact of manufacturing uncertainty on safety margins. The element design has been evaluated in what are expected to be the most demanding design basis accident scenarios and has met all initial thermal-hydraulic criteria.

  16. Examination of an instrumented fuel element after dryout tests in Winfrith SGHWR

    International Nuclear Information System (INIS)

    Garlick, A.

    1977-01-01

    Examination of a fuel element that had been subjected to dryout tests in the Winfrith steam generating heavy water reactor proved it to be in good condition. There was clear evidence of cladding softening attributable to dryout overheating on several pins, and the boundaries of the softened zones were determined by hardness measurement. There was, however, no suggestion that softening of the cladding had adversely affected integrity of the fuel element. Annealing tests on cladding from selected regions of the pins led to estimated values for dryout temperatures that were consistent with those measured in-reactor. (author)

  17. Thermal simulations and tests in the development of a helmet transport spent fuel elements Research Reactor

    International Nuclear Information System (INIS)

    Saliba, R.; Quintana, F.; Márquez Turiello, R.; Furnari, J.C.; Pimenta Mourão, R.

    2013-01-01

    A packaging for the transport of irradiated fuel from research reactors was designed by a group of researchers to improve the capability in the management of spent fuel elements from the reactors operated in the region. Two half-scale models for MTR fuel were constructed and tested so far and a third one for both MTR and TRIGA fuels will be constructed and tested next. Four test campaigns have been carried out, covering both normal and hypothetical accident conditions of transportation. The thermal test is part of the requirements for the qualification of transportation packages for nuclear reactors spent fuel elements. In this paper both the numerical modelling and experimental thermal tests performed are presented and discussed. The cask is briefly described as well as the finite element model developed and the main adopted hypotheses for the thermal phenomena. The results of both numerical runs and experimental tests are discussed as a tool to validate the thermal modelling. The impact limiters, attached to the cask for protection, were not modelled. (author) [es

  18. Postirradiation examination and evaluation of Peach Bottom fuel test element FTE-6

    International Nuclear Information System (INIS)

    Wallroth, C.F.; Holzgraf, J.F.; Jensen, D.D.

    1977-09-01

    Fuel test element FTE-6 was irradiated in the Peach Bottom high-temperature gas-cooled reactor (HTGR) for 645 equivalent full power days. Four fuel varieties, contained in H-327 graphite bodies, were tested. A primary result of this test has been to demonstrate acceptable performance even with calculated high stresses in the graphite bodies. Heterogeneous fuel loadings in the element caused local power peaking and azimuthal power variations, deforming the graphite fuel bodies and thereby causing bowing nearly five times as large as the diametral clearance within the sleeve. The axial stresses resulting from interference between the fuel bodies and sleeve were estimated to have reached 45% of the ultimate material strength at the end of the irradiation. Residual stresses from differential contraction within the fuel body resulted in probable in-plane stress levels of 130% of the material strength at the end-of-life shutdown and of up to 150% of the strength at shutdown during the irradiation cycle. The high in-plane stresses are local peaks at the corners of a sharp notch in the element, which may account for the stresses failing to cause damage. The lack of observable damage, however, indicates that the methods and data used for stress analysis give results that are either fairly accurate or conservative

  19. Hydrogen in CANDU fuel elements

    International Nuclear Information System (INIS)

    Sejnoha, R.; Manzer, A.M.; Surette, B.A.

    1995-01-01

    Unirradiated and irradiated CANDU fuel cladding was tested to compare the role of stress-corrosion cracking and of hydrogen in the development of fuel defects. The results of the tests are compared with information on fuel performance in-reactor. The role of hydriding (deuteriding) from the coolant and from the fuel element inside is discussed, and the control of 'hydrogen gas' content in the element is confirmed as essential for defect-free fuel performance. Finally, implications for fuel element design are discussed. (author)

  20. Sipping test on a failed MTR fuel element; Teste de sipping em um elemento combustivel tipo placa falhado

    Energy Technology Data Exchange (ETDEWEB)

    Terremoto, Luis Antonio Albiac; Zeituni, Carlos Alberto; Silva, Antonio Teixeira e; Perrotta, Jose Augusto; Silva, Jose Eduardo Rosa da [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear

    2002-07-01

    This work describes sipping tests performed on MTR fuel elements of the IEA-R1 research reactor, in order to determinate which one failed in the core during a routine operation of the reactor. radioactive iodine isotopes {sup 131} I and {sup 133} I, employed as failure indicators, were detected in samples corresponding to the fuel element IEA-156. The specific activity of each sample, as well as the average leaking rate, were measured for {sup 137} Cs. The nuclear fuels U{sub 3} O{sub 8} - Al dispersion and U - Al alloy were compared concerning their measured average leaking rates of {sup 137} Cs. (author)

  1. Fuel element development

    Energy Technology Data Exchange (ETDEWEB)

    Muehling, G.

    1983-01-01

    The studies concerning breeders for the development of fuel elements carried out in Karlsruhe aim at: - optimization of fuel, - support of fuel rod and fuel element concepts from steady-state and field irradiation experiments and their evaluation, and - developing appropriate cladding and structural material and its adaptation to the requirements of high-output breeder reactors.

  2. Performance evaluation of two CANDU fuel elements tested in the TRIGA reactor

    International Nuclear Information System (INIS)

    Nita, Raluca Florentina; Uta, Octavian; Parvan, Marcel; Mincu, Marin

    2010-01-01

    Nuclear Research Institute at Pitesti has a set of facilities, which allow the testing, manipulation and examination of nuclear fuel and structure materials irradiated in CANDU reactors from Cernavoda NPP. These facilities consist of TRIGA materials testing reactor and Post-Irradiation Examination Laboratory (LEPI). The purpose of this work is to describe the post-irradiation examination, of two experimental CANDU fuel elements (EC1 and EC2). The fuel elements were mounted into a pattern port, one in extension of the other in a measuring test for the central temperature evolution. The results of post-irradiation examination are obtained from: Visual inspection and photography of the outer appearance of sheath; Profilometry (diameter, bending, ovalization) and length measuring; Determination of axial and radial distribution of the fission products activity by gamma scanning; Measurement of pressure, volume and isotopic composition of fission gas; Microstructural characterization by metallographic and ceramographic analyzes; Isotopic composition and burn-up determination. The post-irradiation examination results are used, on one hand, to confirm the security, reliability and performance of the irradiated fuel, and on the other hand, for further development of CANDU fuel. (authors)

  3. Evaluation of plate type fuel elements by eddy current test method

    International Nuclear Information System (INIS)

    Frade, Rangel Teixeira

    2015-01-01

    Plate type fuel elements are used in MTR research nuclear reactors. The fuel plates are manufactured by assembling a briquette containing the fissile material inserted in a frame, with metal plates in both sides of the set, to act as a cladding. This set is rolled under controlled conditions in order to obtain the fuel plate. In Brazil, this type of fuel is manufactured by IPEN and used in the IEA-R1 reactor. After fabrication of three batches of fuel plates, 24 plates, one of them is taken, in order to verify the thickness of the cladding. For this purpose, the plate is sectioned and the thickness measurements are carried out by using optical microscopy. This procedure implies in damage of the plate, with the consequent cost. Besides, the process of sample preparation for optical microscopy analysis is time consuming, it is necessary an infrastructure for handling radioactive materials and there is a generation of radioactive residues during the process. The objective of this study was verify the applicability of eddy current test method for nondestructive measurement of cladding thickness in plate type nuclear fuels, enabling the inspection of all manufactured fuel plates. For this purpose, reference standards, representative of the cladding of the fuel plates, were manufactured using thermomechanical processing conditions similar to those used for plates manufacturing. Due to no availability of fuel plates for performing the experiments, the presence of the plate’s core was simulated using materials with different electrical conductivities, fixed to the thickness reference standards. Probes of eddy current testing were designed and manufactured. They showed high sensitivity to thickness variations, being able to separate small thickness changes. The sensitivity was higher in tests performed on the reference standards and samples without the presence of the materials simulating the core. For examination of the cladding with influence of materials simulating the

  4. Analysis and evaluation of the in-pile irradiation test of the fuel element for Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Song Wenhui

    1989-10-01

    In order to verify in-pile performances of the fuel element for Qinshan Nuclear Power Plant, the comprehensive in-pile irradiation test of a 3 x 3 - 2 mock fuel element was performed in the Heavy Water Experimental Reactor. Some technical problems and test parameters which have influence on the test results were analyzed in more detail to fully prove that the test is of actual significance. The element was tested under the conditions corresponding to the normal and abnormal conditions of Qinshan NPP. The maximum burnup of the test fuel rods reached 34 GWd/tU and the maximum heat flux of the rods was 1.39 MW/m 2 . The fuel rods didn't fail in the course of test. Finally the test results were evaluated in verifying the performances of the fuel element and its safe operation in Qinshan NPP

  5. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1981-01-01

    An array of rods comprising zirconium alloy sheathed nuclear fuel pellets assembled to form a fuel element for a pressurised water reactor is claimed. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  6. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1984-01-01

    The fuel elements for a pressurised water reactor comprise arrays of rods of zirconium alloy sheathed nuclear fuel pellets. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  7. Irradiation tests of THTR fuel elements in the DRAGON reactor (irradiation experiment DR-K3)

    International Nuclear Information System (INIS)

    Burck, W.; Duwe, R.; Groos, E.; Mueller, H.

    1977-03-01

    Within the scope of the program 'Development of Spherical Fuel Elements for HTR', similar fuel elements (f.e.) have been irradiated in the DRAGON reactor. The f.e. were fabricated by NUKEM and were to be tested under HTR conditions to scrutinize their employability in the THTR. The fuel was in the form of coated particles moulded into A3 matrix. The kernels of the particles were made of mixed oxide of uranium and thorium with an U 235 enrichment of 90%. One aim of the post irradiation examination was the investigation of irradiation induced changes of mechanical properties (dimensional stability and elastic behaviour) and of the corrosion behaviour which were compared with the properties determined with unirradiated f.e. The measurement of the fission gas release in annealing tests and ceramografic examinations exhibited no damage of the coated particles. The measured concentration distribution of fission metals led to conclusions about their release. All results showed, that neither the coated particles nor the integral fuel spheres experienced any significant changes that could impair their utilization in the THTR. (orig./UA) [de

  8. Neutronic fuel element fabrication

    Science.gov (United States)

    Korton, George

    2004-02-24

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure

  9. Behavior of EBR-II Mk-V-type fuel elements in simulated loss-of-flow tests

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.Y.; Tsai, H.; Billone, M.C.; Holland, J.W.; Kramer, J.M. (Argonne National Lab., IL (United States))

    1992-11-01

    This report discusses three furnace heating tests which were conducted with irradiated, HT9-clad and U-19wt.%Pu-l0wt.%Zr-alloy fuel, Mk-V-type fuel elements in the Alpha-Gamma Hot Cell Facility at Argonne National Laboratory, Illinois. In general, very significant safety margins for fuel-element cladding breaching have been demonstrated in these tests, under conditions that would envelop a bounding unlikely loss-of-flow event in EBR-II. Highlights of the test results will be given, as well as discussions of the cladding breaching mechanisms, axial fuel motion, and fuel surface liquefaction found in high-temperature testing of irradiated metallic fuel elements.

  10. Nuclear fuel element

    Science.gov (United States)

    Zocher, Roy W.

    1991-01-01

    A nuclear fuel element and a method of manufacturing the element. The fuel element is comprised of a metal primary container and a fuel pellet which is located inside it and which is often fragmented. The primary container is subjected to elevated pressure and temperature to deform the container such that the container conforms to the fuel pellet, that is, such that the container is in substantial contact with the surface of the pellet. This conformance eliminates clearances which permit rubbing together of fuel pellet fragments and rubbing of fuel pellet fragments against the container, thus reducing the amount of dust inside the fuel container and the amount of dust which may escape in the event of container breach. Also, as a result of the inventive method, fuel pellet fragments tend to adhere to one another to form a coherent non-fragmented mass; this reduces the tendency of a fragment to pierce the container in the event of impact.

  11. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    Gordon, G.M.; Cowan, R.L. II; Davies, J.H.

    1975-01-01

    A nuclear fuel element is described. It includes a central nuclear fuel core and a composite cladding composed of a substrate, the inner face of which is coated with copper, nickel, iron or one of their alloys. The nuclear fuel is selected from uranium compounds, plutonium compounds or mixtures thereof. The substrate is selected from zirconium and zirconium alloys [fr

  12. Testing external surface of fuel element tubes for power nuclear reactors

    International Nuclear Information System (INIS)

    Naugol'nykh, O.G.; Nelyubin, Yu.V.

    1987-01-01

    Optical methods are regarded perspective for discovery and detection of flaws of external surfaces of fuel element tubes. The TV method has highest information content among them. Two mock-ups of facilities based on the TV method using a ''dissector'' type TV device and a TV tube with charge accumulation (vidikon) have been developed. It is concluded that complex testing - combination of ultrasonic, photoelectric and TV methods in a facility is necessary for discovery and analysis of the whole variety of flaws, though sensitivity of the TV method is enough for disclosure of all the main defects

  13. Unified fuel elements development for research reactors

    International Nuclear Information System (INIS)

    Vatulin, A.; Stetsky, Y.; Dobrikova, I.

    1998-01-01

    Square cross-section rod type fuel elements have been developed for russian pool-type research reactors. new fuel elements can replace the large nomenclature of tubular fuel elements with around, square and hexahedral cross-sections and to solve a problem of enrichment reduction. the fuel assembly designs with rod type fuel elements have been developed. The overall dimensions of existing the assemblies are preserved in this one. the experimental-industrial fabricating process of fuel elements, based on a joint extrusion method has been developed. The fabricating process has been tested in laboratory conditions, 150 experimental fuel element samples of the various sizes were produced. (author)

  14. Pumped lithium loop test to evaluate advanced refractory metal alloys and simulated nuclear fuel elements

    Science.gov (United States)

    Brandenburf, G. P.; Hoffman, E. E.; Smith, J. P.

    1974-01-01

    The performance was determined of refractory metal alloys and uranium nitride fuel element specimens in flowing 1900F (1083C) lithium. The results demonstrate the suitability of the selected materials to perform satisfactorily from a chemical compatibility standpoint.

  15. Nuclear fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding, and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  16. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    Gordon, G.M.; Cowan, R.L. II.

    1975-01-01

    A nuclear fuel element is described. It includes a central nuclear fuel core and a composite cladding, composed of a substrate with two coatings on its inner face, the first coating being a diffusion barrier and the second a metal coating. The metal coating is in copper, nickel or iron. The substrate is a zirconium alloy. The diffusion barrier is in chromium or chromium alloy. The nuclear fuel is a uranium or plutonium compound or a mixture of both [fr

  17. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Butterfield, C.E.; Waite, E.

    1982-01-01

    A nuclear reactor fuel element comprising a column of vibration compacted fuel which is retained in consolidated condition by a thimble shaped plug. The plug is wedged into gripping engagement with the wall of the sheath by a wedge. The wedge material has a lower coefficient of expansion than the sheath material so that at reactor operating temperature the retainer can relax sufficient to accommodate thermal expansion of the column of fuel. (author)

  18. Quality assurance of fuel elements

    International Nuclear Information System (INIS)

    Hoerber, J.

    1980-01-01

    The quality assurance activities for reactor fuel elements are based on a quality assurance system which implies the requirements resulting from the specifications, regulations of the authorities, national standards and international rules and regulations. The quality assurance related to production of reactor fuel will be shown for PWR fuel elements in all typical fabrication steps as conversion into UO 2 -powder, pelletizing, rodmanufacture and assembling. A wide range of destructive and nondestructive techniques is applied. Quality assurance is not only verified by testing techniques but also by process monitoring by means of parameter control in production and testing procedures. (RW)

  19. Characterization of spent fuel elements stored at IEA-R1 research reactor based on visual inspections and sipping tests

    International Nuclear Information System (INIS)

    Silva, Jose Eduardo Rosa da; Terremoto, Luis Antonio Albiac; Teodoro, Celso Antonio; Castanheira, Myrthes; Lucki, Georgi; Damy, Margaret de Almeida; Silva, Antonio Teixeira e

    2005-01-01

    Aluminum spent nuclear fuels are susceptible to corrosion attack, or mechanical damage from improper handling, while in pool reactor storage. Storage practices have been modified to reduce the potential for damage, based on recommendations presented at second WS on Spent Fuel Characterization, promoted by IAEA. In this work, we present the inspection program proposed to the IEA-R1 stored spent fuel elements, in order to provide information on the physical condition during the interim storage time under wet condition at the reactor pool. The inspection program is based on non-destructive tests results (visual inspection and sipping tests) already periodically performed to exam the IEA-R1 stored spent fuel and fuel elements from the core reactor. To record the available information and examination results it was elaborated a document in the format of a catalogue containing the proposed inspection program for the IEA-R1 stored spent fuel, the description of the visual inspection and sipping tests systems, a compilation of information and images result from the tests performed for all stored standard spent fuel element and, in annexes, copies of the reference documents. That document constitutes an important step of the effective implementation of the referred IEA-R1 spent fuel inspection program and can be used to address regulatory and operational needs for the demonstration, for example, of safe storage throughout the pool storage period. (author)

  20. Characterization of spent fuel elements stored at IEA-R1 research reactor based on visual inspections and sipping tests

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jose Eduardo Rosa da; Terremoto, Luis Antonio Albiac; Teodoro, Celso Antonio; Castanheira, Myrthes; Lucki, Georgi; Damy, Margaret de Almeida; Silva, Antonio Teixeira e [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: jersilva@ipen.br

    2005-07-01

    Aluminum spent nuclear fuels are susceptible to corrosion attack, or mechanical damage from improper handling, while in pool reactor storage. Storage practices have been modified to reduce the potential for damage, based on recommendations presented at second WS on Spent Fuel Characterization, promoted by IAEA. In this work, we present the inspection program proposed to the IEA-R1 stored spent fuel elements, in order to provide information on the physical condition during the interim storage time under wet condition at the reactor pool. The inspection program is based on non-destructive tests results (visual inspection and sipping tests) already periodically performed to exam the IEA-R1 stored spent fuel and fuel elements from the core reactor. To record the available information and examination results it was elaborated a document in the format of a catalogue containing the proposed inspection program for the IEA-R1 stored spent fuel, the description of the visual inspection and sipping tests systems, a compilation of information and images result from the tests performed for all stored standard spent fuel element and, in annexes, copies of the reference documents. That document constitutes an important step of the effective implementation of the referred IEA-R1 spent fuel inspection program and can be used to address regulatory and operational needs for the demonstration, for example, of safe storage throughout the pool storage period. (author)

  1. Equipment for testing a group of nuclear reactor fuel elements for damage to the cans

    International Nuclear Information System (INIS)

    Mohm, F.

    1977-01-01

    Equipment is described for use in sodium cooled nuclear reactors, with which the fuel elements consisting of bundles of fuel and fertile rods can be examined for damage to the cans. Fission poducts occurring in the liquid coolant act as indicators. The coolant is sucked via pipelines which penetrate into the elements into a collecting container, and a special pipeline is available for every element of a group, where the highest points of individual pipelines at different hydrostatic heads are taken to the collecting container. This permits the checking of one line at a time due to pressure changes. (UWI) [de

  2. Nuclear fuel element

    International Nuclear Information System (INIS)

    Penrose, R.T.; Thompson, J.R.

    1976-01-01

    A method of protecting the cladding of a nuclear fuel element from internal attack and a nuclear fuel element for use in the core of a nuclear reactor are disclosed. The nuclear fuel element has disposed therein an additive of a barium-containing material and the barium-containing material collects reactive gases through chemical reaction or adsorption at temperatures ranging from room temperature up to fuel element plenum temperatures. The additive is located in the plenum of the fuel element and preferably in the form of particles in a hollow container having a multiplicity of gas permeable openings in one portion of the container with the openings being of a size smaller than the size of the particles. The openings permit gases and liquids entering the plenum to contact the particles. The additive is comprised of elemental barium or a barium alloy containing one or more metals in addition to barium such as aluminum, zirconium, nickel, titanium and combinations thereof. 6 claims, 3 drawing figures

  3. CONSTRUCTION OF NUCLEAR FUEL ELEMENTS

    Science.gov (United States)

    Weems, S.J.

    1963-09-24

    >A rib arrangement and an end construction for nuclearfuel elements laid end to end in a coolant tube are described. The rib arrangement is such that each fuel element, when separated from other fuel elements, fits loosely in the coolant tube and so can easily be inserted or withdrawn from the tube. The end construction of the fuel elements is such that the fuel elements when assembled end to end are keyed against relative rotation, and the ribs of each fuel element cooperate with the ribs of the adjacent fuel elements to give the assembled fuel elements a tight fit with the coolant tube. (AEC)

  4. Recent irradiation tests of uranium-plutonium-zirconium metal fuel elements

    International Nuclear Information System (INIS)

    Pahl, R.G.; Lahm, C.E.; Villarreal, R.; Hofman, G.L.; Beck, W.N.

    1986-09-01

    Uranium-Plutonium-Zirconium metal fuel irradiation tests to support the ANL Integral Fast Reactor concept are discussed. Satisfactory performance has been demonstrated to 2.9 at.% peak burnup in three alloys having 0, 8, and 19 wt % plutonium. Fuel swelling measurements at low burnup in alloys to 26 wt % plutonium show that fuel deformation is primarily radial in direction. Increasing the plutonium content in the fuel diminishes the rate of fuel-cladding gap closure and axial fuel column growth. Chemical redistribution occurs by 2.1 at.% peak burnup and generally involves the inward migration of zirconium and outward migration of uranium. Fission gas release to the plenum ranges from 46% to 56% in the alloys irradiated to 2.9 at.% peak burnup. No evidence of deleterious fuel-cladding chemical or mechanical interaction was observed

  5. Nuclear reactor fuel element

    International Nuclear Information System (INIS)

    1987-01-01

    A fuel element of a PWR has a deflector projection outside on the intermediate strip of the spacer to avoid hooking up during fuelling and fuel removal, which is placed in the direction of the diagonals of the corner grid mesh between the two outer bars on the intermediate strip and is oblique to the two ends of the intermediate strip in the longitudinal direction of the bars. (orig./HP) [de

  6. Fuel element services

    International Nuclear Information System (INIS)

    Marta, H.; Alvarez, P.; Jimenez, J.

    2006-01-01

    Refuelling outages comprise a number of maintenance tasks scheduled long in advance to assure a reliable operation throughout the next cycle and, in the long run, a safer and more efficient plant. Most of these tasks are routine service of mechanical and electrical system and likewise fuel an be considered a critical component as to handling, inspection, cleaning and repair. ENUSA-ENWESA AIE has been working in this area since 1995 growing from fuel repair to a more integrated service that includes new and spent fuel handling, inserts, failed fuel rod detection systems, ultrasonic fuel cleaning, fuel repair and a comprehensive array of inspection and tests related to the reliability of the mechanical components in the fuel assembly, all this, performed in compliance with quality, safety, health physics and any other nuclear standard. (Author)

  7. Fuel Element Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Burley, H.H. [ed.

    1956-08-01

    It is the purpose of the Fuel Element Technical Manual to Provide a single document describing the fabrication processes used in the manufacture of the fuel element as well as the technical bases for these processes. The manual will be instrumental in the indoctrination of personnel new to the field and will provide a single data reference for all personnel involved in the design or manufacture of the fuel element. The material contained in this manual was assembled by members of the Engineering Department and the Manufacturing Department at the Hanford Atomic Products Operation between the dates October, 1955 and June, 1956. Arrangement of the manual. The manual is divided into six parts: Part I--introduction; Part II--technical bases; Part III--process; Part IV--plant and equipment; Part V--process control and improvement; and VI--safety.

  8. Production test IP-333-D, Supplement A: Irradiation of two defected UO{sub 2} fuel element assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, R.K.

    1960-11-30

    To permit either the irradiation of two defected UO{sub 2} four-rod-cluster fuel element assemblies during the same operating period, or the irradiation of the two assemblies singly during two different operating periods in KE Reactor front-to-rear test hole 3865. The density of UO{sub 2} in one fuel element assembly is 90% of theoretical, in the other 87%. In both assemblies the fuel element cladding is Zircaloy and the fuel material natural uranium. An artificial defect will be made in each assembly before irradiation by drilling a .005 in. diameter hole through the cladding near the mid-point of two of the rods in each assembly, thus a total of eight UO{sub 2} rods, four defected and four nondefected, will be irradiated.

  9. Nuclear reactor fuel element

    International Nuclear Information System (INIS)

    Steinke, A.

    1985-01-01

    The grid-shaped spacer for PWR fuel elements consists of flat, upright metal bars at right angles to the fuel rods. In one corner of a grid mesh it has a spring with two end parts for the fuel rod. The cut-outs for the end parts start from an end edge of the metal bar parallel to the fuel rods. The transverse metal bar is one of four outer metal bars. Both end parts of the spring have an extension parallel to this outer metal arm, which grips a grid mesh adjacent to this grid mesh at the side in one corner of the spacer and forms an end part of a spring for the fuel rod there on the inside of the outer metal bar. (HP) [de

  10. PIE of a CANDU fuel element irradiated for a load following test in the INR TRIGA reactor

    International Nuclear Information System (INIS)

    Parvan, Marcel; Matei, Ana; Mincu, Marin; Uta, Octavian; Palleck, Steve; Montin, John; Abbas, Shaun

    2007-01-01

    As part of the collaboration under the Romania - Canada Memorandum for co-operation in research and development of nuclear energy and technology, a load following test has been devised to demonstrate the load following capability of CANDU-6 fuel within the established design envelope for operating powers. A 37-element CANDU-6 fuel bundle element fabricated by AECL was irradiated in the TRIGA 14 MW(th) material testing reactor at the Institute for Nuclear Research (INR) in Pitesti, Romania. The load following cycle consisted of 200 daily cycles from 100% power to 50% power within the reference overpower envelope for fuel in a CANDU-6 reactor. Full power operation was 57 kW/m Element Linear Power. The paper provides the results obtained by post-irradiation examination of the fuel element in the INR hot cells. The following techniques were used: - Visual inspection and photography by periscope; - Profilometry; - Axial gamma scanning; - Fuel element puncturing and fission gas analysis; - Metallographic and ceramographic examinations by optical microscopy; - Burn-up measurement by mass spectrometry using the 235 U depletion method. (authors)

  11. STAT, GAPS, STRAIN, DRWDIM: a system of computer codes for analyzing HTGR fuel test element metrology data. User's manual

    Energy Technology Data Exchange (ETDEWEB)

    Saurwein, J.J.

    1977-08-01

    A system of computer codes has been developed to statistically reduce Peach Bottom fuel test element metrology data and to compare the material strains and fuel rod-fuel hole gaps computed from these data with HTGR design code predictions. The codes included in this system are STAT, STRAIN, GAPS, and DRWDIM. STAT statistically evaluates test element metrology data yielding fuel rod, fuel body, and sleeve irradiation-induced strains; fuel rod anisotropy; and additional data characterizing each analyzed fuel element. STRAIN compares test element fuel rod and fuel body irradiation-induced strains computed from metrology data with the corresponding design code predictions. GAPS compares test element fuel rod, fuel hole heat transfer gaps computed from metrology data with the corresponding design code predictions. DRWDIM plots the measured and predicted gaps and strains. Although specifically developed to expedite the analysis of Peach Bottom fuel test elements, this system can be applied, without extensive modification, to the analysis of Fort St. Vrain or other HTGR-type fuel test elements.

  12. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has a metal liner disposed between the cladding and the nuclear fuel material and a high lubricity material in the form of a coating disposed between the liner and the cladding. The liner preferably has a thickness greater than the longest fission product recoil distance and is composed of a low neutron capture cross-section material. The liner is preferably composed of zirconium, an alloy of zirconium, niobium or an alloy of niobium. The liner serves as a preferential reaction site for volatile impurities and fission products and protects the cladding from contact and reaction with such impurities and fission products. The high lubricity material acts as an interface between the liner and the cladding and reduces localized stresses on the cladding due to fuel expansion and cracking of the fuel

  13. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E. D.

    1984-01-01

    An array of rods is assembled to form a fuel element for a pressurized water reactor, the rods comprising zirconium alloy sheathed nuclear fuel pellets and containing helium. The helium gas pressure is selected for each rod so that it differs substantially from the helium gas pressure in its closest neighbors. In a preferred arrangement the rods are arranged in a square lattice and the helium gas pressure alternates between a relatively high value and a relatively low value so that each rod has as its closest neighbors up to four rods containing helium gas at the other pressure value

  14. Nuclear reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, E. D.

    1984-10-16

    An array of rods is assembled to form a fuel element for a pressurized water reactor, the rods comprising zirconium alloy sheathed nuclear fuel pellets and containing helium. The helium gas pressure is selected for each rod so that it differs substantially from the helium gas pressure in its closest neighbors. In a preferred arrangement the rods are arranged in a square lattice and the helium gas pressure alternates between a relatively high value and a relatively low value so that each rod has as its closest neighbors up to four rods containing helium gas at the other pressure value.

  15. Chilean fuel elements fabrication progress report

    International Nuclear Information System (INIS)

    Baeza, J.; Contreras, H.; Chavez, J.; Klein, J.; Mansilla, R.; Marin, J.; Medina, R.

    1993-01-01

    Due to HEU-LEU core conversion necessity for the Chilean MTR reactors, the Fuel Elements Plant is being implemented to LEU nuclear fuel elements fabrication. A glove box line for powder-compact processing designed at CCHEN, which supposed to operate under an automatic control system, is at present under initial tests. Results of first natural uranium fuel plates manufacturing runs are shown

  16. Integral nuclear fuel element assembly

    International Nuclear Information System (INIS)

    Schluderberg, D. C.

    1985-01-01

    An integral nuclear fuel element assembly utilizes longitudinally finned fuel pins. The continuous or interrupted fins of the fuel pins are brazed to fins of juxtaposed fuel pins or directly to the juxtaposed fuel pins or both. The integrally brazed fuel assembly is designed to satisfy the thermal and hydraulic requirements of a fuel assembly lattice having moderator to fuel atom ratios required to achieve high conversion and breeding ratios

  17. Nuclear fuel element

    International Nuclear Information System (INIS)

    Hirama, H.

    1978-01-01

    A nuclear fuel element comprises an elongated tube having upper and lower end plugs fixed to both ends thereof and nuclear fuel pellets contained within the tube. The fuel pellets are held against the lower end plug by a spring which is supported by a setting structure. The setting structure is maintained at a proper position at the middle of the tube by a wedge effect caused by spring force exerted by the spring against a set of balls coacting with a tapered member of the setting structure thereby wedging the balls against the inner wall of the tube, and the setting structure is moved free by pushing with a push bar against the spring force so as to release the wedge effect

  18. Nuclear reactor fuel element

    International Nuclear Information System (INIS)

    D'Eye, R.W.M.; Shennan, J.V.; Ford, L.H.

    1977-01-01

    Fuel element with particles from ceramic fissionable material (e.g. uranium carbide), each one being coated with pyrolitically deposited carbon and all of them being connected at their points of contact by means of an individual crossbar. The crossbar consists of silicon carbide produced by reaction of silicon metal powder with the carbon under the influence of heat. Previously the silicon metal powder together with the particles was kneaded in a solvent and a binder (e.g. epoxy resin in methyl ethyl ketone plus setting agent) to from a pulp. The reaction temperature lies at 1750 0 C. The reaction itself may take place in a nitrogen atmosphere. There will be produced a fuel element with a high overall thermal conductivity. (DG) [de

  19. A follow-up test of failed fuel element of a nuclear reactor

    International Nuclear Information System (INIS)

    Peerasathien, W.

    1974-01-01

    This thesis is a result of test of a number of nuclear fuel rods which have not been used for a long time due to leakage of radioactivity. Water was circulated through each fuel rod in a test cylinder and radioactivity in water was measured. It was found that the detection of Cesium-137 which has a long half-life, does not indicate the extent of leakage of short-lived radioisotopes, some of which are gaseous. These gases are harmful to the reactor operators and users. A better result was obtained by placing the failed fuel rod in the test cylinder close to the reactor to induce fission. Short half-life gases or other nuclides of the same series were then directly measured

  20. Test plan for techniques to measure and remove coatings from K West Basin fuel elements

    International Nuclear Information System (INIS)

    Bridges, A.E.; Pitner, A.L.; Makenas, B.J.

    1998-01-01

    Several types of coatings have previously been visually identified on the surface of 105-K East and 105-K West Basins fuel elements. One type of coating (found only in K West Basin) in particular was found to be a thick translucent material that was often seen to be dislodged from the elements as flakes when the elements were handled during visual examinations (Pitner 1997). Subsequently it was determined (for one element only in a hot cell) that this material, in the dry condition, could easily be removed from the element using a scraping tool. The coating was identified as Al(OH) 3 through X-ray diffraction (XRD) analyses and to be approximately 60 microm thick via scanning electron microscopy (SEM). However, brushing under water in the basin using numerous mechanical strokes failed to satisfactorily remove these coatings in their thickest form as judged by appearance. Such brushing was done with only one type of metal brush, a brush design previously found satisfactory for removing UO 4 .xH 2 O coatings from the elements

  1. Design report for an annular fuel element for accommodation of a carbide test bundle on the ring position of the KNK II/2 test zone

    International Nuclear Information System (INIS)

    Haefner, H.E.

    1982-03-01

    This report describes an annular oxide element with Mark II rods for accommodation of a 19-pin carbide test bundle on position 201 in the test zone of the second core of KNK II as well as its behavior during the period of operation. The ring element comprises within a driver wrapper in three rows of pins 102 fuel pins of 7.6 mm diameter and six structural rods for fixing the spark eroded spacers. The report deals with the ring element with its individual components fuel rod, bundle, wrappers, head and foot and describes methods, criteria and results concerning the design. The carbide test bundle to be accommodated by the annular carrier element will be treated in a separate report. The loadability of the annular element with its components is demonstrated by generally valid standards for strength criteria

  2. Equipment for nondestructive testing of the PWR and BWR spept fUel elements and assemblies in the NPP storage pools

    International Nuclear Information System (INIS)

    Gorskij, V.V.

    1983-01-01

    Design features are considered of units for nondestructive testing of spent fUel elements and fuel assemblies (FA) in the storage pools of NPP with the PWR and BWR reactors. Units for remote viewing control of fuel element cans and FA, for direct measurements of their geometrical dimensions, for FA leak-testing, fuel element can nondestructive testing and gamma scanning, for measuring gaseous fission product pressure and fuel element free volume are described along with units for complex checking of fuel element and FA parameters. The units for nondestructive testing of spent fuel elements and EA are shown to differ both in their designs and a number of checked parameters of fuel elements and FA. The remote viewing and those for measuring the basic FA parameters are most generally employed. Units for complex testing of multiple fuel element parameters, designed in the last few years, are intended for operation with FA disassembled partially or fully and are characteristic of a high degree of computer measuring automation both for the process control and data processing

  3. Nuclear reactor fuel element

    International Nuclear Information System (INIS)

    Lippert, H.J.

    1985-01-01

    The fuel element box for a BWR is situated with a corner bolt on the inside in one corner of its top on the top side of the top plate. This corner bolt is screwed down with a bolt with a corner part which is provided with leaf springs outside on two sides, where the bolt has a smaller diameter and an expansion shank. The bolt is held captive to the bolt head on the top and the holder on the bottom of the corner part. The holder is a locknut. If the expansion forces are too great, the bolt can only break at the expansion shank. (HP) [de

  4. Transportation of irradiated fuel elements

    International Nuclear Information System (INIS)

    Preece, A.H.

    1980-01-01

    The report falls under the headings: introduction (explaining the special interest of the London Borough of Brent, as forming part of the route for transportation of irradiated fuel elements); nuclear power (with special reference to transport of spent fuel and radioactive wastes); the flask aspect (design, safety regulations, criticisms, tests, etc.); the accident aspect (working manual for rail staff, train formation, responsibility, postulated accident situations); the emergency arrangements aspect; the monitoring aspect (health and safety reports); legislation; contingency plans; radiation - relevant background information. (U.K.)

  5. Thermionic fuel element technology status

    Science.gov (United States)

    Holland, J. W.; Horner, M. W.; Yang, L.

    1985-01-01

    The results of research, conducted between the mid-1960s and 1973, on the multiconverter thermionic fuel elements (TFEs) that comprise the reactor core of an SP-100 thermionic reactor system are presented. Fueled-emitter technology, insulator technology and cell and TFE assembly technology of the prototypical TFEs which were tested in-pile and out-of-pile during these years are described. The proto-TFEs have demonstrated reproducible performance within 5 percent and no premature failures within the 1.5 yr of operation (with projected 3-yr lifetimes). The two primary life-limiting factors had been identified as thermionic emitter dimensional increase due to interactions with the fuel and electrical insulator structural damage from fast neutrons. Multiple options for extending TFE lifetimes to 7 yr or longer are available and will be investigated in the 1984-1985 SP-100 program for resolution of critical technology issues. Design diagrams and test graphs are included.

  6. Automated Fuel Element Closure Welding System

    International Nuclear Information System (INIS)

    Wahlquist, D.R.

    1993-01-01

    The Automated Fuel Element Closure Welding System is a robotic device that will load and weld top end plugs onto nuclear fuel elements in a highly radioactive and inert gas environment. The system was developed at Argonne National Laboratory-West as part of the Fuel Cycle Demonstration. The welding system performs four main functions, it (1) injects a small amount of a xenon/krypton gas mixture into specific fuel elements, and (2) loads tiny end plugs into the tops of fuel element jackets, and (3) welds the end plugs to the element jackets, and (4) performs a dimensional inspection of the pre- and post-welded fuel elements. The system components are modular to facilitate remote replacement of failed parts. The entire system can be operated remotely in manual, semi-automatic, or fully automatic modes using a computer control system. The welding system is currently undergoing software testing and functional checkout

  7. Nuclear Fuel elements

    International Nuclear Information System (INIS)

    Hirakawa, Hiromasa.

    1979-01-01

    Purpose: To reduce the stress gradient resulted in the fuel can in fuel rods adapted to control the axial power distribution by the combination of fuel pellets having different linear power densities. Constitution: In a fuel rod comprising a first fuel pellet of a relatively low linear power density and a second fuel pellet of a relatively high linear power density, the second fuel pellet is cut at its both end faces by an amount corresponding to the heat expansion of the pellet due to the difference in the linear power density to the adjacent first fuel pellet. Thus, the second fuel pellet takes a smaller space than the first fuel pellet in the fuel can. This can reduce the stress produced in the portion of the fuel can corresponding to the boundary between the adjacent fuel pellets. (Kawakami, Y.)

  8. Flow tests of a single fuel element coolant channel for a compact fast reactor for space power

    Science.gov (United States)

    Springborn, R. H.

    1971-01-01

    Water flow tests were conducted on a single-fuel-element cooling channel for a nuclear concept to be used for space power. The tests established a method for measuring coolant flow rate which is applicable to water flow testing of a complete mockup of the reference reactor. The inlet plenum-to-outlet plenum pressure drop, which approximates the overall core pressure drop, was measured and correlated with flow rate. This information can be used for reactor coolant flow and heat transfer calculations. An analytical study of the flow characteristics was also conducted.

  9. RECONDITIONING FUEL ELEMENTS

    Science.gov (United States)

    Brandt, H.L.

    1962-02-20

    A process is given for decanning fuel elements that consist of a uranium core, an intermediate section either of bronze, silicon, Al-Si, and uranium silicide layers or of lead, Al-Si, and uranium silicide layers around said core, and an aluminum can bonded to said intermediate section. The aluminum can is dissolved in a solution of sodium hydroxide (9 to 20 wt%) and sodium nitrate (35 to 12 wt %), and the layers of the intermediate section are dissolved in a boiling sodium hydroxide solution of a minimum concentration of 50 wt%. (AEC) A method of selectively reducing plutonium oxides and the rare earth oxides but not uranium oxides is described which comprises placing the oxides in a molten solvent of zinc or cadmium and then adding metallic uranium as a reducing agent. (AEC)

  10. Nuclear fuel element

    International Nuclear Information System (INIS)

    Armijo, J.S.

    1977-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed which has a composite cladding having a substrate, a metal barrier metallurgically bonded to the inside surface of the substrate and an inner layer metallurgically bonded to the inside surface of the metal barrier. In this composite cladding, the inner layer and the metal barrier shield the substrate from any impurities or fission products from the nuclear fuel material held within the composite cladding. The metal barrier forms about 1 to about 4 percent of the thickness of the cladding and is comprised of a metal selected from the group consisting of niobium, aluminum, copper, nickel, stainless steel, and iron. The inner layer and then the metal barrier serve as reaction sites for volatile impurities and fission products and protect the substrate from contact and reaction with such impurities and fission products. The substrate and the inner layer of the composite cladding are selected from conventional cladding materials and preferably are a zirconium alloy. Also in a preferred embodiment the substrate and the inner layer are comprised of the same material, preferably a zirconium alloy. 19 claims, 2 figures

  11. Rack for nuclear fuel elements

    International Nuclear Information System (INIS)

    Rubinstein, H.J.; Gordon, C.B.; Robison, A.; Clark, P.M.

    1977-01-01

    Disclosed is a rack for storing spent nuclear fuel elements in which a plurality of aligned rows of upright enclosures of generally square cross-sectional areas contain vertically disposed spent fuel elements. Each fuel element is supported at the lower end thereof by a respective support that rests on the floor of the spent fuel pool for a nuclear power plant. An open rack frame is employed as an upright support for the enclosures containing the spent fuel elements. Legs at the lower corners of the frame rest on the floor of the pool to support the frame. In one exemplary embodiment, the support for the fuel element is in the form of a base on which a fuel element rests and the base is supported by legs. In another exemplary embodiment, each fuel element is supported on the pool floor by a self-adjusting support in the form of a base on which a fuel element rests and the base rests on a ball or swivel joint for self-alignment. The lower four corners of the frame are supported by legs adjustable in height for leveling the frame. Each adjustable frame leg is in the form of a base resting on the pool floor and the base supports a threaded post. The threaded post adjustably engages a threaded column on which rests the lower end of the frame. 16 claims, 14 figures

  12. Thermal insulation of fuel elements

    International Nuclear Information System (INIS)

    Dubrovcak, P.; Pec, V.; Pitonak, J.

    1978-01-01

    The claim of the invention concerns thermal insulation of fuel elements heated for measurement of uranium fuel physical properties. For this, layers of aluminium film and of glass fibre are wound onto the inner tube of the element cladding. The space between the inner and the outer tubes is evacuated and the tubes are spaced using spacer wires. (M.S.)

  13. Test of test fuel elements with carbide fuel in the BOR 60 reactor until burn-up of 3 or 7%

    International Nuclear Information System (INIS)

    Davydov, E.F.; Majorsin, A.A.; Sjuzev, V.P.; Bibilasvili, J.K.; Golovin, I.S.; Men'sikova, T.S.

    1976-01-01

    Operational experience with the carbide zone of the BR-5 and a few foreign reactors shows the real possibility of utilizing carbide fission material in fast reactors. For the purpose of using the advantages of the uranium carbide as compared to oxide and development of the optimum construction of the fuel element, a number of problems must be clarified by careful experimental investigation, amongst others, the source of the fission material; the gas release, the compatibility of the fuel with the cladding, etc. (orig./TK) [de

  14. Development and testing of the EDF-2 reactor fuel element; Essais et mise au point de l'element combustible pour le reacteur EDF-2

    Energy Technology Data Exchange (ETDEWEB)

    Delpeyroux, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Furhmann, R. [Societe Industrielle de Combustible Nucleaire (France)

    1964-07-01

    This technical report reviews the work which has been necessary for defining the EDF-2 fuel element. After giving briefly the EDF-2 reactor characteristics and the preliminary choice of parameters which made it possible to draw up a draft plan for the fuel element, the authors consider the research proper: - Uranium studies: tests on the passage into the {beta} phase of an internal crown of a tube, bending of the tube under the effect of a localized force, welding of the end-pellets and testing for leaks. The resistance of the tube to crushing and of the pellets to yielding under the external pressure have been studied in detail in another CEA report. - Can studies: conditions of production and leak proof testing of the can, resistance of the fins to creep due to the effect of the gas flow. - Studies of the extremities of the element: creep under compression and welding of the plugs to the can. - Cartridge studies: determination of the characteristics of the can fuel fixing grooves and of the canning conditions, verification of the resistance of the fuel element to thermal cycling, determination of the temperature drop at the can-fuel interface dealt with in more detail in another CEA report. - Studies of the whole assembly: this work which concerns the graphite jacket, the support and the cartridge vibrations has been carried out by the Mechanical and Thermal Study Service (Mechanics Section). In this field the Fuel Element Study Section has investigated the behaviour of the centering devices in a gas current. The outcome of this research is the defining of the plan of the element the production process and the production specifications. The validity of ail these out-of-pile tests will be confirmed by the in-pile tests already under way and by irradiation of the elements in the EDF-2 reactor itself. In conclusion the programme is given for improving the fuel element and for defining the fuel element for the second charge. (authors) [French] Ce rapport technique

  15. Flow instability tests for a particle bed reactor nuclear thermal rocket fuel element

    Science.gov (United States)

    Lawrence, Timothy J.

    1993-05-01

    Recent analyses have focused on the flow stability characteristics of a particle bed reactor (PBR). These laminar flow instabilities may exist in reactors with parallel paths and are caused by the heating of the gas at low Reynolds numbers. This phenomena can be described as follows: several parallel channels are connected at the plenum regions and are stabilized by some inlet temperature and pressure; a perturbation in one channel causes the temperature to rise and increases the gas viscosity and reduces the gas density; the pressure drop is fixed by the plenum regions, therefore, the mass flow rate in the channel would decrease; the decrease in flow reduces the ability to remove the energy added and the temperature increases; and finally, this process could continue until the fuel element fails. Several analyses based on different methods have derived similar curves to show that these instabilities may exist at low Reynolds numbers and high phi's ((Tfinal Tinitial)/Tinitial). These analyses need to be experimentally verified.

  16. Acceptance testing of the eddy current probes for measurement of aluminum hydroxide coating thickness on K West Basin fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Pitner, A.L.

    1998-08-21

    During a recent visual inspection campaign of fuel elements stored in the K West Basin, it was noted that fuel elements contained in sealed aluminum canisters had a heavy translucent type coating on their surfaces (Pitner 1997a). Subsequent sampling of this coating in a hot cell (Pitner 1997b) and analysis of the material identified it as aluminum hydroxide. Because of the relatively high water content of this material, safety related concerns are raised with respect to long term storage of this fuel in Multi-Canister Overpacks (MCOs). A campaign in the basin is planned to demonstrate whether this coating can be removed by mechanical brushing (Bridges 1998). Part of this campaign involves before-and-after measurements of the coating thickness to determine the effectiveness of coating removal by the brushing machine. Measurements of the as-deposited coating thickness on multiple fuel elements are also expected to provide total coating inventory information needed for MCO safety evaluations. The measurement technique must be capable of measuring coating thicknesses on the order of several mils, with a measurement accuracy of 0.5 mil. Several different methods for quantitatively measuring these thin coatings were considered in selecting the most promising approach. Ultrasonic measurement was investigated, but it was determined that due to the thin coating depth and the high water content of the material, the signal would likely pass directly through to the cladding without ever sensing the coating surface. X-ray fluorescence was also identified as a candidate technique, but would not work because the high gamma background from the irradiated fuel would swamp out the low energy aluminum signal. Laser interferometry could possibly be applied, but considerable development would be required and it was considered to be high risk on a short term basis. The consensus reached was that standard eddy current techniques for coating thickness measurement had the best chance for

  17. FUEL ELEMENT FOR NUCLEAR REACTORS

    Science.gov (United States)

    Bassett, C.H.

    1961-11-21

    A fuel element is designed which is particularly adapted for reactors of high power density used to generate steam for the production of electricity. The fuel element consists of inner and outer concentric tubes forming an annular chamber within which is contained fissionable fuel pellet segments, wedge members interposed between the fuel segments, and a spring which, acting with wedge members, urges said fuel pellets radially into contact against the inner surface of the outer tube. The wedge members may be a fertile material convertible into fissionable fuel material by absorbing neutrons emitted from the fissionable fuel pellet segments. The costly grinding of cylindrical fuel pellets to close tolerances for snug engagement is reduced because the need to finish the exact size is eliminated. (AEC)

  18. NUCLEAR REACTOR FUEL ELEMENT ASSEMBLY

    Science.gov (United States)

    Stengel, F.G.

    1963-12-24

    A method of fabricating nuclear reactor fuel element assemblies having a plurality of longitudinally extending flat fuel elements in spaced parallel relation to each other to form channels is presented. One side of a flat side plate is held contiguous to the ends of the elements and a welding means is passed along the other side of the platertransverse to the direction of the longitudinal extension of the elements. The setting and speed of travel of the welding means is set to cause penetration of the side plate with welds at bridge the gap in each channel between adjacent fuel elements with a weld-through bubble of predetermined size. The fabrication of a high strength, dependable fuel element is provided, and the reduction of distortion and high production costs are facilitated by this method. (AEC)

  19. Qualification program for JHR fuel elements: Irradiation of the first JHR test assembly in the BR2-Evita loop

    International Nuclear Information System (INIS)

    Anselmet, M.-C.; Lemoine, P.; Koonen, E.; Benoit, P.; Gouat, P.; Claes, W.; Geens, F.; Miras, G.; Brisson, S.

    2010-01-01

    An experimental program has been designed by CEA to qualify the behaviour of the JHR fuel under conditions representative of the reactor operating ones. This program uses the SCK.CEN facilities, irradiating JHR lead test elements in the BR2 reactor, inside its central channel which has been particularly arranged for this objective (Evita loop). As a first step in the program, a two cycle irradiation (4 weeks by cycle) started mid-July 2009 and ended mid-November (EVITA-1). After a cooling phase, this first JHR lead test element will be submitted to post-irradiation examination. The second JHR test element began its irradiation in the first quarter of 2010; its unloading is planned before the end of 2010, after 5 cycles in the BR2 reactor. The results of these two experiments are expected as input information for the Safety Authority Report. This paper presents the qualification program with the objectives assigned to each phase (irradiation, examination). A first interpretation of the irradiation data for the first element is presented, so as the information available on the progress of the following phases of the programme. (author)

  20. Nuclear fuel element end fitting

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    A typical embodiment of the invention has an array of sockets that are welded to the intersections of the plates that form the upper and lower end fittings of a nuclear reactor fuel element. The sockets, which are generally cylindrical in shape, are oriented in directions that enable the longitudinal axes of the sockets to align with the longitudinal axes of the fuel rods that are received in the respective sockets. Detents impressed in the surfaces of the sockets engage mating grooves that are formed in the ends of the fuel rods to provide for the structural integrity of the fuel element

  1. Nuclear fuel element

    International Nuclear Information System (INIS)

    Yamamoto, Seigoro.

    1994-01-01

    Ultrafine particles of a thermal neutron absorber showing ultraplasticity is dispersed in oxide ceramic fuels by more than 1% to 10% or lower. The ultrafine particles of the thermal neutron absorber showing ultrafine plasticity is selected from any one of ZrGd, HfEu, HfY, HfGd, ZrEu, and ZrY. The thermal neutron absorber is converted into ultrafine particles and solid-solubilized in a nuclear fuel pellet, so that the dispersion thereof into nuclear fuels is made uniform and an absorbing performance of the thermal neutrons is also made uniform. Moreover, the characteristics thereof, for example, physical properties such as expansion coefficient and thermal conductivity of the nuclear fuels are also improved. The neutron absorber, such as ZrGd or the like, can provide plasticity of nuclear fuels, if it is mixed into the nuclear fuels for showing the plasticity. The nuclear fuel pellets are deformed like an hour glass as burning, but, since the end portion thereof is deformed plastically within a range of a repulsive force of the cladding tube, there is no worry of damaging a portion of the cladding tube. (N.H.)

  2. FUEL ELEMENTS FOR NEUTRONIC REACTORS

    Science.gov (United States)

    Foote, F.G.; Jette, E.R.

    1963-05-01

    A fuel element for a nuclear reactor is described that consists of a jacket containing a unitary core of fissionable material and a filling of a metal of the group consisting of sodium and sodium-potassium alloys. (AEC)

  3. Fuel element box inspection device

    International Nuclear Information System (INIS)

    Ortmayer, R.M.; Pick, W.

    1985-01-01

    The invention concerns a device for inspecting the outer geometry of a long fuel element box by measuring the surface contours over its longitudinal crossection and along its length by sensors. These are kept in a sledge which can be moved along the fuel element guide in a slot guide. The measurement signals reach an evaluation device outside the longitudinal box. (orig./HP) [de

  4. Fuel elements of thermionic converters

    International Nuclear Information System (INIS)

    Hunter, R.L.

    1997-01-01

    Work on thermionic nuclear power systems has been performed in Russia within the framework of the TOPAZ reactor program since the early 1960s. In the TOPAZ in-core thermionic convertor reactor design, the fuel element's cladding is also the thermionic convertor's emitter. Deformation of the emitter can lead to short-circuiting and is the primary cause of premature TRC failure. Such deformation can be the result of fuel swelling, thermocycling, or increased unilateral pressure on the emitter due to the release of gaseous fission products. Much of the work on TRCs has concentrated on preventing or mitigating emitter deformation by improving the following materials and structures: nuclear fuel; emitter materials; electrical insulators; moderator and reflector materials; and gas-exhaust device. In addition, considerable effort has been directed toward the development of experimental techniques that accurately mimic operational conditions and toward the creation of analytical and numerical models that allow operational conditions and behavior to be predicted without the expense and time demands of in-pile tests. New and modified materials and structures for the cores of thermionic NPSs and new fabrication processes for the materials have ensured the possibility of creating thermionic NPSs for a wide range of powers, from tens to several hundreds of kilowatts, with life spans of 5 to 10 years

  5. Non-Destructive Testing Methods Applied to Multi-Finned SAP Tubing for Nuclear-Fuel Elements

    International Nuclear Information System (INIS)

    Lund, S.A.; Knudsen, P.

    1965-01-01

    The Danish Atomic Energy Commission has undertaken a design study oi an organic-cooled, heavy- water-moderated power reactor. The fuel element for the reactor is a 19-rod bundle; the fuel rods contain sintered uranium-dioxide pellets canned in 2-m long, helically-finned tubes of Sintered Aluminium Product (SAP). A very high quality of the canning tubes is necessary to obtain the optimum heat-transfer conditions and to maintain the integrity of the fuel element during reactor service. Two examples of tube design illustrate the narrow dimensional tolerances. In order to ensure an adequate quality of the canning tubes, a stringent quality control has been established, to a wide extent based upon non-destructive methods. An account is presented of the non-destructive techniques developed for measuring wall thickness and diameters and for detecting defects. The complex 24-finned cross-section prevents the application of ultrasonic or eddy-current methods for wall-thickness measurements. Therefore, a special recording beta-gauge has been developed, based upon the attenuation of beta radiation from a Sr 90 source placed inside the tube. An ultrasonic immersion resonance method is used for the continuous recording of the wall thickness of the more simple 12-finned tube design. Inner and outer (across fin tips) diameters are continuously recorded by rapid air-gauge systems. Flaw detection is carried out by the ultrasonic pulse-echo immersion technique and by eddy-current inspection.. Transverse cracks can easily be detected by the ultrasonic method whereas inspection for longitudinal flaws has not appeared feasible with this method. Therefore, eddy-current inspection is applied in addition to the ultrasonic testing. (author) [fr

  6. Fuel element tomography by gammametry

    International Nuclear Information System (INIS)

    Simonet, G.; Pineira, T.

    1982-03-01

    As from transversal gamma determinations of a cylindrical fuel element, the TOMOGAM program reconstitutes the distribution of fission products in a section. This direct, fast and non destructive method, makes it possible to have access to the behaviour of the fuel at any time: - the soluble fission products in the matrix represent the fuel itself and the distribution of the fissions, - the migrating elements inform on the temperature reached in accordance with the permitted powers, - the volatile nuclides build up in particular points where physical-chemical phenomena of fuel-cladding interaction are liable to corrode the latter. Hence, gamma spectrometry extends its possibilities of analysis relative to the performance of reactor elements [fr

  7. The use of U3Si2 dispersed in aluminum in plate-type fuel elements for research and test reactors

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Domagala, R.F.; Hofman, G.L.; Wiencek, T.C.; Copeland, G.L.; Hobbs, R.W.; Senn, R.L.

    1987-10-01

    A high-density fuel based on U 3 Si 2 dispersed in aluminum has been developed and tested for use in converting plate-type research and test reactors from the use of highly enriched uranium to the use of low-enriched uranium. Results of preirradiation testing and the irradiation and postirradiation examination of miniature fuel plates and full-sized fuel elements are summarized. Swelling of the U 3 Si 2 fuel particles is a linear function of the fission density in the particle to well beyond the fission density achievable in low-enriched fuels. U 3 Si 2 particle swelling rate is approximately the same as that of the commonly used UAl/sub x/ fuel particle. The presence of minor amounts of U 3 Si or uranium solid solution in the fuel result in greater, but still acceptable, fuel swelling. Blister threshold temperatures are at least as high as those of currently used fuels. An exothermic reaction occurs near the aluminum melting temperature, but the measured energy releases were low enough not to substantially worsen the consequences of an accident. U 3 Si 2 -aluminum dispersion fuel with uranium densities up to at least 4.8 Mg/m 3 is a suitable LEU fuel for typical plate-type research and test reactors. 42 refs., 28 figs., 7 tabs

  8. Hydraulic modelling of the CARA Fuel element

    International Nuclear Information System (INIS)

    Brasnarof, Daniel O.; Juanico, Luis; Giorgi, M.; Ghiselli, Alberto M.; Zampach, Ruben; Fiori, Jose M.; Yedros, Pablo A.

    2004-01-01

    The CARA fuel element is been developing by the National Atomic Energy Commission for both Argentinean PHWRs. In order to keep the hydraulic restriction in their fuel channels, one of CARA's goals is to keep its similarity with both present fuel elements. In this paper is presented pressure drop test performed at a low-pressure facility (Reynolds numbers between 5x10 4 and 1,5x10 5 ) and rational base models for their spacer grid and rod assembly. Using these models, we could estimate the CARA hydraulic performance in reactor conditions that have shown to be satisfactory. (author) [es

  9. Spacer grid for fuel elements

    International Nuclear Information System (INIS)

    Hensolt, T.; Huenner, M.; Rau, P.; Veca, A.

    1978-01-01

    The spacer grid for fuel elements of a gas-cooled fast breeder reactor (but also for PWRs and BWRs) consists of a lattice field with dodecagonal meshes. These meshes are formed by three each adjacent hexagons grouped arround a central axis. The pairs of legs extending into the dodecagon and being staggered by 120 0 are designed as knubs with inclined abutting surfaces for the fuel rods. By this means there is formed a three-point bearing for centering the fuel rods. The spacer grid mentioned above is rough-worked from a single disc- resp. plate-shaped body (unfinished piece). (DG) [de

  10. Spacer grid for fuel elements

    International Nuclear Information System (INIS)

    Hensolt, T.; Huenner, M.; Rau, P.; Veca, A.

    1980-01-01

    The spacer grid for fuel elements of a gas-cooled fast breeder reactor (but also for PWRs and BWRs) consists of a lattice field with dodecagonal meshes. These meshes are formed by three each adjacent hexagons grouped arround a central axis. The pairs of legs extending into the dodecagon and being staggered by 120 are designed as knubs with inclined abutting surfaces for the fuel rods. By this means there is formed a three-point bearing for centering the fuel rods. The spacer grid mentioned above is rough-worked from a single disc- resp. plate-shaped body (unfinished piece). (orig.)

  11. Monitoring arrangement for vented nuclear fuel elements

    Science.gov (United States)

    Campana, Robert J.

    1981-01-01

    In a nuclear fuel reactor core, fuel elements are arranged in a closely packed hexagonal configuration, each fuel element having diametrically opposed vents permitting 180.degree. rotation of the fuel elements to counteract bowing. A grid plate engages the fuel elements and forms passages for communicating sets of three, four or six individual vents with respective monitor lines in order to communicate vented radioactive gases from the fuel elements to suitable monitor means in a manner readily permitting detection of leakage in individual fuel elements.

  12. Automatic welding of fuel elements

    International Nuclear Information System (INIS)

    Briola, J.

    1958-01-01

    The welding process depends on the type of fuel element, the can material and the number of cartridges to be welded: - inert-gas welding (used for G2 and the 1. set of EL3), - inert atmosphere arc welding (used for welding uranium and zirconium), - electronic welding (used for the 2. set of EL3 and the tank of Proserpine). (author) [fr

  13. Fuel element database: developer handbook

    International Nuclear Information System (INIS)

    Dragicevic, M.

    2004-09-01

    The fuel elements database which was developed for Atomic Institute of the Austrian Universities is described. The software uses standards like HTML, PHP and SQL. For the standard installation freely available software packages such as MySQL database or the PHP interpreter from Apache Software Foundation and Java Script were used. (nevyjel)

  14. Features of spherical uranium-graphite HTGR fuel elements control

    International Nuclear Information System (INIS)

    Kreindlin, I.I.; Oleynikov, P.P.; Shtan, A.S.

    1985-01-01

    Control features of spherical HTGR uranium-graphite fuel elements with spherical coated fuel particles are mainly determined by their specific construction and fabrication technology. The technology is chiefly based on methods of ceramic fuel (fuel microspheres fabrication) and graphite production practice it is necessary to deal with a lot of problems from determination of raw materials properties to final fuel elements testing. These procedures are described

  15. Low cost, lightweight fuel cell elements

    Science.gov (United States)

    Kindler, Andrew (Inventor)

    2001-01-01

    New fuel cell elements for use in liquid feed fuel cells are provided. The elements including biplates and endplates are low in cost, light in weight, and allow high efficiency operation. Electrically conductive elements are also a part of the fuel cell elements.

  16. Prevention of criticality accidents. Fuel elements storage

    International Nuclear Information System (INIS)

    Canavese, S.I.; Capadona, N.M.

    1990-01-01

    Before the need to store fuel elements of the plate type MTR (Materials Testing Reactors), produced with enriched uranium at 20% in U235 for research reactors, it requires the design of a deposit for this purpose, which will give intrinsic security at a great extent and no complaints regarding its construction, is required. (Author) [es

  17. Gas Test Loop Booster Fuel Hydraulic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  18. Evaluation of plate type fuel elements by eddy current test method; Avaliacao de combustiveis nucleares tipo placa pelo metodo de correntes parasitas

    Energy Technology Data Exchange (ETDEWEB)

    Frade, Rangel Teixeira

    2015-07-01

    Plate type fuel elements are used in MTR research nuclear reactors. The fuel plates are manufactured by assembling a briquette containing the fissile material inserted in a frame, with metal plates in both sides of the set, to act as a cladding. This set is rolled under controlled conditions in order to obtain the fuel plate. In Brazil, this type of fuel is manufactured by IPEN and used in the IEA-R1 reactor. After fabrication of three batches of fuel plates, 24 plates, one of them is taken, in order to verify the thickness of the cladding. For this purpose, the plate is sectioned and the thickness measurements are carried out by using optical microscopy. This procedure implies in damage of the plate, with the consequent cost. Besides, the process of sample preparation for optical microscopy analysis is time consuming, it is necessary an infrastructure for handling radioactive materials and there is a generation of radioactive residues during the process. The objective of this study was verify the applicability of eddy current test method for nondestructive measurement of cladding thickness in plate type nuclear fuels, enabling the inspection of all manufactured fuel plates. For this purpose, reference standards, representative of the cladding of the fuel plates, were manufactured using thermomechanical processing conditions similar to those used for plates manufacturing. Due to no availability of fuel plates for performing the experiments, the presence of the plate’s core was simulated using materials with different electrical conductivities, fixed to the thickness reference standards. Probes of eddy current testing were designed and manufactured. They showed high sensitivity to thickness variations, being able to separate small thickness changes. The sensitivity was higher in tests performed on the reference standards and samples without the presence of the materials simulating the core. For examination of the cladding with influence of materials simulating the

  19. Detector for failed fuel elements

    International Nuclear Information System (INIS)

    Ito, Masaru.

    1979-01-01

    Purpose: To provide automatic monitor for the separation or reactor water and sampling water, in a failed fuel element detector using a sipping chamber. Constitution: A positional detector for the exact mounting of a sipping chamber on a channel box and a level detector for the detection of complete discharge of cooling water in the sipping chamber are provided in the sipping chamber. The positional detector is contacted to the upper end of the channel box and operated when the sipping chamber is correctly mounted to the fuel assemblies. The level detector comprises a float and a limit switch and it is operated when the water in the sipping chamber is discharged by a predetermined amount. Isolation of reactor water and sampling water are automatically monitored by the signal from these two detectors. (Ikeda, J.)

  20. METHOD OF MAKING FUEL ELEMENTS

    Science.gov (United States)

    Bean, C.H.; Macherey, R.E.

    1959-12-01

    A method is described for fabricating fuel elements, particularly for enclosing a plate of metal with a second metal by inserting the plate into an aperture of a frame of a second plate, placing a sheet of the second metal on each of opposite faces of the assembled plate and frame, purging with an inert gas the air from the space within the frame and the sheets while sealing the seams between the frame and the sheets, exhausting the space, purging the space with air, re-exhausting the spaces, sealing the second aperture, and applying heat and pressure to bond the sheets, the plate, and the frame to one another.

  1. Drying of mock spent nuclear fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Crepeau, J.C.; Reese, S.; McIlroy, H.M. Jr. [Univ. of Idaho, Idaho Falls, ID (United States). Dept. of Mechanical Engineering; Lords, R.E. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

    1998-03-01

    Spent nuclear fuel elements are stored in underwater cooling pools until the elements can be safely handled and prepared for interim dry storage. The fuel was intended for short-term storage in water before it was to be reprocessed. However, the fuel will no longer be reprocessed, and extended storage in water has caused many of the aluminum-clad elements to degrade, exposing the uranium fuel. In addition, sludge, comprised of corroded aluminum and sediment, has accumulated in and around the fuel plates. The water in the sludge must be removed before the spent fuel elements can be placed in dry storage. Experiments have been performed on mock spent fuel elements with simulated corrosion product applied between the plates. A series of vacuum and heating cycles were used to dry the elements, and a mixture of clay and aluminum oxide was used to simulate corrosion products on the elements. The procedures used in the experiments were determined to be adequate to dry the mock spent fuel elements, and the temperature behavior of the simulated corrosion product within the fuel elements could be used to determine when the element was dry. On plates where areas of wet simulant were found, a sharp frying front was observed that separated the wet and dry parts of the simulated corrosion product. The drying front propagated inward towards the center of the mock fuel elements over time.

  2. Highest average burnups achieved by MTR fuel elements of the IEA-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Damy, Margaret A.; Terremoto, Luis A.A.; Silva, Jose E.R.; Silva, Antonio Teixeira e; Castanheira, Myrthes; Teodoro, Celso A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear (CEN)]. E-mail: madamy@ipen.br

    2007-07-01

    Different nuclear fuels were employed in the manufacture of plate type at IPEN , usually designated as Material Testing Reactor (MTR) fuel elements. These fuel elements were used at the IEA-R1 research reactor. This work describes the main characteristics of these nuclear fuels, emphasizing the highest average burn up achieved by these fuel elements. (author)

  3. Highest average burnups achieved by MTR fuel elements of the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Damy, Margaret A.; Terremoto, Luis A.A.; Silva, Jose E.R.; Silva, Antonio Teixeira e; Castanheira, Myrthes; Teodoro, Celso A.

    2007-01-01

    Different nuclear fuels were employed in the manufacture of plate type at IPEN , usually designated as Material Testing Reactor (MTR) fuel elements. These fuel elements were used at the IEA-R1 research reactor. This work describes the main characteristics of these nuclear fuels, emphasizing the highest average burn up achieved by these fuel elements. (author)

  4. Nuclear reactor fuel element sub-assemblies

    International Nuclear Information System (INIS)

    Dodd, J.A.; Ashton, M.W.; Aubertin, J.C.

    1975-01-01

    Reference is made to fuel element sub-assemblies for use in a Na cooled fast reactor. Such sub-assemblies may comprise a hexagonal bundle of slender fuel elements enclosed in a tubular sleeve, often referred to as a 'wrapper'. The fuel elements are spaced apart by helical wire wraps forming fins and which also space the wrapper from the bundle. The wire wraps make contact with the sheaths of adjacent elements and with the wrapper, so that each fuel element is well supported against thermal, bowing, rattling and vibration, whilst allowing adequate coolant flow passages through the bundle. The arrangement of the fuel elements usually provides two groups of passageways for coolant flow through the bundle -an inner group each bounded by four fuel elements, and an outer group each bounded by two outer fuel elements and the wrapper. It has been found, however, that this arrangement results in over-cooling of the outer fuel elements. An arrangement is described that overcomes this disadvantage to a considerable extent. The fuel elements are arranged in three groups - an inner group, and intermediate group and an outer group. The fins on the outer group elements are helically wound at half the pitch of the other two groups and alternate outer group elements are wound opposite handed to abutting outer row elements; elements of the outer and intermediate groups are orientated and end located to enable them to nest together. By utilising half pitch helical fins on the outer elements a greater number of lateral support points is obtained for the outer and intermediate groups of elements and the increased number of turns of fins on the outer elements assist in reducing overcooling of the outer elements. (U.K.)

  5. Spacer for supporting fuel element boxes

    International Nuclear Information System (INIS)

    Wild, E.

    1979-01-01

    A spacer plate unit arranged externally on each side and at a predetermined level of a polygonal fuel element box for mutually supporting, with respect to one another, a plurality of the fuel element boxes forming a fuel element bundle, is formed of a first and a second spacer plate part each having the same length and the same width and being constituted of unlike first and second materials, respectively. The first and second spacer plate parts of the several spacer plate units situated at the predetermined level are arranged in an alternating continuous series when viewed in the peripheral direction of the fuel element box, so that any two spacer plate units belonging to face-to-face oriented sides of two adjoining fuel element boxes in the fuel element bundle define interfaces of unlike materials

  6. Getter for nuclear fuel elements

    International Nuclear Information System (INIS)

    Ross, W.T.; Williamson, H.E.

    1976-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has disposed therein an improved getter capable of gettering reactive gases including a source of hydrogen. The getter comprises a composite with a substrate having thereon a coating capable of gettering reactive gases. The substrate has a greater coefficient of thermal expansion than does the coating, and over a period of time at reactor operating temperatures any protective film on the coating is fractured at various places and fresh portions of the coating are exposed to getter reactive gases. With further passage of time at reactor operating temperatures a fracture of the protective film on the coating will grow into a crack in the coating exposing further portions of the coating capable of gettering reactive gases. 13 claims, 5 drawing figures

  7. Getter for nuclear fuel elements

    International Nuclear Information System (INIS)

    Ross, W.T.; Williamson, H.E.

    1976-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has disposed therein an improved getter capable of gettering reactive gases including a source of hydrogen. The getter comprises a composite with a substrate having thereon a coating capable of gettering reactive gases. The substrate has a greater coefficient of thermal expansion than does the coating, and over a period of time at reactor operating temperatures any protective film on the coating is fractured at various places and fresh portions of the coating are exposed to getter reactive gases. With further passage of time at reactor operating temperatures a fracture of the protective film on the coating will grow into a crack in the coating exposing further portions of the coating capable of gettering reactive gases

  8. Recent metal fuel safety tests in TREAT

    International Nuclear Information System (INIS)

    Wright, A.E.; Bauer, T.H.; Lo, R.K.; Robinson, W.R.; Palm, R.G.

    1986-01-01

    In-reactor safety tests have been performed on metal-alloy reactor fuel to study its response to transient-overpower conditions, in particular, the margin to cladding breach and the axial self-extrusion of fuel within intact cladding. Uranium-fissium EBR-II driver fuel elements of several burnups were tested, some to cladding breach and others to incipient breach. Transient fuel motions were monitored, and time and location of breach were measured. The test results and computations of fuel extrusion and cladding failure in metal-alloy fuel are described

  9. Rack for storing spent nuclear fuel elements

    Science.gov (United States)

    Rubinstein, Herbert J.; Clark, Philip M.; Gilcrest, James D.

    1978-06-20

    A rack for storing spent nuclear fuel elements in which a plurality of aligned rows of upright enclosures of generally square cross-sectional areas contain vertically disposed fuel elements. The enclosures are fixed at the lower ends thereof to a base. Pockets are formed between confronting walls of adjacent enclosures for receiving high absorption neutron absorbers, such as Boral, cadmium, borated stainless steel and the like for the closer spacing of spent fuel elements.

  10. Methodology for substantiation of the fast reactor fuel element serviceability

    International Nuclear Information System (INIS)

    Tsykanov, V.A.; Maershin, A.A.

    1988-01-01

    Methodological aspects of fast reactor fuel element serviceability substantiation are presented. The choice of the experimental program and strategies of its realization to solve the problem set in short time, taking into account available experimental means, are substantiated. Factors determining fuel element serviceability depending on parameters and operational conditions are considered. The methodological approach recommending separate studing of the factors, which points to the possibility of data acquisition, required for the development of calculational models and substantiation of fuel element serviceability in pilot and experimental reactors, is described. It is shown that the special-purpose data are more useful for the substantiation of fuel element serviceability and analytical method development than unsubstantial and expensive complex tests of fuel elements and fuel assemblies, which should be conducted only at final stages for the improvement of the structure on the whole

  11. Hydriding failure in water reactor fuel elements

    International Nuclear Information System (INIS)

    Sah, D.N.; Ramadasan, E.; Unnikrishnan, K.

    1980-01-01

    Hydriding of the zircaloy cladding has been one of the important causes of failure in water reactor fuel elements. This report reviews the causes, the mechanisms and the methods for prevention of hydriding failure in zircaloy clad water reactor fuel elements. The different types of hydriding of zircaloy cladding have been classified. Various factors influencing zircaloy hydriding from internal and external sources in an operating fuel element have been brought out. The findings of post-irradiation examination of fuel elements from Indian reactors, with respect to clad hydriding and features of hydriding failure are included. (author)

  12. Design of fuel element for RA10

    International Nuclear Information System (INIS)

    Estevez, Esteban A.; Markiewicz, Mario; Gerding, Roberto

    2012-01-01

    The RA-10 reactor is an open pool multipurpose reactor. It is intended for radioisotopes production, fuel irradiation and use of neutron beam experiments. The nominal configuration core consists of 19 fuel elements (FE) and 6 in-core irradiation positions. With regard to the FE, although both conceptual design and manufacturing technology are similar to the already developed and qualified by CNEA (MTR fuel flat plate), the conditions imposed by the new reactor on FE's are more demanding that previous supplies. Here it should be mentioned the magnitude of the hydrodynamic forces acting on the FE caused by coolant flow through the core (upward) and mainly by the high coolant velocity between fuel plates (greater than 5 times than those currently in operation). Moreover, the high power density results in higher heat flux in fuel plates and greater temperature gradient. As a result of these increased demands present during irradiation, and in order to maintain a high level of reliability, it is necessary carry out some modifications in the mechanical design of the FE (with respect to the so-called ECBE design or s tandard ) . Design verification is performed through analytical and code calculations, and hydrodynamic tests on a full-scale prototype. This article describes the design of the FE for RA 10 reactor, with special emphasis on those aspects that represent innovations in the traditional design (ECBE). It also presents the functional requirements, design criteria and design limits established according to the reactor operational states (author)

  13. Attempt to produce silicide fuel elements in Indonesia

    International Nuclear Information System (INIS)

    Soentono, S.; Suripto, A.

    1991-01-01

    After the successful experiment to produce U 3 Si 2 powder and U 3 Si 2 -Al fuel plates using depleted U and Si of semiconductor quality, silicide fuel was synthesized using x -Al available at the Fuel Element Production Installation (FEPI) at Serpong, Indonesia. Two full-size U 3 Si 2 -Al fuel elements, having similar specifications to the ones of U 3 O 8 -Al for the RSG-GAS (formerly known as MPR-30), have been produced at the FEPI. All quality controls required have been imposed to the feeds, intermediate, as well as final products throughout the production processes of the two fuel elements. The current results show that these fuel elements are qualified from fabrication point of view, therefore it is expected that they will be permitted to be tested in the RSG-GAS, sometime by the end of 1989, for normal (∝50%) and above normal burn-up. (orig.)

  14. Dissolution of aluminium-cladded fuel elements

    International Nuclear Information System (INIS)

    Bernhard, G.; Boessert, W.; Hladik, O.; Schwarzbach, R.

    1984-01-01

    In the molybdenum production plant at Rossendorf (AMOR) short-term irradiated aluminium-cladded fuel elements from the Rossendorf research reactor RFR are dissolved for the purpose of molybdenum 99 production. The dissolution behaviour of these fuel elements and the appropriate dissolver are described. (author)

  15. DISSOLUTION OF ZIRCONIUM-CONTAINING FUEL ELEMENTS

    Science.gov (United States)

    Horn, F.L.

    1961-12-12

    Uranium is recovered from spent uranium fuel elements containing or clad with zirconium. These fuel elements are placed in an anhydrous solution of hydrogen fluoride and nitrogen dioxide. Within this system uranium forms a soluble complex and zirconium forms an insoluble complex. The uranium can then be separated, treated, and removed from solution as uranium hexafluoride. (AEC)

  16. FUEL ASSEMBLY SHAKER TEST SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Klymyshyn, Nicholas A.; Sanborn, Scott E.; Adkins, Harold E.; Hanson, Brady D.

    2013-05-30

    This report describes the modeling of a PWR fuel assembly under dynamic shock loading in support of the Sandia National Laboratories (SNL) shaker test campaign. The focus of the test campaign is on evaluating the response of used fuel to shock and vibration loads that a can occur during highway transport. Modeling began in 2012 using an LS-DYNA fuel assembly model that was first created for modeling impact scenarios. SNL’s proposed test scenario was simulated through analysis and the calculated results helped guide the instrumentation and other aspects of the testing. During FY 2013, the fuel assembly model was refined to better represent the test surrogate. Analysis of the proposed loads suggested the frequency band needed to be lowered to attempt to excite the lower natural frequencies of the fuel assembly. Despite SNL’s expansion of lower frequency components in their five shock realizations, pretest predictions suggested a very mild dynamic response to the test loading. After testing was completed, one specific shock case was modeled, using recorded accelerometer data to excite the model. Direct comparison of predicted strain in the cladding was made to the recorded strain gauge data. The magnitude of both sets of strain (calculated and recorded) are very low, compared to the expected yield strength of the Zircaloy-4 material. The model was accurate enough to predict that no yielding of the cladding was expected, but its precision at predicting micro strains is questionable. The SNL test data offers some opportunity for validation of the finite element model, but the specific loading conditions of the testing only excite the fuel assembly to respond in a limited manner. For example, the test accelerations were not strong enough to substantially drive the fuel assembly out of contact with the basket. Under this test scenario, the fuel assembly model does a reasonable job of approximating actual fuel assembly response, a claim that can be verified through

  17. Behaviour of a VVER-1000 fuel element with boron carbide/steel absorber tested under severe fuel damage conditions in the CORA facility (Results of experiment CORA-W2)

    International Nuclear Information System (INIS)

    Hagen, S.; Hofmann, P.; Noack, V.; Schanz, G.; Schumacher, G.; Sepold, L.

    1994-10-01

    The 'Severe Fuel Damage' (SFD) experiments of the Kernforschungszentrum Karlsruhe (KfK), Federal Republic of Germany, were carried out in the out-of-pile facility 'CORA' as part of the international Severe Fuel Damage (SFD) research. The experimental program was set up to provide information on the failure mechanisms of Light Water Reactor (LWR) fuel elements in a temperature range from 1200 C to 2000 C and in few cases up to 2400 C. Between 1987 and 1992 a total of 17 CORA experiments with two different bundle configurations, i.e. PWR (Pressurized Water Reactor) and BWR (Boiling Water Reactor) bundles were performed. These assemblies represented 'Western-type' fuel elements with the pertinent materials for fuel, cladding, grid spacer, and absorber rod. At the end of the experimental program two VVER-1000 specific tests were run in the CORA facility with identical objectives but with genuine VVER-type materials. The experiments, designated CORA-W1 and CORA-W2 were conducted on February 18, 1993 and April 21, 1993, respectively. Test bundle CORA-W1 was without absorber material whereas CORA-W2 contained one absorber rod (boron carbide/steel). As in the earlier CORA tests the test bundles were subjected to temperature transients of a slow heatup rate in a steam environment. The transient phases of the tests were initiated with a temperature ramp rate of 1 K/s. With these conditions a so-called small-break LOCA was simulated. The temperature escalation due to the exothermal zircon/niobium-steam reaction started at about 1200 C, leading the bundles to maximum temperatures of approximately 1900 C. The thermal response of bundle CORA-W2 is comparable to that of CORA-W1. In test CORA-W2, however, the temperature front moved faster from the top to the bottom compared to test CORA-W1 [de

  18. LEU fuel element produced by the Egyptian fuel manufacturing pilot plant

    International Nuclear Information System (INIS)

    Zidan, W.I.

    2000-01-01

    The Egyptian Fuel Manufacturing Pilot Plant, FMPP, is a Material Testing Reactor type (MTR) fuel element facility, for producing the specified fuel elements required for the Egyptian Second Research Reactor, ETRR-2. The plant uses uranium hexafluoride (UF 6 , 19.75% U 235 by wt) as a raw material which is processed through a series of the manufacturing, inspection and test plan to produce the final specified fuel elements. Radiological safety aspects during design, construction, operation, and all reasonably accepted steps should be taken to prevent or reduce the chance of accidents occurrence. (author)

  19. Technology Status of Thermionic Fuel Elements for Space Nuclear Power

    Science.gov (United States)

    Holland, J. W.; Yang, L.

    1984-01-01

    Thermionic reactor power systems are discussed with respect to their suitability for space missions. The technology status of thermionic emitters and sheath insulator assemblies is described along with testing of the thermionic fuel elements.

  20. Nuclear reactor fuel element sub-assemblies

    International Nuclear Information System (INIS)

    Ashton, M.W.

    1975-01-01

    Reference is made to fuel element sub-assemblies for use in a Na cooled fast reactor. Such sub-assemblies may comprises a hexagonal bundle of slender fuel elements enclosed in a tubular sleeve, often referred to as a 'wrapper'. The fuel elements are spaced apart by helical wire wraps forming fins and which also space the wrapper from the bundle. The wire wraps make contact with the sheaths of adjacent elements and with the wrapper, so that each fuel element is well supported against thermal bowing, rattling and vibration, whilst allowing adequate coolant flow passages through the bundle. It has been found, however, that the outer fuel elements of the bundle are subject to over-cooling in this arrangement; this problem can, however, be largely overcome by reducing the flow passage between the bundle and the wrapper. In the arrangement described a wire filler is employed, extending along each outer coolant flow passage, and constructed in wave form. Fillers of such form have been found to reduce over-cooling considerably and they avoid the need for varied height wraps on the fuel elements. The fuel elements also have improved lateral support by contact with the fillers. (U.K.)

  1. Dynamic characterization of the CAREM fuel element prototype

    International Nuclear Information System (INIS)

    Ghiselli, Alberto M.; Fiori, Jose M.; Ibanez, Luis A.

    2004-01-01

    As a previous step to make a complete test plan to evaluate the hydrodynamic behavior of the present configuration of the CAREM type fuel element, a dynamic characterization analysis is required, without the dynamic response induced by the flowing fluid. This paper presents the tests made, the methods and instrumentation used, and the results obtained in order to obtain a complete dynamic characterization of the CAREM type fuel element. (author)

  2. NEUTRONIC REACTOR AND FUEL ELEMENT THEREFOR

    Science.gov (United States)

    Szilard, L.; Young, G.J.

    1958-03-01

    This patent relates to a reactor design of the type which employs solid fuel elements disposed in channels within the moderator through which channels and around the fuel elements is conveyed a coolant fiuid. The coolant channels are comprised of aluminum tubes extending through a solid moderator such as graphite and the fuel elements are comprised of an elongated solid body of natural uranium jacketed in an aluminum jacket with the ends thereof closed by aluminum caps of substantially greater thickness than the jacket was and in good thermal contact with the fuel material to facilitate the conduction of heat from the central portion of said ends to the coolant surrounding the fuel element to prevent overheating of said central portion.

  3. Particle fuel bed tests

    International Nuclear Information System (INIS)

    Horn, F.L.; Powell, J.R.; Savino, J.M.

    1985-01-01

    Gas-cooled reactors, using packed beds of small diameter coated fuel particles have been proposed for compact, high-power systems. The particulate fuel used in the tests was 800 microns in diameter, consisting of a thoria kernel coated with 200 microns of pyrocarbon. Typically, the bed of fuel particles was contained in a ceramic cylinder with porous metallic frits at each end. A dc voltage was applied to the metallic frits and the resulting electric current heated the bed. Heat was removed by passing coolant (helium or hydrogen) through the bed. Candidate frit materials, rhenium, nickel, zirconium carbide, and zirconium oxide were unaffected, while tungsten and tungsten-rhenium lost weight and strength. Zirconium-carbide particles were tested at 2000 K in H 2 for 12 hours with no visible reaction or weight loss

  4. Fuel elements containing burnable poison

    International Nuclear Information System (INIS)

    Bamber, K.J.; Eaton, C.W.

    1989-01-01

    A burnable poison such as gadolinia is introduced into a nuclear fuel pin by way of thermal insulating pellets which serve to protect end caps from exposure to the intense heat generated by the fuel during irradiation. The pellets may comprise a sintered mixture of aluminia and gadolinia. (author)

  5. MRT fuel element inspection at Dounreay

    International Nuclear Information System (INIS)

    Gibson, J.

    1997-01-01

    To ensure that their production and inspection processes are performed in an acceptable manner, ie. auditable and traceable, the MTR Fuel Element Fabrication Plant at Dounreay operates to a documented quality system. This quality system, together with the fuel element manufacturing and inspection operations, has been independently certified to ISO9002-1987, EN29002-1987 and BS5750:Pt2:1987 by Lloyd's Register Quality Assurance Limited (LRQA). This certification also provides dual accreditation to the relevant German, Dutch and Australian certification bodies. This paper briefly describes the quality system, together with the various inspection stages involved in the manufacture of MTR fuel elements at Dounreay

  6. Nonstationary temperature field in the fuel element

    International Nuclear Information System (INIS)

    Vehauc, A.; Spasojevic, D.

    1970-03-01

    Nonstationary temperature field in the fuel element was examined for spatial and time distribution of the specific power generated in the fuel element. Analytical method was developed for calculating the temperature variation in the fuel element of a nuclear reactor for a typical shape of the heat generation function. The method is based on series expansion of the temperature field by self functions and application of Laplace transformation in time coordinate. For numerical calculation of the temperature distribution a computer code was developed based on the proposed method and applied on the ZUSE-Z-23 computer [sr

  7. Method for inspecting nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    A technique for disassembling a nuclear reactor fuel element without destroying the individual fuel pins and other structural components from which the element is assembled is described. A traveling bridge and trolley span a water-filled spent fuel storage pool and support a strongback. The strongback is under water and provides a working surface on which the spent fuel element is placed for inspection and for the manipulation that is associated with disassembly and assembly. To remove, in a non-destructive manner, the grids that hold the fuel pins in the proper relative positions within the element, bars are inserted through apertures in the grids with the aid of special tools. These bars are rotated to flex the adjacent grid walls and, in this way relax the physical engagement between protruding portions of the grid walls and the associated fuel pins. With the grid structure so flexed to relax the physical grip on the individual fuel pins, these pins can be withdrawn for inspection or replacement as necessary without imposing a need to destroy fuel element components

  8. Identification of failed fuel element

    International Nuclear Information System (INIS)

    Fryer, R.M.; Matlock, R.G.

    1976-01-01

    A passive fission product gas trap is provided in the upper portion of each fuel subassembly in a nuclear reactor. The gas trap consists of an inverted funnel of less diameter than the subassembly having a valve at the apex thereof. An actuating rod extends upwardly from the valve through the subassembly to a point where it can be contacted by the fuel handling mechanism for the reactor. Interrogation of the subassembly for the presence of fisson products is accomplished by lowering the fuel handling machine onto the subassembly to press down on the actuating rod and open the valve. 1 claim, 4 drawing figures

  9. Fluid pressure method for recovering fuel pellets from nuclear fuel elements

    International Nuclear Information System (INIS)

    John, C.D. Jr.

    1979-01-01

    A method is described for removing fuel pellets from a nuclear fuel element without damaging the fuel pellets or fuel element sheath so that both may be reused. The method comprises holding the fuel element while a high pressure stream internally pressurizes the fuel element to expand the fuel element sheath away from the fuel pellets therein so that the fuel pellets may be easily removed

  10. Fundamental aspects of nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Olander, D.R.

    1976-01-01

    The book presented is designed to function both as a text for first-year graduate courses in nuclear materials and as a reference for workers involved in the materials design and performance aspects of nuclear power plants. The contents are arranged under the following chapter headings: statistical thermodynamics, thermal properties of solids, crystal structures, cohesive energy of solids, chemical equilibrium, point defects in solids, diffusion in solids, dislocations and grain boundaries, equation of state of UO 2 , fuel element thermal performance, fuel chemistry, behavior of solid fission products in oxide fuel elements, swelling due to fission gases, pore migration and fuel restructuring kinetics, fission gas release, mechanical properties of UO 2 , radiation damage, radiation effects in metals, interaction of sodium and stainless steel, modeling of the structural behavior of fuel elements and assemblies

  11. Fundamental aspects of nuclear reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D.R.

    1976-01-01

    The book presented is designed to function both as a text for first-year graduate courses in nuclear materials and as a reference for workers involved in the materials design and performance aspects of nuclear power plants. The contents are arranged under the following chapter headings: statistical thermodynamics, thermal properties of solids, crystal structures, cohesive energy of solids, chemical equilibrium, point defects in solids, diffusion in solids, dislocations and grain boundaries, equation of state of UO/sub 2/, fuel element thermal performance, fuel chemistry, behavior of solid fission products in oxide fuel elements, swelling due to fission gases, pore migration and fuel restructuring kinetics, fission gas release, mechanical properties of UO/sub 2/, radiation damage, radiation effects in metals, interaction of sodium and stainless steel, modeling of the structural behavior of fuel elements and assemblies. (DG)

  12. Fuel element for a nuclear reactor

    International Nuclear Information System (INIS)

    Linning, D.L.

    1977-01-01

    An improvement of the fuel element for a fast nuclear reactor described in patent 15 89 010 is proposed which should avoid possible damage due to swelling of the fuel. While the fuel element according to patent 15 89 010 is made in the form of a tube, here a further metal jacket is inserted in the centre of the fuel rod and the intermediate layer (ceramic uranium compound) is provided on both sides, so that the nuclear fuel is situated in the centre of the annular construction. Ceramic uranium or plutonium compounds (preferably carbide) form the fuel zone in the form of circular pellets, which are surrounded by annular gaps, so that gaseous fission products can escape. (UWI) [de

  13. Apparatus for inspecting fuel elements

    Science.gov (United States)

    Kaiser, B.J.; Oakley, D.J.; Groves, O.J.

    1984-12-21

    This disclosure describes an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.

  14. Fuel elements handling device and method

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1976-01-01

    This invention relates to nuclear equipment and more particularly to methods and apparatus for the non-destructive inspection, manipulation, disassembly and assembly of reactor fuel elements and the like. (author)

  15. Safety assessment for Dragon fuel element production

    International Nuclear Information System (INIS)

    Price, M.S.T.

    1963-11-01

    This report shall be the Safety Assessment covering the manufacture of the First Charge of Fuel and Fuel Elements for the Dragon Reactor Experiment. It is issued in two parts, of which Part I is descriptive and Part II gives the Hazards Analysis, the Operating Limitations, the Standing Orders and the Emergency Drill. (author)

  16. A CAREM type fuel element dynamic analysis

    International Nuclear Information System (INIS)

    Magoia, J.E.

    1990-01-01

    A first analysis on the dynamic behaviour of a fuel element designed for the CAREM nuclear reactor (Central Argentina de Elementos Modulares) was performed. The model used to represent this dynamic behaviour was satisfactorily evaluated. Using primary estimations for some of its numerical parameters, a first approximation to its natural vibrational modes was obtained. Results obtained from fuel elements frequently used in nuclear power plants of the PWR (Pressurized Water Reactors) type, are compared with values resulting from similar analysis. (Author) [es

  17. Element bow profiles from new and irradiated CANDU fuel bundles

    International Nuclear Information System (INIS)

    Dennier, D.; Manzer, A.M.; Ryz, M.A.

    1996-01-01

    Improved methods of measuring element profiles on new CANDU fuel bundles were developed at the Sheridan Park Engineering Laboratory, and have now been applied in the hot cells at Whiteshell Laboratories. For the first time, the outer element profiles have been compared between new, out-reactor tested, and irradiated fuel elements. The comparison shows that irradiated element deformation is similar to that observed on elements in out-reactor tested bundles. In addition to the restraints applied to the element via appendages, the element profile appears to be strongly influenced by gravity and the end loads applied by local deformation of the endplate. Irradiation creep in the direction of gravity also tends to be a dominant factor. (author)

  18. Technique for mass-spectrometric determination of moisture content in fuel elements and fuel element claddings

    International Nuclear Information System (INIS)

    Kurillovich, A.N.; Pimonov, Yu.I.; Biryukov, A.S.

    1988-01-01

    A technique for mass-spectroimetric determination of moisture content in fuel elements and fuek claddings in the 2x10 -4 -1.5x10 -2 g range is developed. The relative standard deviation is 0.13. A character of moisture extraction from oxide uranium fuels in the 20-700 deg C temperature range is studied. Approximately 80% of moisture is extracted from the fuels at 300 deg C. The moisture content in fuel elements with granular uranium oxide fuels is measured. Dependence of fuel element moisture content on conditions of hot vacuum drying is shown. The technique permits to optimize the fuel element fabrication process to decrease the moisture content in them. 4 refs.; 3 figs.; 2 tabs

  19. Actions needed for RA reactor exploitation - I-IV, Part II, Design project VI-SA 1, Experimental loop for testing the EL-4 reactor fuel elements in the central vertical experimental channel of the RA reactor in Vinca

    International Nuclear Information System (INIS)

    Novakovic, M.

    1961-12-01

    The objective of installing the VISA-1 loop was testing the fuel elements of the EL-4 reactor. The fuel elements planned for testing are natural UO 2 with beryllium cladding, cooled by CO 2 under nominal pressure of 60 at and temperature 600 deg C. central vertical experimental channel of the RA reactor was chosen for installing a test loop cooled by CO 2 . This report contains the detailed design project of the testing loop with the control system and safety analysis of the planned experiment

  20. Nuclear fuel element end fitting

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1980-01-01

    An invention is described whereby end fittings are formed from lattices of mutually perpendicular plates. At the plate intersections, sockets are secured to the end fittings in a manner that permits the longitudinal axes of each of the sockets to align with the respective lines of intersection of the plates. The sockets all protrude above one of the surfaces of the end fitting. Further, a detent is formed in the proturding sides of each of the sockets. Annular grooves are formed in each of the ends of the fuel rods that are to be mounted between the end fittings. The socket detents protrude into the respective annular grooves, thus engaging the grooves and retaining the fuel rods and end fittings in one integral structure. (auth)

  1. Out of pile testing of the PHWR fuel bundles

    International Nuclear Information System (INIS)

    Mahender Dev; Raghunathan, S.; Agarwal, G.K.; Patel, R.J.; Agarwal, R.G.

    2002-01-01

    In PHWRs fuel bundle resides in the form of a string in the coolant channels. These fuel bundles are required to be replaced periodically with the help of fuelling machine and spent fuel is discharged to the spent-fuel bay through fuel transfer system. During complete refuelling operation, and during residence in channel fuel bundle experiences various kinds of loads like drag force, impact force, force applied by Fuelling Machine ram and force applied by various actuators in fuel transfer system. These fuel bundles are manufactured indigenously and require out of pile testing for qualification of design as well as manufacturing process. In 220 MWe PHWRs, 19-element split spacer fuel bundle is used whereas in 500 MWe PHWRs 37-element fuel bundle will be used. A comprehensive programme was conducted to generate, basic data like estimation of loads coming on fuel bundles, experimental data generation about friction factor and pressure drop and carrying out of pile testing of 19-element fuel bundles in Integral Thermal Facility at Hall-7. The 37-element fuel bundles were tested in fuel locator test facility at simulated reactor conditions for pressure drop test, endurance test and cross flow test. The 37-element bundles have also been tested for flow-induced vibration during residence in the reactor. The paper describes the experimental techniques and setups, for simulating the reactor condition and determining the effect of those conditions on the fuel bundles. (author)

  2. Trunnions for spent fuel element shipping casks

    International Nuclear Information System (INIS)

    Cooke, B.

    1989-01-01

    Trunnions are used on spent fuel element shipping casks for one or more of a combination of lifting, tilting or securing to a transport vehicle. Within the nuclear transportation industry there are many different philosophies on trunnions, concerning the shape, manufacture, attachment, inspection, maintenance and repair. With the volume of international transport of spent fuel now taking place, it is recognized that problems are occurring with casks in international traffic due to the variance of the philosophies, national standards, and the lack of an international standard. It was agreed through the ISO that an international standard was required to harmonize. It was not possible to evolve an international standard. It was only possible to evolve an international guide. To evolve a standard would mean superseding any existing national standards which already cover particular aspects of trunnions i.e. deceleration forces imposed on trunnions used as tie down features. Therefore the document is a guide only and allows existing national standards to take precedence where they exist. The guide covers design, manufacture, maintenance, repair and quality assurance. The guide covers trunnions used on spent fuel casks transported by road, rail and sea. The guide details the considerations which should be taken account of by cask designers, i.e. stress intensity, design features, inspection and test methods etc. Manufacture, attachment and pre-service testing is also covered. The guide details user requirements which should also be taken account of, i.e. servicing frequency, content, maintenance and repair. The application of quality assurance is described separately although the principles are used throughout the guide

  3. Nuclear fuel elements having a composite cladding

    Science.gov (United States)

    Gordon, Gerald M.; Cowan, II, Robert L.; Davies, John H.

    1983-09-20

    An improved nuclear fuel element is disclosed for use in the core of nuclear reactors. The improved nuclear fuel element has a composite cladding of an outer portion forming a substrate having on the inside surface a metal layer selected from the group consisting of copper, nickel, iron and alloys of the foregoing with a gap between the composite cladding and the core of nuclear fuel. The nuclear fuel element comprises a container of the elongated composite cladding, a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, an enclosure integrally secured and sealed at each end of said container and a nuclear fuel material retaining means positioned in the cavity. The metal layer of the composite cladding prevents perforations or failures in the cladding substrate from stress corrosion cracking or from fuel pellet-cladding interaction or both. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy.

  4. Fuel Retrieval Sub-Project (FRS) Stuck Fuel Station Performance Test Data Report

    International Nuclear Information System (INIS)

    THIELGES, J.R.

    2000-01-01

    This document provides the test data report for Stuck Fuel Station Performance Testing in support of the Fuel Retrieval Sub-Project. The stuck fuel station was designed to provide a means of cutting open a canister barrel to release fuel elements, etc

  5. Structural analysis of reactor fuel elements

    International Nuclear Information System (INIS)

    Weeks, R.W.

    1977-01-01

    An overview of fuel-element modeling is presented that traces the development of codes for the prediction of light-water-reactor and fast-breeder-reactor fuel-element performance. It is concluded that although the mathematical analysis is now far advanced, the development and incorporation of mechanistic constitutive equations has not kept pace. The resultant reliance on empirical correlations severely limits the physical insight that can be gained from code extrapolations. Current efforts include modeling of alternate fuel systems, analysis of local fuel-cladding interactions, and development of a predictive capability for off-normal behavior. Future work should help remedy the current constitutive deficiencies and should include the development of deterministic failure criteria for use in design

  6. Spherical coated particle fuel for fuel elements of HTGR

    International Nuclear Information System (INIS)

    Chernikov, A.S.; Permyakov, L.N.; Mikhailichenko, L.I.; Nezhevenko, L.B.; Gudovich, A.P.; Landin, N.A.; Ljutikov, R.A.; Solovjev, G.I.

    1985-01-01

    The main results of the investigations on the development of spherical particles fuel for fuel elements of HTGR are described. Typical characteristics of UO 2 spherical particles (size, shape, density, microstructure etc.) and PyC and SiC protective layers (thickness, density, fission product release etc.) are presented. Sol-gel technique and slip casting are used for spheroidization; deposition of protective layers is carried out in the fluidized bed apparatus

  7. Irradiation test of Dupic fuel

    International Nuclear Information System (INIS)

    Kee, Chan Song; Myung, Seung Yang; Hyun, Soo Park

    2002-01-01

    Simulated DUPIC fuel that had been fabricated from natural uranium oxide with simulated fission products was irradiated at the HANARO research reactor at KAERI in 1999. The objectives of this irradiation test were to estimate the in-core behaviour of DUPIC fuel, to verify the design of the non-instrumented irradiation rig developed for the irradiation test of DUPIC fuel and to ensure the irradiation requirements of DUPIC fuel at HANARO. The post-irradiation examinations, such as dimensional measurement, γ-scanning and EPMA, for irradiated simulated DUPIC fuel have been performed at the IMEF. The irradiation test of DUPIC fuel, fabricated with spent PWR fuel material, was performed at HANARO for two months as of May 2000. The resultant burn-up of irradiated DUPIC fuel was estimated to be 1 800 MWd/MTU. The irradiation behaviour of DUPIC fuel will be investigated based on the data from post-irradiation examinations. (authors)

  8. Nuclear fuel elements made from nanophase materials

    Science.gov (United States)

    Heubeck, Norman B.

    1998-01-01

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics.

  9. Fuel elements and safety engineering goals

    International Nuclear Information System (INIS)

    Schulten, R.; Bonnenberg, H.

    1990-01-01

    There are good prospects for silicon carbide anti-corrosion coatings on fuel elements to be realised, which opens up the chance to reduce the safety engineering requirements to the suitable design and safe performance of the ceramic fuel element. Another possibility offered is combined-cycle operation with high efficiencies, and thus good economic prospects, as with this design concept combining gas and steam turbines, air ingress due to turbine malfunction is an incident that can be managed by the system. This development will allow economically efficient operation also of nuclear power reactors with relatively small output, and hence contribute to reducing CO 2 emissions. (orig./DG) [de

  10. JACKETED FUEL ELEMENTS FOR GRAPHITE MODERATED REACTORS

    Science.gov (United States)

    Szilard, L.; Wigner, E.P.; Creutz, E.C.

    1959-05-12

    Fuel elements for a heterogeneous, fluid cooled, graphite moderated reactor are described. The fuel elements are comprised of a body of natural uranium hermetically sealed in a jacket of corrosion resistant material. The jacket, which may be aluminum or some other material which is non-fissionable and of a type having a low neutron capture cross-section, acts as a barrier between the fissioning isotope and the coolant or moderator or both. The jacket minimizes the tendency of the moderator and coolant to become radioactive and/or contaminated by fission fragments from the fissioning isotope.

  11. Rover fuel element development activities: July-September 1971

    Energy Technology Data Exchange (ETDEWEB)

    Napier, J.M.; Marrow, G.B.

    1971-11-30

    Experimental studies designed to fabricate NERVA graphite fuel elements capable of cyclic operations at exit gas temperatures of approximately 4400/degree/R were continued during this report period. Carbon precursor materials, manufacturing parameters, and deposition of carbide films are included in these studies. Accomplishments include the following: three commercial powders were extruded into elements having a desirable coefficient of thermal expansion; molded graphites using low-fired filler carbons and uncured short organic fibers produced graphites having an improved strain-to-failure value; thick-walled tubes of vapor-deposited zirconium carbide were produced, and the chemical composition was determined; vapor-deposited zirconium carbide coatings were applied to fuel-element bores; experimental graphite fuel elements were hot-gas tested; uranium-loaded ion exchange beads survived a heat treatment cycle of 2800/degree/C for three hours. Organic precursor carbon studies were oriented toward modification of the CAI polymers. 2 refs., 66 figs., 23 tabs.

  12. Experimental study of some mounting brackets to support fuel elements

    International Nuclear Information System (INIS)

    Aubert, M.; Poglia, S.; Roche, R.

    1958-09-01

    In an atomic pile with vertical channels, fuel elements are stacked on one another. According to a possible assembly, fuel element can be contained by a graphite sleeve and be supported by a mounting bracket in this sleeve. Sleeves are then stacked on one another. The authors report the investigation of different designs for these mounting brackets. They describe their mechanical role and their mechanical, aerodynamic, neutronic and test conditions. They report tests performed on brackets made in graphite and on brackets made in stainless steel and graphite, and discuss the obtained results

  13. Storage container for radioactive fuel elements

    International Nuclear Information System (INIS)

    1984-01-01

    The interim storage cask for spent fuel elements or the glass moulds for high-level radioactive waste are made up of heat-resistant, reinforced concrete with chambers and highgrade steel lining. Cooling systems with natural air circulation are connected with the chambers. (HP) [de

  14. Storage device for fuel elements in pool

    International Nuclear Information System (INIS)

    Kerjean, J.

    1985-01-01

    The fuel elements are stored in compartments set at the bottom of the pools and separated by water spaces; the walls of the cells are coated on the external side with a cadmium liner acting as a neutronic protection associated with the water space [fr

  15. Analysis of the ATR fuel element swaging process

    International Nuclear Information System (INIS)

    Richins, W.D.; Miller, G.K.

    1995-12-01

    This report documents a detailed evaluation of the swaging process used to connect fuel plates to side plates in Advanced Test Reactor (ATR) fuel elements. The swaging is a mechanical process that begins with fitting a fuel plate into grooves in the side plates. Once a fuel plate is positioned, a lip on each of two side plate grooves is pressed into the fuel plate using swaging wheels to form the joints. Each connection must have a specified strength (measured in terms, of a pullout force capacity) to assure that these joints do not fail during reactor operation. The purpose of this study is to analyze the swaging process and associated procedural controls, and to provide recommendations to assure that the manufacturing process produces swaged connections that meet the minimum strength requirement. The current fuel element manufacturer, Babcock and Wilcox (B ampersand W) of Lynchburg, Virginia, follows established procedures that include quality inspections and process controls in swaging these connections. The procedures have been approved by Lockheed Martin Idaho Technologies and are designed to assure repeatability of the process and structural integrity of each joint. Prior to July 1994, ATR fuel elements were placed in the Hydraulic Test Facility (HTF) at the Idaho National Engineering Laboratory (AGNAIL), Test Reactor Area (TRA) for application of Boehmite (an aluminum oxide) film and for checking structural integrity before placement of the elements into the ATR. The results presented in this report demonstrate that the pullout strength of the swaged connections is assured by the current manufacturing process (with several recommended enhancements) without the need for- testing each element in the HTF

  16. Study on the performance of fuel elements with carbide and carbide-nitride fuel

    International Nuclear Information System (INIS)

    Golovchenko, Yu.M.; Davydov, E.F.; Maershin, A.A.

    1985-01-01

    Characteristics, test conditions and basic results of material testing of fuel elements with carbide and carbonitride fuel irradiated in the BOR-60 reactor up to 3-10% burn-up at specific power rate of 55-70 kW/m and temperatures of the cladding up to 720 deg C are described. Increase of cladding diameter is stated mainly to result from pressure of swelling fuel. The influence of initial efficient porosity of the fuel on cladding deformation and fuel stoichiometry on steel carbonization is considered. Utilization of carbide and carbonitride fuel at efficient porosity of 20% at the given test modes is shown to ensure their operability up to 10% burn-up

  17. Loading of fuel and reflector elements in the Fort St. Vrain initial core (results of start-up test A-1)

    International Nuclear Information System (INIS)

    Marshall, A.C.; Brown, J.R.

    1974-01-01

    R A description is given of the experimental equipment and techniques used in the fuel and reflector loading. The analysis methods are described and test data are compared with predicted results. (U.S.)

  18. Catalogue of fuel elements - 1. addendum October 1958

    International Nuclear Information System (INIS)

    Even, A.

    1957-01-01

    This document contains sheets presenting various characteristics of nuclear fuel elements which are distinguished with respect to their shape: cylinder bar, plate, tube. Each sheet comprises an indication of the atomic pile in which the fuel element is used, dimensions, cartridge data, data related to cooling, to combustion rate, and to fuel handling. A drawing of the fuel element is also given

  19. CANDU fuel compression tests at elevated temperatures

    International Nuclear Information System (INIS)

    Koehn, E.; Chan, J.K.; Langman, V.J.; Hadaller, G.I.; Fortman, R.A.

    1995-01-01

    An inlet header large break loss of coolant accident (LOCA) in CANDU reactors with fuelling against flow can cause the fuel to shift in the channels with a consequent reactivity insertion. This results in an increased fuel power transient, and a potential increase in the mialyzed consequences for such events. As the reactor's age and the channel axial gaps increase, the magnitude of the predicted power u-dmient increases. A design solution to reduce the power transient is to limit the amount of fuel movement by reducing the channel axial gap. This solution was implemented into Ontario Hydro's Bruce B and Darlington reactors. A consequence of a reduced channel axial gap is the potential for the fuel column axial expansion to become constrained by the channel end components in large break LOCAs. This experimental program investigated the effects of pellet cracking and elevated sheath temperatures on the ability of the fuel elements, of the 37-element bundle design, to sustain axial loads. The unirradiated fuel elements tested were either in the as-received condition or with the U0 2 fuel pellets cracked in a mechanical process to simulate the effect of inufflation. The load deformation characteristics demonstrated that, for a given amount of axial compression. the loads sustainable by the elements at elevated sheath temperatures were low. As a result. excess axial expansion would be easily accommodated without further challenge to pressure tube integrity. (author)

  20. An automated fuel element scanning system

    International Nuclear Information System (INIS)

    Robinson, L.; Hobbs, R.W.; Dyer, F.F.; Pugh, L.P.; Teasley, N.A. Jr.; Snelgrove, J.L.

    1988-01-01

    This paper describes an automated fuel element scanning system, based upon gamma-ray spectroscopy, that has been developed at the Oak Ridge Research Reactor. The scanning system is located in the reactor pool and allows fuel elements to be scanned nondestructively at various intervals during their core life. Gamma-ray measurements are made using a GeLi detector positioned above the pool water. Measurements of 137 Cs count rates from relatively 'cold' elements indicate that the counting data obtained using this apparatus is reproducible within 5%. Power distribution in the reactor's core is derived from 140 La counting data. The method of determining power is discussed briefly and some example results are presented. (author) 11 refs.; 7 figs.; 4 tabs

  1. Burnup determination of a fuel element concerning different cooling times

    International Nuclear Information System (INIS)

    Henriquez, C.; Navarro, G.; Pereda, C.; Mutis, O.; Terremoto, Luis A.A.; Zeituni, Carlos A.

    2002-01-01

    In this work we report a complete set of measurements and some relevant results regarding the burnup process of a fuel element containing low enriched nuclear fuel. This fuel element was fabricated at the Plant of Fuel Elements of the Chilean Nuclear Energy Commission (CCHEN). Measurements were carried out using gamma-ray spectroscopy and the absolute burnup of the fuel element was determined. (author)

  2. PIE Report on the KOMO-3 Irradiation Test Fuels

    International Nuclear Information System (INIS)

    Park, Jong Man; Ryu, H. J.; Yang, J. H.

    2009-04-01

    In the KOMO-3, in-reactor irradiation test had been performed for 12 kinds of dispersed U-Mo fuel rods, a multi wire fuel rod and a tube fuel rod. In this report we described the PIE results on the KOMO-3 irradiation test fuels. The interaction layer thickness between fuel particle and matrix could be reduced by using a large size U-Mo fuel particle or introducing Al-Si matrix or adding the third element in the U-Mo particle. Monolithic fuel rod of multi-wire or tube fuel was also effective in reducing the interaction layer thickness

  3. Laser assisted decontamination of nuclear fuel elements

    International Nuclear Information System (INIS)

    Padma Nilaya, J.; Biswas, Dhruba J.; Kumar, Aniruddha

    2010-04-01

    Laser assisted removal of loosely bound fuel particulates from the clad surface following the process of pellet loading has decided advantages over conventional methods. It is a dry and noncontact process that generates very little secondary waste and can occur inside a glove box without any manual interference minimizing the possibility of exposure to personnel. The rapid rise of the substrate/ particulate temperature owing to the absorption of energy from the incident laser pulse results in a variety of processes that may lead to the expulsion of the particulates. As a precursor to the cleaning of the fuel elements, initial experiments were carried out on contamination simulated on commonly used clad surfaces to gain a first hand experience on the various laser parameters for which as efficient cleaning can be obtained without altering the properties of the clad surface. The cleaning of a dummy fuel element was subsequently achieved in the laboratory by integrating the laser with a work station that imparted simultaneous rotational and linear motion to the fuel element. (author)

  4. Failure analysis for WWER-fuel elements

    International Nuclear Information System (INIS)

    Boehmert, J.; Huettig, W.

    1986-10-01

    If the fuel defect rate proves significantly high, failure analysis has to be performed in order to trace down the defect causes, to implement corrective actions, and to take measures of failure prevention. Such analyses are work-consuming and very skill-demanding technical tasks, which require examination methods and devices excellently developed and a rich stock of experience in evaluation of features of damage. For that this work specifies the procedure of failure analyses in detail. Moreover prerequisites and experimental equipment for the investigation of WWER-type fuel elements are described. (author)

  5. Automatic inspection for remotely manufactured fuel elements

    International Nuclear Information System (INIS)

    Reifman, J.; Vitela, J.E.; Gibbs, K.S.; Benedict, R.W.

    1995-01-01

    Two classification techniques, standard control charts and artificial neural networks, are studied as a means for automating the visual inspection of the welding of end plugs onto the top of remotely manufactured reprocessed nuclear fuel element jackets. Classificatory data are obtained through measurements performed on pre- and post-weld images captured with a remote camera and processed by an off-the-shelf vision system. The two classification methods are applied in the classification of 167 dummy stainless steel (HT9) fuel jackets yielding comparable results

  6. Design and research of fuel element for pulsed reactor

    International Nuclear Information System (INIS)

    Tian Sheng

    1994-05-01

    The fuel element is the key component for pulsed reactor and its design is one of kernel techniques for pulsed reactor. Following the GA Company of US the NPIC (Nuclear Power Institute of China) has mastered this technique. Up to now, the first pulsed reactor in China (PRC-1) has been safely operated for about 3 years. The design and research of fuel element undertaken by NPIC is summarized. The verification and evaluation of this design has been carried out by using the results of measured parameters during operation and test of PRC-1 as well as comparing the design parameters published by others

  7. Fuel element load/unload machine for the PEC reactor

    International Nuclear Information System (INIS)

    Clayton, K.F.

    1984-01-01

    GEC Energy Systems Limited are providing two fuel element load/unload machines for use in the Italian fast reactor programme. One will be used in the mechanism test facility (IPM) at Casaccia, to check the salient features of the machine operating in a sodium environment prior to the second machine being installed in the PEC Brasimone Reactor. The machine is used to handle fuel elements, control rods and other reactor components in the sodium-immersed core of the reactor. (U.K.)

  8. Liquid fuel injection elements for rocket engines

    Science.gov (United States)

    Cox, George B., Jr. (Inventor)

    1993-01-01

    Thrust chambers for liquid propellant rocket engines include three principal components. One of these components is an injector which contains a plurality of injection elements to meter the flow of propellants at a predetermined rate, and fuel to oxidizer mixture ratio, to introduce the mixture into the combustion chamber, and to cause them to be atomized within the combustion chamber so that even combustion takes place. Evolving from these injectors are tube injectors. These tube injectors have injection elements for injecting the oxidizer into the combustion chamber. The oxidizer and fuel must be metered at predetermined rates and mixture ratios in order to mix them within the combustion chamber so that combustion takes place smoothly and completely. Hence tube injectors are subject to improvement. An injection element for a liquid propellant rocket engine of the bipropellant type is provided which includes tangential fuel metering orifices, and a plurality of oxidizer tube injection elements whose injection tubes are also provided with tangential oxidizer entry slots and internal reed valves.

  9. Facility for electrochemical dissolution of rejected fuel elements

    International Nuclear Information System (INIS)

    Deniskin, V.P.; Filatov, O.N.; Konovalov, E.A.; Kolesnikov, B.P.; Bukharin, A.D.

    2003-01-01

    A facility for electrochemical dissolution of rejected fuel elements with the stainless steel can and uranium of 90% enrichment is described. The start-adjustment works and trial-commercial tests of the facility are carried out. A s a result its technological parameters are determined [ru

  10. Fuel temperature characteristics of the 37-element and CANFLEX fuel bundle

    International Nuclear Information System (INIS)

    Bae, Jun Ho; Rho, Gyu Hong; Park, Joo Hwan

    2009-10-01

    This report describes the fuel temperature characteristics of CANFLEX fuel bundles and 37-element fuel bundles for a different burnup of fuel. The program was consisted for seeking the fuel temperature of fuel bundles of CANFLEX fuel bundles and 37-element fuel bundles by using the method in NUCIRC. Fuel temperature has an increasing pattern with the burnup of fuel for CANFLEX fuel bundles and 37-element fuel bundles. For all the case of burnup, the fuel temperature of CANFLEX fuel bundles has a lower value than that of 37-element fuel bundles. Especially, for the high power channel, the CANFLEX fuel bundles show a lower fuel temperature as much as about 75 degree, and the core averaged fuel temperature has a lower fuel temperature of about 50 degree than that of 37-element fuel bundles. The lower fuel temperature of CANFLEX fuel bundles is expected to enhance the safety by reducing the fuel temperature coefficient. Finally, for each burnup of CANFLEX fuel bundles and 37-element fuel bundles, the equation was present for predicting the fuel temperature of a bundle in terms of a coolant temperature and bundle power

  11. Nuclear criticality assessment of LEU and HEU fuel element storage

    International Nuclear Information System (INIS)

    Pond, R.B.; Matos, J.E.

    1984-01-01

    Criticality aspects of storing LEU (20%) and HEU (93%) fuel elements have been evaluated as a function of 235 U loading, element geometry, and fuel type. Silicide, oxide, and aluminide fuel types have been evaluated ranging in 235 U loading from 180 to 620 g per element and from 16 to 23 plates per element. Storage geometry considerations have been evaluated for fuel element separations ranging from closely packed formations to spacings of several centimeters between elements. Data are presented in a form in which interpolations may be made to estimate the eigenvalue of any fuel element storage configuration that is within the range of the data. (author)

  12. Fuel element radiometry system for quality control

    International Nuclear Information System (INIS)

    Bhattacharya, Sadhana; Gaur, Swati; Sridhar, Padmini; Mukhopadhyay, P.K.; Vaidya, P.R.; Das, Sanjoy; Sinha, A.K.; Bhatt, Sameer

    2010-01-01

    An indigenous and fully automatic PC based radiometry system has been designed and developed. The system required a vibration free scanning with various automated sequential movements to scan the fuel pin of size 5.8 mm (OD) x 1055 mm (L) along its full length. A mechanical system with these requirements and precision controls has been designed. The system consists of a tightly coupled and collimated radiation source-detector unit and data acquisition and control system. It supports PLC based control electronics to control and monitor the movement of fuel element, nuclear data acquisition and analysis system and feedback system to the mechanical scanner to physically accept or reject the fuel pin based on the decision derived by the software algorithms. (author)

  13. Nuclear fuel element nut retainer cup

    International Nuclear Information System (INIS)

    Walton, L.A.

    1977-01-01

    A typical embodiment has an end fitting for a nuclear reactor fuel element that is joined to the control rod guide tubes by means of a nut plate assembly. The nut plate assembly has an array of nuts, each engaging the respective threaded end of the control rod guide tubes. The nuts, moreover, are retained on the plate during handling and before fuel element assembly by means of hollow cylindrical locking cups that are brazed to the plate and loosely circumscribe the individual enclosed nuts. After the nuts are threaded onto the respective guide tube ends, the locking cups are partially deformed to prevent one or more of the nuts from working loose during reactor operation. The locking cups also prevent loose or broken end fitting parts from becoming entrained in the reactor coolant

  14. Method of detecting a fuel element failure

    International Nuclear Information System (INIS)

    Cohen, P.

    1975-01-01

    A method is described for detecting a fuel element failure in a liquid-sodium-cooled fast breeder reactor consisting of equilibrating a sample of the coolant with a molten salt consisting of a mixture of barium iodide and strontium iodide (or other iodides) whereby a large fraction of any radioactive iodine present in the liquid sodium coolant exchanges with the iodine present in the salt; separating the molten salt and sodium; if necessary, equilibrating the molten salt with nonradioactive sodium and separating the molten salt and sodium; and monitoring the molten salt for the presence of iodine, the presence of iodine indicating that the cladding of a fuel element has failed. (U.S.)

  15. Fuel element cluster for nuclear reactors

    International Nuclear Information System (INIS)

    Anthony, A.J.; Hutchinson, J.J.

    1976-01-01

    The claim refers to the constructional design of a fuel element cluster the elements of which are held by upper and lower end plates connected to each other in upright position, the bearing being formed by a screw connection between at least one guide tube for control rods and the two end plates. The claims are directed, especially, to the connection of the parts as well as to the materials selection which are determined to a high degree by the thermal expansion coefficients. (UA) [de

  16. Fuel accident performance testing for small HTRs

    Science.gov (United States)

    Schenk, W.; Pott, G.; Nabielek, H.

    1990-04-01

    Irradiated spherical fuel elements containing 16400 coated UO 2 particles each were heated at temperatures between 1600 and 1800°C and the fission product release was measured. The demonstrated fission product retention at 1600°C establishes the basis for the design of small modular HTRs which inherently limit the temperature to 1600°C by passive means. In addition to this demonstration, the test data show that modern TRISO fuels provide an ample performance margin: release normally sets in at 1800°C; this occurs at 1600°C only with fuels irradiated under conditions which significantly exceed current reactor design requirements.

  17. METHOD OF MAKING WIRE FUEL ELEMENTS

    Science.gov (United States)

    Zambrow, J.L.

    1960-08-01

    A method is given for making a nuclear reactor fuel element in the form of a uranium-bearing wire clad with zirconium. A uranium bar is enclosed in a zirconium sheath which is coated with an oxide of magnesium, beryllium, or zirconium. The sheathed bar is then placed in a steel tube and reduced to the desired diameter by swaging at 800 to 900 deg C, after which the steel and oxide are removed.

  18. Development of the Fuel Element Database of PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Nurhayati Ramli; Naim Syauqi Hamzah; Nurfazila Husain; Yahya Ismail; Mat Zin Mat Husin; Mohd Fairus Abd Farid

    2015-01-01

    Since June 28th, 1982, the PUSPATI TRIGA Reactor (RTP) operates safely with an accumulated energy release of about 17,200 MWhr, which corresponds to about 882 g of uranium burn-up. The reactor core has been reconfigured 15th times. Presently, there are 111 TRIGA fuel elements in the core, which 66 of the fuel elements are from the initial criticality while the rest of the fuel elements have been added to compensate the uranium consumption. As 59 % of the fuel elements are older than 30 years old, it is necessary to put the history of every fuel element in a database for easy access of the fuel element movement, inspection results history and integrity status. This paper intends to describe how the fuel element database is developed and related formulae used in determining the RTP fuel element elongation. (author)

  19. An improved assembly for the transport of fuel elements

    International Nuclear Information System (INIS)

    Myers, G.

    1979-01-01

    An improved assembly for the transport and storage of radioactive nuclear fuel elements is described. The fuel element transport canister is of the type in which the fuel elements are submerged in liquid with a self regulating ullage system, so that the fuel elements are always submerged in the liquid even when the assembly is used in one orientation during loading and another orientation during transportation. (UK)

  20. Status of fuel irradiation tests in HANARO

    International Nuclear Information System (INIS)

    Kim, Hark Rho; Lee, Choong Sung; Lee, Kye Hong; Jun, Byung Jin; Lee, Ji Bok

    1999-01-01

    Since 1996 after finishing the long-term operational test, HANARO (High-Flux Advanced Neutron Application Reactor) has been extensively used for material irradiation tests, beam application research, radioisotope production and neutron activation analysis. This paper presents the fuel irradiation test activities which are now conducted or have been finished in HANARO. KAERI developed LEU fuel using an atomization method for the research reactors. Using this LEU, we have set up and conducted three irradiation programs: (1) medium power irradiation test using a short-length mini-assembly made of 3.15 gU/cc U 3 Si, (2) high power irradiation tests using full-length test assemblies made of 3.15 gU/cc U 3 Si, and (3) irradiation test using a short-length mini-plate made of 4.8 gU/cc U 3 Si 2 . DUPIC (Direct Use of spent PWR fuels in CANDU Reactors) simulation fuel pellets, of which compositions are very similar to DUPIC pellets to keep the similarity in the thermo-mechanical property, were developed. Three mini-elements including 5 pellets each were installed in a capsule. This capsule has been irradiated for 2 months and unloaded from the HANARO core at the end of September 1999. Another very important test is the HANARO fuel qualification program at high power, which is required to resolve the licensing issue. This test is imposed on the HANARO operation license due to insufficient test data under high power environment. To resolve this licensing issue, we have been carrying out the required irradiation tests and PIE (Post-irradiation Examination) tests. Through this program, it is believed that the resolution of the licensing issue is achieved. In addition to these programs, several fuel test plans are under way. Through these vigorous activities of fuel irradiation test programs, HANARO is sure to significantly contribute to the national nuclear R and D programs. (author)

  1. Fuel Economy Testing and Data

    Science.gov (United States)

    EPA’s Fuel Economy pages provide information on current standards and how federal agencies work to enforce those laws, testing for national Corporate Average Fuel Economy or CAFE standards, and what you can do to reduce your own vehicle emissions.

  2. Review of fuel element development for nuclear rocket engines

    International Nuclear Information System (INIS)

    Taub, J.M.

    1975-06-01

    The Los Alamos Scientific Laboratory (LASL) entered the nuclear propulsion field in 1955 and began work on all aspects of a nuclear propulsion program involving uranium-loaded graphite fuels, hydrogen propellant, and a target exhaust temperature of approximately 2500 0 C. A very extensive uranium-loaded graphite fuel element technology evolved from the program. Selection and composition of raw materials for the extrusion mix had to be coupled with heat treatment studies to give optimum element properties. The highly enriched uranium in the element was incorporated as UO 2 , pyrocarbon-coated UC 2 , or solid solution UC . ZrC particles. An extensive development program resulted in successful NbC or ZrC coatings on elements to withstand hydrogen corrosion at elevated temperatures. Hot gas, thermal shock, thermal stress, and NDT evaluation procedures were developed to monitor progress in preparation of elements with optimum properties. Final evaluation was made in reactor tests at NRDS. Aerojet-General, Westinghouse Astronuclear Laboratory, and the Oak Ridge Y-12 Plant of Union Carbide Nuclear Company entered the program in the early 1960's, and their activities paralleled those of LASL in fuel element development. (U.S.)

  3. Transport and reprocessing of irradiated TRIGA fuel elements

    International Nuclear Information System (INIS)

    Staake, Theo R.

    1980-01-01

    This paper is intended to provide a review of the transport of irradiated TRIGA fuel elements, and the selection of the transport casks. The information presented is based on the experience TRANSNUKLEAR GmbH has gained over the last 14 years in the transport and reprocessing of irradiated MTR fuel elements. During this period over 2000 fuel elements were delivered to various destinations for reprocessing (about 1000 fuel elements - to European reprocessing plants (Eurochemic in Belgium, and CEA Marcoule in France), and, since 1977, over 1000 fuel elements - to the US-DOE Savannah River reprocessing plant)

  4. A nondestructive examination program for unclad carbon-composite reactor fuel elements

    International Nuclear Information System (INIS)

    Fullbright, H.J.

    1976-01-01

    A nondestructive testing program for the examination of (U,Zr)C-C reactor fuel elements is described. Radiography and eddy current data were used to eliminate defective fuel rods from the program. Mass per unit length data, uranium distribution data, and the thermal conductivity information could be used to calculate anticipated fuel element performance. Each generation of the development program yielded materials properties information that was used to design fuel rods

  5. RECH-1 test fuel irradiation status report

    International Nuclear Information System (INIS)

    Marin, J.; Lisboa, J.; Olivares, L.; Chavez, J.

    2005-01-01

    Since May 2003, one RECH-1 fuel element has been submitted to irradiation at the HFR-Petten, Holland. By November 2004 the irradiation has achieved its pursued goal of 55% burn up. This irradiation qualification service will finish in the year 2005 with PIE tests, as established in a contractual agreement between the IAEA, NRG, and CCHEN. This report presents the objectives and the current results of this fuel qualification under irradiation. Besides, a brief description of CHI/4/021, IAEA's Technical Cooperation Project that has supported this irradiation test, is also presented here. (author)

  6. Elastic plastic analysis of fuel element assemblies - hexagonal claddings and fuel rods

    International Nuclear Information System (INIS)

    Mamoun, M.M.; Wu, T.S.; Chopra, P.S.; Rardin, D.C.

    1979-01-01

    Analytical studies have been conducted to investigate the structural, thermal, and mechanical behavior of fuel rods, claddings and fuel element assemblies of several designs for a conceptual Safety Test Facility (STF). One of the design objectives was to seek a geometrical configuration for a clad by maximizing the volume fraction of fuel and minimizing the resultant stresses set-up in the clad. The results of studies conducted on various geometrical configurations showed that the latter design objective can be achieved by selecting a clad of an hexagonal geometry. The analytical studies necessitated developing solutions for determining the stresses, strains, and displacements experienced by fuel rods and an hexagonal cladding subjected to thermal fuel-bowing loads acting on its internal surface, the external pressure of the coolant, and elevated temperatures. This paper presents some of the initially formulated analytical methods and results. It should be emphasized that the geometrical configuration considered in this paper may not necessarily be similar to that of the final design. Several variables have been taken into consideration including cladding thickness, the dimensions of the fuel rod, the temperature of the fuel and cladding, the external pressure of the cooling fluid, and the mechanical strength properties of fuel and cladding. A finite-element computer program, STRAW Code, has also been employed to generate several numerical results which have been compared with those predicted by employing the initially formulated solutions. The theoretically predicted results are in good agreement with those of the STRAW Code. (orig.)

  7. Test plan for K-Basin fuel handling tools

    Energy Technology Data Exchange (ETDEWEB)

    Bridges, A.E.

    1995-02-08

    The purpose of this document is to provide the test plan and procedures for the acceptance testing of the handling tools enveloped for the removal of an N-Reactor fuel element from its storage canister in the K-Basins storage pool and insertion into the Single fuel Element Can for subsequent shipment to a Hot Cell for examination. Examination of these N-Reactor fuel elements is part of the overall characterization effort. New hand tools were required since previous fuel movement has involved grasping the fuel in a horizontal position. The 305 Building Cold Test Facility will be used to conduct the acceptance testing of the Fuel Handling Tools. Upon completion of this acceptance testing and any subsequent training of operators, the tools will be transferred to the 105 KW Basin for installation and use.

  8. Test plan for K-Basin fuel handling tools

    International Nuclear Information System (INIS)

    Bridges, A.E.

    1995-01-01

    The purpose of this document is to provide the test plan and procedures for the acceptance testing of the handling tools enveloped for the removal of an N-Reactor fuel element from its storage canister in the K-Basins storage pool and insertion into the Single fuel Element Can for subsequent shipment to a Hot Cell for examination. Examination of these N-Reactor fuel elements is part of the overall characterization effort. New hand tools were required since previous fuel movement has involved grasping the fuel in a horizontal position. The 305 Building Cold Test Facility will be used to conduct the acceptance testing of the Fuel Handling Tools. Upon completion of this acceptance testing and any subsequent training of operators, the tools will be transferred to the 105 KW Basin for installation and use

  9. Status of work on the concept for direct spent fuel element disposal in fuel element canisters

    International Nuclear Information System (INIS)

    Filbert, W.; Wehrmann, J.; Bollingerfehr, W.; Graf, R.; Fopp, S.

    2009-01-01

    The reference concept for direct final disposal of spent fuel elements is the storage in POLLUC casks in an underground facility in salt formations. The reference concept includes also the borehole storage of high-level waste and CSD-C-canisters in vertical boreholes. In the frame of the optimized final repository concept from 1998 the unshielded fuel element canisters BSK 3 were introduced. The concept aims to an enhanced heat input control into the host rock, reduced storage area demand, reduction of the gas problems (less metal masses), faster process of canisters compared with the POLLUX cask storage, and economic optimization by avoiding expensive casks.

  10. The calculation - experimental investigations of the HTGR fuel element construction

    International Nuclear Information System (INIS)

    Eremeev, V.S.; Kolesov, V.S.; Chernikov, A.S.

    1985-01-01

    One of the most important problems in the HTGR development is the creation of the fuel element gas-tight for the fission products. This problem is being solved by using fuel elements of dispersion type representing an ensemble of coated fuel particles dispersed in the graphite matrix. Gas-tightness of such fuel elements is reached at the expense of deposing a protective coating on the fuel particles. It is composed of some layers serving as diffusion barriers for fission products. It is apparent that the rate of fission products diffusion from coated fuel particles is determined by the strength and temperature of the protective coating

  11. Hydraulic Design Criteria for Spacer Grids of Nuclear Fuel Element

    International Nuclear Information System (INIS)

    Juanico, Luis; Brasnarof, Daniel

    2000-01-01

    In this paper a hydraulic model for calculating the pressure drop on the CARA spacer grids is extended.This model is validated and feedback from experimental hydraulic test performed in a low pressure loop.The importance of the spacer grid geometric parameter (that is, its thickness and length, the number and kind of their fix spacer), developing hydraulic design criteria for spacer grid on fuel element

  12. Nuclear fuel element with axially aligned fuel pellets and fuel microspheres therein

    Science.gov (United States)

    Sease, J.D.; Harrington, F.E.

    1973-12-11

    Elongated single- and multi-region fuel elements are prepared by replacing within a cladding container a coarse fraction of fuel material which includes plutonium and uranium in the appropriate regions of the fuel element and then infiltrating with vibration a fine-sized fraction of uranium-containing microspheres throughout all interstices in the coarse material in a single loading. The fine, rigid material defines a thin annular layer between the coarse fraction and the cladding to reduce adverse mechanical and chemical interactions. (Official Gazette)

  13. 40 CFR 94.108 - Test fuels.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Test fuels. 94.108 Section 94.108... EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Test Procedures § 94.108 Test fuels. (a) Distillate diesel test fuel. (1) The diesel fuels for testing Category 1 and Category 2 marine engines designed to...

  14. Testing plutonium fuel assembly production for fast-neutron reactors

    International Nuclear Information System (INIS)

    Nougues, B.; Benhamou, A.; Bertothy, G.; Lepetit, H.

    1975-01-01

    The main characteristics of plutonium fuel elements for fast breeder reactors justify specific test procedures and special techniques. The specific tests relating to the Pu content consist of Pu enrichment and distribution tests, determination of the O/M ratio and external contamination tests. The specific tests performed on fuel configuration are: testing of sintered pellet diameter, testing of pin welding and checking of internal assmbly [fr

  15. Convective parameters in fuel elements for research nuclear reactors

    International Nuclear Information System (INIS)

    Lopez Martinez, C.D.

    1992-01-01

    The study of a prototype for the simulation of fuel elements for research nuclear reactors by natural convection in water is presented in this paper. This project is carry out in the thermofluids laboratory of National Institute of Nuclear Research. The fuel prototype has already been test for natural convection in air, and the first results in water are presented in this work. In chapter I, a general description of Triga Mark III is made, paying special atention to fuel-moderator components. In chapter II and III an approach to convection subject in its global aspects is made, since the intention is to give a general idea of the events occuring around fuel elements in a nuclear reactor. In chapter II, where an emphasis on forced convection is made, some basic concepts for forced convection as well as for natural convection are included. The subject of flow through cylinders is annotated only as a comparative reference with natural convection in vertical cylinders, noting the difference between used correlations and the involved variables. In chapter III a compilation of correlation found in the bibliography about natural convection in vertical cylinders is presented, since its geometry is the more suitable in the analysis of a fuel rod. Finally, in chapter IV performed experiments in the test bench are detailed, and the results are presented in form of tables and graphs, showing the used equations for the calculations and the restrictions used in each case. For the analysis of the prototypes used in the test bench, a constant and uniform flow of heat in the whole length of the fuel rod is considered. At the end of this chapter, the work conclusions and a brief explanation of the results are presented (Author)

  16. Fuel element concept for long life high power nuclear reactors

    Science.gov (United States)

    Mcdonald, G. E.; Rom, F. E.

    1969-01-01

    Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel.

  17. Drying results of K-Basin fuel element 5744U (Run 4)

    International Nuclear Information System (INIS)

    Klinger, G.S.; Oliver, B.M.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

    1998-07-01

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basins have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site. Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 8.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the fourth of those tests, which was conducted on an N-Reactor outer fuel element removed from K-West canister 5744U. This element (referred to as Element 5744U) was stored underwater in the K-West Basin from 1983 until 1996. Element 5744U was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The system used for the drying test was the Whole Element Furnace Testing System, described in Section 2.0, located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodologies are given in Section 3.0. Inspections of the fuel element before and after the test are provided in Section 4.0. The experimental results are provided in Section 5.0, and discussed in Section 6.0

  18. Some properties for modeling of fuel elements

    International Nuclear Information System (INIS)

    Nichols, F.A.

    1979-01-01

    Two areas key to the materials modeling of fuel element behavior are discussed. The relative importance of atomic diffusion vs. bubble migration is first surveyed and the interplay of bubble mobility and re-solution parameter is highlighted. It is concluded that biased bubble migration at higher temperatures is required to explain available gas-release data, especially during transients. At intermediate temperatures, random bubble migration is required to explain both gas-release rates and the observation of large (approx. 700A) intragranular bubbles following in-pile and post-irradiation transients. Different fuel models employ different values of re-solution parameter, both below and above an experimentally determined value. Bubble mobilities are deduced to approach theoretical, surface diffusion-controlled values during transients, but they may be somewhat less mobile during steady-state operation. Next, the present understanding of radiation-induced hardening and creep is discussed, highlighting the interplay of these two phenomena. An overall constitutive scheme is presented and predictions of failure limits are deduced therefrom employing instability analysis

  19. News from the fuel elements industry

    International Nuclear Information System (INIS)

    Racine, R.; Delannay, M.; Dehon, C.; Jouan, J.; Beuneche, M.

    1981-01-01

    This article deals successively with: the re-structuring of the PWR fuel industry in France, with the setting up of Fragema and Cogema Framatome Combustible; Fragema products, from standard fuel assembly to the development of a new advanced fuel assembly; Framatome's experience with PWR fuel; fuel performances in the light of requirements imposed by network needs follow-up; devices developed by Fragema for on-site analysis of irradiated fuel [fr

  20. The development of fuel elements for boiling water reactors

    International Nuclear Information System (INIS)

    Holzer, R.; Kilian, P.

    1984-01-01

    The longevity of today's standard fuel elements constitutes a sound basis for designing advanced fuel elements for higher discharge burnups. Operating experience as well as postirradiation examinations of discharged fuel elements indicate that the technical limits have not reached by far. However, measures to achieve an economic and reliable fuel cycle are not restricted to the design of fuel elements, but also extend into such fields as fuel management and the mode of reactor operation. Fuel elements can be grouped together in zones in the core as a function of burnup and reactivity. The loading scheme can be aligned to this approach by concentrating on typical control rod positions. Reloads can also be made up of two sublots of fuel elements with different gadolinium contents. Longer cycles, e.g., of eighteen instead of twelve months, are easy to plan reactivitywise by increasing the quantity to be replaced from at present one quarter to one third. In fuel elements designed for higher burnups, the old scheme of reloading one quarter of the fuel inventory can be retained. The measures already introduced or in the planning stage incorporate a major potential for technical and economic optimization of the fuel cycle in boiling water reactors. (orig.) [de

  1. Remarks on the transportation of spent fuel elements

    International Nuclear Information System (INIS)

    Krull, W.

    1992-01-01

    Information and data are provided on several aspects of the transportation of spent fuel elements. These aspects include contract, transportation, reprocessing batch size, and economical considerations. (author)

  2. CANFLEX fuel bundle impact test

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Seok Kyu; Chung, C. H.; Park, J. S.; Hong, S. D.; Kim, B. D.

    1997-08-01

    This document outlines the test results for the impact test of the CANFLEX fuel bundle. Impact test is performed to determine and verify the amount of general bundle shape distortion and defect of the pressure tube that may occur during refuelling. The test specification requires that the fuel bundles and the pressure tube retain their integrities after the impact test under the conservative conditions (10 stationary bundles with 31kg/s flow rate) considering the pressure tube creep. The refuelling simulator operating with pneumatic force and simulated shield plug were fabricated and the velocity/displacement transducer and the high speed camera were also used in this test. The characteristics of the moving bundle (velocity, displacement, impacting force) were measured and analyzed with the impact sensor and the high speed camera system. The important test procedures and measurement results were discussed as follows. 1) Test bundle measurements and the pressure tube inspections 2) Simulated shield plug, outlet flange installation and bundle loading 3) refuelling simulator, inlet flange installation and sensors, high speed camera installation 4) Perform the impact test with operating the refuelling simulator and measure the dynamic characteristics 5) Inspections of the fuel bundles and the pressure tube. (author). 8 refs., 23 tabs., 13 figs.

  3. Spent fuel drying system test results (second dry-run)

    International Nuclear Information System (INIS)

    Klinger, G.S.; Oliver, B.M.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

    1998-07-01

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks have been detected in the basins and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the second dry-run test, which was conducted without a fuel element. With the concurrence of project management, the test protocol for this run, and subsequent drying test runs, was modified. These modifications were made to allow for improved data correlation with drying procedures proposed under the IPS. Details of these modifications are discussed in Section 3.0

  4. Means for supporting fuel elements in a nuclear reactor

    Science.gov (United States)

    Andrews, Harry N.; Keller, Herbert W.

    1980-01-01

    A grid structure for a nuclear reactor fuel assembly comprising a plurality of connecting members forming at least one longitudinally extending opening peripheral and inner fuel element openings through each of which openings at least one nuclear fuel element extends, said connecting members forming wall means surrounding said each peripheral and inner fuel element opening, a pair of rigid projections longitudinally spaced from one another extending from a portion of said wall means into said each peripheral and inner opening for rigidly engaging said each fuel element, respectively, yet permit individual longitudinal slippage thereof, and resilient means formed integrally on and from said wall means and positioned in said each peripheral and inner opening in opposed relationship with said projections and located to engage said fuel element to bias the latter into engagement with said rigid projections, respectively

  5. Storage device for a long nuclear reactor fuel element and/or a long nuclear reactor fuel element part

    International Nuclear Information System (INIS)

    Vogt, M.; Schoenwitz, H.P.; Dassbach, W.

    1986-01-01

    The storage device can be erected in a dry storage room for new fuel elements and also in a storage pond for irradiated fuel elements. It consists of shells, which are arranged vertically and which have a lid. A suspension for the fuel element is provided on the underside of the lid, which acts as a support against squashing or bending in case of vertical forces acting (earthquake). (DG) [de

  6. Radiation resistance of pyrocarbon-boned fuel and absorbing elements for HTGR

    International Nuclear Information System (INIS)

    Gurin, V.A.; Konotop, Yu.F.; Odejchuk, N.P.; Shirochenkov, S.D.; Yakovlev, V.K.; Aksenov, N.A.; Kuprienko, V.A.; Lebedev, I.G.; Samsonov, B.V.

    1990-01-01

    In choosing the reactor type, problems of nuclear and radiation safety are outstanding. The analysis of the design and experiments show that HTGR type reactors helium cooled satisfy all the safety requirements. It has been planned in the Soviet Union to construct two HTGR plants, VGR-50 and VG-400. Later it was decided to construct an experimental plant with a low power high temperature reactor (VGM). Spherical uranium-graphite fuel elements with coated fuel particles are supposed to be used in HTGR core. A unique technology for producing spherical pyrocarbon-bound fuel and absorbing elements of monolithic type has been developed. Extended tests were done to to investigate fuel elements behaviour: radiation resistance of coated fuel particles with different types of fuel; influence of the coated fuel particles design on gaseous fission products release; influence of non-sphericity on coated fuel particle performance; dependence of gaseous fission products release from fuel elements on the thickness of fuel-free cans; confining role of pyrocarbon as a factor capable of diminishing the rate of fission products release; radiation resistance of spherical fuel elements during burnup; radiation resistance of spherical absorbing elements to fast neutron fluence and boron burnup

  7. Interim report spent nuclear fuel retrieval system fuel handling development testing

    Energy Technology Data Exchange (ETDEWEB)

    Ketner, G.L.; Meeuwsen, P.V.; Potter, J.D.; Smalley, J.T.; Baker, C.P.; Jaquish, W.R.

    1997-06-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project at the Hanford Site. The project will retrieve spent nuclear fuel, clean and remove fuel from canisters, repackage fuel into baskets, and load fuel into a multi-canister overpack (MCO) for vacuum drying and interim dry storage. The FRS is required to retrieve basin fuel canisters, clean fuel elements sufficiently of uranium corrosion products (or sludge), empty fuel from canisters, sort debris and scrap from whole elements, and repackage fuel in baskets in preparation for MCO loading. The purpose of fuel handling development testing was to examine the systems ability to accomplish mission activities, optimization of equipment layouts for initial process definition, identification of special needs/tools, verification of required design changes to support performance specification development, and validation of estimated activity times/throughput. The test program was set up to accomplish this purpose through cold development testing using simulated and prototype equipment; cold demonstration testing using vendor expertise and systems; and graphical computer modeling to confirm feasibility and throughput. To test the fuel handling process, a test mockup that represented the process table was fabricated and installed. The test mockup included a Schilling HV series manipulator that was prototypic of the Schilling Hydra manipulator. The process table mockup included the tipping station, sorting area, disassembly and inspection zones, fuel staging areas, and basket loading stations. The test results clearly indicate that the Schilling Hydra arm cannot effectively perform the fuel handling tasks required unless it is attached to some device that can impart vertical translation, azimuth rotation, and X-Y translation. Other test results indicate the importance of camera locations and capabilities, and of the jaw and end effector tool design. 5 refs., 35 figs., 3 tabs.

  8. Fuel cell elements with improved water handling capacity

    Science.gov (United States)

    Kindler, Andrew (Inventor); Lee, Albany (Inventor)

    2001-01-01

    New fuel cell components for use in liquid feed fuel cell systems are provided. The components include biplates and endplates, having a hydrophilic surface and allow high efficiency operation. Conductive elements and a wicking device also form a part of the fuel cell components of the invention.

  9. Assembly for transport and storage of radioactive nuclear fuel elements

    International Nuclear Information System (INIS)

    Myers, G.

    1978-01-01

    The invention concerns the self-control of coolant deficiencies on the transport of spent fuel elements from nuclear reactors. It guarantees that drying out of the fuel elements is prevented in case of a change of volume of the fluid contained in storage tanks and accumulators and serving as coolant and shielding medium. (TK) [de

  10. Pellet-clad interaction observations in boiling water reactor fuel elements

    International Nuclear Information System (INIS)

    Sahoo, K.C.; Bahl, J.K.; Sivaramakrishnan, K.S.; Roy, P.R.

    1981-01-01

    Under a programme to assess the performance of fuel elements of Tarapur Atomic Power Station, post-irradiation examination has been carried out on 18 fuel elements in the first phase. Pellet-clad mechanical interaction behaviour in 14 elements with varying burnup and irradiation history has been studied using eddy current testing technique. The data has been analysed to evaluate the role of pellet-clad mechanical interaction in PCI/SCC failure in power reactor operating conditions. (author)

  11. Fuel element shipping shim for nuclear reactor

    International Nuclear Information System (INIS)

    Gehri, A.

    1975-01-01

    A shim is described for use in the transportation of nuclear reactor fuel assemblies. It comprises a member preferably made of low density polyethylene designed to have three-point contact with the fuel rods of a fuel assembly and being of sufficient flexibility to effectively function as a shock absorber. The shim is designed to self-lock in place when associated with the fuel rods. (Official Gazette)

  12. Design of the Fuel Element for the RRR Reactor (Australia)

    International Nuclear Information System (INIS)

    Estevez, E.A.; Markiewicz, M.E.; Gerding, R.

    2003-01-01

    The supply to the Replacement Research Reactor ( RRR ) to Australia represents a technological goal for our country, as much for the designers and manufacturers of this irradiation facility ( Invap SE ), as well for the responsibles of the fuel elements ( FE ) design and the suppliers of the first core ( CNEA ).In relation with the FE, although the conceptual design and fabrication technology of the FE are similar to the just developed and qualified by CNEA ( plane plates MTR fuel type ), the characteristics of this new reactor imposes most severe operation conditions on them than in previous supplies.In that sense, two distinguishing characteristics deserve to be shown: a) The magnitude of the hydrodynamics loads acting on the FE due to the coolant ascendent flow direction, and mainly, the very high flow velocities between the fuel plates ( aproximately five times higher than which presents in others Argentine FE actually in operation. b) The use of U3Si2 as fuel material.CNEA has started a programme to qualify this type of fuel.As result of these higher loads under irradiations and with the objective to maintain the high reliability level reached by our FE ( very low failure rates ), it was necessary to introduce FE mechanical-structural design modifications respect to the ECBE or standard design version, and to verify these changes through hydrodynamics tests on a 1:1 scale prototype.In this paper it is described the mechanical-structural FE design with special emphasis in the innovatives aspects incorporated.The design criteria established in function of the solicitations and limitating effects present under irradiation conditions.Also, a brief description of the proposed programme to verify and evaluate this design is presented, including analytical and numerical calculus of stresses acting on the fuel plates and others FE components, pressure loss hydrodynamics tests and endurance essays

  13. LOAD-CHECK. Disposal planning for LWR fuel elements

    International Nuclear Information System (INIS)

    Freunek, M.; Braun, A.; Graf, R.; Gutermuth, F.

    2012-01-01

    With the changes of the German atomic law from November 8, 2011 the operation licensing of LWR plants expire latest 2022, for eight NPPs the operation licenses are already expired. In order to optimize the fuel element management in the still operated but also in the decommissioned nuclear power plants the computer code module LOAD-CHECK was developed. LOAD-CHECK allows the foresight container planning for an optimized schedule and the container amount for loading campaigns esp. in case of the disposal of special fuel elements (MOX fuel elements or high-burnup fuel elements). The program can also be used a s tool for development of transport licensing and storage licensing according of CASTOR registered V casks. In the contribution the LOAD-CHECK program for the PWR and BWR fuel element disposal management in CASTOR registered B casks is presented.

  14. Nuclear reactor fuel element having improved heat transfer

    Science.gov (United States)

    Garnier, J.E.; Begej, S.; Williford, R.E.; Christensen, J.A.

    1982-03-03

    A nuclear reactor fuel element having improved heat transfer between fuel material and cladding is described. The element consists of an outer cladding tube divided into an upper fuel section containing a central core of fissionable or mixed fissionable and fertile fuel material, slightly smaller in diameter than the inner surface of the cladding tube and a small lower accumulator section, the cladding tube being which is filled with a low molecular weight gas to transfer heat from fuel material to cladding during irradiation. A plurality of essentially vertical grooves in the fuel section extend downward and communicate with the accumulator section. The radial depth of the grooves is sufficient to provide a thermal gradient between the hot fuel surface and the relatively cooler cladding surface to allow thermal segregation to take place between the low molecular weight heat transfer gas and high molecular weight fission product gases produced by the fuel material during irradiation.

  15. Preliminary Nuclear Analysis for the HANARO Fuel Element with Burnable Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chul Gyo; Kim, So Young; In, Won Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Burnable absorber is used for reducing reactivity swing and power peaking in high performance research reactors. Development of the HANARO fuel element with burnable absorber was started in the U-Mo fuel development program at HANARO, but detailed full core analysis was not performed because the current HANARO fuel management system is uncertain to analysis the HANARO core with burnable absorber. A sophisticated reactor physics system is required to analysis the core. The McCARD code was selected and the detailed McCARD core models, in which the basic HANARO core model was developed by one of the McCARD developers, are used in this study. The development of nuclear fuel requires a long time and correct developing direction especially by the nuclear analysis. This paper presents a preliminary nuclear analysis to promote the fuel development. Based on the developed fuel, the further nuclear analysis will improve reactor performance and safety. Basic nuclear analysis for the HANARO and the AHR were performed for getting the proper fuel elements with burnable absorber. Addition of 0.3 - 0.4% Cd to the fuel meat is promising for the current HANARO fuel element. Small addition of burnable absorber may not change any fuel characteristics of the HANARO fuel element, but various basic tests and irradiation tests at the HANARO core are required.

  16. Thermal analysis of IRT-T reactor fuel elements

    OpenAIRE

    Naymushin, Artem Georgievich; Chertkov, Yuri Borisovich; Lebedev, Ivan Igorevich; Anikin, Mikhail Nikolaevich

    2015-01-01

    The article describes the method and results of thermo-physical calculations of IRT-T reactor core. Heat fluxes, temperatures of cladding, fuel meat and coolant were calculated for height of core, azimuth directions of FA and each fuel elements in FA. Average calculated values of uniformity factor of energy release distribution for height of fuel assemblies were shown in this research. Onset nucleate boiling temperature and ONB-ratio were calculated. Shows that temperature regimes of fuel ele...

  17. CARA, new concept of advanced fuel element for HWR

    International Nuclear Information System (INIS)

    Florido, P.C.; Crimello, R.O.; Bergallo, J.E.; Marino, A.C.; Delmastro, D.F.; Brasnarof, D.O.; Gonzalez, J.H.

    1999-01-01

    All Argentinean NPPs (2 in operation, 1 under construction), use heavy water as coolant and moderator. With very different reactor concepts (pressure Vessel and CANDU type designs), the fuel elements are completely different in its concepts too. Argentina produces both types of fuel elements at a manufacturing fuel element company, called CONUAR. The very different fuel element's designs produce a very complex economical behavior in this company, due to the low production scale. The competitiveness of the Argentinean electric system (Argentina has a market driven electric system) put another push towards to increase the economical competitiveness of the nuclear fuel cycle. At present, Argentina has a very active Slightly Enriched Uranium (SEU) Program for the pressure vessel HWR type, but without strong changes in the fuel concept itself. Then, the Atomic Energy Commission in Argentina (CNEA) has developed a new concept of fuel element, named CARA, trying to achieve very ambitious goals, and substantially improved the competitiveness of the nuclear option. The ambitious targets for CARA fuel element are compatibility (a single fuel element for all Argentinean's HWR) using a single diameter fuel rod, improve the security margins, increase the burnup and do not exceed the CANDU fabrication costs. In this paper, the CARA concept will be presented, in order to explained how to achieve all together these goals. The design attracted the interest of the nuclear power operator utility (NASA), and the fuel manufacturing company (CONUAR). Then a new Project is right now under planning with the cooperation of three parts (CNEA - NASA - CONUAR) in order to complete the whole development program in the shortest time, finishing in the commercial production of CARA fuel bundle. At the end of the this paper, future CARA development program will be described. (author)

  18. Flowrate regulation device in PEC reactor fuel element

    International Nuclear Information System (INIS)

    Tirelli, D.

    1976-01-01

    A calculation method which optimizes a series of sharp-edged constrictions has been defined, to design the PEC reactor fuel element foot and can device. Total pressure drop is divided in each gag to obtain equal cavitation numbers in vena contracta planes. Water and sodium experimental tests have been carried out for most critical configurations; pressure drop results agree the prediction, while cavitation results are a little spread; some instrumental and modelling improvement activities are now being developed to reduce this uncertainty, to physical-chemical sodium condition variables, in the reactor. (author)

  19. Gamma-ray spectroscopy on irradiated MTR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Terremoto, L.A.A. E-mail: laaterre@net.ipen.br; Zeituni, C.A.; Perrotta, J.A.; Silva, J.E.R. da

    2000-08-11

    The availability of burnup data is an important requirement in any systematic approach to the enhancement of safety, economics and performance of a nuclear research reactor. This work presents the theory and experimental techniques applied to determine, by means of nondestructive gamma-ray spectroscopy, the burnup of Material Testing Reactor (MTR) fuel elements irradiated in the IEA-R1 research reactor. Burnup measurements, based on analysis of spectra that result from collimation and detection of gamma-rays emitted in the decay of radioactive fission products, were performed at the reactor pool area. The measuring system consists of a high-purity germanium (HPGe) detector together with suitable fast electronics and an on-line microcomputer data acquisition module. In order to achieve absolute burnup values, the detection set (collimator tube+HPGe detector) was previously calibrated in efficiency. The obtained burnup values are compared with ones provided by reactor physics calculations, for three kinds of MTR fuel elements with different cooling times, initial enrichment grades and total number of fuel plates. Both values show good agreement within the experimental error limits.

  20. Gamma-ray spectroscopy on irradiated MTR fuel elements

    International Nuclear Information System (INIS)

    Terremoto, L.A.A.; Zeituni, C.A.; Perrotta, J.A.; Silva, J.E.R. da

    2000-01-01

    The availability of burnup data is an important requirement in any systematic approach to the enhancement of safety, economics and performance of a nuclear research reactor. This work presents the theory and experimental techniques applied to determine, by means of nondestructive gamma-ray spectroscopy, the burnup of Material Testing Reactor (MTR) fuel elements irradiated in the IEA-R1 research reactor. Burnup measurements, based on analysis of spectra that result from collimation and detection of gamma-rays emitted in the decay of radioactive fission products, were performed at the reactor pool area. The measuring system consists of a high-purity germanium (HPGe) detector together with suitable fast electronics and an on-line microcomputer data acquisition module. In order to achieve absolute burnup values, the detection set (collimator tube+HPGe detector) was previously calibrated in efficiency. The obtained burnup values are compared with ones provided by reactor physics calculations, for three kinds of MTR fuel elements with different cooling times, initial enrichment grades and total number of fuel plates. Both values show good agreement within the experimental error limits

  1. Finite element analysis model development and static strength analysis for CANDU-6 reactor fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Moon Sung; Suk, Ho Chun

    2000-12-01

    A static and finite-element (FE) analysis model was developed to simulate out-reactor fuel string strength tests with use of the structural analysis computer code ABAQUS. The FE model takes into account the deflection of fuel elements and stress and displacement in end-plates subjected to hydraulic drag loads. It was adapted to the strength tests performed for CANFLEX 43-element bundles and the existing 37-element bundles. The FE model was found to be in good agreement with the experiment results. With use of the FE model, the static behavior of the fuel bundle strings, such as load transfer between ring elements, end-plate rib effects, hydraulic drag load incurring plastic deformation in fuel string and hydraulic flow rate effects were investigated.

  2. Statistical estimation of fast-reactor fuel-element lifetime

    International Nuclear Information System (INIS)

    Proshkin, A.A.; Likhachev, Yu.I.; Tuzov, A.N.; Zabud'ko, L.M.

    1980-01-01

    On the basis of a statistical analysis, the main parameters having a significant influence on the theoretical determination of fuel-element lifetimes in the operation of power fast reactors in steady power conditions are isolated. These include the creep and swelling of the fuel and shell materials, prolonged-plasticity lag, shell-material corrosion, gap contact conductivity, and the strain diagrams of the shell and fuel materials obtained for irradiated materials at the corresponding strain rates. By means of deeper investigation of these properties of the materials, it is possible to increase significantly the reliability of fuel-element lifetime predictions in designing fast reactors and to optimize the structure of fuel elements more correctly. The results of such calculations must obviously be taken into account in the cost-benefit analysis of projected new reactors and in choosing the optimal fuel burnup. 9 refs

  3. Operational requirements of spherical HTR fuel elements and their performance

    International Nuclear Information System (INIS)

    Roellig, K.; Theymann, W.

    1985-01-01

    The German development of spherical fuel elements with coated fuel particles led to a product design which fulfils the operational requirements for all HTR applications with mean gas exit temperatures from 700 deg C (electricity and steam generation) up to 950 deg C (supply of nuclear process heat). In spite of this relatively wide span for a parameter with strong impact on fuel element behaviour, almost identical fuel specifications can be used for the different reactor purposes. For pebble bed reactors with relatively low gas exit temperatures of 700 deg C, the ample design margins of the fuel elements offer the possibility to enlarge the scope of their in-service duties and, simultaneously, to improve fuel cycle economics. This is demonstrated for the HTR-500, an electricity and steam generating 500 MWel eq plant presently proposed as follow-up project to the THTR-300. Due to the low operating temperatures of the HTR-500 core, the fuel can be concentrated in about 70% of the pebbles of the core thus saving fuel cycle costs. Under all design accident conditions fuel temperatures are maintained below 1250 deg C. This allows a significant reduction in the engineered activity barriers outside the primary circuit, in particular for the loss of coolant accident. Furthermore, access to major primary circuit components and the reuse of the fuel elements after any design accident are possible. (author)

  4. Elements of nuclear reactor fueling theory

    International Nuclear Information System (INIS)

    Egan, M.R.

    1984-01-01

    Starting with a review of the simple batch size effect, a more general theory of nuclear fueling is derived to describe the behavior and physical requirements of operating cycle sequences and fueling strategies having practical use in the management of nuclear fuel. The generalized theory, based on linear reactivity modeling, is analytical and represents the effects of multiple-stream, multiple-depletion-batch fueling configurations in systems employing arbitrary, non-integer batch size strategies, and containing fuel with variable energy generation rates. Reactor operating cycles and cycle sequences are represented with realistic structure that includes the effects of variable cycle energy production, cycle lengths, end-of-cycle operating extensions and maneuvering allowances. Results of the analytical theory are first applied to the special case of degenerate equilibrium cycle sequences, yielding several fundamental principles related to the selection of refueling strategy, and which govern fueling decisions normally made by the fuel manager. It is also demonstrated in this application that the simple batch size effect is not valid for non-integer fueling strategies, even in the simplest sequence configurations, and that it systematically underestimates the fueling requirements of degenerate sequences in general

  5. Multiscale NTP Fuel Element Materials Simulation

    Data.gov (United States)

    National Aeronautics and Space Administration — Project will leverage a multiscale modeling approach pioneered for light water reactor (LWR) fuels to simulate performance in a prototypical environment. The...

  6. System design description for the whole element furnace testing system

    International Nuclear Information System (INIS)

    Ritter, G.A.; Marschman, S.C.; MacFarlan, P.J.; King, D.A.

    1998-05-01

    This document provides a detailed description of the Hanford Spent Nuclear Fuel (SNF) Whole Element Furnace Testing System located in the Postirradiation Testing Laboratory G-Cell (327 Building). Equipment specifications, system schematics, general operating modes, maintenance and calibration requirements, and other supporting information are provided in this document. This system was developed for performing cold vacuum drying and hot vacuum drying testing of whole N-Reactor fuel elements, which were sampled from the 105-K East and K West Basins. The proposed drying processes are intended to allow dry storage of the SNF for long periods of time. The furnace testing system is used to evaluate these processes by simulating drying sequences with a single fuel element and measuring key system parameters such as internal pressures, temperatures, moisture levels, and off-gas composition

  7. ELOCA: fuel element behaviour during high temperature transients

    International Nuclear Information System (INIS)

    Sills, H.E.

    1979-03-01

    The ELOCA computer code was developed to simulate the uniform thermal-mechanical behaviour of a fuel element during high-temperature transients such as a loss-of-coolant accident (LOCA). Primary emphasis is on the diametral expansion of the fuel sheath. The model assumed is a single UO2/zircaloy-clad element with axisymmetric properties. Physical effects considered by the code are fuel expansion, cracking and melting; variation, during the transient, of internal gas pressure; changing fuel/sheath heat transfer; thermal, elastic and plastic sheath deformation (anisotropic); Zr/H 2 O chemical reaction effects; and beryllium-assisted crack penetration of the sheath. (author)

  8. Spent nuclear fuel retrieval system fuel handling development testing. Final report

    International Nuclear Information System (INIS)

    Jackson, D.R.; Meeuwsen, P.V.

    1997-09-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin, clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge), remove the contents from the canisters and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. This report describes fuel handling development testing performed from May 1, 1997 through the end of August 1997. Testing during this period was mainly focused on performance of a Schilling Robotic Systems' Conan manipulator used to simulate a custom designed version, labeled Konan, being fabricated for K-Basin deployment. In addition to the manipulator, the camera viewing system, process table layout, and fuel handling processes were evaluated. The Conan test manipulator was installed and fully functional for testing in early 1997. Formal testing began May 1. The purposes of fuel handling development testing were to provide proof of concept and criteria, optimize equipment layout, initialize the process definition, and identify special needs/tools and required design changes to support development of the performance specification. The test program was set up to accomplish these objectives through cold (non-radiological) development testing using simulated and prototype equipment

  9. Sodium removal of fuel elements by vacuum distillation

    International Nuclear Information System (INIS)

    Buescher, E.; Haubold, W.; Jansing, W.; Kirchner, G.

    1978-01-01

    Cleaning of sodium-wetted core components can be performed by using either lead, moist nitrogen, or alcohol. The advantages of these methods for cleaning fuel elements without causing damage are well known. The disadvantage is that large amounts of radioactive liquids are formed during handling in the latter two cases. In this paper a new method to clean components is described. The main idea is to remove all liquid metal from the core components within a comparatively short period of time. Fuel elements removed from the reactor must be cooled because of high decay heat release. To date, vacuum distillation of fuel elements has not yet been applied

  10. Method of removing crud deposited on fuel element clusters

    International Nuclear Information System (INIS)

    Yokota, Tokunobu; Yashima, Akira; Tajima, Jun-ichiro.

    1982-01-01

    Purpose: To enable easy elimination of claddings deposited on the surface of fuel element. Method: An operator manipulates a pole from above a platform, engages the longitudinal flange of the cover to the opening at the upper end of a channel box and starts up a suction pump. The suction amount of the pump is set such that water flow becomes within the channel box at greater flow rate than the operational flow rate in the channel box of the fuel element clusters during reactor operation. This enables to remove crud deposited on the surface of individual fuel elements with ease and rapidly without detaching the channel box. (Moriyama, K.)

  11. Analysis of possibilities for functional capacity for work rise of reactor fuel elements at nuclear engine regime

    International Nuclear Information System (INIS)

    Deryavko, I.I.; Perepelkin, I.G.; Pivovarov, O.S.; Storozhenko, A.N.; Tarasov, V.I.

    2000-01-01

    The principle results of carbide fuel rods testing during series of IVG.1 reactor starts up at regime simulating nuclear engine regime of nuclear moving power unit are given. Considerable degradation of initial fuel elements status increasing from start up to start up and which could resulted fail of separate technological channels is shown. Origin case of extreme degradation of fuel elements status are insufficient thermal strength of fuel elements operation in the field brittle state of sintered carbide material, Possible ways of artificial reinforce of fuel elements of low temperature sections, increasing its thermal strength up to required level

  12. Nuclear fuel elements and method of making same

    Science.gov (United States)

    Schweitzer, Donald G.

    1992-01-01

    A nuclear fuel element for a high temperature gas nuclear reactor that has an average operating temperature in excess of 2000.degree. C., and a method of making such a fuel element. The fuel element is characterized by having fissionable fuel material localized and stabilized within pores of a carbon or graphite member by melting the fissionable material to cause it to chemically react with the carbon walls of the pores. The fissionable fuel material is further stabilized and localized within the pores of the graphite member by providing one or more coatings of pyrolytic carbon or diamond surrounding the porous graphite member so that each layer defines a successive barrier against migration of the fissionable fuel from the pores, and so that the outermost layer of pyrolytic carbon or diamond forms a barrier between the fissionable material and the moderating gases used in an associated high temperature gas reactor. The method of the invention provides for making such new elements either as generally spherically elements, or as flexible filaments, or as other relatively small-sized fuel elements that are particularly suited for use in high temperature gas reactors.

  13. Structural analysis of the SNAP-8 developmental reactor fuel element cladding

    Energy Technology Data Exchange (ETDEWEB)

    Dalcher, A.W.

    1969-04-15

    Primary, secondary, and thermal stresses were calculated and evaluated for the SNAP-8 developmental reactor fuel element cladding. The effects of fabrication and assembly stresses, as well as test and operational stresses were included in the analysis. With the assumption that fuel-swelling-induced stresses are nil, the analytical results indicate that the cladding assembly is structurally adequate for the proposed operation.

  14. Experimental Study of Elements Promoting Mixing in Fuel Elements

    International Nuclear Information System (INIS)

    Silin, Nicolas; Juanico, Luis; Delmastro, Dario

    2003-01-01

    In the present work a thermal tracing technique is used to measure the increase of the mixing between subchannels in the presence of different mixing elements.As representative elements a spacer, a spacer with mixing vanes and turbulence promoter buttons were considered.The performance of these elements was evaluated by studying the behavior of a thermal trace in each case.Also the pressure drop for each case is presented.The results present a qualitative and quantitative guide for the application of each one of these appendages in future nuclear elements

  15. Measurement of dynamic interaction between a vibrating fuel element and its support

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, N.J.; Tromp, J.H.; Smith, B.A.W. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada). Chalk River Labs.

    1996-12-01

    Flow-induced vibration of CANDU{reg_sign} fuel can result in fretting damage of the fuel and its support. A WOrk-Rate Measuring Station (WORMS) was developed to measure the relative motion and contact forces between a vibrating fuel element and its support. The fixture consists of a small piece of support structure mounted on a micrometer stage. This arrangement permits position of the support relative to the fuel element to be controlled to within {+-} {micro}m. A piezoelectric triaxial load washer is positioned between the support and micrometer stage to measure contact forces, and a pair of miniature eddy-current displacement probes are mounted on the stage to measure fuel element-to-support relative motion. WORMS has been utilized to measure dynamic contact forces, relative displacements and work-rates between a vibrating fuel element and its support. For these tests, the fuel element was excited with broadband random force excitation to simulate flow-induced vibration due to axial flow. The relationship between fuel element-to-support gap or preload (i.e., interference or negative gap) and dynamic interaction (i.e., relative motion, contact forces and work-rates) was derived. These measurements confirmed numerical simulations of in-reactor interaction predicted earlier using the VIBIC code.

  16. Thermomechanical analysis of nuclear fuel elements

    International Nuclear Information System (INIS)

    Hernandez L, H.

    1997-01-01

    This work presents development of a code to obtain the thermomechanical analysis of fuel rods in the fuel assemblies inserted in the core of BWR reactors. The code uses experimental correlations developed in several laboratories. The development of the code is divided in two parts: a) the thermal part and b) the mechanical part, extending both the fuel and the cladding materials. The thermal part consists of finding the radial distribution of temperatures in the pellet, from the fuel centerline up to the coolant, along the total active length, considering one and two phase flow in the coolant, as a result of the pressure drop in the system. The mechanical part analyzes the effects of temperature gradients, pressure and irradiation, to which the fuel rod is subjected. The strains produced by swelling, creep and thermal stress in the fuel material are analyzed. In the same way the strains in the cladding are analyzed, considering the effects produced by the pressure exerted on the cladding by pellet swelling, by the pressure caused by fission gas release toward the cavities, and by the strain produced on the cladding by the pressure changes of the system. (Author)

  17. Examination of irradiated fuel elements using gamma scanning technique

    International Nuclear Information System (INIS)

    Ichim, O.; Mincu, M.; Man, I.; Stanica, M.

    2016-01-01

    The purpose of this paper is to validate the gamma scanning technique used to calculate the activity of gamma fission products from CANDU/TRIGA irradiated fuel elements. After a short presentation of the equipments used and their characteristics, the paper describes the calibration technique for the devices and how computed tomography reconstruction is done. Following the previously mentioned steps is possible to obtain the axial and radial profiles and the computed tomography reconstruction for calibration sources and for the irradiated fuel elements. The results are used to validate the gamma scanning techniques as a non-destructive examination method. The gamma scanning techniques will be used to: identify the fission products in the irradiated CANDU/TRIGA fuel elements, construct the axial and radial distributions of fission products, get the distribution in cross section through computed tomography reconstruction, and determine the nuclei number and the fission products activity of the irradiated CANDU/TRIGA fuel elements. (authors)

  18. Fuel Element for an Affordable NTR, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Howe Industries LLC will investigate, design, and demonstrate the fabrication of fuel elements for a safe, robust NTR - the Scored Plate Reactor as an Innovative...

  19. Optimization of FBR fuel element for high burnup

    International Nuclear Information System (INIS)

    Marbach, G.; Millet, P.

    1985-03-01

    After a brief historical background showing evolution of the French fast reactor fuel element from RAPSODIE to PHENIX and SUPER PHENIX we have examined the main points which have permitted to increase irradiation performance of the subassembly

  20. The design of a fuel element for the RA-3 reactor (Ezeiza Atomic Center)

    International Nuclear Information System (INIS)

    Agueda, Horacio C.; Estevez, Esteban; Gerding, Jose R.; Markiewicz, Mario E.

    2003-01-01

    Some features of the mechanical design of the low enrichment fuel element for the RA-3 reactor are described, with emphasis in those aspects of the original design that have been modified considering the experience acquired in the design of other fuel elements. The proposed modification is based fundamentally on the replacement of all welded joints by screwed joints, which facilitates the manufacture of the fuel element, avoiding the distortions produced by the welds used at present and contributing to the fulfillment of the foreseen tolerances. A basic characteristic of this design is a careful manufacture of the fuel element's structural components in order to assure an assembling of the fuel element that fulfills the tolerances intrinsically required. The fuel is designed for the RA-3 reactor and uses U 3 O 8 or U 3 Si 2 as carrying phase of the fissile material with an enrichment of 19.70% of 235 U. The design verification was performed by analytical and numerical methods, and is supported by testing of materials in laboratory, hydrodynamics tests and performance evaluations of the fuel elements in the RA-3 reactor. (author)

  1. Capacity of the equipment family SICOM to inspect fuel elements

    International Nuclear Information System (INIS)

    Sanchez Siguero, A.; Sola, A.

    2013-01-01

    To check the status where the fuel assemblies are after has been operating in the core of nuclear plants, inspections have been conducted to carry out an improvement in the behavior of alloys used in pods of fuel, the control of corrosion of these pods because of heat, reducing the transfer of heat due to the oxide and with the support of visual inspections monitor the physical integrity of the fuel elements.

  2. MTR fuel element burn-up measurements by the reactivity method

    International Nuclear Information System (INIS)

    Zuniga, A.; Cuya, T.R.; Ravnik, M.

    2003-01-01

    Fuel element burn-up was measured by the reactivity method in the 10 MW Peruvian MTR reactor RP-10. The main purpose of the experiment was testing the reactivity method for an MTR reactor as the reactivity method was originally developed for TRIGA reactors. The reactivity worth of each measured fuel element was measured in its original core position in order to measure the burn-up of the fuel elements that were part of the experimental core. The burn-up of each measured fuel element was derived by interpolating its reactivity worth from the reactivity worth of two reference fuel elements of known burn-up, whose reactivity worth was measured in the position of the measured fuel element. The accuracy of the method was improved by separating the reactivity effect of burn-up from the effect of the position in the core. The results of the experiment showed that the modified reactivity method for fuel element burn-up determination could be applied also to MTR reactors. (orig.)

  3. Method for fuel element leak detection in pressurized water reactors

    International Nuclear Information System (INIS)

    Kunze, U.

    1983-01-01

    The method is aimed at detecting fuel element leaks during reactor operation. It is based on neutron flux measurements at many points in the core, using at least two detectors at a time. The detectors must be arranged in the direction of the coolant flow. Values obtained from periodic measurements are compared with threshold values. The location of fuel element leaks is determined from those values exceeding the threshold of individual detectors

  4. A computer program for structural analysis of fuel elements

    International Nuclear Information System (INIS)

    Hayashi, I.M.V.; Perrotta, J.A.

    1988-01-01

    It's presented the code ELCOM for the matrix analysis of tubular structures coupled by rigid spacers, typical of PWR's fuel elements. The code ELCOM makes a static structural analysis, where the displacements and internal forces are obtained for each structure at the joints with the spacers, and also, the natural frequencies and vibrational modes of an equivalent integrated structure are obtained. The ELCOM result is compared to a PWR fuel element structural analysis obtained in published paper. (author) [pt

  5. Method to mount defect fuel elements i transport casks

    International Nuclear Information System (INIS)

    Borgers, H.; Deleryd, R.

    1996-01-01

    Leaching or otherwise failed fuel elements are mounted in special containers that fit into specially designed chambers in a transportation cask for transport to reprocessing or long-time storage. The fuel elements are entered into the container under water in a pool. The interior of the container is dried before transfer to the cask. Before closing the cask, its interior, and the exterior of the container are dried. 2 figs

  6. Reprocessing of nuclear fuel elements from the Netherlands. An analysis

    International Nuclear Information System (INIS)

    Dodd, D.H.; Harry, R.J.S.; Kloosterman, J.L.; Konings, R.J.M.; Versteegh, A.M.

    1997-05-01

    The results of an analysis of a route for the processing and storage of spent fission fuel elements from Dutch nuclear power plants (Borssele and Dodewaard) are presented. Also an alternative route in which the fuel elements are stored without being reprocessed is discussed in detail. Environmental effects, proliferation aspects and the costs for each step in both routes are discussed where appropriate. 2 figs., 10 tabs., 14 refs

  7. FUEL ELEMENTS FOR THERMAL-FISSION NUCLEAR REACTORS

    Science.gov (United States)

    Flint, O.

    1961-01-10

    Fuel elements for thermal-fission nuclear reactors are described. The fuel element is comprised of a core of alumina, a film of a metal of the class consisting of copper, silver, and nickel on the outer face of the core, and a coating of an oxide of a metal isotope of the class consisting of Un/sup 235/, U/ sup 233/, and Pu/sup 239/ on the metal f ilm.

  8. The Calculation Of Total Radioactivity Of Kartini Reactor Fuel Element

    International Nuclear Information System (INIS)

    Budisantoso, Edi Trijono; Sardjono, Y.

    1996-01-01

    The total radioactivity of Kartini reactor fuel element has been calculated by using ORIGEN2. In this case, the total radioactivity is the sum of alpha, beta, and gamma radioactivity from activation products nuclides, actinide nuclides and fission products nuclides in the fuel element. The calculation was based on irradiation history of fuel in the reactor core. The fuel element no 3203 has location history at D, E, and F core zone. The result is expressed in graphics form of total radioactivity and photon radiations as function of irradiation time and decay time. It can be concluded that the Kartini reactor fuel element in zone D, E, and F has total radioactivity range from 10 Curie to 3000 Curie. This range is for radioactivity after decaying for 84 days and that after reactor shut down. This radioactivity is happened in the fuel element for every reactor operation and decayed until the fuel burn up reach 39.31 MWh. The total radioactivity emitted photon at the power of 0.02 Watt until 10 Watt

  9. Elements of nuclear reactor fueling theory

    International Nuclear Information System (INIS)

    Egan, M.R.

    1984-01-01

    Starting with a review of the simple batch size effect, a more general theory of nuclear fueling is derived to describe the behaviour and physical requirements of operating cycle sequences and fueling strategies having practical use in fuel management. The generalized theory, based on linear reactivity modeling, is analytical and represents the effects of multiple-stream, multiple-depletion-batch fueling configurations in systems employing arbitrary, non-integer batch size strategies, and containing fuel with variable energy generation rates. Reactor operating cycles and cycle sequences are represented with realistic structure that includes the effects of variable cycle energy production, cycle lengths, end-of-cycle operating extensions and manoeuvering allowances. Results of the analytical theory are first applied to the special case of degenerate equilibrium cycle sequences, yielding several fundamental principles related to the selection of refueling strategy. Numerical evaluations of degenerate equilibrium cycle sequences are then performed for a typical PWR core, and accompanying fuel cycle costs are calculated. The impact of design and operational limits as constraints on the performance mappings for this reactor are also studied with respect to achieving improved cost performance from the once-through fuel cycle. The dynamics of transition cycle sequences are then examined using the generalized theory. Proof of the existence of non-degenerate equilibrium cycle sequences is presented when the mechanics of the fixed reload batch size strategy are developed analytically for transition sequences. Finally, an analysis of the fixed reload enrichment strategy demonstrates the potential for convergence of the transition sequence to a fully degenerate equilibrium sequence. (author)

  10. Development of a new technique for experimental evaluation of the fuel element's subchannel mixing

    International Nuclear Information System (INIS)

    Silin, Nicolas; Delmastro, Dario; Juanico, Luis

    2004-01-01

    In this work, the development of a new experimental method for the measurement of mixing between the cooling subchannels of nuclear fuel elements by using thermal traces, is presented.The method has been proved on a reduced test section with very positive results, having demonstrated its simplicity and low cost.Because it is suitable for heterogeneous and compact subchannels (asArgentinean fuels) with high water flows in simple and affordable tests at atmospheric pressure, this new method is specially well suited for the design of fuel elements, while it offers advantages over other methods of mixing measurement [es

  11. Vibration behavior of fuel-element vibration suppressors for the advanced power reactor

    Science.gov (United States)

    Adams, D. W.; Fiero, I. B.

    1973-01-01

    Preliminary shock and vibration tests were performed on vibration suppressors for the advanced power reactor for space application. These suppressors position the fuel pellets in a pin type fuel element. The test determined the effect of varying axial clearance on the behavior of the suppressors when subjected to shock and vibratory loading. The full-size suppressor was tested in a mockup model of fuel and clad which required scaling of test conditions. The test data were correlated with theoretical predictions for suppressor failure. Good agreement was obtained. The maximum difference with damping neglected was about 30 percent. Neglecting damping would result in a conservative design.

  12. Triaxial Swirl Injector Element for Liquid-Fueled Engines

    Science.gov (United States)

    Muss, Jeff

    2010-01-01

    A triaxial injector is a single bi-propellant injection element located at the center of the injector body. The injector element consists of three nested, hydraulic swirl injectors. A small portion of the total fuel is injected through the central hydraulic injector, all of the oxidizer is injected through the middle concentric hydraulic swirl injector, and the balance of the fuel is injected through an outer concentric injection system. The configuration has been shown to provide good flame stabilization and the desired fuel-rich wall boundary condition. The injector design is well suited for preburner applications. Preburner injectors operate at extreme oxygen-to-fuel mass ratios, either very rich or very lean. The goal of a preburner is to create a uniform drive gas for the turbomachinery, while carefully controlling the temperature so as not to stress or damage turbine blades. The triaxial injector concept permits the lean propellant to be sandwiched between two layers of the rich propellant, while the hydraulic atomization characteristics of the swirl injectors promote interpropellant mixing and, ultimately, good combustion efficiency. This innovation is suited to a wide range of liquid oxidizer and liquid fuels, including hydrogen, methane, and kerosene. Prototype testing with the triaxial swirl injector demonstrated excellent injector and combustion chamber thermal compatibility and good combustion performance, both at levels far superior to a pintle injector. Initial testing with the prototype injector demonstrated over 96-percent combustion efficiency. The design showed excellent high -frequency combustion stability characteristics with oxygen and kerosene propellants. Unlike the more conventional pintle injector, there is not a large bluff body that must be cooled. The absence of a protruding center body enhances the thermal durability of the triaxial swirl injector. The hydraulic atomization characteristics of the innovation allow the design to be

  13. Kerosene-Fuel Engine Testing Under Way

    Science.gov (United States)

    2003-01-01

    NASA Stennis Space Center engineers conducted a successful cold-flow test of an RS-84 engine component Sept. 24. The RS-84 is a reusable engine fueled by rocket propellant - a special blend of kerosene - designed to power future flight vehicles. Liquid oxygen was blown through the RS-84 subscale preburner to characterize the test facility's performance and the hardware's resistance. Engineers are now moving into the next phase, hot-fire testing, which is expected to continue into February 2004. The RS-84 engine prototype, developed by the Rocketdyne Propulsion and Power division of The Boeing Co. of Canoga Park, Calif., is one of two competing Rocket Engine Prototype technologies - a key element of NASA's Next Generation Launch Technology program.

  14. Quality control of CANDU6 fuel element in fabrication process

    International Nuclear Information System (INIS)

    Li Yinxie; Zhang Jie

    2012-01-01

    To enhance the fine control over all aspects of the production process, improve product quality, fuel element fabrication process for CANDU6 quality process control activities carried out by professional technical and management technology combined mode, the quality of the fuel elements formed around CANDU6 weak links - - end plug , and brazing processes and procedures associated with this aspect of strict control, in improving staff quality consciousness, strengthening equipment maintenance, improved tooling, fixtures, optimization process test, strengthen supervision, fine inspection operations, timely delivery carry out aspects of the quality of information and concerns the production environment, etc., to find the problem from the improvement of product quality and factors affecting the source, and resolved to form the active control, comprehensive and systematic analysis of the problem of the quality management concepts, effectively reducing the end plug weld microstructure after the failure times and number of defects zirconium alloys brazed, improved product quality, and created economic benefits expressly provided, while staff quality consciousness and attention to detail, collaboration department, communication has been greatly improved and achieved very good management effectiveness. (authors)

  15. Graphitic matrix materials for spherical HTR fuel elements

    International Nuclear Information System (INIS)

    Rind, W.; Schulze, R.E.; Schulze, H.A.

    1981-12-01

    The present report comprises the essential results of material development and irradiation testing of graphitic matrix materials for spherical HTR fuel elements and completes the documentation of the irradiation data for 20 matrix materials (Juel-1702). The main emphasis is given to the matrices A3-3 (standard matrix) and A3-27 (matrix synthesized resin), both of which are being used as structural materials for the fuel elements of the AVR and the THTR respectively. In addition, comparisons are made between 18 A3-variants and the standard matrix A3-3. It is shown that three of the variants come into question as a potential for use. The results described were obtained in the framework of the HTR project 'Hochtemperaturreaktor-Brennstoffkreislauf' (HBK), in which are involved the Gesellschaft fuer Hochtemperaturreaktor-Technik mbH, Hochtemperaturreaktor-Brennelemente GmbH, Hochtemperatur-Reaktorbau GmbH, Kernforschungsanlage Juelich GmbH, NUKEM GmbH, and Sigri Elektrographit GmbH/Ringsdorff-Werke GmbH. The project is sponsored by the 'Bundesministerium fuer Forschung und Technologie' and by the state of 'Nordrhein-Westfalen'. (orig.) [de

  16. Drying Results of K-Basin Fuel Element 6603M (Rune 5)

    International Nuclear Information System (INIS)

    Oliver, B.M.; Ritter, G.A.; Klinger, G.S.; Abrefah, J.; Greenwood, L.R.; MacFarlan, P.J.; Marschman, S.C.

    1999-01-01

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium spent nuclear fuels in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of drying tests (reported in separate documents, see Section 8.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the fifth of those tests conducted on an N-Reactor outer fuel element (6603M) which had been stored underwater in the Hanford 100 Area K-West basin from 1983 until 1996. This fuel element was subjected to a combination of low- and high-temperature vacuum drying treatments which were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The system used for the drying test was the Whole Element Furnace Testing System, described in Section 2.0. The test conditions and methodologies are given in Section 3.0. Inspections on the fuel element before and after the test are provided in Section 4.0. The experimental results are provided in Section 5.0. Discussion of the results is given in Section 6.0

  17. Post-irradiation examination of fuel elements of Tarapur Atomic Power Station (Report-I)

    International Nuclear Information System (INIS)

    Bahl, J.K.; Sah, D.N.; Chatterjee, S.; Sivaramkrishnan, K.S.

    1979-01-01

    Detailed post-irradiation examination of three initial load fuel elements of the Tarapur Atomic Power Station (TAPS) has been carried out. The causes of the element failures have been analysed. It was observed that almost 90% of the length of the elements exoerienced nodular corrosion. It has been estimated that nodular corrosion would seriously affect the wall thickness and surface temperature of higher rated elements. Lunar shaped fret marks have also been observed at some spacer grid locations in the elements. The depth of the largest fret mark was measured to be 16.9% clad wall thickness. Detailed metallographic examination of the clad and fuel in the three elements has been done. The temperatures at different structural regions of the fuel cross-sections have been estimated. The change in fuel density during irradiation has been evaluated by comparing the irradiated fuel diameter with the mean pellet design diameter. The performance of the end plug welds and spacer grid sites in the elements has been assessed. The burnup distribution along the length of the elements has been evaluated by gamma scanning. The redistribution of fission products in the fuel has been examined by gamma scanning and beta-gamma autoradiography. Mechanical properties of the irradiated cladding have been examined by ring tensile testing. (auth.)

  18. Repair of fuel elements in nuclear power plants

    International Nuclear Information System (INIS)

    Knecht, K.; Holley, H.P.

    1991-01-01

    Already in the early seventies, technical and economical advantages gave occasion for the development of methods and equipment suited to the repair of damaged fuel elements. In later years, normal technology, the replacement of defective fuel rods was supplemented by special processes and tools in order to make even structurally damaged fuel elements useable again. The suitability of the repair methods was confirmed by good operational experience. More recent developments aim to reduce working time further by automation with integrated data recording. 23 figs., 2 tabs., 8 refs

  19. Process for assembling a nuclear fuel element

    International Nuclear Information System (INIS)

    Wachtendonk, H.J. von.

    1984-01-01

    Before insertion into the spacers, the fuel rocks are coated with a self-hardening layer of water-soluble polyvinyl and/or polyether polymer to prevent scratches on the cladding tubes. After insertion, the protective conting is removed by means of water. (orig.) [de

  20. A simple gamma spectrometry method for evaluating the burnup of MTR-type HEU fuel elements

    Science.gov (United States)

    Makmal, T.; Aviv, O.; Gilad, E.

    2016-10-01

    A simple method for the evaluation of the burnup of a materials testing reactor (MTR) fuel element by gamma spectrometry is presented. The method was applied to a highly enriched uranium MTR nuclear fuel element that was irradiated in a 5 MW pool-type research reactor for a total period of 34 years. The experimental approach is based on in-situ measurements of the MTR fuel element in the reactor pool by a portable high-purity germanium detector located in a gamma cell. To corroborate the method, analytical calculations (based on the irradiation history of the fuel element) and computer simulations using a dedicated fuel cycle burnup code ORIGEN2 were performed. The burnup of the MTR fuel element was found to be 52.4±8.8%, which is in good agreement with the analytical calculations and the computer simulations. The method presented here is suitable for research reactors with either a regular or an irregular irradiation regime and for reactors with limited infrastructure and/or resources. In addition, its simplicity and the enhanced safety it confers may render this method suitable for IAEA inspectors in fuel element burnup assessments during on-site inspections.

  1. End plug welding of nuclear fuel elements-AFFF experience

    International Nuclear Information System (INIS)

    Bhatt, R.B.; Singh, S.; Aniruddha Kumar; Amit; Arun Kumar; Panakkal, J.P.; Kamath, H.S.

    2004-01-01

    Advanced Fuel Fabrication Facility is engaged in the fabrication of mixed oxide (U,Pu)O 2 fuel elements of various types of nuclear reactors. Fabrication of fuel elements involves pellet fabrication, stack making, stack loading and end plug welding. The requirement of helium bonding gas inside the fuel elements necessitates the top end plug welding to be carried out with helium as the shielding gas. The severity of the service conditions inside a nuclear reactor imposes strict quality control criteria, which demands for almost defect free welds. The top end plug welding being the last process step in fuel element fabrication, any rejection at this stage would lead to loss of effort prior to this step. Moreover, the job becomes all the more difficult with mixed oxide (MOX) as the entire fabrication work has to be carried out in glove box trains. In the case of weld rejection, accepted pellets are salvaged by cutting the clad tube. This is a difficult task and recovery of pellets is low (requiring scrap recovery operation) and also leads to active metallic waste generation. This paper discusses the experience gained at AFFF, in the past 12 years in the area of end plug welding for different types of MOX fuel elements

  2. RA-3 core with uranium silicide fuel elements

    International Nuclear Information System (INIS)

    Abbate, Maximo J.; Sbaffoni, Maria M.

    2000-01-01

    Following on with studies on uranium silicide fuel elements, this paper reports some comparisons between the use of standard ECN [U 3 O 8 ] fuel elements and type P-06 [from U 3 Si 2 ] fuel elements in the RA-3 core.The first results showed that the calculated overall mean burn up is in agreement with that reported for the facility, which gives more confidence to the successive ones. Comparing the mentioned cores, the silicide one presents several advantages such as: -) a mean burn up increase of 18 %; -) an extraction burn up increase of 20 %; -) 37.4 % increase in full power days, for mean burn up. All this is meritorious for this fuel. Moreover, grouped and homogenized libraries were prepared for CITVAP code that will be used for planning experiments and other bidimensional studies. Preliminary calculations were also performed. (author)

  3. Gap's dimensions in fuel elements from neutron radiography

    International Nuclear Information System (INIS)

    Notea, A.; Segal, Y.; Trichter, F.

    1985-01-01

    Quantitative Nondestructive evaluation (QNDE) is of upmost importance in the design and manufacture of nuclear fuel elements. Accurate non-destructive measurements of gaps, cracks, displacements, etc. supply vital information for optimizing fuel manufacturing. Neutron radiography is a powerful NDT method for examining spent fuel elements. However, it turned out that the extraction of dimensions, especially in the submillimetric range is questionable. In this paper neutron radiography of pellet-to-pellet gaps in fuel elements is modelled and two procedures for dimension extraction are presented. It is shown that for a wide gap the dimension is preferable, extracted from the width of the film profile, while for narrow gaps it is preferable to extract it from the maximum of the density profile

  4. Quality control in the fuel elements production process

    International Nuclear Information System (INIS)

    Katanic-Popovic, J.; Spasic, Z.; Djuricis, Lj.

    1977-01-01

    Recently great attention has been paid at the international level to the analysis of production processes and quality control of fuel and fuel elements with the aim to speed up activity of proposing and accepting standards and measurement methods. IAEA also devoted great interest to these problems appealing to more active participation of all users and producers fuel elements in a general effort to secure successful work of nuclear plants. For adequate and timely participation in future in the establishment and analysis of general requirements and documentation for the control of purchased or self produced fuel elements in out country it is necessary to be well informed and to follow this activity at the international level. (author)

  5. PROCESS OF DISSOLVING FUEL ELEMENTS OF NUCLEAR REACTORS

    Science.gov (United States)

    Wall, E.M.V.; Bauer, D.T.; Hahn, H.T.

    1963-09-01

    A process is described for dissolving stainless-steelor zirconium-clad uranium dioxide fuel elements by immersing the elements in molten lead chloride, adding copper, cuprous chloride, or cupric chloride as a catalyst and passing chlorine through the salt mixture. (AEC)

  6. Development of the new generation fuel elements and assemblies for research reactors

    International Nuclear Information System (INIS)

    Solonin, M.I.; Vatulin, A.V.; Stetskij, Yu.A.; Dobrikova, I.V.; Ivanov, A.V.; Kruglov, A.A.; Leonov, E.G.

    2002-01-01

    The fuel elements and fuel assemblies for the research reactors (RR) of the new generation are described. In particular, the designs of the rod and tubular fuel elements and fuel assemblies are developed and their optimal dimensions are determined in three versions. These fuel elements make it possible to arrange fuel assemblies for any RR without changing the dimensions and configuration of the existing RR cores. The technology for the fuel elements manufacture is worked out under laboratory conditions [ru

  7. Validation of structural design of JHR fuel element

    International Nuclear Information System (INIS)

    Brisson, S.; Miras, G.; Le Bourdonnec, L.; Lemoine, P.; Anselmet, M.C.; Marelle, V.

    2010-01-01

    The validation of the structural design of the Jules Horowitz Reactor fuel element was made by the Finite Element Method, starting from the Computer Aided Design. The JHR fuel element is a cylindrical assembly of three sectors composed of eight rolled fuel plates. A roll-swaging process is used to join the fuel plates to three aluminium stiffeners. The hydraulic gap between each plate is 1.95 mm. The JHR fuel assembly is fastened at both ends to the upper and lower endfittings by riveting. The main stresses are essentially thermal loads, imposed on the fuel zone of the plates. These thermal loads result from the nuclear heat flux (W/cm 2 ). The mechanical loads are mainly hydraulic thrust forces. The average coolant velocity is 15 m/s. Seismic effects are also studied. The fuel assembly is entirely modelled by thin shells. The model takes into account asymmetric thermal loads which often appear in Research Reactors. The mechanics of the fuel plates vary in function of the burn up. These mechanical properties are derived from the data sets used in the MAIA code, and the validity of the structure is demonstrable at throughout the life of the fuel. Results concerning displacement are compared to functional criteria, while results concerning stress are compared to RCC-MX criteria. The results of this analysis show that the mechanical and geometrical integrity of the JHR fuel elements is respected for Operating Categories 1 and 2. This paper presents the methodology of this demonstration for the results obtained. (author)

  8. A method for limitation of probability of accumulation of fuel elements claddings damage in WWER

    OpenAIRE

    Sergey N. Pelykh; Mark V. Nikolsky; S. D. Ryabchikov

    2014-01-01

    The aim is to reduce the probability of accumulation of fuel elements claddings damage by developing a method to control the properties of the fuel elements on stages of design and operation of WWER. An averaged over the fuel assembly WWER-1000 fuel element is considered. The probability of depressurization of fuel elements claddings is found. The ability to predict the reliability of claddings by controlling the factors that determine the properties of the fuel elements is proved. The expedi...

  9. Temperature distribution calculations in TRIGA fuel element after the pulse

    International Nuclear Information System (INIS)

    Mele, I.; Ravnik, M.

    1992-01-01

    The computer program TEMPUL for calculating radial temperature distribution in a fuel element after the pulse operation is shortly described. It is based on one-dimensional diffusion equation for heat transfer in cylindrical geometry and implicit boundary condition at the element-coolant interface, defined by empirical boiling curve, which relates the heat flux from the rod and the difference between the fuel element surface temperature and water boiling point. As an example the results of such analysis of maximal allowed pulse at TRIGA Mark II reactor in Ljubljana are presented. (author) [sl

  10. Uranium density reduction on fuel element side plates assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Ilka A. [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Andrade, Delvonei A.; Domingos, Douglas B.; Umbehaun, Pedro E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    During operation of IEA-R1 research reactor, located at Instituto de Pesquisas Energeticas e Nucleares, IPEN - CNEN/SP, an abnormal oxidation on some fuel elements was noted. It was also verified, among the possible causes of the problem, that the most likely one was insufficient cooling of the elements in the core. One of the propositions to solve or minimize the problem is to reduce uranium density on fuel elements side plates. In this paper, the influence of this change on neutronic and thermal hydraulic parameters for IEA-R1 reactor is verified by simulations with the codes HAMMER and CITATION. Results are presented and discussed. (author)

  11. Uranium density reduction on fuel element side plates assessment

    International Nuclear Information System (INIS)

    Rios, Ilka A.; Andrade, Delvonei A.; Domingos, Douglas B.; Umbehaun, Pedro E.

    2011-01-01

    During operation of IEA-R1 research reactor, located at Instituto de Pesquisas Energeticas e Nucleares, IPEN - CNEN/SP, an abnormal oxidation on some fuel elements was noted. It was also verified, among the possible causes of the problem, that the most likely one was insufficient cooling of the elements in the core. One of the propositions to solve or minimize the problem is to reduce uranium density on fuel elements side plates. In this paper, the influence of this change on neutronic and thermal hydraulic parameters for IEA-R1 reactor is verified by simulations with the codes HAMMER and CITATION. Results are presented and discussed. (author)

  12. An improved assembly for the transport of fuel elements

    International Nuclear Information System (INIS)

    Myers, G.

    1979-01-01

    An improved assembly is described for the transport and storage of radioactive fuel elements. The system consists of a transport flask in which the fuel element holder is placed in such a way that the elements may be submerged in liquid within the flask and the assembly used in one orientation for loading the fuel elements and in another orientation for transporting them. The assembly has a self-regulating ullage system comprising reservoirs for containing liquid and pressurising gas, the arrangement for the reservoirs being such that in either orientation of the assembly liquid is maintained in all the reservoirs to prevent egress of the pressurised gas and to compensate for volume changes arising from temperature variations within the flask. (U.K.)

  13. Tier 3 Certification Fuel Impacts Test Program

    Science.gov (United States)

    The recent Tier 3 regulations for light duty vehicles introduced a new certification fuel designed to be more characteristic of current market fuels. A laboratory test program was conducted to measure differences in CO2 and fuel economy between the current and future certificatio...

  14. Brazing process in nuclear fuel element fabrication

    International Nuclear Information System (INIS)

    Katam, K.; Sudarsono

    1982-01-01

    The purpose of the brazing process is to join the spacers and pads of fuel pins, so that the process is meant as a soldering technique and not only as a hardening or reinforcing process such as in common brazing purposes. There are some preliminary processes before executing the brazing process such as: materials preparation, sand blasting, brazing metal coating tack welding the spacers and pads on the fuel cladding. The metal brazing used is beryllium in strip form which will be evaporated in vacuum condition to coat the spacers and pads. The beryllium vapor and dust is very hazardous to the workers, so all the line process of brazing needs specials safety protection and equipment to protect the workers and the processing area. Coating process temperature is 2470 deg C with a vacuum pressure of 10 -5 mmHg. Brazing process temperature process is 1060 deg C with a vacuum pressure of 10 -6 mmHg. The brazing process with beryllium coating probably will give metallurgical structural change in the fuel cladding metal at the locations of spacers and pads. The quality of brazing is highly influenced by and is depending on the chemical composition of the metal and the brazing metal, materials preparations, temperature, vacuum pressure, time of coating and brazing process. The quality control of brazing could be performed with methods of visuality geometry, radiography and metallography. (author)

  15. Fuel Cell Stations Automate Processes, Catalyst Testing

    Science.gov (United States)

    2010-01-01

    Glenn Research Center looks for ways to improve fuel cells, which are an important source of power for space missions, as well as the equipment used to test fuel cells. With Small Business Innovation Research (SBIR) awards from Glenn, Lynntech Inc., of College Station, Texas, addressed a major limitation of fuel cell testing equipment. Five years later, the company obtained a patent and provided the equipment to the commercial world. Now offered through TesSol Inc., of Battle Ground, Washington, the technology is used for fuel cell work, catalyst testing, sensor testing, gas blending, and other applications. It can be found at universities, national laboratories, and businesses around the world.

  16. Commercial Aspect of Research Reactor Fuel Element Production

    International Nuclear Information System (INIS)

    Susanto, B.G; Suripto, A

    1998-01-01

    Several aspects affecting the commercialization of the Research Reactor Fuel Element Production Installation (RR FEPI) under a BUMN (state-owned company)have been studied. The break event point (BEP) value based on total production cost used is greatly depending upon the unit selling price of the fuel element. At a selling price of USD 43,500/fuel element, the results of analysis shows that the BEP will be reached at 51% of minimum available capacity. At a selling price of US$ 43.500/fuel element the total income (after tax) for 7 years ahead is US $ 4.620.191,- The net present value in this study has a positive value is equal to US $ 2.827.527,- the internal rate of return will be 18% which is higher than normal the bank interest rare (in US dollar) at this time. It is concluded therefore that the nuclear research reactor fuel element produced by state-owned company BUMN has a good prospect to be sold commercially

  17. Fire and blast safety manual for fuel element manufacture

    International Nuclear Information System (INIS)

    Ensinger, U.; Koehler, B.; Mester, W.; Riotte, H.G.; Sehrbrock, H.W.

    1988-01-01

    The manual aims to enable people involved in the planning, operation, supervision, licensing or appraisal of fuel element factories to make a quick and accurate assessment of blast safety. In Part A, technical plant principles are shown, and a summary lists the flammable materials and ignition sources to be found in fuel element factories, together with theoretical details of what happens during a fire or a blast. Part B comprises a list of possible fires and explosions in fuel element factories and ways of preventing them. Typical fire and explosion scenarios are analysed more closely on the basis of experiments. Part B also contains a list and an assessment of actual fires and explosions which have occurred in fuel element factories. Part C contains safety measures to protect against fire and explosion, in-built fire safety, fire safety in plant design, explosion protection and measures to protect people from radiation and other hazards when fighting fires. A distinction is drawn between UO 2 , MOX and HTR fuel elements. (orig./DG) [de

  18. Fuel element production at BWX technologies

    International Nuclear Information System (INIS)

    Pace, Brett

    1997-01-01

    Effective July 1, 1997, the Government Group portion of the Babcock and Wilcox company was incorporated separately to become BWX Technologies, Inc. (BWXT) a wholly-owned subsidiary of the Babcock and Wilcox Company. The names of the divisions and other business units of the former Babcock and Wilcox Government Group (Advanced Systems Operations, Naval Nuclear Fuel Division, and Nuclear Equipment Division) will remain unchanged, but they are now known as divisions or business units of BWXT. The management of all units and their reporting relationships will likewise remain unchanged. (author)

  19. Method of making a graphite fuel element having carbonaceous fuel bodies

    International Nuclear Information System (INIS)

    Miertschin, G.N.; Leary, D.F.

    1977-01-01

    Particulate nuclear fuel material, particulate carbon and pitch are combined with an additive which is effective to reduce the coke yield upon carbonization to mold a green fuel body. The additive may be polystyrene, a styrene-butadiene copolymer, an aromatic hydrocarbon having a molecular weight between about 75 and 300 or a saturated hydrocarbon polymer. The green fuel body is inserted in a complementary cavity within a porous nuclear fuel element body and heated in situ to decompose the pitch and additive, leaving a relatively close-fitting fuel body in the cavity

  20. An analysis of spent fuel characteristics for reactor RA spent fuel elements

    International Nuclear Information System (INIS)

    Milosevic, M.; Vukadin, Z.

    2001-01-01

    The need for reducing the intrinsic conservatism in the criticality safety assessment has led to the development of validated methods for assessing the reactivity effects associated with fuel burnup. This paper gives an overview of the work being performed to investigate the spent fuel characteristics and nuclear criticality safety of the reactor RA spent fuel storage. An analysis methodology is presented along with information representing the validation of the methods and geometrical models. Finally, the criticality safety analysis of the stainless steel containers and aluminum barrels, filled with spent fuel elements, is presented to demonstrate that an adequate margin of subcriticality is proved for the reactor RA spent fuel storage.(author)

  1. Test requirements of locomotive fuel tank blunt impact tests

    Science.gov (United States)

    2013-10-15

    The Federal Railroad Administrations Office of Research : and Development is conducting research into passenger : locomotive fuel tank crashworthiness. A series of impact tests : are planned to measure fuel tank deformation under two types : of dy...

  2. Analysis method of fractional release of cesium from fuel elements of HTTR

    International Nuclear Information System (INIS)

    Sawa, Kazuhiro; Okamoto, Futoshi; Shiozawa, Shusaku; Sasaki, Katsunori.

    1990-03-01

    This report describes an analytical model and parameters to evaluate the fractional release of metallic fission product (cesium) during normal operation of High Temperature Engineering Test Reactor (HTTR). The fractional releases, which are calculated by TRAFIC code, on the basis of the present analytical model and parameters show about ten times larger than that measured in the sweep gas capsule irradiation test and the OGL-1 fuel element irradiation test. Thus, the analytical model and the parameters are concluded to be applicable to the evaluation of the cesium release from the HTTR fuel element in the safety analysis. (author)

  3. Finite element simulation of thermal, elastic and plastic phenomena in fuel elements

    International Nuclear Information System (INIS)

    Soba, Alejandro; Denis, Alicia C.

    1999-01-01

    Taking as starting point an irradiation experiment of the first Argentine MOX fuel prototype, performed at the HFR reactor of Petten, Holland, the deformation suffered by the fuel element materials during burning has been numerically studied. Analysis of the pellet-cladding interaction is made by the finite element method. The code determines the temperature distribution and analyzes elastic and creep deformations, taking into account the dependency of the physical parameters of the problem on temperature. (author)

  4. Neutronic analysis of a fuel element with variations in fuel enrichment and burnable poison

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Rochkhudson B. de; Martins, Felipe; Velasquez, Carlos E.; Cardoso, Fabiano; Fortini, Angela; Pereira, Claubia, E-mail: rochkdefaria@yahoo.com.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    In this work, the goal was to evaluate the neutronic behavior during the fuel burnup changing the amount of burnable poison and fuel enrichment. For these analyses, it was used a 17 x 17 PWR fuel element, simulated using the 238 groups library cross-section collapsed from ENDF/BVII.0 and TRITON module of SCALE 6.0 code system. The results confirmed the effective action of the burnable poison in the criticality control, especially at Beginning Of Cycle (BOC) and in the burnup kinetics, because at the end of the fuel cycle there was a minimal residual amount of neutron absorbers ({sup 155}Gd and {sup 157}Gd), as expected. At the end of the cycle, the fuel element was still critical in all simulated situations, indicating the possibility of extending the fuel burn. (author)

  5. Shock absorber for a fuel element storage rack

    International Nuclear Information System (INIS)

    Fabris, M.

    1986-01-01

    The invention describes a shock absorber device for a nuclear fuel element deposited in a sheath provided with a bottom portion comprising centrally a hole of a diameter slightly larger than that of the lower portion of the fuel element, within a fuel storage rack, characterised in that it comprises a non-deformable annulus connected to a collar bearing on a transverse member of the storage rack, by means of a plurality of elastically and/or plastically deformable elements, and in that the non-deformable annulus, coaxial with the sheath, is provided with a central aperture having a diameter substantially equal to that of the hole in the bottom portion of the sheath and serves as a support for the bottom portion of the sheath

  6. Thermohydraulic study of a MTR fuel element aimed at the construction of an irradiation facility

    International Nuclear Information System (INIS)

    Coragem, Helio Boemer de Oliveira

    1980-01-01

    A thermohydraulic study of MTR fuel element is presented as a basic requirement for the development of an irradiation facility for testing fuel elements. A computer code named 'Thermo' has been developed for this purpose, which can stimulate different working conditions, such as, cooling, power elements and neutron flux, performing all pertinent thermohydraulic calculations. Thermocouples were used to measure the temperature gradients of the cooling fluid throughout the IEAR-1 reactor core. All experimental data are in good agreement with the theoretical model applied in this work. Finally, a draft of the proposed facility and its safety system is presented. (author)

  7. Fuel Element for a Nuclear Reactor

    Science.gov (United States)

    Duffy, Jr., J. G.

    1961-05-30

    A lattice-type fissionable fuel structure for a nuclear reactor is offered. The fissionable material is formed into a plurality of rod-like bodies each encased in a fluid-tight jacket. A plurality of spaced longitudinal fins are mounted on the exterior of and extend radially from each jacket, and a portion of the fins extends radially beyond the remainder of the fins. A collar of short lengih for each body is mounted on the extended fins for spacing the bodies, and adjacent bodies abut each other through these collars. Should distortion of the bodies take place, collapse of the outer fins is limited by the shorter fins thereby insuring some coolant flow therethrough at all times.

  8. Calculating the plutonium in spent fuel elements

    International Nuclear Information System (INIS)

    Barnham, Keith

    1992-01-01

    Many members of the public are concerned about plutonium. They are worried about its environmental, health and proliferation risks. Fundamental to all such considerations are two related questions: how much plutonium do nuclear reactors produce ? and how accurately do the relevant authorities know these production figures ? These two questions have been studied with particular reference to the UK civil Magnox reactors. In 1990 these were still the only UK civil reactors whose spent fuel had been reprocessed to extract plutonium in routine production. It has not been possible to conclude that the relevant government industry and safeguard authorities are aware of how much plutonium these reactors produce and that the figures are known to the highest achievable accuracy. To understand why, this chapter will outline some of the history of the attempts to get answers to these two questions. (author)

  9. Eddy current examination of the nuclear fuel elements of IPR-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Roger F.; Frade, Rangel T.; Oliveira, Paulo F.; Silva, Marlucio A.; Silva Junior, Silverio F., E-mail: rfs@cdtn.br, E-mail: rtf@cdtn.br, E-mail: pfo@cdtn.br, E-mail: mas@cdtn.br, E-mail: silvasf@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Tubes of AISI 304 stainless steel as well as tubes of Aluminum 1100-F are used as cladding of the fuel elements of TRIGA MARK 1 nuclear research reactor. Usually, these tubes are periodically inspected by means of visual test and sipping test. The visual test allows the detection of changes occurred at the external fuel elements surface, such as those promoted by corrosion processes. However, this test method cannot be used for detection of internal discontinuities at the tube walls. Sipping test allows the detection of fuel elements in which the cladding has failed, but it is not able to determine the place where the discontinuity is located. In turn, eddy current testing, an electromagnetic nondestructive test method, allows the detection of discontinuities and monitoring their growth. In this paper, a study about the use of eddy current testing for detection and characterization of discontinuities in the fuel elements cladding is proposed. The study involves the development of probes able to operate in underwater inspections, the design and manufacture of reference standards and the development of a test methodology to perform the evaluations. (author)

  10. Non destructive testing of irradiated fuel assemblies at the IEA-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jose Eduardo Rosa da; Terremoto, Luis Antonio Albiac; Castanheira, Myrthes; Teodoro, Celso Antonio; Silva, Antonio Teixeira e; Damy, Margaret de Almeida; Lucki, Georgi [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: jersilva@ipen.br; laaterre@ipen.br; myrthes@ipen.br; cteodoro@ipen.br; teixeira@ipen.br; madamy@ipen.br; glucki@ipen.br

    2007-07-01

    Fuel performance and nuclear fuel qualification require a post-irradiation analysis. Non-destructive methods are utilised both in irradiated fuel storage pools and in hot-cells laboratories. As Brazil does not have hot-cells facilities for post-irradiation analysis, a qualification program for the Material Testing Reactor (MTR) fuel elements made at IPEN/CNEN-SP was adopted, based on non-destructive tests. The IPEN Fuel Engineering Group - CENC developed basic facilities for fuels post-irradiated analysis inside the reactor pool, which gives indications of: general state, by visual inspection; the integrity of the irradiated fuel cladding, by sipping tests; thickness measurements of the fuel miniplates during the irradiation time, for swelling evaluation; and, local burn-up evaluation by gamma spectrometry along the active area of the fuel element. This work describes that facilities, equipment and examples of some irradiated fuels analysis performed. (author)

  11. Non destructive testing of irradiated fuel assemblies at the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Silva, Jose Eduardo Rosa da; Terremoto, Luis Antonio Albiac; Castanheira, Myrthes; Teodoro, Celso Antonio; Silva, Antonio Teixeira e; Damy, Margaret de Almeida; Lucki, Georgi

    2007-01-01

    Fuel performance and nuclear fuel qualification require a post-irradiation analysis. Non-destructive methods are utilised both in irradiated fuel storage pools and in hot-cells laboratories. As Brazil does not have hot-cells facilities for post-irradiation analysis, a qualification program for the Material Testing Reactor (MTR) fuel elements made at IPEN/CNEN-SP was adopted, based on non-destructive tests. The IPEN Fuel Engineering Group - CENC developed basic facilities for fuels post-irradiated analysis inside the reactor pool, which gives indications of: general state, by visual inspection; the integrity of the irradiated fuel cladding, by sipping tests; thickness measurements of the fuel miniplates during the irradiation time, for swelling evaluation; and, local burn-up evaluation by gamma spectrometry along the active area of the fuel element. This work describes that facilities, equipment and examples of some irradiated fuels analysis performed. (author)

  12. Methods for making a porous nuclear fuel element

    Science.gov (United States)

    Youchison, Dennis L; Williams, Brian E; Benander, Robert E

    2014-12-30

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  13. Methods for making a porous nuclear fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Youchison, Dennis L; Williams, Brian E; Benander, Robert E

    2014-12-30

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  14. Verdon: code of mechanical and thermal behavior of fuel element

    International Nuclear Information System (INIS)

    Courtois, C.; Truffert, J.

    1979-01-01

    Verdon code must be used for analysis and simulation of mechanical, two-dimensional, thermal and physico-chemical behavior of fuel oxide pin in steady-state and transient conditions. Calculation can be done in plane or axisymmetric geometry. Radial, one dimensional, thermal analysis works with finite differences. It takes into account the fissile material's evolution (radial redistribution, flux deepening ...) and the main fuel physico-chemical properties (conductivity, migration, fission gas release ...). Only thermal consequences of fuel mechanical behavior: fuel-cladding gap width, crack formation, creep ... are submitted to a two dimensional analysis. Mechanical analysis works in two dimensional, finite elements, plane or axisymmetric geometry. The mesh represents a part of fuel and cladding pin [fr

  15. Analysis of burnt nuclear fuel elements by gamma-spectrometry

    International Nuclear Information System (INIS)

    Lammer, M.

    1978-01-01

    Gamma-spectrometry allows a non-destructive determination of the fission and activation product content of spent nuclear fuel. The concentration of some of these products depends significantly on the so-called fuel parameters which describe the irradiation history and the fuel composition. The use of these dependences for deriving ''unknown fuel parameters'' from measured fission product activities is investigated in this work. Relevant application fields are burnup determination, fuel testing and inspections within the nuclear materials safeguards programme. The present thesis investigates how these dependences can be used to derive unknown fuel parameters. The possibilities and basic limitations of deriving information from a measured gamma spectrum are considered on principle. The main conclusion is that only ratios of fission product activities allow the development of an interpretation method which is generally applicable to all types of fuel from different reactors. The dependence of activity ratios on cooling time, irradiation time, integrated and final neutron flux, fuel composition, as well as fission and breeding rates are then investigated and presented graphically in a way suitable for applicaton. These relationships can be used for the analysis of spent fuel, and the detailed procedures, which depend on the applicaton field, are worked out in this work. In order to test the interpretation methods, samples of nuclear fuel have been irradiated and the gamma spectra analysed. The methods developed in this work can be applied successfully to the analysis of burnt fuel in the frame of fuel testing programmes and to safeguards verification purposes. If however, apart from a gamma spectrum, no information on the investigated fuel is available, the above-mentioned parameters can be derived with low accuracy only. (author)

  16. Design and fabrication procedures of Super-Phenix fuel elements

    International Nuclear Information System (INIS)

    Leclere, J.; Vialard, J.-L.; Delpeyroux, P.

    1975-01-01

    For Super-Phenix fuel assemblies, Phenix technological arrangements will be used again, but they will be simplified as far as possible. The maximum fuel can temperature has been lowered in order to obtain a good behavior of hexagonal tubes and cans at high irradiation levels. An important experimental programme and the experience gained from Phenix operation will confirm the merits of the options retained. The fuel element fabrication is envisaged to take place in the plutonium workshop at Cadarache. Usual procedures will be employed and both reliability and automation will be increased [fr

  17. Expert system for surveillance and diagnosis of breach fuel elements

    International Nuclear Information System (INIS)

    Gross, K.C.

    1989-01-01

    An apparatus and method are disclosed for surveillance and diagnosis of breached fuel elements in a nuclear reactor. A delayed neutron monitoring system provides output signals indicating the delayed neutron activity and age and the equivalent recoil areas of a breached fuel element. Sensors are used to provide outputs indicating the status of each component of the delayed neutron monitoring system. Detectors also generate output signals indicating the reactor power level and the primary coolant flow rate of the reactor. The outputs from the detectors and sensors are interfaced with an artificial intelligence-based knowledge system which implements predetermined logic and generates output signals indicating the operability of the reactor

  18. Expert system for surveillance and diagnosis of breach fuel elements

    Science.gov (United States)

    Gross, K.C.

    1988-01-21

    An apparatus and method are disclosed for surveillance and diagnosis of breached fuel elements in a nuclear reactor. A delayed neutron monitoring system provides output signals indicating the delayed neutron activity and age and the equivalent recoil area of a breached fuel element. Sensors are used to provide outputs indicating the status of each component of the delayed neutron monitoring system. Detectors also generate output signals indicating the reactor power level and the primary coolant flow rate of the reactor. The outputs from the detectors and sensors are interfaced with an artificial intelligence-based knowledge system which implements predetermined logic and generates output signals indicating the operability of the reactor. 2 figs.

  19. Method and apparatus for diagnosing breached fuel elements

    Science.gov (United States)

    Gross, Kenny C.; Lambert, John D. B.; Nomura, Shigeo

    1988-01-01

    The invention provides an apparatus and method for diagnosing breached fuel elements in a nuclear reactor. A detection system measures the activity of isotopes from the cover-gas in the reactor. A data acquisition and processing system monitors the detection system and corrects for the effects of the cover-gas clean up system on the measured activity and further calculates the derivative cure of the corrected activity as a function of time. A plotting system graphs the derivative curve, which represents the instantaneous release rate of fission gas from a breached fuel element.

  20. Expert system for surveillance and diagnosis of breach fuel elements

    Science.gov (United States)

    Gross, Kenny C.

    1989-01-01

    An apparatus and method are disclosed for surveillance and diagnosis of breached fuel elements in a nuclear reactor. A delayed neutron monitoring system provides output signals indicating the delayed neutron activity and age and the equivalent recoil areas of a breached fuel element. Sensors are used to provide outputs indicating the status of each component of the delayed neutron monitoring system. Detectors also generate output signals indicating the reactor power level and the primary coolant flow rate of the reactor. The outputs from the detectors and sensors are interfaced with an artificial intelligence-based knowledge system which implements predetermined logic and generates output signals indicating the operability of the reactor.

  1. Synthesis Report on the understanding of failed LMFBR fuel element performance

    International Nuclear Information System (INIS)

    Plitz, H.; Bagley, K.; Harbourne, B.

    1990-07-01

    In the coarse of LMFBR operation fuel element failures cannot entirely be avoided as experienced during the operation of PFR, PHENIX and KNK II, where 44 failed fuel elements have been registered between 1978 and 1989. In earlier irradiations, post irradiation examinations showed mixed oxide pin diameter increases up to pin pitch distance, urging to stress reactor safety questions on the potential of fuel pin failure propagation within pin bundles. The chemical interaction of sodium with mixed oxide fuel is regarded to be the key for the understanding of failed fuel behavior. Valuable results on the failed fuel pin behavior during operation were obtained from the SILOE sodium loop test. Based on the bulk of experience with the detection of fuel pin failures, with the continued operation and with the handling of failed pins respectively elements, one can state: 1. All fuel pin failures have been detected securely in time and have been located. 2. Small defects are developing slowly. 3. Even large defects at end-of-life pins resulted in limited fuel loss. 4. Clad failures behave benign in main aspects. 5. The chemical interaction of sodium with mixed oxide is an important factor in the behavior of failed fuel pins, especially at high burnup. 6. Despite different pin designs and different operation conditions, on the basis of 44 failed elements in PFR, PHENIX and KNK II no pin-to-pin propagation was observed and fuel release was rather low, often not detectable. 7. In no case hazard conditions affecting reactor safety have been experienced

  2. The role of spent fuel test facilities in the fuel cycle strategy

    International Nuclear Information System (INIS)

    Huang, S. T.; Gross, D. L.; Snyder, N. W.; Woods, W. D.

    1988-01-01

    Disposal of commercial spent nuclear fuels in the major industrialized countries may be categorized into two broad approaches: a once-through policy which will dispose of spent fuels and recycle fissile materials. Within reprocess spent fuels and recycle fissile materials. Within each policy, various technical, licensing, institutional and public issues exist. These issues tend to complicate the formulation of an effective and acceptable fuel cycle strategy which will meet various cost, schedule, and legislative constraints. This paper examines overall fuel cycle strategies from the viewpoint of these underlying technical issues and assesses the roles of spent fuel test facilities in the overall fuel cycles steps. Basic functions of such test facilities are also discussed. The main emphasis is placed on the once-through policy although the reprocessing / recycle policy is also discussed. Benefits of utilizing test facilities in the fuel cycle strategies are explored. The results indicate that substantial benefits may be obtained in terms of minimizing programmatic risks, increasing public confidence, and more effective utilization of overall budgetary resources by structuring and highlighting the test facilities as an important element in the overall strategy

  3. Core analysis during transition from 37-element fuel to CANFLEX-NU fuel in CANDU 6

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    An 1200-day time-dependent fuel-management for the transition from 37-element fuel to CANFLEX-NU fuel in a CANDU 6 reactor has been simulated to show the compatibility of the CANFLEX-NU fuel with the reactor operation. The simulation calculations were carried out with the RFSP code, provided by cell averaged fuel properties obtained from the POWDERPUFS-V code. The refueling scheme for both fuels was an eight bundle shift at a time. The simulation results show that the maximum channel and bundle powers were maintained below the license limit of the CANDU 6. This indicates that the CANFLEX-NU fuel bundle is compatible with the CANDU 6 reactor operation during the transition period. 3 refs., 2 figs., 1 tab. (Author)

  4. Formation of actinides in irradiated HTGR fuel elements

    International Nuclear Information System (INIS)

    Santos, A.M. dos.

    1976-03-01

    Actinide nuclide concentrations of 11 spent AVR fuel elements were determined experimentally. The burnup of the spheres varied in the range between 10% and 100% fifa, the Th : U ratio was 5 : 1. The separation procedures for actinide isolation were tested with highly irradiated ThO 2 . Separation and decontamination factors are presented. Actinide nuclide formation can be described by exponential functions of the type ln msub(nuclide) = A + B x % fifa. The empirical factors A and B were calculated performing a least squares analysis. Build-up of 232 U was discussed. According to the experimental results, 232 U is mainly produced from 230 Th, a certain amount (e.g. about 20% at a 10 5 MWd/t burnup) originated from a (n,2n) reaction of 233 U; a formation from 233 Th by a (n,2n) followed by a (n,γ) reaction was not observed. The AVR breeding rate was ascertained to be 0.5. The hazard potential of high activity waste was calculated. After a 1,000 years' storage time, the elements Pa, Am and Cm will no longer influence the total hazard index. Actinide recovery factors were proposed in order to reduce the hazard potential of the waste by an actinide removal in consideration of the reprocessing technology which is available presently. (orig.) [de

  5. Italian progress on LWR fuel design, manufacturing, testing and management

    International Nuclear Information System (INIS)

    Arcelli, G.; Bozzoni, T.; Coluccio, G.; Gatti, S.; Gerevini, T.; Testa, G.

    1977-01-01

    This paper summarizes the main activities carried out in Italy from the last Geneva Conference (1971) in the field of LWR fuel design, manufacturing, testing and management. In fuel design, large effort has been devoted both to the assimilation of the information resulting from the licensing agreement with the US suppliers and to the development of an independent know-how through adequate R and D programs as well as to fuel behavior modeling activities. Among these it is worthwhile to mention the studies carried out by CNEN on the in-pile behavior of gadolinia fuel rods, the critical heat flux (CHF) and void fraction experiments, the overpower ramp tests on pre-irradiated fuel rods, the measurements of the pellet-cladding thermal conductance vs. burn-up and the investigation on fission gas release kinetics. The experience acquired with the fuel of the two LWR ENEL power stations, Garigliano BWR and Trino PWR, and some fuel management problems are reviewed. In this framework mention is made to the effort devoted to the acquisition of a wider knowledge on fuel behavior through post irradiation examination (PIE) of power reactor fuel elements as well as of experimental rods. The Italian fuel manufacturing capabilities are illustrated: they consist of the FN (Fabbricazioni Nucleari) plant at Bosco Marengo, owned by AGIP Nucleare and AMN, which has produced up-to-now a reload for Garigliano BWR and the first core for Caorso BWR and of COREN (COmbustibili REattori Nucleari) at Saluggia, owned by Breda, FIAT and Westinghouse, which has fabricated reloads for Trino PWR, including 8 UO 2 -PuO 2 fuel bundles, while fuel loading for the Otto Hahn nuclear ship and fuel mechanical components for some PWRs have been fabricated by FIAT [fr

  6. Metallographic examination of zircaloy-2 sheathed uranium dioxide fuel elements irradiated at high heat ratings

    International Nuclear Information System (INIS)

    Parry, G.W.

    1962-06-01

    During the irradiation of a string of very highly rated Zircaloy-2 sheathed UO 2 fuel elements in the X-6 loop of NRX, a failure occurred in one of the most highly rated elements ( T o T s kdθ = 80 W/cm). This report describes the metallographic examination of the defected element and an adjacent element irradiated at the same heat rating which remained intact for the duration of the test. Heavy hydriding was observed in the defected element which was ascribed to entry of water into the element, while no hydriding was observed in the intact element. Appreciable interaction had occurred between the UO 2 and the Zircaloy-2 end closures in both elements. Oxidation of the UO 2 in the defected element to U 4 O 9 was brought about by reaction with water or steam. (author)

  7. NUCLEAR REACTOR FUEL ELEMENTS AND METHOD OF PREPARATION

    Science.gov (United States)

    Kingston, W.E.; Kopelman, B.; Hausner, H.H.

    1963-07-01

    A fuel element consisting of uranium nitride and uranium carbide in the form of discrete particles in a solid coherent matrix of a metal such as steel, beryllium, uranium, or zirconium and clad with a metal such as steel, aluminum, zirconium, or beryllium is described. The element is made by mixing powdered uranium nitride and uranium carbide with powdered matrix metal, then compacting and sintering the mixture. (AEC)

  8. Fuel-element vibration and bearing pad to pressure tube fretting

    International Nuclear Information System (INIS)

    Fisher, N.J.; Taylor, C.E.; Pettigrew, M.J.

    1990-08-01

    Fuel channel operation under boiling condition results in increased flow velocities, which may lead to unacceptable fuel-element vibration and bearing pad to pressure tube fretting. The existing endurance test database does not fully cover the range of future channel operating conditions. In particular, after refuelling, some channels for future designs may operate with two-phase flow conditions outside the range of endurance test conditions. Full-scale endurance testing at realistic steam-water conditions involves substantial energy costs. Therefore, fundamental laboratory investigations were conducted to define and endurance test matrix which adequately envelops the future range of operating conditions while minimizing both the number of tests and the energy requirement of individual tests. The main focus of the laboratory investigations was to establish the relationships between: fuel channel flow conditions and fuel-element vibration; and fuel-element vibration and bearing pad to pressure tube fretting. The vibration response of a single fuel element was measured over a wide range of operating conditions covering realistic fuel channel conditions and simulated endurance testing conditions. For higher void fractions, the vibration amplitudes measured in air/water were much higher than in steam/water, while for low void fractions, the amplitudes were similar. The measured amplitudes in steam/water varied very little over the range of temperature and pressure investigated. The effects of temperature, pressure tube oxide thickness, vibration amplitude and bearing pad manufacturer on pressure tube fretting were investigated. The fretting rate is extremely temperature dependent. For vibration amplitudes about three or four times greater than expected in-reactor conditions, peak fretting rates were observed in the 225 to 286 degrees C temperature range. Fretting rates were seven times less at the higher temperatures of 300 and 315 degrees C, and the lower temperatures

  9. Fabrication of fuel elements interplay between typical SNR Mark Ia specifications and the fuel element fabrication

    International Nuclear Information System (INIS)

    Biermann, W.K.; Heuvel, H.J.; Pilate, S.; Vanderborck, Y.; Pelckmans, E.; Vanhellemont, G.; Roepenack, H.; Stoll, W.

    1987-01-01

    The core and fuel were designed for the SNR-300 first core by Interatom GmbH and Belgonucleaire. The fuel was fabricated by Alkem/RBU and Belgonucleaire. Based on the preparation of drawings and specifications and on the results of the prerun fabrication, an extensive interplay took place between design requirements, specifications, and fabrication processes at both fuel plants. During start-up of pellet and pin fabrication, this solved such technical questions as /sup 239/Pu equivalent linear weight, pellet density, stoichiometry of the pellets, and impurity content. Close cooperation of designers and manufacturers has allowed manufacture of 205 fuel assemblies without major problems

  10. Fission product release from defected nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Lewis, B.J.

    1983-01-01

    The release of gaseous (krypton and xenon) and iodine radioactive fission products from defective fuel elements is described with a semi-empirical model. The model assumes precursor-corrected 'Booth diffusional release' in the UO 2 and subsequent holdup in the fuel-to-sheath gap. Transport in the gap is separately modelled with a phenomenological rate constant (assuming release from the gap is a first order rate process), and a diffusivity constant (assuming transport in the gap is dominated by a diffusional process). Measured release data from possessing various states of defection are use in this analysis. One element (irradiated in an earlier experiment by MacDonald) was defected with a small drilled hole. A second element was machined with 23 slits while a third element (fabricated with a porous end plug) displayed through-wall sheath hydriding. Comparison of measured release data with calculated values from the model yields estimates of empirical diffusion coefficients for the radioactive species in the UO 2 (1.56 x 10 -10 to 7.30 x 10 -9 s -1 ), as well as escape rate constants (7.85 x 10 -7 to 3.44 x 10 -5 s -1 ) and diffusion coefficients (3.39 x 10 -5 to 4.88 x 10 -2 cm 2 /s) for these in the fuel-to-sheath gap. Analyses also enable identification of the various rate-controlling processes operative in each element. For the noble gas and iodine species, the rate-determining process in the multi-slit element is 'Booth diffusion'; however, for the hydrided element an additional delay results from diffusional transport in the fuel-to-heath gap. Furthermore, the iodine species exhibit an additional holdup in the drilled element because of significant trapping on the fuel and/or sheath surfaces. Using experimental release data and applying the theoretical results of this work, a systematic procedure is proposed to characterize fuel failures in commercial power reactors (i.e., the number of fuel failures and average leak size)

  11. Development of a transport cask for spent fuel elements of research reactors

    International Nuclear Information System (INIS)

    Quintana, F.; Saliba, R.O.; Furnari, J.C.; Mourao, R.P; Leite da Silva, L.; Novara, O.; Alexandre Miranda, C.; Mattar Neto, M.

    2012-01-01

    This article presents an overview of the development of a research reactor spent fuel transport cask. Through a project funded by the IAEA, Argentina, Brazil and Chile have collaborated to enhance regional capacity in the management of spent fuel elements from research reactors operated in the region. A packaging for the transport of research reactors spent fuel was developed. It was designed by a team of researchers from the countries mentioned and a 1:2 scale model for MTR type fuel was constructed in Argentina and subsequently tested in CDTN facilities in Belo Horizonte, Brazil. There were three test sequences to test the cask for normal transport and hypothetical accident conditions. It has successfully passed the tests and the overall performance was considered satisfactory. As part of the licensing process, a test sequence with the presence of regulatory authorities is scheduled for December, 2012 (author)

  12. Process and device for the ultrasonic testing of slotted screws screwed into a head of a nuclear reactor fuel element for cracks

    International Nuclear Information System (INIS)

    Scharpenberg, R.

    1986-01-01

    To achieve correct echo signals, a test head is set separately on each area limited by a slot of the top of the slotted screw and the screw head is ultrasonically sounded in the direction of the suspected cracks. (orig./HP) [de

  13. Annular fuel element for high-temperature reactors

    International Nuclear Information System (INIS)

    Bujas, R.

    1975-01-01

    A description is given of a compacted fuel element of annular shape which is enclosed in a graphite casing constituted by an inner tube and an outer tube. The inner tube is formed of graphite having a lower coefficient of shrinkage than the graphite of the outer tube under irradiation and is of smaller thickness than the outer tube

  14. Method to fabricate block fuel elements for high temperature reactors

    International Nuclear Information System (INIS)

    Hrovat, M.; Rachor, L.

    1977-01-01

    The fabrication of block fuel elements for gas-cooled high temperature reactors can be improved upon by adding 0.2 to 2 wt.% of a hydrocarbon compound to the lubricating mixture prior to pressing. Hexanol or octanol are named as substances. The dimensional accuracy of the block is thus improved. 2 examples illustrate the method. (RW) [de

  15. Fuel element for high-temperature nuclear power reactors

    International Nuclear Information System (INIS)

    Schloesser, J.

    1974-01-01

    The fuel element of the HTGR consists of a spherical graphite body with a spherical cavity. A deposit of fissile material, e.g. coated particles of uranium carbide, is fixed to the inner wall using binders. In addition to the fissile material, there are concentric deposits of fertile material, e.g. coated thorium carbide particles. The remaining cavity is filled with a graphite mass, preferably graphite powder, and the filling opening with a graphite stopper. At the beginning of the reactor operation, the fissile material layer provides the whole power. With progressing burn-up, the energy production is taken over by the fertile layer, which provides the heat production until the end of burn-up. Due to the relatively small temperature difference between the outer wall of the outer graphite body and the maximum fuel temperature, the power of the fuel element can be increased. (DG) [de

  16. Fuel integrity project: analysis of light water reactor fuel rods test results

    International Nuclear Information System (INIS)

    Dallongeville, M.; Werle, J.; McCreesh, G.

    2004-01-01

    BNFL Nuclear Sciences and Technology Services and COGEMA LOGISTICS started in the year 2000 a joint project known as FIP (Fuel Integrity Project) with the aim of developing realistic methods by which the response of LWR fuel under impact accident conditions could be evaluated. To this end BNFL organised tests on both unirradiated and irradiated fuel pin samples and COGEMA LOGISTICS took responsibility for evaluating the test results. Interpretation of test results included simple mechanical analysis as well as simulation by Finite Element Analysis. The first tests that were available for analysis were an irradiated 3 point bending commissioning trial and a lateral irradiated hull compression test, both simulating the loading during a 9 m lateral regulatory drop. The bending test span corresponded roughly to a fuel pin intergrid distance. The outcome of the test was a failure starting at about 35 mm lateral deflection and a few percent of total deformation. Calculations were carried out using the ANSYS code employing a shell and brick model. The hull lateral compaction test corresponds to a conservative compression by neighbouring pins at the upper end of the fuel pin. In this pin region there are no pellets inside. The cladding broke initially into two and later into four parts, all of which were rather similar. Initial calculations were carried out with LS-DYNA3D models. The models used were optimised in meshing, boundary conditions and material properties. The calculation results compared rather well with the test data, in particular for the detailed ANSYS approach of the 3 point bending test, and allowed good estimations of stresses and deformations under mechanical loading as well as the derivation of material rupture criteria. All this contributed to the development of realistic numerical analysis methods for the evaluation of LWR fuel rod behaviour under both normal and accident transport conditions. This paper describes the results of the 3 point bending

  17. Drying results of K-Basin fuel element 3128W (run 2)

    International Nuclear Information System (INIS)

    Abrefah, J.; Klinger, G.S.; Oliver, B.M.; Marshman, S.C.; MacFarlan, P.J.; Ritter, G.A.; Flament, T.A.

    1998-07-01

    An N-Reactor outer fuel element that had been stored underwater in the Hanford 100 Area K-East Basin was subjected to a combination of low- and high-temperature vacuum drying treatments. These studies are part of a series of tests being conducted by Pacific Northwest National Laboratory on the drying behavior of N-Reactor spent nuclear fuel elements removed from both the K-West and K-East Basins. The drying test series was designed to test fuel elements that ranged from intact to severely damaged. The fuel element discussed in this report was removed from an open K-East canister (3128W) during the first fuel selection campaign conducted in 1995, and has remained in wet storage in the Postirradiation Testing Laboratory (PTL, 327 Building) since that time. Although it was judged to be breached during in-basin (i.e., K-Basin) examinations, visual inspection of this fuel element in the hot cell indicated that it was likely intact. Some scratches on the coating covering the cladding were identified before the furnace test. The drying test was conducted in the Whole Element Furnace Testing System located in G-Cell within the PTL. This test system is composed of three basic systems: the in-cell furnace equipment, the system gas loop, and the analytical instrument package. Element 3128W was subjected to the drying processes based on those proposed under the Integrated Process Strategy, which included a hot drying step. Results of the Pressure Rise and Gas Evolution Tests suggest that most of the free water in the system was released during the extended CVD cycle (68 hr versus 8 hr for the first run). An additional ∼0.34 g of water was released during the subsequent HVD phase, characterized by multiple water release peaks, with a principle peak at ∼180 C. This additional water is attributed to decomposition of a uranium hydrate (UO 4 ·4H 2 O/UO 4 ·2H 2 O) coating that was observed to be covering the surface of the fuel element to a thickness of ∼1.6 mg/cm 2 . A

  18. Theoretical and experimental investigation of the nonlinear structural dynamics of Fast Breeder Reactor fuel elements

    International Nuclear Information System (INIS)

    Liebe, R.

    1978-04-01

    This study describes theoretical and experimental investigations of the dynamic deformation behavior of single and clustered fuel elements under local fault conditions in a Fast Breeder Reactor core. In particular an energetic molten-fuel-coolant-interaction (FCI) is assumed in one subassembly with corresponding pressure pulses, which may rupture the wrapper and load the adjacent fuel elements impulsively. Associated coherent structural deformation may exceed tolerable and damage the control rods. To attack the outlined coupled fluid-structure-interaction problem it is assumed, that the loading at the structures is known in space and time, and that there is no feedback from the deformation response. Then current FCI-knowledge and experience from underwater core model explosion tests is utilized to estimate upper limits of relevant pulse characteristics. As a first step the static carrying capacity of the rigid-plastic hexagonal wrapper tube is calculated using the methods of limit analysis. Then for a general dynamic simulation of the complete elastoplastic subassembly response the concept of a discrete nonlinear hinge is introduced. A corresponding physical lumped parameter hinge model is presented, and general equations of motion are derived using D'Alembert's principle. Application to the static and dynamic analysis of a single complete fuel element includes the semiempirical modelling of the fuel-pin bundle by a homogeneous compressible medium. Most important conclusions are concerning the capability of the theoretical models, the failure modes and threshold load levels of single as well as clustered SNR-300 fuel elements and the safety relevant finding, that only limited deformations are found in the first row around the incident element. This shows in agreement with explosion test results that the structured and closely spaced fuel elements constitute an effective, inherent barrier against extreme dynamic loadings. (orig.) [de

  19. Quality control procedures for HTGR fuel element components

    International Nuclear Information System (INIS)

    Delle, W.W.; Koizlik, K.; Luhleich, H.; Nickel, H.

    1976-08-01

    The growing use of nuclear reactors for the production of electric power throughout the world, and the consequent increase in the number of nuclear fuel manufacturers, is giving enhanced importance to the consideration of quality assurance in the production of nuclear fuels. The fuel is the place, where the radioactive fission products are produced in the reactor and, therefore, the integrity of the fuel is of utmost importance. The first and most fundamental means of insuring that integrity is through the exercise of properly designed quality assurance programmes during the manufacture of the fuel and other fuel element components. The International Atomic Energy Agency therefore conducted an International Seminar on Nuclear Fuel Quality Assurance in Oslo, Norway from 24 till 28 May, 1976. This KFA report contains a paper which was distributed preliminary during the seminar and - in the second part - the text of the oral presentation. The paper gives a summary of the procedures available in the present state for the production control of HTGR core materials and of the meaning of the particular properties for reactor operation. (orig./UA) [de

  20. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    Souza, Jose Antonio Batista de

    2011-01-01

    IPEN-CNEN/SP developed the technology to produce the dispersion type fuel elements for research reactors and made it available for routine production. Today, the fuel produced in IPEN-CNEN/SP is limited to the uranium concentration of 3.0 gU/cm 3 for U 3 Si 2 -Al dispersion-based and 2.3 gU/cm 3 for U 3 O 8 -Al dispersion. The increase of uranium concentration in fuel plates enables the reactivity of the reactor core reactivity to be higher and extends the fuel life. Concerning technology, it is possible to increase the uranium concentration in the fuel meat up to the limit of 4.8 gU/cm 3 in U 3 Si 2 -Al dispersion and 3.2 gU/cm 3 U 3 O 8 -Al dispersion. These dispersions are well qualified worldwide. This work aims to develop the manufacturing process of both fuel meats with high uranium concentrations, by redefining the manufacturing procedures currently adopted in the Nuclear Fuel Center of IPEN-CNEN/SP. Based on the results, it was concluded that to achieve the desired concentration, it is necessary to make some changes in the established procedures, such as in the particle size of the fuel powder and in the feeding process inside the matrix, before briquette pressing. These studies have also shown that the fuel plates, with a high concentration of U 3 Si 2 -Al, met the used specifications. On the other hand, the appearance of the microstructure obtained from U 3 O 8 -Al dispersion fuel plates with 3.2 gU/cm 3 showed to be unsatisfactory, due to the considerably significant porosity observed. The developed fabrication procedure was applied to U 3 Si 2 production at 4.8 gU/cm 3 , with enriched uranium. The produced plates were used to assemble the fuel element IEA-228, which was irradiated in order to check its performance in the IEA-R1 reactor at IPEN-CNEN/SP. These new fuels have potential to be used in the new Brazilian Multipurpose Reactor - RMB. (author)

  1. FCTESTNET - Testing fuel cells for transportation

    NARCIS (Netherlands)

    Winkel, R.G.; Foster, D.L.; Smokers, R.T.M.

    2006-01-01

    FCTESTNET (Fuel Cell Testing and Standardization Network) is an ongoing European network project within Framework Program 5. It is a three-year project that commenced January 2003, with 55 partners from European research centers, universities, and industry, working in the field of fuel cell R and D.

  2. Fuel cell hybrid drive train test facility

    NARCIS (Netherlands)

    J. Bruinsma; I. Zafina; H. Bosma; Edwin Tazelaar; Bram Veenhuizen

    2009-01-01

    Fuel cells are expected to play an important role in the near future as prime energy source on board of road-going vehicles. In order to be able to test all important functional aspects of a fuel cell hybrid drive train, the Automotive Institute of the HAN University has decided to realize a

  3. Development of TUF-ELOCA - a software tool for integrated single-channel thermal-hydraulic and fuel element analyses

    International Nuclear Information System (INIS)

    Popescu, A.I.; Wu, E.; Yousef, W.W.; Pascoe, J.; Parlatan, Y.; Kwee, M.

    2006-01-01

    The TUF-ELOCA tool couples the TUF and ELOCA codes to enable an integrated thermal-hydraulic and fuel element analysis for a single channel during transient conditions. The coupled architecture is based on TUF as the parent process controlling multiple ELOCA executions that simulate the fuel elements behaviour and is scalable to different fuel channel designs. The coupling ensures a proper feedback between the coolant conditions and fuel elements response, eliminates model duplications, and constitutes an improvement from the prediction accuracy point of view. The communication interfaces are based on PVM and allow parallelization of the fuel element simulations. Developmental testing results are presented showing realistic predictions for the fuel channel behaviour during a transient. (author)

  4. Nuclear fuels for material test reactors

    International Nuclear Information System (INIS)

    Ramanathan, L.V.; Durazzo, M.; Freitas, C.T. de

    1982-01-01

    Experimental results related do the development of nuclear fuels for reactors cooled and moderated by water have been presented cylindrical and plate type fuels have been described in which the core consists of U compouns dispersed in an Al matrix and is clad with aluminium. Fabrication details involving rollmilling, swaging or hot pressing have been described. Corrosion and irradiation test results are also discussed. The performance of the different types of fuels indicates that it is possible to locally fabricate fuel plates with U 3 O 8 +Al cores (20% enriched U) for use in operating Brazilian research reactors. (Author) [pt

  5. Software development assurance for special control computer sets on the base of the Electronica-60M microcomputer in the stations of fuel element nondestructive testing

    International Nuclear Information System (INIS)

    Vasil'kova, A.D.; Grachev, S.N.; Salakatova, L.S.

    1987-01-01

    A special computational control complex (SCCC) including the ''Elektronika-60M'' microcomputer, a device for communication with an object (DCO) based on the typical microprocessing set (TMS) based on LIUS-2 KTS means and an adapter for communication of the ''Elektronika-60M'' microcomputer bus with IK1 TMS bus developed for their conjugation is used for development of nondestructive control post software. An instrumental SCCC including SM-4 microcomputer, TMS units as DCO, an adapter for communication of the common bus of the SM-4 minicomputer with the IK1 TMS bus developed for their conjugation and devices for simulation of the facility operation is suggested to increase labour productivity of programmers. The SM-4 microcomputer permits to develop programs in the FORTRAN language and to carry out their effective adjustment. A subprogram library for communication with TMS units is compiled, and the technique for testing FORTRAN programs in programmable read-only memory TMS as well as start of these programs are developed

  6. The fabrication of nuclear fuel elements in Mexico

    International Nuclear Information System (INIS)

    Guerrero Morillo, H.L.

    1977-01-01

    The situation of nuclear electricity generation in Mexico in 1976 is described: two nuclear reactors were under construction but no definite programme on the type and start-up dates for the next power plants existed. However, the existence of a general plan on nuclear power plants is mentioned, which, according to the latest estimates, will provide 10,000MW installed by 1990. The national intention, as laid down in an appropriate Law, is to supply domestic nuclear fuel to the power reactors operating in the country, starting with the first reloading of the two BWRs at the first national station in Laguna Verde, required at the end of 1981 and 1982, respectively. Before this can be achieved and to provide the relatively small amounts of fuel elements for the two reactors, Mexico must adopt a strategy of fuel elements fabrication. The two main options are analysed: (1) to delay local fabrication until a national nuclear programme has been defined, meanwhile purchasing abroad the necessary initial cores and refuelling; (2) to start local fabrication of fuel elements as soon as possible in order to provide the first refuelling of the first unit of Laguna Verde, confronting the economic risks of such a decision with the advantages of immediate action. Both options are analysed in detail, comparing them especially from the economic point of view. Current information from potential licensors for design and manufacture are used in the analysis. (author)

  7. Fuel Element Mechanical Design for CAREM-25 Reactor

    International Nuclear Information System (INIS)

    Estevez, Esteban; Markiewicz, Mario; Gerding, Jose

    2000-01-01

    The Fuel Element mechanical design and spider-control reactivity and security rods assembly for the CAREM-25 reactor is introduced. The CAREM-25 Fuel Element has a hexagonal cross section with 127 positions, in a triangular arrangement.There are 108 positions for the fuel rods while the guide tubes and instrumentation tube occupy the 19 remaining positions.From the structural point of view, the fuel element is being composed by a framework formed by the guides and instrumentation tubes, 4 spacer grids and the upper and lower coupling pieces.The spider is a plane piece, with a central body and six radial branches in T form, which has holes where the absorber rods are fitted.The central body ends in a joint in the upper side, which allows connect the assembly whit the reactor control mechanisms.The absorber rods are made of a neutron absorber material (Ag-In-Cd) hermetically closed in a stainless steel cladding. In this work are determined, in addition to the basic design, the operational conditions, the functional requirements to be satisfied and in agreement with those, the adopted criteria and limits to avoid systematics failure during normal operation conditions. The proposed program for the verification and evaluation of design is detailed.To consolidate the design, a prototype was manufactures, based on drawings and specifications needed for its construction

  8. Future Transient Testing of Advanced Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jon Carmack

    2009-09-01

    The transient in-reactor fuels testing workshop was held on May 4–5, 2009 at Idaho National Laboratory. The purpose of this meeting was to provide a forum where technical experts in transient testing of nuclear fuels could meet directly with technical instrumentation experts and nuclear fuel modeling and simulation experts to discuss needed advancements in transient testing to support a basic understanding of nuclear fuel behavior under off-normal conditions. The workshop was attended by representatives from Commissariat à l'Énergie Atomique CEA, Japanese Atomic Energy Agency (JAEA), Department of Energy (DOE), AREVA, General Electric – Global Nuclear Fuels (GE-GNF), Westinghouse, Electric Power Research Institute (EPRI), universities, and several DOE national laboratories. Transient testing of fuels and materials generates information required for advanced fuels in future nuclear power plants. Future nuclear power plants will rely heavily on advanced computer modeling and simulation that describes fuel behavior under off-normal conditions. TREAT is an ideal facility for this testing because of its flexibility, proven operation and material condition. The opportunity exists to develop advanced instrumentation and data collection that can support modeling and simulation needs much better than was possible in the past. In order to take advantage of these opportunities, test programs must be carefully designed to yield basic information to support modeling before conducting integral performance tests. An early start of TREAT and operation at low power would provide significant dividends in training, development of instrumentation, and checkout of reactor systems. Early start of TREAT (2015) is needed to support the requirements of potential users of TREAT and include the testing of full length fuel irradiated in the FFTF reactor. The capabilities provided by TREAT are needed for the development of nuclear power and the following benefits will be realized by

  9. Future Transient Testing of Advanced Fuels

    International Nuclear Information System (INIS)

    Carmack, Jon

    2009-01-01

    The transient in-reactor fuels testing workshop was held on May 4-5, 2009 at Idaho National Laboratory. The purpose of this meeting was to provide a forum where technical experts in transient testing of nuclear fuels could meet directly with technical instrumentation experts and nuclear fuel modeling and simulation experts to discuss needed advancements in transient testing to support a basic understanding of nuclear fuel behavior under off-normal conditions. The workshop was attended by representatives from Commissariat energie Atomique CEA, Japanese Atomic Energy Agency (JAEA), Department of Energy (DOE), AREVA, General Electric - Global Nuclear Fuels (GE-GNF), Westinghouse, Electric Power Research Institute (EPRI), universities, and several DOE national laboratories. Transient testing of fuels and materials generates information required for advanced fuels in future nuclear power plants. Future nuclear power plants will rely heavily on advanced computer modeling and simulation that describes fuel behavior under off-normal conditions. TREAT is an ideal facility for this testing because of its flexibility, proven operation and material condition. The opportunity exists to develop advanced instrumentation and data collection that can support modeling and simulation needs much better than was possible in the past. In order to take advantage of these opportunities, test programs must be carefully designed to yield basic information to support modeling before conducting integral performance tests. An early start of TREAT and operation at low power would provide significant dividends in training, development of instrumentation, and checkout of reactor systems. Early start of TREAT (2015) is needed to support the requirements of potential users of TREAT and include the testing of full length fuel irradiated in the FFTF reactor. The capabilities provided by TREAT are needed for the development of nuclear power and the following benefits will be realized by the

  10. Reactivity And Neutron Flux At Silicide Fuel Element In The Core Of RSG-GAS

    International Nuclear Information System (INIS)

    Hamzah, Amir

    2000-01-01

    In order to 4.8 and 5.2 gr U/cm exp 3 loading of U 3 Si 2 --Al fuel plates characterization, he core reactivity change and neutron flux depression had been done. Control rod calibration method was used to reactivity change measurement and neutron flux distribution was measured using foil activation method. Measurement of insertion of A-type of testing fuel element with U-loading above cannot be done due to technical reason, so the measurement using full type silicide fuel element of 2.96 gr U/cm exp 3 loading. The reactivity change measurement result of insertion in A-9 and C-3 is + 2.67 cent. The flux depression at silicide fuel in A-9 is 1.69 times bigger than oxide and in C-3 is 0.68 times lower than oxide

  11. Development program for fuel elements with low enriched uranium for high temperature reactors

    International Nuclear Information System (INIS)

    1987-12-01

    The results of HTR fuel development taking place at the THTR's can be summarized as follows for the main points of core manufacture coating matrix and fuel emenent manufacture: 1. The well known gel precipitation process was modified for the manufacture of UO 2 cores. 2. The TRISO coating (additional SiC layer between two very dense PyC layers) can be applied with the required quality on an economical 10 kg scale. 3. The particle fracture in the complete fuel element due to manufacture was lowered during the course of the project to below the target values of -6 U/U total. For testing fuel elements, the required irradiation samples were designed in agreement with the reactor constructors, were prepared and the first phase of the irradiation program was successfully completed in the context of the HBK project. (orig./HP) [de

  12. Method of locating a leaking fuel element in a fast breeder power reactor

    Science.gov (United States)

    Honekamp, John R.; Fryer, Richard M.

    1978-01-01

    Leaking fuel elements in a fast reactor are identified by measuring the ratio of .sup.134 Xe to .sup.133 Xe in the reactor cover gas following detection of a fuel element leak, this ratio being indicative of the power and burnup of the failed fuel element. This procedure can be used to identify leaking fuel elements in a power breeder reactor while continuing operation of the reactor since the ratio measured is that of the gases stored in the plenum of the failed fuel element. Thus, use of a cleanup system for the cover gas makes it possible to identify sequentially a multiplicity of leaking fuel elements without shutting the reactor down.

  13. Development and performance of fuel elements for sodium-cooled breeder reactors in Germany

    International Nuclear Information System (INIS)

    Mayer, H.; Hoechel, J.

    1980-01-01

    The first sodium-cooled reactor commissioned in Germany, KNK, serves now as test facility for plutonium bearing oxide fuel elements. The target is to provide reliable fuel for the SNR-300 project (Kalkar Nuclear Power Plant). The long-range target is fuel for burnups above 100,000 MW d/t, which moreover can easily be fabricated and reprocessed. As in the U.K., the line of grid-spaced bundles is favorised, being promising as regards the possibility of replacement of a defected pin and reinsertion of the bundle. (orig.) [de

  14. MTR fuel testing in BR2

    International Nuclear Information System (INIS)

    Jacquet, P.; Verwimp, A.; Wirix, S.

    2000-01-01

    New fuel design for MTR 's requires to be qualified under representative conditions, that is geometry, neutron spectrum, heat flux and thermo hydraulic conditions. An irradiation device for fuel plates has been designed to derive the maximum benefit from the BR2 irradiation capacities. The fuel plates can be easily extracted from their support during a shutdown to undergo additional tests. One of these tests is the measurement of the thickness changes along the fuel plate. To that purpose, a facility in the reactor water pool has been designed to measure the fuel swelling with an accuracy of 5 μm using inductive probes. At SCK-CEN, the full range of destructive and non-destructive PIE can be performed, including γ-scanning, wet sipping, surface examination and other methods. (author)

  15. Testing of a transport cask for research reactor spent fuel

    International Nuclear Information System (INIS)

    Mourao, Rogerio P.; Silva, Luiz Leite da; Miranda, Carlos A.; Mattar Neto, Miguel; Quintana, Jose F.A.; Saliba, Roberto O.; Novara, Oscar E.

    2011-01-01

    Since the beginning of the last decade three Latin American countries which operate research reactors - Argentina, Brazil and Chile - have been joining efforts to improve the regional capability in the management of spent fuel elements from the reactors operated in the region. As a step in this direction, a packaging for the transport of irradiated fuel from research reactors was designed by a tri-national team and a half-scale model for MTR fuel constructed in Argentina and tested in Brazil. Two test campaigns have been carried out so far, covering both normal conditions of transportation and hypothetical accident conditions. Although the specimen has not successfully performed the tests, its overall performance was considered very satisfactory, and improvements are being introduced to the design. A third test sequence is planned for 2011. (author)

  16. Nuclear reactor fuel element with vanadium getter on cladding

    International Nuclear Information System (INIS)

    Johnson, C.E.; Carroll, K.G.

    1977-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of vanadium as an oxygen getter on the inner surface of the cladding. The vanadium reacts with oxygen released by the fissionable material during irradiation of the core to prevent the oxygen from reacting with and corroding the cladding. Also described is a method for coating the inner surface of small diameter tubes of cladding with a layer of vanadium. 5 claims, 1 figure

  17. Radial heat conduction in a power reactor fuel element

    International Nuclear Information System (INIS)

    Ventura, M.A.

    1998-01-01

    Two radial conduction models, one for steady state and another for unsteady state, in a nuclear power reactor fuel element are developed. The objective is to obtain the temperatures in the fuel pellet and the cladding. The lumped-parameter hypothesis are adopted to represent the system. Both models are verified and their results are compared with similar ones. A method to calculate the conductance in the gap between the UO 2 pellet and the clad and its associated uncertainty is included in the steady state model. (author) [es

  18. FISSILE MATERIAL AND FUEL ELEMENTS FOR NEUTRONIC REACTORS

    Science.gov (United States)

    Shaner, B.E.

    1961-08-15

    The fissile material consists of about 64 to 70% (weight) zirconium dioxide, 15 to 19% uranium dioxide, and 8 to 17% calcium oxide. The fissile material is formed into sintered composites which are disposed in a compartmented fuel element, comprising essentially a flat filler plate having a plurality of compartments therein, enclosed in cladding plates of the same material as the filler plate. The resultant fuel has good resistance to corrosion in high temperature pressurized water, good dimensional stability to elevated temperatures, and good resistance to thermal shock. (AEC)

  19. Burnup measurements on spent fuel elements of the RP-10 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vela Mora, Mariano; Gallardo Padilla, Alberto; Palomino, Jose Luis Castro, E-mail: mvela@ipen.gob.p [Instituto Peruano de Energia Nuclear (IPEN/Peru), Lima (Peru). Grupo de Calculo, Analisis y Seguridad de Reactores; Terremoto, Luis Antonio Albiac, E-mail: laaterre@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This work describes the measurement, using nondestructive gamma-ray spectroscopy, of the average burnup attained by Material Testing Reactor (MTR) fuel elements irradiated in the RP-10 research reactor. Measurements were performed at the reactor storage pool area using {sup 137}Cs as the only burnup monitor, even for spent fuel elements with cooling times much shorter than two years. The experimental apparatus was previously calibrated in efficiency to obtain absolute average burnup values, which were compared against corresponding ones furnished by reactor physics calculations. The mean deviation between both values amounts to 6%. (author)

  20. Test report : alternative fuels propulsion durability evaluation

    Science.gov (United States)

    2012-08-28

    This document, prepared by Honeywell Aerospace, Phoenix, AZ (Honeywell), contains the final : test report (public version) for the U.S. Department of Transportation/Federal Aviation : Administration (USDOT/FAA) Alternative Fuels Propulsion Engine Dur...

  1. Sicral F1 graphite-core fuel element behavior in power reactors

    International Nuclear Information System (INIS)

    Rendu, M.

    1987-02-01

    Over 500 000 Sicral F1 graphite-core fuel elements have been manufactured by COGEMA to date and irradiated in GCR power reactors. Since 1963, this type of fuel element has been thoroughly investigated in design studies, in-core and out-of-core tests and post-mortem examinations. This report reviews the current state of knowledge on the irradiation behavior of the components under normal operating conditions and in incident situations (e.g. clad failure). It discusses how this work has led to optimization of the thermal, mechanical metallurgical and neutronic performance in order to obtain a can failure probability of less than 1.6 x 10 -5 , and defines general operating procedures for reactor implementation of this type of fuel element [fr

  2. Fission product release model for failed plate-type fuel element and storage under water

    International Nuclear Information System (INIS)

    Terremoto, L.A.A.; Zeituni, C.A.; Silva, J.E.R. da; Castanheira, M.; Lucki, G.; Silva, A.T. e; Teodoro, C.A.; Damy, M. de A.

    2005-01-01

    Plate-type fuel elements burned-up inside the core of nuclear research reactors are stored mainly under deionized water of storage pools. When cladding failure occurs in such elements, radioactive fission products are released into the storage pool water. This work proposes a model to describe the release mechanism considering the diffusion through a postulated small cylindrical failure. As a consequence, an analytical expression is obtained for the activity released into the water as a function of the total storage time of a failed fuel plate. The proposed model reproduces the linear increasing of 137 Cs specific activity observed in sipping tests already performed on failed plate-type fuel elements. (author)

  3. Flat plate bonded fuel elements. Quarterly report No. 3, October 11, 1953--December 10, 1953

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1953-12-31

    This document is Report No. 3 (covering the period 10/11/53 to 12/10/53) on Flat Plate Bonded Fuel Elements at the Savannah River Plant. It contains information on the fabrication and testing of the uranium components as well as the structural components (aluminium).

  4. FAST FLUX TEST FACILITY DRIVER FUEL MEETING

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1966-06-01

    The Pacific Northwest Laboratory has convened this meeting to enlist the best talents of our laboratories and industry in soliciting factual, technical information pertinent to the Pacific Northwest's Laboratory's evaluation of the potential fuel systems for the Fast Flux Test Facility. The particular factors emphasized for these fuel systems are those associated with safety, ability to meet testing objectives, and economics. The proceedings includes twenty-three presentations, along with a transcript of the discussion following each, as well as a summary discussion.

  5. Fuel-element simulator for investigating thermal-hydraulic accidents in water-water reactors

    International Nuclear Information System (INIS)

    Balashov, S.M.; Kumskoi, V.V.; Pavlov, A.M.; Ulanovskii, A.A.

    1993-01-01

    A fuel-element simulator should provide the necessary environmental parameters (thermal flux, and temperature at the cladding surface) and satisfy the requirements of reliability and modeling an actual fuel element, according to a formulated research problem. A universal simulator design, which could be used in a wide range of research, does not exist up to now and it is hardly useful in general. In developing fuel-element simulators to study loss-of-coolant accidents in water-water reactors, the most important condition from the modeling point of view is that the overall heat capacity of the simulator should correspond to that of the fuel element. The overall heat capacity and the temperature distribution over the reactor cross section determine the reserve of accumulated energy, which cannot be modeled by simply increasing the supplied electrical power. Experiments showed the magnesium oxide, as compared to other materials, is the best model of uranium oxide due to the closeness of the heat transfer coefficient and the thermal conductivity of these materials. Moreover, MgO has a high coefficient of thermal expansion, close to that of stainless steel. The construction of fuel-element simulators often uses boron nitride powder, which is densified by one means or another. Boron nitride has the highest thermal conductivity (besides beryllium oxide), but it has a lower electrical conductivity than magnesium oxide. These materials simultaneously fulfill the function of electrically insulating the heating element from the cladding. The basic disadvantage of this design is that the simulator has no gas gap; however, this is compensated by its simplicity, reliability, and long lifetime. This article presents several test designs for analysis and solving problems characteristic of loss-of-coolant accidents. Test results from VVER-440 fuel rod simulators using 19-rod assemblies an presented

  6. Irradiation performance of helium-bonded uranium--plutonium carbide fuel elements

    International Nuclear Information System (INIS)

    Latimer, T.W.; Petty, R.L.; Kerrisk, J.F.; DeMuth, N.S.; Levine, P.J.; Boltax, A.

    1979-01-01

    The current irradiation program of helium-bonded uranium--plutonium carbide elements is achieving its original goals. By August 1978, 15 of the original 171 helium-bonded elements had reached their goal burnups including one that had reached the highest burnup of any uranium--plutonium carbide element in the U.S.--12.4 at.%. A total of 66 elements had attained burnups over 8 at.%. Only one cladding breach had been identified at that time. In addition, the systematic and coordinated approach to the current steady-state irradiation tests is yielding much needed information on the behavior of helium-bonded carbide fuel elements that was not available from the screening tests (1965 to 1974). The use of hyperstoichiometric (U,Pu)C containing approx. 10 vol% (U,Pu) 2 C 3 appears to combine lower swelling with only a slightly greater tendency to carburize the cladding than single-phase (U,Pu)C. The selected designs are providing data on the relationship between the experimental parameters of fuel density, fuel-cladding gap size, and cladding type and various fuel-cladding mechanical interaction mechanisms

  7. A procedure validation for high conversion reactors fuel elements calculation

    International Nuclear Information System (INIS)

    Ishida, V.N.; Patino, N.E.; Abbate, M.J.; Sbaffoni, M.M.

    1990-01-01

    The present work includes procedure validation of cross sections generation starting from nuclear data and the calculation system actually used at the Bariloche Atomic Center Reactor and Neutrons Division for its application to fuel elements calculation of a high conversion reactor (HCR). To this purpose, the fuel element calculation belonging to a High Conversion Boiling water Reactor (HCBWR) was chosen as reference problem, employing the Monte Carlo method. Various cases were considered: with and without control bars, cold of hot, at different vacuum fractions. Multiplication factors, reaction rates, power maps and peak factors were compared. A sensitivity analysis of typical cells used, the approximations employed to solve the transport equation (Sn or Diffusion), the 1-D or 2-D representation and densification of the spatial network used, with the aim of evaluating their influence on the parameters studied and to come to an optimum combination to be used in future design calculations. (Author) [es

  8. HTGR spherical fuel elements and their experimental development

    International Nuclear Information System (INIS)

    Chernikov, A.S.; Koshelev, Yu.V.; Mikhailichenko, L.I.; Kuznetzov, A.A.

    1985-01-01

    Present constructions of uranium-graphite spherical fuel elements (SE) for the VGR-50 and VG-400 high temperature gas-cooled reactors (HTGR) being designed in the USSR, which are based on using coated fuel particle elements (CP) are unified to a large degree (outer diameter 60 mm, cladding thickness 5 mm) and differ in loading and uranium enrichment, as well as in density of matrix graphite (MG), whose values are determined by the neutron-physical features of nuclear devices. The characteristic of SE operation in the reactor VGR-50 is their repeated (up to 2000 cycles) circulation through the core and irradiator, connected by ball-leads. Therefore strict requirements are imposed on their dynamical strength and wear resistance as well as on their operability under different temperature conditions

  9. Method for measuring recovery of catalytic elements from fuel cells

    Science.gov (United States)

    Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley, NJ

    2011-03-08

    A method is provided for measuring the concentration of a catalytic clement in a fuel cell powder. The method includes depositing on a porous substrate at least one layer of a powder mixture comprising the fuel cell powder and an internal standard material, ablating a sample of the powder mixture using a laser, and vaporizing the sample using an inductively coupled plasma. A normalized concentration of catalytic element in the sample is determined by quantifying the intensity of a first signal correlated to the amount of catalytic element in the sample, quantifying the intensity of a second signal correlated to the amount of internal standard material in the sample, and using a ratio of the first signal intensity to the second signal intensity to cancel out the effects of sample size.

  10. Block fuel element for gas-cooled high temperature reactors

    International Nuclear Information System (INIS)

    Hrovat, M.F.

    1978-01-01

    The invention concerns a block fuel element consisting of only one carbon matrix which is almost isotropic of high crystallinity into which the coated particles are incorporated by a pressing process. This block element is produced under isostatic pressure from graphite matrix powder and coated particles in a rubber die and is subsequently subjected to heat treatment. The main component of the graphite matrix powder consists of natural graphite powder to which artificial graphite powder and a small amount of a phenol resin binding agent are added

  11. Fabrication procedures for manufacturing High Flux Isotope Reactor fuel elements - 2

    International Nuclear Information System (INIS)

    Knight, R.W.; Morin, R.A.

    1999-01-01

    The original fabrication procedures written in 1968 delineated the manufacturing procedures at that time. Since 1968, there have been a number of procedural changes. This rewrite of the fabrication procedures incorporates these changes. The entire fuel core of this reactor is made up of two fuel elements. Each element consists of one annular array of fuel plates. These annuli are identified as the inner and outer fuel elements, since one fits inside the other. The inner element consists of 171 identical fuel plates, and the outer element contains 369 identical fuel plates differing slightly from those in the inner element. Both sets of fuel plates contain U 3 O 8 powder as the fuel, dispersed in an aluminum powder matrix and clad with aluminum. Procedures for manufacturing and inspection of the fuel elements are described and illustrated

  12. Fabrication procedures for manufacturing High Flux Isotope Reactor fuel elements - 2

    Energy Technology Data Exchange (ETDEWEB)

    Knight, R.W.; Morin, R.A.

    1999-12-01

    The original fabrication procedures written in 1968 delineated the manufacturing procedures at that time. Since 1968, there have been a number of procedural changes. This rewrite of the fabrication procedures incorporates these changes. The entire fuel core of this reactor is made up of two fuel elements. Each element consists of one annular array of fuel plates. These annuli are identified as the inner and outer fuel elements, since one fits inside the other. The inner element consists of 171 identical fuel plates, and the outer element contains 369 identical fuel plates differing slightly from those in the inner element. Both sets of fuel plates contain U{sub 3}O{sub 8} powder as the fuel, dispersed in an aluminum powder matrix and clad with aluminum. Procedures for manufacturing and inspection of the fuel elements are described and illustrated.

  13. Cooling flow measurement in fuel elements of the RA-6

    International Nuclear Information System (INIS)

    Brollo, F; Silin, N

    2009-01-01

    Under the UBERA6 project for the core change and power increase of the RA-6 reactor, the total coolant flow was increased to meet the requirements imposed by the new operating conditions. The flow through the fuel elements is an important parameter and is difficult to determine due to the geometric complexity of the core. To ensure safe operation of the reactor, adequate safety margins must be kept for all operating conditions. In the present work we performed the direct measurement of the cooling flow rate of a fuel in the reactor core, for which we used a turbine flowmeter built specifically for this use. This helped to confirm previous results obtained during the launch, made by an indirect method based on measuring the pressure difference of the core. The turbine flowmeter was chosen due to its robustness, ease of operation and low disturbance of the input stream to the fuel. We describe the calibration of this instrument and the results of flow measurements made on some of the RA6 reactor fuel elements under conditions of zero power. [es

  14. Characterizing high-temperature deformation of internally heated nuclear fuel element simulators

    Energy Technology Data Exchange (ETDEWEB)

    Belov, A.I.; Fong, R.W.L.; Leitch, B.W.; Nitheanandan, T.; Williams, A., E-mail: alexander.belov@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    The sag behaviour of a simulated nuclear fuel element during high-temperature transients has been investigated in an experiment utilizing an internal indirect heating method. The major motivation of the experiment was to improve understanding of the dominant mechanisms underlying the element thermo-mechanical response under loss-of-coolant accident conditions and to obtain accurate experimental data to support development of 3-D computational fuel element models. The experiment was conducted using an electrically heated CANDU fuel element simulator. Three consecutive thermal cycles with peak temperatures up to ≈1000 {sup o}C were applied to the element. The element sag deflections and sheath temperatures were measured. On heating up to 600 {sup o}C, only minor lateral deflections of the element were observed. Further heating to above 700 {sup o}C resulted in an element multi-rate creep and significant permanent bow. Post-test visual and X-ray examinations revealed a pronounced necking of the sheath at the pellet-to-pellet interface locations. A wall thickness reduction was detected in the necked region that is interpreted as a sheath longitudinal strain localization effect. The sheath cross-sectioning showed signs of a 'hard' pellet-cladding interaction due to the applied cycles. A 3-D model of the experiment was generated using the ANSYS finite element code. As a fully coupled thermal mechanical simulation is computationally expensive, it was deemed sufficient to use the measured sheath temperatures as a boundary condition, and thus an uncoupled mechanical simulation only was conducted. The ANSYS simulation results match the experiment sag observations well up to the point at which the fuel element started cooling down. (author)

  15. Dissolution of the RA nuclear reactor fuel element

    International Nuclear Information System (INIS)

    Pavasovic, V.; Tolic, A.; Petkovic, Dj.

    1967-10-01

    Natural uranium 2% enriched fuel element with aluminium cladding from the RA reactor was dissolved in the laboratory device specially adapted for this experiment. This report includes the description of the equipment, experiment and results. First step of the procedure, removal of the aluminium cladding was completed successfully, by dissolving in sodium hydroxide. Metal uranium was dissolved in nitric acid. These experiments have provided data about the stoichiometry and kinetics of the process

  16. CARA CVN: inherently safe fuel element for PHWR power plants

    International Nuclear Information System (INIS)

    Brasnarof, Daniel O.; Lestani, Hector A.; Agueda, Horacio C.; Marino, Armando C.; Florido, Pablo C.; Daverio, Hernando

    2007-01-01

    This paper presents design alternatives of the CARA fuel element with negative void reactivity coefficient (CVN) enhancing the PHWR safety for L-LOCA sequences. This design enhances the safety and the operation performance in Atucha and Embalse without changes in the operation conditions. This new design balances wide performance margins of CARA SEU 0.9% previous design, with new intrinsic safety requirements without economic penalties. (author) [es

  17. METHOD AND APPARATUS FOR EXAMINING FUEL ELEMENTS FOR LEAKAGE

    Science.gov (United States)

    Smith, R.R.; Echo, M.W.; Doe, C.B.

    1963-12-31

    A process and a device for the continuous monitoring of fuel elements while in use in a liquid-metal-cooled, argonblanketed nuclear reactor are presented. A fraction of the argon gas is withdrawn, contacted with a negative electrical charge for attraction of any alkali metal formed from argon by neutron reaction, and recycled into the reactor. The electrical charge is introduced into water, and the water is examined for radioactive alkali metals. (AEC)

  18. FUEL ELEMENTS FOR NUCLEAR REACTORS AND PROCESS OF MAKING

    Science.gov (United States)

    Roake, W.E.

    1958-08-19

    A process is described for producing uranium metal granules for use in reactor fuel elements. The granules are made by suspending powdered uramiunn metal or uranium hydride in a viscous, non-reactive liquid, such as paraffin oil, aad pouring the resulting suspension in droplet, on to a bed of powdered absorbent. In this manner the liquid vehicle is taken up by the sorbent and spherical pellets of uranium metal are obtained. The

  19. Development of experimental methods for measuring fuel elements burnup

    International Nuclear Information System (INIS)

    PEREDA, C; HENRIQUEZ, C; NAVARRO, G; TORRES, H; KLEIN, J; CALDERON, D; MEDEL, J; MUTIS, O; DAIE, J; ITURRIETA, L; LONCOMILLA, M; ZAMBRANO, J; KESTELMAN, A

    2003-01-01

    This paper is a summary of the work carried out during the last two years in fuel burning measurements at RECH-1 for different enrichments, cooling times and burning rates. The measurements were made in two gamma-spectrometric facilities, one is installed in a hot cell and the other inside of the secondary pool of the RECH-1, where the element is under 2 meters of water. The hot cell measurements need at least 100 cooling days because of the problems generated by the transport of highly active fuel elements from the Reactor to the cell. This was the main reason for using the in-pool facility because of its capability to measure the burning of fuel elements without having to wait so long, that is with only 5 cooling days. The accumulated experience in measurements achieved in both facilities and the encouraging results show that this measuring method is reliable. The results agreed well with those obtained using the reactor's physics codes, which was the way they were obtained previously (Cw)

  20. Nuclear Fuel Test Rod Fabrication for Data Acquisition Test

    International Nuclear Information System (INIS)

    Joung, Chang-Young; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho

    2014-01-01

    A nuclear fuel test rod must be fabricated with precise welding and assembly technologies, and confirmed for their soundness. Recently, we have developed various kinds of processing systems such as an orbital TIG welding system, a fiber laser welding system, an automated drilling system and a helium leak analyzer, which are able to fabricate the nuclear fuel test rods and rigs, and keep inspection systems to confirm the soundness of the nuclear fuel test rods and rids. The orbital TIG welding system can be used with two kinds of welding methods. One can perform the round welding for end-caps of a nuclear fuel test rod by an orbital head mounted in a low-pressure chamber. The other can do spot welding for a pin-hole of a nuclear fuel test rod in a high-pressure chamber to fill up helium gas of high pressure. The fiber laser welding system can weld cylindrical and 3 axis samples such as parts of a nuclear fuel test rod and instrumentation sensors which is moved by an index chuck and a 3 axis (X, Y, Z) servo stage controlled by the CNC program. To measure the real-time temperature change at the center of the nuclear fuel during the irradiation test, a thermocouple should be instrumented at that position. Therefore, a hole needs to be made at the center of fuel pellet to instrument the thermocouple. An automated drilling system can drill a fine hole into a fuel pellet without changing tools or breaking the work-piece. The helium leak analyzer (ASM-380 model of DEIXEN Co.) can check the leak of the nuclear fuel test rod filled with helium gas. This paper describes not only the assembly and fabrication methods used by the process systems, but also the results of the data acquisition test for the nuclear fuel test rod. A nuclear fuel test rod for the data acquisition test was fabricated using the welding and assembling echnologies acquired from previous tests

  1. Space shuttle orbit maneuvering engine, reusable thrust chamber program. Task 6: Data dump hot fuel element investigation

    Science.gov (United States)

    Nurick, W. H.

    1974-01-01

    An evaluation of reusable thrust chambers for the space shuttle orbit maneuvering engine was conducted. Tests were conducted using subscale injector hot-fire procedures for the injector configurations designed for a regenerative cooled engine. The effect of operating conditions and fuel temperature on combustion chamber performance was determined. Specific objectives of the evaluation were to examine the optimum like-doublet element geometry for operation at conditions consistent with a fuel regeneratively cooled engine (hot fuel, 200 to 250 F) and the sensitivity of the triplet injector element to hot fuels.

  2. The element technology of clean fuel alcohol plant construction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.S; Lee, D.S. [Sam-Sung Engineering Technical Institute (Korea, Republic of); Choi, C.Y [Seoul National University, Seoul (Korea, Republic of)] [and others

    1996-02-01

    The fuel alcohol has been highlighted as a clean energy among new renewable energy sources. However, the production of the fuel alcohol has following problems; (i)bulk distillate remains is generated and (ii) benzene to be used as a entertainer in the azeotropic distillation causes the environmental problem. Thus, we started this research on the ground of preserving the cleanness in the production of fuel alcohol, a clean energy. We examined the schemes of replacing the azotropic distillation column which causes the problems with MSDP(Molecular Sieve Dehydration Process) system using adsorption technology and of treating the bulk distillate remains to be generated as by-products. In addition, we need to develop the continuous yea station technology for the continuous operation of fuel alcohol plant as a side goal. Thus, we try to develop a continuous ethanol fermentation process by high-density cell culture from tapioca, a industrial substrate, using cohesive yeast. For this purpose, we intend to examine the problem of tapioca, a industrial substrate, where a solid is existed and develop a new process which can solve the problem. Ultimately, the object of this project is to develop each element technology for the construction of fuel alcohol plant and obtain the ability to design the whole plant. (author) 54 refs., 143 figs., 34 tabs.

  3. Improvements in the fabrication of HTR fuel elements

    International Nuclear Information System (INIS)

    Brähler, Georg; Hartung, Markus; Fachinger, Johannes; Grosse, Karl-Heinz; Seemann, Richard

    2012-01-01

    The application of High Temperature Reactor (HTR) Technology in the course of the continuously increasing world wide demand on energy is taken more and more under serious consideration in the power supply strategy of various countries. Especially for the emerging nations the HTR Technology has become of special interest because of its inherent safety feature and due to the alternative possibilities of applications, e.g. in the production of liquid hydrocarbons or the alternative application in H 2 generation. The HTR fuel in its various forms (spheres or prismatic fuel blocks) is based on small fuel kernels of about 500 μm in diameter. Each of these uranium oxide or carbide kernels are coated with several layers of pyrocarbon (PyC) as well as an additional silicon carbide (SiC) layer. While the inner pyrocarbon layer is porous and capable to absorb gaseous fission products, the dense outer PyC layer forms the barrier against fission product release. The SiC layer improves the mechanical strengths of this barrier and considerably increases the retention capacity for solid fission products that tent to diffuse at these temperatures. Especially the high quality German LEU TRISO spherical fuel based on the NUKEM design, has demonstrated the best fission product release rate, particular at high temperatures. The ∼10% enriched uranium triple-coated particles are embedded in a moulded graphite sphere. A fuel sphere consists of approximately 9 g of uranium (some 15,000 particles) and has a diameter of 60 mm. As the unique safety features, especially the inherent safety of the HTR is based on the fuel design, this paper shall reflect the complexity but also developments and economical aspects of the fabrication processes for HTR fuel elements.

  4. Post-irradiation behaviour of defected UO2 fuel elements in air at 220-250 degrees C

    International Nuclear Information System (INIS)

    Novak, J.; Hastings, I.J.

    1983-08-01

    We have heated in air irradiated CANDU UO 2 fuel elements with and without deliberately-induced defects. The temperature range was 220-250 degrees C for times up to 685 h. Pre-test burnup was about 190 MW.h/kg U (8000 MW.d/TeU) at a maximum linear power of 45 kW/m. Elements with single and multiple defects maintained reasonable dimensional stability up to 685 h at 220 and 230 degrees C, consistent with fuel oxidation primarily to U 3 O 7 . In this temperature range, there was no significant difference in response of defected elements with different power histories and cooling times. Irradiated fuel showed rates of weight increases up to 50 times greater than those for unirradiated fuel. Elements with single and multiple defects showed significant diametral increases and severe sheath splitting after about 200 h at 250 degrees C, consistent with fuel oxidation primarily to U 3 O 8

  5. Irradiated MTR fuel assemblies sipping test

    Energy Technology Data Exchange (ETDEWEB)

    Perrotta, J.A.; Terremoto, Luis A.A.; Zeituni, Carlos A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Div. de Engenharia do Nucleo

    1997-10-01

    This paper describes the procedure and methodology used to perform sipping test with the IEA-R1 fuel assemblies at the storage pool, and presents the results obtained for Cs-137 sipping water activity for each fuel assembly analyzed. Discussion is made correlating corrosion pits to the activity values measured. A Cs-137 leaking rate is determined which can be compared to the criteria established for canning spent fuel assemblies inside the pool of for shipment abroad. 3 refs., 13 figs., 1 tab.

  6. Irradiated MTR fuel assemblies sipping test

    International Nuclear Information System (INIS)

    Perrotta, J.A.; Terremoto, Luis A.A.; Zeituni, Carlos A.

    1997-01-01

    This paper describes the procedure and methodology used to perform sipping test with the IEA-R1 fuel assemblies at the storage pool, and presents the results obtained for Cs-137 sipping water activity for each fuel assembly analyzed. Discussion is made correlating corrosion pits to the activity values measured. A Cs-137 leaking rate is determined which can be compared to the criteria established for canning spent fuel assemblies inside the pool of for shipment abroad. 3 refs., 13 figs., 1 tab

  7. Remote real time x-ray examination of fuel elements in a hot cell environment

    International Nuclear Information System (INIS)

    Yapuncich, F.L.

    1993-01-01

    This report discusses the Remote Real Time X-ray System which will allow for detailed examination of fuel elements. This task will be accomplished in a highly radioactive hot cell environment. Two remote handling systems win be utilized at the examination station. One handling system will transfer the fuel element to and from the shielded x-ray system. A second handling system will allow for vertical and rotational inspection of the fuel elements. The process win include removing a single nuclear fuel element from a element fabrication magazine(EFM), positioning the fuel element within the shielding envelope of the x-ray system and transferring the fuel element from the station manipulator to the x-ray system manipulator, performing the x-ray inspection, and then transferring the fuel element to either the element storage magazine(ESM) or a reject bin

  8. The fabrication of nuclear fuel elements in Mexico

    International Nuclear Information System (INIS)

    Guerrero Morillo, H.L.

    1977-01-01

    The situation of the nucleoelectrical generation in Mexico by 1976 is described: two nuclear reactors under construction but no defined program on the type and start-up dates for the next power plants. However the existence of a general plan on nuclear power plants is mentioned, which, according to the last estimates reaches to 10,000 MW installed by 1990. The national intension, definitely expressed in the Law, is to supply domestic nuclear fuel to the power reactors operating in the country, starting with the first reload for the two BWR's at the first national station in Laguna Verde, which will be required at the end of 1981 and of 1982, respectively. Before such circumstances and the relatively short amounts of fuel elements that should be produced for those two unique reactors, Mexico already has to adopt a strategy to follow in respect to fuel elements fabrication. The two main options are analyzed: 1. To delay the local fabrication until a National Nuclear Program may be defined, meanwhile purchasing abroad the necessary reloads and initial cores; and 2. To start as soon as possible the local fuel elements fabrication in order to supply fuel for the first reload of the first unit of Laguna Verde, confronting the economical risks of such posture with the advantages of an immediate action. Both options are analyzed in detail comparing them specially under the economic point of view, standing out immediately the big effect of some factors which are economically imponderable, as experience and independance that would be gained with the second option. Emphasis is made on the advantages and risks of any case. According to the first option and once a National Program is defined, the work would be heavy but of simple strategy. On the contrary, the second option requires the adoption of a more complicated strategy, as either the project of the factory as its initial operation should be made under transient conditions, in view of the expected future expansion still

  9. Examination of the surface coatings removed from K-East Basin fuel elements

    International Nuclear Information System (INIS)

    Abrefah, J.; Marschman, S.C.; Jenson, E.D.

    1998-05-01

    This report provides the results of studies conducted on coatings discovered on the surfaces of some N-Reactor spent nuclear fuel (SNF) elements stored at the Hanford K-East Basin. These elements had been removed from the canisters and visually examined in-basin during FY 1996 as part of a series of characterization tests. The characterization tests are being performed to support the Integrated Process Strategy developed to package, dry, transport, and store the SNF in an interim storage facility on the Hanford site. Samples of coating materials were removed from K-East canister elements 2350E and 2540E, which had been sent, along with nine other elements, to the Postirradiation Testing Laboratory (327 Building) for further characterization following the in-basin examinations. These coating samples were evaluated by Pacific Northwest National Laboratory using various analytical methods. This report is part of the overall studies to determine the drying behavior of corrosion products associated with the K-Basin fuel elements. Altogether, five samples of coating materials were analyzed. These analyses suggest that hydration of the coating materials could be an additional source of moisture in the Multi-Canister Overpacks being used to contain the fuel for storage

  10. Examination of the surface coating removed from K-East Basin fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Abrefah, J.; Marschman, S.C.; Jenson, E.D.

    1998-05-01

    This report provides the results of studies conducted on coatings discovered on the surfaces of some N-Reactor spent nuclear fuel (SNF) elements stored at the Hanford K-East Basin. These elements had been removed from the canisters and visually examined in-basin during FY 1996 as part of a series of characterization tests. The characterization tests are being performed to support the Integrated Process Strategy developed to package, dry, transport, and store the SNF in an interim storage facility on the Hanford site. Samples of coating materials were removed from K-East canister elements 2350E and 2540E, which had been sent, along with nine other elements, to the Postirradiation Testing Laboratory (327 Building) for further characterization following the in-basin examinations. These coating samples were evaluated by Pacific Northwest National Laboratory using various analytical methods. This report is part of the overall studies to determine the drying behavior of corrosion products associated with the K-Basin fuel elements. Altogether, five samples of coating materials were analyzed. These analyses suggest that hydration of the coating materials could be an additional source of moisture in the Multi-Canister Overpacks being used to contain the fuel for storage.

  11. Testing of reactor fuel materials using nuclear techniques

    International Nuclear Information System (INIS)

    Khouri, M.T.F.C.

    1978-01-01

    The tests presented here apply to: the quantitative determination of uranium in the core of fuel element plates by the detection of the number of neutrons produced in photo induced reactions in uranium; the determination of 235 U proportion in uranium dioxide samples, in the form of uranyl nitrate, by the technique of the detection of tracks produced by fission fragments and in pellet samples by passive gamma spectrometry and the checking of uranium homogenization distribution in fuel plates and uranium dioxide pellets. (Author) [pt

  12. Flat plate bonded fuel elements: Report number 2, 11 August--10 October 1953

    Energy Technology Data Exchange (ETDEWEB)

    1953-12-31

    Attention has continued to be concentrated on routes employing either wrought uranium or powder metallurgy product for the making of flat plate fuel elements of approximately 0.180-inch uranium metal core thickness bonded to either ribbed or ribless aluminum sheaths. Intermediate goals of the program are to have elements 18 inches long for MTR irradiation tests this fall and to make sufficient advance in the overall program in 1954 so that an initial reactor charge of 15-foot long fuels can be provided as early as possible in 1955. The development of a satisfactory process tube for retaining an assembly of several fuel elements is also required. Uranium of satisfactory quality for fabrication into fuel elements appears to have been produced by the August high alpha rolling at Superior Steel, and it seems likely from the electroplating results that the metal can be employed for electroplating and bonding without such surface preparation as vapor blasting, grinding, or machining. Difficulty in obtaining aluminum components, both sheaths and process tubes, remains a bottleneck in the development program and specifically has delayed work on the wrought metal samples for MTR tests.

  13. Burn up determination of IEAR-1 fuel elements by non destructive gamma ray spectrometry method

    International Nuclear Information System (INIS)

    Soares, A.J.

    1977-01-01

    Measurement of nuclear fuel burn up by non destructive gamma ray spectrometry is discussed, and results of such measurements, made at the Instituto de Energia Atomica (IEA), are given. Specifically, the burn up of an MTR (Material Testing Reactor) fuel element removed from the IEAR-1 swimming pool reactor in 1958 is evaluated from the measured Cs-137 activity, which gives a single 661,6 keV gamma ray. Due to the long decay time of the test element, no other fission decay product activity could be detected. Analysis of measurements, made with a 3'' x 3'' NaI(Tl) detector at 330 distinct points of the element, showed the total burn up to 3.3 +- -+ 0.8 mg. This is in agreement with a calculated value. As the maximum temperature of IEAR-1 fuel elements is of the order of 40 0 C, migration effects of Cs-137 was not considered, this being significant only at fuel temperature in excess of 1000 0 C [pt

  14. Review of Rover fuel element protective coating development at Los Alamos

    Science.gov (United States)

    Wallace, Terry C.

    1991-01-01

    The Los Alamos Scientific Laboratory (LASL) entered the nuclear propulsion field in 1955 and began work on all aspects of a nuclear propulsion program with a target exhaust temperature of about 2750 K. A very extensive chemical vapor deposition coating technology for preventing catastrophic corrosion of reactor core components by the high temperature, high pressure hydrogen propellant gas was developed. Over the 17-year term of the program, more than 50,000 fuel elements were coated and evaluated. Advances in performance were achieved only through closely coupled interaction between the developing fuel element fabrication and protective coating technologies. The endurance of fuel elements in high temperature, high pressure hydrogen environment increased from several minutes at 2000 K exit gas temperature to 2 hours at 2440 K exit gas temperature in a reactor test and 10 hours at 2350 K exit gas temperature in a hot gas test. The purpose of this paper is to highlight the rationale for selection of coating materials used (NbC and ZrC), identify critical fuel element-coat interactions that had to be modified to increase system performance, and review the evolution of protective coating technology.

  15. Acceptance of spent nuclear fuel in multiple element sealed canisters by the Federal Waste Management System

    International Nuclear Information System (INIS)

    1990-03-01

    This report is one of a series of eight prepared by E.R. Johnson Associates, Inc. (JAI) under ORNL's contract with DOE's OCRWM Systems Integration Program and in support of the Annual Capacity Report (ACR) Issue Resolution Process. The report topics relate specifically to the list of high priority technical waste acceptance issues developed jointly by DOE and a utility-working group. JAI performed various analyses and studies on each topic to serve as starting points for further discussion and analysis leading eventually to finalizing the process by which DOE will accept spent fuel and waste into its waste management system. The eight reports are concerned with the conditions under which spent fuel and high level waste will be accepted in the following categories: (1) failed fuel; (2) consolidated fuel and associated structural parts; (3) non-fuel-assembly hardware; (4) fuel in metal storage casks; (5) fuel in multi-element sealed canisters; (6) inspection and testing requirements for wastes; (7) canister criteria; (8) spent fuel selection for delivery; and (9) defense and commercial high-level waste packages. 14 refs., 27 figs

  16. Finite element simulation of asphalt fatigue testing

    DEFF Research Database (Denmark)

    Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders

    1997-01-01

    damage mechanics.The paper describes how continuum damage mechanics may be used with a finite element program to explain the progressive deterioration of asphalt mixes under laboratory fatigue testing. Both constant stress and constant strain testing are simulated, and compared to the actual results from...

  17. New phenomena observed during fuel assemblies testing

    International Nuclear Information System (INIS)

    Tzotcheva, V.

    2001-01-01

    The paper presents a new attempt to explain inexplicable increase of specific activity for some of the fuel assemblies during the fuel tightness testing procedures on Kozloduy NPP. A brief description of established procedure for fuel tightness control is presented in the paper. Special emphasis is given on a hypothesis that explains the fact of existence of deviation in Iodine activity more than usual, which have no reasonable interpretation. The reasons for uniform high Iodine activity for reloaded assemblies, that have kept in the open measuring can for a long time (1-3 hours), is found to be the process of Iodine dissolving in the water and the accelerated process of natural degassing. A proposal to use the 134 Cs and 137 Cs as stand-alone criteria for more precise results is made in respect to increase the reliability of fuel reloading and storage procedures

  18. Determination of heterogeneous medium parameters by single fuel element method

    International Nuclear Information System (INIS)

    Veloso, M.A.F.

    1985-01-01

    The neutron pulse propagation technique was employed to study an heterogeneous system consisting of a single fuel element placed at the symmetry axis of a large cylindrical D 2 O tank. The response of system for the pulse propagation technique is related to the inverse complex relaxation length of the neutron waves also known as the system dispersion law ρ (ω). Experimental values of ρ (ω) were compared with the ones derived from Fermi age - Diffusion theory. The main purpose of the experiment was to obtain the Feinberg-Galanin thermal constant (γ), which is the logaritmic derivative of the neutron flux at the fuel-moderator interface and a such a main input data for heterogeneous reactor theory calculations. The γ thermal constant was determined as the number giving the best agreement between the theoretical and experimental values of ρ (ω). The simultaneous determination of two among four parameters η,ρ,τ and L s is possible through the intersection of dispersion laws of the pure moderator system and the fuel moderator system. The parameters τ and η were termined by this method. It was shown that the thermal constant γ and the product η ρ can be computed from the real and imaginary parts of the fuel-moderator dispersion law. The results for this evaluation scheme showns a not stable behavior of γ as a function of frequency, a result not foreseen by the theoretical model. (Author) [pt

  19. The modeling experience of fuel element units operation under MSC.MARC and MENTAT 2008R1

    International Nuclear Information System (INIS)

    Kulakov, G.; Kashirin, B.; Kosaurov, A.; Konovalov, Y.; Kuznetsov, A.; Medvedev, A.; Novikov, V.; Vatulin, A.

    2009-01-01

    MSC Software is leading developer of CAE-software in the world, so behaviour of fuel elements modeling with MSC.MARC use is of great practical importance. Behaviour of fuel elements usually is modeled in the elastic-viscous-plastic statement with account on fuel swelling during irradiation. For container type fuel elements contact interaction between fuel pellets and cladding or other parts of fuel element in top and bottom plugs must be in account. Results of simulated behaviour of various type fuel elements - container type fuel elements for PWR and RBMK reactors, dispersion type fuel elements for research reactors are presented. (authors)

  20. Alpha Fuels Environmental Test Facility impact gun

    International Nuclear Information System (INIS)

    Anderson, C.G.

    1978-01-01

    The Alpha Fuels Environmental Test Facility (AFETF) impact gun is a unique tool for impact testing 238 PuO 2 -fueled heat sources of up to 178-mm dia at velocities to 300 m/s. An environmentally-sealed vacuum chamber at the muzzle of the gun allows preheating of the projectile to 1,000 0 C. Immediately prior to impact, the heat source projectile is completely sealed in a vacuum-tight catching container to prevent escape of its radioactive contents should rupture occur. The impact velocity delivered by this gas-powered gun can be regulated to within +-2%

  1. IEA-R1 reactor spent fuel element surveillance

    International Nuclear Information System (INIS)

    Damy, Margaret de Almeida; Terremoto, Luis Antonio Albiac; Silva, Jose Eduardo Rosa da; Silva, Antonio Teixeira e; Teodoro, Celso A.; Lucki, Georgi; Castanheira, Myrthes

    2005-01-01

    The irradiation surveillance is an important part of a qualification program of the U 3 O 8 -Al and U 3 Si 2 -Al dispersion nuclear fuels manufactured in IPEN/CNEN-SP. This work presents the surveillance results regarding the fuel and control elements irradiated in the IEA-R1 research reactor during the period from June/1999 until December/2003, which embraced register of visual inspections, irradiation conditions, burn-up calculations, thermal hydraulic parameters and failure occurrences. Also providing information that helps the safe operation of the IEA-R1 research reactor, the irradiation surveillance is a collaboration work involving researchers of the Centro de Engenharia Nuclear (CEN) and the operators' staff of the Centro do Reator de Pesquisas (CRPq), both from IPEN/CNEN-SP. (author)

  2. Improved moulding material for addition to nuclear fuel particles to produce nuclear fuel elements

    International Nuclear Information System (INIS)

    Miertschin, G.N.; Leary, D.F.

    1976-01-01

    A suggestion is made to improve the moulding materials used to produce carbon-contained nuclear fuel particles by a coke-reducing added substance. The nuclear fuel particles are meant for the formation of fuel elements for gas-cooled high-temperature nuclear reactors. The moulding materials are above all for the formation of coated particles which are burnt in situ in nuclear fuel element chambers out of 'green' nuclear fuel bodies. The added substance improves the shape stability of the particles forming and prevents a stiding or bridge formation between the particles or with the surrounding walls. The following are named as added substances: 1) Polystyrene and styrene-butadiene-Co polymers (mol. wt. between 5oo and 1,000,000), 2) aromatic compounds (mol. wt. 75 to 300), 3) saturated hydrocarbon polymers (mol. wt. 5,000 to 1,000,000). Additional release agents further improve the properties in the same direction (e.g. alcohols, fatty acids, amines). (orig.) [de

  3. Oxide fuel element and blanket element development programs. Quarterly progress report, April-June 1978

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    Approval-in-principle has been granted for run beyond breach experiment XY-2, which will incorporate an F11A series rod. Fuel microstructures and operating parameters have been tabulated for 118 specimens from the F20 power to melt experiment. Retained gas measurements have been compiled indicating 36-50 ..mu..l/gm in this high power fuel. Topical report GEFR-00367 was prepared describing F20 results. Preparation of the Test Design Description for axial blanket experiment AB-1 is proceeding on schedule (for Cycle 2 irradiation). The safety analysis calculations, showing no fuel melting nor sodium boiling in design-basis upsets, have been completed.

  4. Thermomechanical evaluation of BWR fuel elements for procedures of preconditioned with FEMAXI-V

    International Nuclear Information System (INIS)

    Hernandez L, H.; Lucatero, M.A.; Ortiz V, J.

    2006-01-01

    The limitations in the burnt of the nuclear fuel usually are fixed by the one limit in the efforts to that undergo them the components of a nuclear fuel assembly. The limits defined its provide the direction to the fuel designer to reduce to the minimum the fuel failure during the operation, and they also prevent against some thermomechanical phenomena that could happen during the evolution of transitory events. Particularly, a limit value of LHGR is fixed to consider those physical phenomena that could lead to the interaction of the pellet-shirt (Pellet Cladding Interaction, PCI). This limit value it is related directly with an PCI limit that can be fixed based on experimental tests of power ramps. This way, to avoid to violate the PCI limit, the conditioning procedures of the fuel are still required for fuel elements with and without barrier. Those simulation procedures of the power ramp are carried out for the reactor operator during the starting maneuvers or of power increase like preventive measure of possible consequences in the thermomechanical behavior of the fuel. In this work, the thermomechanical behavior of two different types of fuel rods of the boiling water reactor is analyzed during the pursuit of the procedures of fuel preconditioning. Five diverse preconditioning calculations were carried out, each one with three diverse linear ramps of power increments. The starting point of the ramps was taken of the data of the cycle 8 of the unit 1 of the Laguna Verde Nucleo electric Central. The superior limit superior of the ramps it was the threshold of the lineal power in which a fuel failure could be presented by PCI, in function of the fuel burnt. The analysis was carried out with the FEMAXI-V code. (Author)

  5. Testing of FFTF fuel handling equipment

    International Nuclear Information System (INIS)

    Coleman, D.W.; Grazzini, E.D.; Hill, L.F.

    1977-07-01

    The Fast Flux Test Facility has several manual/computer controlled fuel handling machines which are exposed to severe environments during plant operation but still must operate reliably when called upon for reactor refueling. The test programs for two such machines--the Closed Loop Ex-Vessel Machine and the In-Vessel Handling Machine--are described. The discussion centers on those areas where design corrections or equipment repairs substantiated the benefits of a test program prior to plant operation

  6. Transport safety of high burnup fuel elements and HAW moulds

    International Nuclear Information System (INIS)

    Baier, G.; Hoermann, E.; Winter, M.

    1991-09-01

    The effect of changes of the peripheral conditions laid down in the project 'Safety studies on waste management' (PSE), on the assessment of transport safety of the transport container CASTOR IIa was analysed. Changes as against the PSE are due to the reprocessing of fuel elements abroad; increased burnup of fuel elements, and changes of transport conditions by rail. The higher burnup of fuel elements has only limited effects on the activity, thermal output, neutron and gamma radiation of the inventory. The analysis of inventory data shows that increased burnup has no serious influence on the container design. In the area of neutron shielding, toughening is required which, however, is possible by simply adding further polyethylene rods. An essential effect is the notable reduction of the transport volume from 155 transports in the past to 125 transports altogether now, with an increase of the medium burnup from 40 to 50 Gwd/tSM. That entails a reduction by 18% of the collective dose during normal operation, because above all the dose-intensive handling operations are reduced. The accident risk also decreases with increasing burnup, because the effect of a reduced transport volume leading to a lower accident frequency is stronger than that of inventory increase. Reprocessing abroad has only little influence of the transport distances to be covered altogether, and so on the normal loads and incident risks proportionate to the overall distance. With regard to the HAW glass forms, a slightly higher number of forms results from the lower loading of the glass with fission products prescribed in France. The number of HAW transports therefore rises from 16 to 19 (both by road and rail). The technical changes in the area of rail transport are characterized by higher speeds of goods trains and passenger trains. However, this does not yet apply to transports with heavy containers for which a speed limit of 100 km/h continues to be valid. (orig.) [de

  7. Fuels and materials testing capabilities in Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Baker, R.B.; Chastain, S.A.; Culley, G.E.; Ethridge, J.L.; Lovell, A.J.; Newland, D.J.; Pember, L.A.; Puigh, R.J.; Waltar, A.E.

    1989-01-01

    The Fast Flux Test Facility (FFTF) reactor, which started operating in 1982, is a 400 MWt sodium-cooled fast neutron reactor located in Hanford, Washington State, and operated by Westinghouse Hanford Co. under contract with U.S. Department of Energy. The reactor has a wide variety of functions for irradiation tests and special tests, and its major purpose is the irradiation of fuel and material for liquid metal reactor, nuclear reactor and space reactor projects. The review first describes major technical specifications and current conditions of the FFTF reactor. Then the plan for irradiation testing is outlined focusing on general features, fuel pin/assembly irradiation tests, and absorber irradiation tests. Assemblies for special tests include the material open test assembly (MOTA), fuel open test assembly (FOTA), closed loop in-reactor assembly (CLIRA), and other special fuel assemblies. An interim examination and maintenance cell (FFTF/IEM cell) and other hot cells are used for nondestructive/destructive tests and physical/mechanical properties test of material after irradiation. (N.K.)

  8. Comparative analysis of C A R A fuel element in argentinean PHWR Argentinas

    International Nuclear Information System (INIS)

    Brasnarof D; Marino, A. C; Florido, P. C; Daverio, H

    2006-01-01

    This paper presents an analysis of the thermal mechanical behaviour, fuel consumption and economical estimations of the CARA fuel element in the Atucha and Embalse nuclear power plants, compared with the present fuel performance.The present results show that the expect profit by the use of the CARA fuel element in our reactor guaranties the recovery of fund for its development. Likewise it reduces the number of spent fuel to be storage and treated [es

  9. The beginning of the LEU fuel elements manufacturing in the Chilean Commission of Nuclear Energy

    International Nuclear Information System (INIS)

    Contreras, H.; Chavez, J.C.; Marin, J.; Lisboa, J.; Olivares, L.; Jimenez, O.

    1998-01-01

    The U 3 Si 2 LEU fuel fabrication program at CCHEN has started with the assembly of four leaders fuel elements for the RECH-1 reactor. This activity has involved a stage of fuel plates qualification, to evaluate fabrication procedures and quality controls and quality assurance. The qualification extent was 50% of the fuel plates, equivalent to the number of plates required for the assembly of two fuel elements. (author)

  10. Store for radioactive waste and burnt-up fuel elements

    International Nuclear Information System (INIS)

    Spilker, H.; Rox, R.; Peschl, H.W.

    1985-01-01

    The invention concerns a concrete storage block in which there are several vertical storage and cooling ducts for radioactive waste and burnt-up fuel elements. The storage block is assembled from several square concrete blocks. Several vertical ducts are made in these. The square blocks are placed on a concrete baseplate. The aligned ducts of several square blocks placed above each other form storage and cooling ducts for tubular storage containers. An annular gap is left for cooling air between the outside wall of the storage containers and the inside wall of the storage and cooling ducts. (orig./HP) [de

  11. Fuel elements assembling for the DON project exponential experience

    International Nuclear Information System (INIS)

    Anca Abati, R. de

    1966-01-01

    It is described the fuel unit used in the DON exponential experience, the manufacturing installments and tools as well as the stages in the fabrication.These 74 elements contain each 19 cartridges loaded with synterized urania, uranium carbide and indium, gold, and manganese probes. They were arranged in calandria-like tubes and the process-tube. This last one containing a cooling liquid simulating the reactor organic. Besides being used in the DON reactor exponential experience they were used in critic essays by the substitution method in the French reactor AQUILON II. (Author) 6 refs

  12. Determination of the hydrogen content of fuel elements

    International Nuclear Information System (INIS)

    Soare, M.; Petriu, F.; Toma, V.

    1995-01-01

    A new method and apparatus are reported for determination of the total hydrogen content by measurements on as-manufactured fuel elements, heated at prescribed temperature values between 200 degrees C and 600 degrees C. The method is based on the catalytic oxidation of the organic compounds and transformation of the hydrogen in the equivalent water quantity which is analysed by a special infrared detector. Different types of measurements for determination of the hydrogen content from graphite coating, UO 2 pellets and filling gas are presented. Also, experimental observation regarding water release and graphite thermal decomposition kinetic are discussed. (author)

  13. Graphitic matrix materials for spherical HTR fuel elements

    International Nuclear Information System (INIS)

    Schulze, R.E.; Schulze, H.A.

    1981-02-01

    The report comprises the graphical documentation of irradiation results on graphitic matrix materials for spherical HTR fuel elements. The plotted results are based on data analyses of the series of exposures in the High Flux Reactor Petten (HFR). The documentation includes information about the changes of - the dimensions - the dynamic modulus of elasticity - the coefficient of thermal expansion of the materials after irradiation with fast neutrons. The irradiation experiments and the data analyses are part of the matrix development and irradiation programme, whose objective, realization and results obtained are summarized. (orig./IHOE) [de

  14. A combined wet/dry sipping cell for investigating failed triga fuel elements

    International Nuclear Information System (INIS)

    Boeck, H.; Gallhammer, H.; Hammer, J.; Israr, M.

    1987-08-01

    A sipping cell to detect failed triga fuel has been designed and constructed at the Atominstitut. The cell allows both wet- and dry sipping of one single standard triga fuel element. In the dry sipping method the fuel element may be electrically heated up to a maximum temperature of about 300 0 C to allow the detection of temperature dependent fission product release from the fuel element. 20 figs., 1 tab. (Author)

  15. Irradiation test plan of the simulated DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Ki Kwang; Yang, M. S.; Kim, B. K. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-11-01

    Simulated DUPIC fuel had been irradiated from Aug. 4, 1999 to Oct. 4 1999, in order to produce the data of its in-core behavior, to verify the design of DUPIC non-instrumented capsule developed, and to ensure the irradiation requirements of DUPIC fuel at HANARO. The welding process was certified for manufacturing the mini-element, and simulated DUPIC fuel rods were manufactured with simulated DUPIC pellets through examination and test. The non-instrumented capsule for a irradiation test of DUPIC fuel has been designed and manufactured referring to the design specification of the HANARO fuel. This is to be the design basis of the instrumented capsule under consideration. The verification experiment, whether the capsule loaded in the OR4 hole meet the HANARO requirements under the normal operation condition, as well as the structural analysis was carried out. The items for this experiment were the pressure drop test, vibration test, integrity test, et. al. It was noted that each experimental result meet the HANARO operational requirements. For the safety analysis of the DUPIC non-instrumented capsule loaded in the HANARO core, the nuclear/mechanical compatibility, thermodynamic compatibility, integrity analysis of the irradiation samples according to the reactor condition as well as the safety analysis of the HANARO were performed. Besides, the core reactivity effects were discussed during the irradiation test of the DUPIC capsule. The average power of each fuel rod in the DUPIC capsule was calculated, and maximal linear power reflecting the axial peaking power factor from the MCNP results was evaluated. From these calculation results, the HANARO core safety was evaluated. At the end of this report, similar overseas cases were introduced. 9 refs., 16 figs., 10 tabs. (Author)

  16. Spent Fuel Test - Climax data acquisition system operations manual

    International Nuclear Information System (INIS)

    Nyholm, R.A.

    1983-01-01

    The Spent Fuel Test-Climax (SFT-C) is a test of the retrievable, deep geologic storage of commercially generated, spent nuclear reactor fuel in granite rock. Eleven spent fuel assemblies, together with 6 electrical simulators and 20 guard heaters, are emplaced 420 m below the surface in the Climax granite at the US Department of Energy Nevada Test Site. On June 2, 1978, Lawrence Livermore National Laboratory (LLNL) secured funding for the SFT-C, and completed spent fuel emplacement May 28, 1980. The multi-year duration test is located in a remote area and is unattended much of the time. An extensive array of radiological safety and geotechnical instrumentation is deployed to monitor the test performance. A dual minicomputer-based data acquisition system (DAS) collects and processes data from more than 900 analog instruments. This report documents the software element of the LLNL developed SFT-C Data Acquisition System. It defines the operating system and hardware interface configurations, the special applications software and data structures, and support software

  17. Spent fuel test. Climax data acquisition system integration report

    International Nuclear Information System (INIS)

    Nyholm, R.A.; Brough, W.G.; Rector, N.L.

    1982-06-01

    The Spent Fuel Test - Climax (SFT-C) is a test of the retrievable, deep geologic storage of commercially generated, spent nuclear reactor fuel in granitic rock. Eleven spent fuel assemblies, together with 6 electrical simulators and 20 guard heaters, are emplaced 420 m below the surface in the Climax granite at the Nevada Test Site. On June 2, 1978, Lawrence Livermore National Laboratory (LLNL) secured funding for the SFT-C, and completed spent fuel emplacement May 28, 1980. This multi-year duration test is located in a remote area and is unattended much of the time. An extensive array of radiological safety and geotechnical instrumentation is deployed to monitor the test performance. A dual minicomputer-based data acquisition system collects and processes data from more than 900 analog instruments. This report documents the design and functions of the hardware and software elements of the Data Acquisition System and describes the supporting facilities which include environmental enclosures, heating/air-conditioning/humidity systems, power distribution systems, fire suppression systems, remote terminal stations, telephone/modem communications, and workshop areas. 9 figures

  18. Modelling of LOCA Tests with the BISON Fuel Performance Code

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Richard L [Idaho National Laboratory; Pastore, Giovanni [Idaho National Laboratory; Novascone, Stephen Rhead [Idaho National Laboratory; Spencer, Benjamin Whiting [Idaho National Laboratory; Hales, Jason Dean [Idaho National Laboratory

    2016-05-01

    BISON is a modern finite-element based, multidimensional nuclear fuel performance code that is under development at Idaho National Laboratory (USA). Recent advances of BISON include the extension of the code to the analysis of LWR fuel rod behaviour during loss-of-coolant accidents (LOCAs). In this work, BISON models for the phenomena relevant to LWR cladding behaviour during LOCAs are described, followed by presentation of code results for the simulation of LOCA tests. Analysed experiments include separate effects tests of cladding ballooning and burst, as well as the Halden IFA-650.2 fuel rod test. Two-dimensional modelling of the experiments is performed, and calculations are compared to available experimental data. Comparisons include cladding burst pressure and temperature in separate effects tests, as well as the evolution of fuel rod inner pressure during ballooning and time to cladding burst. Furthermore, BISON three-dimensional simulations of separate effects tests are performed, which demonstrate the capability to reproduce the effect of azimuthal temperature variations in the cladding. The work has been carried out in the frame of the collaboration between Idaho National Laboratory and Halden Reactor Project, and the IAEA Coordinated Research Project FUMAC.

  19. Fuel tank integrity research : fuel tank analyses and test plans

    Science.gov (United States)

    2013-04-15

    The Federal Railroad Administrations Office of Research : and Development is conducting research into fuel tank : crashworthiness. Fuel tank research is being performed to : determine strategies for increasing the fuel tank impact : resistance to ...

  20. Facilities for post-irradiation examination of experimental fuel elements at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Mizzan, E.; Chenier, R.J.

    1979-10-01

    Expansion of post-irradiation facilities at the Chalk River Nuclear Laboratories and steady improvement in hot-cell techniques and equipment are providing more support to Canada's reactor fuel development program. The hot-cell facility primarily used for examination of experimental fuels averages a quarterly throughput of 40 elements and 110 metallographic specimens. New developments in ultrasonic testing, metallographic sample preparation, active storage, active waste filtration, and fissile accountability are coming into use to increase the efficiency and safety of hot-cell operations. (author)

  1. Fully Fueled TACOM Vehicle Storage Test Program.

    Science.gov (United States)

    1981-12-01

    AFLRL with a water bottom were tested as control samples. This fuel sample had been previously innoculated with a culture of Cladosporium resinae and was...turbid, light pink color * Containing active growth of Cladosporium resinae ** Sample was shaken and allowed to stand for 24 hours prior to obtaining

  2. Oxide fuel element and blanket element development programs. Quarterly progress report, January-February-March, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Fuel pin profilometry of some 9% burnup F20-F5 pins showed small diameter increases at the fuel-insulator interface at the top of the core. Neither these secondary peaks nor the larger diameter increases near the core midplane exhibited any relationship to the local presence of once-molten fuel in any F20 fuel pin. Augmented safety analysis computations for experiment AB-1 (additional transients suggested by HEDL) showed that cumulative damage fractions from the additional transients were in every case less than 10/sup -4/. Mechanical tests have been performed that confirm previous computations for the removal end plugs to be used in a characterizer subassembly for AB-1. The resulting pin removal forces are well within the design envelope.

  3. Oxide fuel element and blanket element development programs. Quarterly progress report, January-February-March, 1979

    International Nuclear Information System (INIS)

    1979-01-01

    Fuel pin profilometry of some 9% burnup F20-F5 pins showed small diameter increases at the fuel-insulator interface at the top of the core. Neither these secondary peaks nor the larger diameter increases near the core midplane exhibited any relationship to the local presence of once-molten fuel in any F20 fuel pin. Augmented safety analysis computations for experiment AB-1 (additional transients suggested by HEDL) showed that cumulative damage fractions from the additional transients were in every case less than 10 -4 . Mechanical tests have been performed that confirm previous computations for the removal end plugs to be used in a characterizer subassembly for AB-1. The resulting pin removal forces are well within the design envelope

  4. Volatile Elements Retention During Injection Casting of Metallic Fuel Slug for a Recycling Fast Reactor

    International Nuclear Information System (INIS)

    Kim, Jong-Hwan; Song, Hoon; Kim, Hyung-Tae; Oh, Seok-Jin; Kuk, Seoung-Woo; Keum, Chang-Woon; Lee, Jung-Won; Kim, Ki-Hwan; Lee, Chan-Bock

    2015-01-01

    The as-cast fuels prepared by injection casting were sound and the internal integrities were found to be satisfactory through gamma-ray radiography. U and Zr were uniform throughout the matrix of the slug, and the impurities, i.e., oxygen, carbon, and nitrogen, satisfied the specification of the total impurities of less than 2000 ppm. The losses of the volatile Mn were effectively controlled using argon over pressures, and dynamic pumping for a period of time before injection showed no detrimental effect on the Mn loss by vaporization. This result suggests that volatile minor actinide-bearing fuels for SFRs can be prepared by improved injection methods. A practical process of metallic fuel fabrication for an SFR needs to be cost efficient, suitable for remote operation, and capable of mass production while reducing the amount of radioactive waste. Injection casting was chosen as the most promising technique, and this technique has been applied to fuel slug fabrication for the Experimental Breeder Reactor-II (EBR-II) driver and the Fast Flux Test Facility (FFTF) fuel pins. Because of the simplistic nature of the process and equipment, compared to other processes examined, this process has been successfully used in a remote operation environment for fueling of the EBR-II reactor. In this study, several injection casting methods were applied in order to prepare metallic fuel for an fast reactor that control the transport of volatile elements during fuel melting and casting. Mn was selected as a surrogate alloy since it possesses a total vapor pressure equivalent to that of a volatile minor actinide-bearing fuel. U.10Zr and U.10Zr.5Mn (wt%) metallic fuels were injection cast under various casting conditions and their soundness was characterized

  5. Analytical assessment for stress corrosion fatigue of CANDU fuel elements under load following conditions

    International Nuclear Information System (INIS)

    Horhoianu, Grigore; Ionescu, Drags; Pauna, Eduard

    2012-01-01

    When nuclear power reactors are operated in a load following (LF) mode, the nuclear fuel may be subjected to step changes in power on weekly, daily, or even hourly basis, depending on the grid's needs. Two load following tests performed in TRIGA Research Reactor of Institute for Nuclear Research (INR) Pitesti were simulated with finite elements computer codes in order to evaluate Stress Corrosion Fatigue (SCF) of the sheath arising from expansion and contraction of the pellets in the corrosive environment. The 3D finite element analyses show that the cyclic strains give highly multiaxial stresses in the sheath at ridge region. This paper summarizes the results of the analytical assessment for SCF and their relation to CANDU fuel performance in LF tests conditions. (orig.)

  6. Parametric Sensitivity Tests- European PEM Fuel Cell Stack Test Procedures

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2014-01-01

    performed based on test procedures proposed by a European project, Stack-Test. The sensitivity of a Nafion-based low temperature PEMFC stack’s performance to parametric changes was the main objective of the tests. Four crucial parameters for fuel cell operation were chosen; relative humidity, temperature......, pressure, and stoichiometry at varying current density. Furthermore, procedures for polarization curve recording were also tested both in ascending and descending current directions....

  7. The possibility of prediction of the lifetime of metallic nuclear fuel elements in a radiation field of thermal nuclear reactors

    International Nuclear Information System (INIS)

    Livne, Z.; Ramon, P.

    1979-01-01

    An attempt is made to clarify the possible causes of failure of irradiated nuclear fuel cartridges, in order to determine the parameters which govern the lifetime of the fuel and a way to predict it. Measurements of mechanical properties of irradiated uranium metal and cladding, can serve as a basis for failure prediction. Testing irradiated fuel elements by bending till fracture enables to evaluate the integral character of the fuel element, along the cross-section, taking into account the difference in brittleness of several zones. It is likely that the bending test, which indicates the behaviour of a stress-strain function, is a faster and more reliable way to determine the mechanical properties of irradiated nuclear fuel. Since the stresses applied to the cladding during irradiation are locally hydrostatic, its postirradiation blow-up provide information on strength and elasticity variations of the irradiated cladding material. (B.G.)

  8. Development of the manufacture and process for DUPIC fuel elements; development of the quality evaluation techniques for end cap welds of DUPIC fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Tae; Choi, Myong Seon; Yang, Hyun Tae; Kim, Dong Gyun; Park, Jin Seok; Kim, Jin Ho [Yeungnam University, Kyongsan (Korea)

    2002-04-01

    The objective of this research is to set up the quality evaluation techniques for end cap welds of DUPIC fuel element. High temperature corrosion test and the SCC test for Zircaloy-4 were performed, and also the possibility of the ultrasonic test technique was verified for the quality evaluation and control of the laser welds in the DUPIC fuel rod end cap. From the evaluation of corrosion properties with measuring the weight gain and observing oxide film of the specimen that had been in the circumstance of steam(400 .deg. C, 1,500 psi) by max. 70 days later, the weight gain of the welded specimens was larger than original tube and the weight increasing rate increased with the exposed days. For the Development of techniques for ultrasonic test, semi-auto ultrasonic test system has been made based on immersion pulse-echo technique using spherically concentrated ultrasonic beam. Subsequently, developed ultrasonic test technique is quite sensible to shape of welds in the inside and outside of tube as well as crack, undercut and expulsion, and also this ultrasonic test, together with metallurgical fracture test, has good reliance as enough to be used for control method of welding process. 43 refs., 47 figs., 8 tabs. (Author)

  9. Behaviour of HTGR coated particles and fuel elements under normal and accident conditions

    International Nuclear Information System (INIS)

    Deryugin, A.I.; Koshcheev, K.N.; Momot, G.V.; Khrulyov, A.A.; Chernikov, A.S.

    1991-01-01

    Main results of testing HTGR coated particles and spheric fuel elements developed in Scientific and Industrial Association ''Lutch'' under conditions of higher level of energy release and temperature than those designed are given in the report. The summarized data on tightness and characteristic defects change, on gas and solid fission products release under model accident conditions before, during and after radiation are presented. (author). 6 refs, 9 figs, 1 tab

  10. Modelling of pressurized water reactor fuel, rod time dependent radial heat flow with boundary element method

    International Nuclear Information System (INIS)

    Sarler, B.

    1987-01-01

    The basic principles of the boundary element method numerical treatment of the radial flow heat diffusion equation are presented. The algorithm copes the time dependent Dirichlet and Neumann boundary conditions, temperature dependent material properties and regions from different materials in thermal contact. It is verified on the several analytically obtained test cases. The developed method is used for the modelling of unsteady radial heat flow in pressurized water reactor fuel rod. (author)

  11. Iowa Central Quality Fuel Testing Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Heach, Don; Bidieman, Julaine

    2013-09-30

    The objective of this project is to finalize the creation of an independent quality fuel testing laboratory on the campus of Iowa Central Community College in Fort Dodge, Iowa that shall provide the exploding biofuels industry a timely and cost-effective centrally located laboratory to complete all state and federal fuel and related tests that are required. The recipient shall work with various state regulatory agencies, biofuel companies and state and national industry associations to ensure that training and testing needs of their members and American consumers are met. The recipient shall work with the Iowa Department of Ag and Land Stewardship on the development of an Iowa Biofuel Quality Standard along with the Development of a standard that can be used throughout industry.

  12. Fuel temperature prediction during high burnup HTGR fuel irradiation test. US-JAERI irradiation test for HTGR fuel

    International Nuclear Information System (INIS)

    Sawa, Kazuhiro; Fukuda, Kousaku; Acharya, R.

    1995-01-01

    This report describes the preirradiation thermal analysis of the HRB-22 capsule designed for an irradiation test in a removable beryllium position of the High Flux Isotope Reactor(HFIR) at Oak Ridge National Laboratory. This test is being carried out under Annex 2 of the Arrangement between the U.S. Department of Energy and the Japan Atomic Energy Research Institute on Cooperation in Research and Development regarding High-Temperature Gas-cooled Reactors. The fuel used in the test is an advanced type. The advanced fuel was designed aiming at burnup of about 10%FIMA(% fissions per initial metallic atom) which was higher than that of the first charge fuel for the High Temperature Engineering Test Reactor(HTTR) and was produced in Japan. CACA-2, a heavy isotope and fission product concentration calculational code for experimental irradiation capsules, was used to determine time-dependent fission power for the fuel compacts. The Heat Engineering and Transfer in Nine Geometries(HEATING) code was used to solve the steady-state heat conduction problem. The diameters of the graphite fuel body, which contains the fuel compacts, and of the primary pressure vessel were determined such that the requirements of running the fuel compacts at an average temperature less than 1250degC and of not exceeding a maximum fuel temperature of 1350degC were met throughout the four cycles of irradiation. The detail design of the capsule was carried out based on this analysis. (author)

  13. Nonlinear transient deformation of LMFBR fuel elements under impulsive loading

    International Nuclear Information System (INIS)

    Liebe, R.

    1975-01-01

    Subject of this paper is the elastoplastic transient behavior of one subassembly under given space- and time-dependent pressure loading. The interaction of several colliding fuel elements including coolant dynamics is briefly discussed. Theoretical models: description is given of physical mechanisms (bending of the slender subassembly duct, flattening of the thin-walled hexagonal cross section, pin-bundle and coolant action). Discrete structural models are compared and applied to the coupled fluid-structure problem. The use of a special beam element with lumped masses and discrete elastoplastic hinges with concentrated moments allows the effective simulation of the structure. An incompressible Eulerian nonstationary flow model including friction is used with a 4th order variable step Runge-Kutta method. Static and impact experiments: description is given of a single subassembly experimental program on a special droptower facility which is used for static and impact loading of 1:1 SNR-300 type fuel element models. Also described is a load and impact controlling device utilizing honeycomb crushing material which allows to produce desired pressure pulses (rise time, peak load, impulse, pulse shape). Forces, accelerations and strains are measured at the subassembly; its deformation is filmed with a high-speed camera and recorded by specially designed photodiode-arrays. Results and conclusions: good agreement is observed between experimental and theoretical response data. Parameter studies confirmed the significant role of duct flexure, local cross section flattening, material ductility and strain-hardening. The stiffening effects of the combined deformation of pin-bundle and spacer-grids is very strong, and most of the energy is dissipated by localized yielding of the hexcan

  14. Accident situations tests HTR fuel with the device Kufa

    International Nuclear Information System (INIS)

    Kellerbauer, A. I.; Freis, D.

    2010-01-01

    The ceramic and ceramic-like coating materials in modern high-temperature reactor fuel are designed to ensure mechanical stability and retention of fission products under normal and transient conditions, regardless of the radiation damage sustained in-pile. In hypothetical depressurization and loss-of-forced-circulation (D LOFC) accidents, fuel elements of modular high-temperate reactors are exposed to temperatures several hundred degrees higher than during normal operation, causing increased thermo-mechanical stress on the coating layers. At the Institute for Transuranium Elements of the European Commission, a vigorous experimental program is being pursued with the aim of characterizing the performance of irradiated HTR fuel under such accident conditions. A cold finger device (Kufa), operational in ITUs hot cells since 2006, has been used to perform heating experiments on eight irradiated HTR fuel pebbles from the AVR experimental reactor and from dedicated irradiation campaigns at the High-Flux Reactor in Petten, the Netherlands. Gaseous fission products are collected in a cryogenic charcoal trap, while volatiles,are plated out on a water-cooled condensate plate. A quantitative measurement of the release is obtained by gamma spectroscopy. We highlight experimental results from the Kufa testing as well as the on-going development of new experimental facilities. (Author) 9 refs.

  15. Fuel element failure detection experiments, evaluation of the experiments at KNK II/1 (Intermediate Report)

    CERN Document Server

    Bruetsch, D

    1983-01-01

    In the frame of the fuel element failure detection experiments at KNK II with its first core the measurement devices of INTERATOM were taken into operation in August 1981 and were in operation almost continuously. Since the start-up until the end of the first KNK II core operation plugs with different fuel test areas were inserted in order to test the efficiency of the different measuring devices. The experimental results determined during this test phase and the gained experiences are described in this report and valuated. All three measuring techniques (Xenon adsorption line XAS, gas-chromatograph GC and precipitator PIT) could fulfil the expectations concerning their susceptibility. For XAS and GC the nuclide specific sensitivities as determined during the preliminary tests could be confirmed. For PIT the influences of different parameters on the signal yield could be determined. The sensitivity of the device could not be measured due to a missing reference measuring point.

  16. Experimental evaluation of different mixing promoter for nuclear fuel element by means of a new thermal tracing technique

    International Nuclear Information System (INIS)

    Silin, Nicolas; Juanico, Luis; Delmastro, Dario

    2004-01-01

    In this work a new experimental method is used to experimentally evaluate the performance of different appendages promoting the turbulent mixing between the coupled subchannels of nuclear fuel elements.The method used will be introduced in another presentation and consists in the generation and measurement of small thermal traces in the refrigerating water flow between the fuel rods.Because it is suitable for heterogeneous and compact subchannels (as Argentinean fuels) with high water flows in simple and affordable tests at atmospheric pressure, this new method is specially well suited for the design of fuel elements, while it offers advantages over other methods of mixing measurement.The experiments carried out on a small test section proved that the buttons brazed to the fuel rods (similar to the 'turbulence promoters' of the Canflex fuel) had an excellent thermohydraulic performance as compared to different mixing vane designs studied.The thermal traces method developed has shown its potential as a thermohydraulic design tool for the development of advanced nuclear fuels, that eventually incorporate mixing promoter elements. In the case of CARA, and as it includes spacer grids, it could be possible to use them to incorporate these elements without the need of brazing them to the rods (as is the case in Canflex), and therefore without penalizing its integrity [es

  17. Tension tests of concrete containment wall elements

    International Nuclear Information System (INIS)

    Schultz, D.M.; Julien, J.T.; Russel, H.G.

    1984-01-01

    Tension tests of concrete containment wall elements were conducted as part of a three-phase research program sponsored by the Electric Power Research Institute (EPRI). The objective of the EPRI experimental/analytical program is twofold. The first objective is to provide the utility industry with a test-verified analytical method for making realistic estimates of actual capacities of reinforced and prestressed concrete containments under internal over-pressurization from postulated degraded core accidents. The second objective is to determine qualitative and quantitative leak rate characteristics of typical containment cross-sections with and without penetrations. This paper covers the experimental portion to the EPRI program. The testing program for Phase 1 included eight large-scale specimens representing elements from the wall of a containment. Each specimen was 60-in (1525-mm) square, 24-in (610-mm) thick, and had full-size reinforcing bars. Six specimens were representative of prototypical reinforced concrete containment designs. The remaining two specimens represented prototypical prestressed containment designs. Various reinforcement configurations and loading arrangements resulted in data that permit comparisons of the effects of controlled variables on cracking and subsequent concrete/reinforcement/liner interaction in containment elements. Subtle differences, due to variations in reinforcement patterns and load applications among the eight specimens, are being used to benchmark the codes being developed in the analytical portion of the EPRI program. Phases 2 and 3 of the test program will examine leak rate characteristics and failure mechanisms at penetrations and structural discontinuities. (orig.)

  18. Device for replacing the rods of a fuel element of a nuclear reactor

    International Nuclear Information System (INIS)

    Nissel, B.; Kybranz, R.; Will, R.

    1977-01-01

    In order to be able to replace several separate rods (fuel rods or absorber rods), in a fuel element, a special grab is introduced, which consists of several individual gripping devices and is operated by spring loading. (TK) [de

  19. Two gamma-ray detectors method for examination of fuel elements

    International Nuclear Information System (INIS)

    Kristof, E.; Pregl, G.

    1979-01-01

    Th initial experiment and method for the nondestructive determination of a fuel element burnup is given. The method eliminates the error which originates from the unknown local dependency of the attenuation coefficient for gamma rays in fuel. (author)

  20. Design verification of the CANFLEX fuel bundle - quality assurance requirements for mechanical flow testing

    International Nuclear Information System (INIS)

    Alavi, P.; Oldaker, I.E.; Chung, C.H.; Suk, H.C.

    1997-01-01

    As part of the design verification program for the new fuel bundle, a series of out-reactor tests was conducted on the CANFLEX 43-element fuel bundle design. These tests simulated current CANDU 6 reactor normal operating conditions of flow, temperature and pressure. This paper describes the Quality Assurance (QA) Program implemented for the tests that were run at the testing laboratories of Atomic Energy of Canada Limited (AECL) and Korea Atomic energy Research Institute (KAERI). (author)

  1. Preparation results for lifetime test of conversion LEU fuel in plutonium production reactors

    International Nuclear Information System (INIS)

    Vatulin, A.; Stetskiy, Yu.; Kukharkin, N.; Kalougin, A.; Gavrilov, P.; Ivanov, A.

    1999-01-01

    The program of converting Russian production reactors for the purpose to stop their plutonium fabrication is currently in progress. The program also provides for operation of these reactors under the conversion mode with using of low-enriched fuel (LEU). LEU fuel elements were developed and activities related to their preparation for reactor tests were carried out. (author)

  2. Behaviour of short-lived iodines in operating UO2 fuel elements

    International Nuclear Information System (INIS)

    Lipsett, J.J.; Hastings, I.J.; Hunt, C.E.L.

    1984-11-01

    Sweep gas experiments have been done to determine the behaviour of short-lived fission products within operating UO 2 fuel elements at linear powers of 45, 54, and 60 KW/m, and to burnups of 70, 80, and 50 MWh/kgU respectively. Although radioiodine transport was not observed directly during normal operation, equilibrium gap inventories for I-131 were deduced from the shutdown decay behaviour of the fission gases. These inventories were a strong function of fuel power and ranged from 10 GBq (0.27 Ci) to 100 GBq (2.7 Ci) over the range tested. We conclude that the iodine inventory was adsorbed onto the fuel and/or sheath surfaces with a volatile fraction of less than 10 -2 and a charcoal-filter-penetrating fraction of less than 2x10 -4

  3. CANFLEX fuel bundle cross-flow endurance test (test report)

    International Nuclear Information System (INIS)

    Hong, Sung Deok; Chung, C. H.; Chang, S. K.; Kim, B. D.

    1997-04-01

    As part of the normal refuelling sequence of CANDU nuclear reactor, both new and irradiated bundles can be parked in the cross-flow region of the liner tubes. This situation occurs normally for a few minutes. The fuel bundle which is subjected to the cross-flow should be capable of withstanding the consequences of cross flow for normal periods, and maintain its mechanical integrity. The cross-flow endurance test was conducted for CANFLEX bundle, latest developed nuclear fuel, at CANDU-Hot Test Loop. The test was carried out during 4 hours at the inlet cross-flow region. After the test, the bundle successfully met all acceptance criteria after the 4 hours cross-flow test. (author). 2 refs., 3 tabs

  4. CANFLEX fuel bundle cross-flow endurance test (test report)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Deok; Chung, C. H.; Chang, S. K.; Kim, B. D.

    1997-04-01

    As part of the normal refuelling sequence of CANDU nuclear reactor, both new and irradiated bundles can be parked in the cross-flow region of the liner tubes. This situation occurs normally for a few minutes. The fuel bundle which is subjected to the cross-flow should be capable of withstanding the consequences of cross flow for normal periods, and maintain its mechanical integrity. The cross-flow endurance test was conducted for CANFLEX bundle, latest developed nuclear fuel, at CANDU-Hot Test Loop. The test was carried out during 4 hours at the inlet cross-flow region. After the test, the bundle successfully met all acceptance criteria after the 4 hours cross-flow test. (author). 2 refs., 3 tabs.

  5. Nondestructive analysis of uranium mass in MTR fuel elements

    International Nuclear Information System (INIS)

    Coelho, P.R.P.; Holland, L.

    1982-01-01

    Results of uranium mass non destructive analysis by the pulsed source technique, are presented. The method used is that of relate measurement, being that the uranium mass is determined by the measurement of the delayed neutron production, emited after fissions, produced by sample irradiated with pulses of 14 MeV neutrons. Three types of samples were analysed: metallic uranium disks, sintered pellets of uranium dioxide and plates of uranium-alluminium alloys, surrounded by an alluminium coat. Those plates simules the fuel elements for MTR type reactor. The result of the measurements are reproducible in the range of 1.6 to 3.9%. The errors in a specified measure depends on the form, size and mass of the sample. (E.G.) [pt

  6. Post irradiation examination on test fuel pins for PWR

    International Nuclear Information System (INIS)

    Fogaca Filho, N.; Ambrozio Filho, F.

    1981-01-01

    Certain aspects of irradiation technology on test fuel pins for PWR, are studied. The results of post irradiation tests, performed on test fuel pins in hot cells, are presented. The results of the tests permit an evaluation of the effects of irradiation on the fuel and cladding of the pin. (Author) [pt

  7. CANDU RU fuel manufacturing basic technology development and advanced fuel verification tests

    International Nuclear Information System (INIS)

    Chung, Chang Hwan; Chang, S.K.; Hong, S.D.

    1999-04-01

    A PHWR advanced fuel named the CANFLEX fuel has been developed through a KAERI/AECL joint Program. The KAERI made fuel bundle was tested at the KAERI Hot Test Loop for the performance verification of the bundle design. The major test activities were the fuel bundle cross-flow test, the endurance fretting/vibration test, the freon CHF test, and the fuel bundle heat-up test. KAERI also has developing a more advanced PHWR fuel, the CANFLEX-RU fuel, using recovered uranium to extend fuel burn-up in the CANDU reactors. For the purpose of proving safety of the RU handling techniques and appraising feasibility of the CANFLEX-RU fuel fabrication in near future, a physical, chemical and radiological characterization of the RU powder and pellets was performed. (author). 54 refs., 46 tabs., 62 figs

  8. CANDU RU fuel manufacturing basic technology development and advanced fuel verification tests

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hwan; Chang, S.K.; Hong, S.D. [and others

    1999-04-01

    A PHWR advanced fuel named the CANFLEX fuel has been developed through a KAERI/AECL joint Program. The KAERI made fuel bundle was tested at the KAERI Hot Test Loop for the performance verification of the bundle design. The major test activities were the fuel bundle cross-flow test, the endurance fretting/vibration test, the freon CHF test, and the fuel bundle heat-up test. KAERI also has developing a more advanced PHWR fuel, the CANFLEX-RU fuel, using recovered uranium to extend fuel burn-up in the CANDU reactors. For the purpose of proving safety of the RU handling techniques and appraising feasibility of the CANFLEX-RU fuel fabrication in near future, a physical, chemical and radiological characterization of the RU powder and pellets was performed. (author). 54 refs., 46 tabs., 62 figs.

  9. Investigation on laser welding characteristics for appendage of bearing pads of nuclear fuel element

    International Nuclear Information System (INIS)

    Kim, S. S.; Kim, W. K.; Park, C. H.; Ko, J. H.; Lee, J. W.; Yang, M. S.

    2001-01-01

    In CANDU nuclear fuel manufacturing the brazing technology has been adopted conventionally to attach the bearing pads of nuclear fuel elements. However, in order to meet good performance of nuclear fuel and improved working efficiency, we started developing the laser welding technology for attachments of the bearing pads. Since the YAG laser can be suitable for small parts and transmit the beam through the optical fiber, the process is corresponding to mass-production with working shops. Making the most of this feature, we have developed the laser welding for appendage of the bearing pads of nuclear fuel elements, and has studied on the laser welding characterisitcs of appendages for nuclear fuel element

  10. Development of Failed Fuel Detection System for HANARO Fuel Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sung Ho; Sim, Bong Sik; Park, Su Ki; Chi, Dae Young; Park, Kook Nam; Lee, Chung Young; Lee, Jong Min; Kim, Hark Rho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-10-15

    FTL (Fuel Test Loop) is a test facility which could conduct fuel irradiation test at HANARO reactor. The FFDS (Failed Fuel Detection System) is installed in the FTL for detection of test fuel failure. The signals from the FFDS are interconnected with HANARO reactor protection system via FTL protection panels for reactor trip. In this paper, a design, manufacturing and functional test results of the FFDS are introduced.

  11. Fuel dynamics loss-of-flow test L3. Final report

    International Nuclear Information System (INIS)

    Fischer, A.K.; Lo, R.K.; Barts, E.W.

    1976-06-01

    The behavior of FTR-type, mixed-oxide, preirradiated, ''intermediate-power-structure'' fuel during a simulation of an FTR loss-of-flow accident was studied in the Mark-IIA integral TREAT loop. Analysis of the data reported here leads to a postulated scenario (sequence and timing) of events in the test. This scenario is presented, together with the calculated timing of events obtained by use of the SAS code. The initial fuel motion, starting during the preheat phase, consisted of coherent motion of the entire intact fuel bundle toward the pump. Incoherence developed as temperature rose. The fuel motion was mostly upward, and the greatest was in the top third of the fuel column. Fuel fragments formed against the pump side of the fluted tube near the original fuel midplane. A penetration of fluted tube occurred. A sudden voiding of the central region of the fuel column occurred at 29.75 s and was largely completed within 150 ms. The lower steel blockage of the fuel elements occurred in the vicinity of the lower insulator pellets. The upper steel blockage just above the tops of the original fuel pins appeared to have channels through it. Cladding and spacer wires melted away in the fuel section. Fuel pellets were only evident at and above the top and at the bottom of the original fuel column, where a large mass of melted fuel was present. Over the length of the fuel column, most of the fluted tube had melted away

  12. Fuel elements for high temperature reactors having special suitability for reuse of the structural graphite

    International Nuclear Information System (INIS)

    Huschka, H.; Herrmann, F.J.

    1976-01-01

    There are prepared fuel elements for high temperature reactors from which the fuel zone can be removed from the structural graphite after the burnup of the fissile material has taken place so that the fuel element can be filled with new fuel and again placed in the reactor by having the strength of the matrix in the fuel zone sufficient for binding the embedded coated fuel particles but substantially less than the strength of the structural graphite whereby by the action of force it can be easily split up without destroying the particles

  13. Test Results of PBMR Fuel Spheres

    International Nuclear Information System (INIS)

    Koshcheev, Konstantin; Diakov, Alexander; Beltyukov, Igor; Barybin, Andrey; Chernetsov, Mikhail

    2014-01-01

    Results of pre-irradiation testing of fuel spheres (FS) and coated particles (CP) manufactured by PBMR SOC (Republic of South Africa) are described. The stable high quality level of major characteristics (dimensions, CP coating structure, uranium-235 contamination of the FS matrix graphite and the outer PyC layer of the CP coating) are shown. Results of a methodical irradiation test of two FS in helium and neon medium at temperatures of 800 to 1300 °C with simultaneous determination of release-to-birth ratios for major gaseous fission products (GFP) are described. (author)

  14. Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

    2012-03-01

    The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

  15. TESTING AND ACCEPTANCE OF FUEL PLATES FOR RERTR FUEL DEVELOPMENT EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Wight; G.A. Moore; S.C. Taylor

    2008-10-01

    This paper discusses how candidate fuel plates for RERTR Fuel Development experiments are examined and tested for acceptance prior to reactor insertion. These tests include destructive and nondestructive examinations (DE and NDE). The DE includes blister annealing for dispersion fuel plates, bend testing of adjacent cladding, and microscopic examination of archive fuel plates. The NDE includes Ultrasonic (UT) scanning and radiography. UT tests include an ultrasonic scan for areas of “debonds” and a high frequency ultrasonic scan to determine the "minimum cladding" over the fuel. Radiography inspections include identifying fuel outside of the maximum fuel zone and measurements and calculations for fuel density. Details of each test are provided and acceptance criteria are defined. These tests help to provide a high level of confidence the fuel plate will perform in the reactor without a breach in the cladding.

  16. Spent Fuel Drying System Test Results (Dry-Run in Preparation for Run 8)

    International Nuclear Information System (INIS)

    Oliver, B.M.; Klinger, G.S.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

    1999-01-01

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basin have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL)(a)on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of a test ''dry-run'' conducted prior to the eighth and last of those tests, which was conducted on an N-Reactor outer fuel element removed from K-West canister6513U. The system used for the dry-run test was the Whole Element Furnace Testing System, described in Section 2.0, located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodologies are given in Section 3.0. The experimental results are provided in Section 4.0 and discussed Section 5.0

  17. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    Energy Technology Data Exchange (ETDEWEB)

    SCHWINKENDORF, K.N.

    2006-05-12

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements. The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprising two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with ''green'' (fresh) fuel and one with spent fuel. Both the green and spent fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, 3 green fuel and 4 spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements can

  18. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE and AFTER IRRADIATION

    International Nuclear Information System (INIS)

    SCHWINKENDORF, K.N.

    2006-01-01

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements. The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprising two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with ''green'' (fresh) fuel and one with spent fuel. Both the green and spent fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k eff = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, 3 green fuel and 4 spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements can supply useful

  19. Annual report of the working group 'fuel pin and fuel element mechanics' of the Institut fuer Reaktortechnik (IRT) of the Technische Hochschule Darmstadt for the Fast Breeder Project

    International Nuclear Information System (INIS)

    Fabian, H.; Humbach, W.; Lassmann, K.; Mueller, J.J.; Preusser, T.; Schmelz, K.

    1978-09-01

    This report comprises six single lectures given at an information meeting organized by the Institut fuer Reaktortechnik der Technischen Hochschule Darmstadt (IRT) in Darmstadt on April 24, 1978. The lectures are an account of work performed at IRT on the mechanics of fuel pins and fuel elements and supported by the Fast Breeder Project (PSB) of KfK. These activities can be broken down into studies of the integral fuel pin (URANUS computer code) and into multidimensional studies of the fuel pin using the finite-element method (FINEL and ZIDRIG computer codes). Moreover, a report is presented of the status of the test facility for simulation of out-of-pile cladding tube loads and of the IRT project on the simulation and analysis of radiation damage. (orig./GL) [de

  20. Fuel element for nuclear reactors, preferably for sodium-cooled fast breeder reactors

    International Nuclear Information System (INIS)

    Babiak, P.

    1985-01-01

    All spacers for fuel rods are fixed individually or jointly on the inside of the can box and the lower end caps of the fuel rods are clamped between the rod holder plate and the holder plate. The rod holder plate and the holder plate are connected together and are jointly fixed to the fuel element foot. In such a design, all fuel rods can be pulled out of the can box and the spacer. The structure of the fuel element is retained in this. Due to the particular configuration of the fuel element, a considerable shortening of the time required to dismantle and repair a fuel element is achieved. (orig./HP) [de

  1. UO2-can thermal transfer. Application to the case of the first EL 4 batch of fuel elements

    International Nuclear Information System (INIS)

    Ringot, C.; Faussat, A.

    1964-01-01

    The UO 2 -can thermal transfer is one of the most important factors affecting the operational working of fuel elements. A systematic study of the elements influencing the heat transfer coefficient has been undertaken: in particular the effects of the contact pressure and of the gas filling pressure have been studied. Tests have been carried out using planar and cylindrical geometrical shapes. Using the values obtained and the integral conductivity curve for UO 2 , a calculation has been made of the evolution of the EL-4 fuel element during its life-time, if it is assumed that the fusion gas occupies a free volume of 2,5 per cent at the end of the fuel element and of zero or 2 per cent in the UO 2 . (authors) [fr

  2. Study on the effect of the CANFLEX-NU fuel element bowing on the critical heat flux

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Cho, Moon Sung; Jeon, Ji Su

    2001-01-01

    The effect of the CANFLEX-NU fuel element bowing on the critical heat flux is reviewed and analyzed, which is requested by KINS as the Government design licensing condition for the use of the fuel bundles in CANDU power reactors. The effect of the gap between two adjacent fuel elements on the critical heat flux and onset-of-dryout power is studied. The reduction of the width of a single inter-rod gap from its nominal size to the minimum manufacture allowance of 1 mm has a negligible effects on the thermal-hydraulic performance of the bundle for the given set of boundary conditions applied to the CANFLEX-43 element bundle in an uncrept channel. As expected, the in-reactor irradiation test results show that there are no evidence of the element bow problems on the bundle performance

  3. Experimental Investigation of Vibratory Stresses in a Concentric-Ring Direct-Air-Cycle Nuclear Fuel Element

    Science.gov (United States)

    Chiarito, Patrick T.

    1957-01-01

    Preliminary tests made by the General Electric Company indicated that aerodynamic loads might cause large enough distortions in the thin sheet-metal rings of a nuclear fuel element to result in structural failure. The magnitude of the distortions in a test fuel element was determined from strains measured with airflow conditions simulating those expected during engine operation. The measured vibratory strains were low enough to indicate the improbability of failure by fatigue. A conservative estimate of the radial deflection that accompanied peak strains in the outer ring was +0.0006 inch.

  4. Economical analysis to utilize MTR fuel elements using silicides in research reactors

    International Nuclear Information System (INIS)

    Bergallo, Juan E.; Novara, Oscar E.; Adelfang, Pablo

    2000-01-01

    According to international programs on reducing enrichment in research reactors and the necessity to maintain their operation, new fuel elements have been developed in order to meet both objectives. Thus, U-Si alloy fuel elements for research reactors are becoming of greater interest for the international markets. It became necessary to make an economic study about the convenience of introducing this type of fuel elements in the RA-3 reactor and to know the potentiality of this fuel. The economical behavior of the reactor operation has been evaluated comparing the actual U 3 O 8 nuclear fuel cycle with U 3 Si 2 nuclear fuels. Results obtained show that the main economical factor to determine the change of fuels is the cost of fabrication, and the change is advisable up to an 80% difference. The other factors related to the cost of nuclear fuel cycle are not relevant or have real minor impacts. (author)

  5. Fabrication and Testing of CERMET Fuel Materials for Nuclear Thermal Propulsion

    Science.gov (United States)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar

    2012-01-01

    A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on Nuclear Thermal Propulsion (NTP) is currently being developed for Advanced Space Exploration Systems. The overall goal of the project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of NTP systems. The current technology roadmap for NTP identifies the development of a robust fuel form as a critical near term need. The lack of a qualified nuclear fuel is a significant technical risk that will require a considerable fraction of program resources to mitigate. Due to these risks and the cost for qualification, the development and selection of a primary fuel must begin prior to Authority to Proceed (ATP) for a specific mission. The fuel development is a progressive approach to incrementally reduce risk, converge the fuel materials, and mature the design and fabrication process of the fuel element. A key objective of the current project is to advance the maturity of CERMET fuels. The work includes fuel processing development and characterization, fuel specimen hot hydrogen screening, and prototypic fuel element testing. Early fuel materials development is critical to help validate requirements and fuel performance. The purpose of this paper is to provide an overview and status of the work at Marshall Space Flight Center (MSFC).

  6. Evaluation of friction forces between control bars and guide tubes of CAREM fuel element

    International Nuclear Information System (INIS)

    Ghiselli, Alberto M.; Fiori, Jose M.; Yedros, Pablo A.

    2003-01-01

    The design of the MSAC (Mecanismo del Sistema de ajuste y control, Mechanism of the Adjustment and control system, MACS) for CAREM reactor shall consider all loads that the reactor shall support during its operation. Several charges are originated by friction forces produced on contact points of the control Bars/Guide tubes assembly against other components. A test facility was designed and manufactured for the determination of friction components and the damping characteristics of the assembly formed by guide tubes fuel element, the control bars and the guide of the bar of the MACS. In this work a description of the test performed and the results obtained is presented. (author)

  7. Liquefied Gaseous Fuels Spill Test Facility

    International Nuclear Information System (INIS)

    1993-02-01

    The US Department of Energy's liquefied Gaseous Fuels Spill Test Facility is a research and demonstration facility available on a user-fee basis to private and public sector test and training sponsors concerned with safety aspects of hazardous chemicals. Though initially designed to accommodate large liquefied natural gas releases, the Spill Test Facility (STF) can also accommodate hazardous materials training and safety-related testing of most chemicals in commercial use. The STF is located at DOE's Nevada Test Site near Mercury, Nevada, USA. Utilization of the Spill Test Facility provides a unique opportunity for industry and other users to conduct hazardous materials testing and training. The Spill Test Facility is the only facility of its kind for either large- or small-scale testing of hazardous and toxic fluids including wind tunnel testing under controlled conditions. It is ideally suited for test sponsors to develop verified data on prevention, mitigation, clean-up, and environmental effects of toxic and hazardous gaseous liquids. The facility site also supports structured training for hazardous spills, mitigation, and clean-up. Since 1986, the Spill Test Facility has been utilized for releases to evaluate the patterns of dispersion, mitigation techniques, and combustion characteristics of select materials. Use of the facility can also aid users in developing emergency planning under US P.L 99-499, the Superfund Amendments and Reauthorization Act of 1986 (SARA) and other regulations. The Spill Test Facility Program is managed by the US Department of Energy (DOE), Office of Fossil Energy (FE) with the support and assistance of other divisions of US DOE and the US Government. DOE/FE serves as facilitator and business manager for the Spill Test Facility and site. This brief document is designed to acquaint a potential user of the Spill Test Facility with an outline of the procedures and policies associated with the use of the facility

  8. The J-2X Fuel Turbopump - Design, Development, and Test

    Science.gov (United States)

    Tellier, James G.; Hawkins, Lakiesha V.; Shinguchi, Brian H.; Marsh, Matthew W.

    2011-01-01

    Pratt and Whitney Rocketdyne (PWR), a NASA subcontractor, is executing the design, development, test, and evaluation (DDT&E) of a liquid oxygen, liquid hydrogen two hundred ninety four thousand pound thrust rocket engine initially intended for the Upper Stage (US) and Earth Departure Stage (EDS) of the Constellation Program Ares-I Crew Launch Vehicle (CLV). A key element of the design approach was to base the new J-2X engine on the heritage J-2S engine with the intent of uprating the engine and incorporating SSME and RS-68 lessons learned. The J-2S engine was a design upgrade of the flight proven J-2 configuration used to put American astronauts on the moon. The J-2S Fuel Turbopump (FTP) was the first Rocketdyne-designed liquid hydrogen centrifugal pump and provided many of the early lessons learned for the Space Shuttle Main Engine High Pressure Fuel Turbopumps. This paper will discuss the design trades and analyses performed for the current J-2X FTP to increase turbine life; increase structural margins, facilitate component fabrication; expedite turbopump assembly; and increase rotordynamic stability margins. Risk mitigation tests including inducer water tests, whirligig turbine blade tests, turbine air rig tests, and workhorse gas generator tests characterized operating environments, drove design modifications, or identified performance impact. Engineering design, fabrication, analysis, and assembly activities support FTP readiness for the first J-2X engine test scheduled for July 2011.

  9. Modeling transient thermal hydraulic behavior of a thermionic fuel element for nuclear space reactors

    International Nuclear Information System (INIS)

    Al-Kheliewi, A.S.; Klein, A.C.

    1994-01-01

    A transient code (TFETC) for determining the temperature distribution throughout the radial and axial positions of a thermionic fuel element (TFE) during changes in operating conditions has been successfully developed and tested. A fully implicit method is used to solve the system of equations for temperatures at each time step. Presently, TFETC has the ability to handle the following transients: startup, loss of flow accidents, and shutdown. The code has been applied to the startup of the ATI single cell configuration which appears to start up and shut down in an orderly and reasonable fashion. No unexpected transient features were observed. The TFE also appears to function robustly under loss of flow accident conditions. It appears hat sufficient time is available to shut the reactor down safely without melting point the fuel. The model shows that during a complete loss of flow accident (without shutdown) the coolant reaches its boiling point in approximately 35 seconds. The fuel may exceed its melting point after this time as the NaK coolant will boil if the reactor is not shut down. For 1/2, 1/3, and 1/4 pump failures, the fuel temperatures never exceed the fuel melting point even if the reactor is not shut down

  10. Status and perspectives of developing the fuel elements for nuclear power plants with thermal and fast reactors

    International Nuclear Information System (INIS)

    Reshetnikov, F.G.

    1981-01-01

    The attained level of fabrication of fuel and fuel elements for thermal and fast reactors is considered. A brief estimation of the fuel element quality is given. New requirements to fuel elements under development and the ways of increasing the thermal reactor fuel element operating life are discussed. The methods of the mixed uranium-plutonium oxide fuel fabrication and perspective carbide and metal fuels are considered in conformity with the fast reactors. The quality of steels, used while fabricating fuel elements and hexahedral fuel assembly shrouds is estimated. It is noted that for the last years new success is achieved in increasing the quality of fuel rods: fuel pellet density is increased and their spread in density is descrised, the content of such unwanted impurities, as fluorine and moisture is essentially reduced. The methods of fuel element sealing are reliably developed. The welding process is automated. Technological process and finished product quality control ensures fabrication of high-quality fuel elements. Premature fuel element tightness failure becomes an occasional phenomenon and the number of such fuel elements is reduced to 0.01%. Two principally different methods for fabricating the mixed fuel - codeposition and mechanical mixing, giving a rather uniform uranium and plutonium distribution in the fuel rod are developed and adopted. The conclusion is made that by common efforts of scientists and designers in collaboration with production workers modern mechanized and automated industrial production of fuel elements for thermal and fast reactors, meeting increasing requirements of the country, nuclear power engineering is created [ru

  11. Subcritical Noise Analysis Measurements with Fresh and Spent Research Reactor Fuels Elements

    International Nuclear Information System (INIS)

    Valentine, T.E.; Mihalczo, J.T.; Kryter, R.C.; Miller, V.C.

    1999-01-01

    The verification of the subcriticality is of utmost importance for the safe transportation and storage of nuclear reactor fuels. Transportation containers and storage facilities are designed such that nuclear fuels remain in a subcritical state. Such designs often involve excess conservatism because of the lack of relevant experimental data to verify the accuracy of Monte Carlo codes used in nuclear criticality safety analyses. A joint experimental research program between Oak Ridge National Laboratory, Westinghouse Safety Management Solutions, Inc., and the University of Missouri was initiated to obtain measured quantities that could be directly related to the subcriticality of simple arrays of Missouri University Research Reactor (MURR) fuel elements. A series of measurement were performed to assess the reactivity of materials such as BORAL, stainless steel, aluminum, and lead that are typically used in the construction of shipping casks. These materials were positioned between the fuel elements. In addition, a limited number of measurements were performed with configurations of fresh and spent (irradiated) fuel elements to ascertain the reactivity of the spent fuel elements. In these experiments, fresh fuel elements were replaced by spent fuel elements such that the subcritical reactivity change could be measured. The results of these measurements were used by Westinghouse Safety Management Solutions to determine the subcriticality of MURR fuel elements isolated by absorbing materials. The measurements were interpreted using the MCNP-DSP Monte Carlo code to obtain the subcritical neutron multiplication factor k(sub eff), and the bias in K(sub eff) that are used in criticality safety analyses

  12. U-Mo Monolithic Fuel for Nuclear Research and Test Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad

    2017-11-02

    The metallic fuel selected to replace the current HEU fuels in the research and test reactors is the LEU-10 weight % Mo alloy in the form of a thin sheet or foil encapsulated in AA6061 aluminum alloy with a zirconium interlayer. In order to effectively lead this pursuit, new developments in processing and fabrication of the fuel elements have been initiated, along with a better understanding of material behavior before and after irradiation as a result of these new developments. This editorial note gives an introduction about research and test reactors, need for HEU to LEU conversion, fuel requirements, high uranium density monolithic fuel development and an overview of the four articles published in the December 2017 issue of JOM under a special topic titled “U-Mo Monolithic Fuel for Nuclear Research and Test Reactors”.

  13. Computational study of the effect of fuel element geometry on pellets’ maximum temperature

    Directory of Open Access Journals (Sweden)

    Vorobiev Alexander

    2017-01-01

    Full Text Available One of the factors that determine reliable operation of fuel elements in a nuclear reactor is maximum temperature of fuel pellets. This paper presents the computational study results of the effect of the pellet’s central hole on its maximum temperature when using different types of fuel.

  14. Description of fuel element brush assembly's fabrication for 105-K west

    International Nuclear Information System (INIS)

    Maassen, D.P.

    1997-01-01

    This report is a description of the process to redesign and fabricate, as well as, describe the features of the Fuel Element Brush Assembly used in the 105-K West Basin. This narrative description will identify problems that occurred during the redesigning and fabrication of the 105-K West Basin Fuel Element Brush Assembly and specifically address their solutions

  15. Advancements in the behavioral modeling of fuel elements and related structures

    International Nuclear Information System (INIS)

    Billone, M.C.; Montgomery, R.O.; Rashid, Y.R.; Head, J.L.

    1989-01-01

    An important aspect of the design and analysis of nuclear reactors is the ability to predict the behavior of fuel elements in the adverse environment of a reactor system. By understanding the thermomechanical behavior of the different materials which constitute a nuclear fuel element, analysis and predictions can be made regarding the integrity and reliability of fuel element designs. The SMiRT conference series, through the division on fuel elements and the post-conference seminars on fuel element modeling, provided technical forums for the international participation in the exchange of knowledge concerning the thermomechanical modeling of fuel elements. This paper discusses the technical advances in the behavioral modeling of fuel elements presented at the SMiRT conference series since its inception in 1971. Progress in the areas of material properties and constitutive relationships, modeling methodologies, and integral modeling approaches was reviewed and is summarized in light of their impact on the thermomechanical modeling of nuclear fuel elements. 34 refs., 5 tabs

  16. Fuel element failures caused by iodine stress corrosion

    International Nuclear Information System (INIS)

    Videm, K.; Lunde, L.

    1976-01-01

    Sections of unirradiated cladding tubes were plugged in both ends by mechanical seals and internally pressurized with argon containing iodine. The time to failure and the strain at failure as a function of stress was determined for tubing with different heat treatments. Fully annealed tubes suffer cracking at the lowest stress but exhibit the largest strains at failure. Elementary iodine is not necessary for stress corrosion: small amounts of iodides of zirconium, iron and aluminium can also give cracking. Moisture, however, was found to act as an inhibitor. A deformation threshold exists below which stress corrosion failure does not occur regardless of the exposure time. This deformation limit is lower the harder the tube. The deformation at failure is dependent on the deformation rate and has a minimum at 0.1%/hr. At higher deformation rates the failure deformation increases, but only slightly for hard tubes. Fuel was over-power tested at ramp rates varying between 0.26 to 30 W/cm min. For one series of fuel pins the failure deformations of 0.8% at high ramp rates were in good agreement with predictions based on stress corrosion experiments. For another series of experiments the failure deformation was surprisingly low, about 0.2%. (author)

  17. Multidisciplinary Simulation of Graphite-Composite and Cermet Fuel Elements for NTP Point of Departure Designs

    Science.gov (United States)

    Stewart, Mark E.; Schnitzler, Bruce G.

    2015-01-01

    This paper compares the expected performance of two Nuclear Thermal Propulsion fuel types. High fidelity, fluid/thermal/structural + neutronic simulations help predict the performance of graphite-composite and cermet fuel types from point of departure engine designs from the Nuclear Thermal Propulsion project. Materials and nuclear reactivity issues are reviewed for each fuel type. Thermal/structural simulations predict thermal stresses in the fuel and thermal expansion mis-match stresses in the coatings. Fluid/thermal/structural/neutronic simulations provide predictions for full fuel elements. Although NTP engines will utilize many existing chemical engine components and technologies, nuclear fuel elements are a less developed engine component and introduce design uncertainty. Consequently, these fuel element simulations provide important insights into NTP engine performance.

  18. Simulation of integral local tests with high-burnup fuel

    International Nuclear Information System (INIS)

    Gyori, G.

    2011-01-01

    The behaviour of nuclear fuel under LOCA conditions may strongly depend on the burnup-dependent fuel characteristics, as it has been indicated by recent integral experiments. Fuel fragmentation and the associated fission gas release can influence the integral fuel behaviour, the rod rupture and the radiological release. The TRANSURANUS fuel performance code is a proper tool for the consistent simulation of burnup-dependent phenomena during normal operation and the thermo-mechanical behaviour of the fuel rod in a subsequent accident. The code has been extended with an empirical model for micro-cracking induced FGR and fuel fragmentation and verified against integral LOCA tests of international projects. (author)

  19. Final Report - Spent Nuclear Fuel Retrieval System Manipulator System Cold Validation Testing

    Energy Technology Data Exchange (ETDEWEB)

    D.R. Jackson; G.R. Kiebel

    1999-08-24

    Manipulator system cold validation testing (CVT) was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin; clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge); remove the contents from the canisters; and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. The FRS is composed of three major subsystems. The Manipulator Subsystem provides remote handling of fuel, scrap, and debris; the In-Pool Equipment subsystem performs cleaning of fuel and provides a work surface for handling materials; and the Remote Viewing Subsystem provides for remote viewing of the work area by operators. There are two complete and identical FRS systems, one to be installed in the K-West basin and one to be installed in the K-East basin. Another partial system will be installed in a cold test facility to provide for operator training.

  20. Final Report - Spent Nuclear Fuel Retrieval System Manipulator System Cold Validation Testing

    International Nuclear Information System (INIS)

    D.R. Jackson; G.R. Kiebel

    1999-01-01

    Manipulator system cold validation testing (CVT) was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin; clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge); remove the contents from the canisters; and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. The FRS is composed of three major subsystems. The Manipulator Subsystem provides remote handling of fuel, scrap, and debris; the In-Pool Equipment subsystem performs cleaning of fuel and provides a work surface for handling materials; and the Remote Viewing Subsystem provides for remote viewing of the work area by operators. There are two complete and identical FRS systems, one to be installed in the K-West basin and one to be installed in the K-East basin. Another partial system will be installed in a cold test facility to provide for operator training

  1. Quality management and quality assurance in the manufacture of nuclear fuel elements: new trends and challenges

    International Nuclear Information System (INIS)

    Baur, K.

    1998-01-01

    Modern instruments for quality assurance are applied with increasing success also in the area of fuel element supply. This new philosophy of quality management is characterized by a clear focus on processes and a commitment to continuous quality improvement. How can these new quality concepts, the application of which is desired by the companies operating nuclear power plants, be implemented and find acceptance? Is it possible that error prevention in place of error correction can increase the quality of fuel elements and at the same time reduce costs? What instruments are available to solve problems specific to fuel element technology? Efforts currently under way to answer these questions are described, particularly with regard to cooperation with fuel element suppliers. Within this context, a new guideline 'Quality System for Fuel Elements' has been developed. (orig.) [de

  2. TRESP II testing of AFS dual fuel system.

    Science.gov (United States)

    2013-11-01

    A dual fuel CNG and diesel system was retrofitted to a 13 L Volvo semi tractor for testing to verify the : fuel economy and CNG substitution rate. The semi tractor was tested on interstate and mountainous : highway routes with a loaded trailer. Fuel ...

  3. Finite element analysis of optimized H shape spring in a nuclear fuel spacer grid by using contact definition

    International Nuclear Information System (INIS)

    Kim, Jae-Yong; Yoon, Kyung-Ho

    2007-01-01

    The primary role of the grid springs in spacer grid is to hold the fuel rods in an appropriate position using friction force and to prevent the fuel rods dropping during reactor operation. The spring force decreases as the fuel burn-up increases since the spring stiffness is degraded due to the high temperature and the irradiation effect in the reactor core. So this phenomenon has to be considered when the initial spring force of grid spring is designed. To check whether the spring have suitable spring force, the characterization test of spring is conducted. In this paper, finite element analysis using contact definition is established for prediction the spring stiffness without test. The test and analysis results are compared to check the availability of finite element model for investing the spring characteristics in assembly condition. (author)

  4. Study of a device for the direct measurement of the fission gas pressure inside an in-pile fuel element

    International Nuclear Information System (INIS)

    Lavaud, B.; Uschanoff, S.

    1964-01-01

    The fission gas pressure inside a fuel element made of a refractory fuel constitutes an important limiting factor for the burn-up. Although it is possible to calculate approximately the volume of gas produced outside the fuel during its life-time; it is nevertheless very difficult to evaluate the pressure since the volume allowed to the fission gases, as well as their temperature are known only very approximately. This physical value, which is essential for the technologist, can only be known by direct in-pile measurement of the pressure. The report describes the equipment which has been developed for this test. (authors) [fr

  5. Fuel element reactivity worth in different rings of the IPR-R1 TRIGA reactor

    International Nuclear Information System (INIS)

    Gomes do Prado Souza, Rose Mary

    2008-01-01

    The thermal power of the IPR-R1 TRIGA Reactor will be upgraded from 100 kW to 250 kW. Starting core: loaded with 59 aluminum cladded fuel elements; 1.34 $ excess reactivity; and 100 kW power. It is planned to go 2.5 times the power licensed, i.e., 250 kW. This forces to enlarge the reactivity level. Nuclear reactors must have sufficient excess reactivity to compensate the negative reactivity feedback effects caused by: the fuel temperature, fuel burnup, fission poisoning production, and to allow full power operation for predetermined period of time. To provide information for the calculation of the new core arrangement, the reactivity worth of some fuel elements in the core were measured as well as the determination of the core reactivity increase in the substitution of the original fuels, cladded with aluminium, for new ones, cladded with stainless steel. The reactivity worth of fuel element was measured from the difference in critical position of the control rods, calibrated by the positive period method, before and after the fuel element was withdrawn from the core. The magnitude of reactivity increase was determined when withdrawing the original Al-clad fuel (a little burned up) and the graphite elements, and inserting a fresh Al-clad fuel element, one by one. Experimental results indicated that to obtain enough reactivity excess to increase the rector power the addition of 4 new fuel elements in the core would be sufficient: - Substitution of 4 Al-clad fuel elements in ring C for fresh stainless steel clad fuel elements; - increase the reactivity ≅ 4 x 6.5 = 26 cents; - The removed 4 Al-clad F. E. (a little burned up) put in the core periphery, ring F, replacing graphite elements; - add exc ) of the core was estimated from control rod worth critical positions at low power, and from the calibration control rod curves. The excess reactivity of the core was increased by: re-shuffling 4 Al-clad fuel elements from C ring to F ring, replacing graphite elements

  6. Finite element modeling of copper coated used fuel containers for long-term storage in a deep geological repository

    International Nuclear Information System (INIS)

    Boyle, C.; Meguid, S.A.

    2014-01-01

    The Nuclear Waste Management Organization (NWMO) is developing a Used Fuel Container (UFC) optimized for CANDU fuel with an integrally bonded copper coating corrosion barrier. This paper demonstrates a validated finite element coating model, which can accurately predict the response of the UFC's steel-copper coating composite. Tensile, adhesion, and three-point bend tests were conducted for copper cold spray and electrodeposited coatings. The nonlinear finite element model accurately predicted the response of three different coating types, including cracking and delamination failure mechanisms, beyond the design basis loadings. The model will further be utilized to evaluate alternative UFC designs under anticipated repository conditions to assess safety margins. (author)

  7. Experimental Study of Fuel Element Motion in HTR-PM Conveying Pipelines

    International Nuclear Information System (INIS)

    Wang Xin; Zhang Haiquan; Nie Junfeng; Li Hongke; Liu Jiguo; He Ayada

    2014-01-01

    The motion action of sphere fuel element (FE) inside fuel pipelines in HTR-PM is indeterminate. Fuel motion is closely connected with the interaction of FE and inner surface of fuel conveying pipe. In this paper, motion method of fuel elements in its conveying pipe is Experimental studied. Combined with the measurement of the fuel passing speed in stainless steel pipe and the track left by sphere ball for experiment, interaction modes of fuel and inner-surface of pipe, which is sliding friction, rolling friction and Collision, has been found. The modes of interaction can affect the speed of fuel conveying, amount of sphere waste and operation stability of fuel handling of high temperature reactor-pebble bed modules (HTR-PM). Furthermore, the motion process of fuel passing a big-elbow which is lying on the top of fuel pneumatic hoisting pipe were experimented. The result shows that the speed before and the speed after the elbow is positive correlation. But with the increase of speed before the elbow, the speed after the elbow increase less. Meanwhile the fuel conveying mode changes from friction to collision. And the conveying process is still steady. The effect can be used to controlling the speed of fuel conveying in fuel handling process of HTR-PM. (author)

  8. Investigation of the ramp testing behaviour of fuel pins with different diameters

    International Nuclear Information System (INIS)

    Pott, G.; Herren, M.; Wigger, B.

    1979-09-01

    The aim of these experiments was the investigation of the influence of different fuel pin diameter on the ramp testing behaviour. Fuel elements with diameter between 10,75 and 15,6 mm and different cladding thickness had been ramptested in the HBWR (Halden Boiling Water Reactor) after preirradiated in the same facility. Fuel pins with the smallest diameter of 10,75 mm failed. This was indicated by fission gas release measurement. Metallographic examination showed these failure were caused by hydride blisters. A systematic influence of fuel pin diameter and cladding thickness on the ramptesting behaviour was not observed. (orig.) [de

  9. Behavior of fission products released from severely damaged fuel during the PBF severe fuel damage tests

    International Nuclear Information System (INIS)

    Osetek, D.J.; Cronenberg, A.W.; Hagrman, D.L.; Broughton, J.M.; Rest, J.

    1984-01-01

    The results of fission product release behavior during the first two Power Burst Facility Severe Fuel Damage tests are presented. Measured fission product release is compared with calculated release using temperature dependent release rate correlations and FASTGRASS analysis. The test results indicate that release from fuel of the high volatility fission products (Xe, Kr, I, Cs, and Te) is strongly influenced by parameters other than fuel temperature; namely fuel/fission product morphology, fuel and cladding oxidation state, extent of fuel liquefaction, and quench induced fuel shattering. Fission product transport from the test fuel through the sample system was strongly influenced by chemical effects. Holdup of I and Cs was affected by fission product chemistry, and transport time while Te release was primarily influenced by the extent of zircaloy oxidation. Analysis demonstrates that such integral test data can be used to confirm physical, chemical, and mechanistic models of fission product behavior for severe accident conditions

  10. The reliability of untempered end plug welds on HT9-clad IFR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, D C; Porter, D L

    1987-02-01

    Welding generally leaves residual stresses in transformed weld zones, which can initiate cracks from flaws already present in the weld zones. When HT9 cools from welding temperatures, a martensite phase forms in the weld fusion zone and heat-affected zone. Because this martensite phase is hard and brittle, it is particularly susceptible to cracking aggravated by residual stresses. This causes concern over the use of untempered welds on HT9-clad fuel elements. To determine if residual stresses present in end-plug weld zones would affect fuel pin performance, HT9 capsules with prototypic TIG- and CD-welded end plugs (in the tempered and as-welded conditions) were pressurized to failure at room temperature, 550{sup 0}C, and 600{sup 0}C. None of the capsules failed in a weld zone. To determine the effects of reactor operating temperatures on untempered welds, prototypic TIG welds were tempered at reactor bulk sodium temperature and an expected sodium outlet temperature for various lengths of time. Subsequent tensile and burst tests of these specimens proved that any embrittling effects that may have been induced in these welds were of no consequence. Hardness tests on longitudinal sections of welds indicated the amount of tempering a weld will receive inreactor after relatively short lengths of time. The pressure burst tests proved that untemperted welds on HT9-clad fuel elements are as reliable as tempered welds; any residual stresses in untempered weld zones were of no consequence. The tempering test showed that welds used in the as-welded condition will sufficiently temper in 7 days at 550{sup 0}C, but will not, sufficiently temper in 7 days at bulk sodium temperature. A comparison of the structure of laser welds to those of CD and TIG welds indicated that untempered laser welds will perform and temper in a manner similar to the TIG welds tested in this effort.

  11. Calibration of the Failed-Fuel-Element Detection Systems in the Aagesta Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Strindehag, O.

    1966-06-15

    Results from a calibration of the systems for detection of fuel element ruptures in the Aagesta reactor are presented. The calibration was carried out by means of foils of zirconium-uranium alloy which were placed in a special fuel assembly. The release of fission products from these foils is due mainly to recoil and can be accurately calculated. Before the foils were used in the reactor their corrosion behaviour in high temperature water was investigated. The results obtained with the precipitator systems for bulk detection and localization are in good agreement with the expected performance. The sensitivity of these systems was found to be high enough for detection and localization of small defects of pin-hole type ({nu} = 10{sup -8}/s ). The general performance of the systems was satisfactory during the calibration tests, although a few adjustments are desirable. A bulk detecting system for monitoring of activities in the moderator, in which the {gamma}-radiation from coolant samples is measured directly after an ion exchanger, showed lower sensitivity than expected from calculations. It seems that the sensitivity of the latter system has to be improved to admit the detection of small defects. In the ion exchanger system, and to some extent in the precipitator systems, the background from A{sup 41} in the coolant limits the sensitivity. The calibration technique utilized seems to be of great advantage when investigating the performance of failed-fuel-element detection systems.

  12. Follow-up of the burning of a fuel element LEU

    International Nuclear Information System (INIS)

    Navarro, G.; Henriquez, C.; Pereda, Claudio; Terremoto, L.A.A.; Zeituni, C.A

    2002-01-01

    This research report presents a full set of measurements and some relevant results related to the burning process of low enriched experimental fuel. This element was made in the Combustible Elements Plant (PEC) of the Chilean Nuclear Energy Commission (CCHEN). All the measurements were carried out using the gamma spectrometry radiation technique, and the fuel element burnup evaluation was obtained as a result of this work (au)

  13. MCO Engineering Test Report Fuel Basket Handling Grapple Acceptance Test

    International Nuclear Information System (INIS)

    CHENAULT, D.M.

    2000-01-01

    Acceptance testing of the production SNF Fuel Basket lift grapples to the required 150 percent maximum lift load is documented herein. The report shows the results affirming the proof test passage. The primary objective of this test was to confirm the load rating of the grapple per applicable requirements of ANSI 14 6 American National Standard For Radioactive Materials Special Lifting Devices for Shipping Containers Weighing 10,000 pounds (4500kg) or More. The above Standard requires a load test of 150% of the design load which must be held for a minimum of 10 minutes followed by a Liquid Penetrant or Magnetic Particle examination of critical areas and welds in accordance with the ANSI/ASME Boiler and Pressure Vessel Code 1989 Section 111 Division 1 section NF 5350

  14. Dynamical Capillary Rise Photonic Sensor for Testing of Diesel and Biodiesel Fuel

    Directory of Open Access Journals (Sweden)

    Michal BORECKI

    2015-10-01

    Full Text Available There are many fuel quality standards introduced by national organizations and fuel producers. Usual techniques for measuring fuel parameters like cetane number, cetane index, fraction composition, viscosity, density, and flash point, require relatively complex and expensive laboratory equipment. On the fuel user side, fast and low cost sensing of useful state of biodiesel fuel is important. The main parameters of diesel fuel compatibility are: density, viscosity and surface tension. These three parameters define indirectly the quality of the fuel atomization process and the injected portion of energy that affect the quality of the fuel. In the presented paper the purposefulness of fuel testing using measurements of separable parameters is discussed. On this base, a sensor which enables the examination of relation of the mentioned parameters in one arrangement is proposed, analyzed and tested. The sensor uses the dynamic capillary rise method with photonic multichannel data reading in an inclined capillary. The principle of the sensor’s operation, the construction of the sensor head, and the experimental results are presented. The capillary is a disposable element. The sensor testing was performed with freshly prepared biodiesel fuels, and fuels stored for 2 years. We conclude that the proposed construction may be in future the base of low cost commercially marketable instruments for basic fuel classification: fit for use or not. That classification includes initial fuel composition and fuel parameters change during storage. Therefore, the proposed sensor is intended to use in fuel buying/selling point rather than used as part of a diesel engine automated system.

  15. Affordable Development and Optimization of CERMET Fuels for NTP Ground Testing

    Science.gov (United States)

    Hickman, Robert R.; Broadway, Jeramie W.; Mireles, Omar R.

    2014-01-01

    CERMET fuel materials for Nuclear Thermal Propulsion (NTP) are currently being developed at NASA's Marshall Space Flight Center. The work is part of NASA's Advanced Space Exploration Systems Nuclear Cryogenic Propulsion Stage (NCPS) Project. The goal of the FY12-14 project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of an NTP system. A key enabling technology for an NCPS system is the fabrication of a stable high temperature nuclear fuel form. Although much of the technology was demonstrated during previous programs, there are currently no qualified fuel materials or processes. The work at MSFC is focused on developing critical materials and process technologies for manufacturing robust, full-scale CERMET fuels. Prototypical samples are being fabricated and tested in flowing hot hydrogen to understand processing and performance relationships. As part of this initial demonstration task, a final full scale element test will be performed to validate robust designs. The next phase of the project will focus on continued development and optimization of the fuel materials to enable future ground testing. The purpose of this paper is to provide a detailed overview of the CERMET fuel materials development plan. The overall CERMET fuel development path is shown in Figure 2. The activities begin prior to ATP for a ground reactor or engine system test and include materials and process optimization, hot hydrogen screening, material property testing, and irradiation testing. The goal of the development is to increase the maturity of the fuel form and reduce risk. One of the main accomplishmens of the current AES FY12-14 project was to develop dedicated laboratories at MSFC for the fabrication and testing of full length fuel elements. This capability will enable affordable, near term development and optimization of the CERMET fuels for future ground testing. Figure 2 provides a timeline of the

  16. Experience from operation of equipment for fuel element transport, replacement and inspection

    International Nuclear Information System (INIS)

    Belko, D.; Slugen, V.

    1989-01-01

    A workplace enabling repairs of the mechanical and electrical parts of the charging machine bars and their vibrational checking to be performed has been additionally developed for the Bohunice V-1 nuclear power plant. The workplace is provided with a tool for adjusting the rack assembly of the charging machine in the vertical position, with a bar vibration measuring ring, with a device for the modification of stops, a device for fast adjustment of the rotary section in the vertical position, and with a device for decontamination of the working bars of the charging machine. Although the use of four sampling cases for leak tests of fuel element cans was initially assumed in the design, the use of two cases only was found optimal with regard to the actual speed of the charging machine. An approach to the refuelling, in which the fresh fuel containers do not come in contact with the water in the spent fuel storage tank, is described. In this manner, material needed for the decontamination of containers in which fresh fuel assemblies are shipped by the charging machine is saved, and the refuelling process is sped up. (J.B.). 1 fig

  17. Support grid for fuel elements in a nuclear reactor

    Science.gov (United States)

    Finch, Lester M.

    1977-01-01

    A support grid is provided for holding nuclear fuel rods in a rectangular array. Intersecting sheet metal strips are interconnected using opposing slots in the strips to form a rectangular cellular grid structure for engaging the sides of a multiplicity of fuel rods. Spring and dimple supports for engaging fuel and guide rods extending through each cell in the support grid are formed in the metal strips with the springs thus formed being characterized by nonlinear spring rates.

  18. TRISO-Fuel Element Performance Modeling for the Hybrid LIFE Engine with Pu Fuel Blanket

    Energy Technology Data Exchange (ETDEWEB)

    DeMange, P; Marian, J; Caro, M; Caro, A

    2010-02-18

    A TRISO-coated fuel thermo-mechanical performance study is performed for the hybrid LIFE engine to test the viability of TRISO particles to achieve ultra-high burnup of a weapons-grade Pu blanket. Our methodology includes full elastic anisotropy, time and temperature varying material properties for all TRISO layers, and a procedure to remap the elastic solutions in order to achieve fast fluences up to 30 x 10{sup 25} n {center_dot} m{sup -2} (E > 0.18 MeV). In order to model fast fluences in the range of {approx} 7 {approx} 30 x 10{sup 25} n {center_dot} m{sup -2}, for which no data exist, careful scalings and extrapolations of the known TRISO material properties are carried out under a number of potential scenarios. A number of findings can be extracted from our study. First, failure of the internal pyrolytic carbon (PyC) layer occurs within the first two months of operation. Then, the particles behave as BISO-coated particles, with the internal pressure being withstood directly by the SiC layer. Later, after 1.6 years, the remaining PyC crumbles due to void swelling and the fuel particle becomes a single-SiC-layer particle. Unrestrained by the PyC layers, and at the temperatures and fluences in the LIFE engine, the SiC layer maintains reasonably-low tensile stresses until the end-of-life. Second, the PyC creep constant, K, has a striking influence on the fuel performance of TRISO-coated particles, whose stresses scale almost inversely proportional to K. Obtaining more reliable measurements, especially at higher fluences, is an imperative for the fidelity of our models. Finally, varying the geometry of the TRISO-coated fuel particles results in little differences in the scope of fuel performance. The mechanical integrity of 2-cm graphite pebbles that act as fuel matrix has also been studied and it is concluded that they can reliable serve the entire LIFE burnup cycle without failure.

  19. Method and apparatus for the handling and inspection of a nuclear reactor fuel element

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1975-01-01

    The non-destructive inspection, for instance, of spent fuel elements and their dismantling are carried out under water in a pool. For this purpose, the fuel elements are attached to a bar which can be moved under water from the vertical into horizontal directions by means of a winch. The bar proper is suspended from a bridge spanning the pool. On one side, the bar is pivoted in a pin installed in components suspended from the bridge, whilst the movement of the bar is limited by a horizontal stop. In the vertical position, the fuel elements and components, respectively, such as fuel elements, are taken up and inspected in the horizontal position by means of TV systems or periscopes. The fuel elements are conveyed by a trolley. Dismantling of the fuel elements under water is carried out by special tools, such as cranks and connecting rods which, inter alia, put the individual fuel rods onto grids prior to inspection, disengage the clamps by means of grid disconnecting systems, remove the fuel rods from the grids and put them on the bars. (DG/RF) [de

  20. Fabrication of MOX fuel element clusters for irradiation in PWL, CIRUS

    International Nuclear Information System (INIS)

    Roy, P.R.; Purushotham, D.S.C.; Majumdar, S.

    1983-01-01

    Three clusters, each containing 6 zircaloy-2 clad short length fuel elements of either MOX or UO 2 fuel pellets were fabricated for irradiation in pressurized water loop of CIRUS. The major objectives of the programme were: (a) to optimize the various fabrication parameters for developing a flow sheet for MOX fuel element fabrication; (b) to study the performance of the MOX fuel elements at a peak heat flux of 110 W/cm 2 ; and (c) to study the effect of various fuel pellet design changes on the behaviour of the fuel element under irradiation. Two clusters, one each of UO 2 and MOX, have been successfully irradiated to the required burn-up level and are now awaiting post irradiation examinations. The third MOX cluster is still undergoing irradiation. Fabrication of these fuel elements involved considerable amount of developing work related to the fabrication of the MOX fuel pellets and the element welding technique and is reported in detail in this report. (author)