WorldWideScience

Sample records for test corrosion experiences

  1. Corrosion Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Corrosion Testing Facility is part of the Army Corrosion Office (ACO). It is a fully functional atmospheric exposure site, called the Corrosion Instrumented Test...

  2. Field test corrosion experiences when co-firing straw and coal: 10 year status within Elsam

    DEFF Research Database (Denmark)

    Frandsen, Rasmus Berg; Montgomery, Melanie; Larsen, Ole Hede

    2007-01-01

    In Denmark, straw is utilised for the generation of energy and district heating in power plants. Combustion of straw gives rise to high contents of potassium chloride and some sulphur dioxide in the flue gas. These compounds can lead to deposits with high content of potassium chloride and potassium......, the corrosion during these experiments was monitored. Various ferritic and austenitic materials were investigated at steam temperatures ranging from 520 to 580 degrees C and flue gas temperatures ranging from 925 to 1100 degrees C. The results obtained in the demonstration program led to the rebuilding...... of the 350 MW pulverized coal fired boiler, Studstrup unit 4, into a co-firing boiler with straw in 2002. During the rebuilding, test tube sections of X20CrMoV12 1 and TP347H FG were built into the superheater and the reheater loops. The temperature ranges during these exposures was for the steam from 470...

  3. Field test corrosion experiments in Denmark with biomass fuels Part I Straw firing

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Karlsson, A; Larsen, OH

    2002-01-01

    In Denmark, straw and other types of biomass are used for generating energy in power plants. Straw has the advantage that it is a "carbon dioxide neutral fuel" and therefore environmentally acceptable. Straw combustion is associated with corrosion problems which are not encountered in coal......-fired plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. A series of field tests have been undertaken in the various straw-fired power plants in Denmark, namely Masnedø, Rudkøbing and Ensted. Three types of exposure were undertaken...... to investigate corrosion: a) the exposure of metal rings on water/air cooled probes, b) the exposure of test tubes in a test superheater, and c) the exposure of test tubes in existing superheaters. Thus both austenitic steels and ferritic steels were exposed in the steam temperature range of 450-600°C...

  4. Accelerated Corrosion Testing

    Science.gov (United States)

    1982-12-01

    Treaty Organization, Brussels, 1971), p. 449. 14. D. 0. Sprowls, T. J. Summerson, G. M. Ugianski, S. G. Epstein, and H. L. Craig , Jr., in Stress...National Association of Corrosion Engineers Houston, TX, 1972). 22. H. L. Craig , Jr. (ed.), Stress Corrosion-New Approaches, ASTM-STP- 610 (American...62. M. Hishida and H. Nakada, Corrosion 33 (11) 403 (1977). b3. D. C. Deegan and B. E. Wilde, Corrosion 34 (6), 19 (1978). 64. S. Orman, Corrosion Sci

  5. Electrochemical corrosion testing of metal waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, D. P.; Peterson, J. J.; Katyal, H. K.; Keiser, D. D.; Hilton, B. A.

    1999-12-14

    Electrochemical corrosion tests have been conducted on simulated stainless steel-zirconium (SS-Zr) metal waste form (MWF) samples. The uniform aqueous corrosion behavior of the samples in various test solutions was measured by the polarization resistance technique. The data show that the MWF corrosion rates are very low in groundwaters representative of the proposed Yucca Mountain repository. Galvanic corrosion measurements were also conducted on MWF samples that were coupled to an alloy that has been proposed for the inner lining of the high-level nuclear waste container. The experiments show that the steady-state galvanic corrosion currents are small. Galvanic corrosion will, hence, not be an important mechanism of radionuclide release from the MWF alloys.

  6. Copper corrosion experiments under anoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ollila, Kaija [VTT Technical Research Centre of Finland, Espoo (Finland)

    2013-06-15

    This report gives results from the corrosion experiments with copper under anoxic conditions. The objective was to study whether hydrogen-evolving corrosion reaction could occur. Copper foil samples were exposed in deaerated deionized water in Erlenmeyer flasks in the glove box with inert atmosphere. Four corrosion experiments (Cu1, Cu2, Cu3 and Cu4) were started, as well as a reference test standing in air. Cu1 and Cu2 had gas tight seals, whereas Cu3 and Cu4 had palladium foils as hydrogen permeable enclosure. The test vessels were stored during the experiments in a closed stainless steel vessel to protect them from the trace oxygen of the gas atmosphere and light. After the reaction time of three and a half years, there were no visible changes in the copper surfaces in any of the tests in the glove box, in contrast the Cu surfaces looked shiny and unaltered. The Cu3 test was terminated after the reaction time of 746 days. The analysis of the Pd-membrane showed the presence of H2 in the test system. If the measured amount of 7.2{center_dot}10{sup 5} mol H{sub 2} was the result of formation of Cu{sub 2}O this would correspond to a 200 nm thick corrosion layer. This was not in agreement with the measured layer thickness with SIMS, which was 6{+-}1 nm. A clear weight loss observed for the Cu3 test vessel throughout the test period suggests the evaporation of water through the epoxy sealing to the closed steel vessel. If this occurred, the anaerobic corrosion of steel surface in humid oxygen-free atmosphere could be a source of hydrogen. A similar weight loss was not observed for the parallel test (Cu4). The reference test standing in air showed visible development of corrosion products.

  7. Biological induced corrosion of materials II: New test methods and experiences from mir station

    Science.gov (United States)

    Klintworth, R.; Reher, H. J.; Viktorov, A. N.; Bohle, D.

    1999-09-01

    During previous long-term manned missions, more than 100 species of microorganisms have been identified on surfaces of materials (bacteria and fungi). Among them were potentially pathogenic ones (saprophytes) which are capable of active growth on artificial substrates, as well as technophilic bacteria and fungi causing damages (destruction and degradation) to various materials (metals and polymers), resulting in failures and disruptions in the functioning of equipment and hardware. Aboard a space vehicle some microclimatic parameters are optimal for microorganism growth: the atmospheric fluid condensate with its specific composition, chemical and/or antropogenic contaminants (human metobolic products, etc.) all are stimulating factors for the development of bacteria and mould fungi on materials of the interior and equipment of an orbital station during its operational phase(s). Especially Russian long-term missions (SALJUT, MIR) have demonstrated that uncontrolled interactions of microorganisms with materials will ultimately lead to the appearence of technological and medical risks, significantly influencing safety and reliability characteristics of individual as well as whole systems and/ or subsystems. For a first conclusion, it could be summarized, that countermeasures and anti-strategies focussing on Microbial Contamination Management (MCM) for the International Space Station (ISS, next long-term manned mission) at least require a new materials test approach. Our respective concept includes a combined age-ing/biocorrosion test sequence. It is represented here, as well as current status of MCM program, e.g. continuous monitoring (microbiological analyses), long-term disinfection, frequent cleaning methods, mathematical modeling of ISS, etc.

  8. Corrosion inhibitor testing in archaeological conservation

    Directory of Open Access Journals (Sweden)

    Robert Faltermeier

    1997-11-01

    Full Text Available Metal objects from archaeological contexts often suffer serious damage by corrosion. Various methods for inhibiting corrosion have been developed, but their effects need to be evaluated. Here new research is described on how treatments to inhibit the corrosion of copper and copper-alloy artefacts may be tested.

  9. Geothermal drill pipe corrosion test plan

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, B.C.; Copass, K.S.

    1980-12-01

    Plans are presented for conducting a field test of drill pipe corrosion, comparing air and nitrogen as drilling fluids. This test will provide data for evaluating the potential of reducing geothermal well drilling costs by extending drill pipe life and reducing corrosion control costs. The 10-day test will take place during fall 1980 at the Baca Location in Sandoval County, New Mexico.

  10. Corrosion performance tests for reinforcing steel in concrete : test procedures.

    Science.gov (United States)

    2009-09-01

    The existing test method to assess the corrosion performance of reinforcing steel embedded in concrete, mainly : ASTM G109, is labor intensive, time consuming, slow to provide comparative results, and often expensive. : However, corrosion of reinforc...

  11. Development of a unit suitable for corrosion monitoring in district heating systems. Experiences with the LOCOR-cell test method

    DEFF Research Database (Denmark)

    Andersen, Asbjørn; Hilbert, Lisbeth Rischel

    2004-01-01

    A by-pass unit suitable for placement of a number of different probes for corrosion monitoring has been designed. Also measurements of water parameters are allowed in a side stream from the unit. The project is a part of the Nordic Innovation Fund project KORMOF. The by-pass unit has been installed...... in 6 pressurised circulating heating systems and in one cooling system. 7 different corrosion monitoring methods have been used to study corrosion rates and types in dependency of water chemistry. This paper describes the design of the by-pass unit including water analysis methods. It also describes...... the purpose, background and gained results of one of the used monitoring techniques, the crevice corrosion measurements obtained by the LOCOR-Cell„§. The crevice corrosion cell was developed by FORCE Technology in a previous district heating project financed by Nordic Industrial Fund (1)(2). Results from...

  12. Field test corrosion experiments in Denmark with biomass fuels Part II Co-firing of straw and coal

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Larsen, OH

    2002-01-01

    In Denmark, straw is used for generating energy in power plants. However during straw combustion, potassium chloride and SO2 are released in the flue gas and through condensation and deposition processes they will result in the formation of superheater deposits rich in potassium chloride...... and potassium sulphate. These components give rise to varying degrees of accelerated corrosion. This paper concerns co-firing of straw with coal to reduce the corrosion rate from straw to an acceptable level. A field investigation at Midtkraft Studstrup suspension-fired power plant in Denmark has been...... superheaters. A range of austenitic and ferritic steels was exposed in the steam temperature range of 520-580°C. The flue gas temperature ranged from 925-1100°C. The rate of corrosion was assessed by precision measurement of material loss and measurement of oxide thickness. Corrosion rates are lower than...

  13. Standard Test Method for Sandwich Corrosion Test

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method defines the procedure for evaluating the corrosivity of aircraft maintenance chemicals, when present between faying surfaces (sandwich) of aluminum alloys commonly used for aircraft structures. This test method is intended to be used in the qualification and approval of compounds employed in aircraft maintenance operations. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information. 1.3 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements appear in Section 9.

  14. Experimental Investigation of the Corrosion Behavior of Friction Stir Welded AZ61A Magnesium Alloy Welds under Salt Spray Corrosion Test and Galvanic Corrosion Test Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    A. Dhanapal

    2013-01-01

    Full Text Available Extruded Mg alloy plates of 6 mm thick of AZ61A grade were butt welded using advanced welding process and friction stir welding (FSW processes. The specimens were exposed to salt spray conditions and immersion conditions to characterize their corrosion rates on the effect of pH value, chloride ion concentration, and corrosion time. In addition, an attempt was made to develop an empirical relationship to predict the corrosion rate of FSW welds in salt spray corrosion test and galvanic corrosion test using design of experiments. The corrosion morphology and the pit morphology were analyzed by optical microscopy, and the corrosion products were examined using scanning electron microscope and X-ray diffraction analysis. From this research work, it is found that, in both corrosion tests, the corrosion rate decreases with the increase in pH value, the decrease in chloride ion concentration, and a higher corrosion time. The results show the usage of the magnesium alloy for best environments and suitable applications from the aforementioned conditions. Also, it is found that AZ61A magnesium alloy welds possess low-corrosion rate and higher-corrosion resistance in the galvanic corrosion test than in the salt spray corrosion test.

  15. Mechanical Characterization and Corrosion Testing of X608 Al Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad; Choi, Jung-Pyung; Stephens, Elizabeth V.; Catalini, David; Lavender, Curt A.; Rohatgi, Aashish

    2016-02-07

    This paper describes the mechanical characterization and corrosion testing of X608 Al alloy that is being considered for A-pillar covers for heavy-duty truck applications. Recently, PNNL developed a thermo-mechanical process to stamp A-pillar covers at room temperature using this alloy, and the full-size prototype was successfully stamped by a tier-1 supplier. This study was conducted to obtain additional important information related to the newly developed forming process, and to further improve its mechanical properties. The solutionization temperature, pre-strain and paint-bake heat-treatment were found to influence the alloy’s fabricability and mechanical properties. Natural aging effect on the formability was investigated by limiting dome height (LDH) tests. Preliminary corrosion experiments showed that the employed thermo-mechanical treatments did not significantly affect the corrosion behavior of Al X608.

  16. Natural Environment Corrosion Testing at the Kennedy Space Center Beachside Atmospheric Corrosion Test Site

    Science.gov (United States)

    Calle, Luz M.

    2017-01-01

    This presentation will provide an overview of how NASA has been conducting corrosion testing in the Natural Marine Environment at the Kennedy Space Center, Florida, U.S. The following questions will be addressed: What factors should be considered when selecting and constructing a test site? What are the attributes of a good test site? Is more severe always better? What environmental parameters should be monitored? How frequently? What factors should be considered when designing test specimens? Are current test standards sufficient? How do diurnal, annual and other fluctuations in corrosivity influence tests? How are test results interpreted? Can they be quantified?

  17. Assessing corrosion problems in photovoltaic cells via electrochemical stress testing

    Science.gov (United States)

    Shalaby, H.

    1985-01-01

    A series of accelerated electrochemical experiments to study the degradation properties of polyvinylbutyral-encapsulated silicon solar cells has been carried out. The cells' electrical performance with silk screen-silver and nickel-solder contacts was evaluated. The degradation mechanism was shown to be electrochemical corrosion of the cell contacts; metallization elements migrate into the encapsulating material, which acts as an ionic conducting medium. The corrosion products form a conductive path which results in a gradual loss of the insulation characteristics of the encapsulant. The precipitation of corrosion products in the encapsulant also contributes to its discoloration which in turn leads to a reduction in its transparency and the consequent optical loss. Delamination of the encapsulating layers could be attributed to electrochemical gas evolution reactions. The usefulness of the testing technique in qualitatively establishing a reliability difference between metallizations and antireflection coating types is demonstrated.

  18. Corrosion performance tests for reinforcing steel in concrete : technical report.

    Science.gov (United States)

    2009-10-01

    The existing test method used to assess the corrosion performance of reinforcing steel embedded in : concrete, mainly ASTM G 109, is labor intensive, time consuming, slow to provide comparative results, : and can be expensive. However, with corrosion...

  19. CORROSION TESTING IN SIMULATED TANK SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E.

    2010-12-09

    Three simulated waste solutions representing wastes from tanks SY-102 (high nitrate, modified to exceed guidance limits), AN-107, and AY-102 were supplied by PNNL. Out of the three solutions tested, both optical and electrochemical results show that carbon steel samples corroded much faster in SY-102 (high nitrate) than in the other two solutions with lower ratios of nitrate to nitrite. The effect of the surface preparation was not as strong as the effect of solution chemistry. In areas with pristine mill-scale surface, no corrosion occurred even in the SY-102 (high nitrate) solution, however, corrosion occurred in the areas where the mill-scale was damaged or flaked off due to machining. Localized corrosion in the form of pitting in the vapor space of tank walls is an ongoing challenge to overcome in maintaining the structural integrity of the liquid waste tanks at the Savannah River and Hanford Sites. It has been shown that the liquid waste condensate chemistry influences the amount of corrosion that occurs along the walls of the storage tanks. To minimize pitting corrosion, an effort is underway to gain an understanding of the pitting response in various simulated waste solutions. Electrochemical testing has been used as an accelerated tool in the investigation of pitting corrosion. While significant effort has been undertaken to evaluate the pitting susceptibility of carbon steel in various simulated waste solutions, additional effort is needed to evaluate the effect of liquid waste supernates from six Hanford Site tanks (AY-101, AY-102, AN-102, AN-107, SY-102 (high Cl{sup -}), and SY-102 (high nitrate)) on carbon steel. Solutions were formulated at PNNL to replicate tank conditions, and in the case of SY-102, exceed Cl{sup -} and NO{sub 3}{sup -} conditions, respectively, to provide a contrast between in and out of specification limits. The majority of previous testing has been performed on pristine polished samples. To evaluate the actual tank carbon steel

  20. Accelerated Test Method for Corrosion Protective Coatings Project

    Science.gov (United States)

    Falker, John; Zeitlin, Nancy; Calle, Luz

    2015-01-01

    This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.

  1. Apollo experience report: The problem of stress-corrosion cracking

    Science.gov (United States)

    Johnson, R. E.

    1973-01-01

    Stress-corrosion cracking has been the most common cause of structural-material failures in the Apollo Program. The frequency of stress-corrosion cracking has been high and the magnitude of the problem, in terms of hardware lost and time and money expended, has been significant. In this report, the significant Apollo Program experiences with stress-corrosion cracking are discussed. The causes of stress-corrosion cracking and the corrective actions are discussed, in terminology familiar to design engineers and management personnel, to show how stress-corrosion cracking can be prevented.

  2. Electrochemical Corrosion Testing of Neutron Absorber Materials

    Energy Technology Data Exchange (ETDEWEB)

    Tedd Lister; Ron Mizia; Arnold Erickson; Tammy Trowbridge

    2007-05-01

    This report summarizes the results of crevice-corrosion tests for six alloys in solutions representative of ionic compositions inside the Yucca Mountain waste package should a breech occur. The alloys in these tests are Neutronit A978a (ingot metallurgy, hot rolled), Neutrosorb Plus 304B4 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B5 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B6 Grade Ab (powder metallurgy, hot rolled), Ni-Cr-Mo-Gd alloy2 (ingot metallurgy, hot rolled), and Alloy 22 (ingot metallurgy, hot rolled).

  3. Durability Tests of a Fiber Optic Corrosion Sensor

    Science.gov (United States)

    Wan, Kai Tai; Leung, Christopher K.Y.

    2012-01-01

    Steel corrosion is a major cause of degradation in reinforced concrete structures, and there is a need to develop cost-effective methods to detect the initiation of corrosion in such structures. This paper presents a low cost, easy to use fiber optic corrosion sensor for practical application. Thin iron film is deposited on the end surface of a cleaved optical fiber by sputtering. When light is sent into the fiber, most of it is reflected by the coating. If the surrounding environment is corrosive, the film is corroded and the intensity of the reflected signal drops significantly. In previous work, the sensing principle was verified by various experiments in laboratory and a packaging method was introduced. In this paper, the method of multiplexing several sensors by optical time domain reflectometer (OTDR) and optical splitter is introduced, together with the interpretation of OTDR results. The practical applicability of the proposed sensors is demonstrated in a three-year field trial with the sensors installed in an aggressive marine environment. The durability of the sensor against chemical degradation and physical degradation is also verified by accelerated life test and freeze-thaw cycling test, respectively. PMID:22737030

  4. Durability tests of a fiber optic corrosion sensor.

    Science.gov (United States)

    Wan, Kai Tai; Leung, Christopher K Y

    2012-01-01

    Steel corrosion is a major cause of degradation in reinforced concrete structures, and there is a need to develop cost-effective methods to detect the initiation of corrosion in such structures. This paper presents a low cost, easy to use fiber optic corrosion sensor for practical application. Thin iron film is deposited on the end surface of a cleaved optical fiber by sputtering. When light is sent into the fiber, most of it is reflected by the coating. If the surrounding environment is corrosive, the film is corroded and the intensity of the reflected signal drops significantly. In previous work, the sensing principle was verified by various experiments in laboratory and a packaging method was introduced. In this paper, the method of multiplexing several sensors by optical time domain reflectometer (OTDR) and optical splitter is introduced, together with the interpretation of OTDR results. The practical applicability of the proposed sensors is demonstrated in a three-year field trial with the sensors installed in an aggressive marine environment. The durability of the sensor against chemical degradation and physical degradation is also verified by accelerated life test and freeze-thaw cycling test, respectively.

  5. Long Term Corrosion/Degradation Test Six Year Results

    Energy Technology Data Exchange (ETDEWEB)

    M. K. Adler Flitton; C. W. Bishop; M. E. Delwiche; T. S. Yoder

    2004-09-01

    The Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) contains neutron-activated metals from non-fuel, nuclear reactor core components. The Long-Term Corrosion/Degradation (LTCD) Test is designed to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements to the environment. The test is using two proven, industry-standard methods—direct corrosion testing using metal coupons, and monitored corrosion testing using electrical/resistance probes—to determine corrosion rates for various metal alloys generally representing the metals of interest buried at the SDA, including Type 304L stainless steel, Type 316L stainless steel, Inconel 718, Beryllium S200F, Aluminum 6061, Zircaloy-4, low-carbon steel, and Ferralium 255. In the direct testing, metal coupons are retrieved for corrosion evaluation after having been buried in SDA backfill soil and exposed to natural SDA environmental conditions for times ranging from one year to as many as 32 years, depending on research needs and funding availability. In the monitored testing, electrical/resistance probes buried in SDA backfill soil will provide corrosion data for the duration of the test or until the probes fail. This report provides an update describing the current status of the test and documents results to date. Data from the one-year and three-year results are also included, for comparison and evaluation of trends. In the six-year results, most metals being tested showed extremely low measurable rates of general corrosion. For Type 304L stainless steel, Type 316L stainless steel, Inconel 718, and Ferralium 255, corrosion rates fell in the range of “no reportable” to 0.0002 mils per year (MPY). Corrosion rates for Zircaloy-4 ranged from no measurable corrosion to 0.0001 MPY. These rates are two orders of magnitude lower than those specified in

  6. Coal Ash Corrosion Resistant Materials Testing

    Energy Technology Data Exchange (ETDEWEB)

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2007-12-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that

  7. Stress corrosion cracking of metal matrix composites: Modeling and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.H.

    1990-10-01

    The stress corrosion crack growth ate of metal matrix composites has been described by a model which is dependent on the length-to- diameter ({ell}/d) ratio and volume fraction of the reinforcing phase and matrix creep component. The model predicts a large dependence of the stress corrosion crack growth rate of a metal matrix composite on {ell}/d and matrix creep component and a small dependence on the volume fraction of reinforcement. Experimentally determined crack growth rates for 7090 Al/SiC tested in 3.5% NcCl solution, 6061 Al/SiC tested in moist air with NaCl and immersed in NaCl solution, and Mg/Al{sub 2}0{sub 3} tested in a chloride/chromate solution are all consistent with the model. The close correspondence between the model and experiment for a matrix creep stress exponent of 3 suggest that there is little corrosion damage to the reinforcing phase in these systems. 16 refs., 5 figs.

  8. 49 CFR 192.471 - External corrosion control: Test leads.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Test leads. 192.471... Control § 192.471 External corrosion control: Test leads. (a) Each test lead wire must be connected to the pipeline so as to remain mechanically secure and electrically conductive. (b) Each test lead wire must be...

  9. Standard Operating Procedure for Accelerated Corrosion Testing at ARL

    Science.gov (United States)

    2017-11-01

    ARL-TN-0855 ● NOV 2017 US Army Research Laboratory Standard Operating Procedure for Accelerated Corrosion Testing at ARL by... Corrosion Testing at ARL by Thomas A Considine Weapons and Materials Research Directorate, ARL Approved for public... Corrosion Testing at ARL 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Thomas A Considine 5d. PROJECT NUMBER NA

  10. Fastener corrosion : testing, research, and design considerations

    Science.gov (United States)

    Douglas R. Rammer; Samuel L. Zelinka; Philip Line

    2006-01-01

    In 2004, the voluntary removal of chromated copper arsenate (CCA) from residential wood construction raised concern about corrosion of metal fasteners in wood treated with replacement preservatives. Replacement preservatives contain more copper, which may increase corrosion, and do not contain chromates or arsenates, which are known corrosion inhibitors. This paper is...

  11. Review of test methods used to determine the corrosion rate of metals in contact with treated wood

    Science.gov (United States)

    Samuel L. Zelinka; Douglas R. Rammer

    2005-01-01

    The purpose of this literature review is to give an overview of test methods previously used to evaluate the corrosion of metals in contact with wood. This article reviews the test methods used to evaluate the corrosion of metals in contact with wood by breaking the experiments into three groups: exposure tests, accelerated exposure tests, and electrochemical tests....

  12. High temperature corrosion investigation in an oxyfuel combustion test rig

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Bjurman, M.; Hjörnhede, A

    2014-01-01

    Oxyfuel firing and subsequent capture of CO2 is a way to reduce CO2 emissions from coal‐fired boilers. Literature is summarized highlighting results which may contribute to understanding of the corrosion processes in an oxyfuel boiler.Tests were conducted in a 500 kWth oxyfuel test facility...... constructed by Brandenburg Technical University to gain understanding into oxyfuel firing. Two air‐cooled corrosion probes were exposed in this oxyfuel combustion chamber where the fuel was lignite. Gas composition was measured at the location of testing. Various alloys from a 2½ Cr steel, austenitic steels...... (perhaps carburized) zone was used as a measure of corrosion rates. The lowest alloyed steel had the highest corrosion rate, and the other austenitic and nickel alloys had much lower corrosion rates. Precipitates in the alloy adjacent the corrosion front were revealed for both Sanicro 28 and C‐276. However...

  13. Selectable-Tip Corrosion-Testing Electrochemical Cell

    Science.gov (United States)

    Lomness, Janice; Hintze, Paul

    2008-01-01

    The figure depicts aspects of an electrochemical cell for pitting- corrosion tests of material specimens. The cell is designed to generate a region of corrosion having a pit diameter determined by the diameter of a selectable tip. The average depth of corrosion is controlled by controlling the total electric charge passing through the cell in a test. The cell is also designed to produce minimal artifacts associated with crevice corrosion. There are three selectable tips, having diameters of 0.1 in. (0.254 cm), 0.3 in. (0.762 cm), and 0.6 in. (1.524 cm), respectively.

  14. NASA's Beachside Corrosion Test Site and Current Environmentally Friendly Corrosion Control Initiatives

    Science.gov (United States)

    Russell, Richard W.; Calle, Luz Marina; Johnston, Frederick; Montgomery, Eliza L.; Curran, Jerome P.; Kolody, Mark R.

    2013-01-01

    NASA began corrosion studies at the Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term corrosion protective coatings for carbon steel. KSC's Beachside Corrosion Test Site (BCTS), which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring, environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acid ic exhaust from the solid rocket boosters. In the years that followed, numerous studies have identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosive environment at the launch pad. This paper presents a historical overview of over 45 years of corrosion and coating evaluation studies and a description of the BCTS's current capabilities. Additionally, current research and testing programs involving chromium free coatings, environmentally friendly corrosion preventative compounds, and alternates to nitric acid passivation will be discussed.

  15. Direct current testing to measure corrosiveness of wood preservatives

    Science.gov (United States)

    Samuel L. Zelinka; Douglas R. Rammer; Donald S. Stone; James T. Gilbertson

    2007-01-01

    A qualitative test that mimics the corrosion behaviour of metals in contact with treated wood without using wood specimens would be of great value in rapidly evaluating the corrosiveness of new wood preservatives. The objective of this study was to determine whether the linear polarisation resistance of metals immersed in a solution of preservative chemicals is related...

  16. Standard practice for preparing, cleaning, and evaluating corrosion test specimens

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This practice covers suggested procedures for preparing bare, solid metal specimens for tests, for removing corrosion products after the test has been completed, and for evaluating the corrosion damage that has occurred. Emphasis is placed on procedures related to the evaluation of corrosion by mass loss and pitting measurements. (Warning—In many cases the corrosion product on the reactive metals titanium and zirconium is a hard and tightly bonded oxide that defies removal by chemical or ordinary mechanical means. In many such cases, corrosion rates are established by mass gain rather than mass loss.) 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see 1 and 7.2.

  17. Corrosion

    Science.gov (United States)

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  18. [Stress-corrosion test of TIG welded CP-Ti].

    Science.gov (United States)

    Li, H; Wang, Y; Zhou, Z; Meng, X; Liang, Q; Zhang, X; Zhao, Y

    2000-12-01

    In this study TIG (Tungsten Inert Gas) welded CP-Ti were subjected to stress-corrosion test under 261 MPa in artificial saliva of 37 degrees C for 3 months. No significant difference was noted on mechanical test (P > 0.05). No color-changed and no micro-crack on the sample's surface yet. These results indicate that TIG welded CP-Ti offers excellent resistance to stress corrosion.

  19. From laboratory corrosion tests to a corrosion lifetime for wood fasteners : progress and challenges

    Science.gov (United States)

    Samuel L. Zelinka; Dominique Derome; Samuel V. Glass

    2010-01-01

    Determining a “corrosion-lifetime” for fasteners embedded in wood treated with recently adopted preservative systems depends upon successfully relating results of laboratory tests to in-service conditions. In contrast to laboratory tests where metal is embedded in wood at constant temperature and moisture content, the in-service temperature and moisture content of wood...

  20. A non-destructive test method to monitor corrosion products and corrosion-induced cracking in reinforced cement based materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Bradley Justin; Peterova, Adela

    2011-01-01

    This paper introduces a non-destructive test method to monitor the development of corrosion products as well as the corrosion-induced formation and propagation of cracks in cementitious materials. A parametric experimental investigation (utilizing x-ray attenuation measurement technique) was cond......This paper introduces a non-destructive test method to monitor the development of corrosion products as well as the corrosion-induced formation and propagation of cracks in cementitious materials. A parametric experimental investigation (utilizing x-ray attenuation measurement technique......) was conducted to describe the impact of water-to-cement ratio and corrosion current density (i.e., corrosion rate) on the reinforcement corrosion process. Focus was placed, in particular on the determination of the corrosion accommodating region (CAR) and time to corrosion-induced cracking. Experimental results......’s law. Furthermore, experimental results demonstrated that the depth of penetration of corrosion products as well as time to corrosion-induced cracking is varying for the different water-to-cement ratios and applied corrosion current densities....

  1. Aspects of corrosion testing of thermal-insulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Sheppard, K.G.; Weil, R.

    1983-01-01

    The literature dealing with corrosion by thermal-insulating materials in residential buildings is reviewed. Current corrosiveness test methods are discussed. In view of their shortcomings, the need for a new procedure is evident. Possible methods applicable to various types of insulation are considered. The program for developing the new procedure is outlined. Preliminary test results indicate relationships between existing coupon and rapidly executable electrochemical tests. Field data, which are beginning to be collected, are needed to establish the validity of the new test and its ability to predict behavior under service conditions.

  2. EXPERT PANEL OVERSIGHT COMMITTEE ASSESSMENT OF FY2008 CORROSION AND STRESS CORROSION CRACKING SIMULANT TESTING PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    BOOMER KD

    2009-01-08

    The Expert Panel Oversight Committee (EPOC) has been overseeing the implementation of selected parts of Recommendation III of the final report, Expert Panel workshop for Hanford Site Double-Shell Tank Waste Chemistry Optimization, RPP-RPT-22126. Recommendation III provided four specific requirements necessary for Panel approval of a proposal to revise the chemistry control limits for the Double-Shell Tanks (DSTs). One of the more significant requirements was successful performance of an accelerated stress corrosion cracking (SCC) experimental program. This testing program has evaluated the optimization of the chemistry controls to prevent corrosion in the interstitial liquid and supernatant regions of the DSTs.

  3. Standard Guide for Conducting Corrosion Tests in Field Applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This guide covers procedures for conducting corrosion tests in plant equipment or systems under operating conditions to evaluate the corrosion resistance of engineering materials. It does not cover electrochemical methods for determining corrosion rates. 1.1.1 While intended primarily for immersion tests, general guidelines provided can be applicable for exposure of test specimens in plant atmospheres, provided that placement and orientation of the test specimens is non-restrictive to air circulation. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. See also 10.4.2.

  4. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Guo, Changhong; Jiang, Guirong [College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004 (China); Shen, Dejiu, E-mail: DejiuShen@163.com [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2016-08-15

    Highlights: • Corrosion behaviors of a PEO coating was investigated after the salt spray test. • Corrosion products have significant effects on corrosion behaviors of the coating. • An electrochemical corrosion model is proposed. - Abstract: The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  5. RESULTS OF EXPERIMENT TO DETERMINE CORROSION RATES FOR 304L IN HB-LINE DISSOLVER VESSEL VENTILATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J; Kathryn Counts, K

    2008-02-22

    Radioactive material being processed as part of the DE3013 program for HB-Line will result in the presence of chlorides, and in some cases fluorides, in the dissolver. Material Science and Technology developed an experimental plan to evaluate the impact of chloride on corrosion of the dissolver vessel ventilation system. The plan set test variables from the proposed operating parameters, previous test results, and a desired maximum chloride concentration for processing. The test variables included concentrations of nitric acid, fluorides and chlorides, and the presence of a welded and stressed metal coupon. Table 1 contains expected general corrosion rates in the HB-Line vessel vent system from dissolution of 3013 contents of varying nitric acid and chloride content. These general corrosion rates were measured upstream of the condenser in the experiment's offgas system near the entrance to the dissolver. However, they could apply elsewhere in the offgas system, depending on factors not simulated in the testing, including offgas system temperatures and airflow. Localized corrosion was significant in Tests One, Two, and Three. This corrosion is significant because it will probably be the first mode of penetration of the 304L steel in several places in the system. See Table 2. For Tests One and Three, the penetration rate of localized corrosion was much higher than that for general corrosion. It was approximately four times higher in Test One and at least 45 times higher in Test Three, penetrating an entire coupon thickness of 54 mils in 186 hours or less. There was no significant difference in corrosion between welded areas and un-welded areas on coupons. There was also no significant attack on stressed portions of coupons. It is probable that the lack of corrosion was because the stressed areas were facing downwards and offered no place for condensation or deposits to form. Had deposits formed, pitting may have occurred and led to stress corrosion cracking. The

  6. Construction and testing of a flue-gas corrosion probe

    Energy Technology Data Exchange (ETDEWEB)

    Federer, J.I.; McEvers, J.A.

    1990-08-01

    The selection of suitable materials for industrial, waste-heat- recovery systems requires assessment of corrosion of materials in various flue-gas environments. Such assessments involve exposing candidate materials to high-temperature flue gases and analyzing the effects of the exposure conditions. Because corrosion is related to flue-gas chemical composition and temperature, variations in temperature complicate the determination of corrosion rates and corrosion mechanisms. Conversely, a relatively constant temperature allows a more accurate determination of the effects of exposure conditions. For this reason, controlled-temperature flue-gas corrosion probes were constructed and tested for exposure tests of materials. A prototype probe consisted of a silicon carbide tube specimen, supporting hardware, and instrumentation for controlling temperature by internal heating and cooling. An advanced probe included other tubular specimens. Testing of the probes in an industrial-type furnace at a nominal flue-gas temperature of 1200{degree}C revealed that temperature control was inadequate. The cooling mode imposed a substantial axial-temperature gradient on the specimens; while the heating mode imposed a smaller gradient, the heating capacity was very limited. 10 refs., 10 figs., 2 tabs.

  7. Electrochemical corrosion testing of fasteners in extracts of treated wood

    Science.gov (United States)

    Samuel L. Zelinka; Douglas R. Rammer; Donald S. Stone

    2008-01-01

    A recent change in wood preservatives has highlighted the need for a rapid, quantitative test to measure the corrosion rates of metals in contact with treated wood that could be used to evaluate new fasteners or new wood preservatives. A new method was developed where polarisation resistance tests were conducted on fasteners exposed to a water extract of wood treated...

  8. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2 field testing

    Energy Technology Data Exchange (ETDEWEB)

    Blough, J.L.; Seitz, W.W.; Girshik, A. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1998-06-01

    In Phase 1 of this project, laboratory experiments were performed on a variety of developmental and commercial tubing alloys and claddings by exposing them to fireside corrosion tests which simulated a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347, RA85H, HR3C, RA253MA, Fe{sub 3}Al + 5Cr, Ta-modified 310, NF 709, 690 clad, 671 clad, and 800HT for up to approximately 16,000 hours to the actual operating conditions of a 250-MW, coal-fired boiler. The samples were installed on air-cooled, retractable corrosion probes, installed in the reheater cavity, and controlled to the operating metal temperatures of an existing and advanced-cycle, coal-fired boiler. Samples of each alloy were exposed for 4,483, 11,348, and 15,883 hours of operation. The present results are for the metallurgical examination of the corrosion probe samples after the full 15,883 hours of exposure. A previous topical report has been issued for the 4,483 hours of exposure.

  9. Comparative Stress Corrosion Cracking and General Corrosion Resistance of Annealed and Hardened 440 C Stainless Steel - New Techniques in Stress Corrosion Testing

    Science.gov (United States)

    Mendreck, M. J.; Hurless, B. E.; Torres, P. D.; Danford, M. D.

    1998-01-01

    The corrosion and stress corrosion cracking (SCC) characteristics of annealed and hardened 440C stainless steel were evaluated in high humidity and 3.5-percent NaCl solution. Corrosion testing consisted of an evaluation of flat plates, with and without grease, in high humidity, as well as electrochemical testing in 3.5-percent NaCl. Stress corrosion testing consisted of conventional, constant strain, smooth bar testing in high humidity in addition to two relatively new techniques under evaluation at MSFC. These techniques involve either incremental or constant rate increases in the load applied to a precracked SE(B) specimen, monitoring the crack-opening-displacement response for indications of crack growth. The electrochemical corrosion testing demonstrated an order of magnitude greater general corrosion rate in the annealed 440C. All techniques for stress corrosion testing showed substantially better SCC resistance in the annealed material. The efficacy of the new techniques for stress corrosion testing was demonstrated both by the savings in time and the ability to better quantify SCC data.

  10. Surveillance and Monitoring Program Full-Scale Experiments to Evaluate the Potential for Corrosion in 3013 Containers

    Energy Technology Data Exchange (ETDEWEB)

    Narlesky, Joshua Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Berg, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Duque, Juan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harradine, David Martin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hill, Dallas Dwight [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kaczar, Gregory Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lillard, R. Scott [Univ. of Akron, OH (United States); Lopez, Annabelle Sarita [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Max Alfonso [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Peppers, Larry G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rios, Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Edward L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stroud, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trujillo, Leonardo Alberto [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Veirs, Douglas Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilson, Kennard Virden Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Worl, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-21

    A set of six long-term, full-scale experiments were initiated to determine the type and extent of corrosion that occurs in 3013 containers packaged with chloride-bearing plutonium oxide materials. The materials were exposed to a high relative humidity environment representative of actual packaging conditions for the materials in storage. The materials were sealed in instrumented, inner 3013 containers with corrosion specimens designed to test the corrosiveness of the environment inside the containers under various conditions. This report focuses on initial loading conditions that are used to establish a baseline to show how the conditions change throughout the storage lifetime of the containers.

  11. Corrosion Tests of Metals and Ceramics

    Science.gov (United States)

    1951-01-01

    of fertilizers and for the utilization of natural resources of the Tennessee Valle,. In each of these steps in development, problems for which no...cracked oncooling and expanded. Magnesite ----- . ...----------------------. . to 1 ------------- Sides smooth, both specimens deformed, absorbed melt...after test started, softened, cracked, and elongated above flux line. Magnesite --------------. . ..------------.---.---------- All specimens spalled

  12. Moessbauer Characterization of Rust Obtained in an Accelerated Corrosion Test

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, K. E.; Morales, A. L.; Arroyave, C. E.; Barrero, C. A. [Universidad de Antioquia, Grupo de Corrosion y Proteccion, Departamento de Ingenieria de Materiales (Colombia); Cook, D. C. [Old Dominion University, Department of Physics (United States)

    2003-06-15

    We have performed drying-humectation cyclical processes (CEBELCOR) on eight A36 low carbon steel coupons in NaCl solutions containing 1x10{sup -2} M and 1x10{sup -1} M concentrations. The main purpose of these experiments is to contribute to the understanding of the conditions for akaganeite formation. Additionally, and with the idea to perform a complete characterization of the rust, this work also considers the formation of other iron oxide phases. The corrosion products were characterized by Moessbauer spectroscopy and X-ray diffraction techniques. Gravimetric analysis demonstrates that the coupons presented high corrosion rates. Magnetite/maghemite was common in the rust stuck to the steel surface, whereas akaganeite was present only in traces. In the rust collected from the solutions, i.e., the rust that goes away from the metal surface easily, a magnetite/maghemite was not present and akaganeite showed up in larger quantities. These results support the idea that high concentrations of Cl{sup -} ions are required for the akaganeite formation. We concluded that akaganeite is not easily bonded to the rust layer; this may lead to the formation of a less protective rust layer and to higher corrosion rates.

  13. Results of short-term corrosion evaluation tests at Raft River

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.L.

    1977-10-01

    Four categories of short-term materials evaluation tests were conducted in geothermal fluid from Raft River Geothermal Experiment, Well No. 1, to obtain corrosion data relevant to the design of the Raft River Thermal Loop Facility. Test programs are described and the testing philosophies are discussed. All materials and configurations which were tested are identified and details of posttest visual examinations are presented. The materials are then assigned to appropriate performance categories on the basis of test behavior, and the possible service limitations are appraised.

  14. Erosion/corrosion testing of materials for oil sands applications

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, G.; Wolodko, J.; Alemaskin, K.; Been, J.; Danysh, M. [Alberta Research Council, Edmonton, AB (Canada)

    2008-07-01

    Erosion and corrosion are common wear mechanisms for components used in oil sands processing facilities. This paper described a slurry jet test apparatus designed to evaluate and assess materials for oil sands service conditions. The jet testing apparatus was designed to mimic the wet erosion phenomena typically found in oil sands applications. Wear- and corrosion-resistant materials tested by the apparatus included carbon steel, tungsten carbide metal matrix composite (WC-MMC) overlays, and a range of polymer and rubber liner materials. Polymeric materials included hydrogenated nitrile rubber (HNBR); polyurethane elastomer; and high density polyethylene (HDPE). Material losses were determined by measuring the mass of the samples before and after testing. Normalized rates of abrasion were calculated by dividing total mass lost in the specimens by the total mass of sand impinged on the sample surface. Samples were also visually assessed and analyzed using scanning electron microscopy (SEM) in order to determine failure modes. Tests were conducted for a 2-hour period at an impingement angle of 90 degrees. Results of the study showed that the average abrasion rates of the polymeric samples are lower than rates seen with the carbon steel and overlay materials. Future work on the apparatus will include testing the materials under varying slurry jet parameters. 15 refs., 5 tabs., 10 figs.

  15. Long-term stability and corrosion of high temperature alloys in HTR test helium

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, J.P.; Glaze, F.J.; Ali-Khan, I.

    1977-02-15

    Since the first test station was started up, about 60 long-time experiments have been completed within 2 years. Their running times lay between 100 and 9,000 hours. With these relatively short experimental times, the effect of strongly contaminated helium (simulation of the start-up phase of an HTR) on the long-time strength of the test materials could not be ascertained. Several results are graphically plotted. The micrographs below show several results from metallographic studies on long-time specimens in lengthwise section. The type and depth of corrosion attack by the HTR helium atmosphere varies considerably with the materials being studied. Specimens which were exposed to various helium contaminations in long-time test stations were subjected to metallographic study (KFA Juelich--CIIR Oslo). These studies showed that the corrosion behavior of the materials is more strongly influenced by the composition of the alloy than by the concentration of the helium contaminants.

  16. LIQUID AIR INTERFACE CORROSION TESTING FOR FY2010

    Energy Technology Data Exchange (ETDEWEB)

    Zapp, P.

    2010-12-16

    An experimental study was undertaken to investigate the corrosivity to carbon steel of the liquid-air interface of dilute simulated radioactive waste solutions. Open-circuit potentials were measured on ASTM A537 carbon steel specimens located slightly above, at, and below the liquid-air interface of simulated waste solutions. The 0.12-inch-diameter specimens used in the study were sized to respond to the assumed distinctive chemical environment of the liquid-air interface, where localized corrosion in poorly inhibited solutions may frequently be observed. The practical inhibition of such localized corrosion in liquid radioactive waste storage tanks is based on empirical testing and a model of a liquid-air interface environment that is made more corrosive than the underlying bulk liquid due to chemical changes brought about by absorbed atmospheric carbon dioxide. The chemical changes were assumed to create a more corrosive open-circuit potential in carbon in contact with the liquid-air interface. Arrays of 4 small specimens spaced about 0.3 in. apart were partially immersed so that one specimen contacted the top of the meniscus of the test solution. Two specimens contacted the bulk liquid below the meniscus and one specimen was positioned in the vapor space above the meniscus. Measurements were carried out for up to 16 hours to ensure steady-state had been obtained. The results showed that there was no significant difference in open-circuit potentials between the meniscus-contact specimens and the bulk-liquid-contact specimens. With the measurement technique employed, no difference was detected between the electrochemical conditions of the meniscus versus the bulk liquid. Stable open-circuit potentials were measured on the specimen located in the vapor space above the meniscus, showing that there existed an electrochemical connection through a thin film of solution extending up from the meniscus. This observation supports the Hobbs-Wallace model of the development

  17. Testing of intergranular and pitting corrosion in sensitized welded joints of austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Bore V. Jegdic

    2017-06-01

    Full Text Available Pitting corrosion resistance and intergranular corrosion of the austenitic stainless steel X5Cr Ni18-10 were tested on the base metal, heat affected zone and weld metal. Testing of pitting corrosion was performed by the potentiodynamic polarization method, while testing of intergranular corrosion was performed by the method of electrochemical potentiokinetic reactivation with double loop. The base metal was completely resistant to intergranular corrosion, while the heat affected zone showed a slight susceptibility to intergranular corrosion. Indicators of pitting corrosion resistance for the weld metal and the base metal were very similar, but their values are significantly higher than the values for the heat affected zone. This was caused by reduction of the chromium concentration in the grain boundary areas in the heat affected zone, even though the carbon content in the examined stainless steel is low (0.04 wt. % C.

  18. Standard guide for corrosion tests in high temperature or high pressure environment, or both

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide covers procedures, specimens, and equipment for conducting laboratory corrosion tests on metallic materials under conditions of high pressure (HP) or the combination of high temperature and high pressure (HTHP). See for definitions of high pressure and temperature. 1.2 Tests conducted under HP or HTHP by their nature have special requirements. This guide establishes the basic considerations that are necessary when these conditions must be incorporated into laboratory corrosion tests. 1.3 The procedures and methods in this guide are applicable for conducting mass loss corrosion, localized corrosion, and electrochemical tests as well as for use in environmentally induced cracking tests that need to be conducted under HP or HTHP conditions. 1.4 The primary purpose for this guide is to promote consistency of corrosion test results. Furthermore, this guide will aid in the comparison of corrosion data between laboratories or testing organizations that utilize different equipment. 1.5 The values s...

  19. Stress Corrosion Cracking of Steel and Aluminum in Sodium Hydroxide: Field Failure and Laboratory Test

    Directory of Open Access Journals (Sweden)

    Y. Prawoto

    2012-01-01

    Full Text Available Through an investigation of the field failure analysis and laboratory experiment, a study on (stress corrosion cracking SCC behavior of steel and aluminum was performed. All samples were extracted from known operating conditions from the field failures. Similar but accelerated laboratory test was subsequently conducted in such a way as to mimic the field failures. The crack depth and behavior of the SCC were then analyzed after the laboratory test and the mechanism of stress corrosion cracking was studied. The results show that for the same given stress relative to ultimate tensile strength, the susceptibility to SCC is greatly influenced by heat treatment. Furthermore, it was also concluded that when expressed relative to the (ultimate tensile strength UTS, aluminum has similar level of SCC susceptibility to that of steel, although with respect to the same absolute value of applied stress, aluminum is more susceptible to SCC in sodium hydroxide environment than steel.

  20. Testing and prediction of erosion-corrosion for corrosion resistant alloys used in the oil and gas production industry

    Science.gov (United States)

    Rincon, Hernan E.

    The corrosion behavior of CRAs has been thoroughly investigated and documented in the public literature by many researchers; however, little work has been done to investigate erosion-corrosion of such alloys. When sand particles are entrained in the flow, the degradation mechanism is different from that observed for sand-free corrosive environment. There is a need in the oil and gas industry to define safe service limits for utilization of such materials. The effects of flow conditions, sand rate, pH and temperature on the erosion-corrosion of CRAs were widely studied. An extensive experimental work was conducted using scratch tests and flow loop tests using several experimental techniques. At high erosivity conditions, a synergistic effect between erosion and corrosion was observed. Under the high sand rate conditions tested, erosivity is severe enough to damage the passive layer protecting the CRA thereby enhancing the corrosion rate. In most cases there is likely a competition between the rates of protective film removal due to mechanical erosion and protective film healing. Synergism occurs for each of the three alloys examined (13Cr and Super13Cr and 22Cr); however, the degree of synergism is quite different for the three alloys and may not be significant for 22Cr for field conditions where erosivities are typically much lower that those occurring in the small bore loop used in this research. Predictions of the corrosion component of erosion-corrosion based on scratch test data compared reasonably well to test results from flow loops for the three CRAs at high erosivity conditions. Second order behavior appears to be an appropriate and useful model for representing the repassivation process of CRAs. A framework for a procedure to predict penetration rates for erosion-corrosion conditions was developed based on the second order model behavior observed for the re-healing process of the passive film of CRAs and on computational fluid dynamics (CFD) simulations

  1. Application of ultrasonic method for testing corrosion state of NPP equipment and pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, Yu.V.; Grebennikov, V.V.; Grigor' ev, M.V.; Glek, Yu.S.

    1984-01-01

    Experience of using non-destructive ultrasonic testing of NPP equipment and pipelines is described. The method is applied for determination of general corrosion rate of structures of carbon and alloyed steels under operation as well as for disclosure and measurement of the depth of cracks on articles and pipelines of 08Kh18N10T steel. The testing is necessary for opportune NPP shut-down for repair as well as for determination of the resource of further operation of non-repairable structures. Specifications of ultrasonic thickness gauges flow detectors and flaw meters used for testing are given.

  2. Standard test method for measuring pH of soil for use in corrosion testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1995-01-01

    1.1 This test method covers a procedure for determining the pH of a soil in corrosion testing. The principle use of the test is to supplement soil resistivity measurements and thereby identify conditions under which the corrosion of metals in soil may be accentuated (see G 57 - 78 (1984)). 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  3. Short-term corrosion probe testing; Korrosionsprovning med korttidsexponerade sondprovet

    Energy Technology Data Exchange (ETDEWEB)

    Hoegberg, Jan [Vattenfall utveckling AB, Aelvkarleby (Sweden)

    2003-05-01

    A novel method for corrosion testing with short-term exposure of corrosion samples has been evaluated by trials in boilers fired fully or partly with biofuels. Sample rings of steels SS2216 and X20 were exposed in varying flue gas environments in the superheater region at the Idbaecken plant (Nykoeping) and the Sandvik 2 plant (Vaexjoe) under varying exposure times (12, 48 and 336 hours) and at three different material temperatures (400, 500 and 600 deg C). A longer trial was also performed at Idbaecken with one constant regulating temperature (500 deg C) and exposure times from 2 weeks up till 9 weeks. The thickness was measured before and after exposure in fixed positions. The rings were weighed and deposits were analysed in order to record the environment next to the corrosion samples. The method was able to detect differences in materials loss between the different samples. Increasing temperature and time gave as expected increasing materials loss. Because of widely varying weather conditions during the firing season the variations in load has from time to time had a larger effect on the flue gas composition than the additives that were injected to make the flue gas less aggressive. This has made the results from the exposures with and without additive more difficult to interpret but the dependence of the boiler load is clear. At exposure times shorter than two weeks (and at 400 deg C also at two weeks) the response in materials loss is less clear, negative values of materials loss occur, indicating that the limit of resolution is reached. The measured metal losses should be 15-20 gm or larger. The Vaexjoe samples show higher materials loss for the shorter exposure times than the ldbaecken samples, in spite of the less aggressive fuel in Vaexjoe. This is explained by a higher flue gas temperature at the testing position in the Vaexjoe plant. A higher temperature means a higher corrosion rate, but also higher vapour pressure for alkali chlorides. The highest

  4. Simulated Service and Stress Corrosion Cracking Testing for Friction Stir Welded Spun Formed Domes

    Science.gov (United States)

    Stewart, Thomas J.; Torres, Pablo D.; Caratus, Andrei A.; Curreri, Peter A.

    2010-01-01

    Simulated service testing (SST) development was required to help qualify a new 2195 aluminum lithium (Al-Li) alloy spin forming dome fabrication process for the National Aeronautics and Space Administration (NASA) Exploration Development Technology Program. The application for the technology is to produce high strength low weight tank components for NASA s next generation launch vehicles. Since plate material is not currently manufactured large enough to fabricate these domes, two plates are joined by means of friction stir welding. The plates are then pre-contour machined to near final thicknesses allowing for a thicker weld land and anticipating the level of stretch induced by the spin forming process. The welded plates are then placed in a spin forming tool and hot stretched using a trace method producing incremental contours. Finally the dome receives a room temperature contour stretch to final dimensions, heat treatment, quenching, and artificial aging to emulate a T-8 condition of temper. Stress corrosion cracking (SCC) tests were also performed by alternate immersion in a sodium chloride (NaCl) solution using the typical double beam assembly and with 4-point loaded specimens and use of bent-beam stress-corrosion test specimens under alternate immersion conditions. In addition, experiments were conducted to determine the threshold stress intensity factor for SCC (K(sub ISCC)) which to our knowledge has not been determined previously for Al-Li 2195 alloy. The successful simulated service and stress corrosion testing helped to provide confidence to continue to Ares 1 scale dome fabrication

  5. Intergranular corrosion testing of austenitic stainless steels in nitric acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Whillock, G.O.H.; Dunnett, B. F. [British Nuclear Fuels plc, BNFL, B170, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)

    2004-07-01

    In hot strong nitric acid solutions, stainless steels exhibit intergranular corrosion. Corrosion rates are often measured from immersion testing of specimens manufactured from the relevant material (e.g. plate or pipe). The corrosion rates, measured from weight loss, are found to increase with time prior to reaching steady state, which can take thousands of hours to achieve. The apparent increase in corrosion rate as a function of time was found to be an artefact due to the surface area of the specimen's being used in the corrosion rate calculations, rather than that of the true area undergoing active corrosion i.e. the grain boundaries. The steady state corrosion rate coincided with the onset of stable grain dropping, where the use of the surface area of the specimen to convert the weight loss measurements to corrosion rates was found to be appropriate. This was confirmed by sectioning of the specimens and measuring the penetration depths. The rate of penetration was found to be independent of time and no induction period was observed. A method was developed to shorten considerably the testing time to reach the steady state corrosion rate by use of a pre-treatment that induces grain dropping. The long-term corrosion rates from specimens which were pre-treated was similar to that achieved after prolonged testing of untreated (i.e. initially ground) specimens. The presence of cut surfaces is generally unavoidable in the simple immersion testing of specimens in test solutions. However, inaccuracy in the results may occur as the measured corrosion rate is often influenced by the orientation of the microstructure, the highest rates typically being observed on the cut surfaces. Two methods are presented which allow deconvolution of the corrosion rates from immersion testing of specimens containing cut surfaces, thus allowing reliable prediction of the long-term corrosion rate of plate surfaces. (authors)

  6. A teaching experiment of corrosion using visual colorimetry

    OpenAIRE

    Bidetti, Bárbara Bidoia [UNESP; Balthazar, Priscila Aoki [UNESP; Vaz, Ednilson Luiz Silva [UNESP; Codaro, Eduardo Norberto [UNESP; Acciari, Heloisa Andréa [UNESP

    2012-01-01

    In this paper, a simple and rapid method of evaluating galvanized steel sheet corrosion in a CuSO4 solution, as an experimentation proposal for corrosion teaching. Galvanized steel corrosion is present in tanks and tubing by leading of natural or industrial waters which contain soluble copper compounds. This was the rationale for choosing the Cu2+ ions solution as an oxidizing agent. The method principle is based on visual colorimetry because the used oxidant has an intense blue color. Thus, ...

  7. Exposure testing of fasteners in preservative treated wood : gravimetric corrosion rates and corrosion product analyses

    Science.gov (United States)

    Samuel L. Zelinka; Rebecca J. Sichel; Donald S. Stone

    2010-01-01

    Research was conducted to determine the corrosion rates of metals in preservative treated wood and also understand the mechanism of metal corrosion in treated wood. Steel and hot-dip galvanized steel fasteners were embedded in wood treated with one of six preservative treatments and exposed to 27oC at 100% relative humidity for 1 year. The...

  8. Screening of soil corrosivity by field testing: Results and design of an electrochemical soil corrosion probe

    DEFF Research Database (Denmark)

    Nielsen, Lars vendelbo; Bruun, Niels Kåre

    1996-01-01

    The corrosivity of different types of soil have been assessed by exposing carbon-steel plates at 50 different locations in Denmark for an extended period of time. The investigations included weight loss measurements and analysis of the chemical compositions of the corrosion products formed...... on the plates during exposure. An electrochemical soil corrosion probe has been designed and manufactured allowing for simultaneous measurements of several qauntities to predict corrosion. The probe consists of individual sections capable of measuring redox-potential, corrosion potential, soil resistivity...... and hydrogen absorption rates. In addition, traditional carbon-steel 3-electrode arrangements allow for performance of any kind of electrochemical meaurement (EIS, polarisation curves, LPR-measurements, galvanostatic pulse etc.)....

  9. Experimental Investigation of the Corrosion Behavior of Friction Stir Welded AZ61A Magnesium Alloy Welds under Salt Spray Corrosion Test and Galvanic Corrosion Test Using Response Surface Methodology

    OpenAIRE

    Dhanapal, A.; S. RAJENDRA BOOPATHY; Balasubramanian, V.; Chidambaram, K.; A. R. Thoheer Zaman

    2013-01-01

    Extruded Mg alloy plates of 6 mm thick of AZ61A grade were butt welded using advanced welding process and friction stir welding (FSW) processes. The specimens were exposed to salt spray conditions and immersion conditions to characterize their corrosion rates on the effect of pH value, chloride ion concentration, and corrosion time. In addition, an attempt was made to develop an empirical relationship to predict the corrosion rate of FSW welds in salt spray corrosion test and galvanic corrosi...

  10. Corrosion testing of Type 304L stainless steel for waste tank applications

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.J.; Mickalonis, J.I.

    1991-12-31

    AISI Type 304L stainless steel will be the material of construction for hazardous waste storage tanks. The corrosion behavior of 304L was characterized in simulated waste solutions using potentiodynamic polarization, electrochemical impedance spectroscopy and long term immersion tests. The results were correlated to assess the use of corrosion characteristics determined by electrochemical techniques for predicting long term corrosion behavior. The corrosion behaviors of Type A537 carbon steel and Incoloy 825 were also evaluated. A good correlation was found between the results from the electrochemical techniques and the immersion tests.

  11. High-temperature metal corrosion tests for HI decomposer

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Young; Kim, Young Soo; Sah, In Jin; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2012-05-15

    The Sulfur-Iodine thermochemical Nuclear hydrogen production process is composed of three parts, Bunsen reaction, sulfuric acid decomposition reaction and hydriodic acid decomposition reaction. Among them, hydriodic acid decomposition reaction has low kinetics and equilibrium yield is poor, being an efficiency-determining step.1) Thus, many efforts are tried to raise the reaction rate and yield, such as extractive/reactive distillation or EED method. High temperature decomposition process,2) another candidate of HI decomposition method nowadays, has a simple process but due to highly corrosive environment, a material problem is one of crucial obstacles. In this paper, a number of structure material candidates are tested at high temperature for HI decomposition process

  12. LABORATORY TESTING TO SIMULATE VAPOR SPACE CORROSION IN RADIOACTIVE WASTE STORAGE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.; Garcia-Diaz, B.; Gray, J.

    2013-08-30

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 70 years at the Hanford nuclear facility. Vapor space corrosion of the tank walls has emerged as an ongoing challenge to overcome in maintaining the structural integrity of these tanks. The interaction between corrosive and inhibitor species in condensates/supernates on the tank wall above the liquid level, and their interaction with vapor phase constituents as the liquid evaporates from the tank wall influences the formation of corrosion products and the corrosion of the carbon steel. An effort is underway to gain an understanding of the mechanism of vapor space corrosion. Localized corrosion, in the form of pitting, is of particular interest in the vapor space. CPP testing was utilized to determine the susceptibility of the steel in a simulated vapor space environment. The tests also investigated the impact of ammonia gas in the vapor space area on the corrosion of the steel. Vapor space coupon tests were also performed to investigate the evolution of the corrosion products during longer term exposures. These tests were also conducted at vapor space ammonia levels of 50 and 550 ppm NH{sub 3} (0.005, and 0.055 vol.%) in air. Ammonia was shown to mitigate vapor space corrosion.

  13. Letter report on PCT/Monolith glass ceramic corrosion tests

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-24

    The Savannah River National Laboratory (SRNL) is collaborating with personnel from Pacific Northwest National Laboratory (PNNL) to study advanced waste form glass ceramics for immobilization of waste from Used Nuclear Fuel (UNF) separations processes. The glass ceramic waste forms take advantage of both crystalline and glassy phases where ‘troublesome’ elements (e.g., low solubility in glass or very long-lived) partition to highly durable ceramic phases with the remainder of elements residing in the glassy phase. The ceramic phases are tailored to create certain minerals or unique crystalline structures that can host the radionuclides by binding them in their specific crystalline network while not adversely impacting the residual glass network (Crum et al., 2011). Glass ceramics have been demonstrated using a scaled melter test performed in a pilot scale (1/4 scale) cold crucible induction melter (CCIM) (Crum et al., 2014; Maio et al., 2015). This report summarizes recent results from both Phase I and Phase II bench scale tests involving crucible fabrication and corrosion testing of glass ceramics using the Product Consistency Test (PCT). Preliminary results from both Phase I and Phase II bench scale tests involving statistically designed matrices have previously been reported (Crawford, 2013; Crawford, 2014).

  14. Corrosion testing of spent nuclear fuel performed at Argonne National Laboratory for repository acceptance

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, M. M.

    2000-07-20

    Corrosion tests of DOE-owned spent nuclear fuel are performed at Argonne National Laboratory to support the license application for the Yucca Mountain Repository. The tests are designed to determine corrosion rates and degradation products formed when fuel is reacted at elevated temperature in different aqueous environments, including vapor, dripping water, submersion, and liquid film contact. Corrosion rates are determined from the quantity of radionuclides released from wetted fuel and from the weight loss of the test fuel specimen as a function of time. Degradation products include secondary mineral phases and dissolved, adsorbed, and colloidal species. Solid phase examinations determine fuel/mineral interface relationships, characterize radionuclide incorporation into secondary phases, and determine corrosion mechanisms at grain interfaces within the fuel. Leachate solution analyses quantify released radionuclides and determine the size and charge distribution of colloids. This paper presents selected results from corrosion tests on metallic fuels.

  15. Aqueous corrosion of borosilicate glasses: experiments, modeling and Monte-Carlo simulations; Alteration par l'eau des verres borosilicates: experiences, modelisation et simulations Monte-Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Ledieu, A

    2004-10-01

    This work is concerned with the corrosion of borosilicate glasses with variable oxide contents. The originality of this study is the complementary use of experiments and numerical simulations. This study is expected to contribute to a better understanding of the corrosion of nuclear waste confinement glasses. First, the corrosion of glasses containing only silicon, boron and sodium oxides has been studied. The kinetics of leaching show that the rate of leaching and the final degree of corrosion sharply depend on the boron content through a percolation mechanism. For some glass contents and some conditions of leaching, the layer which appears at the glass surface stops the release of soluble species (boron and sodium). This altered layer (also called the gel layer) has been characterized with nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) techniques. Second, additional elements have been included in the glass composition. It appears that calcium, zirconium or aluminum oxides strongly modify the final degree of corrosion so that the percolation properties of the boron sub-network is no more a sufficient explanation to account for the behavior of these glasses. Meanwhile, we have developed a theoretical model, based on the dissolution and the reprecipitation of the silicon. Kinetic Monte Carlo simulations have been used in order to test several concepts such as the boron percolation, the local reactivity of weakly soluble elements and the restructuring of the gel layer. This model has been fully validated by comparison with the results on the three oxide glasses. Then, it has been used as a comprehensive tool to investigate the paradoxical behavior of the aluminum and zirconium glasses: although these elements slow down the corrosion kinetics, they lead to a deeper final degree of corrosion. The main contribution of this work is that the final degree of corrosion of borosilicate glasses results from the competition of two opposite mechanisms

  16. Development of a corrosion detection experiment to evaluate conventional and advanced NDI techniques

    Energy Technology Data Exchange (ETDEWEB)

    Roach, D.

    1995-12-31

    The Aging Aircraft NDI Validation Center (AANC) was established by the Federal Aviation Administration Technical Center (FAATC) at Sandia National Laboratories in August of 1991. The goal of the AANC is to provide independent validation of technologies intended to enhance the structural inspection of aging commuter and transport aircraft. The deliverables from the AANC`s validation activities are assessments of the reliability of existing and emerging inspection technologies as well as analyses of the cost benefits to be derived from their implementation. This paper describes the methodology developed by the AANC to assess the performance of NDI techniques. In particular, an experiment being developed to evaluate corrosion detection devices will be presented. The experiment uses engineered test specimens, as well as complete aircraft test beds to provide metrics for NDI validation.

  17. DEPOSITION TANK CORROSION TESTING FOR ENHANCED CHEMICAL CLEANING POST OXALIC ACID DESTRUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.

    2011-08-29

    An Enhanced Chemical Cleaning (ECC) process is being developed to aid in the high level waste tank closure at the Savannah River Site. The ECC process uses an advanced oxidation process (AOP) to destroy the oxalic acid that is used to remove residual sludge from a waste tank prior to closure. The AOP process treats the dissolved sludge with ozone to decompose the oxalic acid through reactions with hydroxyl radicals. The effluent from this oxalic acid decomposition is to be sent to a Type III waste tank and may be corrosive to these tanks. As part of the hazardous simulant testing that was conducted at the ECC vendor location, corrosion testing was conducted to determine the general corrosion rate for the deposition tank and to assess the susceptibility to localized corrosion, especially pitting. Both of these factors impact the calculation of hydrogen gas generation and the structural integrity of the tanks, which are considered safety class functions. The testing consisted of immersion and electrochemical testing of A537 carbon steel, the material of construction of Type III tanks, and 304L stainless steel, the material of construction for transfer piping. Tests were conducted in solutions removed from the destruction loop of the prototype ECC set up. Hazardous simulants, which were manufactured at SRNL, were used as representative sludges for F-area and H-area waste tanks. Oxalic acid concentrations of 1 and 2.5% were used to dissolve the sludge as a feed to the ECC process. Test solutions included the uninhibited effluent, as well as the effluent treated for corrosion control. The corrosion control options included mixing with an inhibited supernate and the addition of hydroxide. Evaporation of the uninhibited effluent was also tested since it may have a positive impact on reducing corrosion. All corrosion testing was conducted at 50 C. The uninhibited effluent was found to increase the corrosion rate by an order of magnitude from less than 1 mil per year (mpy

  18. The corrosion rate of copper in a bentonite test package measured with electric resistance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Rosborg, Bo [Division of Surface and Corrosion Science, KTH, Stockholm (Sweden); Kosec, Tadeja; Kranjc, Andrej; Kuhar, Viljem; Legat, Andraz [Slovenian National Building and Civil Engineering Institute, Ljubljana (Slovenia)

    2012-12-15

    LOT1 test parcel A2 was exposed for six years in the Aespoe Hard Rock Laboratory, which offers a realistic environment for the conditions that will prevail in a deep repository for high-level radioactive waste disposal in Sweden. The test parcel contained copper electrodes for real-time corrosion monitoring in bentonite ring 36, where the temperature was 24 deg C, and copper coupons in bentonite rings 22 and 30, where the temperature was higher. After retrieval of the test parcel in January 2006, a bentonite test package consisting of bentonite rings 35 - 37 was placed in a container and sealed with a thick layer of paraffin. Later the same year new copper electrodes were installed in the test package. In January 2007 electric resistance (ER) sensors of pure copper with a thickness of 35 {mu}m were also installed in the test package mainly to facilitate the interpretation of the results from the real-time corrosion monitoring with electrochemical techniques. The ER measurements have shown that the corrosion rate of pure copper exposed in an oxic bentonite/ saline groundwater environment at room temperate decreases slowly with time to low but measurable values. The corrosion rates estimated from the regularly performed EIS measurements replicate the ER data. Thus, for this oxic environment in which copper acquires corrosion potentials of the order of 200 mV (SHE) or higher, electrochemical measurements provide believable data. Comparing the recorded ER data with an estimate of the average corrosion rate based on comparing cross-sections from exposed and protected sensor elements, it is obvious that the former overestimates the actual corrosion rate, which is understandable. It seems as if electrochemical measurements can provide a better estimate of the corrosion rate; however, this is quite dependent on the use of proper measuring frequencies and evaluation methods. In this respect ER measurements are more reliable. It has been shown that real-time corrosion

  19. Initial report on stress-corrosion-cracking experiments using Zircaloy-4 spent fuel cladding C-rings

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.D.

    1988-09-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Project is sponsoring C-ring stress corrosion cracking scoping experiments as a first step in evaluating the potential for stress corrosion cracking of spent fuel cladding in a potential tuff repository environment. The objective is to scope the approximate behavior so that more precise pressurized tube testing can be performed over an appropriate range of stress, without expanding the long-term effort needlessly. The experiment consists of stressing, by compression with a dead weight load, C-rings fabricated from spent fuel cladding exposed to an environment of Well J-13 water held at 90{degree}C. The results indicate that stress corrosion cracking occurs at the high stress levels employed in the experiments. The cladding C-rings, tested at 90% of the stress at which elastic behavior is obtained in these specimens, broke in 25 to 64 d when tested in water. This was about one third of the time required for control tests to break in air. This is apparently the first observation of stress corrosion under the test conditions of relatively low temperature, benign environment but very high stress. The 150 ksi test stress could be applied as a result of the particular specimen geometry. By comparison, the uniaxial tensile yield stress is about 100 to 120 ksi and the ultimate stress is about 150 ksi. When a general model that fits the high stress results is extrapolated to lower stress levels, it indicates that the C-rings in experiments now running at {approximately}80% of the yield strength should take 200 to 225 d to break. 21 refs., 24 figs., 5 tabs.

  20. Field testing results for the strategic petroleum reserve pipeline corrosion control program

    Energy Technology Data Exchange (ETDEWEB)

    Buchheit, R.G.; Maestas, L.M.; Hinkebein, T.E.

    1998-02-01

    Results of two studies conducted as part of the Strategic Petroleum Reserve (SPR) Pipeline Corrosion Control Program are reported. These studies focused on evaluation of rotary-applied concrete materials for internal pipeline protection against the erosive and corrosive effects of flowing brine. The study also included evaluation of liners applied by hand on pipe pieces that cannot be lined by rotary methods. Such pipe pieces include tees, elbows and flanged pipe sections. Results are reported from a corrosion survey of 17 different liner formulations tested at the-Big-Rill SPR Site. Testing consisted of electrochemical corrosion rate measurements made on lined pipe sections exposed, in a test manifold, to flowing SPR generated fluids. Testing also involved cumulative immersion exposure where samples were exposed to static site-generated brine for increasing periods of time. Samples were returned to the laboratory for various diagnostic analyses. Results of this study showed that standard calcium silicate concrete (API RP10E) and a rotary calcium aluminate concrete formulation were excellent performers. Hand-lined pipe pieces did not provide as much corrosion protection. The focus of the second part of the study was on further evaluation of the calcium silicate, calcium aluminate and hand-applied liners in actual SPR equipment and service. It was a further objective to assess the practicality of electrochemical impedance spectroscopy (EIS) for field corrosion monitoring of concrete lined pipe compared to the more well-known linear polarization technique. This study showed that concrete linings reduced the corrosion rate for bare steel from 10 to 15 mils per year to 1 mil per year or less. Again, the hand-applied liners did not provide as much corrosion protection as the rotary-applied liners. The EIS technique was found to be robust for field corrosion measurements. Mechanistic and kinetic corrosion rate data were reliably obtained.

  1. Preparation and testing of corrosion and spallation-resistant coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, John P. [Univ. of North Dakota, Grand Forks, ND (United States); Cavalli, Matthew N. [Univ. of North Dakota, Grand Forks, ND (United States)

    2016-06-30

    its standard oxidation, spallation, and corrosion testing, which was scheduled for completion in the spring of 2016. However, because of commercial demands, the tests were not completed by the time of this report except some initial spallation tests at 1150°C. In those tests, several of the APMT plates separated from the CM247LC, likely because of the remaining aluminum oxide scale on the surface of the CM247LC. This implies that surface preparation may need to include machining to remove the oxide scale before bonding rather than just sandblasting. In previous tensile testing at 950°C, the breaks in the tensile samples always occurred in the APMT and not at the joints. Gasifier sampling was completed to determine what types of trace contaminants may occur in cleaned and combusted syngas and that could lead to corrosion or deposition in turbines firing coal syngas. The sampling was done from a pressurized fluidized-bed gasifier and a pressurized entrained-flow gasifier. The particles captured on a filter from syngas were typically 0.2 to 0.5 μm in diameter, whereas those captured from the combusted syngas were slightly larger and more spherical. X-ray photoelectron spectroscopy done at Oak Ridge National Laboratory showed that the particles do not contain any metals and have an atomic composition almost identical to that of the polycarbonate filter. This indicates that the particles are primarily soot-based and not formed from volatilization of metals in the gasifiers.

  2. Investigation of the cut-edge corrosion of organically-coated galvanized steel after accelerated atmospheric corrosion test

    Directory of Open Access Journals (Sweden)

    Reşit Yıldız

    2015-11-01

    Full Text Available The cut edge corrosion of organically coated (epoxy, polyurethane and polyester galvanized steel was investigated using electrochemical impedance spectroscopy (EIS. Measurements were performed on specimens that had been tested in an accelerated atmospheric corrosion test. The samples were subjected to 10 s fogging and 1 h awaiting cycles in an exposure cabinet (120 and 180 days with artificial acid rain solution. According to the investigation, the coatings were damaged from the cut edge into the sheet, this distance was about 0.8 cm. These defects were more pronounced at after 180 days in proportion to after 120 days.

  3. Correlation of Process Data and Electrochemical Noise to Assess Kraft Digester Corrosion: Kamloops Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, SJ

    2002-05-09

    Electrochemical noise (ECN) probes were deployed in a carbon steel continuous kraft digester at five locations roughly equi-spaced from top to bottom of the vessel. Current and potential noise, the temperature at each probe location, and the value of about 60 process parameters (flow rates, liquor chemistry, etc.) were monitored continuously for a period of one year. Historical vessel inspection data, including inspections accomplished immediately prior to and immediately following probe deployment, and post-test evaluation of the probe components were used to assess/compare corrosion indications from the probes with physical changes in wall thickness and corrosion patterns on the digester shell. The results indicate that furnish composition is a significant variable influencing digester corrosion, with increasing amounts of Douglas fir in the nominal furnish correlating directly with increased corrosion activity on the ECN probes. All five probes detected changes in furnish composition approximately simultaneously, indicating rapid chemical communication through the liquor, but the effect was strongest and persisted longest relatively high in the digester. The ECN probes also indicate significant corrosion activity occurred at each probe position during shutdown/restart transients. Little or no correlation between ECN probe corrosion activity and other operational variables was observed. Post-test evaluation of the probes confirmed general corrosion of a magnitude that closely agreed with corrosion current sums calculated for each probe over the exposure period and with historical average corrosion rates for the respective locations. Further, no pitting was observed on any of the electrodes, which is consistent with the ECN data, relevant polarization curves developed for steel in liquor removed from the digester, and the post-test inspection of the digester.

  4. Corrosion testing of selected packaging materials for disposal of high-level waste glass in rock-salt formations

    Energy Technology Data Exchange (ETDEWEB)

    Smailos, E.; Schwarzkopf, W.; Koester, R.; Fiehn, B.; Halm, G. [Kernforschungszentrum Karlsruhe GmbH (DE)

    1991-12-31

    In previous corrosion studies performed in salt brines, unalloyed steels, Ti 99.8-Pd and Hastelloy C4 have proved to be the most promising materials for long-term resistant packagings to be used in heat-generating waste (vitrified HLW, spent fuel) disposal in rock-salt formations. Investigations of the iron-base materials Ni-Resist D2 and D4, cast iron and Si-cast iron have also been carried out in order to complete the results available to date. The three steels (fine-grained steel, low-carbon steel, cast steel) investigated and Ti 99.8-Pd resisted pitting and crevice corrosion as well as stress-corrosion cracking under all test conditions. Gamma dose-rates of 1 Gy/h - 100 Gy/h or H{sub 2}S concentrations in the brines as well as welding and explosion plating did not influence noticeably the corrosion behaviour of the materials. Furthermore, the determined corrosion rates of the steels (50 {mu}m/a-250 {mu}m/a, depending on the test conditions) are intercomparable and imply technically acceptable corrosion allowances for the thick-walled containers discussed. For Ti 99.8-Pd no detectable corrosion was observed. By contrast, Hastelloy C4 proved susceptible to pitting and crevice corrosion at gamme dose-rates higher than 1 Gy/h and in the presence of H{sub 2}S (25 mg/l) in Q-brine. The materials Ni Resist D2 and D4, cast iron and Si-cast iron corroded at negligible rates in the in-situ experiments performed in rock salt/limited amounts of NaCI-brine. Nevertheless, these materials must be ruled out as container materials because they have proved to be susceptible to pitting and intergranular corrosion in previous laboratory studies conducted with MgCI{sub 2}-rich brine (Q-brine) in excess. 15 refs.; 29 figs.; 7 tabs.

  5. Miniature Canister (MiniCan) Corrosion experiment progress report 4 for 2008-2011

    Energy Technology Data Exchange (ETDEWEB)

    Smart, Nick; Reddy, Bharti; Rance, Andy [Serco, Hook (United Kingdom)

    2012-06-15

    To ensure the safe encapsulation of spent nuclear fuel rods for geological disposal, SKB of Sweden are considering using the Copper-Iron Canister, which consists of an outer copper canister and a cast iron insert. Over the years a programme of laboratory work has been carried out to investigate a range of corrosion issues associated with the canister, including the possibility of expansion of the outer copper canister as a result of the anaerobic corrosion of the cast iron insert. Previous experimental work using stacks of test specimens has not shown any evidence of corrosion-induced expansion. However, as a further step in developing an understanding of the likely performance of the canister in a repository environment, Serco has set up a series of experiments in SKB's Aespoe Hard Rock Laboratory (HRL) using inactive model canisters, in which leaks were deliberately introduced into the outer copper canister while surrounded by bentonite, with the aim of obtaining information about the internal corrosion evolution of the internal environment. The experiments use five small scale model canisters (300 mm long x 150 mm diameter) that simulate the main features of the SKB canister design (hence the project name, 'MiniCan'). The main aim of the work is to examine how corrosion of the cast iron insert will evolve if a leak is present in the outer copper canister. This report describes the progress on the five experiments running at the Aespoe Hard Rock Laboratory and the data obtained from the start of the experiments in late 2006 up to Winter 2011. The full details of the design and installation of the experiments are given in a previous report and this report concentrates on summarising and interpreting the data obtained to date. This report follows the earlier progress reports presenting results up to December 2010. The current document (progress report 4) describes work up to December 2011. The current report presents the results of the water analyses

  6. Structural analysis and intergranular corrosion tests of AISI 316L steel

    National Research Council Canada - National Science Library

    STONAWSKÁ, Z; SVOBODA, M; SOZAŃSKA, M; KŘÍSTKOVÁ, M; SOJKA, J; DAGBERT, C; HYSPECKÁ, L

    2006-01-01

    ... (650 °C). Two quite different intergranular corrosion tests are used to determine the degree of structural sensitization due to the precipitation of secondary phases along the grain boundaries...

  7. Design and testing of corrosion damaged prestressed concrete joists: the Pescara Benchmark

    Science.gov (United States)

    Di Evangelista, A.; De Leonardis, A.; Valente, C.; Zuccarino, L.

    2011-07-01

    An experimental campaign named the Pescara benchmark and devoted to study the dynamic behaviour of corroded p.c. joists has been conducted. The steel corrosion reduces the area of the reinforcement and causes cracking of concrete so that r/c members are subjected to loss of strength and stiffness. It is of interest to evaluate the corrosion level at which the damage can be detected through signal processing procedures and how close such level is to the r/c member safety limits. Joists of current industrial production having different steel to concrete ratios are tested in different laboratory conditions. Dynamic tests involve either free vibrations and forced vibrations due to a moving mass simulating actual traffic loads in railway bridges. The paper discusses the rationale of the tests including the set up of the artificial corrosion, the static characterization of the joist and the dynamic tests in the different stages of corrosion experienced.

  8. Investigation of the corrosion of MgO-graphite ladle refractories via a laboratory slag test

    Science.gov (United States)

    Akkurt, Sedat

    Corrosion and erosion of refractory bricks used for lining the slag-line of secondary steelmaking vessels are an important problem. Refractories are a major cost factor in steel shops and their loss needs to be minimized. Corrosion of MgO-C refractories occurs through the loss of carbon bond phase and by reaction with corrosive slags. A laboratory slag corrosion testing method was developed and successfully used to obtain a mathematical model to describe the corrosion process and its dependence on time, temperature, slag basicity and atmosphere. Response surface plots as a function of time, temperature, slag basicity were graphically plotted, and a polynomial equation was developed to predict the amount of corrosion in the range of factors studied. The correlation coefficient of the model developed was 0.95. Other experimental methods have long suffered from lack of reliable and reproducable quantitative data mainly due to the lack of adequate control of important factors that influence the corrosion rate. The tests used were performed in isothermal conditions in a controlled atmosphere in a vertical tube furnace while the refractory specimens were immersed into the melt for prescribed amounts of time. Activation energy for slag viscosity was estimated from high temperature viscosity measurements. The mathematical model developed can be used by steelmakers followed by a limited number of more refined tests using their industrial materials.

  9. Miniature Canister (MiniCan) Corrosion Experiment Progress Report 3 for 2008-2010

    Energy Technology Data Exchange (ETDEWEB)

    Smart, N.R.; Reddy, B.; Rance, A.P. (Serco (United Kingdom))

    2011-08-15

    To ensure the safe encapsulation of spent nuclear fuel rods for geological disposal, SKB of Sweden are considering using the Copper-Iron Canister, which consists of an outer copper canister and a cast iron insert. Over the years a programme of laboratory work has been carried out to investigate a range of corrosion issues associated with the canister, including the possibility of expansion of the outer copper canister as a result of the anaerobic corrosion of the cast iron insert. Previous experimental work using stacks of test specimens has not shown any evidence of corrosion-induced expansion. However, as a further step in developing an understanding of the likely performance of the canister in a repository environment, Serco has set up a series of experiments in SKB's Aespoe Hard Rock Laboratory (HRL) using inactive model canisters, in which leaks were deliberately introduced into the outer copper canister while surrounded by bentonite, with the aim of obtaining information about the internal corrosion evolution of the internal environment. The experiments use five small-scale model canisters (300 mm long x 150 mm diameter) that simulate the main features of the SKB canister design (hence the project name, 'MiniCan'). The main aim of the work is to examine how corrosion of the cast iron insert will evolve if a leak is present in the outer copper canister. This report describes the progress on the five experiments running at the Aespoe Hard Rock Laboratory and the data obtained from the start of the experiments in late 2006 up to Winter 2010. The full details of the design and installation of the experiments are given in a previous report and this report concentrates on summarising and interpreting the data obtained to date. This report follows two earlier progress reports presenting results up to December 2009. The current document (progress report 3) describes work up to December 2010. The current report presents the results of the water analyses

  10. ELECTROCHEMICAL CORROSION TEST RESULTS FOR TANK 241-SY-102 SUPERNATE GRAB SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN JB

    2007-04-09

    This report describes the electrochemical corrosion scans and conditions for testing of SY-102 supernatant samples taken December 2004. The testing was performed because the tank was under a Justification for Continued Operation allowing the supernatant composition to be outside the chemistry limits of Administrative Control 5.16, 'Corrosion Mitigation program'. A new electrochemical working electrode of A516 Grade 60 carbon steel was used for each scan; all scans were measured against a saturated calomel electrode, with carbon counter electrodes, and all scans were carried out at 50 C. The samples were scanned twice, once as received and once sparged with argon to deoxygenate the sample. For those scans conducted after argon purging, the corrosion rates ranged from 0.012 to 0.019 mpy. A test for stress corrosion cracking was carried out on one sample (2SY-04-07) with negative results.

  11. Electrochemical testing of passivity state and corrosion resistance of supermartensitic stainless steels

    Directory of Open Access Journals (Sweden)

    S. Lasek

    2010-01-01

    Full Text Available On low interstitial - supermartensitic stainless steels (X1CrNiMo 12-5-1, X2CrNiMo 13-6-2, X1CrNiMo 12-6-2 the electrochemical potentiodynamic polarization tests were carried out and the passive state stability and localized corrosion resistance were compared and evaluated. The effect of quenching and tempering as well as the changes in microstructure on polarisation curves and corrosion properties at room temperature were established. Small differences in chemical composition of steels were also registered on their corrosion parameters changes and resistance.

  12. Operation corrosion test of austenitic steel bends for supercritical coal boilers

    Directory of Open Access Journals (Sweden)

    Cizner J.

    2016-03-01

    Full Text Available Corrosion tests of both annealed and not annealed bends of HR3C and S304H steels in operation conditions of black and brown coal combustion boilers in EPRU and EDE. After a long-term exposure, the samples were assessed gravimetrically and metallographically. The comparison of annealed and unannealed states showed higher corrosion rates in the annealed state; corrosion of the sample surface did not essentially differ for compression and tensile parts of the beams. Detailed assessment of both steels is described in detail in this study.

  13. Probability density fittings of corrosion test-data: Implications on ...

    Indian Academy of Sciences (India)

    ASTM C192/192M-02 (2005). The rebar protrusion was painted with glossy paint after the casting of concrete specimens. 2.2 Experimental methods ...... inhibitor into nanoparticles and its active corrosion protection for steel sheets. Surf. Coat. Technol. 206: 2354–2362. Chung L, Kim J H J and Yi S T 2008 Bond strength ...

  14. Corrosion Testing of Stainless Steel Fuel Cell Hardware

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M.S.; Zawodzinski, C.; Gottesfeld, S.

    1998-11-01

    Metal hardware is gaining increasing interest in polymer electrolyte fuel cell (PEFC) development as a possible alternative to machined graphite hardware because of its potential for low-cost manufacturing combined with its intrinsic high conductivity, minimal permeability and advantageous mechanical properties. A major barrier to more widespread use of metal hardware has been the susceptibility of various metals to corrosion. Few pure metals can withstand the relatively aggressive environment of a fuel cell and thus the choices for hardware are quite limited. Precious metals such as platinum or gold are prohibitively expensive and so tend to be utilized as coatings on inexpensive substrates such as aluminum or stainless steel. The main challenge with coatings has been to achieve pin-hole free surfaces that will remain so after years of use. Titanium has been used to some extent and though it is very corrosion-resistant, it is also relatively expensive and often still requires some manner of surface coating to prevent the formation of a poorly conducting oxide layer. In contrast, metal alloys may hold promise as potentially low-cost, corrosion-resistant materials for bipolar plates. The dozens of commercially available stainless steel and nickel based alloys have been specifically formulated to offer a particular advantage depending upon their application. In the case of austenitic stainless steels, for example, 316 SS contains molybdenum and a higher chromium content than its more common counterpart, 304 SS, that makes it more noble and increases its corrosion resistance. Likewise, 316L SS contains less carbon than 316 SS to make it easier to weld. A number of promising corrosion-resistant, highly noble alloys such as Hastelloy{trademark} or Duplex{trademark} (a stainless steel developed for seawater service) are available commercially, but are expensive and difficult to obtain in various forms (i.e. wire screen, foil, etc.) or in small amounts for R and D

  15. A steam loop for materials testing at 600 C in a biomass and waste fired boiler. Results of corrosion testing

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Pamela [Vattenfall AB, Stockholm (Sweden). Research and Development; Lundberg, Mats [Sandvik Materials Technology, Sandviken (Sweden)

    2010-07-01

    A steam loop for corrosion testing was constructed in Esshete 1250 and attached to one of the superheaters in a 100 MWth bubbling fluidised bed (BFB) boiler. The loop raised the final steam temperature to about 600 C at 140 bar. A number of different test materials were welded into the loop for evaluation at low temperature (500 C steam) and high temperature (600 C steam). Their wall thicknesses were measured with a high resolution ultrasonic probe before and after exposure. A number of sections were examined metallographically after exposure. The steam loop was in service for one firing season (about 5500 h) and the fuel mixture was initially a biomass mix co-firing with 15% coal. However halfway through the firing season the coal was replaced with 15% packaging waste containing plastic and aluminium. The latter mixture (biomass and waste) was highly corrosive and accounted for most of the corrosion. The alloys with the highest Ni and Cr contents, Haynes 230, AC 66 and HR11N, showed negligible steam-side corrosion. The 11% chromium steel X20 and the nickel-base alloy HR11N were not tested at the higher steam temperature because of strength considerations. Regarding fireside corrosion at 500 C steam the alloys with the best corrosion resistance were Haynes 230, HR11N, AC 66 and HR3C followed by Esshete 1250 and TP247HFG. The corrosion rate of X20 was unacceptably high and is totally unsuitable for this fuel mix. At 600 C Haynes 230 showed the lowest corrosion rates, followed by TP 347 HFG, HR3C, AC66, and Esshete 1250. Large amounts of internal corrosion were seen. (orig.)

  16. Conditions for testing the corrosion rates of ceramics in coal gasification systems

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, J.P.; Nowok, J.W. [Univ. of North Dakota, Grand Forks, ND (United States)

    1996-08-01

    Coal gasifier operating conditions and gas and ash compositions affect the corrosion rates of ceramics used for construction in three ways: (1) through direct corrosion of the materials, (2) by affecting the concentration and chemical form of the primary corrodents, and (3) by affecting the mass transport rate of the primary corrodents. To perform an accurate corrosion test on a system material, the researcher must include all relevant corrodents and simulate conditions in the gasifier as closely as possible. In this paper, the authors present suggestions for conditions to be used in such corrosion tests. Two main types of corrosion conditions are discussed: those existing in hot-gas cleanup systems where vapor and dry ash may contribute to corrosion and those experienced by high-temperature heat exchangers and refractories where the main corrodent will be coal ash slag. Only the fluidized-bed gasification systems such as the Sierra Pacific Power Company Pinon Pine Power Project system are proposing the use of ceramic filters for particulate cleanup. The gasifier is an air-blown 102-MWe unit employing a Westinghouse{trademark} ceramic particle filter system operating at as high as 1100{degrees}F at 300 psia. Expected gas compositions in the filter will be approximately 25% CO, 15% H{sub 2}, 5% CO{sub 2}, 5% H{sub 2}O, and 50% N{sub 2}. Vapor-phase sodium chloride concentrations are expected to be 10 to 100 times the levels in combustion systems at similar temperatures, but in general the concentrations of the minor primary and secondary corrodents are not well understood. Slag corrosiveness will depend on its composition as well as viscosity. For a laboratory test, the slag must be in a thermodynamically stable form before the beginning of the corrosion test to assure that no inappropriate reactions are allowed to occur. Ideally, the slag would be flowing, and the appropriate atmosphere must be used to assure realistic slag viscosity.

  17. Development of a new test method of high temperature corrosion in gas turbines based on thermodynamic modelling

    Energy Technology Data Exchange (ETDEWEB)

    Bordenet, B.; Bossmann, H.P. [ALSTOM (Switzerland) Ltd., Baden (Switzerland)

    2004-07-01

    The hot corrosion risk in stationary gas turbines is re-evaluated for the new material combinations and the changed fuel quality. Hot corrosion can only be induced, if the condensation of corrosive species, e.g. sulphates, is possible. The risk of sulphate-induced hot corrosion is directly dependent on the total amount of impurities in the hot gas and the pressure. The evaluation of the risk is done based on thermodynamic modelling of the dew point of the corrosive salts. Based on the theoretical approach a laboratory corrosion test was designed. The test method is based on a salt-spraying test. The exposure is performed in dry air with 300vppm SO{sub 2} and 10vol% H{sub 2}O, with the main test temperatures 700 C and 850 C. The hot corrosion behaviour of three base materials, IN738, CM247 and CMSX-4, and the NiCrAlY-coating SV20 were investigated with the new test method. IN738 exhibited the best corrosion resistance of the base materials, but was also attacked after 500h. The base materials, especially CM247 and CMSX-4, have to be protected by an oxidation- and corrosion-resistant overlay coating in a corrosive environment. They can only be used without a protective coating, when a clean environment can be guaranteed. SV20 has exhibited an excellent corrosion resistance with negligible degradation after 1000 h at 700 and 850 C. (orig.)

  18. Preparation and Testing of Corrosion and Spallation-Resistant Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, John

    2015-11-01

    with the Rene 80. One-inch-diameter buttons were machined from each of the bonded blocks and sent to Siemens for standard oxidation, spallation, and corrosion testing, which should be complete in the spring of 2016.

  19. Model tests for corrosion influence of electrode surface on electroosmosis in marine sludge

    Science.gov (United States)

    Zheng, Lingwei; Li, Jinzhu; Shi, Hanru

    2017-11-01

    The corrosion of metal electrodes is inevitable on electroosmosis in soil. Surface corrosion of electrodes is also one of the reasons for increasing energy consumption in electroosmosis treatment. A series of laboratory tests were conducted employing three kinds of materials, aluminium, steel, and brass. To explore the impact of surface corrosion degree on electroosmosis, metal electrodes were pretreated with durations 0 h, 12 h, 24 h, and 36 h. After the pretreatment, corroded electrodes are used as anodes on electroosmosis. Water discharge, current, voltage potential were measured during the tests; water content was also tested at three points after the electroosmosis. The results showed that aluminium was better than steel in electroosmotic drainage while brass provided the worst dewatering performance. Surface corrosion did not influence the aluminium and steel on electroosmosis in marine sludge, but brass did. In the pretreatment of brass electrodes, corrosion rate had started to slow down at later periods, with the deterioration rate of dewatering reduced afterwards. As the results showed, it is not recommended to employ those easily deteriorated electrode materials from surface corrosion in practical engineering, such as brass; electrode material with higher electroosmosis exchange rate is recommended, such as aluminium.

  20. Atmospheric corrosion tests along the Norwegian-Russian border. Part II

    Energy Technology Data Exchange (ETDEWEB)

    Henriksen, J.F.; Mikhailov, A.A.

    1997-12-31

    A bilateral exposure programme was carried out along the Norwegian-Russian border in 1990-1991, 1992-1993 and 1993-1994 to evaluate quantitatively the effect of sulphur pollutants on the atmospheric corrosion of important materials in sub-arctic climate. The first part of the programme demonstrated that also in subarctic climate do metals corrode depending on the atmospheric corrosivity, and dose-response functions were derived which combined the effects of SO{sub 2} and time of wetness. The second part of the programme, which is described in this report, involved exposures of carbon steel, zinc and copper at two sites in Norway and three sites in Russia. It is concluded that the accelerated atmospheric corrosion of metals in regions along the border is mainly due to dry deposition of sulphur. At some sites, dry deposition of Cl contributes because of sea-salt aerosols. The corrosivity of acid precipitation is certain but could not be represented as a function because of the small differences observed in the pH values at the different sites. At all test sites the kinetics of corrosion of steel, zinc and copper are characterized by a reduced corrosion rate after one year of exposure. Time of wetness is an important parameter in predicting atmospheric corrosion of metals even on a regional scale. Hence, for monitoring and for trend-effect analysis, it is very important to determine the corrosivity of SO{sub 2} with time of wetness. In accordance with dose-response functions obtained, the yearly corrosion rate for steel and zinc are higher for the areas with higher amounts of dry deposition of Cl than for areas with analogous but only SO{sub 2}-containing atmosphere. 6 refs., 8 figs., 15 tabs.

  1. Microencapsulation of Corrosion Indicators for Smart Coatings

    Science.gov (United States)

    Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.; Calle, Luz M.; Hanna,Joshua S.; Rawlins, James W.

    2011-01-01

    A multifunctional smart coating for the autonomous detection, indication, and control of corrosion is been developed based on microencapsulation technology. This paper summarizes the development, optimization, and testing of microcapsules specifically designed for early detection and indication of corrosion when incorporated into a smart coating. Results from experiments designed to test the ability of the microcapsules to detect and indicate corrosion, when blended into several paint systems, show that these experimental coatings generate a color change, indicative of spot specific corrosion events, that can be observed with the naked eye within hours rather than the hundreds of hours or months typical of the standard accelerated corrosion test protocols.. Key words: smart coating, corrosion detection, microencapsulation, microcapsule, pH-sensitive microcapsule, corrosion indicator, corrosion sensing paint

  2. Corrosion Testing of Carbon Steel in Oxalic Acid that Contains Dissolved Iron

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, Bruce J.; Mickalonis, John I.; Subramanian, Karthik H.

    2012-10-11

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 60 years at the Savannah River Site. The site is currently in the process of removing the waste from these tanks in order to place it into vitrified, stable state for longer term storage. The last stage in the removal sequence is a chemical cleaning step that breaks up and dissolves metal oxide solids that cannot be easily pumped out of the tank. Oxalic acid (OA) will be used to chemically clean the tanks after waste retrieval is completed. The waste tanks at SRS were constructed from carbon steel materials and thus are vulnerable to corrosion in acidic media. In addition to structural impacts, the impact of corrosion on the hydrogen generated during the process must be assessed. Electrochemical and coupon immersion tests were used to investigate the corrosion mechanism at anticipated process conditions. The testing showed that the corrosion rates were dependent upon the reduction of the iron species that had dissolved in solution. Initial corrosion rates were elevated due to the reduction of the ferric species to ferrous species. At later times, as the ferric species depleted, the corrosion rate decreased. On the other hand, the hydrogen evolution reaction became more dominant.

  3. ELECTROCHEMICAL CORROSION TESTING OF TANKS 241-AN-102 & 241-AP-107 & 241-AP-108 IN SUPPORT OF ULTRASONIC TESTING

    Energy Technology Data Exchange (ETDEWEB)

    WYRWAS RB; DUNCAN JB

    2008-11-20

    This report presents the results of the corrosion rates that were measured using electrochemical methods for tanks 241-AN-102 (AN-102), 241-AP-107 (AP 107), and 241-AP-108 (AP-108) performed under test plant RPP-PLAN-38215. The steel used as materials of construction for AN and AP tank farms was A537 Class 1. Test coupons of A537 Class 1 carbon steel were used for corrosion testing in the AN-107, AP-107, and AP-108 tank waste. Supernate will be tested from AN-102, AP-107, and Ap-108. Saltcake testing was performed on AP-108 only.

  4. Liquid-Air Interface Corrosion Testing Simulating The Environment Of Hanford Double Shell Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murphy, T. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hicks, K. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-30

    Coupon tests on A537 carbon steel materials were conducted to evaluate the Liquid-Air Interface (LAI) corrosion susceptibility in a series of solutions designed to simulate conditions in the radioactive waste tanks located at the Hanford Nuclear Facility. The new stress corrosion cracking requirements and the impact of ammonia on LAI corrosion were the primary focus. The minimum R value (i.e., molar ratio of nitrite to nitrate) of 0.15 specified by the new stress corrosion cracking requirements was found to be insufficient to prevent pitting corrosion at the LAI. The pH of the test solutions was 10, which was actually less than the required pH 11 defined by the new requirements. These tests examined the effect of the variation of the pH due to hydroxide depletion at the liquid air interface. The pits from the current testing ranged from 0.001 to 0.008 inch in solutions with nitrate concentrations of 0.4 M and 2.0 M. The pitting and general attack that occurred progressed over the four-months. No significant pitting was observed, however, for a solution with a nitrate concentration of 4.5 M. The pitting depths observed in these partial immersion tests in unevaporated condensates ranged from 0.001 to 0.005 inch after 4 months. The deeper pits were in simulants with low R values. Simulants with R values of approximately 0.6 to 0.8 appeared to significantly reduce the degree of attack. Although, the ammonia did not completely eliminate attack at the LAI, the amount of corrosion in an extremely corrosive solution was significantly reduced. Only light general attack (< 1 mil) occurred on the coupon in the vicinity of the LAI. The concentration of ammonia (i.e., 50 ppm or 500 ppm) did not have a strong effect.

  5. Simulated Service and Stress Corrosion Cracking Testing for Friction Stir Welded Spun Form Domes

    Science.gov (United States)

    Stewart, Thomas J.; Torres, Pablo D.; Caratus, Andrei A.; Curreri, Peter A.

    2010-01-01

    -point loaded specimens under alternate immersion conditions in a 3.5% NaCl environment for 90 days. In addition, experiments were conducted to determine the threshold stress intensity factor for SCC (K1SCC) of Al-Li 2195 which to our knowledge has not been determined previously. The successful simulated service and stress corrosion testing helped to provide confidence to continue to Ares 1 scale dome fabrication.

  6. Performance Analysis of Retrofitted Tribo-Corrosion Test Rig for Monitoring In Situ Oil Conditions

    Science.gov (United States)

    Ramachandran, Rahul; Menezes, Pradeep L.

    2017-01-01

    Oils and lubricants, once extracted after use from a mechanical system, can hardly be reused, and should be refurbished or replaced in most applications. New methods of in situ oil and lubricant efficiency monitoring systems have been introduced for a wide variety of mechanical systems, such as automobiles, aerospace aircrafts, ships, offshore wind turbines, and deep sea oil drilling rigs. These methods utilize electronic sensors to monitor the “byproduct effects” in a mechanical system that are not indicative of the actual remaining lifecycle and reliability of the oils. A reliable oil monitoring system should be able to monitor the wear rate and the corrosion rate of the tribo-pairs due to the inclusion of contaminants. The current study addresses this technological gap, and presents a novel design of a tribo-corrosion test rig for oils used in a dynamic system. A pin-on-disk tribometer test rig retrofitted with a three electrode-potentiostat corrosion monitoring system was used to analyze the corrosion and wear rate of a steel tribo-pair in industrial grade transmission oil. The effectiveness of the retrofitted test rig was analyzed by introducing various concentrations of contaminants in an oil medium that usually leads to a corrosive working environment. The results indicate that the retrofitted test rig can effectively monitor the in situ tribological performance of the oil in a controlled dynamic corrosive environment. It is a useful method to understand the wear–corrosion synergies for further experimental work, and to develop accurate predictive lifecycle assessment and prognostic models. The application of this system is expected to have economic benefits and help reduce the ecological oil waste footprint. PMID:28956819

  7. Performance Analysis of Retrofitted Tribo-Corrosion Test Rig for Monitoring In Situ Oil Conditions

    Directory of Open Access Journals (Sweden)

    Arpith Siddaiah

    2017-09-01

    Full Text Available Oils and lubricants, once extracted after use from a mechanical system, can hardly be reused, and should be refurbished or replaced in most applications. New methods of in situ oil and lubricant efficiency monitoring systems have been introduced for a wide variety of mechanical systems, such as automobiles, aerospace aircrafts, ships, offshore wind turbines, and deep sea oil drilling rigs. These methods utilize electronic sensors to monitor the “byproduct effects” in a mechanical system that are not indicative of the actual remaining lifecycle and reliability of the oils. A reliable oil monitoring system should be able to monitor the wear rate and the corrosion rate of the tribo-pairs due to the inclusion of contaminants. The current study addresses this technological gap, and presents a novel design of a tribo-corrosion test rig for oils used in a dynamic system. A pin-on-disk tribometer test rig retrofitted with a three electrode-potentiostat corrosion monitoring system was used to analyze the corrosion and wear rate of a steel tribo-pair in industrial grade transmission oil. The effectiveness of the retrofitted test rig was analyzed by introducing various concentrations of contaminants in an oil medium that usually leads to a corrosive working environment. The results indicate that the retrofitted test rig can effectively monitor the in situ tribological performance of the oil in a controlled dynamic corrosive environment. It is a useful method to understand the wear–corrosion synergies for further experimental work, and to develop accurate predictive lifecycle assessment and prognostic models. The application of this system is expected to have economic benefits and help reduce the ecological oil waste footprint.

  8. Performance Analysis of Retrofitted Tribo-Corrosion Test Rig for Monitoring In Situ Oil Conditions.

    Science.gov (United States)

    Siddaiah, Arpith; Khan, Zulfiqar Ahmad; Ramachandran, Rahul; Menezes, Pradeep L

    2017-09-28

    Oils and lubricants, once extracted after use from a mechanical system, can hardly be reused, and should be refurbished or replaced in most applications. New methods of in situ oil and lubricant efficiency monitoring systems have been introduced for a wide variety of mechanical systems, such as automobiles, aerospace aircrafts, ships, offshore wind turbines, and deep sea oil drilling rigs. These methods utilize electronic sensors to monitor the "byproduct effects" in a mechanical system that are not indicative of the actual remaining lifecycle and reliability of the oils. A reliable oil monitoring system should be able to monitor the wear rate and the corrosion rate of the tribo-pairs due to the inclusion of contaminants. The current study addresses this technological gap, and presents a novel design of a tribo-corrosion test rig for oils used in a dynamic system. A pin-on-disk tribometer test rig retrofitted with a three electrode-potentiostat corrosion monitoring system was used to analyze the corrosion and wear rate of a steel tribo-pair in industrial grade transmission oil. The effectiveness of the retrofitted test rig was analyzed by introducing various concentrations of contaminants in an oil medium that usually leads to a corrosive working environment. The results indicate that the retrofitted test rig can effectively monitor the in situ tribological performance of the oil in a controlled dynamic corrosive environment. It is a useful method to understand the wear-corrosion synergies for further experimental work, and to develop accurate predictive lifecycle assessment and prognostic models. The application of this system is expected to have economic benefits and help reduce the ecological oil waste footprint.

  9. Standard practice for conducting and evaluating laboratory corrosions tests in soils

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This practice covers procedures for conducting laboratory corrosion tests in soils to evaluate the corrosive attack on engineering materials. 1.2 This practice covers specimen selection and preparation, test environments, and evaluation of test results. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  10. Results of water corrosion in static cell tests representing multi-metal assemblies in the hydraulic circuits of Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Lipa, M.; Blanchet, J. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Cellier, F. [Framatome, Centre Technique, 71 - Saint Marcel (France)

    2007-07-01

    Full text of publication follows: Tore supra (TS) has used from the beginning of operation in 1989 actively cooled plasma facing components. Since the operation and baking temperature of all in vessel components has been defined to be up to 230 deg. C at 40 bars, a special water chemistry of the cooling water plant was suggested in order to avoid eventual water leaks due to corrosion (general corrosion, galvanic corrosion, stress corrosion, etc.) at relative high temperatures and pressures in tubes, pipes, bellows, water boxes, coils, etc. From the beginning of TS operation, in vessel components (e.g. wall protection panels, limiters, ergodic divertor coils, neutralisers and diagnostics) represented a unique combination of metals in the hydraulic circuit mainly such as stainless steel, Inconel, CuCrZr, Nickel and Copper. These different materials were joined together by welding (St to St, Inconel to Inconel, CuCrZr to CuCrZr and CuCrZr to St-St via a Ni sleeve adapter), brazing (St-St to Cu and Cu-LSTP), friction (CuCrZr and Cu to St-St), explosion (CuCrZr to St-St) and memory metal junction (Cryo-fit to Cu - only test sample). Following experiences obtained with steam generator tubes of nuclear power plants, a cooling water quality of AVT (all volatile treatment) has been defined based on demineralized water with adjustment of the pH value to about 9.0/ 7.0 (25 deg. C/ 200 deg. C) by addiction of ammoniac, and hydrazine in order to absorb oxygen dissolved in water. At that time, a simplified water corrosion test program has been performed using static (no circulation) test cell samples made of above mentioned TS metal combinations. All test cell samples, prepared and filled with AVT water, were performed at 280 deg. C and 65 bars in an autoclave during 3000 hours. The test cell water temperature has been chosen to be sufficient above the TS component working temperature, in order to accelerate an eventual corrosion process. Generally all above mentioned metal

  11. Corrosion rate of copper in aqueous lithium bromide concentrated solutions at room temperature by immersion tests

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Portero, M.J.; Garcia-Anton, J.; Guinon-Segura, J.L.; Perez-Herranz, V. [Departamento de Ingenieria Quimica y Nuclear, E.T.S.I. Industriales, Universidad Politecnica de Valencia, P.O. Box 22012, E-46071 Valencia (Spain)

    2004-07-01

    Concentrated solutions of lithium bromide (LiBr) are widely used in absorption refrigeration and heating systems. However, LiBr solutions can cause serious corrosion problems in structural materials (copper, steels, and other metals) in an absorption plant. The aim of the present work was the study of the corrosion rate of copper in 400 and 700 g/L (4.61 and 8.06 M) LiBr solutions pre-nitrogenous or pre-oxygenated at room temperature by immersion tests. The corroded copper concentration was determined with two techniques: weight-loss method and polarographic method. The corrosion curves of copper in LiBr solutions at room temperature as a function of the exposure time showed a similar tendency, and were fitted to a power function such as: C = kt{sup b}, where C was the corroded copper quantity per unit area (mg/cm{sup 2}), t was the exposure time (h), k was the corrosion coefficient, and b was the time exponent. From the corrosion coefficient values (k) it was deduced that the corrosion rate of copper in LiBr solutions at room temperature followed the order: 400 g/L (bubble of O{sub 2}) > 400 g/L (bubble of N{sub 2}) > 700 g/L (bubble of O{sub 2}) > 700 g/L (bubble of N{sub 2}). (authors)

  12. Magnesium alloys: predicting in vivo corrosion with in vitro immersion testing.

    Science.gov (United States)

    Walker, Jemimah; Shadanbaz, Shaylin; Kirkland, Nicholas T; Stace, Edward; Woodfield, Tim; Staiger, Mark P; Dias, George J

    2012-05-01

    Magnesium (Mg) and its alloys have been proposed as degradable replacements to commonly used orthopedic biomaterials such as titanium alloys and stainless steel. However, the corrosion of Mg in a physiological environment remains a difficult characteristic to accurately assess with in vitro methods. The aim of this study was to identify a simple in vitro immersion test that could provide corrosion rates similar to those observed in vivo. Pure Mg and five alloys (AZ31, Mg-0.8Ca, Mg-1Zn, Mg-1Mn, Mg-1.34Ca-3Zn) were immersed in either Earle's balanced salt solution (EBSS), minimum essential medium (MEM), or MEM-containing 40 g/L bovine serum albumin (MEMp) for 7, 14, or 21 days before removal and assessment of corrosion by weight loss. This in vitro data was compared to in vivo corrosion rates of the same materials implanted in a subcutaneous environment in Lewis rats for equivalent time points. The results suggested that, for the alloys investigated, the EBSS buffered with sodium bicarbonate provides a rate of degradation comparable to those observed in vivo. In contrast, the addition of components such as (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (HEPES), vitamins, amino acids, and albumin significantly increased corrosion rates. Based on these findings, it is proposed that with this in vitro protocol, immersion of Mg alloys in EBSS can be used as a predictor of in vivo corrosion. Copyright © 2012 Wiley Periodicals, Inc.

  13. Vapor Space Corrosion Testing Simulating The Environment Of Hanford Double Shell Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gray, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murphy, T. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hicks, K. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-30

    As part of an integrated program to better understand corrosion in the high level waste tanks, Hanford has been investigating corrosion at the liquid/air interface (LAI) and at higher areas in the tank vapor space. This current research evaluated localized corrosion in the vapor space over Hanford double shell tank simulants to assess the impact of ammonia and new minimum nitrite concentration limits, which are part of the broader corrosion chemistry limits. The findings from this study showed that the presence of ammonia gas (550 ppm) in the vapor space is sufficient to reduce corrosion over the short-term (i.e. four months) for a Hanford waste chemistry (SY102 High Nitrate). These findings are in agreement with previous studies at both Hanford and SRS which showed ammonia gas in the vapor space to be inhibitive. The presence of ammonia in electrochemical test solution, however, was insufficient to inhibit against pitting corrosion. The effect of the ammonia appears to be a function of the waste chemistry and may have more significant effects in waste with low nitrite concentrations. Since high levels of ammonia were found beneficial in previous studies, additional testing is recommended to assess the necessary minimum concentration for protection of carbon steel. The new minimum R value of 0.15 was found to be insufficient to prevent pitting corrosion in the vapor space. The pitting that occurred, however, did not progress over the four-month test. Pits appeared to stop growing, which would indicate that pitting might not progress through wall.

  14. Field Testing of Rapid Electrokinetic Nanoparticle Treatment for Corrosion Control of Steel in Concrete

    Science.gov (United States)

    Cardenas, Henry E.; Alexander, Joshua B.; Kupwade-Patil,Kunal; Calle, Luz Marina

    2009-01-01

    This work field tested the use of electrokinetics for delivery of concrete sealing nanoparticles concurrent with the extraction of chlorides. Several cylinders of concrete were batched and placed in immersion at the Kennedy Space Center Beach Corrosion Test Site. The specimens were batched with steel reinforcement and a 4.5 wt.% (weight percent) content of sodium chloride. Upon arrival at Kennedy Space Center, the specimens were placed in the saltwater immersion pool at the Beach Corrosion Test Site. Following 30 days of saltwater exposure, the specimens were subjected to rapid chloride extraction concurrent with electrokinetic nanoparticle treatment. The treatments were operated at up to eight times the typical current density in order to complete the treatment in 7 days. The findings indicated that the short-term corrosion resistance of the concrete specimens was significantly enhanced as was the strength of the concrete.

  15. Standard test method for initial screening of corrosion inhibiting admixtures for steel in concrete

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method covers a procedure for determining the effects of chemical admixtures on the corrosion of metals in concrete. This test method can be used to evaluate materials intended to inhibit chloride-induced corrosion of steel in concrete. It can also be used to evaluate the corrosivity of admixtures by themselves or in a chloride environment. This test is not applicable for emulsions. 1.2 &solely-SI-units; 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  16. Probability density fittings of corrosion test-data: Implications on C 6 ...

    Indian Academy of Sciences (India)

    In this study, corrosion test-data of steel-rebar in concrete were subjected to the fittings of the Normal, Gumbel and the Weibull probability distribution functions. This was done to investigate the suitability of the results of the fitted test-data, by these distributions, for modelling the effectiveness of C6H15NO3, triethanolamine ...

  17. Corrosion resistance test based on electrochemical noise-limiting the number of long-lasting and costly climate chamber tests

    Energy Technology Data Exchange (ETDEWEB)

    Van Aken, B.B.; Veldman, D.; Gouwen, R.J.; Bende, E.E.; Eerenstein, W.

    2013-10-15

    Damp-heat testing of PV modules is a time-consuming process, taking months. The electrochemical noise (EcN) set-up is a fast, direct corrosion measurement of solar cells, whereby results can be obtained within one hour. EcN measurements are presented for several solar cell concepts and different environments. It correlates with damp-heat degradation involving corrosion, which is rather common in EVA-encapsulated crystalline Si modules. Furthermore, the EcN test can be done as an evaluation tool when probing alternative brands, formulations or processing for metallisation pastes and as a screening test for new batches of metallisation paste.

  18. Corrosion tests of 316L and Hastelloy C-22 in simulated tank waste solutions

    Energy Technology Data Exchange (ETDEWEB)

    MJ Danielson; SG Pitman

    2000-02-23

    Both the 316L stainless steel and Hastelloy{reg_sign} C-22 gave satisfactory corrosion performance in the simulated test environments. They were subjected to 100 day weight loss corrosion tests and electrochemical potentiodynamic evaluation. This activity supports confirmation of the design basis for the materials of construction of process vessels and equipment used to handle the feed to the LAW-melter evaporator. BNFL process and mechanical engineering will use the information derived from this task to select material of construction for process vessels and equipment.

  19. In situ corrosion testing of various nickel alloys at Måbjerg waste incineration plant

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Hansson, A. N.; Jensen, S. A.

    2013-01-01

    The majority of waste in Denmark is disposed via waste to energy (WTE) incineration plants which are fabricated from carbon steel. However, due to the increasing corrosiveness of waste over the years, more corrosion resistant alloys are required. In Denmark, Inconel 625 (UNSN06625) is the weld...... overlay material currently being used to give improved corrosion resistance. In order to assess the use of alternative nickel alloys, test panels have been manufactured and inserted into Måbjerg waste incineration plant. Inconel 625 as a 50% weld overlay, two layered weld overlay and as a spiral weld....... The composition of the deposits from the exposed waterwall panels was also analysed each time sections were removed. This paper will compare the various nickel alloys in the two areas and assess the results of the long‐term testing project....

  20. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings - phase II

    Energy Technology Data Exchange (ETDEWEB)

    Blough, J.L.; Stanko, G.J. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1996-08-01

    In Phase I a variety of developmental and commercial tubing alloys and claddings were exposed to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. Phase II (in situ testing) has exposed samples of 347, RA-8511, HR3C, 253MA, Fe{sub 3}Al + 5Cr, 310 modified, 800HT, NF 709, 690 clad, and 671 clad for over 10,000 hours to the actual operating conditions of a 250-MW coal-fired boiler. The samples were installed on an air-cooled, retractable corrosion probe, installed in the reheater cavity, and controlled to the operating metal temperatures of an existing and advanced-cycle coal-fired boiler. Samples of each alloy will be exposed for 4000, 12,000, and 16,000 hours of operation. The results will be presented for the metallurgical examination of the corrosion probe samples after 4000 hours of exposure.

  1. Scoping corrosion tests on candidate waste package basket materials for the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Van Konynenburg, R.A.; Curits, P.C.; Summers, T.S.E.

    1998-03-01

    A scoping corrosion test was performed on candidate waste package basket materials. The corrosion medium was a pH-buffered solution of chemical species expected to be produced by radiolysis. The test was conducted at 90{degrees}C for 96 hours. Samples included aluminum-, copper-, stainless steel-, and zirconium-based metallic materials and several ceramics, incorporating neutron-absorbing elements. Sample weight losses and solution chemical changes were measured. Both corrosion of the host materials and dissolution of the neutron- absorbing elements were studied. The ceramics and the zirconium-based materials underwent only minor corrosion. the stainless steel-based materials performed well except for a welded sample. The aluminum- and copper-based materials exhibited the highest corrosion rates. Boron dissolution depends on it chemical form. Boron oxide and many metal borides dissolve readily in acidic solutions while high- chromium borides and boron carbide, though thermodynamically unstable, exhibit little dissolution in short times. the results of solution chemical analyses were consistent with this. Gadolinium did not dissolve significantly from monazite, and hafnium showed little dissolution from a variety of host materials, in keeping with its low solubility.

  2. Test Plan: Sludge Treatment Project Corrosion Process Chemistry Follow-on Testing

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Schmidt, Andrew J.; Poloski, Adam P.

    2007-08-17

    This test plan was prepared by the Pacific Northwest National Laboratory (PNNL) under contract with Fluor Hanford (FH). The test plan describes the scope and conditions to be used to perform laboratory-scale testing of the Sludge Treatment Project (STP) hydrothermal treatment of K Basin sludge. The STP, managed for the U. S. Department of Energy (DOE) by FH, was created to design and operate a process to eliminate uranium metal from the sludge prior to packaging for Waste Isolation Pilot Plant (WIPP) by using high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. The proposed testing builds on the approach and laboratory test findings for both K Basin sludge and simulated sludge garnered during prior testing from September 2006 to March 2007. The outlined testing in this plan is designed to yield further understanding of the nature of the chemical reactions, the effects of compositional and process variations and the effectiveness of various strategies to mitigate the observed high shear strength phenomenon observed during the prior testing. These tests are designed to provide process validation and refinement vs. process development and design input. The expected outcome is to establish a level of understanding of the chemistry such that successful operating strategies and parameters can be implemented within the confines of the existing STP corrosion vessel design. In July 2007, the DOE provided direction to FH regarding significant changes to the scope of the overall STP. As a result of the changes, FH directed PNNL to stop work on most of the planned activities covered in this test plan. Therefore, it is unlikely the testing described here will be performed. However, to preserve the test strategy and details developed to date, the test plan has been published.

  3. Results of water corrosion in static cell tests representing multi-metal assemblies in the hydraulic circuits of Tore supra

    Energy Technology Data Exchange (ETDEWEB)

    Lipa, M. [CEA/DSM/DRFC Centre de Cadarache, 13 - Saint-Paul lez Durance (France); Blanchet, J.; Cellier, F. [Framatome, 71 - Saint Marcel (France). Centre Technique

    2007-07-01

    Following experiences obtained with steam generator tubes of nuclear power plants, a cooling water quality of AVT (all volatile treatment) has been defined based on demineralised water with adjustment of the pH value to about 9.0/7.0 (25 C/200 C) by addiction of ammoniac, and hydrazine in order to absorb oxygen dissolved in water. At that time, a simplified water corrosion test program has been performed using static (no circulation) test cell samples made of above mentioned TS metal combinations. All test cell samples, prepared and filled with AVT water, were performed at 280 C and 65 bars in an autoclave during 3000 hours. The test cell water temperature has been chosen to be sufficient above the TS component working temperature, in order to accelerate an eventual corrosion process. Generally all above mentioned metal combinations survived the test campaign without stress corrosion cracking, with the exception of the memory metal junction (creep in Cu) and the bellows made of St-St 316L and Inconel 625 while 316 Ti bellows survived. In contrary to the vacuum brazed Cu-LSTP to St-St samples, some of flame brazed Cu to St-St samples failed either in the braze joint or in the copper structure itself. For comparison, a spot weld of an inflated 316L panel sample, filled voluntary with a caustic solution of pH 11.5 (25 C), failed after 90 h of testing (intergranular cracking at the spot weld), while an identical sample containing AVT water of pH 9.0 (25 C) survived without damage. The results of these tests, performed during 1986 and 1997, have never been published and therefore are presented more in detail in this paper since corrosion in hydraulic circuits is also an issue of ITER. Up to day, the TS cooling water plant operates with an above mentioned water treatment and no water leaks have been detected on in-vessel components originating from water corrosion at high temperature and high pressure. (orig.)

  4. CORROSION TESTING OF CARBON STEEL IN OXALIC ACID CHEMICAL CLEANING SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.; Mickalonis, J.; Subramanian, K.; Ketusky, E.

    2011-10-14

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 60 years at the Savannah River Site. The site is currently in the process of removing the waste from these tanks in order to place it into vitrified, stable state for longer term storage. The last stage in the removal sequence is a chemical cleaning step that breaks up and dissolves metal oxide solids that cannot be easily pumped out of the tank. Oxalic acid has been selected for this purpose because it is an effective chelating agent for the solids and is not as corrosive as other acids. Electrochemical and immersion studies were conducted to investigate the corrosion behavior of carbon steel in simulated chemical cleaning environments. The effects of temperature, agitation, and the presence of sludge solids in the oxalic acid on the corrosion rate and the likelihood of hydrogen evolution were determined. The testing showed that the corrosion rates decreased significantly in the presence of the sludge solids. Corrosion rates increased with agitation, however, the changes were less noticeable.

  5. Corrosion Testing of Thermal Spray Coatings in a Biomass Co-Firing Power Plant

    Directory of Open Access Journals (Sweden)

    Maria Oksa

    2016-11-01

    Full Text Available Large-scale use of biomass and recycled fuel is increasing in energy production due to climate and energy targets. A 40% cut in greenhouse gas emission compared to 1990 levels and at least a 27% share of renewable energy consumption are set in EU Energy Strategy 2030. Burning fuels with high content of corrosive species such as chlorine and heavy metals causes deterioration of boiler components, shortened lifetime, limited availability of a plant and hence higher maintenance and investment costs and lower thermal and economic efficiency. Coatings can be applied to protect the critical boiler components against high temperature corrosion. In this study, five thermal spray coatings were tested in an actual biomass co-firing boiler for 1300 h with a measurement probe. The coatings were analyzed after the exposure by metallographic means and scanning electron microscope/energy-dispersive X-ray spectroscope (SEM/EDX. The deposits formed on the specimens were analyzed by X-ray fluorescence. At 550 °C, the coatings showed excellent corrosion performance compared to reference material ferritic steel T92. At 750 °C, tube material A263 together with NiCr and NiCrTi had the highest corrosion resistance. To conclude, thermal spray coatings can offer substantial corrosion protection in biomass and recycled fuel burning power plants.

  6. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    Science.gov (United States)

    Calle, Luz Marina

    2015-01-01

    The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in North America. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the highly corrosive hydrochloric acid (HCl) generated by the solid rocket boosters (SRBs). Numerous failures at the launch pads are caused by corrosion. The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. NASA has over fifty years of experience dealing with unexpected failures caused by corrosion and has developed expertise in corrosion control in the launch and other environments. The Corrosion Technology Laboratory at KSC evolved, from what started as an atmospheric exposure test site near NASAs launch pads, into a capability that provides technical innovations and engineering services in all areas of corrosion for NASA, external partners, and customers.This paper provides a chronological overview of NASAs role in anticipating, managing, and preventing corrosion in highly corrosive environments. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  7. Standard Practice for Making and Using U-Bend Stress-Corrosion Test Specimens

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice covers procedures for making and using U-bend specimens for the evaluation of stress-corrosion cracking in metals. The U-bend specimen is generally a rectangular strip which is bent 180° around a predetermined radius and maintained in this constant strain condition during the stress-corrosion test. Bends slightly less than or greater than 180° are sometimes used. Typical U-bend configurations showing several different methods of maintaining the applied stress are shown in Fig. 1. 1.2 U-bend specimens usually contain both elastic and plastic strain. In some cases (for example, very thin sheet or small diameter wire) it is possible to form a U-bend and produce only elastic strain. However, bent-beam (Practice G 39 or direct tension (Practice G 49)) specimens are normally used to study stress-corrosion cracking of strip or sheet under elastic strain only. 1.3 This practice is concerned only with the test specimen and not the environmental aspects of stress-corrosion testing which are discus...

  8. Superheater corrosion in biomass boiler - theories and tests in Vaestermalmsverket, Falun; Oeverhettarkorrosion i bioeldad panna - teorier och prov i Vaestermalmsverket, Falun

    Energy Technology Data Exchange (ETDEWEB)

    Roennquist, Eva-Marie

    2000-10-01

    It has lately been evident that a number of biomass-fired plants are experiencing major problems with corrosion of their superheaters. The major aim with this project is to contribute with increased knowledge in this area. The efforts to build up experience around different materials applicable for superheaters with high steam data is of great importance for future plants in Sweden. The main objective for 'Vaermeforsk' has been to transfer the experiences from this investigation to other boilers or plants with different types of fuel. This investigation has therefore been focused on the verification of SYCON's assumptions regarding the roles of chloride and alkali and the possibility of influencing/minimising superheater corrosion by optimisation of the fuel mix. Another important part was to verify that the boiler design, as such, does not create an unfavourable environment for the superheaters by producing reducing zones due to plume formation. Based on the above, the investigation has been divided into three loosely connected parts. (1) The role and reaction by chlorides in the deposits on a superheater, (2) Reducing environment - plume formation of non-combusted fuel, and (3) Choice of materials in the superheater. Serious corrosion has been detected in the superheater tubes of 'Vaestermalmsverket' in Falun. The material temperature was below 530 deg C. No serious inhomogeneous combustion problems or areas with reducing environments have been detected. The corrosion was therefore judged to be caused by alkali chlorides which condense on the superheater tubes. Tests with minor amounts of sulphur added to the biomass fuel have been shown to suppress the generation of alkali chlorides and their condensation on the superheater surfaces. A good correlation between calculated and measured values have been achieved. Very low corrosion rates have been measured on the test probes, constructed with different superheater material and placed in the

  9. Note: Inhibiting bottleneck corrosion in electrical calcium tests for ultra-barrier measurements

    Energy Technology Data Exchange (ETDEWEB)

    Nehm, F., E-mail: frederik.nehm@iapp.de; Müller-Meskamp, L.; Klumbies, H.; Leo, K. [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany)

    2015-12-15

    A major failure mechanism is identified in electrical calcium corrosion tests for quality assessment of high-end application moisture barriers. Accelerated calcium corrosion is found at the calcium/electrode junction, leading to an electrical bottleneck. This causes test failure not related to overall calcium loss. The likely cause is a difference in electrochemical potential between the aluminum electrodes and the calcium sensor, resulting in a corrosion element. As a solution, a thin, full-area copper layer is introduced below the calcium, shifting the corrosion element to the calcium/copper junction and inhibiting bottleneck degradation. Using the copper layer improves the level of sensitivity for the water vapor transmission rate (WVTR) by over one order of magnitude. Thin-film encapsulated samples with 20 nm of atomic layer deposited alumina barriers this way exhibit WVTRs of 6 × 10{sup −5} g(H{sub 2}O)/m{sup 2}/d at 38 °C, 90% relative humidity.

  10. Standard practice for conducting wire-on-bolt test for atmospheric galvanic corrosion

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This practice covers the evaluation of atmospheric galvanic corrosion of any anodic material that can be made into a wire when in contact with a cathodic material that can be made into a threaded rod. 1.2 When certain materials are used for the anode and cathode, this practice has been used to rate the corrosivity of atmospheres. 1.3 The wire-on-bolt test was first described in 1955 (1), and has since been used extensively with standard materials to determine corrosivity of atmospheres under the names CLIMAT Test (CLassify Industrial and Marine ATmospheres) (2-5) and ATCORR (ATmospheric CORRosivity) (6-9). 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations p...

  11. Corrosion behavior of tantalum-coated cobalt-chromium modular necks compared to titanium modular necks in a simulator test.

    Science.gov (United States)

    Dorn, Ulrich; Neumann, Daniel; Frank, Mario

    2014-04-01

    This study compared the corrosion behavior of tantalum-coated cobalt-chromium modular necks with that of titanium alloy modular necks at their junction to titanium-alloy femoral stem. Tests were performed in a dry assembly and two wet assemblies, one contaminated with calf serum and the other contaminated with calf serum and bone particles. Whereas the titanium modular neck tested in the dry assembly showed no signs of corrosion, the titanium modular necks tested in both wet assemblies showed marked depositions and corrosive attacks. By contrast, the tantalum-coated cobalt-chromium modular necks showed no traces of corrosion or chemical attack in any of the three assemblies. This study confirms the protective effect of tantalum coating the taper region of cobalt-chromium modular neck components, suggesting that the use of tantalum may reduce the risk of implant failure due to corrosion. © 2014.

  12. Some important considerations in the development of stress corrosion cracking test methods.

    Science.gov (United States)

    Wei, R. P.; Novak, S. R.; Williams, D. P.

    1972-01-01

    Discussion of some of the precaution needs the development of fracture-mechanics based test methods for studying stress corrosion cracking involves. Following a review of pertinent analytical fracture mechanics considerations and of basic test methods, the implications for test corrosion cracking studies of the time-to-failure determining kinetics of crack growth and life are examined. It is shown that the basic assumption of the linear-elastic fracture mechanics analyses must be clearly recognized and satisfied in experimentation and that the effects of incubation and nonsteady-state crack growth must also be properly taken into account in determining the crack growth kinetics, if valid data are to be obtained from fracture-mechanics based test methods.

  13. Corrosion Engineering.

    Science.gov (United States)

    White, Charles V.

    A description is provided for a Corrosion and Corrosion Control course offered in the Continuing Engineering Education Program at the General Motors Institute (GMI). GMI is a small cooperative engineering school of approximately 2,000 students who alternate between six-week periods of academic study and six weeks of related work experience in…

  14. Experiences with high temperature corrosion at straw‐firing power plants in Denmark

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Jensen, S. A.; Borg, U.

    2011-01-01

    By the end of 2009, there will be eight biomass and five biomass co‐firing plants in Denmark. Due to the steep increase of corrosion rate with respect to temperature in biomass plants, it is not viable to have similar steam data as fossil fuel plants. Thus for the newer plants, Maribo Sakskøbing...... to enable better lifetime prediction of vulnerable components in straw‐firing plants since the corrosion rates are so much faster than in coal firing plants. Therefore, there are continued investigations in recently commissioned plants with test tubes installed into actual superheaters. In addition...... rates at higher temperatures to assess if there is a possibility to increase the outlet temperature of the plant, thus making the plant more cost effective. For this purpose Avedøre 2 biomass boiler has a test superheater loop fabricated in TP347H FG (the same material as the final superheaters). Some...

  15. SCC and Corrosion Fatigue characterization of a Ti-6Al-4V alloy in a corrosive environment – experiments and numerical models

    Directory of Open Access Journals (Sweden)

    S. Baragetti

    2014-10-01

    Full Text Available In the present article, a review of the complete characterization in different aggressive media of a Ti-6Al-4V titanium alloy, performed by the Structural Mechanics Laboratory of the University of Bergamo, is presented. The light alloy has been investigated in terms of corrosion fatigue, by axial fatigue testing (R = 0.1 of smooth and notched flat dogbone specimens in laboratory air, 3.5% wt. NaCl–water mixture and methanol–water mixture at different concentrations. The first corrosive medium reproduced a marine environment, while the latter was used as a reference aggressive environment. Results showed that a certain corrosion fatigue resistance is found in a salt water medium, while the methanol environment caused a significant drop – from 23% to 55% in terms of limiting stress reduction – of the fatigue resistance of the Ti-6Al-4V alloy, even for a solution containing 5% of methanol. A Stress Corrosion Cracking (SCC experimental campaign at different methanol concentrations has been conducted over slightly notched dog-bone specimens (Kt = 1.18, to characterize the corrosion resistance of the alloy under quasi-static load conditions. Finally, crack propagation models have been implemented to predict the crack propagation rates for smooth specimens, by using Paris, Walker and Kato-Deng-Inoue-Takatsu propagation formulae. The different outcomes from the forecasting numerical models were compared with experimental results, proposing modeling procedures for the numerical simulation of fatigue behavior of a Ti-6Al-4V alloy.

  16. Field Testing of High Current Electrokinetic Nanoparticle Treatment for Corrosion Mitigation in Reinforced Concrete

    Science.gov (United States)

    Cardenas, Henry; Alexander, Joshua; Kupwade-Patil, Kunal; Calle, Luz marina

    2010-01-01

    Electrokinetic Nanoparticle (EN) treatment was used as a rapid repair measure to mitigate chloride induced corrosion of reinforced concrete in the field. EN treatment uses an electric field to transport positively charged nanoparticles to the reinforcement through the concrete capillary pores. Cylindrical reinforced concrete specimens were batched with 4.5 wt % salt content (based on cement mass). Three distinct electrokinetic treatments were conducted using high current density (up to 5 A/m2) to form a chloride penetration barrier that was established in 5 days, as opposed to the traditional 6-8 weeks, generally required for electrochemical chloride extraction (ECE). These treatments included basic EN treatment, EN with additional calcium treatment, and basic ECE treatment. Field exposures were conducted at the NASA Beachside Corrosion Test Site, Kennedy Space Center, Florida, USA. The specimens were subjected to sea water immersion at the test site as a posttreatment exposure. Following a 30-day post-treatment exposure period, the specimens were subjected to indirect tensile testing to evaluate treatment impact. The EN treated specimens exhibited 60% and 30% increases in tensile strength as compared to the untreated controls and ECE treated specimens respectively. The surfaces of the reinforcement bars of the control specimens were 67% covered by corrosion products. In contrast, the EN treated specimens exhibited corrosion coverage of only 4%. Scanning electron microscopy (SEM) revealed a dense concrete microstructure adjacent to the bars of the treated specimens as compared to the control and ECE specimens. Energy dispersive spectroscopic (EDS) analysis of the polished EN treated specimens showed a reduction in chloride content by a factor of 20 adjacent to the bars. This study demonstrated that EN treatment was successful in forming a chloride penetration barrier rapidly. This work also showed that the chloride barrier was effective when samples were exposed to

  17. Synthesis of published and unpublished corrosion data from long term tests of fasteners embedded in wood : calculation of corrosion rates and the effect of corrosion on lateral joint strength

    Science.gov (United States)

    Samuel L. Zelinka; Douglas R. Rammer

    2011-01-01

    In the past 5 years, several accelerated test methods have been developed to measure the corrosion of metals in contact with wood. It is desirable to contrast these accelerated results against those of long term exposure tests. While there have been several published long-term exposure tests performed on metals in treated wood, the data from these studies could not be...

  18. Standard practice for preparation and use of direct tension stress-corrosion test specimens

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1985-01-01

    1.1 This practice covers procedures for designing, preparing, and using ASTM standard tension test specimens for investigating susceptibility to stress-corrosion cracking. Axially loaded specimens may be stressed quantitatively with equipment for application of either a constant load, constant strain, or with a continuously increasing strain. 1.2 Tension test specimens are adaptable for testing a wide variety of product forms as well as parts joined by welding, riveting, or various other methods. 1.3 The exposure of specimens in a corrosive environment is treated only briefly because other standards are being prepared to deal with this aspect. Meanwhile, the investigator is referred to Practices G35, G36, G37, and G44, and to ASTM Special Technical Publication 425 (1).

  19. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Blough, J.L.; Krawchuk, M.T.; Van Weele, S.F. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1995-08-01

    A number of developmental and commercial tubing alloys and claddings have previously been exposed in Phase I to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. This program is exposing samples of TP 347, RA-85H, HR-3C, 253MA, Fe{sub 3}Al + 5Cr, 310 modified, NF-709, 690 clad, and 671 clad, which showed good corrosion resistance from Phase 1, to the actual operating conditions of a 250-MW, coal-fired boiler. The samples were installed on air-cooled, retractable corrosion probes, installed in the reheater cavity, and are being controlled to the operating metal temperatures of an existing and advanced-cycle coal-fired boiler. The exposure will continue for 4000, 12,000, and 16,000 hours of operation. After the three exposure times, the samples will be metallurgically examined to determine the wastage rates and mode of attack. The probes were commissioned November 16, 1994. The temperatures are being recorded every 15 minutes, and the weighted average temperature calculated for each sample. Each of the alloys is being exposed to a temperature in each of two temperature bands-1150 to 1260{degrees}F and 1260 to 1325{degrees}F. After 2000 hours of exposure, one of the corrosion probes was cleaned and the wall thicknesses were ultrasonically measured. The alloy performance from the field probes will be discussed.

  20. Corrosion damage of rivet joints

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2008-01-01

    Full Text Available The work describes the effect of the atmospheric corrosion upon the mechanical properties of blind rivets. The subject of given research is: corrosion of metal materials, system resistance, design modification and others means of prevention against the corrosion attack. The problem of blind rivets, blind rivet setting, setting equipment, terminology and definitions, characteristic, and special blind rivet setting is also analysed. The experiment itself, the experimental method and the evaluation of the test are described. Mechanism of riveted joint damage produced by galvanic corrosion is proposed. Considerable corrosion damage occurred at combination of the joint members and connected materials with different electrochemical potentials. Exposition to the corroding environment produces release of rivet clam, together with decrease of rivet stiffness. The proof of these mechanisms is documented by functional dependence F – ∆L and metallographic tests.

  1. Identification of commercially available alloys for corrosion-resistant metallic reinforcement and test methods for evaluating corrosion-resistant reinforcement.

    Science.gov (United States)

    2008-01-01

    A literature review was conducted with the goal of identifying alternative low-cost corrosion-resistant steel reinforcement materials. The most promising alternate reinforcing materials seen to date that are less expensive than 300 series stainless s...

  2. Standard guide for conducting exfoliation corrosion tests in aluminum alloys

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1992-01-01

    1.1 This guide differs from the usual ASTM standard in that it does not address a specific test. Rather, it is an introductory guide for new users of other standard exfoliation test methods, (see Terminology G 15 for definition of exfoliation). 1.2 This guide covers aspects of specimen preparation, exposure, inspection, and evaluation for conducting exfoliation tests on aluminum alloys in both laboratory accelerated environments and in natural, outdoor atmospheres. The intent is to clarify any gaps in existent test methods. 1.3 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  3. Fatigue and Corrosion in Metals

    CERN Document Server

    Milella, Pietro Paolo

    2013-01-01

    This textbook, suitable for students, researchers and engineers, gathers the experience of more than 20 years of teaching fracture mechanics, fatigue and corrosion to professional engineers and running experimental tests and verifications to solve practical problems in engineering applications. As such, it is a comprehensive blend of fundamental knowledge and technical tools to address the issues of fatigue and corrosion. The book initiates with a systematic description of fatigue from a phenomenological point of view, since the early signs of submicroscopic damage in few surface grains and continues describing, step by step, how these precursors develop to become mechanically small cracks and, eventually, macrocracks whose growth is governed by fracture mechanics. But fracture mechanics is also introduced to analyze stress corrosion and corrosion assisted fatigue in a rather advanced fashion. The author dedicates a particular attention to corrosion starting with an electrochemical treatment that mechanical e...

  4. Standard test method for measurement of corrosion potentials of Aluminum alloys

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    1.1 This test method covers a procedure for measurement of the corrosion potential (see Note 1) of an aluminum alloy in an aqueous solution of sodium chloride with enough hydrogen peroxide added to provide an ample supply of cathodic reactant. Note 1—The corrosion potential is sometimes referred to as the open-circuit solution or rest potential. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  5. Testing the permeability and corrosion resistance of micro-mechanically interlocked joints

    DEFF Research Database (Denmark)

    Byskov-Nielsen, Jeppe; Holm, Allan Hjarbæk; Højsholt, Rune

    2011-01-01

    Micro-mechanical interlocking (MMI) can be applied to create new and interesting composite materials. We have employed laser structuring to achieve MMI between stainless steel and plastic with extremely high joint strength. However, the water permeability and corrosion resistance of the joint must...... be examined. For many industrially relevant applications it is important to keep water away from certain parts and to prevent the sample from corroding. A thorough study of the permeability of the interconnected samples at different temperatures and after employing different laserstructuring techniques...... is conducted. The permeability seems to be consistent with the Hagen–Poiseuille equation independent of the laser structuring technique and is orders of magnitudes larger than the diffusion rate through the plastic. Two different types of corrosion tests have been undertaken, and we show that care must...

  6. Standard practice for preparation and use of Bent-Beam stress-corrosion test specimens

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice covers procedures for designing, preparing, and using bent-beam stress-corrosion specimens. 1.2 Different specimen configurations are given for use with different product forms, such as sheet or plate. This practice applicable to specimens of any metal that are stressed to levels less than the elastic limit of the material, and therefore, the applied stress can be accurately calculated or measured (see Note 1). Stress calculations by this practice are not applicable to plastically stressed specimens. Note 1—It is the nature of these practices that only the applied stress can be calculated. Since stress-corrosion cracking is a function of the total stress, for critical applications and proper interpretation of results, the residual stress (before applying external stress) or the total elastic stress (after applying external stress) should be determined by appropriate nondestructive methods, such as X-ray diffraction (1). 1.3 Test procedures are given for stress-corrosion testing by ex...

  7. Thermal Cycling and High-Temperature Corrosion Tests of Rare Earth Silicate Environmental Barrier Coatings

    Science.gov (United States)

    Darthout, Émilien; Gitzhofer, François

    2017-12-01

    Lutetium and yttrium silicates, enriched with an additional secondary zirconia phase, environmental barrier coatings were synthesized by the solution precursor plasma spraying process on silicon carbide substrates. A custom-made oven was designed for thermal cycling and water vapor corrosion testing. The oven can test four specimens simultaneously and allows to evaluate environmental barrier performances under similar corrosion kinetics compared to turbine engines. Coatings structural evolution has been observed by SEM on the polished cross sections, and phase composition has been analyzed by XRD. All coatings have been thermally cycled between 1300 °C and the ambient temperature, without spallation, due to their porosity and the presence of additional secondary phase which increases the thermal cycling resistance. During water vapor exposure at 1200 °C, rare earth disilicates showed a good stability, which is contradictory with the literature, due to impurities—such as Si- and Al-hydroxides—in the water vapor jets. The presence of vertical cracks allowed the water vapor to reach the substrate and then to corrode it. It has been observed that thin vertical cracks induced some spallation after 24 h of corrosion.

  8. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Blough, J.L.; Seitz, W.W. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1997-12-01

    In Phase 1 a variety of developmental and commercial tubing alloys and claddings were exposed to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347 RA-85H, HR3C, 253MA, Fe{sub 3}Al + 5Cr, 310 Ta modified, NF 709, 690 clad, and 671 clad for approximately 4,000, 12,000, and 16,000 hours to the actual operating conditions of a 250-MW coal-fired boiler. The samples were assembled on an air-cooled, retractable corrosion probe, the probe was installed in the reheater activity of the boiler and controlled to the operating metal temperatures of an existing and advanced-cycle coal-fired boiler. The results will be presented for the preliminary metallurgical examination of the corrosion probe samples after 16,000 hours of exposure. Continued metallurgical and interpretive analysis is still on going.

  9. Thermal Cycling and High-Temperature Corrosion Tests of Rare Earth Silicate Environmental Barrier Coatings

    Science.gov (United States)

    Darthout, Émilien; Gitzhofer, François

    2017-09-01

    Lutetium and yttrium silicates, enriched with an additional secondary zirconia phase, environmental barrier coatings were synthesized by the solution precursor plasma spraying process on silicon carbide substrates. A custom-made oven was designed for thermal cycling and water vapor corrosion testing. The oven can test four specimens simultaneously and allows to evaluate environmental barrier performances under similar corrosion kinetics compared to turbine engines. Coatings structural evolution has been observed by SEM on the polished cross sections, and phase composition has been analyzed by XRD. All coatings have been thermally cycled between 1300 °C and the ambient temperature, without spallation, due to their porosity and the presence of additional secondary phase which increases the thermal cycling resistance. During water vapor exposure at 1200 °C, rare earth disilicates showed a good stability, which is contradictory with the literature, due to impurities—such as Si- and Al-hydroxides—in the water vapor jets. The presence of vertical cracks allowed the water vapor to reach the substrate and then to corrode it. It has been observed that thin vertical cracks induced some spallation after 24 h of corrosion.

  10. Current practices in corrosion, surface characterization, and nickel leach testing of cardiovascular metallic implants.

    Science.gov (United States)

    Nagaraja, Srinidhi; Di Prima, Matthew; Saylor, David; Takai, Erica

    2017-08-01

    In an effort to better understand current test practices and improve nonclinical testing of cardiovascular metallic implants, the Food and Drug Administration (FDA) held a public workshop on Cardiovascular Metallic Implants: corrosion, surface characterization, and nickel leaching. The following topics were discussed: (1) methods used for corrosion assessments, surface characterization techniques, and nickel leach testing of metallic cardiovascular implant devices, (2) the limitations of each of these in vitro tests in predicting in vivo performance, (3) the need, utility, and circumstances when each test should be considered, and (4) the potential testing paradigms, including acceptance criteria for each test. In addition to the above topics, best practices for these various tests were discussed, and knowledge gaps were identified. Prior to the workshop, discussants had the option to provide feedback and information on issues relating to each of the topics via a voluntary preworkshop assignment. During the workshop, the pooled responses were presented and a panel of experts discussed the results. This article summarizes the proceedings of this workshop and background information provided by workshop participants. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. J Biomed Mater Res Part B: Appl Biomater, 105B: 1330-1341, 2017. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  11. Hydrogen Sulphide Corrosion of Carbon and Stainless Steel Alloys Immersed in Mixtures of Renewable Fuel Sources and Tested Under Co-processing Conditions

    Directory of Open Access Journals (Sweden)

    Gergely András

    2016-10-01

    Full Text Available In accordance with modern regulations and directives, the use of renewable biomass materials as precursors for the production of fuels for transportation purposes is to be strictly followed. Even though, there are problems related to processing, storage and handling in wide range of subsequent uses, since there must be a limit to the ratio of biofuels mixed with mineral raw materials. As a key factor with regards to these biomass sources pose a great risk of causing multiple forms of corrosion both to metallic and non-metallic structural materials. To assess the degree of corrosion risk to a variety of engineering alloys like low-carbon and stainless steels widely used as structural metals, this work is dedicated to investigating corrosion rates of economically reasonable engineering steel alloys in mixtures of raw gas oil and renewable biomass fuel sources under typical co-processing conditions. To model a desulphurising refining process, corrosion tests were carried out with raw mineral gasoline and its mixture with used cooking oil and animal waste lard in relative quantities of 10% (g/g. Co-processing was simulated by batch-reactor laboratory experiments. Experiments were performed at temperatures between 200 and 300ºC and a pressure in the gas phase of 90 bar containing 2% (m3/m3 hydrogen sulphide. The time span of individual tests were varied between 1 and 21 days so that we can conclude about changes in the reaction rates against time exposure of and extrapolate for longer periods of exposure. Initial and integral corrosion rates were defined by a weight loss method on standard size of coupons of all sorts of steel alloys. Corrosion rates of carbon steels indicated a linear increase with temperature and little variation with composition of the biomass fuel sources. Apparent activation energies over the first 24-hour period remained moderate, varying between 35.5 and 50.3 kJ mol−1. Scales developed on carbon steels at higher

  12. A new general and rapid method for investigating hot corrosion: preliminary tests on electrodes for molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, T.R. [Dept. of Chemistry, Univ. of Leeds, Leeds (United Kingdom); Volkovich, V.A. [Dept. of Rare Metals, Ural State Technical Univ. - UPI, Ekaterinburg (Russian Federation)

    2004-07-01

    With the increase and improvement in corrosion resistant alloys, coatings and surface treatments, the ability to test and predict their long-term behaviour to oxidation under hot corrosion conditions, within a reasonable time period, becomes diminished. Peroxide and superoxide ions are the most active oxidisers and we have established a means for generating them in significant concentrations in molten carbonates. This thus has the potential for enabling accelerated hot corrosion studies and we here describe the technique and report preliminary studies on the nickel and nickel oxide electrodes used in molten carbonate fuel cells. Further applications are expected to follow. (orig.)

  13. Reheat study and the corrosion--erosion tests at TVA's Colbert Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Cole, R.M.; Kelso, T.M.; Robards, R.F.

    1979-05-01

    The Tennessee Valley Authority (TVA) is actively engaged in a pilot plant program to develop and/or evaluate wet-scrubbing processes for removing sulfur dioxide (SO/sub 2/) from boiler flue gas. This program includes adjunct testing to evaluate ancillary systems and components. The Electric Power Research Institute (EPRI) funded TVA to determine the operating and heat transfer characteristics for the (1) inline-indirect steam reheater, (2) flue gas recirculation reheat system, and (3) the cyclic reheat system. Tests were also made to measure the resistance of materials of construction to erosion--corrosion by process lime/limestone slurry.

  14. Analysis of the Long-Term Corrosion Behavior of X80 Pipeline Steel in Acidic Red Soil Using Electrical Resistance Test Technique

    Directory of Open Access Journals (Sweden)

    Shuaixing Wang

    2015-01-01

    Full Text Available The long-term corrosion rate of X80 steel in an acidic red soil was monitored in situ by using a precise electrical resistance (ER test system. The corrosion characteristics of X80 steel were examined via SEM, EDS, and XRD. The results indicated that the corrosion rate determined from ER test was very similar to that obtained from the mass loss test. The ER test technique made it possible to predict the long-term corrosion rate of steel in soil in situ. The corrosion rate of X80 steel in acidic red soil was about 0.0902 mm/a at 38 weeks, but the corrosion rate was dropped to 0.0226 mm/a after 5 years. The final corrosion product layer was composed mainly of FeOOH, γ-Fe2O3, and FeCO3.

  15. TESTING VAPOR SPACE AND LIQUID-AIR INTERFACE CORROSION IN SIMULATED ENVIRONMENTS OF HANFORD DOUBLE-SHELLED TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E.

    2013-05-30

    Electrochemical coupon testing were performed on 6 Hanford tank solution simulants and corresponding condensate simulants to evaluate the susceptibility of vapor space and liquid/air interface corrosion. Additionally, partial-immersion coupon testing were performed on the 6 tank solution simulants to compliment the accelerated electrochemical testing. Overall, the testing suggests that the SY-102 high nitrate solution is the most aggressive of the six solution simulants evaluated. Alternatively, the most passive solution, based on both electrochemical testing and coupon testing, was AY-102 solution. The presence of ammonium nitrate in the simulants at the lowest concentration tested (0.001 M) had no significant effect. At higher concentrations (0.5 M), ammonium nitrate appears to deter localized corrosion, suggesting a beneficial effect of the presence of the ammonium ion. The results of this research suggest that there is a threshold concentration of ammonium ions leading to inhibition of corrosion, thereby suggesting the need for further experimentation to identify the threshold.

  16. Standard test method for exfoliation corrosion susceptibility in 2XXX and 7XXX Series Aluminum Alloys (EXCO Test)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method covers a procedure for constant immersion exfoliation corrosion (EXCO) testing of high-strength 2XXX and 7XXX series aluminum alloys. Note 1—This test method was originally developed for research and development purposes; however, it is referenced, in specific material specifications, as applicable for evaluating production material (refer to Section 14 on Precision and Bias). 1.2 This test method applies to all wrought products such as sheet, plate, extrusions, and forgings produced from conventional ingot metallurgy process. 1.3 This test method can be used with any form of specimen or part that can be immersed in the test solution. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  17. Corrosion behavior of environmental assessment glass in product consistency tests of extended duration.

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.K.; Buck, E.C.; Ebert, W.L.; Luo, J.S.; Tam, S.W.

    1998-11-18

    We have conducted static dissolution tests to study the corrosion behavior of the Environmental Assessment (EA) glass, which is the benchmark glass for high-level waste glasses being produced at US Department of Energy facilities. These tests were conducted to evaluate the behavior of the EA glass under the same long-term and accelerated test conditions that are being used to evaluate the corrosion of waste glasses. Tests were conducted at 90 C in a tuff groundwater solution at glass surface area/solution volume (WV) ratios of about 2000 and 20,000 m{sup {minus}1}. The glass dissolved at three distinct dissolution rates in tests conducted at 2000 m{sup {minus}1}. Based on the release of boron, dissolution within the first seven days occurred at a rate of about 0.65 g/(m{sup 2} {center_dot} d). The rate between seven and 70 days decreased to 0.009 g/(m{sup 2} {center_dot} d). An increase in the dissolution rate occurred at longer times after the precipitation of zeolite phases analcime, gmelinite, and an aluminum silicate base. The dissolution rate after phase formation was about 0.18 g/(m{sup 2} {center_dot} d). The formation of the same zeolite alteration phases occurred after about 20 days in tests at 20,000 m{sup {minus}}. The average dissolution rate over the first 20 days was 0.5 g/(m{sup 2} {center_dot} d) and the rate after phase formation was about 0.20 g/(m{sup 2} {center_dot} d). An intermediate stage with a lower rate was not observed in tests at 20,000 m{sup {minus}1}. The corrosion behavior of EA glass is similar to that observed for other high-level waste glasses reacted under the same test conditions. The dissolution rate of EA glass is higher than that of other high-level waste glasses both in 7-day tests and after alteration phases form.

  18. Corrosion product behavior in VVER secondary systems

    Energy Technology Data Exchange (ETDEWEB)

    Yurmanov, V.A.; Velikopolsky, S.V.; Yurmanov, E.V. [N.A. Dollezhal Research and Development Inst. of Power Engineering (NIKIET), Moscow (Russian Federation)

    2010-07-01

    Accumulation of corrosion products lead to some problems during long-term operation of VVER plants, such as secondary system component degradation including crud-induced local corrosion and corrosion cracking. Corrosion sludge and deposit removal from steam generators and other equipment is costly and time-consuming and leads to additional waste production. This problem is vital in the case of plant life extension. Appropriate solutions of the problem could be developed based on both Russian and international experience of the VVER fleet. Recommendations on how to mitigate corrosion product accumulation in VVER secondary systems were developed based on comparative analysis of available long-term data on corrosion product behavior in all the operating VVER plants, such as the following: Sludge and deposit accumulation in inner surfaces of secondary piping and components; Corrosion rate measurements using in-situ specimen testing at operated VVER plants; Efficiency of corrosion product removal from secondary system water by means of condensate polishers and steam generator blowdown cleanup systems; Sludge and deposit removal from steam generators during chemical cleaning; Secondary piping and components conservation efficiency during long outages. Comparative data analysis of corrosion product behavior has shown different corrosion product accumulation rates in Novovoronezh, Kola, Kalinin, Balakovo and Rostov NPPs. The said difference is due to different design and operation peculiarities. (author)

  19. Corrosion of High-Density Sintered Tungsten Alloys. Part 1. Immersion Testing

    Science.gov (United States)

    1988-10-01

    Lumpur, Malaysia , February, 1988, General Symposium, Session 1 (Durability and Life Extension), pp.1-31. 6. Levy, M. and Chang, F. (1981). Corrosion...0 0 64if f4 & UU.00 𔃾 a.. 9 .MV Uow 44 V..ififJ 4.I224o TABLE 7 Variation of the Percentage of Corrosion Products in Solution in Various Corrosion

  20. Twenty years of experience with corrosion failures caused by manganese oxidizing microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Linhardt, P. [Institute for Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060 Vienna (Austria)

    2010-12-15

    Manganese oxidizing microorganisms are known as ubiquitous species in soil and fresh water. Their ability to extract dissolved manganese even at minute concentrations from the water and to biomineralize it as manganese(III/IV)oxides makes them potentially relevant for corrosion processes in technical systems carrying freshwater. These oxides are known as strong oxidants and may act as catalyst for the oxygen reduction reaction. Thus, they are cathodically active, possibly driving anodic metal dissolution processes. The personal experiences over two decades from failure analysis related to these organisms have indeed shown that manganese oxidizers may appear in all kinds of freshwater systems. This paper summarizes observations and conclusions drawn from these cases and provides an overview on the methods found useful in their investigation. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Standard Test Method for Stress-Corrosion of Titanium Alloys by Aircraft Engine Cleaning Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This test method establishes a test procedure for determining the propensity of aircraft turbine engine cleaning and maintenance materials for causing stress corrosion cracking of titanium alloy parts. 1.2 The evaluation is conducted on representative titanium alloys by determining the effect of contact with cleaning and maintenance materials on tendency of prestressed titanium alloys to crack when subsequently heated to elevated temperatures. 1.3 Test conditions are based upon manufacturer's maximum recommended operating solution concentration. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see and .

  2. Effects of initial iron corrosion rate on long-term performance of iron permeable reactive barriers: column experiments and numerical simulation.

    Science.gov (United States)

    suk O, Jin; Jeen, Sung-Wook; Gillham, Robert W; Gui, Lai

    2009-01-26

    Column experiments and numerical simulation were conducted to test the hypothesis that iron material having a high corrosion rate is not beneficial for the long-term performance of iron permeable reactive barriers (PRBs) because of faster passivation of iron and greater porosity loss close to the influent face of the PRBs. Four iron materials (Connelly, Gotthart-Maier, Peerless, and ISPAT) were used for the column experiments, and the changes in reactivity toward cis-dichloroethene (cis-DCE) degradation in the presence of dissolved CaCO3 were evaluated. The experimental results showed that the difference in distribution of the accumulated precipitates, resulting from differences in iron corrosion rate, caused a difference in the migration rate of the cis-DCE profiles and a significant difference in the pattern of passivation, indicating a faster passivation in the region close to the influent end for the material having a higher corrosion rate. For the numerical simulation, the accumulation of secondary minerals and reactivity loss of iron were coupled using an empirically-derived relationship that was incorporated into a multi-component reactive transport model. The simulation results provided a reasonable representation of the evolution of iron reactivity toward cis-DCE treatment and the changes in geochemical conditions for each material, consistent with the observed data. The simulations for long-term performance were also conducted to further test the hypothesis and predict the differences in performance over a period of 40 years under typical groundwater conditions. The predictions showed that the cases of higher iron corrosion rates had earlier cis-DCE breakthrough and more reduction in porosity starting from near the influent face, due to more accumulation of carbonate minerals in that region. Therefore, both the experimental and simulation results appear to support the hypothesis and suggest that reactivity changes of iron materials resulting from

  3. Report on Electrochemcial Corrosion Testing of 241-SY-102 Grab Samples from the 2012 Grab Sampling Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Wyrwas, Richard B.; Lamothe, Margaret E.

    2013-05-30

    This report describes the results of the electrochemical testing performed on tank 241-SY-102 (SY-102) grab samples that were collected in support of corrosion mitigation. The objective of the work presented here was to determine corrosion resistance of tank SY-102 to the grab samples collected using electrochemical methods up to 50°C as well as to satisfy data quality objectives. Grab samples were collected at multiple elevations from Riser 003. The electrochemical corrosion testing was planned to consist of linear polarization resistance testing (LPR) and cyclic potentiodynamic polarization (CPP) testing at 50°C. The temperature would be lowered to 40 °C and the test repeated if the CPP curve indicated pitting corrosion at 50°C. Ifno pitting was indicated by the CPP curve, then a duplicate scan would be repeated at 50°C to confirm the first result. The testing would be complete if the duplicate CPP scan was consistent with the first. This report contains the CPP results of the testing of grab sample 2SY-12-03 and 2SY-12-03DUP composite sample tested under these conditions. There was no indication of pitting at 50°C, and the duplicate scan was in agreement with the first scan. Since no further testing was required, a third scan with a shorter rest time was performed and is present in this report.

  4. Standard Test Methods for Detecting Susceptibility to Intergranular Corrosion in Wrought, Nickel-Rich, Chromium-Bearing Alloys

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 These test methods cover two tests as follows: 1.1.1 Method A, Ferric Sulfate-Sulfuric Acid Test (Sections 3-10, inclusive)—This test method describes the procedure for conducting the boiling ferric sulfate—50 % sulfuric acid test which measures the susceptibility of certain nickel-rich, chromium-bearing alloys to intergranular corrosion (see Terminology G 15), which may be encountered in certain service environments. The uniform corrosion rate obtained by this test method, which is a function of minor variations in alloy composition, may easily mask the intergranular corrosion components of the overall corrosion rate on alloys N10276, N06022, N06059, and N06455. 1.1.2 Method B, Mixed Acid-Oxidizing Salt Test (Sections 11-18, inclusive)—This test method describes the procedure for conducting a boiling 23 % sulfuric + 1.2 % hydrochloric + 1 % ferric chloride + 1 % cupric chloride test which measures the susceptibility of certain nickel-rich, chromium-bearing alloys to display a step function increa...

  5. Annual report, spring 2015. Alternative chemical cleaning methods for high level waste tanks-corrosion test results

    Energy Technology Data Exchange (ETDEWEB)

    Wyrwas, R. B. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-07-06

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel when interacted with the chemical cleaning solution composed of 0.18 M nitric acid and 0.5 wt. % oxalic acid. This solution has been proposed as a dissolution solution that would be used to remove the remaining hard heel portion of the sludge in the waste tanks. This solution was combined with the HM and PUREX simulated sludge with dilution ratios that represent the bulk oxalic cleaning process (20:1 ratio, acid solution to simulant) and the cumulative volume associated with multiple acid strikes (50:1 ratio). The testing was conducted over 28 days at 50°C and deployed two methods to invest the corrosion conditions; passive weight loss coupon and an active electrochemical probe were used to collect data on the corrosion rate and material performance. In addition to investigating the chemical cleaning solutions, electrochemical corrosion testing was performed on acidic and basic solutions containing sodium permanganate at room temperature to explore the corrosion impacts if these solutions were to be implemented to retrieve remaining actinides that are currently in the sludge of the tank.

  6. Salt Spray Test to Determine Galvanic Corrosion Levels of Electroless Nickel Connectors Mounted on an Aluminum Bracket

    Science.gov (United States)

    Rolin, T. D.; Hodge, R. E.; Torres, P. D.; Jones, D. D.; Laird, K. R.

    2014-01-01

    During preliminary vehicle design reviews, requests were made to change flight termination systems from an electroless nickel (EN) connector coating to a zinc-nickel (ZN) plating. The reason for these changes was due to a new NASA-STD-6012 corrosion requirement where connectors must meet the performance requirement of 168 hr of exposure to salt spray. The specification for class F connectors, MIL-DTL-38999, certifies the EN coating will meet a 48-hr salt spray test, whereas the ZN is certified to meet a 168-hr salt spray test. The ZN finish is a concern because Marshall Space Flight Center has no flight experience with ZN-finished connectors, and MSFC-STD-3012 indicates that zinc and zinc alloys should not be used. The purpose of this test was to run a 168-hr salt spray test to verify the electrical and mechanical integrity of the EN connectors and officially document the results. The salt spray test was conducted per ASTM B117 on several MIL-DTL-38999 flight-like connectors mounted to an aluminum 6061-T6 bracket that was alodined. The configuration, mounting techniques, electrical checks, and materials used were typical of flight and ground support equipment.

  7. Annual Report, Fall 2016: Alternative Chemical Cleaning of Radioactive High Level Waste Tanks - Corrosion Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Wyrwas, R. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval of actinides in the sludge in the waste tanks, and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.

  8. Standard Practice for Making and Using C-Ring Stress-Corrosion Test Specimens

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice covers the essential features of the design and machining, and procedures for stressing, exposing, and inspecting C-ring type of stress-corrosion test specimens. An analysis is given of the state and distribution of stress in the C-ring. 1.2 Specific considerations relating to the sampling process and to the selection of appropriate test environments are outside the scope of this practice. 1.3 The values stated in SI units are to be regarded as the standard; The values given in parentheses are for information only. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  9. An Intelligent Tap Test as AN Inspection Tool for Corrosion in Chequer Plate Floors

    Science.gov (United States)

    Williams, S. M.; Smith, J. W.

    2002-11-01

    The "coin-tap" test has the ability to indicate damage in a structural element due to a localized change of stiffness or damping. The change in vibration signature may be detected by ear or more precisely by measurement of the dynamic contact force. A method for discriminating between measurements made on sound and damaged structures is presented. An unsupervised neural network algorithm is used for recognizing the differences between contact force patterns. The method is used for non-destructive inspection of corrosion damage to steel chequer plate floors in industrial buildings. It is shown that the intelligent tap test is a useful and practical diagnostic tool for detecting localized damage in structures.

  10. Study made of corrosion resistance of stainless steel and nickel alloys in nuclear reactor superheaters

    Science.gov (United States)

    Greenberg, S.; Hart, R. K.; Lee, R. H.; Ruther, W. E.; Schlueter, R. R.

    1967-01-01

    Experiments performed under conditions found in nuclear reactor superheaters determine the corrosion rate of stainless steel and nickel alloys used in them. Electropolishing was the primary surface treatment before the corrosion test. Corrosion is determined by weight loss of specimens after defilming.

  11. Application of gamma-ray radiography and gravimetric measurements after accelerated corrosion tests of steel embedded in mortar

    Energy Technology Data Exchange (ETDEWEB)

    Duffó, Gustavo, E-mail: duffo@cnea.gov.ar [Comisión Nacional de Energía Atómica, Gerencia Materiales, Depto. Corrosión, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, 1033 Buenos Aires (Argentina); Universidad Nacional de San Martín, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Gaillard, Natalia [Universidad Nacional de San Martín, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Mariscotti, Mario; Ruffolo, Marcelo [Tomografía de Hormigón Armado S.A. (THASA), Reclus 2017, 1609 Boulogne, Buenos Aires (Argentina)

    2015-08-15

    The accelerated corrosion by the impressed current technique is widely used in studies of concrete durability since it has the advantage that tests can be carried out within reasonable periods of time. In the present work the relationship between the applied current density and the resulting damage on the reinforcing steel, by applying optical microscopy, scanning electron microscopy, gamma-ray radiography and gravimetric measurements, was studied by means of the implementation of accelerated corrosion tests on reinforced mortar. The results show that the efficiency of the applied current is between 1 and 77%, regardless of the applied current density, the water/cement ratio and the mortar cover depth of the specimens. The results show the applicability of the gamma-ray radiography technique to detect localized corrosion of steel rebars in laboratory specimens.

  12. Electrochemical, Polarization, and Crevice Corrosion Testing of Nitinol 60, A Supplement to the ECLSS Sustaining Materials Compatibility Study

    Science.gov (United States)

    Lee, R. E.

    2016-01-01

    In earlier trials, electrochemical test results were presented for six noble metals evaluated in test solutions representative of waste liquids processed in the Environmental Control and Life Support System (ECLSS) aboard the International Space Station (ISS). Subsequently, a seventh metal, Nitinol 60, was added for evaluation and subjected to the same test routines, data analysis, and theoretical methodologies. The previous six test metals included three titanium grades, (commercially pure, 6Al-4V alloy and 6Al-4V low interstitial alloy), two nickel-chromium alloys (Inconel(RegisteredTrademark) 625 and Hastelloy(RegisteredTrademark) C276), and one high-tier stainless steel (Cronidur(RegisteredTrademark) 30). The three titanium alloys gave the best results of all the metals, indicating superior corrosive nobility and galvanic protection properties. For this current effort, the results have clearly shown that Nitinol 60 is almost as noble as titanium, being very corrosion-resistant and galvanically compatible with the other six metals electrochemically and during long-term exposure. is also quite noble as it is very corrosion resistant and galvanically compatible with the other six metals from both an electrochemical perspective and long-term crevice corrosion scenario. This was clearly demonstrated utilizing the same techniques for linear, Tafel and cyclic polarization, and galvanic coupling of the metal candidate as was done for the previous study. The high nobility and low corrosion susceptibility for Nitinol 60 appear to be intermediate to the nickel/chromium alloys and the titanium metals with indications that are more reflective of the titanium metals in terms of general corrosion and pitting behavior.

  13. Copper corrosion by-product release in long-term stagnation experiments.

    Science.gov (United States)

    Merkel, Till H; Gross, Hans-Jürgen; Werner, Wolfgang; Dahlke, Thomas; Reicherter, Susanne; Beuchle, Günter; Eberle, Siegfried H

    2002-03-01

    The effect of long-term stagnation on copper corrosion by-product release and corrosion rates was studied in pipe-rigs according to the German standard DIN 50931, Part 1. The analysis of the water phase was supplemented by surface analysis of corrosion scales. Copper concentration during stagnation did not follow a solubility process. The characteristic curves obtained can be explained by subsequent copper release and copper refixation processes. Oxygen consumption can be described by the first-order kinetic rate law. The corrosion scales consisted of cuprite (Cu2O) and malachite (CuCO3 x Cu(OH)2). Malachite grew in well-defined crystals during stagnation, served as sink for dissolved copper and did not protect the pipe against corrosion attack. Copper concentrations measured after long-term stagnation (up to 122 h) correspond to the solubility of malachite in the testwater.

  14. The effect of heat treatment and test parameters on the aqueous stress corrosion cracking of D6AC steel

    Science.gov (United States)

    Gilbreath, W. P.; Adamson, M. J.

    1974-01-01

    The crack growth behavior of D6AC steel as a function of stress intensity, stress and corrosion history and test technique, under sustained load in natural seawater, 3.3 percent NaCl solution, distilled water, and high humidity air was investigated. Reported investigations of D6AC were considered with emphasis on thermal treatment, specimen configuration, fracture toughness, crack-growth rates, initiation period, threshold, and the extension of corrosion fatigue data to sustained load conditions. Stress history effects were found to be most important in that they controlled incubation period, initial crack growth rates, and apparent threshold.

  15. Separation of heterocyclic compounds from hydropyrolysis oil and testing their activity as corrosion inhibitors in 1 M sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Studnicki, M. (Zaklad Karbochemii PAN, Gliwice (Poland))

    1991-05-01

    Investigates inhibiting properties of coal derived oil concentrates. Hard coal was subject to hydropyrolysis at 600 C and 4 MPa. Coal analysis was provided. Chromatography was employed to separate concentrates of N, O and S compounds from oil fractions. Columns were filled with Amberlite IRA-904 and Amberlyst 15 ion exchange resins as well as with Attapulgus clay. Ten fractions/concentrates were obtained. Their ability to protect StO steel against corrosion in 1 M solution of sulfuric acid was tested and compared to that of a standard compound (S-isothioureide-N-methine-m-phenylenediamine) and a petroleum-derived concentrate of strong bases. The results obtained are tabulated. Some concentrates were found to promote corrosion. It was possible in some cases to determine a threshold concentration of N, below which corrosion was promoted. High resolution mass spectrometry was applied to analyze eight concentrates. Molecular weights and molecular compositions for identified compounds are tabulated. 17 refs.

  16. Non-animal testing strategies for assessment of the skin corrosion and skin irritation potential of ingredients and finished products.

    Science.gov (United States)

    Robinson, M K; Cohen, C; de Fraissinette, A de Brugerolle; Ponec, M; Whittle, E; Fentem, J H

    2002-05-01

    The dermatotoxicologist today is faced with a dilemma. Protection of workers and consumers from skin toxicities (irritation and allergy) associated with exposure to products, and the ingredients they contain, requires toxicological skin testing prior to manufacture, transport, or marketing. Testing for skin corrosion or irritation has traditionally been conducted in animals, particularly in rabbits via the long established Draize test method. However, this procedure, among others, has been subject to criticism, both for its limited predictive capacity for human toxicity, as well as for its use of animals. In fact, legislation is pending in the European Union which would ban the sale of cosmetic products, the ingredients of which have been tested in animals. These considerations, and advancements in both in vitro skin biology and clinical testing, have helped drive an intensive effort among skin scientists to develop alternative test methods based either on in vitro test systems (e.g. using rat, pig or human skin ex vivo, or reconstructed human skin models) or ethical clinical approaches (human volunteer studies). Tools are now in place today to enable a thorough skin corrosion and irritation assessment of new ingredients and products without the need to test in animals. Herein, we describe general testing strategies and new test methods for the assessment of skin corrosion and irritation. The methods described, and utilized within industry today, provide a framework for the practicing toxicologist to support new product development initiatives through the use of reliable skin safety testing and risk assessment tools and strategies.

  17. Corrosion behavior of Alloy 22 in heated surface test conditions in simulated Yucca Mountain Nuclear Repository environment

    Science.gov (United States)

    Badwe, Sunil

    In the nuclear repository conditions, the nuclear waste package wall surfaces will be at elevated temperatures because of the heat generated by fission reactions within the waste. It is anticipated that the ground water may contain varying levels of anions such as chloride, nitrate, sulfate picked up from the rocks. The ground waters could seep through the rock faults and drip on to the waste packages. The dripped water will evaporate due to the heat from the nuclear waste leaving behind concentrated brine which eventually becomes dry salt deposit. The multi-ionic salts in the ground water are expected to be hygroscopic in nature. The next drop of water falling at the same place or the humidity in the repository will transform the hygroscopic salt deposit into a more concentrated brine. This cycle will continue for years and eventually a potentially corrosive brine will be formed on the waste package surface. Hence the waste package surface goes through the alternate wet-dry cycles. These conditions indicate that the concentration and pH of the environment in the repository vary considerably. The conventional corrosion tests hardly simulate these varying environmental conditions. Hence there has been a need to develop an electrochemical test that could closely simulate the anticipated repository conditions stated above. In this research, a new electrochemical method, called as Heated Surface Corrosion testing (HSCT) has been devised and tested. In the conventional testing the electrolyte is heated and in HSCT the working electrode is heated. The present study employs the temperature of 80°C which may be one of the temperatures of the waste package surface. The new HSCT was validated by testing stainless steel type 304. The HSCT was observed to be more aggressive than the conventional tests. Initiation of pitting of SS 304 in chloride solution (pH 3) occurred at much shorter exposure times in the HSCT condition than the exposure time required for pitting in

  18. Supercritical water loop design for corrosion and water chemistry tests under irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ruzickova, Mariana; Hajek, Petr; Vsolak, Rudolf; Kysela, Jan [Nuclear Research Institute Rez plc, Reactor Services Division, Husinec (Czech Republic); Smida, Stepan [H and D Engineering, Praha (Czech Republic); Petr, Jan [Nuclear Research Institute Rez plc, Praha (Czech Republic)

    2008-03-15

    An experimental loop operating with water at supercritical conditions (25MPa, 600 .deg. C in the test section) is designed for operation in the research reactor LVR-15 in UJV Rez, Czech Republic. The loop should serve as an experimental facility for corrosion tests of materials for in-core as well as out-of-core structures, for testing and optimization of suitable water chemistry for a future HPLWR and for studies of radiolysis of water at supercritical conditions, which remains the domain where very few experimental data are available. At present, final necessary calculations (thermalhydraulic, neutronic, strength) are being performed on the irradiation channel, which is the most challenging part of the loop. The concept of the primary and auxiliary circuits has been completed. The design of the loop shall be finished in the course of the year 2007 to start the construction, out-of-pile testing to verify proper functioning of all systems and as such to be ready for in-pile tests by the end of the HPLWR Phase 2 European project by the end of 2009.

  19. Fireside corrosion and steamside oxidation of 9-12% Cr martensitic steels exposed for long term testing

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Jensen, S. A.; Rasmussen, F.

    2009-01-01

    To obtain long term corrosion and steam oxidation data for the 9-12%Cr ferritic steels, test tube sections have been exposed in Amager 3 and Avedore 1 coal fired power plants in Denmark (formerly run by ENERGI E2). Thus direct comparisons can be made for T91 and T92 for the 9% Cr steels and X20Cr...

  20. Corrosion of metals in wood : comparing the results of a rapid test method with long-term exposure tests across six wood treatments

    Science.gov (United States)

    Samuel L. Zelinka; Donald S. Stone

    2011-01-01

    This paper compares two methods of measuring the corrosion of steel and galvanized steel in wood: a long-term exposure test in solid wood and a rapid test method where fasteners are electrochemically polarized in extracts of wood treated with six different treatments. For traditional wood preservatives, the electrochemical extract method correlates with solid wood...

  1. Corrosion Assessment of Steel Bars Used in Reinforced Concrete Structures by Means of Eddy Current Testing.

    Science.gov (United States)

    de Alcantara, Naasson P; da Silva, Felipe M; Guimarães, Mateus T; Pereira, Matheus D

    2015-12-24

    This paper presents a theoretical and experimental study on the use of Eddy Current Testing (ECT) to evaluate corrosion processes in steel bars used in reinforced concrete structures. The paper presents the mathematical basis of the ECT sensor built by the authors; followed by a finite element analysis. The results obtained in the simulations are compared with those obtained in experimental tests performed by the authors. Effective resistances and inductances; voltage drops and phase angles of wound coil are calculated using both; simulated and experimental data; and demonstrate a strong correlation. The production of samples of corroded steel bars; by using an impressed current technique is also presented. The authors performed experimental tests in the laboratory using handmade sensors; and the corroded samples. In the tests four gauges; with five levels of loss-of-mass references for each one were used. The results are analyzed in the light of the loss-of-mass and show a strong linear behavior for the analyzed parameters. The conclusions emphasize the feasibility of the proposed technique and highlight opportunities for future works.

  2. Stress corrosion cracking of alloy 600 using the constant strain rate test

    Energy Technology Data Exchange (ETDEWEB)

    Bulischeck, T. S.; van Rooyen, D.

    1980-01-01

    The most recent corrosion problems experienced in nuclear steam generators tubed with Inconel alloy 600 is a phenomenon labeled ''denting''. Denting has been found in various degrees of severity in many operating pressurized water reactors. Laboratory investigations have shown that Inconel 600 exhibits intergranular SCC when subjected to high stresses and exposed to deoxygenated water at elevated temperatures. A research project was initiated at Brookhaven National Laboratory in an attempt to improve the qualitative and quantitative understanding of factors influencing SCC in high temperature service-related environments. An effort is also being made to develop an accelerated test method which could be used to predict the service life of tubes which have been deformed or are actively denting. Several heats of commercial Inconel 600 tubing were procured for testing in deaerated pure and primary water at temperatures from 290 to 365/sup 0/C. U-bend type specimens were used to determine crack initiation times which may be expected for tubes where denting has occurred but is arrested and provide baseline data for judging the accelerating effects of the slow strain rate method. Constant extension rate tests were employed to determine the crack velocities experienced in the crack propagation stage and predict failure times of tubes which are actively denting. 8 refs., 17 figs., 5 tabs.

  3. Studies of corrosion morphologies by use of experiments and computer models

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Terje

    1997-12-31

    CO{sub 2} corrosion of carbon steel is frequently encountered in the oil industry. This thesis studies the morphology of corroded metals and the dynamical evolution of corrosion attacks, especially pits and general corroded fronts, experimentally and by computerized simulation. Two experimental systems of carbon steel in CO{sub 2} bearing waters and aluminium in chloride containing electrolytes were used. Fractal geometry was used in analysing the corrosion patterns and found to be a fruitful technique. The position of the corroding fronts was obtained by destructive methods as well as non-destructive ones. To study fragile corrosion product layers or the corrosion process in situ, a grazing angle lighting technique was developed and found superior to other techniques. A computer model was developed that uses Monte Carlo technique to simulate the generation of localized pits and more general corroded front morphologies. A three-dimensional model and two versions of a two-dimensional model were developed. The three-dimensional model was used to provide incremental data of corroded volume and depth as a function of the simulation time. 185 refs., 97 figs., 16 tabs.

  4. A study on the corrosion-control test of material for molten salt handling (I)

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Joon; Zhang, J. S.; Oh, S. C.; Cho, S. H.; Park, H. S.; Do, J. B. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-01-01

    On this technical report, corrosion behaviors of Incoloy 800H, Inconel 600 and Hastelloy C-276 in molten salts were investigated in the temperature range of 650 - 850 deg C. Due to Li{sub 2}O-induced basic fluxing mechanism, the corrosion rates of the alloys in mixed molten salt of LiCl-Li{sub 2}O were significantly higher than those in molten salt of LiCl. In the mixed molten salt, Fe-base alloys showed higher corrosion resistance than the Ni-base alloys, and C-276 with high Mo and W contents exhibited the highest corrosion rate among the examined alloys. the single layer of LiCrO{sub 2} was formed in molten salt of LiCl and two phase structure of a scale consisted of oxides and Ni was formed in the mixed molten salt. 48 refs., 14 figs., 2 tabs. (Author)

  5. Coatings and Corrosion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The mission of the Coatings and Corrosion Laboratory is to develop and analyze the effectiveness of innovative coatings test procedures while evaluating the...

  6. LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System

    Energy Technology Data Exchange (ETDEWEB)

    Dr. John Garnier; Dr. Kevin McHugh

    2012-09-01

    The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

  7. Standard test method for determining susceptibility to stress-corrosion cracking of 2XXX and 7XXX Aluminum alloy products

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1998-01-01

    1.1 This test method covers a uniform procedure for characterizing the resistance to stress-corrosion cracking (SCC) of high-strength aluminum alloy wrought products for the guidance of those who perform stress-corrosion tests, for those who prepare stress-corrosion specifications, and for materials engineers. 1.2 This test method covers method of sampling, type of specimen, specimen preparation, test environment, and method of exposure for determining the susceptibility to SCC of 2XXX (with 1.8 to 7.0 % copper) and 7XXX (with 0.4 to 2.8 % copper) aluminum alloy products, particularly when stressed in the short-transverse direction relative to the grain structure. 1.3 The values stated in SI units are to be regarded as standard. The inch-pound units in parentheses are provided for information. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and de...

  8. High gas velocity oxidation and hot corrosion testing of oxide dispersion-strengthened nickel-base alloys

    Science.gov (United States)

    Deadmore, D. L.; Lowell, C. E.

    1975-01-01

    Several oxide dispersion strengthened (ODS) nickel-base alloys were tested in high velocity gases for cyclic oxidation resistance at temperatures to 1200 C and times to 500 hours and for hot corrosion resistance at 900 C for 200 hours. Nickel-chromium-aluminum ODS alloys were found to have superior resistance to oxidation and hot corrosion when compared to bare and coated nickel-chromium ODS alloys. The best of the alloys tested had compositions of nickel - 15.5 to 16 weight percent chromium with aluminum weight percents between 4.5 and 5.0. All of the nickel-chromium-aluminum ODS materials experienced small weight losses (less than 16 mg/sq cm).

  9. Circumferential Notched Tensile Testing for Correlation of the Stress Intensity Factor ( K I ) and Stress Corrosion Crack Growth Rate

    Science.gov (United States)

    Rihan, R.; Singh Raman, R. K.; Ibrahim, R. N.

    2008-07-01

    A novel fracture mechanics technique has been employed for the determination of crack growth rate and threshold stress intensity factor ( K ISCC) for stress corrosion cracking (SCC) using small circumferential notch tensile (CNT) specimens. The technique was applied successfully for testing SCC susceptibility of AISI 1020 mild steel in 12.5 M NaOH at 150 °C. The crack growth rate of mild steel in 12.5 M NaOH solution at 150 °C has been determined at different stress intensity factors ( K I ), and the K ISCC has been determined to be 29 MPa·m1/2. The surfaces of fractured specimens have been examined by scanning electron microscopy (SEM) in order to establish intergranular propagation of stress corrosion cracks. The CNT testing is a simple, relatively fast, and cost-advantageous approach for generating crack growth rate and K ISCC data.

  10. Evaluation of precipitates used in strainer head loss testing: Part II. Precipitates by in situ aluminum alloy corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Bahn, Chi Bum, E-mail: bahn@anl.go [Argonne National Laboratory, Lemont, IL 60439 (United States); Kasza, Ken E.; Shack, William J.; Natesan, Ken [Argonne National Laboratory, Lemont, IL 60439 (United States); Klein, Paul [The United States Nuclear Regulatory Commission, Rockville, MD 20852 (United States)

    2011-05-15

    Graphical abstract: Display Omitted Research highlights: Sump strainer head loss testing to evaluate chemical effects. Aluminum hydroxide precipitates by in situ Al alloy corrosion caused head loss. Intermetallic particles released from Al alloy can also cause significant head loss. When evaluating Al effect on head loss, intermetallics should be considered. - Abstract: Vertical loop head loss tests were performed with 6061 and 1100 aluminum (Al) alloy plates immersed in borated solution at pH = 9.3 at room temperature and 60 {sup o}C. The results suggest that the potential for corrosion of an Al alloy to result in increased head loss across a glass fiber bed may depend on its microstructure, i.e., the size distribution and number density of intermetallic particles that are present in Al matrix and FeSiAl ternary compounds, as well as its Al release rate. Per unit mass of Al removed from solution, the WCAP-16530 aluminum hydroxide (Al(OH){sub 3}) surrogate was more effective in increasing head loss than the Al(OH){sub 3} precipitates formed in situ by corrosion of Al alloy. However, in choosing a representative amount of surrogate for plant specific testing, consideration should be given to the potential for additional head losses due to intermetallic particles and the apparent reduction in the effective solubility of Al(OH){sub 3} when intermetallic particles are present.

  11. Study of the corrosion behavior of magnesium alloy weldings in NaCl solutions by gravimetric tests

    Directory of Open Access Journals (Sweden)

    Segarra, José A.

    2015-09-01

    Full Text Available In this article, the corrosion behavior of commercial AZ31 welded plates in aqueous chloride media was investigated by means of gravimetric techniques and Neutral Salt Spray tests (NSS. The AZ31 samples tested were welded using Gas Tugsten Arc Welding (GTAW and different filler materials. Material microstructures were investigated by optical microscopy to stablish the influence of those microstructures in the corrosion behavior. Gravimetric and NSS tests indicate that the use of more noble filler alloys for the sample welding, preventing the reduction of aluminum content in weld beads, does not imply a better corrosion behavior.En este artículo se ha investigado el comportamiento frente a la corrosión en medios acuosos salinos de chapas soldadas de aleación AZ31 mediante técnicas gravimétricas y ensayo en cámara de niebla salina. Las muestras estudiadas han sido soldadas mediante soldadura TIG (Tungsten Inert Gas y con diferentes materiales de aporte. En el estudio se ha empleado microscopía óptica para analizar la microestructura. Los ensayos de gravimetría y los ensayos de niebla salina indican que el empleo de materiales de aporte más nobles para soldar las muestras evitando la disminución del contenido en aluminio en los cordones, no implica un mejor comportamiento frente a la corrosión.

  12. Bio-testing integral toxicity of corrosion inhibitors, biocides and oil hydrocarbons in oil-and gas-processing industry

    Energy Technology Data Exchange (ETDEWEB)

    Chugunov, V.A.; Kholodenko, V.P.; Irkhina, I.A.; Fomchenkov, V.M.; Novikov, I.A. [State Research Center for Applied Microbiology, Obolensk, Moscow (Russian Federation)

    2004-07-01

    In recent years bioassays have been widely used for assessing levels of contamination of the environment. This is due to the fact that test-organisms provide a general response to toxicants present in samples. Based on microorganisms as test objects, it is possible to develop cheap, sensitive and rapid assays to identify environmental xenobiotics and toxicants. The objective of the research was to develop different microbiological assays for assessing integral toxicity of water environments polluted with corrosion inhibitors, biocides and hydrocarbons in oil- and gas-processing industry. Bio-luminescent, electro-orientational, osmo-optic and microorganism reducing activity assays were used for express evaluation of integral toxicity. They are found to determine promptly integral toxicity of water environments containing various pollutants (oil, oil products, corrosion inhibitors, biocides). Results conclude that the assays may be used for analyzing integral toxicity of water polluted with hydrocarbons, as well as for monitoring of water changes as a result of biodegradation of pollutants by microorganisms and their associations. Using a kit of different assays, it is also possible to evaluate ecological safety of biocides, corrosion inhibitors, and their compositions. Bioassays used as a kit are more effective than each assay individually, allowing one to get complete characterization of a reaction of bacterial test organisms to different environments. (authors)

  13. LHCb : Full Experiment System Test

    CERN Multimedia

    Cattaneo, M

    2009-01-01

    LHCb had been planning to commission its High Level Trigger software and Data Quality monitoring procedures using real collisions data from the LHC pilot run. Following the LHC incident on 19th September 2008, it was decided to commission the system using simulated data. This “Full Experiment System Test” consists of: - Injection of simulated minimum bias events into the full HLT farm, after selection by a simulated Level 0 trigger. - Processing in the HLT farm to achieve the output rate expected for nominal LHC luminosity running, sustained over the typical duration of an LHC fill. - Real time Data Quality validation of the HLT output, validation of calibration and alignment parameters for use in the reconstruction. - Transmission of the event data, calibration data and book-keeping information to Tier1 sites and full reconstruction of the event data. - Data Quality validation of the reconstruction output. We will report on the preparations and results of FEST09, and on the status of commissioning for no...

  14. Standard test method for evaluating stress-corrosion cracking of stainless alloys with different nickel content in boiling acidified sodium chloride solution

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This test method describes a procedure for conducting stress-corrosion cracking tests in an acidified boiling sodium chloride solution. This test method is performed in 25% (by mass ) sodium chloride acidified to pH 1.5 with phosphoric acid. This test method is concerned primarily with the test solution and glassware, although a specific style of U-bend test specimen is suggested. 1.2 This test method is designed to provide better correlation with chemical process industry experience for stainless steels than the more severe boiling magnesium chloride test of Practice G36. Some stainless steels which have provided satisfactory service in many environments readily crack in Practice G36, but have not cracked during interlaboratory testing using this sodium chloride test method. 1.3 This boiling sodium chloride test method was used in an interlaboratory test program to evaluate wrought stainless steels, including duplex (ferrite-austenite) stainless and an alloy with up to about 33% nickel. It may also b...

  15. An Alternative Corrosion Resistance Test Method for Solar Cells and Interconnection Materials Limiting the Number of Long-lasting and Expensive Damp-Heat Climate Chamber Tests

    Energy Technology Data Exchange (ETDEWEB)

    Van Aken, B.B.; Gouwen, R.J.; Veldman, D.; Bende, E.E.; Eerenstein, W. [ECN Solar Energy, Petten (Netherlands)

    2013-06-15

    Damp-heat testing of PV modules is a time-consuming process, taking months. We present an alternative test method: electrochemical noise (EcN) measurements. Data acquisition times vary between minutes for direct exposure to several tens of hours for encapsulated samples. EcN measurements are presented for several solar cell concepts and different environments. We have found that the degradation in damp-heat testing is proportional to the electrochemical noise signal. In conclusion, the electrochemical noise measurements are a fast, versatile tool to test the corrosion resistance of solar cells, which can be tested for different environments including encapsulation.

  16. Irradiation Programs and Test Plans to Assess High-Fluence Irradiation Assisted Stress Corrosion Cracking Susceptibility.

    Energy Technology Data Exchange (ETDEWEB)

    Teysseyre, Sebastien [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    . Irradiation assisted stress corrosion cracking (IASCC) is a known issue in current reactors. In a 60 year lifetime, reactor core internals may experience fluence levels up to 15 dpa for boiling water reactors (BWR) and 100+ dpa for pressurized water reactors (PWR). To support a safe operation of our fleet of reactors and maintain their economic viability it is important to be able to predict any evolution of material behaviors as reactors age and therefore fluence accumulated by reactor core component increases. For PWR reactors, the difficulty to predict high fluence behavior comes from the fact that there is not a consensus of the mechanism of IASCC and that little data is available. It is however possible to use the current state of knowledge on the evolution of irradiated microstructure and on the processes that influences IASCC to emit hypotheses. This report identifies several potential changes in microstructure and proposes to identify their potential impact of IASCC. The susceptibility of a component to high fluence IASCC is considered to not only depends on the intrinsic IASCC susceptibility of the component due to radiation effects on the material but to also be related to the evolution of the loading history of the material and interaction with the environment as total fluence increases. Single variation type experiments are proposed to be performed with materials that are representative of PWR condition and with materials irradiated in other conditions. To address the lack of IASCC propagation and initiation data generated with material irradiated in PWR condition, it is proposed to investigate the effect of spectrum and flux rate on the evolution of microstructure. A long term irradiation, aimed to generate a well-controlled irradiation history on a set on selected materials is also proposed for consideration. For BWR, the study of available data permitted to identify an area of concern for long term performance of component. The efficiency of

  17. Round robin test for zirconium alloys in 400 deg C steam: results from EDF; Essais interlaboratoires de corrosion generalisee en milieu vapeur a 400 deg C d`alliages de zirconium: resultats d`EDF

    Energy Technology Data Exchange (ETDEWEB)

    Blat, M.

    1994-01-01

    The EDF Material Studies Branch has participated in the Round Robin program of uniform corrosion on zirconium alloys. The objectives of these Round Robin corrosion tests are to generate new uniform corrosion weight gain date utilizing modern zirconium alloy products and to improve the International and ASTM standards. (author). 2 tabs., 7 appendix., 2 refs.

  18. Test Management Framework for the ATLAS Experiment

    CERN Document Server

    Kazarov, Andrei; The ATLAS collaboration; Avolio, Giuseppe

    2018-01-01

    Test Management Framework for the Data Acquisition of the ATLAS Experiment Data Acquisition (DAQ) of the ATLAS experiment is a large distributed and inhomogeneous system: it consists of thousands of interconnected computers and electronics devices that operate coherently to read out and select relevant physics data. Advanced diagnostics capabilities of the TDAQ control system are a crucial feature which contributes significantly to smooth operation and fast recovery in case of the problems and, finally, to the high efficiency of the whole experiment. The base layer of the verification and diagnostic functionality is a test management framework. We have developed a flexible test management system that allows the experts to define and configure tests for different components, indicate follow-up actions to test failures and describe inter-dependencies between DAQ or detector elements. This development is based on the experience gained with the previous test system that was used during the first three years of th...

  19. Monitoring Microbially Influenced Corrosion

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    Abstract Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria (SRB). The applicability and reliability of a number of corrosion monitoring techniques for monitoring MIC has been evaluated in experiments...... and diffusional effects and unreliable corrosion rates, when biofilm and ferrous sulphide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 by electrochemical techniques. Weight loss coupons and ER are recommended as necessary basic monitoring techniques....... EIS might be used for detection of MIC as the appearance of very large capacitances can be attributed to the combined ferrous sulphide and biofilm formation. Capacitance correlates directly with sulphide concentration in sterile sulphide media. Keywords: Corrosion monitoring, carbon steel, MIC, SRB...

  20. In-situ hot corrosion testing of candidate materials for exhaust valve spindles

    DEFF Research Database (Denmark)

    Bihlet, Uffe; Hoeg, Harro A.; Dahl, Kristian Vinter

    2011-01-01

    used, exhaust valve spindles in marine diesel engines are subjected to high temperatures and stresses as well as molten salt induced corrosion. To investigate candidate materials for future designs which will involve the HIP process, a spindle with Ni superalloy material samples inserted in a HIPd Ni49...

  1. Microstructure characterization and corrosion testing of MAG pulsed duplex stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Mitelea, Ion; Utu, Ion Dragos; Urlan, Sorin Dumitru; Karancsi, Olimpiu [Politehnica Univ. Timisoara (Romania). Faculty of Mechanical Engineering

    2017-08-01

    Duplex stainless steels are extremely attractive construction materials for their usage in intense aggressive environments. They offer numerous advantages compared to the austenitic stainless steels having an excellent behavior to pitting and cavernous corrosion, and a high resistance to stress cracking corrosion in chlorides media. However, their corrosion properties are largely dependent on the microstructural factors such as: the quantitative ratio of the two phases ferrite/austenite (F/A), the presence of intermetallic compounds and the distribution of the alloying elements between the ferrite and austenite. As a result of the thermal cycles experienced by the base metal without a post-weld heat treatment, the mechanical properties are significantly different in the heat affected zone and the deposited metal compared with the properties of the base metal. The present paper highlights the effect of the post-weld solution treatment in order to restore the balance between austenite and ferrite in the welded joint areas and also to limit undesirable precipitation of secondary phases with implications for increasing the corrosion resistance.

  2. Experiments for evaluation of corrosion to develop storage criteria for interim dry storage of aluminum-alloy clad spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Peacock, H.B.; Sindelar, R.L.; Lam, P.S.; Murphy, T.H.

    1994-11-01

    The technical bases for specification of limits to environmental exposure conditions to avoid excessive degradation are being developed for storage criteria for dry storage of highly-enriched, aluminum-clad spent nuclear fuels owned by the US Department of Energy. Corrosion of the aluminum cladding is a limiting degradation mechanism (occurs at lowest temperature) for aluminum exposed to an environment containing water vapor. Attendant radiation fields of the fuels can lead to production of nitric acid in the presence of air and water vapor and would exacerbate the corrosion of aluminum by lowering the pH of the water solution. Laboratory-scale specimens are being exposed to various conditions inside an autoclave facility to measure the corrosion of the fuel matrix and cladding materials through weight change measurements and metallurgical analysis. In addition, electrochemical corrosion tests are being performed to supplement the autoclave testing by measuring differences in the general corrosion and pitting corrosion behavior of the aluminum cladding alloys and the aluminum-uranium fuel materials in water solutions.

  3. The polymer cement of sulfur as an alternative for the recycling of phosphogypsum. Corrosion testing of cements enriched with phosphogypsum; El cemento polimerico de azufre como alternative para el reciclado de fosfoyesos. Pruebas de corrosion de cementos enriquecidos con fosfoyesos

    Energy Technology Data Exchange (ETDEWEB)

    Gasco, C.; Lopez, F. A.; Navarro, N.; Sanchez, M.; Sanz, B.; Ballesteros, O.; Higueras, E.; Roman, C. P.

    2011-07-01

    The possibility of the use of cement for the recycling of materials is seen today as sustainable solution of the fertilizer industry for production of matches (NORM). In this paper presents some results of corrosion tests performed on these cements modified using buffer solutions of different pH. The analytical determinations in these matrices are new challenges. (Author)

  4. Corrosion evaluation technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Uh Chul; Han, Jeong Ho; Nho, Kye Ho; Lee, Eun Hee; Kim, Hong Pyo; Hwang, Seong Sik; Lee, Deok Hyun; Hur, Do Haeng; Kim, Kyung Mo

    1997-09-01

    A multifrequency ACPD system was assembled which can measure very small crack. Stress corrosion cracking test system with SSRT operating high temperature was installed. Stress corrosion cracking test of newly developed alloy 600 and existing alloy 600 was carried out in steam atmosphere of 400 deg C. No crack was observed in both materials within a test period of 2,000 hrs. Corrosion fatigue test system operating at high temperature was installed in which fatigue crack was measured by CDPD. Lead enhanced the SCC of the Alloy 600 in high temperature water, had a tendency to modify a cracking morphology from intergranular to transgranular. Pit initiation preferentially occurred at Ti-rich carbide. Resistance to pit initiation decreased with increasing temperature up to 300 deg C. Test loop for erosion corrosion was designed and fabricated. Thin layer activation technique was very effective in measuring erosion corrosion. Erosion corrosion of a part of secondary side pipe was evaluated by the Check Family Codes of EPRI. Calculated values of pipe thickness by Check Family Codes coincided with the pipe thickness measured by UT with an error of {+-} 20%. Literature review on turbine failure showed that failure usually occurred in low pressure turbine rotor disc and causes of failure are stress corrosion cracking and corrosion fatigue. (author). 12 refs., 20 tabs., 77 figs.

  5. Corrosion testing of a plutonium-loaded lanthanide borosilicate glass made with Frit B.

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W. L.; Chemical Engineering

    2006-09-30

    directly. The releases of Gd, Hf, and Pu from the glass were also measured. The release of Pu was significantly less than Si at all temperatures and pH values (on a normalized basis). More Gd than Pu or Hf was released from the glass in acidic solutions, but more Pu than Gd or Hf was released in alkaline solutions. Almost all of the released Gd remained in solution in tests conducted in Teflon vessels, whereas about half of the released Pu and Hf became fixed to the Teflon. In tests conducted in Type 304L stainless steel vessels, most of the released Gd, Hf, and Pu became fixed to the steel. The aqueous concentrations of Gd, Hf, and Pu decreased from about 2 x 10{sup -5}, 2 x 10{sup -8}, and 1 x 10{sup -7} M in tests solutions near pH 3.7 to about 1 x 10{sup -9}, 8 x 10{sup -10}, and 1 x 10{sup -8} M in test solutions near pH 10.8, respectively, in the 90 C tests in Teflon vessels (the solutions were not filtered prior to analysis). Vapor hydration tests (VHTs) were conducted at 120 and 200 C with Pu LaBS-B glass and SRL 418 glass, which was made to represent the HLW glass that will be used to macro-encapsulate LaBS glass within the waste form. Some VHTs were conducted with specimens of Pu LaBS-B and SRL 418 glasses that were in contact to study the effect of the solution generated as HLW glass dissolves on the corrosion behavior of Pu LaBS-B glass. Other VHTs were conducted in which the glasses were not in contact. The Pu LaBS-B glass is more durable than the HLW glass under these accelerating test conditions, even when the glasses are in contact. The presence of the SRL 418 glass did not promote the dissolution of the Pu LaBS-B glass significantly. However, Gd, Hf, and Pu were detected in alteration phases formed on the Pu LaBS-B glass surface and in (or on) phases formed by SRL 418 glass degradation, such as analcime. This indicates that Gd, Hf, and Pu were transported from the LaBS glass, through the water film formed on the specimens, and to the SRL 418 glass during

  6. STUDY OF CORROSIVE POISONING AND ITS EFFECTS ON UPPER GASTROINTESTINAL TRACT AND SURGICAL MANAGEMENT- A SINGLE INSTITUTION EXPERIENCE

    Directory of Open Access Journals (Sweden)

    Ramesh Lingala

    2017-06-01

    Full Text Available BACKGROUND Corrosive injury to the upper gastrointestinal tract is an agonising experience for both the patient and surgeon. Caustic ingestion may cause wide spread injury to the lips, oral cavity, pharynx and the upper airway. The effect that these agents have on the oesophagus accounts for most of the serious injuries and on stomach, which may result in perforation and death in the acute phase. 1,2 If the patient survives the acute effects of caustic ingestion, the reparative response leads to the development of oesophageal and gastric strictures. There is also an increased incidence of oesophageal and gastric cancer in the longterm. 3,4,5 These patients present with the most distressing symptoms of dysphagia and are not able to swallow even liquids sometimes. For a surgeon, it is necessary to restore the GI continuity, so that the patients may be relieved of symptoms and can take food naturally for the rest of their lives. An insight is made into the various modalities of treatments available for corrosive effects of oesophagus and stomach. 6,7 Even though majority of oesophageal strictures can be managed by modern endoscopic interventional methods, surgery is mandatory in few cases. Surgery is the only modality of treatment for gastric complications. Corrosive injuries continue to result in high morbidity and mortality until more conclusive diagnostic and treatment recommendations can be made. Present study was done to know the effects of corrosive poisoning on upper gastrointestinal tract to evaluate the common surgical procedures in the management of corrosive poisoning and to know the mortality and morbidity after corrosive poisoning. MATERIALS AND METHODS It is a prospective observational study conducted at a tertiary care hospital in between December 2014 to December 2016. All the patients were evaluated by history, clinical examination and radiological examination. Treatment was given according to the severity of the injury. The modes

  7. Carers' experience of memory screening tests.

    Science.gov (United States)

    Akintomide, Gbolagade S; Fazil, Qulsom

    2017-04-01

    Current evidence suggests that patients with dementia find memory tests humiliating and embarrassing. However, the knowledge concerning carers' experience of witnessing patients with dementia undergo memory screening has not been fully explored. This study was to explore the experiences of relatives of patients with dementia witnessing memory-screening tests. Eleven relatives of patients with dementia were recruited from three memory clinics using a purposive sampling method. A semi-structured questionnaire was used to collect data. The data was subjected to thematic analysis. The relatives appreciated the memory-screening tests as a diagnostic tool but the majority did not understand the questioning in the tests. Witnessing memory-screening tests generated anxiety in the relatives and they felt that memory screening tests were humiliating for patients. A collaborative approach where the clinician, the patient and the relative(s) participate in the memory-screening tests is advised. Some relatives may benefit from counselling.

  8. Tests on dynamic corrosion by water. Influence of the passage of a heat flux on the corrosion kinetics. pH measurement in water at high temperature; Essais de corrosion dynamique par l'eau. Influence du passage d'un flux thermique sur la cinetique de corrosion. Mesure du pH dans l'eau a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Coriou, H.; Grall, L.; Hure, J.; Saint-James, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Berthod [Societe Grenobloise d' Etudes et d' Applications Hydrauliques, 38 (France); Le peintre [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France)

    1958-07-01

    The passage of a heat flux through the surface of a metal placed in a corrosive medium influences the rate of corrosion, these being higher than under adiabatic conditions. The apparatus developed for corrosion tests is described, it is possible to obtain with this equipment: 1) Heat fluxes greater than 200 W/cm{sup 2}, across aluminium canning, which is cooled by water (temperature 50 deg. C), circulating with flow rates of the order of 5 to 6 m/s. 2) Heat fluxes which can go up to 150 W/cm{sup 2}, across canning of zircaloy or stainless steel. The cooling fluid is pressurized water at a temperature around 280 deg. C, the flow-rate of circulation reaching 6 m/s. The results obtained on aluminium canning are studied from the viewpoint of corrosion, paying particular attention to cavitation phenomena which can cause serious damage in certain special circumstances. After developing a glass electrode system capable of supporting high pressures, the authors have investigated materials capable of functioning as a hydrogen electrode and of resisting satisfactorily corrosion by water at 200 deg. C. Various possibilities have been examined: electrodes of special glasses, quartz, metals, with a membrane etc... The results of the various tests and the practical limits of utilisation are given. (author)Fren. [French] Le passage d'un flux thermique a travers la surface d'un metal place dans un milieu corrosif influence les vitesses de corrosion, celles-ci etant plus elevees que dans des conditions adiabatiques. On decrit les appareils mis au point, pour essais de corrosion. Ils permettent d'obtenir: 1) A travers des gaine aluminium des flux thermiques depassant 200 W /cm{sup 2}. Les gaines sont refroidies par l'eau (temperature 50 deg. C), circulant a des vitesses de l'ordre de 5 a 6 m/s. 2) A travers des gaines en zircaloy ou acier inoxydable des flux thermiques pouvant s'elever a 150 W/cm{sup 2}. Le fluide de refroidissement est de l

  9. Results of steel corrosion tests in flowing liquid Pb/Bi at 420-600 °C after 2000 h

    Science.gov (United States)

    Müller, G.; Heinzel, A.; Konys, J.; Schumacher, G.; Weisenburger, A.; Zimmermann, F.; Engelko, V.; Rusanov, A.; Markov, V.

    2002-02-01

    Corrosion tests were carried out on austenitic AISI 316L and 1.4970 steels and on MANET steel up to 2000 h of exposure to flowing (up to 2 m/s) Pb/Bi. The concentration of oxygen in the liquid alloy was controlled at 10 -6 wt%. Specimens consisted of tube and rod sections in original state and after alloying of Al into the surface. After 2000 h of exposure at 420 and 550 °C the specimen surfaces were covered with an intact oxide layer which provided a good protection against corrosion attack of the liquid Pb/Bi alloy. After the same time corrosion attack at 600 °C was severe at the original AISI 316L steel specimens. The alloyed specimens containing FeAl on the surface of the alloyed layer still maintained an intact oxide layer with good corrosion protection up to 600 °C.

  10. Characterization of Encapsulated Corrosion Inhibitors Containing Microparticles for Environmentally Friendly Smart Coatings

    Science.gov (United States)

    Pearman, Benjamin Pieter; Calle, Luz M.

    2015-01-01

    This poster presents the results obtained from experiments designed to evaluate the release properties, as well as the corrosion inhibition effectiveness, of several encapsulated corrosion inhibitors. Microencapsulation has been used in the development of environmentally friendly multifunctional smart coatings. This technique enables the incorporation of autonomous corrosion detection, inhibition and self-healing functionalities into many commercially available coating systems. Select environmentally friendly corrosion inhibitors were encapsulated in organic and inorganic pH-sensitive microparticles and their release in basic solutions was studied. The release rate results showed that the encapsulation can be tailored from fast, for immediate corrosion protection, to slow, which will provide continued long-term corrosion protection. The incorporation of several corrosion inhibitor release profiles into a coating provides effective corrosion protection properties. To investigate the corrosion inhibition efficiency of the encapsulated inhibitors, electrochemical techniques were used to obtain corrosion potential, polarization curve and polarization resistance data. These measurements were performed using the free as well as the encapsulated inhibitors singly or in combinations. Results from these electrochemical tests will be compared to those obtained from weight loss and other accelerated corrosion experiments.

  11. Protective coatings for intraocular wirelessly controlled microrobots for implantation: Corrosion, cell culture, and in vivo animal tests.

    Science.gov (United States)

    Pokki, Juho; Ergeneman, Olgaç; Chatzipirpiridis, George; Lühmann, Tessa; Sort, Jordi; Pellicer, Eva; Pot, Simon A; Spiess, Bernhard M; Pané, Salvador; Nelson, Bradley J

    2017-05-01

    Diseases in the ocular posterior segment are a leading cause of blindness. The surgical skills required to treat them are at the limits of human manipulation ability, and involve the risk of permanent retinal damage. Instrument tethering and design limit accessibility within the eye. Wireless microrobots suturelessly injected into the posterior segment, steered using magnetic manipulation are proposed for procedures involving implantation. Biocompatibility is a prerequisite for these procedures. This article investigates the use of polypyrrole- and gold-coated cobalt-nickel microrobots. While gold has been used in ocular implants, no ocular implantation involving polypyrrole is reported, despite its well-established biocompatibility properties. Coated and uncoated microrobots were investigated for their corrosion properties, and solutions that had contained coated and uncoated microrobots for one week were tested for cytotoxicity by monitoring NIH3T3 cell viability. None of the microrobots showed significant corrosion currents and corrosion potentials were as expected in relation to the intrinsic nobility of the materials. NIH3T3 cell viability was not affected by the release medium, in which coated/uncoated microrobots were stored. In vivo tests inside rabbit eyes were performed using coated microrobots. There were no significant inflammatory responses during the first week after injection. An inflammatory response detected after 2 weeks was likely due to a lack of longer-duration biocompatibility. The results provide valuable information for those who work on implant technology and biocompatibility. Coated microrobots have the potential to facilitate a new generation of surgical treatments, diagnostics and drug-delivery techniques, when implantation in the ocular posterior segment will be possible. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 836-845, 2017. © 2016 Wiley Periodicals, Inc.

  12. The corrosion of depleted uranium in terrestrial and marine environments.

    Science.gov (United States)

    Toque, C; Milodowski, A E; Baker, A C

    2014-02-01

    Depleted Uranium alloyed with titanium is used in armour penetrating munitions that have been fired in a number of conflict zones and testing ranges including the UK ranges at Kirkcudbright and Eskmeals. The study presented here evaluates the corrosion of DU alloy cylinders in soil on these two UK ranges and in the adjacent marine environment of the Solway Firth. The estimated mean initial corrosion rates and times for complete corrosion range from 0.13 to 1.9 g cm(-2) y(-1) and 2.5-48 years respectively depending on the particular physical and geochemical environment. The marine environment at the experimental site was very turbulent. This may have caused the scouring of corrosion products and given rise to a different geochemical environment from that which could be easily duplicated in laboratory experiments. The rate of mass loss was found to vary through time in one soil environment and this is hypothesised to be due to pitting increasing the surface area, followed by a build up of corrosion products inhibiting further corrosion. This indicates that early time measurements of mass loss or corrosion rate may be poor indicators of late time corrosion behaviour, potentially giving rise to incorrect estimates of time to complete corrosion. The DU alloy placed in apparently the same geochemical environment, for the same period of time, can experience very different amounts of corrosion and mass loss, indicating that even small variations in the corrosion environment can have a significant effect. These effects are more significant than other experimental errors and variations in initial surface area. Copyright © 2013. Published by Elsevier Ltd.

  13. Evaluation of precipitates used in strainer head loss testing : Part II. precipitates by in-situ aluminum alloy corrosion.

    Energy Technology Data Exchange (ETDEWEB)

    Bahn, C.; Kasza, K. E.; Shack, W. J.; Natesan, K. (Nuclear Engineering Division)

    2011-05-01

    Vertical loop head loss tests were performed with 6061 and 1100 aluminum (Al) alloy plates immersed in borated solution at pH = 9.3 at room temperature and 60 C. The results suggest that the potential for corrosion of an Al alloy to result in increased head loss across a glass fiber bed may depend on its microstructure, i.e., the size distribution and number density of intermetallic particles that are present in Al matrix and FeSiAl ternary compounds, as well as its Al release rate. Per unit mass of Al removed from solution, the WCAP-16530 aluminum hydroxide (Al(OH){sub 3}) surrogate was more effective in increasing head loss than the Al(OH)3 precipitates formed in situ by corrosion of Al alloy. However, in choosing a representative amount of surrogate for plant specific testing, consideration should be given to the potential for additional head losses due to intermetallic particles and the apparent reduction in the effective solubility of Al(OH){sub 3} when intermetallic particles are present.

  14. Corrosion Testing of 304L SS 3013 Inner Container and Teardrop Samples

    Energy Technology Data Exchange (ETDEWEB)

    Tokash, Justin Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hill, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lillard, Scott [Univ. of Akron, OH (United States); Joyce, Stephen Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tegtmeier, Eric Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Berg, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Veirs, Douglas Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Worl, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-27

    The Department of Energy (DOE) 3013 Standard specifies a minimum of two containers to be used for the storage of plutonium-bearing materials containing at least 30 wt.% plutonium and uranium. Three nested containers are typically used, the outer, inner, and convenience containers, shown in Figure 1. Both the outer and inner containers are sealed with a weld while the innermost convenience container must not be sealed. Lifetime of the containers is expected to be fifty years. The containers are fabricated of austenitic stainless steels (SS) due to their high corrosion resistance. Potential failure mechanisms of the storage containers have been examined by Kolman and Lillard et al.

  15. CORROSION OF LEAD SHIELDING IN MODEL 9975 PACKAGE

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, K

    2006-03-15

    Experiments were performed to determine the corrosion rate of lead when exposed to off-gas or degradation products of organic materials used in the model 9975 package.[1] The experiments were completed within the framework of a parametric test matrix with variables of organic configuration, temperature, humidity and the effect of durations of exposure on the corrosion of lead in the 9975 package. The room temperature vulcanizing (RTV) sealant was the most corrosive organic species in the testing, followed by the polyvinyl acetate (PVAc) glue. The Celotex{copyright} material uniquely induced measurable corrosion only in situations with condensed water, and to a much lesser extent than the PVAc glue and RTV. The coupons exhibited faster corrosion at higher temperatures than at room temperatures. There was a particularly pronounced effect of condensed water as the coupons exposed in the cells with condensed water exhibited much higher corrosion rates. In the 9975 package, the PVAc glue was determined to be the most aggressive due to it's proximity in the design. The condition considered most representative of the package conditions is that of the coupon exposed to the Celotex{copyright}/glue organic exposed in the ambient humidity conditions. The corrosion rate of 2 mpy measured in the laboratory experiments for this condition is considered to be a bounding condition to the 9975 package conditions when the laboratory results are extrapolated to actual package conditions, and is recommended as a conservative estimate for package performance calculations.

  16. Corrosion resistant alloys for flue gas desulphurisation

    Energy Technology Data Exchange (ETDEWEB)

    Asphahani; Nickerson, J.L. (Haynes International (United States)); Storey, I.J. (Haynes International (United Kingdom))

    Since the mid-seventies, more than 140 field tests have been conducted on several corrosion-resistant alloys in a multitude of flue gas desulphurisation units. In addition, during the eighties, over 30 utilities have installed Hastelloy alloys in the most corrosive conditions in wet scrubbing systems. This article discusses the results from field tests and the experience gained from several installations. The cost effectiveness of thinsheet metallic lining is addressed and the issues of quality control/reliability are reviewed. (6 figures, 5 tables, 7 references). (Author)

  17. Eddy Current Testing with Giant Magnetoresistance (GMR) Sensors and a Pipe-Encircling Excitation for Evaluation of Corrosion under Insulation.

    Science.gov (United States)

    Bailey, Joseph; Long, Nicholas; Hunze, Arvid

    2017-09-28

    This work investigates an eddy current-based non-destructive testing (NDT) method to characterize corrosion of pipes under thermal insulation, one of the leading failure mechanisms for insulated pipe infrastructure. Artificial defects were machined into the pipe surface to simulate the effect of corrosion wall loss. We show that by using a giant magnetoresistance (GMR) sensor array and a high current (300 A), single sinusoidal low frequency (5-200 Hz) pipe-encircling excitation scheme it is possible to quantify wall loss defects without removing the insulation or weather shield. An analysis of the magnetic field distribution and induced currents was undertaken using the finite element method (FEM) and analytical calculations. Simple algorithms to remove spurious measured field variations not associated with defects were developed and applied. The influence of an aluminium weather shield with discontinuities and dents was ascertained and found to be small for excitation frequency values below 40 Hz. The signal dependence on the defect dimensions was analysed in detail. The excitation frequency at which the maximum field amplitude change occurred increased linearly with the depth of the defect by about 3 Hz/mm defect depth. The change in magnetic field amplitude due to defects for sensors aligned in the azimuthal and radial directions were measured and found to be linearly dependent on the defect volume between 4400-30,800 mm³ with 1.2 × 10-3-1.6 × 10-3 µT/mm³. The results show that our approach is well suited for measuring wall loss defects similar to the defects from corrosion under insulation.

  18. Testing Preference Axioms in Discrete Choice experiments

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Østerdal, Lars Peter; Tjur, Tue

    Recent studies have tested the preference axioms of completeness and transitivity, and have detected other preference phenomena such as unstability, learning- and tiredness effects, ordering effects and dominance, in stated preference discrete choice experiments. However, it has not been explicitly...... addressed in these studies which preference models are actually being tested, and the connection between the statistical tests performed and the relevant underlying models of respondent behavior has not been explored further. This paper tries to fill that gap. We specifically analyze the meaning and role...... of the preference axioms and other preference phenomena in the context of stated preference discrete choice experiments, and examine whether or how these can be subject to meaningful (statistical) tests...

  19. Evaluation of stress corrosion cracking susceptibility of stainless steel 304L with surface nanocrystallization by small punch test

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Tao; Chen, Peng [The Key Laboratory of Safety Science of Pressurized System, Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Guan, Kaishu, E-mail: guankaishu@ecust.edu.cn [The Key Laboratory of Safety Science of Pressurized System, Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China)

    2013-01-20

    In this study, the small punch test (SPT) was conducted to evaluate the stress corrosion cracking (SCC) susceptibility of stainless steel (SS) 304L with surface nanocrystallization (SNC) in 1 mol/L NaCl+0.5 mol/L HCl aq. The surface mechanical attrition treatment (SMAT) was applied to realize the SNC. The mechanical property and micro-structural evolutions of SS 304L induced by SMAT were investigated through optical microscope (OM), X-ray diffraction (XRD), micro-Vickers hardness and transmission electron microscopy (TEM). The grain size on the surface of the material was reduced to 30-100 nm. The SPT was conducted in both ambient air and corrosive solution. The results were investigated by OM and scanning electron microscopy (SEM), showing that in ambient air, the specimen with 30 min SMAT performed a higher yield strength and lower ductility than the solution annealed (SA) counterpart. The SS 304L without SMAT presented a transgranular SCC (TGSCC) mode in chloride solution. In contrast, the SNC 304L SS showed a higher SCC susceptibility with a typical intergranular SCC (IGSCC).

  20. Looking Back on Contributions in the Field of Atmospheric Corrosion Offered by the MICAT Ibero-American Testing Network

    Directory of Open Access Journals (Sweden)

    M. Morcillo

    2012-01-01

    Full Text Available The Ibero-American Map of Atmospheric Corrosiveness (MICAT project was set up in 1988 sponsored by the International Ibero-American programme “Science and Technology for Development (CYTED” and ended in 1994 after six years of activities. Fourteen countries were involved in this project: Argentina, Brazil, Chile, Colombia, Costa Rica, Cuba, Ecuador, Mexico, Panama, Peru, Portugal, Spain, Uruguay, and Venezuela. Research was conducted both at laboratories and in a network of 75 atmospheric exposure test sites throughout the Ibero-American region, thus considering a broad spectrum of climatological and pollution conditions. Although with its own peculiarities, the project basically followed the outline of the ISOCORRAG and ICP/UNECE projects, with the aim of a desirable link between the three projects. This paper summarizes the results obtained in the MICAT project for mild steel, zinc, copper, and aluminum specimens exposed for one year in different rural, urban, and marine atmospheres in the Ibero-American region. Complementary morphological and chemical studies were carried out using scanning electron microscopy (SEM coupled with energy dispersive spectrometry (EDS, X-ray diffraction (XRD, and fourier transform infrared Spectroscopy (FTIR techniques, in order to correlate climatic and atmospheric conditions and properties of the corrosion products.

  1. High temperature corrosion in gas turbines: fuel model and experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Bordenet, B.; Bossmann, H.P. [ALSTOM (Schweiz) AG, Baden (Switzerland)

    2002-07-01

    The corrosion in gas turbines is caused by the interaction of the combustion gas and the materials. The risk of sulfate-induced hot corrosion arises if impurities of fuel, air and water can form corrosive compounds and condense on the materials. The compositions and the dewpoints of such deposits depend on the pressure and on the amount of impurities, e. g. Na, K, S. Thermodynamical modelling of the dewpoints was performed to determine the zones in the gas turbine with a risk of hot corrosion. Beside the theoretical approach, corrosion experiments were done with blading materials and protective coatings. The hot corrosion behaviour of three base materials, IN738 trademark, CM247 trademark and CMSX-4 trademark, and SV20, a NiCrAlY-coating material, was studied in a salt-spraying test. For each material, specimens coated with Na{sub 2}SO{sub 4} and Na{sub 2}SO{sub 4}/K{sub 2}SO{sub 4} were exposed between 750 and 950 C in air with 300 ppm SO{sub 2}. The present investigation has established that the addition of K{sub 2}SO{sub 4} to Na{sub 2}SO{sub 4} causes shorter incubation periods and higher corrosion rates. IN738 has shown a good resistance against hot corrosion. The corrosion resistance of CM247 and CMSX-4 was very poor. In a corrosive environment, both alloys have to be protected by an oxidation- and corrosion-resistant coating. SV20 has exhibited an excellent corrosion resistance with incubation times >1000 h at 800 C. The present study has shown that the combination of thermodynamical modelling and corrosion experiments is a suitable approach to assess the risk of hot corrosion in gas turbines. (orig.)

  2. Standard test method for determining the susceptibility to intergranular corrosion of 5XXX series Aluminum alloys by mass loss after exposure to nitric acid (NAMLT Test)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This test method describes a procedure for constant immersion intergranular corrosion testing of 5XXX series aluminum alloys. 1.2 This test method is applicable only to wrought products. 1.3 This test method covers type of specimen, specimen preparation, test environment, and method of exposure. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  3. Standard test method for determining whether gas-leak-detector fluid solutions can cause stress corrosion cracking of brass alloys

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers an accelerated test method for evaluating the tendency of gas leak detection fluids (LDFs) to cause stress corrosion cracking (SCC) of brass components in compressed gas service. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to use.

  4. Evaluation of exposure conditions for the water-side corrosion test of a sodium heated steam generator evaporator model employing a duplex tube (2160 hours at critical heat flux - phase III SSGM tests). [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Waszink, R.P.; Hwang, J.Y.; Efferding, L.E.

    1975-12-01

    This report describes the specialized corrosion test water steam loop, test procedures, test conditions, and test results. A complete water chemistry and thermal hydraulic performance history is given and evaluated for the Phase III test program. The movement of the dryout location and the heat flux variations in pre- and post-critical heat flux regions are documented and analyzed. On seven occasions during the course of the test program to date, the operating conditions drifted from the CHF reference Phase III operation in the dryout regime into the DNB regime. The corresponding corrosion mechanism experienced differing exposure conditions on these occasions. CHF sensitivity to this apparent drift behavior is evaluated.

  5. Standard test method for determining effects of chemical admixtures on corrosion of embedded steel reinforcement in concrete exposed to chloride environments

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method covers a procedure for determining the effects of chemical admixtures on the corrosion of metals in concrete. This test method can be used to evaluate materials intended to inhibit chloride-induced corrosion of steel in concrete. It can also be used to evaluate the corrosivity of admixtures in a chloride environment. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  6. An investigation on corrosion protection layers in pipelines transporting hydrocarbons

    Directory of Open Access Journals (Sweden)

    Giovanna Gabetta

    2014-10-01

    Full Text Available Chemical reactions between carbon steel, water and chemical species produce corrosion layers (scales on the internal surface of pipelines transporting hydrocarbons. Scales act as a diffusion barrier and prevent the progress of corrosion, a dangerous failure initiator. The protective film (10-100 μm thickness can be removed locally by the action of the internal flow, or by other mechanisms. Adhesion with the substrate and the failure modes of the corrosion layer can be tested by indentation. Some results are presented of experiments performed on specimens with scales grown in a controlled environment.

  7. Deposition and high temperature corrosion in a 10 MW straw

    DEFF Research Database (Denmark)

    Michelsen, Hanne Philbert; Frandsen, Flemming; Dam-Johansen, Kim

    1998-01-01

    Deposition and corrosion measurements were conducted at a 10 MW wheat straw fired stoker boiler used for combined power and heat production. The plant experiences major problems with deposits on the heat transfer surfaces, and test probes have shown enhanced corrosion due to selective corrosion...... for metal temperatures above 520 C. Deposition measurements carried out at a position equal to the secondary superheater showed deposits rich in potassium and chlorine and to a lesser extent in silicon, calcium, and sulfur. Potassium and chlorine make up 40-80 wt% of the deposits. Mechanisms of deposit...

  8. Microencapsulation Technology for Corrosion Mitigation by Smart Coatings

    Science.gov (United States)

    Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.

    2011-01-01

    A multifunctional, smart coating for the autonomous control of corrosion is being developed based on micro-encapsulation technology. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection effectiveness. This paper summarizes the development, optimization, and testing of microcapsules specifically designed to be incorporated into a smart coating that will deliver corrosion inhibitors to mitigate corrosion autonomously. Key words: smart coating, corrosion inhibition, microencapsulation, microcapsule, pH sensitive microcapsule, corrosion inhibitor, corrosion protection pain

  9. Characterizing experiments of the PPOOLEX test facility

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2008-07-15

    This report summarizes the results of the characterizing test series in 2007 with the scaled down PPOOLEX facility designed and constructed at Lappeenranta University of Technology. Air and steam/air mixture was blown into the dry well compartment and from there through a DN200 blowdown pipe to the condensation pool (wet well). Altogether eight air and four steam/air mixture experiments, each consisting of several blows (tests), were carried out. The main purpose of the experiment series was to study the general behavior of the facility and the performance of basic instrumentation. Proper operation of automation, control and safety systems was also tested. The test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. The facility is equipped with high frequency measurements for capturing different aspects of the investigated phenomena. The general behavior of the PPOOLEX facility differs significantly from that of the previous POOLEX facility because of the closed two-compartment structure of the test vessel. Heat-up by several tens of degrees due to compression in both compartments was the most obvious evidence of this. Temperatures also stratified. Condensation oscillations and chugging phenomenon were encountered in those tests where the fraction of non-condensables had time to decrease significantly. A radical change from smooth condensation behavior to oscillating one occurred quite abruptly when the air fraction of the blowdown pipe flow dropped close to zero. The experiments again demonstrated the strong diminishing effect that noncondensable gases have on dynamic unsteady loadings experienced by submerged pool structures. BWR containment like behavior related to the beginning of a postulated steam line break accident was observed in the PPOOLEX test facility during the steam/air mixture experiments. The most important task of the research project, to produce experimental data for code simulation purposes, can be

  10. Stress corrosion in silica optical fibers: Review of fatigue testing procedures

    Science.gov (United States)

    Severin, Irina; Borda, Claudia; Dumitrache-Rujinski, Alexandru; Caramihai, Mihai; Abdi, Rochdi El

    2018-02-01

    The expected lifetime of optical fibers used either in telecommunication technologies or smart applications are closely related to the chemical reaction on the silica network. Due to the manufacturing processes or the handling procedures, the flaws spread on the fiber surface are inherently present. The aging mechanism is assumed to enlarge or to extend these flaws. Based on systematic experiments one may notice that water may induce a certain curing effect. Silica optical fibers have been aged in water; series of samples have been subjected to overlapped stretching or bending. Other series have been subjected to overlapped aging effect of microwaves and hot water. Finally, samples were submitted to dynamic tensile testing. The Weibull's diagram analysis shows mono or bimodal dispersions of flaws on the fiber surface, but the polymer coating appears vital for fiber lifetime. While humidity usually affects the fiber strength, the series of testing has revealed that in controlled conditions of chemical environment and controlled applied stress, fiber strength may be increased. A similar effect may be obtained by external factors such as microwaves or previous elongation, too.

  11. SUMMARY AND RECOMMENDATIONS OF THE EXPERT PANEL OVERSIGHT COMMITTEE MEETING ON DOUBLE-SHELL TANK CORROSION MONITORING AND TESTING HELD AUGUST 4-5 2008

    Energy Technology Data Exchange (ETDEWEB)

    BOOMER KD

    2009-01-08

    The Expert Panel Oversight Committee (EPOC) on Double-Shell Tank Corrosion Monitoring and Testing has been overseeing the Fiscal Year FY 2008 experimental program being performed at CC Technologies (CCT) to optimize the chemistry control for corrosion limits in Double-Shell Tanks (DSTs). The EPOC met at the M & D Professional Services Conference Facility on August 4 and 5, 2008 to discuss various aspects of that responsibility including FY 2009 planning. Formal presentations were made to update the EPOC on the these subjects.

  12. Kinetics of Accumulation of Damage in Surface Layers of Lithium-Containing Aluminum Alloys in Fatigue Tests with Rigid Loading Cycle and Corrosive Effect of Environment

    Science.gov (United States)

    Morozova, L. V.; Zhegina, I. P.; Grigorenko, V. B.; Fomina, M. A.

    2017-07-01

    High-resolution methods of metal physics research including electron, laser and optical microscopy are used to study the kinetics of the accumulation of slip lines and bands and the corrosion damage in the plastic zone of specimens of aluminum-lithium alloys 1441 and B-1469 in rigid-cycle fatigue tests under the joint action of applied stresses and corrosive environment. The strain parameters (the density of slip bands, the sizes of plastic zones near fracture, the surface roughness in singled-out zones) and the damage parameters (the sizes of pits and the pitting area) are evaluated.

  13. A Multifunctional Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  14. Test facility for rewetting experiments at CDTN

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, Hugo C.; Mesquita, Amir Z.; Ladeira, Luiz C.D.; Santos, Andre A.C., E-mail: hcr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (SETRE/CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Tecnologia de Reatores

    2015-07-01

    One of the most important subjects in nuclear reactor safety analysis is the reactor core rewetting after a Loss-of-Coolant Accident (LOCA) in a Light Water Reactor LWR. Several codes for the prediction of the rewetting evolution are under development based on experimental results. In a Pressurized Water Reactor (PWR) the reflooding phase of a LOCA is when the fuel rods are rewetted from the bottom of the core to its top after having been totally uncovered and dried out. Out-of-pile reflooding experiments performed with electrical heated fuel rod simulators show different quench behavior depending the rods geometry. A test facility for rewetting experiments (ITR - Instalacao de Testes de Remolhamento) has been constructed at the Thermal Hydraulics Laboratory of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), with the objective of performing investigations on basic phenomena that occur during the reflood phase of a LOCA in a PWR, using tubular and annular test sections. This paper presents the design aspects of the facility, and the current stage of the works. The mechanical aspects of the installation as its instrumentation are described. Two typical tests are presented and results compered with theoretical calculations using computer code. (author)

  15. Systems integration test laboratory application & experiences

    Science.gov (United States)

    Rimer, Melvyn; Falco, Michael; Solan, Michael J.

    1991-01-01

    The ability to safely control highly dynamic systems is of prime importance to designers. Whether the system is an aircraft, spacecraft, or propulsion system, control system designers must turn to test laboratories not only to verify and validate the control systems, but also to actually use the laboratory as a design and development tool. The use of the laboratory early in the development phase of a system—prior to committing to actual hardware/software (HW/SW)—permits early detection of system anomalies, thereby minimizing program development costs while enhancing safety. Later the laboratory can be used to train system operators (for example, pilots, ground crew) in preparation for flight/ground test. In the case of the statically unstable X-29 forward swept wing aircraft, a comprehensive real-time, hardware-in-the-loop test facility was critical in the development of the aircraft's digital fly-by-wire (FBW) flight control system. The X-29 laboratory initially was used to introduce control laws to a simulated real-time environment to verify control system characteristics. Later, actual flight hardware was introduced to the laboratory, at which point the formal system verification/validation test program began. The test program utilized detailed test plans and procedures derived from system requirements and specifications to map out all tests required. This assured that the maximum number of components of the system were exercised in the laboratory, and all components tested had traceability throughout the test program. The end-to-end hardware-in-the loop simulation provided the environment to perform critical failure modes testing, parameter sensitivity evaluation and ultimately pilot/ground crew training during normal and degraded flight control system operation. The X-29 test experience, applicable to the laboratory testing of all critical control systems, has ingrained the philosophy that successful development of complex systems requires an orderly build

  16. Deposition and High-Temperature Corrosion in Biomass-Fired Boilers

    DEFF Research Database (Denmark)

    Michelsen, Hanne Philbert

    This thesis describes the fate of potassium, chlorine, and sulfur in regard to deposition and corrosion problems in straw-fired boilers. Full-scale deposition studies at Rudkøbing CHP, Kyndby Power Station and Masnedø CHP revealed that straw may form massive deposits in the convective pass...... has only been detected in insignificant amounts in mature deposits in straw-fired boilers formed over months of operation.The corrosion of superheater tubes is closely connected to the material which are deposited on the surface and deposits containing potassium chloride can cause severe high......-temperature corrosion at elevated metal temperatures. Lab-scale corrosion experiments, where metal test elements were covered with synthetic potassium salts and real deposits and exposed to a simulated flue gas containing HCl(g) and SO2(g), provided information about the corrosion rate and corrosion mechanisms...

  17. Development and Testing of a Linear Polarization Resistance Corrosion Rate Probe for Ductile Iron Pipe (Web Report 4361)

    Science.gov (United States)

    The North American water and wastewater community has hundreds of millions of feet of ductile iron pipe in service. Only a portion of the inventory has any form of external corrosion control. Ductile iron pipe, in certain environments, is subject to external corrosion.Linear Pola...

  18. Corrosion protection

    Science.gov (United States)

    Brown, Donald W.; Wagh, Arun S.

    2003-05-27

    There has been invented a chemically bonded phosphate corrosion protection material and process for application of the corrosion protection material for corrosion prevention. A slurry of iron oxide and phosphoric acid is used to contact a warm surface of iron, steel or other metal to be treated. In the presence of ferrous ions from the iron, steel or other metal, the slurry reacts to form iron phosphates which form grains chemically bonded onto the surface of the steel.

  19. The LHC test string first operational experience

    CERN Document Server

    Bézaguet, Alain-Arthur; Casas-Cubillos, J; Coull, L; Cruikshank, P; Dahlerup-Petersen, K; Faugeras, Paul E; Flemsæter, B; Guinaudeau, H; Hagedorn, Dietrich; Hilbert, B; Krainz, G; Kos, N; Lavielle, D; Lebrun, P; Leo, G; Mathewson, A G; Missiaen, D; Momal, F; Parma, Vittorio; Quesnel, Jean Pierre; Richter, D; Riddone, G; Rijllart, A; Rodríguez-Mateos, F; Rohmig, P; Saban, R I; Schmidt, R; Serio, L; Skiadelli, M; Suraci, A; Tavian, L; Walckiers, L; Wallén, E; Van Weelderen, R; Williams, L; McInturff, A

    1996-01-01

    CERN operates the first version of the LHC Test String which consists of one quadrupole and three 10-m twin aperture dipole magnets. An experimental programme aiming at the validation of the LHC systems started in February 1995. During this programme the string has been powered 100 times 35 of which at 12.4 kA or above. The experiments have yielded a number of results some of which, like quench recovery for cryogenics, have modified the design of subsystems of LHC. Others, like controlled helium leaks in the cold bore and quench propagation bewteen magnets, have given a better understanding on the evolution of the phenomena inside a string of superconducting magnets cooled at superfluid helium temperatures. Following the experimental programme, the string will be powered up and powered down in one hour cycles as a fatigue test of the structure thus simulating 20 years of operation of LHC.

  20. Intergranular Corrosion of Low Cr Ferritic Stainless Steel 429 Evaluated by the Optimized Double Loop Electrochemical Potentiokinetic Reactivation Test

    Directory of Open Access Journals (Sweden)

    Xiao-lei Li

    2015-01-01

    Full Text Available Intergranular corrosion (IGC of Nb-Ti stabilized ferritic stainless steel (FSS 429 was investigated using the double loop electrochemical potentiokinetic reactivation (DL-EPR test combined with the microstructure observation. The results indicated that the optimized DL-EPR test condition for FSS 429 was the solution of 0.5 M H2SO4 + 0.0001 M KSCN with a scanning rate of 100 mV/min at 30°C. Based on this condition, the specimens aging at 400–700°C for different duration were tested and a time-temperature-sensitization (TTS curve for FSS 429 was obtained, which reveals the sensitization nose was located around 550°C. The critical Ir/Ia value was determined to be about 3% above which IGC occurred. After aging treatment, Cr depletion zone was detected using energy dispersive spectroscopy (EDS, most possibly due to Cr segregation around intergranular TiC and NbC.

  1. Long Term Corrosion Experiment of Steel Rebar in Fly Ash-Based Geopolymer Concrete in NaCl Solution

    Directory of Open Access Journals (Sweden)

    Y. P. Asmara

    2016-01-01

    Full Text Available This research focuses on an experimental investigation to identify the effects of fly ash on the electrochemical process of concrete during the curing time. A rebar was analysed using potentiostat to measure the rest potential, polarization diagram, and corrosion rate. Water-to-cement ratio and amount of fly ash were varied. After being cured for 24 hours at a temperature of 65°C, the samples were immersed in 3.5% of NaCl solution for 365 days for electrochemical measurement. Measurements of the half-cell potential and corrosion current density indicated that the fly ash has significant effects on corrosion behaviour of concrete. Although fly ash tends to create passivity on anodic current, it increases corrosion rate. The corrosion potential of this concrete mixture decreases compared to concrete without fly ash. From the result, it can be summarized that concrete mixture with 70% of OPC (Ordinary Portland Cement and 30% fly ash has shown the best corrosion resistance.

  2. Archaeological analogs and corrosion; Analogues archeologiques et corrosion

    Energy Technology Data Exchange (ETDEWEB)

    David, D

    2008-07-01

    In the framework of the high level and long life radioactive wastes disposal deep underground, the ANDRA built a research program on the material corrosion. In particular they aim to design containers for a very long time storage. Laboratory experiments are in progress and can be completed by the analysis of metallic archaeological objects and their corrosion after hundred years. (A.L.B.)

  3. Corrosion inhibition..

    African Journals Online (AJOL)

    ABSTRACT. The corrosion inhibition of carbon steel in 3% de-aerated NaCl acidic solution with amine—fatty acid corrosion inhibitor, KI384, .... reduction reaction causing no decrease in the limiting current density of that process. On the .... value when compared to the base solution. This provides a support to the physical ...

  4. Mineralogical investigations of the interaction between iron corrosion products and bentonite from the NF-PRO Experiments (Phase 1)

    Energy Technology Data Exchange (ETDEWEB)

    Milodowski, A.E.; Cave, M.R.; Kemp, S.J.; Taylor, B.H.; Vickers, B.P.; Green, K.A.; Williams, C.L.; Shaw, R.A. (British Geological Survey (United Kingdom))

    2009-01-15

    This report summarises the findings of a programme of work under taken by the British Geological Survey (BGS) on behalf of SKB, to characterise the mineralogical alteration of compacted bentonite from experiments designed to study the interaction between iron corrosion and bentonite. The experiments were undertaken by Serco Assurance (Culham Laboratory, Oxfordshire, United Kingdom), and were co-funded by SKB within the EU Framework 6 NF-PRO Project. Reacted bentonite residues from three NF-PRO Experiments - NFC12, NFC16 and NFC17 were examined by BGS using; X-ray diffraction analysis (XRD); petrographical analysis with backscattered scanning electron microscopy (BSEM) and energy-dispersive X-ray microanalysis (EDXA) techniques, cation exchange capacity (CEC) and exchangeable cation analysis; and sequential chemical extraction. Bentonite immediately adjacent to corroding steel was found to have interacted with Fe released from the corroding metal. This resulted in the formation of narrow haloes of altered bentonite around the corroding steel wires, in which the clay matrix was significantly enriched in Fe. Detailed petrographical observation found no evidence for the formation of discrete iron oxide or iron oxyhydroxide phases within the clay matrix but appeared to show that the clay particles themselves had become enriched in Fe. XRD observations indicated a slight increase in d002/d003 peak ratio, which could possibly be accounted for by a small amount of substitution of Fe into the octahedral layers of the montmorillonite. If correct, then this alteration might represent the early stages of conversion of the dioctahedral montmorillonite to an iron-rich dioctahedral smectite such as nontronite. Alternatively, the same effect may have been produced as a result of the displacement of exchangeable interlayer cations by Fe and subsequent conversion to form additional Fe-rich octahedral layers. In either case, the XRD results are consistent with the petrographical

  5. Effects of hardness and test temperature on the stress-corrosion cracking susceptibility of carbon steel in simulated BWR environment; Koon koatsu sui kankyo ni okeru tansoko no oryoku fushokuware kanjusei ni oyobosu kodo, oyobi shiken ondo no eikyo hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, G.; Akashi, M. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1998-03-15

    An SSRT test and a CBB test were carried out on carbon steel and heat treated materials applied with bead welding of single pass simulating fillet welding in oxygen-enriched high-temperature water environment, and the stress-corrosion cracking susceptibility was evaluated. Highly hard welding heat affected zones with Vickers hardness of more than 400 have grain boundary stress-corrosion cracking susceptibility. However, a structure whose high hardness has been realized by tempering treatment has no grain boundary stress-corrosion cracking susceptibility. In the SSRT test, stress-corrosion cracking fractured face rate rises with rising test temperature, resulting in stress-corrosion cracking susceptibility shown even at lower hardness. On the other hand in the CBB test, a large number of relatively shallow cracks are generated down to low hardness at temperatures below 190 degC, while the number of cracking occurrence decreases as the temperature rises. However, deep cracks increase. In the CBB test on tempered heat treatment materials, the fact that stress-corrosion cracking can occur in test pieces with Vickers hardness of 165, which is nearly the same as that for the base material, proves that no lower limit hardness exists practically in occurrence of stress-corrosion cracking in carbon steel. 13 refs., 12 figs., 2 tabs.

  6. Corrosion sensor

    Science.gov (United States)

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1994-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  7. ECLSS Sustaining Metal Materials Compatibility Final Report, Electrochemical and Crevice Corrosion Test Results

    Science.gov (United States)

    Lee, R. E.

    2015-01-01

    Electrochemical test results are presented for six noble metals evaluated in two acidic test solutions which are representative of waste liquids processed in the Environmental Control and Life Support System (ECLSS) aboard the International Space Station (ISS). The two test solutions consisted of fresh waste liquid which had been modified with a proposed or alternate pretreatment formulation and its associated brine concentrate. The six test metals included three titanium grades, (Commercially Pure, 6Al-4V alloy and 6Al-4V Low Interstitial alloy), two nickel-chromium alloys (Inconel® 625 and Hastelloy® C276), and one high tier stainless steel (Cronidur® 30).

  8. CORROSION ISSUES ASSOCIATED WITH AUSTENITIC STAINLESS STEEL COMPONENTS USED IN NUCLEAR MATERIALS EXTRACTION AND SEPARATION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Louthan, M.; Sindelar, R.

    2012-12-17

    This paper illustrated the magnitude of the systems, structures and components used at the Savannah River Site for nuclear materials extraction and separation processes. Corrosion issues, including stress corrosion cracking, pitting, crevice corrosion and other corrosion induced degradation processes are discussed and corrosion mitigation strategies such as a chloride exclusion program and corrosion release testing are also discussed.

  9. Brillouin corrosion expansion sensors for steel reinforced concrete structures using a fiber optic coil winding method.

    Science.gov (United States)

    Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping

    2011-01-01

    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  10. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Physicochemical effects

    Energy Technology Data Exchange (ETDEWEB)

    Kryk, Holger, E-mail: h.kryk@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Hoffmann, Wolfgang [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Kästner, Wolfgang; Alt, Sören; Seeliger, André; Renger, Stefan [Hochschule Zittau/Görlitz, Institute of Process Technology, Process Automation and Measuring Technology, Theodor-Körner-Allee 16, D-02763 Zittau (Germany)

    2014-12-15

    Highlights: • Physicochemical effects due to post-LOCA zinc corrosion in PWR were elucidated. • Decreasing solubility of corrosion products with increasing temperature was found. • Solid corrosion products may be deposited on hot surfaces and/or within hot-spots. • Corrosion products precipitating from coolant were identified as zinc borates. • Depending on coolant temperature, different types of zinc borate are formed. - Abstract: Within the framework of the reactor safety research, generic experimental investigations were carried out aiming at the physicochemical background of possible zinc corrosion product formation, which may occur inside the reactor pressure vessel during the sump circulation operation after loss-of-coolant accidents in pressurized water reactors. The contact of the boric acid containing coolant with hot-dip galvanized steel containment internals causes corrosion of the corresponding materials resulting in dissolution of the zinc coat. A retrograde solubility of zinc corrosion products with increasing temperature was observed during batch experiments of zinc corrosion in boric acid containing coolants. Thus, the formation and deposition of solid corrosion products cannot be ruled out if the coolant containing dissolved zinc is heated up during its recirculation into hot regions within the emergency cooling circuit (e.g. hot-spots in the core). Corrosion experiments at a lab-scale test facility, which included formation of corrosion products at a single heated cladding tube, proved that dissolved zinc, formed at low temperatures in boric acid solution by zinc corrosion, turns into solid deposits of zinc borates when contacting heated zircaloy surfaces during the heating of the coolant. Moreover, the temperature of formation influences the chemical composition of the zinc borates and thus the deposition and mobilization behavior of the products.

  11. Brillouin Corrosion Expansion Sensors for Steel Reinforced Concrete Structures Using a Fiber Optic Coil Winding Method

    Directory of Open Access Journals (Sweden)

    Xingjun Lv

    2011-11-01

    Full Text Available In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  12. Using the factorial experiment method to analyze the corrosion protection process

    Directory of Open Access Journals (Sweden)

    Ţîţu Mihail Aurel

    2017-01-01

    Full Text Available The organization functions are: research-development, production, commercial, financial-accounting, personnel and quality. In this paper the factorial experimental method will be applied, which is currently one of the most widespread methods used in the research-development departments of the organizations, due to its advantages and efficiency. The experiment was carried out at SC Coifer Impex SRL-Mirsa’s metal structures factory. In this paper it is presented the factors modelling that exerts their influence on two objectives functions: the ensuring the nominal thickness of the rough-cast film and the consumption limiting. For data processing the STATISTICA 7 software was used which provides an accurately and effectively way to determine the influence degree of each variable on the settled objectives.

  13. Biofouling and microbial corrosion problem in the thermo-fluid heat exchanger and cooling water system of a nuclear test reactor.

    Science.gov (United States)

    Rao, T S; Kora, Aruna Jyothi; Chandramohan, P; Panigrahi, B S; Narasimhan, S V

    2009-10-01

    This article discusses aspects of biofouling and corrosion in the thermo-fluid heat exchanger (TFHX) and in the cooling water system of a nuclear test reactor. During inspection, it was observed that >90% of the TFHX tube bundle was clogged with thick fouling deposits. Both X-ray diffraction and Mossbauer analyses of the fouling deposit demonstrated iron corrosion products. The exterior of the tubercle showed the presence of a calcium and magnesium carbonate mixture along with iron oxides. Raman spectroscopy analysis confirmed the presence of calcium carbonate scale in the calcite phase. The interior of the tubercle contained significant iron sulphide, magnetite and iron-oxy-hydroxide. A microbiological assay showed a considerable population of iron oxidizing bacteria and sulphate reducing bacteria (10(5) to 10(6) cfu g(-1) of deposit). As the temperature of the TFHX is in the range of 45-50 degrees C, the microbiota isolated/assayed from the fouling deposit are designated as thermo-tolerant bacteria. The mean corrosion rate of the CS coupons exposed online was approximately 2.0 mpy and the microbial counts of various corrosion causing bacteria were in the range 10(3) to 10(5) cfu ml(-1) in the cooling water and 10(6) to 10(8) cfu ml(-1) in the biofilm.

  14. Microstructural changes induced near crack tip during corrosion fatigue tests in austenitic-ferritic steel.

    Science.gov (United States)

    Gołebiowski, B; Swiatnicki, W A; Gaspérini, M

    2010-03-01

    Microstructural changes occurring during fatigue tests of austenitic-ferritic duplex stainless steel (DSS) in air and in hydrogen-generating environment have been investigated. Hydrogen charging of steel samples during fatigue crack growth (FCG) tests was performed by cathodic polarization of specimens in 0.1M H(2)SO(4) aqueous solution. Microstructural investigations of specimens after FCG tests were carried out using transmission electron microscopy to reveal the density and arrangement of dislocations formed near crack tip. To determine the way of crack propagation in the microstructure, electron backscatter diffraction investigations were performed on fatigue-tested samples in both kinds of environment. To reveal hydrogen-induced phase transformations the atomic force microscopy was used. The above investigations allowed us to define the character of fatigue crack propagation and microstructural changes near the crack tip. It was found that crack propagation after fatigue tests in air is accompanied with plastic deformation; a high density of dislocations is observed at large distance from the crack. After fatigue tests performed during hydrogen charging the deformed zone containing high density of dislocations is narrow compared to that after fatigue tests in air. It means that hydrogenation leads to brittle character of fatigue crack propagation. In air, fatigue cracks propagate mostly transgranularly, whereas in hydrogen-generating environment the cracks have mixed transgranular/interfacial character.

  15. SRNL report for the tank waste disposition integrated flowsheet: Corrosion testing

    Energy Technology Data Exchange (ETDEWEB)

    Wyrwas, R. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    A series of cyclic potentiodynamic polarization (CPP) tests were performed in support of the Tank Waste Disposition Integrated Flowsheet (TWDIF). The focus of the testing was to assess the effectiveness of the SRNL model for predicting the amount of nitrite inhibitor needed to prevent pitting induced by increasing halide concentrations. The testing conditions were selected to simulate the dilute process stream that is proposed to be returned to tank farms from treating the off-gas from the low activity waste melter in the Waste Treatment and Immobilization Plant.

  16. Shipboard Exposure Testing of Aircraft Materials. Tri-Service Committee on Corrosion Proceedings

    National Research Council Canada - National Science Library

    Tankins, Edwin

    1994-01-01

    .... Sulfur dioxide salt fog (ASTM G 85 A4-85) tests were conducted. The shipboard exposures were performed aboard aircraft carriers deployed to the Pacific Ocean, Persian Gulf and Indian Ocean during the monsoon season...

  17. Test Operations Procedure (TOP) 01-1-065 Accelerated Corrosion Durability

    Science.gov (United States)

    2013-10-15

    Scribes may be made on various surfaces of the test item. These scribes are meant to test the coating adhesion properties along with its...ratio of 6:1 by volume. Final consistency is liquid rather than mud-like. Salinity will be adjusted to 3% by the addition of a concentrated salt...Proving Ground, Maryland 21005-5001. Technical information may be obtained from the preparing activity: Automotive Directorate (TEDT-AT-AD), US

  18. Corrosion behaviour of the AlSi6Cu4 alloy and cast AlSi6Cu4-graphite particles composite

    Directory of Open Access Journals (Sweden)

    S. Holecek

    2009-04-01

    Full Text Available The corrosion behaviour of the AlSi6Cu4 alloy as a composite matrix and of composites with 8% vol. of graphite particles was investigated. The corrosion experiments were performed over a range of elevated temperatures and were carried out in sea water (3.5%NaCl solution. We have focused our attention to the determination of the mode of corrosion attack and to the determination of the rate ofcorrosion and other corrosion characteristics. Both as-cast and annealed matrix and composite specimens were tested, as well as the99.9% as-cast aluminium for comparison. Corrosion behaviour of the materials was assessed by the corrosion potential (Ec and bypotentiodynamic (polarization curves. As expected, composite is less corrosion resistant than the matrix alloy. In addition to pitting,a severe galvanic corrosion occurs as a result of galvanic couple aluminium/graphite formation. Corrosion potentials imply that examinedmaterials would be sufficiently resistant in non or slightly oxidizing solutions without dissolved oxygen. All studied materials corrode very slowly at potentials negative to corrosion potential, while at potentials positive to corrosion potential the corrosion rate goes up by 1 or 2 orders.

  19. Corrosion rate estimations of microscale zerovalent iron particles via direct hydrogen production measurements.

    Science.gov (United States)

    Velimirovic, Milica; Carniato, Luca; Simons, Queenie; Schoups, Gerrit; Seuntjens, Piet; Bastiaens, Leen

    2014-04-15

    In this study, the aging behavior of microscale zerovalent iron (mZVI) particles was investigated by quantifying the hydrogen gas generated by anaerobic mZVI corrosion in batch degradation experiments. Granular iron and nanoscale zerovalent iron (nZVI) particles were included in this study as controls. Firstly, experiments in liquid medium (without aquifer material) were performed and revealed that mZVI particles have approximately a 10-30 times lower corrosion rate than nZVI particles. A good correlation was found between surface area normalized corrosion rate (RSA) and reaction rate constants (kSA) of PCE, TCE, cDCE and 1,1,1-TCA. Generally, particles with higher degradation rates also have faster corrosion rates, but exceptions do exists. In a second phase, the hydrogen evolution was also monitored during batch tests in the presence of aquifer material and real groundwater. A 4-9 times higher corrosion rate of mZVI particles was observed under the natural environment in comparison with the aquifer free artificial condition, which can be attributed to the low pH of the aquifer and its buffer capacity. A corrosion model was calibrated on the batch experiments to take into account the inhibitory effects of the corrosion products (dissolved iron, hydrogen and OH(-)) on the iron corrosion rate. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The stress corrosion cracking behaviour of heat-treated Al-Zn-Mg-Cu alloy in modified salt spray fog testing

    Energy Technology Data Exchange (ETDEWEB)

    Onoro, J. [Ingenieria y Ciencia de los Materiales, Universidad Politecnica de Madrid, ETS Ingenieros Industriales, Madrid (Spain)

    2010-02-15

    The stress corrosion cracking behaviour of 7075 (Al-Zn-Mg-Cu) alloy have been studied in a salt spray fog chamber with two vapourised aqueous solutions (0 and 5% NaCl). The paper analyses the stress corrosion resistance of 7075 aluminium alloy with several precipitation-ageing heat treatments. The results are compared with that obtained in 3.5% NaCl aqueous solution at 20 C. The salt spray fog testing has permitted a good evaluation of SCC susceptibility in 7075 alloy. All temper conditions studied were susceptible to SCC in the different environments tested. 7075-T6 temper was the most susceptible, while in all the cases studied 7075-T73 temper was the least susceptible. Compared to 7075-T6, 7075-RRA temper improved the resistance against the SCC process, but the mechanical properties obtained were lower. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  1. Novel integrated nondestructive testing methodology for detection and evaluation of corrosion in cement-based materials.

    Science.gov (United States)

    2014-06-01

    The objective of this project focused on the development of a hybrid nondestructive testing and evaluation (NDT&E) methodology that combines the benefits of microwave NDT and thermography into one new technique. In this way, unique features of both N...

  2. The impact of ODA microadditions into secondary system on corrosion rate reduction in VVER steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Avdeev, A.A.; Kukushkin, A.N.; Repin, D.A. [All-Russia Research and Design Inst. of Nuclear Power Machine Building (VNIIAM), Moscow (Russian Federation); Omelchuk, V.V.; Barmin, L.F. [Kola Nuclear Power Plant, Polyarnye Zori, Murmansk region (Russian Federation); Yurmanov, V.A. [N.A. Dollezhal Research and Development Inst. of Power Engineering (NIKIET), Moscow (Russian Federation); Czempik, E. [RECON GmbH, Leipzig (Germany)

    2010-07-01

    experience of the Kola NPP showed long-term reliable SG operation owing to ODA treatment even without routine chemical cleaning. Such effect was due to significant reduction in chlorides absorption by the metal surface during ODA injection. Results of laboratory investigations of ODA effect on local corrosion processes have been validated in the course of commercial tests at Nord Unit 4 (Germany) and Kola Unit 2. (author)

  3. Corrosion mechanisms for metal alloy waste forms: experiment and theory Level 4 Milestone M4FT-14LA0804024 Fuel Cycle Research & Development

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Taylor, Christopher D. [The Ohio State Univ., Columbus, OH (United States). Fontana Corrosion Center; Kim, Eunja [Univ. of Nevada, Las Vegas, NV (United States); Goff, George Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kolman, David Gary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-31

    This document meets Level 4 Milestone: Corrosion mechanisms for metal alloy waste forms - experiment and theory. A multiphysics model is introduces that will provide the framework for the quantitative prediction of corrosion rates of metallic waste forms incorporating the fission product Tc. The model requires a knowledge of the properties of not only the metallic waste form, but also the passive oxide films that will be generated on the waste form, and the chemistry of the metal/oxide and oxide/environment interfaces. in collaboration with experimental work, the focus of this work is on obtaining these properties from fundamental atomistic models. herein we describe the overall multiphysics model, which is based on MacDonald's point-defect model for passivity. We then present the results of detailed electronic-structure calculations for the determination of the compatibility and properties of Tc when incorporated into intermetallic oxide phases. This work is relevant to the formation of multi-component oxides on metal surfaces that will incorporate Tc, and provide a kinetic barrier to corrosion (i.e. the release of Tc to the environment). Atomistic models that build upon the electronic structure calculations are then described using the modified embedded atom method to simulate metallic dissolution, and Buckingham potentials to perform classical molecular dynamics and statics simulations of the technetium (and, later, iron-technetium) oxide phases. Electrochemical methods were then applied to provide some benchmark information of the corrosion and electrochemical properties of Technetium metal. The results indicate that published information on Tc passivity is not complete and that further investigation is warranted.

  4. The influence of crystal faces on corrosion behavior of copper surface: First-principle and experiment study

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengwei, E-mail: zzw_dxj@sohu.com; Wang, Qiang; Wang, Xu; Gao, Lin

    2017-02-28

    Highlights: • The copper surface with main face (220) has a better anti-corrosion ability. • The copper surface with main faces (200) and (111) show poor anti-corrosion ability. • More energetic electrons on (220) face lead it to be effectively protected. - Abstract: When the MBT{sup −}:Cl{sup −} ratio is 50–10:1 in a solution containing of NaCl and Na-MBT (sodium salt of 2-mercaptobenzothiazole), the copper sample-1 (S1) was passivated; when the ration is 10–5:1, it was corroded. The copper sample-2 (S2) had no anti-corrosive ability in all solutions with MBT{sup −}:Cl{sup −} = 50–5:1. First-principle calculation revealed that the Cu atoms of (220) face, the main face of S1, have more unsaturated and energetic electrons than that of (200) and (111) faces, the main faces of S2. The highest chemical activation of the (220) face leads the S1 surface to show a better anti-corrosive ability.

  5. Predicting the steady state thickness of passive films with the Point Defect Model in fretting corrosion experiments

    CERN Document Server

    Geringer, Jean; Taylor, Mathew L

    2013-01-01

    Some implants have approximately a lifetime of 15 years. The femoral stem, for example, should be made of 316L/316LN stainless steel. Fretting corrosion, friction under small displacements, should occur during human gait, due to repeated loadings and un-loadings, between stainless steel and bone for instance. Some experimental investigations of fretting corrosion have been practiced. As well known, metallic alloys and especially stainless steels are covered with a passive film that prevents from the corrosion and degradation. This passive layer of few nanometers, at ambient temperature, is the key of our civilization according to some authors. This work is dedicated to predict the passive layer thicknesses of stainless steel under fretting corrosion with a specific emphasis on the role of proteins. The model is based on the Point Defect Model (micro scale) and an update of the model on the friction process (micro-macro scale). Genetic algorithm was used for finding solution of the problem. The major results a...

  6. Integration of Nanofluids into Commercial Antifreeze Concentrates with ASTM D15 Corrosion Testing

    Science.gov (United States)

    2013-05-01

    Development Laboratory,Ashland Consumer Markets,P.O. Box 14000 ,Lexington,KY,40512 8. PERFORMING ORGANIZATION REPORT NUMBER ; #23826 9. SPONSORING...reason for gel-up is likely due to the pH value change during dilution by the test reference fluids which exceeded the iso -electric point. The pH value...suspension in the dispersion. Once the pH value is higher than its iso -electric point the nano alumina dispersion just gels up. The nano Dispersion B

  7. Corrosion Experience Data Requirements.

    Science.gov (United States)

    1988-01-01

    flume tanks showed heavy wastage on stiffening in way of flume openings and side shell stiffening opposite the flume openings. Heavy wastage was also...This method has been used for theoretical treatments of electrode systems, but lately is being used in offshore cathodic protection. Computerized...GALVANIC SERIES Netal Volts* Commercially pure magnesium -1.75 Magnesium alloy (6% Al, 3% Zn, 0-15% Mn) -1.6 Aluminum-Zinc-Indium (a) -1.16 Aluminum-Zinc

  8. Formal Test Automation: A Simple Experiment

    NARCIS (Netherlands)

    Belinfante, Axel; Feenstra, J.; de Vries, R.G.; Tretmans, G.J.; Goga, N.; Feijs, Loe; Mauw, Sjouke; Heerink, A.W.; Csopaki, Gyula; Dibuz, Sarolta; Tarnay, Katalin

    1999-01-01

    In this paper1 we study the automation of test derivation and execution in the area of conformance testing. The test scenarios are derived from multiple specication languages: LOTOS, Promela and SDL. A central theme of this study is the usability of batch-oriented and on-the-fly testing approaches.

  9. Corrosion of container materials for disposal of high-level radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Chun, K.S.; Park, H.S.; Yeon, J.W.; Ha, Y.K. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-01-01

    In the corrosion aspect of container for the deep geological disposal of high-level radioactive waste, disposal concepts and the related container materials, which have been developed by advanced countries, have been reviewed. The disposal circumstances could be divided into the saturated and the unsaturated zones. The candidate materials in the countries, which consider the disposal in the unsaturated zone, are the corrosion resistant materials such as supper alloys and stainless steels, but those in the saturated zone is cupper, one of the corrosion allowable materials. By the results of the pitting corrosion test of sensitized stainless steels (such as 304, 304L, 316 and 316L), pitting potential is decreased with the degree of sensitization and the pitting corrosion resistance of 316L is higher than others. And so, the long-term corrosion experiment with 316L stainless steel specimens, sebsitized and non-sensitized, under the compacted bentonite and synthetic granitic groundwater has been being carried out. The results from the experiment for 12 months indicate that no evidence of pitting corrosion of the specimens has been observed but the crevice corrosion has occurred on the sensitized specimens even for 3 months. (author). 33 refs., 19 figs., 10 tabs.

  10. Vapor Corrosion Response of Low Carbon Steel Exposed to Simulated High Level Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B

    2006-01-26

    A program to resolve the issues associated with potential vapor space corrosion and liquid/air interface corrosion in the Type III high level waste tanks is in place. The objective of the program is to develop understanding of vapor space (VSC) and liquid/air interface (LAIC) corrosion to ensure a defensible technical basis to provide accurate corrosion evaluations with regard to vapor space and liquid/air interface corrosion. The results of the FY05 experiments are presented here. The experiments are an extension of the previous research on the corrosion of tank steel exposed to simple solutions to corrosion of the steel when exposed to complex high level waste simulants. The testing suggested that decanting and the consequent residual species on the tank wall is the predominant source of surface chemistry on the tank wall. The laboratory testing has shown that at the boundary conditions of the chemistry control program for solutions greater than 1M NaNO{sub 3}{sup -}. Minor and isolated pitting is possible within crevices in the vapor space of the tanks that contain stagnant dilute solution for an extended period of time, specifically when residues are left on the tank wall during decanting. Liquid/air interfacial corrosion is possible in dilute stagnant solutions, particularly with high concentrations of chloride. The experimental results indicate that Tank 50 would be most susceptible to the potential for liquid/air interfacial corrosion or vapor space corrosion, with Tank 49 and 41 following, since these tanks are nearest to the chemistry control boundary conditions. The testing continues to show that the combination of well-inhibited solutions and mill-scale sufficiently protect against pitting in the Type III tanks.

  11. ENVIRONMENTAL BENIGN MITIGATION OF MICROBIOLOGICALLY INFLUENCED CORROSION (MIC)

    Energy Technology Data Exchange (ETDEWEB)

    J.R. Paterek; G. Husmillo; V. Trbovic

    2003-01-01

    The overall program objective is to develop and evaluate environmental benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is one or more environmental benign, a.k.a. ''green'' products that can be applied to maintain the structure and dependability of the natural gas infrastructure. The technical approach for this quarter were isolation and cultivation of MIC-causing microorganisms from corroded pipeline samples, optimizing parameters in the laboratory-scale corrosion test loop system and testing the effective concentrations of Capsicum sp. extracts to verify the extent of corrosion on metal coupons by batch culture method. A total of 22 strains from the group of heterotrophic, acid producing, denitrifying and sulfate reducing bacteria were isolated from the gas pipeline samples obtained from Northern Indiana Public Service Company in Trenton, Indiana. They were purified and will be sent out for identification. Bacterial strains of interest were used in antimicrobial screenings and test loop experiments. Parameters for the laboratory-scale test loop system such as gas and culture medium flow rate; temperature; inoculation period; and length of incubation were established. Batch culture corrosion study against Desulfovibrio vulgaris showed that one (S{sub 1}M) out of the four Capsicum sp. extracts tested was effective in controlling the corrosion rate in metal coupons by 33.33% when compared to the untreated group.

  12. FY2016 ILAW Glass Corrosion Testing with the Single-Pass Flow-Through Method

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Asmussen, Robert M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Parruzot, Benjamin PG [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cordova, Elsa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Benjamin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leavy, Ian I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephenson, John R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McElroy, Erin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-04-21

    The inventory of immobilized low-activity waste (ILAW) produced at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) will be disposed of at the near-surface, on-site Integrated Disposal Facility (IDF). When groundwater comes into contact with the waste form, the glass will corrode and radionuclides will be released into the near-field environment. Because the release of the radionuclides is dependent on the dissolution rate of the glass, it is important that the performance assessment (PA) model accounts for the dissolution rate of the glass as a function of various chemical conditions. To accomplish this, an IDF PA model based on Transition State Theory (TST) can be employed. The model is able to account for changes in temperature, exposed surface area, and pH of the contacting solution as well as the effect of silicon concentrations in solution, specifically the activity of orthosilicic acid (H4SiO4), whose concentration is directly linked to the glass dissolution rate. In addition, the IDF PA model accounts for the alkali-ion exchange process as sodium is leached from the glass and into solution. The effect of temperature, pH, H4SiO4 activity, and the rate of ion-exchange can be parameterized and implemented directly into the PA rate law model. The rate law parameters are derived from laboratory tests with the single-pass flow-through (SPFT) method. To date, rate law parameters have been determined for seven ILAW glass compositions, thus additional rate law parameters on a wider range of compositions will supplement the existing body of data for PA maintenance activities. The data provided in this report can be used by ILAW glass scientists to further the understanding of ILAW glass behavior, by IDF PA modelers to use the rate law parameters in PA modeling efforts, and by Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program.

  13. Study on tea leaves extract as green corrosion inhibitor of mild steel in hydrochloric acid solution

    Science.gov (United States)

    Hamdan, A. B.; Suryanto; Haider, F. I.

    2018-01-01

    Corrosion inhibitor from extraction of plant has been considered as the most preferable and most chosen technique to prevent corrosion of metal in acidic medium because of the environmental friendly factor. In this study, black tea leaves extraction was tested as corrosion inhibitor for mild steel in 0.1M of hydrochloric acid (HCl) with the absence and presence of corrosion inhibitor. The efficiency and effectiveness of black tea as corrosion inhibitor was tested by using corrosion weight loss measurement experiment was carried out with varies parameters which with different concentration of black tea extract solution. The extraction of black tea solution was done by using aqueous solvent method. The FT-IR result shows that black tea extract containing compounds such as catechin, caffeine and tannins that act as anti-corrosive reagents and responsible to enhance the effectiveness of black tea extract as corrosion inhibitor by forming the hydrophobic thin film through absorption process. As a result of weight loss measurement, it shows that loss in weight of mild steel reduces as the concentration of inhibitor increases. The surface analysis was done on the mild steel samples by using SEM.

  14. Standard test methods for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric Chloride solution

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 These test methods cover procedures for the determination of the resistance of stainless steels and related alloys to pitting and crevice corrosion (see Terminology G 15) when exposed to oxidizing chloride environments. Six procedures are described and identified as Methods A, B, C, D, E, and F. 1.1.1 Method A—Ferric chloride pitting test. 1.1.2 Method B—Ferric chloride crevice test. 1.1.3 Method C—Critical pitting temperature test for nickel-base and chromium-bearing alloys. 1.1.4 Method D—Critical crevice temperature test for nickel-base and chromium-bearing alloys. 1.1.5 Method E—Critical pitting temperature test for stainless steels. 1.1.6 Method F—Critical crevice temperature test for stainless steels. 1.2 Method A is designed to determine the relative pitting resistance of stainless steels and nickel-base, chromium-bearing alloys, whereas Method B can be used for determining both the pitting and crevice corrosion resistance of these alloys. Methods C, D, E and F allow for a rankin...

  15. Mineralogical investigations of the interaction between iron corrosion products and bentonite from the NF-PRO Experiments (Phase 2)

    Energy Technology Data Exchange (ETDEWEB)

    Milodowski, A.E.; Cave, M.R.; Kemp, S.J.; Taylor, B.H.; Green, K.A.; Williams, C.L.; Shaw, R.A.; Gowing, C.J.B.; Eatherington, N.D. (British Geological Survey (United Kingdom))

    2009-01-15

    present from the original MX-80 bentonite but part of this will also probably be secondary magnetite formed as a corrosion product of the steel. Nevertheless, sequential chemical extraction analyses also suggest that a large proportion of the iron (11-38%) may be present within the silicate/clay mineral lattice. The implication of this would be that there has been significant conversion of the original montmorillonite to an Fe-rich clay mineral within these alteration haloes. Although XRD does not detect very much change in clay mineralogy, and suggests that the smectite in the altered bentonite is dioctahedral, it is likely that the subsampling for XRD analysis was on too coarse a scale to be able to resolve the alteration within these very narrow reaction zones around the corroded wires. The alteration observed around the corroded steel wires in experiments NFC4, NFC7 and NFC13 is more complex than that in NFC1 or earlier experiments studied in Phase 1 or previously by Smart et al. 2006. The reacted bentonite from these experiments exhibited the formation of a Mg-Fe-rich clay mineral or aluminosilicate alteration product. This was formed within the Fe-enriched alteration halo but appears to have formed relatively early and was subsequently partially overprinted or replaced by more Fe-rich aluminosilicate. EDXA microchemical mapping did suggest some slight Mg enhancement in the reacted bentonite from NFC1 but no discrete Mg-rich phase was detected. Whilst Mg may potentially have been derived from the 'Allard' reference water used in experiment NFC4, in the case of NFC7 and NFC13 it could only have been derived from the breakdown of the bentonite itself since the porefluid only contained NaCl in these two experiments. XRD observations indicated a slight increase in d002/d003 peak ratio, which could possibly be accounted for by a small amount of substitution of Fe into the octahedral layers of the smectite. This is not supported by exchangeable cation analyses

  16. Corrosion behavior induced by LiCl-KCl in type 304 and 316 stainless steel and copper at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Jee Hyung; Kim, Yong Soo; Cho, Il Je [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)

    2017-06-15

    The corrosion behavior of stainless steel (304 and 316 type) and copper induced by LiCl-KCl at low temperatures in the presence of sufficient oxygen and moisture was investigated through a series of experiments (at 30°C, 40°C, 60°C, and 80°C for 24 hours, 48 hours, 72 hours, and 96 hours). The specimens not coated on one side with an aqueous solution saturated with LiCl-KCl experienced no corrosion at any temperature, not even when the test duration exceeded 96 hours. Stainless steel exposed to LiCl-KCl experienced almost no corrosion below 40°C, but pitting corrosion was observed at temperatures above 60°C. As the duration of the experiment was increased, the rate of corrosion accelerated in proportion to the temperature. The 316 type stainless steel exhibited better corrosion resistance than did the 304 type. In the case of copper, the rate of corrosion accelerated in proportion to the duration and temperature but, unlike the case of stainless steel, the corrosion was more general. As a result, the extent of copper corrosion was about three times that of stainless steel.

  17. Corrosion behavior induced by LiCl-KCl in type 304 and 316 stainless steel and copper at low temperature

    Directory of Open Access Journals (Sweden)

    Jee-Hyung Sim

    2017-06-01

    Full Text Available The corrosion behavior of stainless steel (304 and 316 type and copper induced by LiCl-KCl at low temperatures in the presence of sufficient oxygen and moisture was investigated through a series of experiments (at 30°C, 40°C, 60°C, and 80°C for 24 hours, 48 hours, 72 hours, and 96 hours. The specimens not coated on one side with an aqueous solution saturated with LiCl-KCl experienced no corrosion at any temperature, not even when the test duration exceeded 96 hours. Stainless steel exposed to LiCl-KCl experienced almost no corrosion below 40°C, but pitting corrosion was observed at temperatures above 60°C. As the duration of the experiment was increased, the rate of corrosion accelerated in proportion to the temperature. The 316 type stainless steel exhibited better corrosion resistance than did the 304 type. In the case of copper, the rate of corrosion accelerated in proportion to the duration and temperature but, unlike the case of stainless steel, the corrosion was more general. As a result, the extent of copper corrosion was about three times that of stainless steel.

  18. Preliminary experiences with material testing at the oxyfuel pilot plant at Schwarze Pumpe

    Energy Technology Data Exchange (ETDEWEB)

    Hjoernhede, Anders [Vattenfall Power, Gothenborg (Sweden); Montgomery, Melanie [Technical Univ. Denmark, Lyngby (Denmark). Inst. for Mekanisk Teknologi; Vattenfall Heat Nordic, Lyngby (Denmark); Bjurman, Martin; Henderson, Pamela [Vattenfall AB (Sweden). Research and Development; Gerhardt, Alexander [Vattenfall AB, Berlin (Germany). Research and Development

    2010-07-01

    Several material related issues may arise from oxyfuel combustion of coal due to the presence of CO{sub 2} but also as an effect of the partial recirculation of the flue gas. Two examples are increased corrosion and carburisation which may limit steam data, hence limiting the efficiency. A number of corrosion tests, in both conventional air-firing and oxyfuel mode, have been made in Vattenfalls 30 MW oxyfuel pilot plant located in Schwarze Pumpe, Germany. Internally cooled corrosion probes, equipped with ferritic, austenitic, super austenitic steels as well as Ni-based and FeCrAl alloys, simulating superheaters, economisers and air preheaters were exposed for up to 1500 hrs. The analyses show an indication of higher material wastage in oxyfuel compared to air combustion especially at the lower exposure temperatures. This may be due to increased sulphur concentration in corrosion front, increased heat flux, carburisation or other precipitate formations on austenitic steels and Ni-based alloys. (orig.)

  19. pH Sensitive Microcapsules for Delivery of Corrosion Inhibitors

    Science.gov (United States)

    Li, Wenyan; Calle, Luz M.

    2006-01-01

    A considerable number of corrosion problems can be solved by coatings. However, even the best protective coatings can fail by allowing the slow diffusion of oxygen and moisture to the metal surface. Corrosion accelerates when a coating delaminates. Often, the problems start when microscopic nicks or pits on the surface develop during manufacturing or through wear and tear. This problem can be solved by the incorporation of a self-healing function into the coating. Several new concepts are currently under development to incorporate this function into a coating. Conductive polymers, nanoparticles, and microcapsules are used to release corrosion-inhibiting ions at a defect site. The objective of this investigation is to develop a smart coating for the early detection and inhibition of corrosion. The dual function of this new smart coating system is performed by pH-triggered release microcapsules. The microcapsules can be used to deliver healing agents to terminate the corrosion process at its early stage or as corrosion indicators by releasing dyes at the localized corrosion sites. The dyes can be color dyes or fluorescent dyes, with or without pH sensitivity. Microcapsules were formed through the interfacial polymerization process. The average size of the microcapsules can be adjusted from 1 to 100 micron by adjusting the emulsion formula and the microcapsule forming conditions. A typical microcapsule size is around 10 microns with a narrow size distribution. The pH sensitivity of the microcapsule can also be controlled by adjusting the emulsion formula and the polymerization reaction time. Both corrosion indicator (pH indicator) and corrosion inhibitor containing microcapsules were formed and incorporated into paint systems. Test panels of selected steels and aluminum alloys were painted using these paints. Testing of compatibility between the microcapsule system and different paint systems are in progress. Initial experiments with the microcapsule containing paint

  20. [Study on tests of genetics experiments in universities].

    Science.gov (United States)

    Jie, He; Hao, Zhang; Lili, Zhang

    2015-03-01

    Based on the present situation and the development of experiment tests in universities, we introduced a reform in tests of genetics experiments. According to the teaching goals and course contents of genetics experiment, the tests of genetics experiments contain four aspects on the performance of students: the adherence to the experimental procedures, the depth of participation in experiment, the quality of experiment report, and the mastery of experiment principles and skills, which account for 10 %, 20 %, 40 % and 30 % in the total scores, respectively. All four aspects were graded quantitatively. This evaluation system has been tested in our experiment teaching. The results suggest that it has an effect on the promotion of teaching in genetics experiments.

  1. DPC materials and corrosion environments.

    Energy Technology Data Exchange (ETDEWEB)

    Ilgen, Anastasia Gennadyevna; Bryan, Charles R.; Teich-McGoldrick, Stephanie; Hardin, Ernest

    2014-10-01

    After an exposition of the materials used in DPCs and the factors controlling material corrosion in disposal environments, a survey is given of the corrosion rates, mechanisms, and products for commonly used stainless steels. Research needs are then identified for predicting stability of DPC materials in disposal environments. Stainless steel corrosion rates may be low enough to sustain DPC basket structural integrity for performance periods of as long as 10,000 years, especially in reducing conditions. Uncertainties include basket component design, disposal environment conditions, and the in-package chemical environment including any localized effects from radiolysis. Prospective disposal overpack materials exist for most disposal environments, including both corrosion allowance and corrosion resistant materials. Whereas the behavior of corrosion allowance materials is understood for a wide range of corrosion environments, demonstrating corrosion resistance could be more technically challenging and require environment-specific testing. A preliminary screening of the existing inventory of DPCs and other types of canisters is described, according to the type of closure, whether they can be readily transported, and what types of materials are used in basket construction.

  2. Predicting the Performance of Organic Corrosion Inhibitors

    Directory of Open Access Journals (Sweden)

    David A. Winkler

    2017-12-01

    Full Text Available The withdrawal of effective but toxic corrosion inhibitors has provided an impetus for the discovery of new, benign organic compounds to fill that role. Concurrently, developments in the high-throughput synthesis of organic compounds, the establishment of large libraries of available chemicals, accelerated corrosion inhibition testing technologies, and the increased capability of machine learning methods have made discovery of new corrosion inhibitors much faster and cheaper than it used to be. We summarize these technical developments in the corrosion inhibition field and describe how data-driven machine learning methods can generate models linking molecular properties to corrosion inhibition that can be used to predict the performance of materials not yet synthesized or tested. We briefly summarize the literature on quantitative structure–property relationships models of small organic molecule corrosion inhibitors. The success of these models provides a paradigm for rapid discovery of novel, effective corrosion inhibitors for a range of metals and alloys in diverse environments.

  3. A Multifunctional Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Hintze, Paul E.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.

    2010-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where they are needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into the microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy.

  4. Patch testing experience with 1000 patients

    Directory of Open Access Journals (Sweden)

    Bajaj A

    2007-01-01

    Full Text Available Background: Patch testing is a definitive tool for diagnosing allergic contact dermatitis (ACD. It reveals the prevalence and trends of contact sensitization in the community, thereby paving the way for better standard series. There is paucity of large series of patch-tested patients from India. Aim: To report the 9-year patch-test data from a single general dermatology centre in North India. Methods: Consecutive patients presenting with signs/symptoms of suspected ACD were patch tested from May 1997 to April 2006. The Indian Standard Series was used. Parthenium was tested only in selected patients and cetrimide and chloroxylenol were added to the series. Results: In total, records of 1000 patients (566 male, 434 female were analyzed, yielding 1155 positive reactions in 590 (59% patients. Footwear dermatitis was the commonest suspected diagnosis, followed by ACD to medicaments, cosmetic dermatitis and plant dermatitis. Out of the allergens that were tested in all the patients, positivity to nickel was the commonest (12.9%, followed by potassium dichromate (11.1% neomycin (7%, mercaptobenzthiazole (6.6%, nitrofurazone (6%, colophony (5.7%, fragrance mix (5.5% and cobalt chloride (5.4%. However, parthenium was the commonest allergen based on the proportion of patients tested with it (14.5%. In men, potassium dichromate (30% was the commonest sensitizer and in women, nickel (43% was the commonest to show patch-test positivity. Conclusion: Our study revealed higher prevalence of footwear and medicament dermatitis in comparison to existing data. Allergy to antiseptics is significant in our patients. Further collaborative studies involving patients from other parts of India are required to have an overall view of ACD in India.

  5. Corrosion Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Weldingh, Jakob; Olsen, Flemmming Ove

    1997-01-01

    In this paper the corrosion properties of laser welded AISI 316L stainless steel are examined. A number of different welds has been performed to test the influence of the weld parameters of the resulting corrosion properties. It has been chosen to use the potential independent critical pitting...... temperature (CPT) test as corrosion test. The following welding parameters are varied: Welding speed, lsser power, focus point position and laser operation mode (CW or pulsed)....

  6. Pitting corrosion of A357 aluminium alloy obtained by semisolid processing

    Energy Technology Data Exchange (ETDEWEB)

    Bastidas, J.M.; Polo, J.L.; Torres, C.L. [National Centre for Metallurgical Research (CSIC), Madrid (Spain); Forn, A.; Baile, M.T. [Polytechnic Univ. of Catalonia, Vilanova i la Geltru (Spain)

    2001-09-01

    This paper studies the pitting corrosion of a structural component of A357 aluminium alloy obtained by a semisolid metal forming process. The mechanical properties of the A357 alloy were improved by applying standard heat treatments T5 and T6. Impedance measurements were conducted at the rest potential and polarisation curves were plotted using a 3% NaCl test solution. After polarisation experiments the specimens were analysed by scanning electron microscopy. The corrosion process is favoured through the eutectic regions. The results show that T6 heat treatment improved the corrosion resistance of the A357 aluminium alloy. (orig.)

  7. Thermal and corrosion properties of silicon nitride for copper die casting components

    OpenAIRE

    Khader, I.; Renz, A.; Kailer, A.; Haas, D.

    2013-01-01

    Due to the high melting temperature of copper and copper alloys, conventional die-steel components used in pressure die casting these materials exhibit short service lifetimes and undergo thermal fatigue. Thermal and corrosion properties of silicon nitride were studied to assess the material's applicability in substituting conventional die-steels in casting copper and copper alloys. In this study, experiments were conducted to test the thermal shock resistance and corrosion behaviour of a com...

  8. Underground pipeline corrosion

    CERN Document Server

    Orazem, Mark

    2014-01-01

    Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, n

  9. Standard test method for determining the crevice repassivation potential of corrosion-resistant alloys using a potentiodynamic-galvanostatic-potentiostatic technique

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers a procedure for conducting anodic polarization studies to determine the crevice repassivation potential for corrosion–resistant alloys. The concept of the repassivation potential is similar to that of the protection potential given in Reference Test Method G 5. 1.2 The test method consists in applying successively potentiodynamic, galvanostatic, and potentiostatic treatments for the initial formation and afterward repassivation of crevice corrosion. 1.3 This test method is a complement to Test Method G 61. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  10. Long-term Corrosion of Copper Container in Bentonite Buffer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Soo; Choi, Jong Won; Choi, Heui Joo; Lee, Jong Youl; Jeong, Jong Tae; Kim, Sung Ki; Cho, Dong Keun

    2007-05-15

    The experimental method for the evaluation of copper corrosion was discussed in this report. Especially, the corrosion behavior of a copper container in a compacted bentonite environment was reviewed in detail. Several previous studies on the copper corrosion in a bentonite environment were summarized and the applied methods were illustrated firstly. On the basis of the review, it is discussed how to execute long-term copper corrosion test as regarding korean disposal environment. The selection of bentonite medium and the composition of a medium such as bentonite-sand mixture or bentonite-sand double layer was mentioned in this report. The need for protection layer on copper surface was also discussed for reducing initial copper corrosion rate. As key aspects on the corrosion test, a measuring of corrosion rate, an observation of surface morphology, an analysis of corrosion product, and a measuring of corrosion potential were pointed out. For the purpose of a experimental consistency, the necessity of standard composition for a bentonite and a underground water might be confirmed before the test. Consequently, three experimental designs were derived for the corrosion test such as a corrosion testing design at creep condition, a simple corrosion design for the evaluation for other candidate materials, and lastly, a corrosion testing design in compacted bentonite. Through this survey and discussion for a copper corrosion in bentonite environment it would be very helpful for a high level radioactive waste disposal plan in the future.

  11. Effect of geologic repository parameters on aqueous corrosion of nuclear glass

    Energy Technology Data Exchange (ETDEWEB)

    Tovena, I.; Advocat, T.; Jollivet, P.; Godon, N.; Vernaz, E.

    1995-12-31

    Twenty alumino-borosilicate glass compositions containing simulated fission product oxides were defined using the experimentation plan methodology. Three additional glass compositions were also tested. Monolithic glass corrosion tests in a dilute aqueous medium at 90 deg C indicated the variation range for the initial corrosion rates. Significant but only qualitative correlations were established between the initial corrosion rate and the molar fraction of glass network forming oxides (SiO{sub 2} + Al{sub 2}O{sub 3}), and between the initial rate and the (Na{sub 2}O + Li{sub 2}O + B{sub 2}O{sub 3}) / (SiO{sub 2} + Al{sub 2}O{sub 3}) molar ratio in the glass. The experimentation plan allowed a polynomial model to be defined relating the initial corrosion rate at 90 deg C to the oxide concentrations in the glass. Although the model is theoretically capable of predicting the corrosion rates, it does not always account for the actual data measured during other experiments; this discrepancy may be attributable either to the presence of other chemical elements (MgO) or to CaO concentrations differing from the fixed value adopted for the experimentation plan. Glass powder corrosion tests designed to simulate advanced corrosion reaction progress, account for the wide variations in the dissolved glass quantities, although no correlation exists with the glass chemical composition. (authors). 49 refs., 4 figs., 34 tabs.

  12. Proceedings of the International Congress (12th), Corrosion Control for Low-Cost Reliability, Held in Houston, Texas on September 19 -24, 1993. Volume 3B. Corrosion: Specific Issues

    Science.gov (United States)

    1993-09-24

    Comercial Antifreeze B: Developed Antifreeze C: Estandar GM 1899-M, especifications. 1739 TABLE II Results of electrochemical corrosion tests. Corrosion...calculated multiple correlation coefficient was R = 0.89, the standard error of estimate was s = 0.067, and the result of Fischer’s F-test was equal...seawater in these experiments. Little error is expected from such a substitution since chlorination of the natural water kills the biological

  13. Standard Practices for Simulated Service Testing for Corrosion of Metallic Containment Materials for Use With Heat-Transfer Fluids in Solar Heating and Cooling Systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1980-01-01

    1.1 These practices cover test procedures simulating field service for evaluating the performance under corrosive conditions of metallic containment materials in solar heating and cooling systems. All test results relate to the performance of the metallic containment material only as a part of a metal/fluid pair. Performance in these test procedures, taken by itself, does not necessarily constitute an adequate basis for acceptance or rejection of a particular metal/fluid pair in solar heating and cooling systems, either in general or in a particular design. 1.2 These practices describe test procedures used to evaluate the resistance to deterioration of metallic containment materials in the several conditions that may occur in operation of solar heating and cooling systems. These conditions include: (1) operating full flow; (2) stagnant empty vented; (3) stagnant, closed to atmosphere, non-draindown; and (4) stagnant, closed to atmosphere, draindown. 1.3 The recommended practices cover the following three te...

  14. Corrosion Fatigue in District Heating Water Tanks

    DEFF Research Database (Denmark)

    Maahn, Ernst Emanuel

    1996-01-01

    Three candidate materials for construction of buffer tanks for district heating water have been tested for corrosion fatigue properties in a district heating water environment. The investigation included Slow Strain Rate Testing of plain tensile specimens, crack initiation testing by corrosion...... fatigue of plain tensile specimens and crack growth rate determination for Compact Tensile Specimens under corrosion fatigue conditions. The three materials are equal with respect to stress corrosion sensibility and crack initiation. Crack growth rate is increased with a factor of 4-6 relative to an inert...

  15. Evaluation of eco toxicity, biocide effectiveness and corrosiveness of fluid for pipelines hydro testing; Avaliacao da ecotoxicidade, eficiencia biocida e da corrosividade de fluidos para teste hidroestatico de dutos

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Cynthia A.; Veiga, Leticia F.; Penna, Monica O.; Souza, Leonardo S. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Nascimento, Juliana R.; Oliveira, Fabio F.; Amigo, Alexandre A.; Chaves, Claudia [Fundacao Gorceix, Ouro Preto, MG (Brazil)

    2005-07-01

    Before the installation of subsea pipelines for draining the oil and gas production, the line need to be submitted to hydrostatic tests. In these, the lines are flooded with sea water and chemicals and pressurized to check the leakage occurrence. By the end of the test, the fluid needs to be discharged in-situ. Based on the environmental restrictions, this study began, and the three most important aspects in relation to the environmental risks had been evaluated: the toxicity, the biocide efficiency and the fluids' corrosiveness. By the partial results, it was observed that the fluids which had presented the best results in all studied aspects were the ones that contained the biocide THPS, combined with U.V. and a quaternary salt. In relation to the corrosion, it could be established that the studied fluids do not present impacts in internal corrosion, since during the test, the pipes are totally flooded with the fluid, remaining stamped and all the internal air having been removed. An important aspect is: even with concentrations below of the recommended ones for biocides, in order to guarantee lower environmental risks, by making use of alternative techniques (U.V.) and efficient biocide products, it is also possible to reach success in terms of biocide's efficiency. A regular monitoring procedure of the fulfilling fluid's quality is essential. (author)

  16. Failure Modes in Concrete Repair Systems due to Ongoing Corrosion

    Directory of Open Access Journals (Sweden)

    Mladena Luković

    2017-01-01

    Full Text Available Corrosion of steel reinforcement is the main cause of deterioration in reinforced concrete structures. It can result in cracking and spalling of the concrete cover. After the damaged cover is repaired, reinforcement corrosion might continue and even accelerate. While the development of the corrosion cell is difficult to control, the damage can be possibly delayed and controlled by use of a suitable repair material. The lattice fracture model is used in this paper to investigate the performance of strain hardening cementitious composite (SHCC in concrete repair systems exposed to ongoing corrosion. Numerical results were verified by experimental tests when SHCC, nonreinforced material (repair mortar, and commercial repair mortar are used as repair materials. In experiments, reinforcement bars (surrounded by a repair material were exposed to accelerated corrosion tests. The influence of the substrate surface preparation, the type of repair material, the interface, and the substrate strength on the resulting damage and failure mode of repair systems are discussed. In general, SHCC repair enables distributed cracking with small crack widths, up to several times smaller compared to repair mortar. Furthermore, more warning signs prior to the final failure are present in the SHCC repair system.

  17. Development of green vapour corrosion inhibitor

    Science.gov (United States)

    Asmara, Y. P.; Suraj, V.; Siregar, J. P.; Kurniawan, T.; Bachtiar, D.; Mohamed, N. M. Z. N.

    2017-10-01

    Corrosion control using inhibitor is an effective method to protect carbon steel from corrosion. Due to environmental toxicity of chemical inorganic corrosion inhibitors (synthetic), green inhibitors are potentially to develop. In atmospheric conditions, green vapour corrosion inhibitors are the best solutions to replace the uses of inorganic corrosion inhibitors. This research used chemical acid extraction from the key lime (citrus aurantiifolia) leaves and seeds. They are used as the main ingredients to produce this effective green corrosion inhibitor. The experiments investigated effects of corrosion inhibition on corrosion rate of low carbon steel in 3% NaCl solution using both fog salt chamber and electrochemical cell. Using salt fog chamber to represent atmospheric conditions, and corrosion rates are evaluated visually and calculated using weight loss methods. Corrosion rate on electrochemical cell were calculated using linear polarization resistance (LPR) methods. All of the experiments were set in natural conditions at pH 7. Using weight loss for three days exposure time, the efficiency of the inhibitor reached 82.39%.

  18. Corrosion-Activated Micro-Containers for Environmentally Friendly Corrosion Protective Coatings

    Science.gov (United States)

    Li, Wenyan; Buhrow, J. W.; Zhang, X.; Johnsey, M. N.; Pearman, B. P.; Jolley, S. T.; Calle, L. M.

    2016-01-01

    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry. The NASA Kennedy Space Centers Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion

  19. Corrosion behavior of duplex coatings

    Directory of Open Access Journals (Sweden)

    K. Raghu Ram Mohan Reddy

    2016-07-01

    Full Text Available The titanium alloys are used in defense, aerospace, automobile, chemical plants and biomedical applications due to their very high strength and lightweight properties. However, corrosion is a life-limiting factor when Ti alloys are exposed to different chemical environments at high temperatures. In the present paper, duplex NiCrAlY/WC–Co coating is coated onto Ti6Al4V substrate to investigate the corrosion behavior of both coated samples and the substrate. The duplex coating was performed with NiCrAlY as the intermediate coat of 200 μm thickness deposited by HVOF process and WC–Co ceramic top coat with varying thicknesses of 250 μm, 350 μm and 450 μm deposited by DS process. Potentiodynamic polarization tests were employed to investigate the corrosion performance of duplex coated samples and substrate in Ringer’s solution at 37 °C and pH value was set to 5.7. Finally the results reveal that 350 μm thick coated samples showed highest corrosion resistance compared to 250 μm thick samples as well as bare substrate. However, the 450 μm thick coated sample showed poor corrosion resistance compared to the substrate. The scale formed on the samples upon corrosion was characterized by using SEM analysis to understand the degree of corrosion behavior.

  20. Computer-Adaptive Testing: Implications for Students' Achievement, Motivation, Engagement, and Subjective Test Experience

    Science.gov (United States)

    Martin, Andrew J.; Lazendic, Goran

    2018-01-01

    The present study investigated the implications of computer-adaptive testing (operationalized by way of multistage adaptive testing; MAT) and "conventional" fixed order computer testing for various test-relevant outcomes in numeracy, including achievement, test-relevant motivation and engagement, and subjective test experience. It did so…

  1. Aircraft Corrosion

    Science.gov (United States)

    1981-08-01

    au traitement. micaniqus qui provoque une compression de surface - h1l’spplication i1’une double protection comportant oxydation snodique et...primaire anti-corrosion nitrosynthdtique pigmontie au chromate do zinc - une couche do peinture de finition nitrosynthdtique risistant aux huiles ...condition: - Touch-up of concerned fastener holes with chemical oxydation ; - Wet assembly of fasteners; - Application of a strontium chromate primer and

  2. The Impact of Na—H+ Exchange on Long-Term Borosilicate Glass Corrosion: Experiments and Field Observations

    Energy Technology Data Exchange (ETDEWEB)

    Icenhower, Jonathan P; Pierce, Eric M; McGrail, B Peter

    2009-05-01

    New insights from laboratory experiments coupled with field observations indicate that pore water solutions that eventually breach containment materials in disposal systems will interact with sodium-excess borosilicate waste glass in an unexpected way. Because many glass waste forms are relatively sodium-rich, they are especially vulnerable to Na+—H+ exchange (ion exchange or simply, IEX). Although the kinetics of this process has been previously investigated for early-stage glass reactions, the implications of IEX for long-term dissolution resistance have not yet been realized. Non-radioactive glass with major- and minor-element chemical compositions similar to Hanford high-Na waste glass were subjected to dissolution experiments to quantify the rates of matrix dissolution and IEX rates. Single-Pass Flow-Through (SPFT) tests quantified the IEX rate at 40°C pH = 8 and silica saturation and showed a dependence upon the fraction of excess sodium in the glass. The equation for the rate (in moles of sodium released per meter squared per second) dependence on excess sodium is: log10rate[mol/(m2∙s)] = 0.63R + (-11.0); r2 = 0.86 where R = molar Na+/(M3+). Further, rates of Na release are slower by ≥30% in D2O-based solutions compared to those in H2O. These results are the hallmark of IEX reactions. Our results are compared against those from a lysimeter field experiment consisting of glasses buried in Hanford sand and to dissolution experiments conducted with a Pressurized Unsaturated Flow (PUF) apparatus. These longer-term tests indicate an initial decrease in dissolution rate by a factor of 10×, and then a constant steady-state rate thereafter. Thus, these data show that IEX reactions are important at near-saturation conditions and effectively prevent dissolution rates from falling below a minimum value. In sum, IEX modifies the long-term behavior of glass dissolution and models cannot assume that dissolution of Na-rich borosilicate glass will decrease by a

  3. FLOW TESTING AND ANALYSIS OF THE FSP-1 EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, Grant L.; Jones, Warren F.; Marcum, Wade; Weiss, Aaron; Howard, Trevor

    2017-06-01

    The U.S. High Performance Research Reactor Conversions fuel development team is focused on developing and qualifying the uranium-molybdenum (U-Mo) alloy monolithic fuel to support conversion of domestic research reactors to low enriched uranium. Several previous irradiations have demonstrated the favorable behavior of the monolithic fuel. The Full Scale Plate 1 (FSP-1) fuel plate experiment will be irradiated in the northeast (NE) flux trap of the Advanced Test Reactor (ATR). This fueled experiment contains six aluminum-clad fuel plates consisting of monolithic U-Mo fuel meat. Flow testing experimentation and hydraulic analysis have been performed on the FSP-1 experiment to be irradiated in the ATR at the Idaho National Laboratory (INL). A flow test experiment mockup of the FSP-1 experiment was completed at Oregon State University. Results of several flow test experiments are compared with analyses. This paper reports and shows hydraulic analyses are nearly identical to the flow test results. A water velocity of 14.0 meters per second is targeted between the fuel plates. Comparisons between FSP-1 measurements and this target will be discussed. This flow rate dominates the flow characteristics of the experiment and model. Separate branch flows have minimal effect on the overall experiment. A square flow orifice was placed to control the flowrate through the experiment. Four different orifices were tested. A flow versus delta P curve for each orifice is reported herein. Fuel plates with depleted uranium in the fuel meat zone were used in one of the flow tests. This test was performed to evaluate flow test vibration with actual fuel meat densities and reported herein. Fuel plate deformation tests were also performed and reported.

  4. Field corrosion characterization of soil corrosion of X70 pipeline steel in a red clay soil

    Directory of Open Access Journals (Sweden)

    Shengrong Wang

    2015-06-01

    Full Text Available The corrosion behavior of X70 pipeline steel buried in red soil environment has been studied. The surface morphology and elemental distribution were determined by scanning electron microscopy (SEM,energy dispersive X-ray spectroscopy (EDS, and X-ray diffraction (XRD. The corrosion kinetics was evaluated by weight loss measurement. The results show that in red soil, the corrosion rate of X70 steel decreases with time, and follows the exponential decay law. General corrosion with non-uniform and localized pitting occurred on the steel surface. α-FeOOH was the dominate products during corrosion in whole buried periods, and the corrosion products exhibited well protective properties. The potentiodynamic polarization tests revealed that icorr decreased with time, indicating the improvement of corrosion resistance. The results of Electrochemical impendence spectroscopy (EIS are consistent with potentiodynamic polarization tests.

  5. Application of response surface methodology method in designing corrosion inhibitor

    Science.gov (United States)

    Asmara, Y. P.; Athirah; Siregar, J. P.; Kurniawan, T.; Bachtiar, D.

    2017-10-01

    In oil and gas pipelines and offshore structure, inhibitors have been considered to be the first choice to reduce corrosion rate. There are many corrosion inhibitor compositions available in the market. To produce the best corrosion inhibitor requires many experimental data which is not efficient. These experiments used response surface methodology (RSM) to select corrosion inhibitor compositions. The experiments investigated effects of corrosion inhibition on corrosion rate of low carbon steel in 3% NaCl solution with different concentrations of selected main inhibitor compositions which are ethyl acetate (EA), ethylene glycol (EG) and sodium benzoate (SB). Corrosion rate were calculated using linear polarization resistance (LPR). All of the experiments were set in natural conditions at pH 7. MINITAB® version 15 was used for data analysis. It is shown that a quadratic model is a representative model can predict best corrosion inhibitor composition comprehensibly.

  6. [Script Concordance Test: first nationwide experience in pediatrics].

    Science.gov (United States)

    Hamui, Magali; Ferreira, Juan P; Torrents, Milagros; Torres, Fernando; Ibarra, Mariano; Ossorio, Maria F; Urrutia, Luis; Ferrero, Fernando

    2018-02-01

    The Script Concordance Test is a suitable test for assessing clinical reasoning in postgraduate medical education. We present the first nationwide, realtime, web-based experience of a Script Concordance Test administered to 3rd year pediatric residents. The test was administered to 268 residents (postgraduate year 3), from 56 different programs, requiring 46.1 ± 27.1 minutes to complete it, and scoring 65.3 ± 7.47 points. A later survey showed limited satisfaction from participants. This experience showed that this kind of test is feasible in this setting. Sociedad Argentina de Pediatría.

  7. Electrochemical frequency modulation and inductively coupled plasma atomic emission spectroscopy methods for monitoring corrosion rates and inhibition of low alloy steel corrosion in HCl solutions and a test for validity of the Tafel extrapolation method

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Mohammed A. [Chemistry Department, Faculty of Science, Ain Shams University, Al-Khalefah Al-Maamoon St., Abbassia, Cairo 11566 (Egypt)], E-mail: maaismail@yahoo.com; Abd El Rehim, Sayed S. [Chemistry Department, Faculty of Science, Ain Shams University, Al-Khalefah Al-Maamoon St., Abbassia, Cairo 11566 (Egypt); Abdel-Fatah, Hesham T.M. [Central Chemical Laboratories, Egyptian Electricity Holding Company, Sabtia, Cairo (Egypt)

    2009-04-15

    The inhibition effect of glycine (Gly) towards the corrosion of low alloy steel ASTM A213 grade T22 boiler steel was studied in aerated stagnant 0.50 M HCl solutions in the temperature range 20-60 deg. C using potentiodynamic polarization (Tafel polarization and linear polarization) and impedance techniques, complemented with scanning electron microscope (SEM) and energy dispersive X-ray (EDX). Electrochemical frequency modulation (EFM), a non-destructive corrosion measurement technique that can directly give values of corrosion current without prior knowledge of Tafel constants, is also presented here. Experimental corrosion rates determined by the Tafel extrapolation method are compared with corrosion rates obtained by electrochemical, namely EFM technique, and chemical (i.e., non-electrochemical) method for steel in HCl. The chemical method of confirmation of the corrosion rates involved determination of the dissolved cation, using ICP-AES (inductively coupled plasma atomic emission spectrometry) method of analysis. Corrosion rates (in mm y{sup -1}) obtained from the electrochemical (Tafel extrapolation and EFM) and the chemical method, ICP, are in a good agreement. Polarization studies have shown that Gly is a good 'green', mixed-type inhibitor with cathodic predominance. The inhibition process was attributed to the formation of an adsorbed film on the metal surface that protects the metal against corrosive agents. Scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) examinations of the electrode surface confirmed the existence of such an adsorbed film. The inhibition efficiency increases with increase in Gly concentration, while it decreases with solution temperature. Temkin isotherm is successfully applied to describe the adsorption process. Thermodynamic functions for the adsorption process were determined.

  8. On-sky Testing of the Active Phasing Experiment

    Science.gov (United States)

    Gonté, Frédéric; Araujo, Constanza; Bourtembourg, Reynald; Brast, Roland; Derie, Frédéric; Duhoux, Philippe; Dupuy, Christophe; Frank, Christophe; Karban, Robert; Mazzoleni, Ruben; Noethe, Lothar; Sedghi, Babak; Surdej, Isabelle; Yaitskova, Natalia; Luong, Bruno; Chueca, Sergio; Reyes, Marcos; Esposito, Simone; Pinna, Enrico; Puglisi, Alfio; Quiros Pacheco, Fernando; Dohlen, Kjetil; Vigan, Arthur

    2009-06-01

    The Active Phasing Experiment (APE) has been used by ESO to gain experience in controlling segmented primary mirrors in preparation for the European Extremely Large Telescope. The experiment tested various phasing techniques and explored their advantages and limitations. Four optical phasing sensors were developed using different techniques — a curvature sensor, a pyramid sensor, a Shack-Hartmann sensor and a sensor based on a modified Mach-Zehnder interferometer. The design of the APE instrument is described. APE was installed at the VLT visitor focus for on-sky testing and a brief summary of the results of the experiment is given.

  9. New corrosion issues in gas sweetening plants

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G. (CLI International and Asperger Technologies, Houston, TX (United States))

    Gas treating plants are experiencing corrosion problems which impact on efficiency and safety. While general corrosion is not particularly hazardous in the gas processing industry, local corrosion is very dangerous since it has several different mechanisms, all of which have dangerously high rates, and it occurs at locations which are hard to find and hard to predict. A newly discovered, velocity-dependent type of corrosion is reported. It is related to yet-undefined species which cause excessively high corrosion in areas of turbulence. This accelerated corrosion is not due to erosion or cavitation, but to a diffusion-limited reaction accelerated by turbulence. A full-flow test loop was built to evaluate the corrosiveness of gas plant solutions at their normal temperature and flow rates. Test runs were conducted with Co[sub 2]-loaded amine solutions for periods of 12 days. Carbon steel specimens mounted in the test loop were examined and corrosion rates calculated. Chromium alloys were shown to be attacked by corrodents in the low-velocity part of the loop and very aggressively attacked in the high-velocity part. The tests demonstrate the need for rigorous monitoring of corrosion in areas of higher velocity such as piping elbows and other points of turbulence. 5 refs., 2 figs., 3 tabs.

  10. Countermeasures to corrosion on water walls. Part 2; Aatgaerder mot eldstadskorrosion paa panntuber. Etapp 2

    Energy Technology Data Exchange (ETDEWEB)

    Storesund, Jan; Elger, Ragna; Nordling, Magnus; Viklund, Peter

    2011-01-15

    economically for a given situation. In the first phase of the present project a literature survey concerning water wall corrosion protection methods was carried out [1]. Advantages, disadvantages and possibilities by the use of refractories, composite tubes, thermal spraying, hybrid coatings and weld cladding were investigated. An experience survey of problems with and protection of, water wall corrosion in Swedish plants was conducted as well. In an experimental part of the project six different weld clad materials were tested in water walls of five different boilers, representing different types of operation and fuel data. The test materials consisted of some conventional and newly developed weld clads for high temperature corrosion. These trials gave many interesting results but the exposure time was only one year of operation. A second phase of the project has now been carried out. In this study the test materials has been service exposed for another year. In addition, the literature and the experience surveys have been updated. Literature survey: There are some recent developments of water wall corrosion protection methods. One way is to flame spray relatively thick layers onto water wall sections. Then these sections were heat treated by induction heating such as the spray layers sintered see Figure 0.1 below. The sinter material consisted of 15 % Cr, 4,3 % Si, 3.1 % B and 2,5% Mo which gave very high hardness, HV 815. Three years service exposure of test panels gave no significant corrosion at all whereas carbon steel tubes exposed at the same time corroded 1.5 mm. In addition, the output of the boiler increased as a result of flame spray + sintering method. The reason is that refractory, with lower heat transfer properties, otherwise should be the solution for the water wall corrosion

  11. Corrosion effects on friction factors

    Energy Technology Data Exchange (ETDEWEB)

    Magleby, H.L.; Shaffer, S.J.

    1996-03-01

    This paper presents the results of NRC-sponsored material specimen tests that were performed to determine if corrosion increases the friction factors of sliding surfaces of motor-operated gate valves, which could require higher forces to close and open safety-related valves when subjected to their design basis differential pressures. Friction tests were performed with uncorroded specimens and specimens subjected to accelerated corrosion. Preliminary tests at ambient conditions showed that corrosion increased the friction factors, indicating the need for additional tests duplicating valve operating parameters at hot conditions. The additional tests showed friction factors of corroded specimens were 0.1 to 0.2 higher than for uncorroded specimens, and that the friction factors of the corroded specimens were not very dependent on contact stress or corrosion film thickness. The measured values of friction factors for the three corrosion films tested (simulating three operating times) were in the range of 0.3 to 0.4. The friction factor for even the shortest simulated operating time was essentially the same as the others, indicating that the friction factors appear to reach a plateau and that the plateau is reached quickly.

  12. Assessment of Mortar Corrosion by Sulphuric Acid

    OpenAIRE

    Kawahigashi, Tatsuo

    2008-01-01

    In order to study the corrosion mechanisms of water-cement system, cement mortar specimens were immersed in the sulphuric acid solution. Over the periods, changes to the roughened surfaces, mass change and neutralization depth were observed. Corrosion of cement mortar progressed through chemical reaction of sulphuric acid and ion transport in mortar. Relations between the environment operation of sulphuric acid and the corrosion (summation of chemical erosion and neutralization depth) of test...

  13. Corrosion and alteration of materials from the nuclear industry; La Corrosion et l'alteration des materiaux du nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Feron, D.; Guerin, Y.; Latge, C.; Limoge, Y.; Madic, C.; Santarini, G.; Seiler, J.M.; Vernaz, E.; Richet, C.

    2010-07-01

    , testing means, experimental techniques, internal corrosion of zircaloy sheath - the iodine effect, stress corrosion of nickel alloys - hydrogen influence, stress corrosion of stainless steels; C - wear corrosion: a coupled phenomenon, research in the framework of service life extension of the French electronuclear park; 3 - Corrosion in future reactors: A - corrosion in gas reactors: corrosion by helium impurities, oxidation resistance of silicon carbide, corrosion of graphite and carbon-carbon composites; B - corrosion in liquid metal reactors: sodium FBRs, lead and lead alloys reactors; C- corrosion in molten salt reactors: corrosion of Hastelloy N-type nickel alloys by molten fluorides, mass transfer in aniso-thermal fluoride systems, tellurium embrittlement, electrochemical study of pure metals corrosion in molten fluorides; 4 - Materials corrosion and alteration in the back-end of the fuel cycle: A - corrosion in concentrated nitric environment: materials behaviour, self-catalytic mechanism of nitric acid reduction; B - corrosion in unsaturated aqueous environment: metallic corrosion in unsaturated environment - application to the storage of waste containers, bitumens alteration, reinforced concrete behaviour and iron framework corrosion, concrete behaviour in severe thermal environment; C - Corrosion in saturated aqueous environment: metals corrosion in clayey environment, long-term behaviour of glasses, ceramics alteration, underwater concrete durability, clays transformation; D - materials biodegradation: microorganisms and nuclear wastes, biodegradation of bitumen, concretes and steels; 5 - Conclusion, glossary

  14. Corrosion Protection of Electrically Conductive Surfaces

    Directory of Open Access Journals (Sweden)

    Jian Song

    2012-11-01

    Full Text Available The basic function of the electrically conductive surface of electrical contacts is electrical conduction. The electrical conductivity of contact materials can be largely reduced by corrosion and in order to avoid corrosion, protective coatings must be used. Another phenomenon that leads to increasing contact resistance is fretting corrosion. Fretting corrosion is the degradation mechanism of surface material, which causes increasing contact resistance. Fretting corrosion occurs when there is a relative movement between electrical contacts with surfaces of ignoble metal. Avoiding fretting corrosion is therefore extremely challenging in electronic devices with pluggable electrical connections. Gold is one of the most commonly used noble plating materials for high performance electrical contacts because of its high corrosion resistance and its good and stable electrical behavior. The authors have investigated different ways to minimize the consumption of gold for electrical contacts and to improve the performance of gold plating. Other plating materials often used for corrosion protection of electrically conductive surfaces are tin, nickel, silver and palladium. This paper will deal with properties and new research results of different plating materials in addition to other means used for corrosion protection of electrically conductive surfaces and the testing of corrosion resistance of electrically conductive surfaces.

  15. Influence of biofilm formation on corrosion and scaling in geothermal plants

    Science.gov (United States)

    Kleyböcker, Anne; Lerm, Stephanie; Monika, Kasina; Tobias, Lienen; Florian, Eichinger; Andrea, Seibt; Markus, Wolfgramm; Hilke, Würdemann

    2017-04-01

    Process failures may occur due to corrosion and scaling processes in open loop geothermal systems. Especially after heat extraction, sulfate reducing bacteria (SRB) contribute to corrosion processes due to a more favorable temperature for their growth. In biofilms containing FeS scales, corrosion processes are enhanced. Furthermore, scales can lead to reduced pipe profiles, to a diminished heat transfer and a decrease in the wellbore injectivity. Inhibitors are frequently applied to minimize scaling in technical systems. A prerequisite for the application of inhibitors in geothermal plants located in the Molasse basin is their degradability under reservoir conditions, e. g. in a reduced environment. In order to determine the effects of scale-inhibitors on the subsurface and microbial processes, laboratory experiments were performed focusing on the microbial inhibitor degradation. First results indicate that the inhibitor degradation under anaerobic conditions is possible. Besides the inhibitor application also other techniques are investigated to economically reduce corrosion and scaling in geothermal plants. In a mobile bypass system, the influence of biofilm formation on corrosion and scaling was investigated. The bypass system was tested at a geothermal heat store in the North German Basin. The plant is operated with highly saline fluid (salinity 130 g/L) and known to be affected by SRB. The SRB contributed to corrosion damages especially at the pump in the well on the cold side. Heat shocks were successfully used in the bypass system to reduce biofilm formation as well as corrosion and scaling processes.

  16. Cylinder expansion test and gas gun experiment comparison

    Energy Technology Data Exchange (ETDEWEB)

    Harrier, Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-30

    This is a summer internship presentation by the Hydro Working Group at Los Alamos National Laboratory (LANL) and goes into detail about their cylinder expansion test and gas gun experiment comparison. Specifically, the gas gun experiment is detailed along with applications, the cylinder expansion test is detailed along with applications, there is a comparison of the methods with pros and cons and limitations listed, the summer project is detailed, and future work is talked about.

  17. Development of a decision support system for the introduction of alternative methods into local irritancy/corrosivity testing strategies. Creation of fundamental rules for a decision support system.

    Science.gov (United States)

    Gerner, I; Zinke, S; Graetschel, G; Schlede, E

    2000-01-01

    The notification procedure of the European Union (EU) for new chemicals requires the application of protocols on physicochemical and toxicological tests for the evaluation of physicochemical properties and probable toxic effects of each notified substance. A computerised database was developed from data sets and toxicological test protocols relating to substance properties responsible for skin and eye irritation/corrosion. To develop specific structure-activity relationship (SAR) models and to find rules for a decision support system (DSS) to predict local irritation/corrosion, physical property data, chemical structure data and toxicological data for approximately 1300 chemicals, each having a purity of 95% or more, were evaluated. The evaluation demonstrated that the lipid solubility and aqueous solubility of a chemical are relevant to, or - in some cases - responsible for, the observed local effects of a substance on the skins and eyes of rabbits. The octanol/water partition coefficient and the measured value of the surface tension of a saturated aqueous solution of the substance give additional information that permits the definition of detailed SAR algorithms that use measured solubility values. Data on melting points and vapour pressure can be used to assess the intensity and duration of local contact with a chemical. Considerations relating to the reactivity of a pure chemical can be based on molecular weight and the nature of the heteroatoms present. With respect to local lesions produced following contact with the skin and eyes of rabbits, the data evaluation revealed that no general "local irritation/corrosion potential" of a chemical can be defined. A variety of mechanisms are responsible for the formation of local lesions on the skin or in the eyes: serious lesions are produced by mechanisms different from those that cause moderate irritation in these organs. In order to develop a DSS that uses the information extracted from the database, chemical main

  18. Stress Corrosion Crack Growth Rate Testing and Analytical Electron Microscopy of Alloy 600 as a Function of Pourbaix Space and Microstructure

    Energy Technology Data Exchange (ETDEWEB)

    N. Lewis; S.A. Attanasio; D.S. Morton; G.A. Young

    2000-10-04

    Stress corrosion crack (SCC) growth rate tests and analytical electron microscopy (AEM) studies were performed over a broad range of environments and heat treatments of Alloy 600. This effort was conducted to correlate bulk environmental conditions such as pH and electrochemical potential (EcP) with the morphology of the SCC crack. Development of a library of AEM morphologies formed by SCC in different environments is an important step in identifying the conditions that lead to SCC in components. Additionally, AEM examination of stress corrosion cracks formed in different environments and microstructures lends insight into the mechanism(s) of stress corrosion cracking. Testing was conducted on compact tension specimens in three environments: a mildly acidic oxidizing environment containing sulfate ions, a caustic environment containing 10% NaOH, and hydrogenated near-neutral buffered water. Additionally, stress corrosion cracking testing of a smooth specimen was conducted in hydrogenated steam. The following heat treatments of Alloy 600 were examined: mill annealed at 980 C (near-neutral water), mill annealed at 1010 C (steam), sensitized (acid and caustic), and mill annealed + healed to homogenize the grain boundary Cr concentration (caustic). Crack growth rate (CGR) testing showed that sensitized Alloy 600 tested in the mildly acidic, oxidizing environment containing sulfate ions produced the fastest cracking ({approx} 8.8 {micro}m/hr at 260 C), and AEM examination revealed evidence of sulfur segregation to the crack tip. The caustic environment produced slower cracking ({approx} 0.4 {micro}m/hr at 307 C) in the mill annealed + healed heat treatment but no observed cracking in the sensitized condition. In the caustic environment, fully oxidized carbides were present in the crack wake but not ahead of the crack tip. In near-neutral buffered water at 338 C, the CGR was a function of dissolved hydrogen in the water and exhibited a maximum (0.17 {micro}m/hr) near the

  19. [Reduction of animal experiments in experimental drug testing].

    Science.gov (United States)

    Behrensdorf-Nicol, H; Krämer, B

    2014-10-01

    In order to ensure the quality of biomedical products, an experimental test for every single manufactured batch is required for many products. Especially in vaccine testing, animal experiments are traditionally used for this purpose. For example, efficacy is often determined via challenge experiments in laboratory animals. Safety tests of vaccine batches are also mostly performed using laboratory animals. However, many animal experiments have clear inherent disadvantages (low accuracy, questionable transferability to humans, unclear significance). Furthermore, for ethical reasons and animal welfare aspects animal experiments are also seen very critical by the public. Therefore, there is a strong trend towards replacing animal experiments with methods in which no animals are used ("replacement"). If a replacement is not possible, the required animal experiments should be improved in order to minimize the number of animals necessary ("reduction") and to reduce pain and suffering caused by the experiment to a minimum ("refinement"). This "3R concept" is meanwhile firmly established in legislature. In recent years many mandatory animal experiments have been replaced by alternative in vitro methods or improved according to the 3R principles; numerous alternative methods are currently under development. Nevertheless, the process from the development of a new method to its legal implementation takes a long time. Therefore, supplementary regulatory measures to facilitate validation and acceptance of new alternative methods could contribute to a faster and more consequent implementation of the 3R concept in the testing of biomedical products.

  20. Element test experiments and simulations: From dry towards cohesive powders

    NARCIS (Netherlands)

    Imole, Olukayode Isaiah; Kumar, Nishant; Luding, Stefan; Onate, E; Owen, D.R.J

    2011-01-01

    Findings from experiments and particle simulations for dry and cohesive granular materials are presented with the goal to reach quantitative agreement between simulations and experiments. Results for the compressibility, tested with the FT4 Powder Rheometer are presented. The first simulation

  1. Does the Fizeau Experiment Really Test Special Relativity?

    Science.gov (United States)

    Clement, Gerard

    1980-01-01

    The motivation and interpretation of the Fizeau experiment are reviewed, and its status as a test of special relativity is discussed. It is shown, with the aid of a simplified, purely mechanical model of the propagation of light in matter, that the experiment actually cannot discriminate between Galilean and relativistic kinematics. (Author/SK)

  2. DWPF corrosion study

    Energy Technology Data Exchange (ETDEWEB)

    Selby, C.L.

    1986-12-17

    Corrosion of candidate alloys for the DWPF SRAT, SME, and melter was tested in the large (1/3 scale) SRAT/SME, the 200th scale SRAT/SME, and the LSFM. Flat or twisted coupons with or without a weld bead and U-bend specimens (specimens bent into a ''U'' shape and bolted together at the ends to stress the bend area) were installed on racks that ensured electrical isolation to avoid galvanic effects. Teflon/reg sign/ washers isolated the low temperature exposure racks and ceramic washers isolated the high temperature exposure racks. Serrated washers simulated crevices, but crevice corrosion did not result. 9 refs., 9 tabs.

  3. Evaluation of Stress Corrosion Cracking Susceptibility Using Fracture Mechanics Techniques, Part 1. [environmental tests of aluminum alloys, stainless steels, and titanium alloys

    Science.gov (United States)

    Sprowls, D. O.; Shumaker, M. B.; Walsh, J. D.; Coursen, J. W.

    1973-01-01

    Stress corrosion cracking (SSC) tests were performed on 13 aluminum alloys, 13 precipitation hardening stainless steels, and two titanium 6Al-4V alloy forgings to compare fracture mechanics techniques with the conventional smooth specimen procedures. Commercially fabricated plate and rolled or forged bars 2 to 2.5-in. thick were tested. Exposures were conducted outdoors in a seacoast atmosphere and in an inland industrial atmosphere to relate the accelerated tests with service type environments. With the fracture mechanics technique tests were made chiefly on bolt loaded fatigue precracked compact tension specimens of the type used for plane-strain fracture toughness tests. Additional tests of the aluminum alloy were performed on ring loaded compact tension specimens and on bolt loaded double cantilever beams. For the smooth specimen procedure 0.125-in. dia. tensile specimens were loaded axially in constant deformation type frames. For both aluminum and steel alloys comparative SCC growth rates obtained from tests of precracked specimens provide an additional useful characterization of the SCC behavior of an alloy.

  4. Corrosion Resistance of Powder Metallurgy Processed TiC/316L Composites with Mo Additions

    Science.gov (United States)

    Lin, Shaojiang; Xiong, Weihao

    2015-06-01

    To find out the effects of Mo addition on corrosion resistance of TiC/316L stainless steel composites, TiC/316L composites with addition of different contents of Mo were prepared by powder metallurgy. The corrosion resistance of these composites was evaluated by the immersion tests and polarization curves experiments. Results indicated that Mo addition decreased the corrosion rates of TiC/316L composites in H2SO4 solution in the case of Mo content below 2% whereas it displayed an opposite effect when Mo content was above that value. It was found that with an increase in the Mo content, the pitting corrosion resistance increased monotonically for TiC/316L composites in NaCl solution.

  5. THE EFFECT OF THE ANNEALING TEMPERATURE ON THE CORROSION RESISTANCE OF WELD JOINT OF AISI 310 STEEL - SHORT COMMUNICATION

    Directory of Open Access Journals (Sweden)

    Pavel Kovačócy

    2011-10-01

    Full Text Available The article presents samples of weld joint of AISI 310 austenitic steel which were subjected to solution annealing at various temperature - time exposures. The objective of the experiment was to determine the annealing temperature so that the steel should not be sensitized. Tendency to intercrystalline corrosion was analysed by means of a corrosion test in 10 % oxalic acid according to ASTM A 262. At the temperatures of 1000 and 1100°C held for 15 min. the steel was not sensitized. At the temperature of 850°C the steel was sensitized, i.e. susceptible to intercrystalline corrosion.

  6. THE EFFECT OF THE ANNEALING TEMPERATURE ON THE CORROSION RESISTANCE OF WELD JOINT OF AISI 310 STEEL - SHORT COMMUNICATION

    Directory of Open Access Journals (Sweden)

    Martina Nerádová

    2012-02-01

    Full Text Available The article presents samples of weld joint of AISI 310 austenitic steel which were subjected to solution annealing at various temperature - time exposures. The objective of the experiment was to determine the annealing temperature so that the steel should not be sensitized. Tendency to intercrystalline corrosion was analysed by means of a corrosion test in 10 % oxalic acid according to ASTM A 262. At the temperatures of 1000 and 1100°C held for 15 min. the steel was not sensitized. At the temperature of 850°C the steel was sensitized, i.e. susceptible to intercrystalline corrosion.

  7. CORROSION RATE OF STEELS DX51D AND S220GD IN DIFFERENT CORROSION ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Alina Crina CIUBOTARIU

    2016-06-01

    Full Text Available Corrosion in the marine environment is an important issue because the costs causes by marine corrosion increased year upon year. It is necessary a correctly approach to materials selection, protection and corrosion control to reduce this burden of wasted materials, wasted energy and wasted money. Many different types of corrosion attack can be observed to structures, ships and other equipment used in sea water service. Shipping containers are exposed to various corrosive mediums like as airborne salt, industrial pollutants, rain and saltwater. Transport damage during loading onto and unloading off trucks, train beds and ships breaches the paint coating which further contributes to corrosion. The result is shortened container life and high costs for container repair or replacement. The paper intends to evaluate, by gravimetric method, the corrosion rate and corrosion penetration rate of two types of carbon steel DX51D and S220GD. Carbon steel DX51D and hot-dip galvanized steel S220GD are used in marine and industrial applications for buildings cargo vessels, container ships and oil tankers. For testing it was used different corrosive environments: 5% NaOH solution; 5% HCL solution and 0.5M NaCl solution. The samples were immersed in 400mL of testing solution for exposure period of 28 days. Periodically at 3 days, 7 days, 14 days, 21 days and 28 days was measured de mass loss and evaluate the corrosion rate and corrosion stability coefficient. The steel DX51D was stable in 5% NaOH solution for 28 days, the values of corrosion stability coefficient was 7 after 3 days and 6 after 28 days of immersion in corrosive medium. In 5% HCL solution steels DX51D and S220GD was completely corroded in 21 days with a corrosion stability coefficient equal with 9 for 7 days and 8 for 21 days of immersion in corrosive solution. It was observed a good resistance for 3 days in 0.5M NaCl solution with a corrosion stability coefficient equal with 5, but after that

  8. Executive function on the Psychology Experiment Building Language tests

    National Research Council Canada - National Science Library

    Piper, Brian J; Li, Victoria; Eiwaz, Massarra A; Kobel, Yuliyana V; Benice, Ted S; Chu, Alex M; Olsen, Reid H. J; Rice, Douglas Z; Gray, Hilary M; Mueller, Shane T

    2012-01-01

    ... Experiment Building Language (PEBL) test battery http://pebl.sourceforge.net/ and evaluate whether this pattern is comparable to data previously obtained with the non-PEBL versions of these tests. Participants (N = 1,223; ages, 5–89 years...

  9. Space Shuttle Boundary Layer Transition Flight Experiment Ground Testing Overview

    Science.gov (United States)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.

    2014-01-01

    In support of the Boundary Layer Transition (BLT) Flight Experiment (FE) Project in which a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS- 128, STS-131 and STS-133 as well as Space Shuttle Orbiter Endeavour for STS-134, a significant ground test campaign was completed. The primary goals of the test campaign were to provide ground test data to support the planning and safety certification efforts required to fly the flight experiment as well as validation for the collected flight data. These test included Arcjet testing of the tile protuberance, aerothermal testing to determine the boundary layer transition behavior and resultant surface heating and planar laser induced fluorescence (PLIF) testing in order to gain a better understanding of the flow field characteristics associated with the flight experiment. This paper provides an overview of the BLT FE Project ground testing. High-level overviews of the facilities, models, test techniques and data are presented, along with a summary of the insights gained from each test.

  10. Development Of Teal Ruby Experiment Radiometric Test Requirements

    Science.gov (United States)

    Birtley, W. B.; Kowallis, O. K.; Molnar, L. A.; Wright, T. J.

    1981-12-01

    The Teal Ruby Experiment (TRE) sensor presents unique problems to radiometric performance testing and calibration of a mosaic infrared sensor because of the large number of resolution elements; the wide range of spectral, temporal, and flux level operating regions; and the cryogenic operating conditions. This paper contains a summary of the Teal Ruby test facilities and requirements at the infrared charge-coupled device (IRCCD) detector array, zone assembly, focal plane assembly, and sensor levels. Automated test facilities and capabilities are presented to highlight the development requirements and approaches to testing. Key issues concern the complexity of testing, selection of test parameters, commonality of test algorithms and data presentation, data needs for acceptance testing, optimization and integration, and test equipment standards for accuracy, operating range, and contamination control.

  11. Pipeline corrosion prevention by pH stabilization or corrosion inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Nyborg, Rolf [Institute for Energy Technology, Oslo (Norway)

    2009-07-01

    In many offshore oil and gas projects the pipeline costs are a considerable part of the investment and can become prohibitively high if the corrosivity of the fluid necessitates the use of corrosion resistant alloys instead of carbon steel. Development of more robust and reliable methods for internal corrosion control can increase the application range of carbon steel and therefore have a large economic impact. Corrosion control of carbon steel pipelines has traditionally often been managed by the use of corrosion inhibitors. The pH stabilization technique has been successfully used for corrosion control of several large wet gas pipelines in the last years. This method has advantages over film forming corrosion inhibitors when no or little formation water is produced. The use of corrosion inhibitors in multiphase pipelines implies several challenges which are not fully accounted for in traditional corrosion inhibitor testing procedures. Specialized test procedures have been developed to take account for the presence of emulsions dispersions and sand and clay particles in corrosion inhibitor testing. (author)

  12. Pitting Corrosion Topography Characteristics and Evolution Laws of LC4 Aluminum Alloy in Service Environment

    Directory of Open Access Journals (Sweden)

    LIU Zhiguo

    2017-08-01

    Full Text Available Aircraft aluminum alloy is easy to initiate pitting corrosion in the service environment, the pitting corrosion topography characteristics could directly affect the fatigue mechanical property of structure material. In order to obtain the pitting corrosion topography characteristics of LC4 aluminum alloy in the service environment, the accelerated corrosion test was carried out along the accelerated corrosion test environment spectrum which imitated the service environment spectrum, and the corrosion topography characteristic parameters of corrosion pit depth H,corrosion pit surface length L and corrosion pit surface width W were defined respectively. During the corrosion test process,the three parameters of typical corrosion pit were successively measured in different equivalent corrosion years for obtaining the corrosion pit damage size data, then the data were analysed through the statistics method and fractal theory. Further more in order to gain the pit topography characteristics in the same equivalent corrosion year and the topography evolution laws during different equivalent corrosion years were gained. The analysis results indicate that LC4 aluminum alloy corrosion pit topography characteristics in the service environment include the following:firstly, the pit topography characteristic parameters conform to the lognormal distributions in the same equivalent corrosion years; secondly,the pit topography characteristic parameters gradually reflect the fractal feature in accordance with the equivalent corrosion year increment, and the pits tend to be shallow, long and moderate wide topography character.

  13. Fretting corrosion behavior of nitinol spinal rods in conjunction with titanium pedicle screws.

    Science.gov (United States)

    Lukina, Elena; Kollerov, Mikhail; Meswania, Jay; Khon, Alla; Panin, Pavel; Blunn, Gordon W

    2017-03-01

    Untypical corrosion damage including erosions combined with the build-up of titanium oxide as a corrosion product on the surface of explanted Nitinol spinal rods in the areas where it was in contact with titanium pedicle screw head is reported. It was suggested that Nitinol rods might have inferior fretting corrosion resistance compared with that made of titanium or CoCr. Fretting corrosion of Nitinol spinal rods with titanium (Ti6Al4V) pedicle screws were tested in-vitro by conducting a series of potentiostatic measurements of the peak-to-peak values of fretting corrosion current under bending in a 10% solution of calf serum in PBS. The test included Nitinol rods locked in titanium pedicle screws of different designs. Performance of commercially available titanium (Ti6Al4V) and CoCr spinal rods was also investigated for a comparison. Corrosion damage observed after the in-vitro tests was studied using SEM and EDAX analysis and was compared with patterns on Nitinol rods retrieved 12months after initial surgery. Metal ions level was measured in the test media after in-vitro experiments and in the blood and tissues of the patients who had the rods explanted. The results of this study revealed that Nitinol spinal rods locked in Ti pedicle screws are susceptible to fretting corrosion demonstrating higher fretting corrosion current compared with commercially used Ti6Al4V and CoCr rods. On the surface of Nitinol rods after in-vitro tests and on those retrieved from the patients similar corrosion patterns were observed. Improved resistance to fretting corrosion was observed with Nitinol rods in the in-vitro tests where pedicle screws were used with a stiffer locking mechanism. Since the development of the localized corrosion damage might increase the risk of premature fatigue failure of the rods and result in leaching of Ni ions, it is concluded that Nitinol rods should not be used in conjunction with Ti pedicle screws without special protection especially where the

  14. The corrosion and corrosion mechanical properties evaluation for the LBB concept in VVERs

    Energy Technology Data Exchange (ETDEWEB)

    Ruscak, M.; Chvatal, P.; Karnik, D.

    1997-04-01

    One of the conditions required for Leak Before Break application is the verification that the influence of corrosion environment on the material of the component can be neglected. Both the general corrosion and/or the initiation and, growth of corrosion-mechanical cracks must not cause the degradation. The primary piping in the VVER nuclear power plant is made from austenitic steels (VVER 440) and low alloy steels protected with the austenitic cladding (VVER 1000). Inspection of the base metal and heterogeneous weldments from the VVER 440 showed that the crack growth rates are below 10 m/s if a low oxygen level is kept in the primary environment. No intergranular cracking was observed in low and high oxygen water after any type of testing, with constant or periodic loading. In the framework of the LBB assessment of the VVER 1000, the corrosion and corrosion mechanical properties were also evaluated. The corrosion and corrosion mechanical testing was oriented predominantly to three types of tests: stress corrosion cracking tests corrosion fatigue tests evaluation of the resistance against corrosion damage. In this paper, the methods used for these tests are described and the materials are compared from the point of view of response on static and periodic mechanical stress on the low alloyed steel 10GN2WA and weld metal exposed in the primary circuit environment. The slow strain rate tests and static loading of both C-rings and CT specimens were performed in order to assess the stress corrosion cracking characteristics. Cyclic loading of CT specimens was done to evaluate the kinetics of the crack growth under periodical loading. Results are shown to illustrate the approaches used. The data obtained were evaluated also from the point of view of comparison of the influence of different structure on the stress corrosion cracking appearance. The results obtained for the base metal and weld metal of the piping are presented here.

  15. Report on accelerated corrosion studies.

    Energy Technology Data Exchange (ETDEWEB)

    Mowry, Curtis Dale; Glass, Sarah Jill; Sorensen, Neil Robert

    2011-03-01

    Sandia National Laboratories (SNL) conducted accelerated atmospheric corrosion testing for the U.S. Consumer Product Safety Commission (CPSC) to help further the understanding of the development of corrosion products on conductor materials in household electrical components exposed to environmental conditions representative of homes constructed with problem drywall. The conditions of the accelerated testing were chosen to produce corrosion product growth that would be consistent with long-term exposure to environments containing humidity and parts per billion (ppb) levels of hydrogen sulfide (H{sub 2}S) that are thought to have been the source of corrosion in electrical components from affected homes. This report documents the test set-up, monitoring of electrical performance of powered electrical components during the exposure, and the materials characterization conducted on wires, screws, and contact plates from selected electrical components. No degradation in electrical performance (measured via voltage drop) was measured during the course of the 8-week exposure, which was approximately equivalent to 40 years of exposure in a light industrial environment. Analyses show that corrosion products consisting of various phases of copper sulfide, copper sulfate, and copper oxide are found on exposed surfaces of the conductor materials including wires, screws, and contact plates. The morphology and the thickness of the corrosion products showed a range of character. In some of the copper wires that were observed, corrosion product had flaked or spalled off the surface, exposing fresh metal to the reaction with the contaminant gasses; however, there was no significant change in the wire cross-sectional area.

  16. Microbially influenced corrosion: studies on enterobacteria isolated from seawater environment and influence of toxic metals on bacterial biofilm and bio-corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Bermond-Tilly, D.; Pineau, S.; Dupont-Morral, I. [Corrodys, 50 - Equeurdreville (France); Janvier, M.; Grimont, P.A.D. [Institut Pasteur, Unite BBPE, 75 - Paris (France)

    2004-07-01

    of microbial clusters and the increase production of the EPS by bacteria (Fang et al., 2002). This study was conducted to test the corrosive activity of Citrobacter freundii, Proteus mirabilis and Klebsiella planticola on carbon steel coupons and the influence of a toxic metal Cr(III) found in polluted marine environment) on these bacteria and the EPS production of the biofilm formed on carbon steel by appropriate in vitro experiments. (authors)

  17. Coupling between corrosion and biphasic transport in porous media: Application to the evolution of a radioactive wastes disposal; Couplage entre corrosion et comportement diphasique dans un milieu poreux: Application a l'evolution d'un stockage des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Dridi, W

    2005-04-15

    In the actual concepts of geological disposal, high level radioactive wastes are packed in metallic containers surrounded by a partially or totally saturated clay media. In contact with the interstitial water, anoxic corrosion of this container will start producing hydrogen. In the scope of safety assessment, the present study deals with two main topics: prediction of the long-term corrosion of carbon steel with respect to clay water content and evaluation of the risk of damage of the clay barrier related to gas production. Elementary processes controlling the kinetics of corrosion are limited to oxide growth and mass transfer through the porosity of this film. Thanks to a macroscopic description of theses processes, followed by an interfacial kinetic law, a mechanistic modeling of the anoxic corrosion in partially saturated porous media is proposed. This approach is validated when confronted to the long-term corrosion tests performed in saturated clay. Both modeling and laboratory experiments have confirmed that kinetics of anoxic corrosion in partially saturated clay is mainly controlled by the surrounding relative humidity as in the case of aerated or atmospheric corrosion. In the gas generation topic, some numerical simulations are performed concerning the oedometric and triaxial test dealing with gas migration in saturated clay. Finally, long-term calculations are conducted concerning hydro-mechanical impact of corrosion in deep geological repositories. Due to a more realistic prediction of the long-term corrosion, the risks of gas overpressures, local desaturation and mechanical damage are reduced. (author)

  18. Corrosion in supercritical fluids

    Energy Technology Data Exchange (ETDEWEB)

    Propp, W.A.; Carleson, T.E.; Wai, Chen M.; Taylor, P.R.; Daehling, K.W.; Huang, Shaoping; Abdel-Latif, M.

    1996-05-01

    Integrated studies were carried out in the areas of corrosion, thermodynamic modeling, and electrochemistry under pressure and temperature conditions appropriate for potential applications of supercritical fluid (SCF) extractive metallurgy. Carbon dioxide and water were the primary fluids studied. Modifiers were used in some tests; these consisted of 1 wt% water and 10 wt% methanol for carbon dioxide and of sulfuric acid, sodium sulfate, ammonium sulfate, and ammonium nitrate at concentrations ranging from 0.00517 to 0.010 M for the aqueous fluids. The materials studied were Types 304 and 316 (UNS S30400 and S31600) stainless steel, iron, and AISI-SAE 1080 (UNS G10800) carbon steel. The thermodynamic modeling consisted of development of a personal computer-based program for generating Pourbaix diagrams at supercritical conditions in aqueous systems. As part of the model, a general method for extrapolating entropies and related thermodynamic properties from ambient to SCF conditions was developed. The experimental work was used as a tool to evaluate the predictions of the model for these systems. The model predicted a general loss of passivation in iron-based alloys at SCF conditions that was consistent with experimentally measured corrosion rates and open circuit potentials. For carbon-dioxide-based SCFs, measured corrosion rates were low, indicating that carbon steel would be suitable for use with unmodified carbon dioxide, while Type 304 stainless steel would be suitable for use with water or methanol as modifiers.

  19. Corrosion of carbon-alloyed iron aluminides

    Indian Academy of Sciences (India)

    Potentiodynamic polarization studies indicated that the intermetallics exhibited active–passive behaviour in an acidic solution of pH = 1, whereas they exhibited stable passivity in a buffer solution of pH 8.4. Corrosion rates were also obtained by immersion testing. The variation of corrosion rate as a function of time was ...

  20. Corrosion effects on soda lime glass

    NARCIS (Netherlands)

    Veer, F.A.; Rodichev, Y.M.

    2010-01-01

    Although soda lime glass is the most common used transparent material in architecture, little is known about the corrosion effects on long term strength and the interaction between corrosion and defects. Extensive testing on soda lime bars under different environmental conditions and different

  1. Evaluation of EMP/EMI requirements versus corrosion prevention methods

    Science.gov (United States)

    Gooch, Jan W.; Hawley, Paul M.; Daher, John K.; Lagesse, Daniel M.

    1992-10-01

    Final report covers the application of conductive sealants on an E-3 aircraft for nine months and evaluating the Electromagnetic Pulse (EMP) / Electromagnetic Interference (EMI) Requirements and corrosion damage. Also, additional testing was performed on three conductive sealants for corrosion protection via the salt fog chambers. Using conductive sealants will meet both EMP/EMI and corrosion requirements.

  2. Effect of Cl on the corrosive wear of AISI 321 stainless steel in ...

    Indian Academy of Sciences (India)

    Unknown

    2002-07-25

    Jul 25, 2002 ... corrosive wear rate, the load bearing capacity of passive film and the relationship between pitting and corrosive wear. Neville and Hodgkiess (1999) made a study of the erosion–corrosion behaviour of two nominally corrosion resistant alloys. The experiments comprised of exposure to an impinging jet of ...

  3. Natural analogues of nuclear waste glass corrosion.

    Energy Technology Data Exchange (ETDEWEB)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  4. Skylab Medical Experiments Altitude Test /SMEAT/ facility design and operation.

    Science.gov (United States)

    Hinners, A. H., Jr.; Correale, J. V.

    1973-01-01

    This paper presents the design approaches and test facility operation methods used to successfully accomplish a 56-day test for Skylab to permit evaluation of selected Skylab medical experiments in a ground test simulation of the Skylab environment with an astronaut crew. The systems designed for this test include the two-gas environmental control system, the fire suppression and detection system, equipment transfer lock, ground support equipment, safety systems, potable water system, waste management system, lighting and power system, television monitoring, communications and recreation systems, and food freezer.

  5. Electrolyte Composition for Distinguishing Corrosion Mechanisms in Steel Alloy Screening

    Directory of Open Access Journals (Sweden)

    Ingmar Bösing

    2017-01-01

    Full Text Available The formation and breakdown of passive layers due to pitting corrosion are a major cause of failure of metal structures. The investigation of passivation and pitting corrosion requires two different electrochemical measurements and is therefore a time consuming process. To reduce time in material characterization and to study the interactions of both mechanisms, here, a combined experiment addressing both phenomena is introduced. In the presented electrolyte the different corrosion mechanisms are distinguished and investigated by cyclic voltammograms and polarization scans. The measurements show a passive area, metastable pit growth, and pitting corrosion as well as repassivation. The pitting corrosion is separated from additional dissolution processes and the standard deviation of the corrosion potential is smaller than in other electrolytes. Both passivation and pitting corrosion can be observed in one measurement without additional corrosion attacks. The deviation between different measurements of the same steel is small; this is helpful for the screening of similar materials.

  6. Effect of Partial Cladding Pattern of Aluminum 7075 T651 on Corrosion and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    E. Rendell

    2017-01-01

    Full Text Available The corrosion resistance of aluminum 7075 T651 in full clad (Alclad, partial clad, and bare (unclad forms was compared after 300 hours of corrosion exposure in an acidic salt spray cabinet test at 36°C. After corrosion exposure, severe to moderate exfoliation corrosion was observed on the unprotected medium sized test panel, light general corrosion was observed on the partially clad panel, and patches of corrosion not penetrating the clad layer were observed on the fully clad panel. After corrosion tests, the tensile strength of partially clad, fully clad, and unprotected panels decreased by 3.4%, 4.0%, and 5.3%, respectively.

  7. Impact of musical experience on the Seashore Rhythm Test.

    Science.gov (United States)

    Karzmark, P

    2001-08-01

    The Seashore Rhythm Test (SRT) is sensitive to musical talent. The possibility that this reduces its clinical sensitivity in cognitively impaired persons with musical experience was investigated. Subjects were 101 referrals to the neuropsychology service of a large medical center. The results indicate that patients with a substantial amount of musical experience tend to perform normally on the SRT, even when overall performance on a neuropsychological test battery suggests cognitive impairment. This finding suggests caution in interpreting normal SRT results in those with a musical background.

  8. A Dynamic Test Management Framework for the ATLAS Experiment

    CERN Document Server

    Avolio, G; The ATLAS collaboration; Kazarov, A; Lehmann Miotto, G; Papaevgeniou, L; Soloviev, I; Unel, G

    2014-01-01

    The ATLAS experiment explores the fundamental constituents of matter and their interactions at the Large Hadron Collider at CERN. Its Data Acquisition (DAQ) is a large distributed and inhomogeneous system: it consists of thousands of interconnected computers and electronics devices that operate coherently to readout and select the relevant Physics data. In order to verify the functioning of the DAQ and to diagnose any problems we have developed a flexible test management system that allows the experts to define and configure tests for different components, indicate follow-up actions to test failures and describe inter-dependencies between DAQ elements. This development is based on the experience gained with the previous test system that has been used during the first three years of data taking, that showed that more emphasis needed to be put on the flexibility and configurability of the verification and diagnostics functionality by the many people that are ,each, knowledgeable and expert on individual compone...

  9. Electrochemical Studies of Atmospheric Corrosion.

    Science.gov (United States)

    1979-01-01

    1 A 0 A063 922 ROCKwELL INTERNATIONAL THOUSAND OAKS CALIF SCIENCE ——ETC F/S 11/6 ELECTROC HEMICAL STUDIES OF ATMOSPHERIC CORROSION. (U) JAN 19 F S...reduction increased linearly with inverse film thickness. Similar experiments in wh i ch corrosion kinetics were determined DO JAN ~~ 1473 EDITION OF I...the ACM and In the design for two- and three-electrode systems . The basic principle of the ACM was first discussed by Tomashov (S)1 and Kucera and

  10. Research on the corrosion inhibitors of zinc in hydrochloric acid

    Science.gov (United States)

    Sun, C. X.; Chen, Y. M.; Xu, H. W.; Huang, C. S.; Zhang, M.; Wu, J. Y.; Chen, M.; Xue, M.

    2017-06-01

    Three organic compounds were tested as zinc corrosion inhibitors in hydrochloric acid: cetyltrimethyl ammonium bromide (CTAB), nicotini acid, bromohexadecyl pyridine. The static coupon test results indicate that CTAB and bromohexadecyl pyridine offer the best zinc corrosion protection, while nicotinic acid accelerates zinc corrosion. The polarization results indicate that CTAB, nicotinic acid and bromohexadecyl pyridine induce a positive shift in the E0 of zinc in hydrochloric acid. A complex of CTAB and bromohexadecyl pyridine inhibits the corrosion of zinc in hydrochloric acid. SEM results indicate that the CTAB and bromohexadecyl pyridine formed a uniform and compact membrane on the surface of zinc that subsequently protects the zinc from effective corrosion.

  11. pH Responsive Microcapsules for Corrosion Control

    Science.gov (United States)

    Calle, Luz Marina; Li, Wenyan; Muehlberg, Aaron; Boraas, Samuel; Webster, Dean; JohnstonGelling, Victoria; Croll, Stuart; Taylor, S Ray; Contu, Francesco

    2008-01-01

    The best coatings for corrosion protection provide not only barriers to the environment, but also a controlled release of a corrosion inhibitor, as demanded by the presence of corrosion or mechanical damage. NASA has developed pH sensitive microcapsules (patent pending) that can release their core contents when corrosion starts. The objectives of the research presented here were to encapsulate non-toxic corrosion inhibitors, to incorporate the encapsulated inhibitors into paint formulations, and to test the ability of the paints to control corrosion. Results showed that the encapsulated corrosion inhibitors, specifically Ce(NO3)3 , are effective to control corrosion over long periods of time when incorporated at relatively high pigment volume concentrations into a paint formulation.

  12. Testing for difference between two groups of functional neuroimaging experiments

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Chen, Andrew C. N.; Hansen, Lars Kai

    2004-01-01

    We describe a meta-analytic method that tests for the difference between two groups of functional neuroimaging experiments. We use kernel density estimation in three-dimensional brain space to convert points representing focal brain activations into a voxel-based representation. We find the maxim...... thermal pain studies where "hot pain" and "cold pain" form the two groups....

  13. 1998 Annual Study Report. Standardization of corrosion resistance testing/evaluation methods for coated steel sheets; 1998 nendo seika hokokusho. Hyomen shori koban no taishokusei shiken hyoka hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In order to develop the evaluation methods for reappearing corrosion characteristics of coated steel sheets in a short time, acid rain composition and artificial acid rain composition for the accelerated test were studied, and the cyclic corrosion tests were conducted. The literature survey shows that the main ionic species present in acid rain are Ca{sup 2+}, Mg{sup 2+}, Na{sup +}, K{sup +}, NH{sub 4}{sup +}, SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, and Cl{sup -}, of which the acid rain components are SO{sub 4}{sup 2-} and NO{sub 3}{sup -}, their equivalent ratio (NO{sub 3}{sup -}/ SO{sub 4}{sup 2-}) in the Far Eastern area being 0.2 to 0.3. Therefore, the solution specified by ASTM 1141 is diluted 30 times with water to prepare the base solution for the accelerated tests, where its acidity is adjusted with a mixed acid of NO{sub 3}{sup -}/ SO{sub 4}{sup 2-} = 0.2 to 0.3 (pH: 3.0 to 4.0). Two sets of preliminary cyclic corrosion tests were conducted, one involving acid rain spraying, drying and humidification in this order, and the other acid rain spraying, humidification and drying. Analysis of the test data indicates that difference between these test cycles in corrosion rate is within a deviation range caused by different testing tools. Therefore, the former condition is adopted as the basis for the accelerated tests, because of its smaller deviation caused by different testing tools. (NEDO)

  14. A study of microbial population dynamics associated with corrosion rates influenced by corrosion control materials

    NARCIS (Netherlands)

    Chang, Yu Jie; Hung, Chun Hsiung; Lee, Jyh Wei; Chang, Yi Tang; Lin, Fen Yu; Chuang, Chun Jie

    2015-01-01

    This research aims to analyze the variations of microbial community structure under anaerobic corrosive conditions, using molecular fingerprinting method. The effect of adding various materials to the environment on the corrosion mechanism has been discussed. In the initial experiment,

  15. Using biological and physico-chemical test methods to assess the role of concrete mixture design in resistance to microbially induced corrosion

    Science.gov (United States)

    House, Mitchell Wayne

    Concrete is the most widely used material for construction of wastewater collection, storage, and treatment infrastructure. The chemical and physical characteristics of hydrated portland cement make it susceptible to degradation under highly acidic conditions. As a result, some concrete wastewater infrastructure may be susceptible to a multi-stage degradation process known as microbially induced corrosion, or MIC. MIC begins with the production of aqueous hydrogen sulfide (H2S(aq)) by anaerobic sulfate reducing bacteria present below the waterline. H2S(aq) partitions to the gas phase where it is oxidized to sulfuric acid by the aerobic sulfur oxidizing bacteria Thiobacillus that resides on concrete surfaces above the waterline. Sulfuric acid then attacks the cement paste portion of the concrete matrix through decalcification of calcium hydroxide and calcium silica hydrate coupled with the formation of expansive corrosion products. The attack proceeds inward resulting in reduced service life and potential failure of the concrete structure. There are several challenges associated with assessing a concrete's susceptibility to MIC. First, no standard laboratory tests exist to assess concrete resistance to MIC. Straightforward reproduction of MIC in the laboratory is complicated by the use of microorganisms and hydrogen sulfide gas. Physico-chemical tests simulating MIC by immersing concrete specimens in sulfuric acid offer a convenient alternative, but do not accurately capture the damage mechanisms associated with biological corrosion. Comparison of results between research studies is difficult due to discrepancies that can arise in experimental methods even if current ASTM standards are followed. This thesis presents two experimental methods to evaluate concrete resistance to MIC: one biological and one physico-chemical. Efforts are made to address the critical aspects of each testing method currently absent in the literature. The first method presented is a new test

  16. Elucidation of Atmospheric Corrosion Mechanism of Steels by Artificially Synthesized Iron Rust Particles

    National Research Council Canada - National Science Library

    田中, 秀和

    2015-01-01

    In order to clarify the atmospheric corrosion process of steel in different exposure environments, various methods such as exposure test, salt spray test, accelerated corrosion test, combined wet-dry...

  17. The VFAT Production Test Platform for the TOTEM Experiment

    CERN Document Server

    Aspell, P; Bialas, W; Kaspar, J; Kopal, J; Petäjäjärvi, J; Radicioni, E; Rouet, J; Snoeys, W; Vichoudis, P

    2008-01-01

    VFAT is the front-end ASIC designed for the charge readout of silicon and gas detectors within the TOTEM experiment of the LHC. A stand alone portable Totem Test Platform (TTP) with USB interface has been developed for the systematic testing of the TOTEM hybrids equipped with VFAT chips. This paper is divided into 3 sections; the first describes the hardware features of the TTP, the second describes the software routines for the control and systematic testing of VFATs, the third presents the analysis and a sample of results.

  18. Benchmark enclosure fire suppression experiments - phase 1 test report.

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, Victor G.; Nichols, Robert Thomas; Blanchat, Thomas K.

    2007-06-01

    A series of fire benchmark water suppression tests were performed that may provide guidance for dispersal systems for the protection of high value assets. The test results provide boundary and temporal data necessary for water spray suppression model development and validation. A review of fire suppression in presented for both gaseous suppression and water mist fire suppression. The experimental setup and procedure for gathering water suppression performance data are shown. Characteristics of the nozzles used in the testing are presented. Results of the experiments are discussed.

  19. Statistical tests for quantum state reconstruction II: Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Philipp; Monz, Thomas [Innsbruck Univ. (Austria). Inst. fuer Experimentalphysik; Kleinmann, Matthias; Guehne, Otfried [Naturwissenschaftlich-Technische Fakultaet, Universitaet Siegen (Germany); Moroder, Tobias [Institut fuer Quantenoptik und Quanteninformation, Innsbruck (Austria); Blatt, Rainer [Innsbruck Univ. (Austria). Inst. fuer Experimentalphysik; Institut fuer Quantenoptik und Quanteninformation, Innsbruck (Austria)

    2012-07-01

    Quantum state tomography is nowadays routinely used in many experiments, for instance to characterize entangled quantum states or to determine input and output states of a quantum processor. Tomography reconstruction algorithms are designed to restrict the results onto physical states. These methods will always return a valid quantum state for any data and therefore it seems necessary to test the recorded data prior to reconstructing the quantum state. We directly apply statistical tests on our experimental data taken in an ion trap quantum computer. In particular, we analyze the sensitivity of these tests to various experimental imperfections like crosstalk and rotated bases.

  20. Numerical Study of Corrosion Crack Opening

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Frandsen, Henrik Lund; Svensson, Staffan

    2008-01-01

    for the corrosion crack opening. Experiments and theoretical analysis by a numerical method, FEM, support that the relation between the reduction of the reinforcement bar diameter due to corrosion and the corresponding increase in crack width for a given time interval, measured on the surface of a concrete specimen...... is proportional. More recently, the constant of proportionality, the so-called crack-corrosion index, has been studied further with respect to its dependence on the diameter of the reinforcement and the concrete cover. In the present paper the above-mentioned work is presented and extended with more realistic 3D......-models of the cracked concrete beam. The crack-corrosion index is evaluated for a variation of different parameters, i.e. bar diameter, concrete cover, crack length and type of corrosion product. This paper is an extended version of a paper by Thoft-Christensen et al. (2005) presented at the IFIP WG 7.5 Conference...

  1. Overview of the first earthquake forecast testing experiment in Japan

    Science.gov (United States)

    Nanjo, K. Z.; Tsuruoka, H.; Hirata, N.; Jordan, T. H.

    2011-03-01

    The Collaboratory for the Study of Earthquake Predictability (CSEP) is an international partnership to support research on rigorous earthquake prediction in multiple tectonic environments. This paper outlines the first earthquake forecast testing experiment for the Japan area conducted within the CSEP framework. We begin with some background and briefly describe efforts in setting up the experiment. The experiment, which closely follows CSEP concepts, is of a prospective sort and is highly objective. Its major feature consists in using Japan, one of the most seismically active and well-instrumented regions in the world, as a natural laboratory. To make full use of this location and of the earthquake catalog maintained by the Japan Meteorological Agency, rules for this experiment have been set up. The experiment consists of 12 categories, with four testing classes each with different time spans (1 day, 3 months, 1 year, and 3 years, respectively) and three testing regions called "All Japan," "Mainland," and "Kanto." A total of 91 models were submitted; these are currently under the CSEP official suite of tests for evaluating the performance of forecasts. This paper briefly describes each model but does not attempt to pass judgment on individual models. Comparative appraisal of the different models will be presented in future publications. Moreover, this is only the first experiment, and more trials are forthcoming. Our aim is to describe what has turned out to be the first occasion for setting up a research environment for rigorous earthquake forecasting in Japan. We argue that now is the time to invest considerably more efforts in related research fields.

  2. Monitoring instrument field experiments at Oregon Institute of Technology

    Energy Technology Data Exchange (ETDEWEB)

    Danielson, M.J.; Smith, R.P.

    1980-09-01

    The field tests were conducted under reducing and oxidizing conditions. Corrosion rates with zero oxygen were about 1.1 mils per year (mpy) for both copper and steel coupons, which is quite low for carbon steel. There was a problem controlling the oxygen level in the oxygenated experiments; however, it was found that corrosion rates increased with the presence of oxygen. Corrosion rates for the steel and copper coupons were 4 and 2 mpy, respectively; copper coupled to cast iron corroded at 8 mpy. Commercial corrosion rate measuring equipment determined the general corrosion rate of carbon steel farily well but overestimated copper corrosion rates. The redox electrode was a very sensitive indicator of the entry of oxygen.

  3. Fretting corrosion of CoCrMo and Ti6Al4V interfaces.

    Science.gov (United States)

    Swaminathan, Viswanathan; Gilbert, Jeremy L

    2012-08-01

    Mechanically assisted corrosion (fretting corrosion, tribocorrosion etc.,) of metallic biomaterials is a primary concern for numerous implant applications, particularly in the performance of highly-loaded medical devices. While the basic underlying concepts of fretting corrosion or tribocorrosion and fretting crevice corrosion are well known, there remains a need to develop an integrated systematic method for the analysis of fretting corrosion involving metal-on-metal contacts. Such a method can provide detailed and quantitative information on the processes present and explore variations in surfaces, alloys, voltages, loadings, motion and solution conditions. This study reports on development of a fretting corrosion test system and presents elements of an in-depth theoretical fretting corrosion model that incorporates both the mechanical and the electrochemical aspects of fretting corrosion. To demonstrate the capabilities of the new system and validate the proposed model, experiments were performed to understand the effect of applied normal load on fretting corrosion performance of Ti6Al4V/Ti6Al4V, CoCrMo/Ti6Al4V, and CoCrMo/CoCrMo material couples under potentiostatic conditions with a fixed starting surface roughness. The results of this study show that fretting corrosion is affected by material couples, normal load and the motion conditions at the interface. In particular, fretting currents and coefficient of friction (COF) vary with load and are higher for Ti6Al4V/Ti6Al4V couple reaching 3 mA/cm(2) and 0.63 at about 73 MPa nominal contact stress, respectively. Ti6Al4V coupled with CoCrMo displayed lower currents (0.6 mA/cm(2)) and COF (0.3), and the fretting corrosion behavior was comparable to CoCrMo/CoCrMo couple (1.2 mA/cm(2) and 0.3, respectively). Information on the mechanical energy dissipated at the interface, the sticking behavior, and the load dependence of the inter-asperity distance calculated using the model elucidated the influence of

  4. Shadow corrosion phenomenon. An out-of-pile study on electrochemical effects

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Nadine

    2017-04-28

    galvanic current could be decreased by a CrN coating layer on Inconel 718. Objectives including a deeper knowledge about the corrosion mechanism with its influencing parameters and driving forces by studying Shadow Corrosion with out-of-pile autoclave experiments are listed in chapter 4. A further aim was to test the effectiveness of a possible spacer coating to reduce the corrosion or even to prevent the reactor plant components against Shadow Corrosion. Chapter 5 gives an overview of the experimental part with a description of the materials and chemicals, like Zircaloy and Inconel 718, as well as the specimen preparation techniques, such as etching, pre-oxidation or coating with CrN. Moreover, the three experimental test set-ups used to simulate the different conditions as a function of temperature and water chemistry parameters are depicted. The electrochemical measuring methods including electrochemical corrosion potential (ECP), galvanic corrosion (GC), electrochemical impe-dance spectroscopy (EIS) and conductometry are described. Further methods for surface analyses comprising microscopy, scanning electron microscopy (SEM), focused ion beam (FIB), transmission electron microscopy (TEM), ellipsometry, ion coupled plasma optical emission spectroscopy (ICP-OES) and spectrophotometry are presented. Results and corresponding discussions are summarized in chapter 6, which is divided into three subchapters. Chapter 6.1 deals with electrochemical parameters, like electrochemical corrosion potential, galvanic potential, and galvanic current as well as parameters obtained from electrochemical impedance spectroscopy as a function of different water chemistry parameters. The focus was on the concentration of hydrogen peroxide, the presence of impurities in the form of nitrate, and the exposure to UV-light. Furthermore, surface analyses via the focused ion beam technique and the transmission electron microscopy were gathered to visualize the oxide layer structure, composition

  5. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    BOOMER, K.D.

    2007-08-21

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed.

  6. Vibrational Spectroscopy in Studies of Atmospheric Corrosion

    Directory of Open Access Journals (Sweden)

    Saman Hosseinpour

    2017-04-01

    Full Text Available Vibrational spectroscopy has been successfully used for decades in studies of the atmospheric corrosion processes, mainly to identify the nature of corrosion products but also to quantify their amounts. In this review article, a summary of the main achievements is presented with focus on how the techniques infrared spectroscopy, Raman spectroscopy, and vibrational sum frequency spectroscopy can be used in the field. Several different studies have been discussed where these instruments have been used to assess both the nature of corrosion products as well as the properties of corrosion inhibitors. Some of these techniques offer the valuable possibility to perform in-situ measurements in real time on ongoing corrosion processes, which allows the kinetics of formation of corrosion products to be studied, and also minimizes the risk of changing the surface properties which may occur during ex-situ experiments. Since corrosion processes often occur heterogeneously over a surface, it is of great importance to obtain a deeper knowledge about atmospheric corrosion phenomena on the nano scale, and this review also discusses novel vibrational microscopy techniques allowing spectra to be acquired with a spatial resolution of 20 nm.

  7. Effects of Variations in Salt-Spray Conditions on the Corrosion Mechanisms of an AE44 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Holly J. Martin

    2010-01-01

    Full Text Available The understanding of how corrosion affects magnesium alloys is of utmost importance as the automotive and aerospace industries have become interested in the use of these lightweight alloys. However, the standardized salt-spray test does not produce adequate corrosion results when compared with field data, due to the lack of multiple exposure environments. This research explored four test combinations through three sets of cycles to determine how the corrosion mechanisms of pitting, intergranular corrosion, and general corrosion were affected by the environment. Of the four test combinations, Humidity-Drying was the least corrosive, while the most corrosive test condition was Salt Spray-Humidity-Drying. The differences in corrosivity of the test conditions are due to the various reactions needed to cause corrosion, including the presence of chloride ions to cause pit nucleation, the presence of humidity to cause galvanic corrosion, and the drying phase which trapped chloride ions beneath the corrosion by-products.

  8. Colorimetric visualization of tin corrosion: A method for early stage corrosion detection on printed circuit boards

    DEFF Research Database (Denmark)

    Verdingovas, Vadimas; Jellesen, Morten Stendahl; Ambat, Rajan

    2017-01-01

    circuit board assembly (PCBA) provides a basis for the mechanistic understanding of PCBA corrosion failures and leak current tracks which eventually can lead to electrochemical migration. This paper presents a method for identification of such failures at the early stage of corrosion by using...... a colorimetric tin ion indicator applied as a gel. The examples provided in this paper include visualization of corrosion caused by weak organic acids found in solder fluxes, corrosion profiling on the PCBAs after climatic device level testing, and failure analysis of field returns....

  9. Corrosion inhibiting organic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sasson, E.

    1984-10-16

    A corrosion inhibiting coating comprises a mixture of waxes, petroleum jelly, a hardener and a solvent. In particular, a corrosion inhibiting coating comprises candelilla wax, carnauba wax, microcrystalline waxes, white petrolatum, an oleoresin, lanolin and a solvent.

  10. Empirical retrocausality: Testing physics hypotheses with parapsychological experiments

    Science.gov (United States)

    Dobyns, York

    2017-05-01

    In 2011, Daryl Bem published a report of nine parapsychological experiments showing evidence of retrocausal information transfer. Earlier in 2016, the team of Bem, Tressoldi, Rabeyron, and Duggan published the results of a meta-analysis containing 81 independent replications of the original Bem experiments (total of 90 with the originals).[1] This much larger database continues to show positive results of generally comparable effect size, thus demonstrating that the effects claimed by Bem can be replicated by independent researchers and greatly strengthening the case for empirically observed retrocausation. Earlier (2011) work by this author showed how a modification of one of Bem's original experiments could be used to test the mechanism implicitly proposed by Echeverria, Klinkhammer, and Thorne to explain how retrocausal phenomena can exist without any risk of self-contradictory event sequences (time paradoxes). In light of the new publication and new evidence, the current work generalizes the previous analysis which was restricted to only one of Bem's experimental genres (precognitive approach and avoidance). The current analysis shows how minor modifications can be made in Bem's other experimental genres of retroactive priming, retroactive habituation, and retroactive facilitation of recall to test the EKT anti-paradox mechanism. If the EKT hypothesis is correct, the modified experiments, while continuing to show replicable retrocausal phenomena, will also show a characteristic pattern of distortion in the statistics of the random selections used to drive the experiments.

  11. Modelling of Corrosion Cracks

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed.......Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed....

  12. Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

    1998-12-14

    Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvén eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

  13. USE OF COUPLED MULTI-ELECTRODE ARRAYS TO ADVANCE THE UNDERSTANDING OF SELECTED CORROSION PHENOMENA

    Energy Technology Data Exchange (ETDEWEB)

    N.D. Budiansky; F. Bocher; H. Cong; M.F. Hurley; J.R. Scully

    2006-02-23

    The use of multi-coupled electrode arrays in various corrosion applications is discussed with the main goal of advancing the understanding of various corrosion phenomena. Both close packed and far spaced electrode configurations are discussed. Far spaced electrode arrays are optimized for high throughput experiments capable of elucidating the effects of various variables on corrosion properties. For instance the effects of a statistical distribution of flaws on corrosion properties can be examined. Close packed arrays enable unprecedented spatial and temporal information on the behavior of local anodes and cathodes. Interactions between corrosion sites can trigger or inhibit corrosion phenomena and affect corrosion damage evolution.

  14. Management of Reinforcement Corrosion

    DEFF Research Database (Denmark)

    Küter, André; Geiker, Mette Rica; Møller, Per

    Reinforcement corrosion is the most important cause for deterioration of reinforced concrete structures, both with regard to costs and consequences. Thermodynamically consistent descriptions of corrosion mechanisms are expected to allow the development of innovative concepts for the management...... of reinforcement corrosion....

  15. Unscaled Bayes factors for multiple hypothesis testing in microarray experiments.

    Science.gov (United States)

    Bertolino, Francesco; Cabras, Stefano; Castellanos, Maria Eugenia; Racugno, Walter

    2015-12-01

    Multiple hypothesis testing collects a series of techniques usually based on p-values as a summary of the available evidence from many statistical tests. In hypothesis testing, under a Bayesian perspective, the evidence for a specified hypothesis against an alternative, conditionally on data, is given by the Bayes factor. In this study, we approach multiple hypothesis testing based on both Bayes factors and p-values, regarding multiple hypothesis testing as a multiple model selection problem. To obtain the Bayes factors we assume default priors that are typically improper. In this case, the Bayes factor is usually undetermined due to the ratio of prior pseudo-constants. We show that ignoring prior pseudo-constants leads to unscaled Bayes factor which do not invalidate the inferential procedure in multiple hypothesis testing, because they are used within a comparative scheme. In fact, using partial information from the p-values, we are able to approximate the sampling null distribution of the unscaled Bayes factor and use it within Efron's multiple testing procedure. The simulation study suggests that under normal sampling model and even with small sample sizes, our approach provides false positive and false negative proportions that are less than other common multiple hypothesis testing approaches based only on p-values. The proposed procedure is illustrated in two simulation studies, and the advantages of its use are showed in the analysis of two microarray experiments. © The Author(s) 2011.

  16. Tunnel fire testing and modeling the Morgex North tunnel experiment

    CERN Document Server

    Borghetti, Fabio; Gandini, Paolo; Frassoldati, Alessio; Tavelli, Silvia

    2017-01-01

    This book aims to cast light on all aspects of tunnel fires, based on experimental activities and theoretical and computational fluid dynamics (CFD) analyses. In particular, the authors describe a transient full-scale fire test (~15 MW), explaining how they designed and performed the experimental activity inside the Morgex North tunnel in Italy. The entire organization of the experiment is described, from preliminary evaluations to the solutions found for management of operational difficulties and safety issues. This fire test allowed the collection of different measurements (temperature, air velocity, smoke composition, pollutant species) useful for validating and improving CFD codes and for testing the real behavior of the tunnel and its safety systems during a diesel oil fire with a significant heat release rate. Finally, the fire dynamics are compared with empirical correlations, CFD simulations, and literature measurements obtained in other similar tunnel fire tests. This book will be of interest to all ...

  17. Corrosion performance of atmospheric plasma sprayed alumina coatings on AZ31B magnesium alloy under immersion environment

    Directory of Open Access Journals (Sweden)

    D. Thirumalaikumarasamy

    2014-12-01

    Full Text Available Plasma sprayed ceramic coatings are successfully used in many industrial applications, where high wear and corrosion resistance with thermal insulation are required. The alumina powders were plasma sprayed on AZ31B magnesium alloy with three different plasma spraying parameters. In the present work, the influence of plasma spray parameters on the corrosion behavior of the coatings was investigated. The corrosion behavior of the coated samples was evaluated by immersion corrosion test in 3.5 wt% NaCl solution. Empirical relationship was established to predict the corrosion rate of plasma sprayed alumina coatings by incorporating process parameters. The experiments were conducted based on a three factor, five-level, central composite rotatable design matrix. The developed relationship can be effectively used to predict the corrosion rate of alumina coatings at 95% confidence level. The results indicate that the input power has the greatest influence on corrosion rate, followed by stand-off distance and powder feed rate.

  18. Non-destructive testing (NDT) of a segmental concrete bridge scheduled for demolition, with a focus on condition assessment and corrosion detection of internal tendons.

    Science.gov (United States)

    2017-05-01

    The service life and durability of prestressed concrete in bridges are vulnerable to corrosion damages due to many factors such as construction, material, and environment. To ensure public safety, it is important to inspect these structures and to de...

  19. Distribution of chloride, pH, resistivity, and sulfate levels in backfill for mechanically-stabilized earth walls and implications for corrosion testing.

    Science.gov (United States)

    2015-05-01

    The ultimate goals of this research were to improve quality, speed completion, and reduce risk in mechanically-stabilized : earth (MSE) wall projects. Research objectives were to assure (1) that variability in the corrosion properties of soil (pH, : ...

  20. Hot corrosion of the B2 nickel aluminides

    Science.gov (United States)

    Ellis, David L.

    1993-01-01

    The hot corrosion behavior of the B2 nickel aluminides was studied to determine the inherent hot corrosion resistance of the beta nickel aluminides and to develop a mechanism for the hot corrosion of the beta nickel aluminides. The effects of the prior processing of the material, small additions of zirconium, stoichiometry of the materials, and preoxidation of the samples were also examined. Additions of 2, 5, and 15 w/o chromium were used to determine the effect of chromium on the hot corrosion of the beta nickel aluminides and the minimum amount of chromium necessary for good hot corrosion resistance. The results indicate that the beta nickel aluminides have inferior inherent hot corrosion resistance despite their excellent oxidation resistance. Prior processing and zirconium additions had no discernible effect on the hot corrosion resistance of the alloys. Preoxidation extended the incubation period of the alloys only a few hours and was not considered to be an effective means of stopping hot corrosion. Stoichiometry was a major factor in determining the hot corrosion resistance of the alloys with the higher aluminum alloys having a definitely superior hot corrosion resistance. The addition of chromium to the alloys stopped the hot corrosion attack in the alloys tested. From a variety of experimental results, a complex hot corrosion mechanism was proposed. During the early stages of the hot corrosion of these alloys the corrosion is dominated by a local sulphidation/oxidation form of attack. During the intermediate stages of the hot corrosion, the aluminum depletion at the surface leads to a change in the oxidation mechanism from a protective external alumina layer to a mixed nickel-aluminum spinel and nickel oxide that can occur both externally and internally. The material undergoes extensive cracking during the later portions of the hot corrosion.

  1. Test data from the US-Demonstration Poloidal Coil experiment

    Energy Technology Data Exchange (ETDEWEB)

    Painter, T.A.; Steeves, M.M.; Takayasu, M.; Gung, C.; Hoenig, M.O. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center); Tsuji, H.; Ando, T.; Hiyama, T.; Takahashi, Y.; Nishi, M.; Yoshida, K.; Okuno, K.; Nakajima, H.; Kato, T.; Sugimoto, M.; Isono, T.; Kawano, K.; Koizumi, N.; Osikiri, M.; Hanawa, H.; Ouchi, H.; Ono, M.; Ishida, H.; Hiue, H.; Yoshida, J.; Kamiyauchi, Y.; Ouchi, T.; Tajiri, F.

    1992-01-01

    The US Demonstration Poloidal Field Coil (US-DPC) experiment took place successfully at the Japan Atomic Energy Research Institute (JAERI) in late 1990. The 8 MJ niobium-tin coil was leak tight; it performed very well in DC tests; it performed well in AC tests, achieving approximately 70% of its design goal. An unexpected ramp-rate barrier at high currents was identified. The barrier could not be explored in the regime of higher fields and slower ramp rates due to limitations of the background-field coils. This document presents the results of the experiment with as little editing as possible. The coil, conductor, and operating conditions are given. The intent is to present data in a form that can be used by magnet analysts and designers.

  2. Etchants for Some Corrosion-Resistant Metals

    Science.gov (United States)

    Simmons, J.

    1984-01-01

    Solutions that etch some corrosion-resistant metals described in test report. Etchants selected remove at least 0.4 mil of surface material per hour from nickel alloys, austenitic stainless steel, and annealed titanium alloys, without intergranular attack.

  3. Testing Numerical Modeling of Phase Coarsening by Microgravity Experiments

    Science.gov (United States)

    Wang, K. G.; Glicksman, M. E.

    2017-12-01

    Quantitative understanding of the morphological evolution that occurs during phase coarsening is crucial for optimization of processing procedures to control the final structure and properties of multiphase materials. Generally, ground-based experimental studies of phase coarsening in solids are limited to model alloy systems. Data from microgravity experiments on phase coarsening in Sn-Pb solid-liquid mixtures, executed on the International Space Station, are archived in NASA's Physical Sciences Informatics (PSI) system. In such microgravity experiments, it is expected that the rate of sedimentation will be greatly reduced compared with terrestrial conditions, allowing the kinetics of phase coarsening to be followed more carefully and accurately. In this work we tested existing numerical models of phase coarsening using NASA's PSI microgravity data. Specially, we compared the microstructures derived from phase-field and multiparticle diffusion simulations with those observed in microgravity experiments.

  4. A Multifunctional Smart Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz Marina; Buhrow, Jerry W.; Jolley, Scott T.

    2012-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on micro-encapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy. This

  5. Plasma polymerized hexamethyldisiloxane thin films for corrosion protection

    Science.gov (United States)

    Saloum, S.; Alkhaled, B.; Alsadat, W.; Kakhia, M.; Shaker, S. A.

    2018-01-01

    This study focused on the corrosion protection performance of plasma polymerized HMDSO thin films in two different corrosive medias, 0.3M NaCl and 0.3M H2SO4. The pp-HMDSO thin films were deposited on steel substrates for electrochemical tests using the potentiodynamic polarization technique, they were deposited also on aluminum and silicon substrates to investigate their resistance to corrosion, through the analysis of the degradation of microhardness and morphology, respectively, after immersion of the substrates for one week in the corrosive media. The results showed promising corrosion protection properties of the pp-HMDSO thin films.

  6. Corrosion of copper alloys in sulphide containing district heting systems

    DEFF Research Database (Denmark)

    Thorarinsdottir, R.I.; Maahn, Ernst Emanuel

    1999-01-01

    Copper and some copper alloys are prone to corrosion in sulphide containing geothermal water analogous to corrosion observed in district heating systems containing sulphide due to sulphate reducing bacteria. In order to study the corrosion of copper alloys under practical conditions a test...... was carried out at four sites in the Reykjavik District Heating System. The geothermal water chemistry is different at each site. The corrosion rate and the amount and chemical composition of deposits on weight loss coupons of six different copper alloys are described after exposure of 12 and 18 months......, respectively. Some major differences in scaling composition and the degree of corrosion attack are observed between alloys and water types....

  7. Impact of Gamification of Vision Tests on the User Experience.

    Science.gov (United States)

    Bodduluri, Lakshmi; Boon, Mei Ying; Ryan, Malcolm; Dain, Stephen J

    2017-08-01

    Gamification has been incorporated into vision tests and vision therapies in the expectation that it may increase the user experience and engagement with the task. The current study aimed to understand how gamification affects the user experience, specifically during the undertaking of psychophysical tasks designed to estimate vision thresholds (chromatic and achromatic contrast sensitivity). Three tablet computer-based games were developed with three levels of gaming elements. Game 1 was designed to be a simple clinical test (no gaming elements), game 2 was similar to game 1 but with added gaming elements (i.e., feedback, scores, and sounds), and game 3 was a complete game. Participants (N = 144, age: 9.9-42 years) played three games in random order. The user experience for each game was assessed using a Short Feedback Questionnaire. The median (interquartile range) fun level for the three games was 2.5 (1.6), 3.9 (1.7), and 2.5 (2.8), respectively. Overall, participants reported greater fun level and higher preparedness to play the game again for game 2 than games 1 and 3 (P users, without affecting engagement with the vision test.

  8. Steam generator corrosion 2007; Dampferzeugerkorrosion 2007

    Energy Technology Data Exchange (ETDEWEB)

    Born, M. (ed.)

    2007-07-01

    Between 8th and 9th November, 2007, SAXONIA Standortentwicklungs- und -verwertungsgesellschaft GmbH (Freiberg, Federal Republic of Germany) performed the 3rd Freiberger discussion conference ''Fireside boiler corrosion''. The topics of the lectures are: (a) Steam generator corrosion - an infinite history (Franz W. Alvert); (b) CFD computations for thermal waste treatment plants - a contribution for the damage recognition and remedy (Klaus Goerner, Thomas Klasen); (c) Experiences with the use of corrosion probes (Siegfried R. Horn, Ferdinand Haider, Barbara Waldmann, Ragnar Warnecke); (d) Use of additives for the limitation of the high temperature chlorine corrosion as an option apart from other measures to the corrosion protection (Wolfgang Spiegel); (e) Current research results and aims of research with respect to chlorine corrosion (Ragnar Warnecke); (f) Systematics of the corrosion phenomena - notes for the enterprise and corrosion protection (Thomas Herzog, Wolfgang Spiegel, Werner Schmidl); (g) Corrosion protection by cladding in steam generators of waste incinerators (Joerg Metschke); (h) Corrosion protection and wear protection by means of thermal spraying in steam generators (Dietmar Bendix); (i) Review of thick film nickelized components as an effective protection against high-temperature corrosion (Johann-Wilhelm Ansey); (j) Fireproof materials for waste incinerators - characteristics and profile of requirement (Johannes Imle); (k) Service life-relevant aspects of fireproof linings in the thermal recycling of waste (Till Osthoevener and Wolfgang Kollenberg); (l) Alternatives to the fireproof material in the heating space (Heino Sinn); (m) Cladding: Inconal 625 contra 686 - Fundamentals / applications in boiler construction and plant construction (Wolfgang Hoffmeister); (n) Thin films as efficient corrosion barriers - thermal spray coating in waste incinerators and biomass firing (Ruediger W. Schuelein, Steffen Hoehne, Friedrich

  9. Healthcare workers’ experiences of HIV testing in Tshwane, South Africa

    Directory of Open Access Journals (Sweden)

    Mamakwa S. Mataboge

    2014-02-01

    Full Text Available Background: In an era when antiretroviral (ARV therapy has become part of the Human Immunodeficiency Virus (HIV prevention strategy, early testing and introduction to ARVs iscritical for improving public health outcomes in general and, in particular, the lives of people living with HIV. South Africa has the highest number of people living with HIV as compared with the rest of the world. Initiated voluntary HIV counselling and testing and provider initiated counselling and testing (PICT are required in order to increase the uptake of HIV testing.Objectives: To explore and describe the experiences of healthcare workers who are themselves in need of HIV testing.Method: A descriptive, exploratory design was used. In-depth interviews were conducted with the 26 healthcare workers who were involved in HIV testing in the Tshwane district of South Africa. The participants were sampled purposively from two healthcare settings. A thematic framework was used for data analysis.Results: There was a complication with regard to PICT as healthcare workers felt they could not initiate HIV testing for themselves and or their work colleagues without their confidentiality being compromised. This was complicated further by both the perceived and actual fear of stigmatisation and discrimination. It was difficult for qualified staff to support and encourage the uptake of HIV testing by students nurses as this was seen, albeit incorrectly, as targeting the students in a negative manner.Conclusion: There is a need for accessible HIV testing policies for healthcare workers in order to increase access to HIV testing and prevent the progression of the disease

  10. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    Science.gov (United States)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2006-01-01

    information from psychological and medical testing, data on the knowledge, experience and skills of the applicants, and team building exercises. The design, development, buildup and operation of test hardware and documentation followed the established NASA processes and requirements for test buildup and operation.

  11. Corrosion in Electronics

    DEFF Research Database (Denmark)

    Ambat, Rajan; Gudla, Helene Virginie Conseil; Verdingovas, Vadimas

    2017-01-01

    and high density packing combined with the use of several materials, which can undergo electrochemical corrosion in the presence of water film formed due to humidity exposure and bias conditions on the PCBA surface. This article provides a short review of the corrosion reliability issues of electronics due...... to the use of electronics under varying humidity conditions. Important PCBA aspects, which are fundamental to the corrosion cell formation under humid conditions, are discussed. Effect of hygroscopic residues from the process and service and their role in assisting water film build up and corrosion...... is presented. Various failure modes resulting from the corrosion and influence factors are discussed including humid and gaseous conditions....

  12. Testing the implicit processing hypothesis of precognitive dream experience.

    Science.gov (United States)

    Valášek, Milan; Watt, Caroline; Hutton, Jenny; Neill, Rebecca; Nuttall, Rachel; Renwick, Grace

    2014-08-01

    Seemingly precognitive (prophetic) dreams may be a result of one's unconscious processing of environmental cues and having an implicit inference based on these cues manifest itself in one's dreams. We present two studies exploring this implicit processing hypothesis of precognitive dream experience. Study 1 investigated the relationship between implicit learning, transliminality, and precognitive dream belief and experience. Participants completed the Serial Reaction Time task and several questionnaires. We predicted a positive relationship between the variables. With the exception of relationships between transliminality and precognitive dream belief and experience, this prediction was not supported. Study 2 tested the hypothesis that differences in the ability to notice subtle cues explicitly might account for precognitive dream beliefs and experiences. Participants completed a modified version of the flicker paradigm. We predicted a negative relationship between the ability to explicitly detect changes and precognitive dream variables. This relationship was not found. There was also no relationship between precognitive dream belief and experience and implicit change detection. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. A new corrosion sensor to determine the start and development of embedded rebar corrosion process at coastal concrete.

    Science.gov (United States)

    Xu, Chen; Li, Zhiyuan; Jin, Weiliang

    2013-09-30

    The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate.

  14. A New Corrosion Sensor to Determine the Start and Development of Embedded Rebar Corrosion Process at Coastal Concrete

    Directory of Open Access Journals (Sweden)

    Weiliang Jin

    2013-09-01

    Full Text Available The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate.

  15. A New Corrosion Sensor to Determine the Start and Development of Embedded Rebar Corrosion Process at Coastal Concrete

    Science.gov (United States)

    Xu, Chen; Li, Zhiyuan; Jin, Weiliang

    2013-01-01

    The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate. PMID:24084117

  16. Alternative techniques to monitoring the corrosive potential for fluids in submarine pipelines; Tecnicas alternativas para monitorar o potencial corrosivo de fluidos transportados em oleodutos submarinos

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Cynthia de Azevedo; Brito, Rosane Fernandes de; Paiva, Eva M. de O. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Tecnologia de Materiais, Equipamentos e Corrosao; Freitas, Nair Domingues de; Salvador, Angelica Dias [PETROBRAS, Macae, RJ (Brazil). Unidade de Negocios da Bacia de Campos

    2003-07-01

    PETROBRAS in search of being a benchmark in safety, environment and health, established in July 2001 a work group to elaborate a standard for Pipeline Integrity Management. This standard set the requirements for Pipeline Integrity Management and establishes, among others criteria, the actions required to detect, monitor and control internal corrosion of pipelines. The first step to evaluate, monitor and control the internal corrosion is to define the corrosive potential of transported fluids. Some oil pipelines located in central and southern areas of the Campos Basin transport high water cut produced fluids (> 30%) and with demulsifiers, which allow oil and water separation and increase internal corrosion risks. Despite of these, it is not possible to check the internal corrosion rates using conventional techniques because the fluids are produced through sub-sea 'manifolds'. In order to investigate the possibility of corrosion inhibition by crude oils, laboratory tests were performed simulating real field conditions in terms of fluid compositions, water cut and temperature. Experiments were conducted to determine the corrosion rate of specimens, the emulsion stability and the initial temperature of wax precipitation. This paper presents the results of the study realized to define the fluids' corrosive potential of four Campos Basin platforms that are transported through sub-sea 'manifolds. (author)

  17. Materials corrosion of high temperature alloys immersed in 600C binary nitrate salt.

    Energy Technology Data Exchange (ETDEWEB)

    Kruizenga, Alan Michael; Gill, David Dennis; LaFord, Marianne Elizabeth

    2013-03-01

    Thirteen high temperature alloys were immersion tested in a 60/40 binary nitrate salt. Samples were interval tested up to 3000 hours at 600ÀC with air as the ullage gas. Chemical analysis of the molten salt indicated lower nitrite concentrations present in the salt, as predicted by the equilibrium equation. Corrosion rates were generally low for all alloys. Corrosion products were identified using x-ray diffraction and electron microprobe analysis. Fe-Cr based alloys tended to form mixtures of sodium and iron oxides, while Fe-Ni/Cr alloys had similar corrosion products plus oxides of nickel and chromium. Nickel based alloys primarily formed NiO, with chromium oxides near the oxide/base alloy interface. In625 exhibited similar corrosion performance in relation to previous tests, lending confidence in comparisons between past and present experiments. HA230 exhibited internal oxidation that consisted of a nickel/chromium oxide. Alloys with significant aluminum alloying tended to exhibit superior performance, due formation of a thin alumina layer. Soluble corrosion products of chromium, molybdenum, and tungsten were also formed and are thought to be a significant factor in alloy performance.

  18. EVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION

    Energy Technology Data Exchange (ETDEWEB)

    Bill W. Bogan; Wendy R. Sullivan; Kristine M. H. Cruz; Kristine L. Lowe; John J. Kilbane II

    2004-04-30

    The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Previous testing of pepper extracts resulted in preliminary data indicating that some pepper extracts inhibit the growth of some corrosion-associated microorganisms. This quarter additional tests were performed to more specifically investigate the ability of three pepper extracts to inhibit the growth, and to influence the metal corrosion caused by two microbial species: Desulfovibrio vulgaris, and Comomonas denitrificans. All three pepper extracts rapidly killed Desulfovibrio vulgaris, but did not appear to inhibit Comomonas denitrificans. While corrosion rates were at control levels in experiments with Desulfovibrio vulgaris that received pepper extract, corrosion rates were increased in the presence of Comomonas denitrificans plus pepper extract. Further testing with a wider range of pure bacterial cultures, and more importantly, with mixed bacterial cultures should be performed to determine the potential effectiveness of pepper extracts to inhibit MIC.

  19. CORROSION OF LEAD SHIELDING IN NUCLEAR MATERIALS PACKAGES

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, K; Kerry Dunn, K; Joseph Murphy, J

    2008-07-18

    Inspection of United States-Department of Energy (US-DOE) model 9975 nuclear materials shipping package revealed corrosion of the lead shielding that was induced by off-gas constituents from organic components in the package. Experiments were performed to determine the corrosion rate of lead when exposed to off-gas or degradation products of these organic materials. The results showed that the room temperature vulcanizing (RTV) sealant was the most corrosive organic species used in the construction of the packaging, followed by polyvinyl acetate (PVAc) glue. Fiberboard material, also used in the construction of the packaging induced corrosion to a much lesser extent than the PVAc glue and RTV sealant, and only in the presence of condensed water. The results indicated faster corrosion at temperatures higher than ambient and with condensed water. In light of these corrosion mechanisms, the lead shielding was sheathed in a stainless steel liner to mitigate against corrosion.

  20. Events as Power Source: Wireless Sustainable Corrosion Monitoring

    Directory of Open Access Journals (Sweden)

    Guodong Sun

    2013-12-01

    Full Text Available This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source, which monitors the corrosion events in reinforced concrete (RC structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event releases electric energy; this is a novel idea proposed by this study. For accumulating the micro-corrosion energy, we integrate EPS with a COTS (Commercial Off-The-Shelf energy-harvesting chip that recharges a supercapacitor. In particular, this study designs automatic energy management and adaptive transmitted power control polices to efficiently use the constrained accumulated energy. Finally, a set of preliminary experiments based on concrete pore solution are conducted to evaluate the feasibility and the efficacy of EPS.

  1. Events as power source: wireless sustainable corrosion monitoring.

    Science.gov (United States)

    Sun, Guodong; Qiao, Guofu; Zhao, Lin; Chen, Zhibo

    2013-12-17

    This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source), which monitors the corrosion events in reinforced concrete (RC) structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event) releases electric energy; this is a novel idea proposed by this study. For accumulating the micro-corrosion energy, we integrate EPS with a COTS (Commercial Off-The-Shelf) energy-harvesting chip that recharges a supercapacitor. In particular, this study designs automatic energy management and adaptive transmitted power control polices to efficiently use the constrained accumulated energy. Finally, a set of preliminary experiments based on concrete pore solution are conducted to evaluate the feasibility and the efficacy of EPS.

  2. Information on the Advanced Plant Experiment (APEX) Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    The purpose of this report provides information related to the design of the Oregon State University Advanced Plant Experiment (APEX) test facility. Information provided in this report have been pulled from the following information sources: Reference 1: R. Nourgaliev and et.al, "Summary Report on NGSAC (Next-Generation Safety Analysis Code) Development and Testing," Idaho National Laboratory, 2011. Note that this is report has not been released as an external report. Reference 2: O. Stevens, Characterization of the Advanced Plant Experiment (APEX) Passive Residual Heat Removal System Heat Exchanger, Master Thesis, June 1996. Reference 3: J. Reyes, Jr., Q. Wu, and J. King, Jr., Scaling Assessment for the Design of the OSU APEX-1000 Test Facility, OSU-APEX-03001 (Rev. 0), May 2003. Reference 4: J. Reyes et al, Final Report of the NRC AP600 Research Conducted at Oregon State University, NUREG/CR-6641, July 1999. Reference 5: K. Welter et al, APEX-1000 Confirmatory Testing to Support AP1000 Design Certification (non-proprietary), NUREG-1826, August 2005.

  3. Operational experience from LCLS-II cryomodule testing

    Science.gov (United States)

    Wang, R.; Hansen, B.; White, M.; Hurd, J.; Atassi, O. Al; Bossert, R.; Pei, L.; Klebaner, A.; Makara, J.; Theilacker, J.; Kaluzny, J.; Wu, G.; Harms, E.

    2017-12-01

    This paper describes the initial operational experience gained from testing Linac Coherent Light Source II (LCLS-II) cryomodules at Fermilab’s Cryomodule Test Facility (CMTF). Strategies for a controlled slow cooldown to 100 K and a fast cooldown past the niobium superconducting transition temperature of 9.2 K will be described. The test stand for the cryomodules at CMTF is sloped to match gradient in the LCLS-II tunnel at Stanford Linear Accelerator (SLAC) laboratory, which adds an additional challenge to stable liquid level control. Control valve regulation, Superconducting Radio-Frequency (SRF) power compensation, and other methods of stabilizing liquid level and pressure in the cryomodule 2.0 K SRF cavity circuit will be discussed. Several different pumping configurations using cold compressors and warm vacuum pumps have been used on the cryomodule 2.0 K return line and the associated results will be described.

  4. Operational Experience from LCLS-II Cryomodule Testing

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Renzhuo [Fermilab; Hansen, Benjamin [Fermilab; White, Michael [Fermilab; Hurd, Joseph [Fermilab; Atassi, Omar Al [Fermilab; Bossert, Richard [Fermilab; Pei, Liujin [Fermilab; Klebaner, Arkadiy [Fermilab; Makara, Jerry [Fermilab; Theilacker, Jay [Fermilab; Kaluzny, Joshua [Fermilab; Wu, Genfa [Fermilab; Harms, Elvin [Fermilab

    2017-07-01

    This paper describes the initial operational experience gained from testing Linac Coherent Light Source II (LCLS-II) cryomodules at Fermilab’s Cryomodule Test Facility (CMTF). Strategies for a controlled slow cooldown to 100 K and a fast cooldown past the niobium superconducting transition temperature of 9.2 K will be described. The test stand for the cryomodules at CMTF is sloped to match gradient in the LCLS-II tunnel at Stanford Linear Accelerator (SLAC) laboratory, which adds an additional challenge to stable liquid level control. Control valve regulation, Superconducting Radio-Frequency (SRF) power compensation, and other methods of stabilizing liquid level and pressure in the cryomodule 2.0 K SRF cavity circuit will be discussed. Several different pumping configurations using cold compressors and warm vacuum pumps have been used on the cryomodule 2.0 K return line and the associated results will be described.

  5. Launch Pad Coatings for Smart Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.

    2010-01-01

    Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability

  6. Detection and sizing of stress corrosion cracks in austenitic components using ultrasonic testing and synthetic aperture focusing technique

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, Sandra; Wagner, Sabine [Stuttgart Univ. (Germany). Materialpruefungsanstalt; Dillhoefer, Alexander [NDT Global GmbH and Co.KG, Stutensee (Germany); Rieder, Hans; Spies, Martin [Fraunhofer-Institut fuer Zerstoerungsfreie Pruefverfahren (IZFP), Saarbruecken (Germany)

    2015-05-01

    Flaw detection and sizing using NDT techniques is an important factor for reliably assessing the integrity of components. In the case of dissimilar metal welds and austenitic stainless steel welds, the grain structure of the weld in combination with the elastic anisotropy of the material will present major challenges for UT. A study on austenitic base metal test blocks with artificially grown IGSCCs has shown that the Synthetic Aperture Focusing Technique (SAFT) can improve the signal-to-noise ratio, particularly for crack tip signals. In welded test blocks, the influence of the inhomogeneous, anisotropic weld has to be considered.

  7. Low temperature corrosion in bark fuelled, small boilers

    Energy Technology Data Exchange (ETDEWEB)

    Lindau, Leif; Goldschmidt, Barbara

    2008-05-15

    A number of small (3-12 MW), new biofuel boiler plants in southern Sweden, and (at least) in Austria, have suffered a high (wastage of mm/yrs) corrosion rate on the low temperature boiler side. This problem has been investigated with respect to its occurrence and its character by contacts with operators, by plant inspections, and by analysis of cold-side deposits. The plants affected have low feed water temperatures (< 100 deg C). The plants fire most types of Swedish biofuel: chips, bark, hog fuel, and 'GROT' (=twigs and tops). The results found give basis for a hypothesis that the corrosion results from the presence of an aqueous phase in the deposits, this phase being stabilized by dissolved salts having high solubility. It then follows that for each salt, there is a critical relative humidity (calculated from the flue gas water partial pressure and the cooling surface temperature as is common practice among boiler engineers) for both the presence of the aqueous phase and the corrosion. Some critical single salts, ZnCl{sub 2} and CaCl{sub 2} have been identified, and they give critical 'relative humidities' of 5% and 18% respectively. These figures are a lower bound. The corresponding figure, derived from the practical experience and the reported plant operational data, is between 20 and 30%. Corrosion tests have been carried out by exposing an air-cooled probe in the flue gases at a 12 MW boiler at Saevelundsverket in Alingsaas, and the material wastage at different temperatures has been measured with a profilometer. The high corrosion rates were reproduced in the tests for high relative humidities. The corrosion rate was small and not measurable (<0.1 mm/year) for relative humidity <22%. The work shows by means of indirect evidence that the corrosion critical components are ZnCl{sub 2} and possibly CaCl{sub 2} as well. The practical engineering design criterion derived from the work is that the relative humidity (calculated from the flue

  8. Prévision de la corrosion des coussinets et corrélation avec l'essai sur moteur Petter W1 L Predicting Bearing Wear and Correlation with the Petter W1 L Engine Test

    Directory of Open Access Journals (Sweden)

    Desvard A.

    2006-11-01

    Full Text Available Parmi les essais exigés par les spécifications européennes et américaines pour huiles de moteurs, il existe un essai de résistance à la corrosion des coussinets de bielles en cuivre-plomb (tableau 1. Ces essais sont effectués sur moteurs monocylindre Petter W1 L ou Labeco CLR (tableau 2. Des résultats de corrosion obtenus sur le moteur Petter W1 L, avec des huiles de calibrage, sont donnés (tableau 4 et les courbes de corrosion en fonction du temps d'essai sont représentées figure 1. En utilisant ces mêmes huiles, un groupe de travail du GFC*, chargé de développer des méthodes d'essai laboratoire de présélection, a mis au point un test basé sur le suivi de la corrosion d'une éprouvette de plomb, en présence de cuivre, immergée dans le lubrifiant à évaluer, lorsque celui-ci est soumis à des conditions d'oxydation sévères, en présence d'air, à haute température (fig. 2. Les résultats obtenus sont en parfaite concordance avec les résultats sur moteurs (tableau 5 et fig. 3. Par ailleurs, ces essais mettent en évidence une excellente répétabilité (fig. 4,et une excellente reproductibilité (fig. 5 et 6 de la méthode de laboratoire. * GFC : Groupement Français de Coordination, pour le développement des essais de performance des combustibles, des lubrifiants pour moteurs et autres fluides utilisés dans les transports. Among the tests required by European and American specifications for motor oils, there is a test of the corrosion resistance of copper-lead bearings (Table 1. These tests are performed in single-cylinder Petter W1 L engines or Labeco CLR engines (Table 2. The corrosion results obtained with the Petter W1 L engine, for calibration oils, are given (Table 4, and the corrosion curves as a function of time are shown in Fig. 1. By using the same oils, a GFC working group responsible for developing laboratory preselection test methods has developed a test based on the determining of the corrosion of a lead

  9. Experience with Video Head Impulse Testing (vHIT

    Directory of Open Access Journals (Sweden)

    Carmen ÁLVAREZ-SANTACRUZ

    2017-03-01

    Full Text Available Introduction and objective: The diagnosis and study of vestibular pathology has been always guided by the medical history, exploration and caloric test. The caloric test has some limitations because it only allows the study of horizontal semicircular canal and it is also poorly tolerated by patients. Alternatively, the vHIT (Video Head Impulse Test, allows the analysis of all semicircular channels being quicker to perform and less obtrusive. The objective of the following study is to reflect our initial experience with the vHIT and compare it with another diagnosis tests. Method: This is a observational, prospective and descriptive study, of one year of observation in our Healthcare center for all patients who described symptoms of dizziness, unsteadiness or vertigo. Results: A total of 155 patients were included. There was a clear predominance of females, being Meniere's disease the most frequently diagnosed entity. The diagnosis was reached by vHIT. Caloric test was also performed in patients without definite or doubt in the diagnosis. With the data, the statistical relationships were established, being significant between sex with vestibular neuritis and vestibular migraine. There was a statistically significant relationship between vestibule-ocular reflex and caloric test associated with the previous pathologies. Discussion: The head impulse assisted video is a quick, simple and well tolerated technique without adverse symptoms like the caloric test. The disparities of results are due to differences in the stimulated frequencies, being the vHIT more physiological. Conclusions: vHIT facilitates the complementary diagnosis of acute pathology, being a well-tolerated technique. However, in pathologies with central compensation the results by vHIT may be normal, requiring the caloric test for better diagnostic approach.

  10. The Influence of Corrosion Attack on Grey Cast Iron Brittle‑Fracture Behaviour and Its Impact on the Material Life Cycle

    Directory of Open Access Journals (Sweden)

    Jiří Švarc

    2017-01-01

    Full Text Available The paper is concerned with brittle‑fracture behaviour of grey cast iron attacked by corrosion and its impact on the life cycle of a spare part made of grey cast iron. In a corrosion chamber, outdoor climatic conditions (temperature and relative air humidity were simulated in which degradation processes, induced by material corrosion, degrading mechanical properties of a material and possibly leading to irreversible damage of a machine component, occur in the material of maintenance vehicles that are out of operation for the period of one year. The corrosion degradation of grey cast iron, which the spare parts constituting functional parts of an engine are made of grey cast iron, is described with regard to brittle‑fracture behaviour of the material. For the description of corrosion impact on grey cast iron, an instrumented impact test was employed. A corrosion degradation effect on grey cast iron was identified based on measured values of total energy, macro plastic deformation limit, initiation force of unstable crack propagation and force exerted on unstable crack arrest. In the first part of the experiment, a corrosion test of the material concerned was simulated in a condensation chamber; in the second part of the experiment, research results are provided for the measured quantities describing the material brittle‑fracture behaviour; this part is supplemented with a table of results and figures showing the changes in the values of the measured quantities in relation to test temperatures. In the discussion part, the influence of corrosion on the values of unstable crack initiation and arrest forces is interpreted. In the conclusion, an overview of the most significant research findings concerning the impact of corrosion on the life cycle of grey cast iron material is provided.

  11. Testing Light Dark Matter Coannihilation With Fixed-Target Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Izaguirre, Eder [Brookhaven Natl. Lab.; Kahn, Yonatan [Princeton U.; Krnjaic, Gordan [Fermilab; Moschella, Matthew [Princeton U.

    2017-03-20

    In this paper, we introduce a novel program of fixed-target searches for thermal-origin Dark Matter (DM), which couples inelastically to the Standard Model. Since the DM only interacts by transitioning to a heavier state, freeze-out proceeds via coannihilation and the unstable heavier state is depleted at later times. For sufficiently large mass splittings, direct detection is kinematically forbidden and indirect detection is impossible, so this scenario can only be tested with accelerators. Here we propose new searches at proton and electron beam fixed-target experiments to probe sub-GeV coannihilation, exploiting the distinctive signals of up- and down-scattering as well as decay of the excited state inside the detector volume. We focus on a representative model in which DM is a pseudo-Dirac fermion coupled to a hidden gauge field (dark photon), which kinetically mixes with the visible photon. We define theoretical targets in this framework and determine the existing bounds by reanalyzing results from previous experiments. We find that LSND, E137, and BaBar data already place strong constraints on the parameter space consistent with a thermal freeze-out origin, and that future searches at Belle II and MiniBooNE, as well as recently-proposed fixed-target experiments such as LDMX and BDX, can cover nearly all remaining gaps. We also briefly comment on the discovery potential for proposed beam dump and neutrino experiments which operate at much higher beam energies.

  12. Testing light dark matter coannihilation with fixed-target experiments

    Science.gov (United States)

    Izaguirre, Eder; Kahn, Yonatan; Krnjaic, Gordan; Moschella, Matthew

    2017-09-01

    We introduce a novel program of fixed-target searches for thermal-origin dark matter (DM), which couples inelastically to the Standard Model. Since the DM only interacts by transitioning to a heavier state, freeze-out proceeds via coannihilation and the unstable heavier state is depleted at later times. For sufficiently large mass splittings, direct detection is kinematically forbidden and indirect detection is impossible, so this scenario can only be tested with accelerators. Here we propose new searches at proton- and electron-beam fixed-target experiments to probe sub-GeV coannihilation, exploiting the distinctive signals of up- and downscattering as well as decay of the excited state inside the detector volume. We focus on a representative model in which DM is a pseudo-Dirac fermion coupled to a hidden gauge field (dark photon), which kinetically mixes with the visible photon. We define theoretical targets in this framework and determine the existing bounds by reanalyzing results from previous experiments. We find that LSND, E137, and BABAR data already place strong constraints on the parameter space consistent with a thermal freeze-out origin, and that future searches at Belle II and MiniBooNE, as well as recently proposed fixed-target experiments such as LDMX and BDX, can cover nearly all remaining gaps. We also briefly comment on the discovery potential for proposed beam dump and neutrino experiments which operate at much higher beam energies.

  13. Phototube Testing for the MiniBooNE Experiment

    Science.gov (United States)

    Gladstone, Laura; Brice, Steve; Bugel, Len; Fleming, Bonnie; Hawker, Eric; Killewald, Phillip; May, Justin; McKenney, Shawn; Nienaber, Paul; Patterson, Ryan; Roe, Byron; Sandberg, Vern; Smith, Darrel; Wysocki, Matt

    2005-04-01

    The MiniBooNE experiment at FNAL is a neutrino νμ->νe oscillation search whose detector is a 12 m spherical oil tank lined with 1520 8 inch photomultiplier tubes, Hamamatsu models R1408 and R5912, with custom--designed bases. Tests were performed on all the phototubes to determine the dark rate, charge and timing resolutions of the response, double--pulsing rate, and desired operating voltage for each tube, so that they could be sorted for optimal use in the detector. Eight additional phototubes were tested to find the angular dependance of their response, and these results for the R1408 and R5912 phototubes were fit to 5-- and 6--degree polynomials, respectively. This test was performed again at various voltages. These fits were incorporated into the MiniBooNE Monte Carlo. After the Super--K phototube implosion accident, an analysis was performed to determine the risk of a similar accident with MiniBooNE, and the risk was found to be negligible. *MiniBooNE is an experiment at Fermi National Accelerator Laboratory

  14. Experimental and quantum study of corrosion of A36 mild steel towards 1-butyl-3-methylimidazolium tetrachloroferrate ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Sami; Bustam, Mohamad Azmi; Shariff, Azmi Mohamad; Gonfa, Girma, E-mail: kiyaagonfaa@gmail.com; Izzat, Khairul

    2016-03-01

    Graphical abstract: - Highlights: • Corrosion behavior of [C{sub 4}C{sub 1}im][FeCl{sub 4}] towards A36 mild steel were studied. • Corrosion of [C{sub 4}C{sub 1}im][FeCl{sub 4}] towards steel is higher in open environment. • Higher water content and temperature results in higher corrosions. • Quantum chemical calculations were performed to understand the ionic liquid–mild steel interactions. - Abstract: The corrosion behaviour of ionic liquid 1-butyl-3-methylimidazolium tetrachloroferrate ([C{sub 4}C{sub 1}im][FeCl{sub 4}]) towards A36 mild steel was studied through experiments and quantum calculations. The corrosion rates were obtained through immersion tests both in open and controlled environments. The surface morphology of the A36 mild steel was investigated using scanning electron microscopy (SEM). The effects of temperature and water content on the corrosion of the ionic liquid towards A36 mild steel were studied through electrochemical corrosion measurement techniques. The results show that the corrosion of [C{sub 4}C{sub 1}im][FeCl{sub 4}] towards the mild steel in the open environment is 17 times higher than in the control environment. The corrosion rate increases with increasing temperature and water content in [C{sub 4}C{sub 1}im][FeCl{sub 4}]. Density Functional Theory (DFT) calculations were performed to gain some insight into the interactions of [C{sub 4}C{sub 1}im][FeCl{sub 4}] with the A36 mild steels surface.

  15. Plasma lens experiments at the Final Focus Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, B. [California Univ., Los Angeles, CA (United States)]|[Lawrence Berkeley Lab., CA (United States); Chattopadhyay, S. [Lawrence Berkeley Lab., CA (United States); Chen, P. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)] [and others

    1993-04-01

    We intend to carry out a series of plasma lens experiments at the Final Focus Test Beam facility at SLAC. These experiments will be the first to study the focusing of particle beams by plasma focusing devices in the parameter regime of interest for high energy colliders, and is expected to lead to plasma lens designs capable of unprecedented spot sizes. Plasma focusing of positron beams will be attempted for the first time. We will study the effects of lens aberrations due to various lens imperfections. Several approaches will be applied to create the plasma required including laser ionization and beam ionization of a working gas. At an increased bunch population of 2.5 {times} 10{sup 10}, tunneling ionization of a gas target by an electron beam -- an effect which has never been observed before -- should be significant. The compactness of our device should prove to be of interest for applications at the SLC and the next generation linear colliders.

  16. High temperature corrosion performance of FeAl intermetallic alloys in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, M.; Espinosa-Medina, M.A.; Porcayo-Calderon, J.; Martinez, L.; Gonzalez-Rodriguez, J.G

    2003-05-25

    The corrosion performance of FeAl base intermetallic alloys fabricated by spray-atomization and deposition during their immersion in molten sodium metavanadate (NaVO{sub 3}), 80% (wt.%) sodium pentoxide (V{sub 2}O{sub 5}) +20% sodium sulfate (Na{sub 2}SO{sub 4}) and pure Na{sub 2}SO{sub 4} in the temperature range of 600-1000 deg. C during 200 h was investigated. The experiments were realized by the weight loss method in the intermetallic alloys of composition FeAl40(at.%), FeAl40+0.1B and FeAl40+0.1B+10Al{sub 2}O{sub 3}. In all cases, the FeAl40+0.1B+10Al{sub 2}O{sub 3} alloy showed the best corrosion resistance in the temperatures interval studied here. This behavior was discussed in terms of the formation of a protective Al{sub 2}O{sub 3} layer and its dissolution by vanadate phases and internal sulfidation in the case of experiments carried out in pure Na{sub 2}SO{sub 4}. The morphology of the external layers and the corrosion products formed during the tests revealed that the corrosion rate of this type alloy depends on the corrosion compounds that are formed and the development of protective alumina scales.

  17. Corrosion characteristics of seven metals in three aqueous environments for forensic applications

    Science.gov (United States)

    Tong, Tianqi

    Corrosion characteristics of seven varieties of metals---zinc, brass C260, stainless steel 302, stainless steel 316, stainless steel 420, stainless steel 430, and stainless steel 440---in three aqueous media---Atlantic Ocean, Charles River, and deionized waters---were assessed via mass loss methods over 32 weeks, with supplemental data in the form of photomicrographic records. Concurrently, tests were conducted to determine the degree of measurement error resulting from the analytical scale used during corrosion assessment. This was accomplished by using reference samples of each type of metal and a glass vial as the container that held the metal and water samples. These error tests indicated that while the mass error associated with the metal samples was low, the error in mass associated with the vial displayed error margins two orders of magnitude larger than the error margins for the smaller metal samples. Further, control tests and statistical analysis indicated that this variation was the result of some quality inherent to the vial. The metal samples involved in the corrosion assessment experiment generally displayed corrosion characteristics in agreement with trends reported in the literature. Zinc produced the greatest quantity of corrosion residues out of all the metals studied. Brass C260 also developed visible corrosion. For example, brass C260 developed dark green/brown adherent residue and whitish blue-tinted nonadherent residue in Atlantic Ocean water, faint greenish tarnishing and some dark green spots and dots over time in Charles River water, and only faint greenish tarnish in deionized water. In contrast with zinc and brass C260, the stainless steels did not exhibit signs of significant corrosion rates excepting stainless steel 420 (SS420), which displayed pitted features surrounded by multi-colored rings on all of its Atlantic Ocean immersion samples and 25% of its Charles River immersion samples. Atlantic Ocean water generally caused the greatest

  18. Expansion due to the anaerobic corrosion of iron

    Energy Technology Data Exchange (ETDEWEB)

    Smart, N.R.; Rance, A.P.; Fennell, P.A.H. [Serco Assurance, Culham Science Centre (United Kingdom)

    2006-12-15

    . Initially, three cells were set up: two contained alternate carbon steel and copper discs, and the third, a control cell, consisted of alternate stainless steel and copper discs. A slight contraction of the control cell was observed but no expansion was measured in the carbon steel-copper cells. Analytical measurements showed that the corrosion products were magnetite and hydrogen, indicating that anaerobic corrosion was occurring. In a second series of experiments, one experiment was carried out in which carbon steel was replaced with cast iron and in a further experiment air was allowed to enter the test chamber. No expansion was detected in either of these additional experiments. However, expansion was detected when a separate stack of copper and steel washers was corroded in ambient atmospheric conditions under very small compressive loads, and subjected to a wet-dry cycle, demonstrating that the experimental technique was capable of detecting corrosion-induced expansion if it were occurring. In parallel with the stress cell experiments, coupons of mild steel and cast iron were corroded in anoxic, artificial groundwater at 50 deg C and 80 deg C for several months. The coupons were examined using atomic force microscopy (AFM) to determine the mechanical properties and the structure of the corrosion product films, and X-ray photoelectron spectroscopy (XPS) to identify the chemical composition of the film. The report presents Young's modulus, thickness and hardness data for the oxides, which were much more compliant than the magnetite films formed at high temperatures, probably because of their high water content. The report considers the application of the results to assessing the performance of the SKB canister in a repository situation.

  19. Corrosivity Sensor for Exposed Pipelines Based on Wireless Energy Transfer.

    Science.gov (United States)

    Lawand, Lydia; Shiryayev, Oleg; Al Handawi, Khalil; Vahdati, Nader; Rostron, Paul

    2017-05-30

    External corrosion was identified as one of the main causes of pipeline failures worldwide. A solution that addresses the issue of detecting and quantifying corrosivity of environment for application to existing exposed pipelines has been developed. It consists of a sensing array made of an assembly of thin strips of pipeline steel and a circuit that provides a visual sensor reading to the operator. The proposed sensor is passive and does not require a constant power supply. Circuit design was validated through simulations and lab experiments. Accelerated corrosion experiment was conducted to confirm the feasibility of the proposed corrosivity sensor design.

  20. Corrosive Metabolic Activity of Desulfovibrio sp. on 316L Stainless Steel

    Science.gov (United States)

    Arkan, Simge; Ilhan-Sungur, Esra; Cansever, Nurhan

    2016-12-01

    The present study investigated the effects of chemical parameters (SO4 2-, PO4 3-, Cl-, pH) and the contents of extracellular polymeric substances (EPS) regarding the growth of Desulfovibrio sp. on the microbiologically induced corrosion of 316L stainless steel (SS). The experiments were carried out in laboratory-scaled test and control systems. 316L SS coupons were exposed to Desulfovibrio sp. culture over 720 h. The test coupons were removed at specific sampling times for enumeration of Desulfovibrio sp., determination of the corrosion rate by the weight loss measurement method and also for analysis of carbohydrate and protein in the EPS. The chemical parameters of the culture were also established. Biofilm/film formation and corrosion products on the 316L SS surfaces were investigated by scanning electron microscopy and energy-dispersive x-ray spectrometry analyses in the laboratory-scaled systems. It was found that Desulfovibrio sp. led to the corrosion of 316L SS. Both the amount of extracellular protein and chemical parameters (SO4 2- and PO4 3-) of the culture caused an increase in the corrosion of metal. There was a significantly positive relationship between the sessile and planktonic Desulfovibrio sp. counts ( p published studies.

  1. Structural Characteristics and Corrosion Behavior of Bio-Degradable Zn-Li Alloys in Stent Application

    Science.gov (United States)

    Zhao, Shan

    Zinc has begun to be studied as a bio-degradable material in recent years due to its excellent corrosion rate and optimal biocompatibility. Unfortunately, pure Zn's intrinsic ultimate tensile strength (UTS; below 120 MPa) is lower than the benchmark (about 300 MPa) for cardiovascular stent materials, raising concerns about sufficient strength to support the blood vessel. Thus, modifying pure Zn to improve its mechanical properties is an important research topic. In this dissertation project, a new Zn-Li alloy has been developed to retain the outstanding corrosion behavior from Zn while improving the mechanical characteristics and uniform biodegradation once it is implanted into the artery of Sprague-Dawley rats. The completed work includes: Manufactured Zn-Li alloy ingots and sheets via induction vacuum casting, melt spinning, hot rolling deformation, and wire electro discharge machining (wire EDM) technique; processed alloy samples using cross sectioning, mounting, etching and polishing technique; • Characterized alloy ingots, sheets and wires using hardness and tensile test, XRD, BEI imaging, SEM, ESEM, FTIR, ICP-OES and electrochemical test; then selected the optimum composition for in vitro and in vivo experiments; • Mimicked the degradation behavior of the Zn-Li alloy in vitro using simulated body fluid (SBF) and explored the relations between corrosion rate, corrosion products and surface morphology with changing compositions; • Explanted the Zn-Li alloy wire in abdominal aorta of rat over 12 months and studied its degradation mechanism, rate of bioabsorption, cytotoxicity and corrosion product migration from histological analysis.

  2. The size effect in corrosion greatly influences the predicted life span of concrete infrastructures.

    Science.gov (United States)

    Angst, Ueli M; Elsener, Bernhard

    2017-08-01

    Forecasting the life of concrete infrastructures in corrosive environments presents a long-standing and socially relevant challenge in science and engineering. Chloride-induced corrosion of reinforcing steel in concrete is the main cause for premature degradation of concrete infrastructures worldwide. Since the middle of the past century, this challenge has been tackled by using a conceptual approach relying on a threshold chloride concentration for corrosion initiation (Ccrit). All state-of-the-art models for forecasting chloride-induced steel corrosion in concrete are based on this concept. We present an experiment that shows that Ccrit depends strongly on the exposed steel surface area. The smaller the tested specimen is, the higher and the more variable Ccrit becomes. This size effect in the ability of reinforced concrete to withstand corrosion can be explained by the local conditions at the steel-concrete interface, which exhibit pronounced spatial variability. The size effect has major implications for the future use of the common concept of Ccrit. It questions the applicability of laboratory results to engineering structures and the reproducibility of typically small-scale laboratory testing. Finally, we show that the weakest link theory is suitable to transform Ccrit from small to large dimensions, which lays the basis for taking the size effect into account in the science and engineering of forecasting the durability of infrastructures.

  3. The size effect in corrosion greatly influences the predicted life span of concrete infrastructures

    Science.gov (United States)

    Angst, Ueli M.; Elsener, Bernhard

    2017-01-01

    Forecasting the life of concrete infrastructures in corrosive environments presents a long-standing and socially relevant challenge in science and engineering. Chloride-induced corrosion of reinforcing steel in concrete is the main cause for premature degradation of concrete infrastructures worldwide. Since the middle of the past century, this challenge has been tackled by using a conceptual approach relying on a threshold chloride concentration for corrosion initiation (Ccrit). All state-of-the-art models for forecasting chloride-induced steel corrosion in concrete are based on this concept. We present an experiment that shows that Ccrit depends strongly on the exposed steel surface area. The smaller the tested specimen is, the higher and the more variable Ccrit becomes. This size effect in the ability of reinforced concrete to withstand corrosion can be explained by the local conditions at the steel-concrete interface, which exhibit pronounced spatial variability. The size effect has major implications for the future use of the common concept of Ccrit. It questions the applicability of laboratory results to engineering structures and the reproducibility of typically small-scale laboratory testing. Finally, we show that the weakest link theory is suitable to transform Ccrit from small to large dimensions, which lays the basis for taking the size effect into account in the science and engineering of forecasting the durability of infrastructures. PMID:28782038

  4. Environmentally Friendly Coating Technology for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Johnsey, Marissa N.; Jolley, Scott T.; Pearman, Benjamin P.; Zhang, Xuejun; Fitzpatrick, Lilliana; Gillis, Mathew; Blanton, Michael; hide

    2016-01-01

    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry.

  5. Internal corrosion of carbon steel piping in hot aquifers service

    Directory of Open Access Journals (Sweden)

    Simičić Miloš V.

    2011-01-01

    Full Text Available Internal corrosion of carbon steel pipelines is a major problem encountered in water service. In terms of prediction of the remaining lifetime for water pipelines based on the corrosion allowance, the three main approaches are corrosion modelling, corrosion inhibitor availability, and corrosion monitoring. In this study we used two theoretical corrosion models, CASSANDRA and NORSOK M-506 of quite different origin in order to predict uniform corrosivity of hot aquifers in eight different pipelines. Because of the varying calculation criteria for the different models, these can give very different corrosion rate predictions for the same data input. This is especially true under conditions where the formation of protective films may occur, such as at elevated temperatures. The evaluation of models was conducted by comparison using weight-loss coupons and three corrosion inhibitors were obtained from commercial suppliers. The tests were performed during the 60-day period. Even though inhibitors’ efficiencies of 98% had been achieved in laboratory testing, inhibitors’ availabilities of 85% have been used due to logistics problems and other issues. The results, given in mmpy, i.e. millimeter per year, are very consistent with NORSOK M-506 prediction. This is presumably because the model considers the effect of the formation of a passive iron carbonate film at temperatures above 80 °C and significant reduction in corrosion rate. Corrosion inhibitor A showed a better performance than inhibitors B and C in all cases but the target corrosion rates of less than 0.1 mmpy were achieved for all inhibitors. The chemical type of corrosion inhibitor A is based on quaternary amines mixed with methanol, isopropyl alcohol, xylene and ethylbenzene. Based on the obtained results the carbon steel lifetime of 30 years, provided proper inhibitors are present and 3mm corrosion allowance, can be achieved for hot aquifers service with presented water compositions.

  6. Results of irradiated cladding tests and clad plate experiments

    Energy Technology Data Exchange (ETDEWEB)

    Haggag, F.M.; Iskander, S.K.

    1988-01-01

    Two aspects critical to the fracture behavior of three-wire stainless steel cladding were investigated by the Heavy-Section Steel Technology (HSST) Program: (1) radiation effects on cladding strength and toughness, and (2) the response of mechanically loaded, flawed structures in the presence of cladding (clad plate experiments). Postirradiation testing results show that, in the test temperature range from /minus/125 to 288/degree/C, the yield strength increased, and ductility insignificantly increased, while there was almost no change in ultimate tensile strength. All cladding exhibited ductile-to-brittle transition behavior during Charpy impact testing. Radiation damage decreased the Charpy upper-shelf energy by 15 to 20% and resulted in up to 28/degree/C shifts of the Charpy impact transition temperature. Results of irradiated 12.5-mm-thick compact specimens (0.5TCS) show consistent decreases in the ductile fracture toughness, J/sub Ic/, and the tearing modulus. Results from clad plate tests have shown that (1) a tough surface layer composed of cladding and/or heat-affected zone has arrested running flaws under conditions where unclad plates have ruptured, and (2) the residual load-bearing capacity of clad plates with large subclad flaws significantly exceeded that of an unclad plate. 13 figs., 1 tab.

  7. Combined Experiment Phase 1. [Horizontal axis wind turbines: wind tunnel testing versus field testing

    Energy Technology Data Exchange (ETDEWEB)

    Butterfield, C.P.; Musial, W.P.; Simms, D.A.

    1992-10-01

    How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT) The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

  8. MEMS Reliability: Infrastructure, Test Structures, Experiments, and Failure Modes

    Energy Technology Data Exchange (ETDEWEB)

    TANNER,DANELLE M.; SMITH,NORMAN F.; IRWIN,LLOYD W.; EATON,WILLIAM P.; HELGESEN,KAREN SUE; CLEMENT,J. JOSEPH; MILLER,WILLIAM M.; MILLER,SAMUEL L.; DUGGER,MICHAEL T.; WALRAVEN,JEREMY A.; PETERSON,KENNETH A.

    2000-01-01

    The burgeoning new technology of Micro-Electro-Mechanical Systems (MEMS) shows great promise in the weapons arena. We can now conceive of micro-gyros, micro-surety systems, and micro-navigators that are extremely small and inexpensive. Do we want to use this new technology in critical applications such as nuclear weapons? This question drove us to understand the reliability and failure mechanisms of silicon surface-micromachined MEMS. Development of a testing infrastructure was a crucial step to perform reliability experiments on MEMS devices and will be reported here. In addition, reliability test structures have been designed and characterized. Many experiments were performed to investigate failure modes and specifically those in different environments (humidity, temperature, shock, vibration, and storage). A predictive reliability model for wear of rubbing surfaces in microengines was developed. The root causes of failure for operating and non-operating MEMS are discussed. The major failure mechanism for operating MEMS was wear of the polysilicon rubbing surfaces. Reliability design rules for future MEMS devices are established.

  9. Robust test method for time-course microarray experiments

    Directory of Open Access Journals (Sweden)

    George Stephen L

    2010-07-01

    Full Text Available Abstract Background In a time-course microarray experiment, the expression level for each gene is observed across a number of time-points in order to characterize the temporal trajectories of the gene-expression profiles. For many of these experiments, the scientific aim is the identification of genes for which the trajectories depend on an experimental or phenotypic factor. There is an extensive recent body of literature on statistical methodology for addressing this analytical problem. Most of the existing methods are based on estimating the time-course trajectories using parametric or non-parametric mean regression methods. The sensitivity of these regression methods to outliers, an issue that is well documented in the statistical literature, should be of concern when analyzing microarray data. Results In this paper, we propose a robust testing method for identifying genes whose expression time profiles depend on a factor. Furthermore, we propose a multiple testing procedure to adjust for multiplicity. Conclusions Through an extensive simulation study, we will illustrate the performance of our method. Finally, we will report the results from applying our method to a case study and discussing potential extensions.

  10. Experiments with the HORUS-II test facility

    Energy Technology Data Exchange (ETDEWEB)

    Alt, S.; Lischke, W. [Univ. for Applied Sciences Zittau/Goerlitz, Zittau (Germany). Dept. of Nuclear Engineering

    1997-12-31

    Within the scope of the German reactor safety research the thermohydraulic computer code ATHLET which was developed for accident analyses of western nuclear power plants is more and more used for the accident analysis of VVER-plants particularly for VVER-440,V-213. The experiments with the HORUS-facilities and the analyses with the ATHLET-code have been realized at the Technical University Zittau/Goerlitz since 1991. The aim of the investigations was to improve and verify the condensation model particularly the correlations for the calculation of the heat transfer coefficients in the ATHLET-code for pure steam and steam-noncondensing gas mixtures in horizontal tubes. About 130 condensation experiments have been performed at the HORUS-II facility. The experiments have been carried out with pure steam as well as with noncondensing gas injections into the steam mass flow. The experimental simulations are characterized as accident simulation tests for SBLOCA for VVER-conditions. The simulation conditions had been adjusted correspondingly to the parameters of a postulated SBLOCA`s fourth phase at the original plant. 4 refs.

  11. Corrosion Behavior of L80Steel in Different Temperature and Sulfur Content

    Science.gov (United States)

    Qiu, Zhichao; Xiong, Chunming; Yi, Ran; Ye, Zhengrong

    2017-10-01

    To understand the corrosion behavior of L80 steel in different temperature and sulfur content, the experiment which simulated the downhole corrosive environment was conducted. From the experiment result, when other factors were constant, the lowest corrosion rate was appeared when the temperature was 90°C. The influence of sulfur was complex. When temperature was low, the corrosion rate was decreased with the increase of sulfur content and the experimental result was opposite when temperature was high.

  12. Combining hydrogen evolution and corrosion data - A case study on the economic viability of selected metal cathodes in microbial electrolysis cells

    Science.gov (United States)

    Brown, Robert Keith; Schmidt, Ulrike Christiane; Harnisch, Falk; Schröder, Uwe

    2017-07-01

    In this study, hydrogen evolution reaction (HER) catalytic and corrosion data is determined for selected metal cathode materials. The HER data was gathered using cyclic voltammetry (CV) in electrolytes with several pH values and varying current densities. Of the tested materials, the stainless steel alloy EN 1.4401/AISI 316 generally had the lowest HER overpotentials at the pH values 0.25, 7 and 9. At the higher pH values of 11 and 14 a custom NiMoFe alloy with a m/m% composition of 60-30-10 showed the lowest overpotentials. After each CV experiment, the electrolyte solution was analyzed to determine the corrosion of the metal cathodes. Results of corrosion measurements showed that the stainless steels EN 1.4401 had the lowest corrosion losses on average across all tested pH values. Combining HER and corrosion data revealed that: In the pH 9 electrolyte solution, EN 1.4401 was not always the best catalyst in terms of its overpotential, but it incurs the least material costs due to its lack of corrosion, this balance thereby making it the ;best choice; under the given conditions. The combination of HER and corrosion data provides a more effective framework for discussing economic viability than either data set alone.

  13. Prediction of corrosion rates of water distribution pipelines according to aggressive corrosive water in Korea.

    Science.gov (United States)

    Chung, W S; Yu, M J; Lee, H D

    2004-01-01

    The drinking water network serving Korea has been used for almost 100 years. Therefore, pipelines have suffered various degrees of deterioration due to aggressive environments. The pipe breaks were caused by in-external corrosion, water hammer, surface loading, etc. In this paper, we focused on describing corrosion status in water distribution pipes in Korea and reviewing some methods to predict corrosion rates. Results indicate that corrosive water of lakes was more aggressive than river water and the winter was more aggressive compared to other seasons. The roughness growth rates of Dongbok lake showed 0.23 mm/year. The high variation of corrosion rates is controlled by the aging pipes and smaller diameter. Also the phenolphthalein test on a cementitious core of cement mortar lined ductile cast iron pipe indicated the pipes over 15 years old had lost 50-100% of their lime active cross sectional area.

  14. Microbiologically Influenced Corrosion

    Science.gov (United States)

    2015-11-05

    inCluding oil and gas, from to 2011 [2]. Over that period of time approximately of all releases were attributed to corrosion . National ;sociati<Jn...c>fComJsicmEngineers (NACE) International [3] the cost of corrosion for onshore gas and liquid nsn1ission pipelines was $7 billion. However, there...are no statistics related to microbiologically influenced (MIC) of low alloy steel pipelines. Russian inves- [4] estimated that 30% of the corrosion

  15. Experimental Investigation of Sulfuric Acid Condensation and Corrosion Rate in Motored Bukh DV24 Diesel Engine

    DEFF Research Database (Denmark)

    Kjemtrup, Lars; Cordtz, Rasmus Faurskov; Meyer, Martin

    2017-01-01

    The work conducted in this paper presents a novel experimental setup to study sulfuric acid cold corrosion of cylinder liners in large two-stroke marine diesel engines. The process is simulated in a motored light duty BUKH DV24 diesel engine where the charge air contain known amounts of H2SO4 and H......2O vapor. Liner corrosion is measured as iron accumulation in the lubeoil. Similarly sulfuric acid condensation is assessed by measuring the accumulation of sulfur in the lube oil. To clarify the corrosive effect of sulfuric acid the lube oil utilized for experiments is a sulfur free neutral oil...... without alkaline additives (Chevron Neutral Oil 600R). Iron and sulfur accumulation in the lube oil is analyzed withan Energy Dispersive X-Ray Fluorescence (ED-XRF) apparatus. Three test cases with different H2SO4 concentrations are run. Results reveal good agreement between sulfuric acid injection flow...

  16. Corrosion Resistance of Galvanized Steel in the Environment of a Bioreactor

    Directory of Open Access Journals (Sweden)

    Šustr Michal

    2016-06-01

    Full Text Available The article deals with monitoring the corrosion resistibility of welded materials in the anaerobic fermenter (bioreactor. The main goal of this research is to assess the change of hardness after degradation. The change of hardness occurs in the corrosion environment and it correlates with the corrosion resistibility of material. The purpose of this experiment is to recognize the possibilities of using the CMT welded materials in the defined environment. As an innovative technology the acoustic emission method is used for assessment of surface layer disruption during hardness testing. Aluminium alloy with galvanized steel (AluZinc was used as an experimental material. The basic materials were welded by the filler material AlSi3.

  17. Cryogenic Fluid Management Experiment (CFME) trunnion verification testing

    Science.gov (United States)

    Bailey, W. J.; Fester, D. A.

    1983-01-01

    The Cryogenic Fluid Management Experiment (CFME) was designed to characterize subcritical liquid hydrogen storage and expulsion in the low-g space environment. The CFME has now become the storage and supply tank for the Cryogenic Fluid Management Facility, which includes transfer line and receiver tanks, as well. The liquid hydrogen storage and supply vessel is supported within a vacuum jacket to two fiberglass/epoxy composite trunnions which were analyzed and designed. Analysis using the limited available data indicated the trunnion was the most fatigue critical component in the storage vessel. Before committing the complete storage tank assembly to environmental testing, an experimental assessment was performed to verify the capability of the trunnion design to withstand expected vibration and loading conditions. Three tasks were conducted to evaluate trunnion integrity. The first determined the fatigue properties of the trunnion composite laminate materials. Tests at both ambient and liquid hydrogen temperatures showed composite material fatigue properties far in excess of those expected. Next, an assessment of the adequacy of the trunnion designs was performed (based on the tested material properties).

  18. Physiological Anatomical Rodent Experiment (PARE) .04 Feasibility Test 1

    Science.gov (United States)

    Burden, Hubert W.

    1993-01-01

    The objective of this feasibility study was to investigate the environmental/treatment stresses in the proposed PARE.04 experiments in a ground based study to determine if these stresses were of sufficient magnitude to compromise the planned shuttle experiments. Eighty pregnant Sprague-Dawley rats were received on day 2 (day l equals day of vaginal plug) of gestation (G2) and on G7 60 were laparotomized to determine the condition of pregnancy and allow assignment to test groups. The five test groups (N equals 10 each group) were as follows: Group 1, nominal flight; Group 2, laparotomy control; Group 3, hysterectomy control; Group 4, vivarium control; Group 5, caesarean delivery. On G17, groups 1, 2, and 5 were subjected to unilateral hysterectomy to obtain fetuses for evaluation. There was no difference in fetal crown-rump length, fetal weight, or placental weight in any of the test groups subjected to unilateral hysterectomy at G17. Animals were allowed to go to term and animals in each group delivered between the morning of G22 and the afternoon of G23. Rats assigned to Group 5 began delivering vaginally prior to the designated time for caesarean section, thus only 2 animals in this group were delivered by caesarean section. After delivery, a blood sample was taken from the dam, and they were euthanized and the thymus and adrenal glands weighed. Pups from experimental dams were tattooed for identification, the anogenital distance of male pups was photographed for later measurement, and all pups placed with foster dams and litter sizes were standardized to 10. On day 7, all pups were euthanized, and pup adrenal glands and thymus weighed. Laparotomy at G7 with or without unilateral hysterectomy at G17, had no effect on pregnancy maintenance or vaginal delivery. There was no difference in maternal adrenal or thymus weights or plasma levels of catecholamines, estradiol, progesterone, or corticosterone. Likewise, there was no difference in the anogenital distance

  19. CSEP Testing Center and the first results of the earthquake forecast testing experiment in Japan

    Science.gov (United States)

    Tsuruoka, H.; Hirata, N.; Schorlemmer, D.; Euchner, F.; Nanjo, K. Z.; Jordan, T. H.

    2012-08-01

    Major objectives of the Japanese earthquake prediction research program for the period 2009-2013 are to create earthquake forecasting models and begin the prospective testing of these models against recorded seismicity. For this purpose, the Earthquake Research Institute of the University of Tokyo has joined an international partnership to create a Collaboratory for the Study of Earthquake Predictability (CSEP). Here, we describe a new infrastructure for developing and evaluating forecasting models—the CSEP Japan Testing Center—as well as some preliminary testing results. On 1 November 2009, the Testing Center started a prospective and competitive earthquake predictability experiment using the seismically active and well-instrumented region of Japan as a natural laboratory.

  20. Corrosion in the oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Brondel, D. (Sedco Forex, Montrouge (France)); Edwards, R. (Schlumberger Well Services, Columbus, OH (United States)); Hayman, A. (Etudes et Productions Schlumberger, Clamart (France)); Hill, D. (Schlumberger Dowell, Tulsa, OK (United States)); Mehta, S. (Schlumberger Dowell, St. Austell (United Kingdom)); Semerad, T. (Mobil Oil Indonesia, Inc., Sumatra (Indonesia))

    1994-04-01

    Corrosion costs the oil industry billions of dollars a year, a fact that makes the role of the corrosion engineer an increasingly important one. Attention is paid to how corrosion affects every aspect of exploration and production, from offshore rigs to casing. Also the role of corrosion agents such as drilling and production fluids is reviewed. Methods of control and techniques to monitor corrosion are discussed, along with an explanation of the chemical causes of corrosion. 21 figs., 32 refs.

  1. Corrosion Resistance of Some Stainless Steels in Chloride Solutions

    Directory of Open Access Journals (Sweden)

    Kasprzyk D.

    2017-06-01

    Full Text Available The present work compares corrosion behaviour of four types of S30403, S31603, S32615 austenitic and S32404 austenitic-ferritic stainless steels in chloride solutions (1%, 3% NaCl and in Ringer solution, at 37°C temperature. Corrosion resistance was determined by potentiodynamic polarization measurements and a thirty day immersion test conducted in Ringer solution. The immersion test was performed in term of biomedical application. These alloy were spontaneously passivated in all electrolytes, wherein S30403, S31603 and S32404 undergo pitting corrosion. Only S32615 containing 5.5% Si shows resistance to pitting corrosion.

  2. DEVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION

    Energy Technology Data Exchange (ETDEWEB)

    Bill W. Bogan; Brigid M. Lamb; Gemma Husmillo; Kristine Lowe; J. Robert Paterek; John J. Kilbane II

    2004-12-01

    The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Various chemicals that inhibit the growth and/or the metabolism of corrosion-associated microbes such as sulfate reducing bacteria, denitrifying bacteria, and methanogenic bacteria were evaluated to determine their ability to inhibit corrosion in experiments utilizing pure and mixed bacterial cultures, and planktonic cultures as well as mature biofilms. Planktonic cultures are easier to inhibit than mature biofilms but several compounds were shown to be effective in decreasing the amount of metal corrosion. Of the compounds tested hexane extracts of Capsicum pepper plants and molybdate were the most effective inhibitors of sulfate reducing bacteria, bismuth nitrate was the most effective inhibitor of nitrate reducing bacteria, and 4-((pyridine-2-yl)methylamino)benzoic acid (PMBA) was the most effective inhibitor of methanogenic bacteria. All of these compounds were demonstrated to minimize corrosion due to MIC, at least in some circumstances. The results obtained in this project are consistent with the hypothesis that any compound that disrupts the metabolism of any of the major microbial groups present in corrosion-associated biofilms shows promise in limiting the amount/rate of corrosion. This approach of controlling MIC by controlling the metabolism of biofilms is more environmentally benign than the current approach involving the use of potent biocides, and warrants further investigation.

  3. Experiences with a Focus on Test in Teaching

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    2008-01-01

    quality high. This chapter discusses some concrete teaching guidelines that help in keeping the learning focus on quality and reports on our experiences in applying them. It furthermore presents an important observation relating to the use of test-driven development as a process that focus on high quality......Software of high quality is a major concern in teaching programming: simply making any program that fulfills the requirements is not enough. Yet the way teachers often state exercises tends to make the students focus more on functionality requirements and deadlines than on keeping the program...... Science Curriculum!. In Proceedings of 8th Annual Conference on Innovation and Technology in Computer Science Education, Thessaloniki, Greece, 2003....

  4. Enhanced High Temperature Corrosion Resistance in Advanced Fossil Energy Systems by Nano-Passive Layer Formation

    Energy Technology Data Exchange (ETDEWEB)

    Arnold R. Marder

    2007-06-14

    Due to their excellent corrosion resistance, iron aluminum alloys are currently being considered for use as weld claddings in fossil fuel fired power plants. The susceptibility to hydrogen cracking of these alloys at higher aluminum concentrations has highlighted the need for research into the effect of chromium additions on the corrosion resistance of lower aluminum alloys. In the present work, three iron aluminum alloys were exposed to simulated coal combustion environments at 500 C and 700 C for both short (100 hours) and long (5,000 hours) isothermal durations. Scanning electron microscopy was used to analyze the corrosion products. All alloys exhibited excellent corrosion resistance in the short term tests. For longer exposures, increasing the aluminum concentration was beneficial to the corrosion resistance. The addition of chromium to the binary iron aluminum alloy prevented the formation iron sulfide and resulted in lower corrosion kinetics. A classification of the corrosion products that developed on these alloys is presented. Scanning transmission electron microscopy (STEM) of the as-corroded coupons revealed that chromium was able to form chromium sulfides only on the higher aluminum alloy, thereby preventing the formation of deleterious iron sulfides. When the aluminum concentration was too low to permit selective oxidation of only aluminum (upon initial exposure to the corrosion environment), the formation of chromium oxide alongside the aluminum oxide led to depletion of chromium beneath the oxide layer. Upon penetration of sulfur through the oxide into this depletion layer, iron sulfides (rather than chromium sulfides) were found to form on the low aluminum alloy. Thus, it was found in this work that the role of chromium on alloy corrosion resistance was strongly effected by the aluminum concentration of the alloy. STEM analysis also revealed the encapsulation of external iron sulfide products with a thin layer of aluminum oxide, which may provide a

  5. Electrochemical and pitting corrosion resistance of AISI 4145 steel subjected to massive laser shock peening treatment with different coverage layers

    Science.gov (United States)

    Lu, J. Z.; Han, B.; Cui, C. Y.; Li, C. J.; Luo, K. Y.

    2017-02-01

    The effects of massive laser shock peening (LSP) treatment with different coverage layers on residual stress, pitting morphologies in a standard corrosive solution and electrochemical corrosion resistance of AISI 4145 steel were investigated by pitting corrosion test, potentiodynamic polarisation test, and SEM observations. Results showed massive LSP treatment can effectively cause an obvious improvement of pitting corrosion resistance of AISI 4145 steel, and increased coverage layer can also gradually improve its corrosion resistance. Massive LSP treatment with multiple layers was shown to influence pitting corrosion behaviour in a standard corrosive solution.

  6. Beam tests of the balloon-borne ATIC experiment

    CERN Document Server

    Ganel, O; Ahn, H S; Ampe, J; Bashindzhagian, G L; Case, G; Chang, H; Ellison, S; Fazely, A; Gould, R; Granger, D; Gunasingha, R M; Guzik, T G; Han, Y J; Isbert, J; Kim, H J; Kim, K C; Kim, S K; Kwon, Y; Panasyuk, M Y; Panov, A; Price, B; Samsonov, G; Schmidt, W K H; Sen, M; Seo, E S; Sina, R; Sokolskaya, N; Stewart, M; Voronin, A; Wagner, D; Wang, J Z; Wefel, J P; Wu, J; Zatsepin, V

    2005-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) balloon-borne experiment is designed to perform cosmic-ray elemental spectra measurements from 50 GeV to 100 TeV for nuclei from hydrogen to iron. These measurements are expected to provide information about some of the most fundamental questions in astroparticle physics today. ATIC's design centers on an 18 radiation length (X0) deep bismuth germanate (BGO) calorimeter, preceded by a 0.75λint graphite target. In September 1999, the ATIC detector was exposed to high-energy beams at CERN's SPS accelerator within the framework of the development program for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). In December 2000–January 2001 and again in December 2002–January 2003, ATIC flew on the first two of a series of long-duration balloon (LDB) flights from McMurdo Station, Antarctica. We present here results from the 1999 beam tests, including energy resolutions for electrons and protons at several beam energies from 100 to 375 G...

  7. Beam Tests of the Balloon-Borne ATIC Experiment

    Science.gov (United States)

    Ganel, O.; Adams, J. H., Jr.; Ahn, E. J.; Ampe, J.; Bashindzhagyan, G.; Case, G.; Chang, J.; Ellison, S.; Fazely, A.; Gould, R.

    2003-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) balloon-borne experiment is designed to perform cosmic-ray elemental spectra measurement from 50 GeV to 100 TeV for nuclei from hydrogen to iron. These measurements are expected to provide crucial hints about some of the most fundamental questions in astroparticle physics today. ATTIC'S design centers on an 18 radiation length (X(sub Omnicron)) deep bismuth germanate (BGO) calorimeter, preceded by a 0.75 lambda(sub int) graphite target. In September 1999 the ATIC detector was exposed to high-energy beams at CERN's SPS accelerator, within the framework of the development program for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). In December 2000 - January 2001, ATIC flew on the first of a series of long duration balloon (LDB) flights from McMurdo Station, Antarctica. We present here results from the 1999 beam-tests, including energy resolutions for electrons and protons at several beam energies from 100 GeV to 375 GeV, as well as signal linearity and collection efficiency estimates. We show how these results compare with expectations based on simulations, and their expected impacts on mission performance.

  8. Irradiation-Accelerated Corrosion of Reactor Core Materials. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zhujie [Univ. of Michigan, Ann Arbor, MI (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States); Bartels, David [Univ. of Notre Dame, IN (United States)

    2015-04-02

    This project aims to understand how radiation accelerates corrosion of reactor core materials. The combination of high temperature, chemically aggressive coolants, a high radiation flux and mechanical stress poses a major challenge for the life extension of current light water reactors, as well as the success of most all GenIV concepts. Of these four drivers, the combination of radiation and corrosion places the most severe demands on materials, for which an understanding of the fundamental science is simply absent. Only a few experiments have been conducted to understand how corrosion occurs under irradiation, yet the limited data indicates that the effect is large; irradiation causes order of magnitude increases in corrosion rates. Without a firm understanding of the mechanisms by which radiation and corrosion interact in film formation, growth, breakdown and repair, the extension of the current LWR fleet beyond 60 years and the success of advanced nuclear energy systems are questionable. The proposed work will address the process of irradiation-accelerated corrosion that is important to all current and advanced reactor designs, but remains very poorly understood. An improved understanding of the role of irradiation in the corrosion process will provide the community with the tools to develop predictive models for in-reactor corrosion, and to address specific, important forms of corrosion such as irradiation assisted stress corrosion cracking.

  9. Surface modification techniques for increased corrosion tolerance of zirconium fuel cladding

    Science.gov (United States)

    Carr, James Patrick, IV

    mechanical properties. To test their application for use in corrosive atmospheres, the corrosion behaviors are also compared in steam, water, and boric-acid environments. Various methods of surface modification were attempted in this investigation, including dip coating, diffusion bonding, casting, sputtering, and evaporation. The benefits and drawbacks of each method are discussed with respect to manufacturing and economic limits. Characterization techniques utilized in this work include optical microscopy, scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, nanoindentation, adhesion testing, and atomic force microscopy. The composition, microstructure, hardness, modulus, and coating adhesion were studied to provide encompassing properties to determine suitable comparisons and to choose an ideal method to scale to industrial applications. The experiments, results, and detailed discussions are presented in the following chapters of this dissertation research.

  10. Corrosion behavior of sensitized duplex stainless steel.

    Science.gov (United States)

    Torres, F J; Panyayong, W; Rogers, W; Velasquez-Plata, D; Oshida, Y; Moore, B K

    1998-01-01

    The present work investigates the corrosion behavior of 2205 duplex stainless steel in 0.9% NaCl solution after various heat-treatments, and compares it to that of 316L austenitic stainless steel. Both stainless steels were heat-treated at 500, 650, and 800 degrees C in air for 1 h, followed by furnace cooling. Each heat-treated sample was examined for their microstructures and Vickers micro-hardness, and subjected to the X-ray diffraction for the phase identification. Using potentiostatic polarization method, each heat-treated sample was corrosion-tested in 37 degrees C 0.9% NaCl solution to estimate its corrosion rate. It was found that simulated sensitization showed an adverse influence on both steels, indicating that corrosion rates increased by increasing the sensitization temperatures.

  11. Corrosion Behavior of Cast Iron in Freely Aerated Stagnant Arabian Gulf Seawater

    Science.gov (United States)

    Sherif, El-Sayed M.; Abdo, Hany S.; Almajid, Abdulhakim A.

    2015-01-01

    In this work, the results obtained from studying the corrosion of cast iron in freely aerated stagnant Arabian Gulf seawater (AGS) at room temperature were reported. The study was carried out using weight-loss (WL), cyclic potentiodynamic polarization (CPP), open-circuit potential (OCP), and electrochemical impedance spectroscopy (EIS) measurements and complemented by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) investigations. WL experiments between two and 10 days’ immersion in the test electrolyte indicated that the weight-loss the cast iron increases with increasing the time of immersion. CPP measurements after 1 h and 24 h exposure period showed that the increase of time decreases the corrosion via decreasing the anodic and cathodic currents, as well as decreasing the corrosion current and corrosion rate and increasing the polarization resistance of the cast iron. EIS data confirmed the ones obtained by WL and CPP that the increase of immersion time decreases the corrosion of cast iron by increasing its polarization resistance.

  12. Installing Mechanics of Granular Materials (MGM) experiment Test Cell

    Science.gov (United States)

    1996-01-01

    Astronaut Jay Apt installs Mechanics of Granular Materials (MGM0 test cell on STS-79. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: NASA/John Space Center).

  13. The Corrosion Protection of Magnesium Alloy AZ31B

    Science.gov (United States)

    Danford, M. D.; Mendrek, M. J.; Mitchell, M. L.; Torres, P. D.

    1997-01-01

    Corrosion rates for bare and coated Magnesium alloy AZ31B have been measured. Two coatings, Dow-23(Trademark) and Tagnite(Trademark), have been tested by electrochemical methods and their effectiveness determined. Electrochemical methods employed were the scanning reference electrode technique (SRET), the polarization resistance technique (PR) and the electrochemical impedance spectroscopy technique (EIS). In addition, general corrosion and stress corrosion methods were employed to examine the effectiveness of the above coatings in 90 percent humidity. Results from these studies are presented.

  14. Optimum coagulant forecasting by modeling jar test experiments using ANNs

    Directory of Open Access Journals (Sweden)

    S. Haghiri

    2018-01-01

    Full Text Available Currently, the proper utilization of water treatment plants and optimizing their use is of particular importance. Coagulation and flocculation in water treatment are the common ways through which the use of coagulants leads to instability of particles and the formation of larger and heavier particles, resulting in improvement of sedimentation and filtration processes. Determination of the optimum dose of such a coagulant is of particular significance. A high dose, in addition to adding costs, can cause the sediment to remain in the filtrate, a dangerous condition according to the standards, while a sub-adequate dose of coagulants can result in the reducing the required quality and acceptable performance of the coagulation process. Although jar tests are used for testing coagulants, such experiments face many constraints with respect to evaluating the results produced by sudden changes in input water because of their significant costs, long time requirements, and complex relationships among the many factors (turbidity, temperature, pH, alkalinity, etc. that can influence the efficiency of coagulant and test results. Modeling can be used to overcome these limitations; in this research study, an artificial neural network (ANN multi-layer perceptron (MLP with one hidden layer has been used for modeling the jar test to determine the dosage level of used coagulant in water treatment processes. The data contained in this research have been obtained from the drinking water treatment plant located in Ardabil province in Iran. To evaluate the performance of the model, the mean squared error (MSE and correlation coefficient (R2 parameters have been used. The obtained values are within an acceptable range that demonstrates the high accuracy of the models with respect to the estimation of water-quality characteristics and the optimal dosages of coagulants; so using these models will allow operators to not only reduce costs and time taken to perform

  15. Microbial Corrosion and Cracking in Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    1998-01-01

    and for recommendations in regards to electrochemical monitoring of MIC. The work presented here and further studies are also planned to lead to a Ph.D. thesis on "MIC monitoring based on mechanisms of corrosion".The results of laboratory experiments conducted in the period 1995 to 1997 are summarised. Conclusions...... will be based on results from the entire 3 year period, but only selected experimental data primarily from the latest experiments will be presented in detail here.Microbial corrosion of carbon steel under influence of sulphate-reducing bacteria (SRB) is characterised by the formation of both biofilm...... and corrosion products (ferrous sulphides) on the metal surface. Experiments have been conducted on carbon steel exposed in near neutral (pH 6 to 8.5) saline hydrogen sulphide environment (0 to 100 mg/l total dissolved sulphide) for a period of 14 days. Furthermore coupons have been exposed in a bioreactor...

  16. Experiences of the REACH testing proposals system to reduce animal testing.

    Science.gov (United States)

    Taylor, Katy; Stengel, Wolfgang; Casalegno, Carlotta; Andrew, David

    2014-01-01

    In order to reduce animal testing, companies registering chemical substances under the EU REACH legislation must propose rather than conduct certain tests on animals. Third parties can submit 'scientifically valid information' relevant to these proposals to the Agency responsible, the European Chemicals Agency (ECHA), who are obliged to take the information into account. The European Coalition to End Animal Experiments (ECEAE) provided comments on nearly half of the 817 proposals for vertebrate tests on 480 substances published for comment for the first REACH deadline (between 1 August 2009 and 31 July 2012). The paper summarises the response by registrants and the Agency to third party comments and highlights issues with the use of read across, in vitro tests, QSAR and weight of evidence approaches. Use of existing data and evidence that testing is legally or scientifically unjustified remain the most successful comments for third parties to submit. There is a worrying conservatism within the Agency regarding the acceptance of alternative approaches and examples of where registrants have also failed to maximise opportunities to avoid testing.

  17. Test site experiments with a reconfigurable stepped frequency GPR

    Science.gov (United States)

    Persico, Raffaele; Matera, Loredana; Piro, Salvatore; Rizzo, Enzo; Capozzoli, Luigi

    2016-04-01

    the fact that the integration time of the harmonic components of the signal can be prolonged in a programmable way, so that (in particular) there is the possibility to reject undesired narrow band interferences without filtering the signal, namely without loosing part of the information contained in the signal. The third property is that the power can be modulated frequency by frequency. Indeed, we don't know if this third property is a real advantage, but the first two have been already exploited showing some encouraging results. At the conference, we will show the results achieved from two measurement campaign performed in two controlled site, namely the the test site of Hydrogeosite Laboratory, in Marsico Nuovo (Southern Italy), belonging to the Institute of Methodologies for Environmental Analysis of the Italian National Research Council [3] and the test site of Montelibretti, in central Italy, belonging to the Institute of Technologies Applied to Cultural Heritage of the National Research Council [4]. In both test sites, among other things, anomalies resembling features of archaeological or near surface interest have been predisposed, as a tomb, a paved road, an amphora, a statue, a buried chamber, a cylinder, a structure in opus coementicium. The test site of Montelibretti is outdoor, in an area of archaeological interest were the ancient population of the Sabini has left relevant testimonies. The test site of Hydrogeosite Laboratory is indoor, in a hat were a large pool (240m3) has been filled up with sand after burying the test targets. This test site is equipped also for hydrogeophysical experiments by means of a controlled hydraulic system for the progressive immission of water in the sand. Depth slices will be shown for both sites, as well as some tests for the mitigation of intereferences by means of the modulation of the integration time of the harmonic components of the signal. Some of the interferences have been artificially introduced by means of a

  18. Corrosion rate sensors for soil, water and concrete

    Energy Technology Data Exchange (ETDEWEB)

    Ansuini, F. [Electrochemical Devices, Inc., Albion, RI (United States); Yaffe, M. [Gamry Instruments, Inc., Willow Grove, PA (United States); Chaker, V. [Port Authority of New York and New Jersey, New York, NY (United States)

    1995-10-01

    Present concern over the condition of the infrastructure has created a need to monitor corrosion of large field structures in real time. New sensors have been developed for measuring corrosion rates of steel in concrete, underground and aqueous environments. This paper will discuss sensor designs including both the transducer and the electronics as well as field experience with these sensors in concrete.

  19. Advanced Corrosion-Resistant Zr Alloys for High Burnup and Generation IV Application

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y. H.; Park, S. Y.; Lee, M. H.; Choi, B. K.; Baek, J. H.; Park, J. Y.; Kim, J. H.; Kim, H. G.; Jung, Y. H.; Bang, B. G

    2006-08-15

    The systematic study was performed to develop the advanced corrosion-resistant Zr alloys for high burnup and Gen IV application. The corrosion behavior was significantly changed with the alloy composition and the corrosion environment. In general, the model alloys with a higher alloying elements showed a higher corrosion resistance. Among the model alloys tested in this study, Zr-10Cr-0.2Fe showed the best corrosion resistance regardless of the corrosion condition. The oxide on the higher corrosion-resistant alloy such as Zr-1.0Cr-0.2Fe consisted of mainly columnar grains, and it have a higher tetragonal phase stability. In comparison with other alloys being considered for the SCWR, the Zr alloys showed a lower corrosion rate than ferritic-martensitic steels. The results of this study imply that, at least from a corrosion standpoint, Zr alloys deserve consideration as potential cladding or structural materials in supercritical water cooled reactors.

  20. Corrosion analysis in mooring chain links; Analise de corrosao em elos de amarras

    Energy Technology Data Exchange (ETDEWEB)

    Leal, Silvia N.; Pereira, Marcos V. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Ciencia dos Materiais e Metalurgia; Costa, Luis C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Motta, Sergio H. [Brasilamarras - Companhia Brasileira de Amarras, Niteroi, RJ (Brazil)

    2004-07-01

    The purpose of this work was to characterize the localized corrosion phenomenon in the weld region of offshore mooring chain links type ORQ. In this sense, a number of chain links were selected after finishing their projected life time without corrosion signs (chains without corrosion) as well as chain links which showed a reduced life time caused by localized corrosion (chains with corrosion). In the sequence, electrochemistry tests evaluated the corrosion susceptibility of the different regions of the weld joint. The results showed that the heat affected zone concerning the chains with corrosion was the anodic region, with high corrosion rate, while the same region on the not corroded chains was the cathodic one, with low corrosion rate. (author)

  1. Monitoring corrosion rates and localised corrosion in low conductivity water

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2006-01-01

    Monitoring of low corrosion rates and localised corrosion in a media with low conductivity is a challenge. In municipal district heating, quality control may be improved by implementing on-line corrosion monitoring if a suitable technique can be identified to measure both uniform and localised...... corrosion. Electrochemical techniques (LPR, EIS, crevice corrosion current) as well as direct measurement techniques (high-sensitive electrical resistance, weight loss) have been applied in operating plants. Changes in the corrosion processes are best monitored in non-aggressive, low conductivity media...... with sensitive electrical resistance technique and crevice corrosion current measurements....

  2. Corrosion Behavior of Nickel Alloy (ASTM A 494 M) Reinforced with Fused SiO2 Chilled Metal Matrix Composites (MMCs) for Marine Applications

    Science.gov (United States)

    Hemanth, Joel, Dr.

    2017-08-01

    This paper presents the results obtained and the discussions made from a series of corrosion experiments involving Nickel alloy (ASTM A 494 M) reinforced with fused SiO2, size of the particles dispersed varies from 80-120 µm and amount of addition varies from 3 to 12 wt.% in steps of 3 wt.%. The resulting chilled MMCs are solidified under the influence of copper chill of 25 mm thickness to study the effect of corrosion behavior. Corrosion resistance was found to increase significantly with increase in SiO2 content in chilled MMCs. Nevertheless, even with high SiO2 content corrosion attack ie., pitting was found to be most severe during the initial stages of each test but it invariably decreased to a very low value in the later stages, due to the formation of an adherent protective layer on the MMCs developed.

  3. Localized corrosion information using high resolution measurement devices

    DEFF Research Database (Denmark)

    Ambat, Rajan

    2005-01-01

    High performance demand for several engineering alloys and components, and miniaturization of electronics and development of MEMS requires better understanding of local corrosion characteristics frequently down to µm scale. This is because in metallic materials corrosion is a sensitive function...... in conjunction with microstructural analysis, using advanced microscopic tools, becomes very important. Corrosion of microelectronics circuits and MEMs is also a recent problem, which demands measurement resolution down to few microns as the components are extremely small, and measurement needs to be carried out...... of the technique could be further enhanced by adding new features such as high resolution video visualization systems, fretting/tribo-corroson attachments, and also by integrating it with stress corrosion testing, corrosion investigation of concrete for a few to name with. The corrosion group in MPT, Technical...

  4. Experiments and Modeling to Support Field Test Design

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Peter Jacob [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bourret, Suzanne Michelle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zyvoloski, George Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Weaver, Douglas James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-25

    Disposition of heat-generating nuclear waste (HGNW) remains a continuing technical and sociopolitical challenge. We define HGNW as the combination of both heat generating defense high level waste (DHLW) and civilian spent nuclear fuel (SNF). Numerous concepts for HGNW management have been proposed and examined internationally, including an extensive focus on geologic disposal (c.f. Brunnengräber et al., 2013). One type of proposed geologic material is salt, so chosen because of its viscoplastic deformation that causes self-repair of damage or deformation induced in the salt by waste emplacement activities (Hansen and Leigh, 2011). Salt as a repository material has been tested at several sites around the world, notably the Morsleben facility in Germany (c.f. Fahland and Heusermann, 2013; Wollrath et al., 2014; Fahland et al., 2015) and at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM. Evaluating the technical feasibility of a HGNW repository in salt is an ongoing process involving experiments and numerical modeling of many processes at many facilities.

  5. Corrosion sealing of amalgam restorations in vitro.

    Science.gov (United States)

    Mahler, David B; Pham, Bao V; Adey, Jerry D

    2009-01-01

    Amalgam restorations, when first placed, have been shown to exhibit a gap at the amalgam/tooth interface. With time in service, this gap fills with corrosion products that have the potential to "seal" the restoration. With the advent of high-copper, more corrosion-resistant amalgams, there has been concern that the time required to create this seal would be increased significantly when compared with low-copper traditional amalgams. The current study was designed to address this concern. Amalgam was condensed into a MACOR mold, simulating a Class I cavity form and then immersed into a 1.0% NaCl solution to simulate oral conditions. Using an air pressure test, the sealing was monitored over time. The results showed that the sealing was influenced by the size of the initial gap prior to immersion as well as corrosion resistance of the amalgam and that a corrosion-resistant amalgam with a small initial gap size can seal as quickly as a corrosion-prone amalgam. Therefore, it is not possible to predict sealing behavior based on corrosion resistance, alone. Furthermore, the presence of zinc in the amalgam alloy has been shown to result in the formation of zinc corrosion products in the amalgam/mold margin, which contributes to more rapid sealing. Analysis of a tooth extracted after 16 years of clinical service that had been restored with an amalgam-containing zinc was also shown to contain zinc corrosion products in the occlusal marginal area. This could explain the reported reduction in marginal fracture of clinically placed amalgam restorations made from zinc-containing alloys.

  6. Physiological Anatomical Rodent Experiment (PARE) .04 feasibility test 2

    Science.gov (United States)

    Burden, Hubert W.

    1994-01-01

    The objective of this feasibility study was to subject pregnant rats of the same age, strain, and size that will be utilized in a shuttle flight experiment to all flight conditions except the unique microgravity of space flight and determine the feasibility of the proposed experimental design to meet the experimental objectives. The study utilized facilities at NASA, Ames Research Center, Moffett Field, CA to subject the rats to the gravitational stresses of a simulated shuttle launch and simulated shuttle landing. One hundred pregnant rats were received on gestation day (G) 2 (day 1 = day of vaginal sperm) and on G7, eighty rats were laparotomized to determine the condition of pregnancy and allow assignment to test groups. The five test groups (N=10 each group) were as follows: Group 1, Nominal Flight; Group 2, Laparotomy Control; Group 3, Hysterectomy Control; Group 4, Vivarium Control; Group 5, Delayed Recovery. On G9, animals in groups 1,2,3, and 5 were subjected to a shuttle launch simulation. On G18, groups 1,2, and 3 were subjected to a shuttle landing simulation and on this same day groups 1 and 2 were subjected to unilateral hysterectomy to obtain fetuses and placentas for evaluation. Fetal crown-rump length and fetal weight of the Nominal Flight group was significantly less than the Laparotomy Control group, but placentas were similar. On G20, group 5 was subjected to a shuttle landing simulation and on this day this group received a unilateral hysterectomy and fetuses and placentas were weighed. Animals in all groups were allowed to go to term and all animals delivered between 06:00 hours G22 and 18:00 hours G23. After delivery, a blood sample was taken from each experimental dam, and they were euthanized and the thymus and adrenal glands weighed. The thymus weight from all experimental group dams was decreased relative to the Vivarium Control group but adrenal glands and hormone values in dam plasma was similar in all groups. Pups from experimental

  7. Hot corrosion resistance of nickel-chromium-aluminum alloys

    Science.gov (United States)

    Santoro, G. J.; Barret, C. A.

    1977-01-01

    The hot corrosion resistance of nickel-chromium-aluminum alloys was examined by cyclically oxidizing sodium sulfate-coated specimens in still air at 900, 1000, and 1100 C. The compositions tested were within the ternary region: Ni, Ni-50 at.% Cr, and Ni-50 at.% Al. At each temperature the corrosion data were statistically fitted to a third order regression equation as a function of chromium and aluminum contents. From these equations corrosion isopleths were prepared. Compositional regions with the best hot corrosion resistance were identified.

  8. Corrosion behaviour of construction materials for high temperature steam electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Christensen, Erik

    2011-01-01

    Different types of commercially available stainless steels, Ni-based alloys as well as titanium and tantalum were evaluated as possible metallic bipolar plates and construction materials. The corrosion resistance was measured under simulated conditions corresponding to the conditions in high...... to corrosion under strong anodic polarisation. Among alloys, Ni-based showed the highest corrosion resistance in the simulated PEM electrolyser medium. In particular, Inconel 625 was the most promising among the tested corrosion-resistant alloys for the anodic compartment in high temperature steam electrolysis...

  9. Automated Methods Of Corrosion Measurements

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers; Andersen, Jens Enevold Thaulov; Reeve, John Ch

    1997-01-01

    The chapter describes the following automated measurements: Corrosion Measurements by Titration, Imaging Corrosion by Scanning Probe Microscopy, Critical Pitting Temperature and Application of the Electrochemical Hydrogen Permeation Cell.......The chapter describes the following automated measurements: Corrosion Measurements by Titration, Imaging Corrosion by Scanning Probe Microscopy, Critical Pitting Temperature and Application of the Electrochemical Hydrogen Permeation Cell....

  10. The Cryogenic Test Bed experiments: Cryogenic heat pipe flight experiment CRYOHP (STS-53). Cryogenic two phase flight experiment CRYOTP (STS-62). Cryogenic flexible diode flight experiment CRYOFD

    Science.gov (United States)

    Thienel, Lee; Stouffer, Chuck

    1995-01-01

    This paper presents an overview of the Cryogenic Test Bed (CTB) experiments including experiment results, integration techniques used, and lessons learned during integration, test and flight phases of the Cryogenic Heat Pipe Flight Experiment (STS-53) and the Cryogenic Two Phase Flight Experiment (OAST-2, STS-62). We will also discuss the Cryogenic Flexible Diode Heat Pipe (CRYOFD) experiment which will fly in the 1996/97 time frame and the fourth flight of the CTB which will fly in the 1997/98 time frame. The two missions tested two oxygen axially grooved heat pipes, a nitrogen fibrous wick heat pipe and a 2-methylpentane phase change material thermal storage unit. Techniques were found for solving problems with vibration from the cryo-collers transmitted through the compressors and the cold heads, and mounting the heat pipe without introducing parasitic heat leaks. A thermally conductive interface material was selected that would meet the requirements and perform over the temperature range of 55 to 300 K. Problems are discussed with the bi-metallic thermostats used for heater circuit protection and the S-Glass suspension straps originally used to secure the BETSU PCM in the CRYOTP mission. Flight results will be compared to 1-g test results and differences will be discussed.

  11. The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor.

    Science.gov (United States)

    Minnoş, Bihter; Ilhan-Sungur, Esra; Çotuk, Ayşın; Güngör, Nihal Doğruöz; Cansever, Nurhan

    2013-01-01

    The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor was investigated over a 10-month period in a hotel. Planktonic and sessile numbers of sulphate reducing bacteria (SRB) and heterotrophic bacteria were monitored. The corrosion rate was determined by the weight loss method. The corrosion products were analyzed by energy dispersive X-ray spectroscopy and X-ray diffraction. A mineralized, heterogeneous biofilm was observed on the coupons. Although a biocide and a corrosion inhibitor were regularly added to the cooling water, the results showed that microorganisms, such as SRB in the mixed species biofilm, caused corrosion of galvanized steel. It was observed that Zn layers on the test coupons were completely depleted after 3 months. The Fe concentrations in the biofilm showed significant correlations with the weight loss and carbohydrate concentration (respectively, p < 0.01 and p < 0.01).

  12. PROBABILITY BASED CORROSION CONTROL FOR WASTE TANKS - PART II

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E.; Edwards, T.

    2010-12-09

    As part of an ongoing study to evaluate the discontinuity in the corrosion controls at the SRS tank farm, a study was conducted this year to assess the minimum concentrations below 1 molar nitrate, see Figure 1. Current controls on the tank farm solution chemistry are in place to prevent the initiation and propagation of pitting and stress corrosion cracking in the primary steel waste tanks. The controls are based upon a series of experiments performed with simulated solutions on materials used for construction of the tanks, namely ASTM A537 carbon steel (A537). During FY09, an experimental program was undertaken to investigate the risk associated with reducing the minimum molar nitrite concentration required to confidently inhibit pitting in dilute solutions (i.e., less than 1 molar nitrate). The experimental results and conclusions herein provide a statistical basis to quantify the probability of pitting for the tank wall exposed to various solutions with dilute concentrations of nitrate and nitrite. Understanding the probability for pitting will allow the facility to make tank-specific risk-based decisions for chemistry control. Based on previous electrochemical testing, a statistical test matrix was developed to refine and solidify the application of the statistical mixture/amount model to corrosion of A537 steel. A mixture/amount model was identified based on statistical analysis of recent and historically collected electrochemical data. This model provides a more complex relationship between the nitrate and nitrite concentrations and the probability of pitting than is represented by the model underlying the current chemistry control program, and its use may provide a technical basis for the utilization of less nitrite to inhibit pitting at concentrations below 1 molar nitrate. FY09 results fit within the mixture/amount model, and further refine the nitrate regime in which the model is applicable. The combination of visual observations and cyclic

  13. Effect of Grain Size on the Corrosion Behavior of 304L Stainless Steel

    Directory of Open Access Journals (Sweden)

    M. Atapour

    2016-03-01

    Full Text Available In this investigation, the effect of grain size on the corrosion behavior of 304L stainless steel has been studied. Samples with grain sizes of 0.5, 3 and 12 micrometers were fabricated through formation of strain-induced martensite by 80% cold rolling of the stainless steel sheets at -15 °C and its reversion to austenite during annealing at 900 °C for 1, 5 and 180 min. The corrosion behavior of samples with different grain sizes was investigated by cyclic polarization experiments and  immersion tests in 0.1 M hydrochloric acid (HCl. The polarisation tests showed no differences in uniform corrosion rates of the samples. The results of the cyclic polarisation and immersion tests showed that decreasing the grain size improved the pitting corrosion resistance from 290 mVAg/Agcl for grain size of 12 micrometers to 420 mVAg/Agcl for grain size of 0.5 micrometers.

  14. Seacoast stress corrosion cracking of aluminum alloys

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1981-01-01

    The stress corrosion cracking resistance of high strength, wrought aluminum alloys in a seacoast atmosphere was investigated and the results were compared with those obtained in laboratory tests. Round tensile specimens taken from the short transverse grain direction of aluminum plate and stressed up to 100 percent of their yield strengths were exposed to the seacoast and to alternate immersion in salt water and synthetic seawater. Maximum exposure periods of one year at the seacoast, 0.3 or 0.7 of a month for alternate immersion in salt water, and three months for synthetic seawater were indicated for aluminum alloys to avoid false indications of stress corrosion cracking failure resulting from pitting. Correlation of the results was very good among the three test media using the selected exposure periods. It is concluded that either of the laboratory test media is suitable for evaluating the stress corrosion cracking performance of aluminum alloys in seacoast atmosphere.

  15. An overview of materials degradation by stress corrosion in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P. M. [Framatome ANP, Tour Areva, 92084 Paris La Defense Cedex (France)

    2004-07-01

    The aging of water cooled and moderated nuclear steam supply systems has given rise to many material corrosion problems of which stress corrosion cracking has proved to be one of the most serious. The aim of this paper is to review some examples of corrosion and particularly stress corrosion problems from the author's experience of interpreting and modelling these phenomena in PWR systems. Examples of stress corrosion cracking in PWR systems described include the major issue of Alloy 600 intergranular cracking in primary PWR coolants, for which it is generally perceived that both adequate life prediction models and remedial measures now exist. Intergranular corrosion and stress corrosion cracking of Alloy 600 steam generator tubes that occur in occluded superheated crevices on the secondary side of steam generators due to hide-out and concentration of water borne impurities are also addressed. Rather less extensive or well known examples are discussed such as the stress corrosion cracking of carbon and low alloy steels and of stainless steels in occluded dead-leg situations where it is sometimes difficult to guarantee adequate control of water chemistry, particularly at plant start-up. Reference is also be made to the use of high strength fastener materials in PWR systems as well as to the emerging issue of the effect of high neutron doses on the stress corrosion resistance of core structural components fabricated from austenitic stainless steels. (authors)

  16. Corrosion Evaluation of RERTR Uranium Molybdenum Fuel

    Energy Technology Data Exchange (ETDEWEB)

    A K Wertsching

    2012-09-01

    As part of the National Nuclear Security Agency (NNSA) mandate to replace the use of highly enriched uranium (HEU) fuel for low enriched uranium (LEU) fuel, research into the development of LEU fuel for research reactors has been active since the late 1970’s. Originally referred to as the Reduced Enrichment for Research and Test Reactor (RERTR) program the new effort named Global Threat Reduction Initiative (GTRI) is nearing the goal of replacing the standard aluminum clad dispersion highly enriched uranium aluminide fuel with a new LEU fuel. The five domestic high performance research reactors undergoing this conversion are High Flux Isotope reactor (HFIR), Advanced Test Reactor (ATR), National Institute of Standards and Technology (NIST) Reactor, Missouri University Research Reactor (MURR) and the Massachusetts Institute of Technology Reactor II (MITR-II). The design of these reactors requires a higher neutron flux than other international research reactors, which to this point has posed unique challenges in the design and development of the new mandated LEU fuel. The new design utilizes a monolithic fuel configuration in order to obtain sufficient 235U within the LEU stoichoimetry to maintain the fission reaction within the domestic test reactors. The change from uranium aluminide dispersion fuel type to uranium molybdenum (UMo) monolithic configuration requires examination of possible corrosion issues associated with the new fuel meat. A focused analysis of the UMo fuel under potential corrosion conditions, within the ATR and under aqueous storage indicates a slow and predictable corrosion rate. Additional corrosion testing is recommended for the highest burn-up fuels to confirm observed corrosion rate trends. This corrosion analysis will focus only on the UMo fuel and will address corrosion of ancillary components such as cladding only in terms of how it affects the fuel. The calculations and corrosion scenarios are weighted with a conservative bias to

  17. Prediction of microsegregation and pitting corrosion resistance of austenitic stainless steel welds by modelling

    Energy Technology Data Exchange (ETDEWEB)

    Vilpas, M. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity

    1999-07-01

    The present study focuses on the ability of several computer models to accurately predict the solidification, microsegregation and pitting corrosion resistance of austenitic stainless steel weld metals. Emphasis was given to modelling the effect of welding speed on solute redistribution and ultimately to the prediction of weld pitting corrosion resistance. Calculations were experimentally verified by applying autogenous GTA- and laser processes over the welding speed range of 0.1 to 5 m/min for several austenitic stainless steel grades. Analytical and computer aided models were applied and linked together for modelling the solidification behaviour of welds. The combined use of macroscopic and microscopic modelling is a unique feature of this work. This procedure made it possible to demonstrate the effect of weld pool shape and the resulting solidification parameters on microsegregation and pitting corrosion resistance. Microscopic models were also used separately to study the role of welding speed and solidification mode in the development of microsegregation and pitting corrosion resistance. These investigations demonstrate that the macroscopic model can be implemented to predict solidification parameters that agree well with experimentally measured values. The linked macro-micro modelling was also able to accurately predict segregation profiles and CPT-temperatures obtained from experiments. The macro-micro simulations clearly showed the major roles of weld composition and welding speed in determining segregation and pitting corrosion resistance while the effect of weld shape variations remained negligible. The microscopic dendrite tip and interdendritic models were applied to welds with good agreement with measured segregation profiles. Simulations predicted that weld inhomogeneity can be substantially decreased with increasing welding speed resulting in a corresponding improvement in the weld pitting corrosion resistance. In the case of primary austenitic

  18. Technical Basis Document No. 6: Waste Package and Drip Shield Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Pasupathi, V; Nair, P; Gordon, G; McCright, D; Gdowski, G; Carroll, S; Steinborn, T; Summers, T; Wong, F; Rebak, R; Lian, T; Ilevbare, G; Lee, J; Hua, F; Payer, J

    2003-08-01

    The waste package and drip shield will experience a wide range of interactive environmental conditions and degradation modes that will determine the overall performance of the waste package and repository. The operable modes of degradation are determined by the temperature regime of operation (region), and are summarized here. Dry-Out Region (T {ge} 120 C; 50 to 400 Years): During the pre-closure period, the waste package will be kept dry by ventilation air. During the thermal pulse, heat generated by radioactive decay will eventually increase the temperature of the waste package, drip shield and drift wall to a level above the boiling point, where the probability of seepage into drifts will become insignificant. Further heating will push the waste package surface temperature above the deliquescence point of expected salt mixtures, thereby preventing the formation of deliquescence brines from dust deposits and humid air. Phase and time-temperature-transformation diagrams predicted for Alloy 22, and validated with experimental data, indicates no significant phase instabilities (LRO and TCP precipitation) at temperatures below 300 C for 10,000 years. Neither will dry oxidation at these elevated temperatures limit waste package life. After the peak temperature is reached, the waste package will begin to cool, eventually reaching a point where deliquescence brine formation may occur. However, corrosion testing of Alloy 22 underneath such films has shown no evidence of life-limiting localized corrosion. Transition Region (120 C {ge} T {ge} 100 C; 400 to 1,000 Years): During continued cooling, the temperature of the drift wall will drop to a level close to the boiling point of the seepage brine, thus permitting the onset of seepage. Corrosion in a concentrated, possibly aggressive, liquid-phase brine, evolved through evaporative concentration, is possible while in this region. However, based upon chemical divide theory, most ({ge} 99%) of the seepage water entering the

  19. Study on the Synthesis and Corrosion Inhibition Performance of Mannich-Modified Imidazoline

    Directory of Open Access Journals (Sweden)

    Xiangjun Kong

    2016-07-01

    Full Text Available A novel Mannich-modified imidazoline (MMI as cationic emulsifier was synthesised for corrosion harm reduction, through three steps — acylation, cyclization, and Mannich reaction. The surface activity was characterized by determination of surface tensions and critical micelle concentration (CMC. The corrosion inhibition performance of five types of steels in the simulated corrosion solution in the presence of the MMI was investigated by static weight loss tests. The results showed that the MMI had good surface activities, with CMC of 19.8 μg g−1 and surface tension of 36.4 mN m−1. The corrosion test results indicated that the corrosion rates of different materials were decreased significantly, and degrees of corrosion inhibition were always higher than 80.0 %. The main inhibition mechanism was most likely due to the adsorption of the corrosion inhibitor on the steel surface, leading to the prevention of corrosion medium from the metal surface.

  20. Investigation of Electronic Corrosion at Device Level

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Minzari, Daniel; Rathinavelu, Umadevi

    2010-01-01

    board assembly (PCBA) in the device is more prone to corrosion reliability and this was further analysed using thermography to detect areas that have high risk of condensation due to lower temperature under working condition. Tested PCBAs are subjected to detailed investigation before and after testing...

  1. PITTING CORROSION OF STAINLESS STEEL AT THE VARIOUS SURFACE TREATMENT

    Directory of Open Access Journals (Sweden)

    Viera Zatkalíková

    2011-09-01

    Full Text Available The stainless steel surface treatment is very important with regard to its pitting corrosion susceptibility. An effect of various types surfacing on pitting corrosion resistance of AISI 304stainless steel is investigated in this work. The samples of the tested material are turned, blasted, peened, grinded and a half of them are pickled to achieve higher purity of surfaces and better quality of passive film. Eight types of different finished surfaces are tested by electrochemical and immersion tests to determine corrosion behaviour in conditions where pitting is evoked by controlled potential and second by solution with high redox potential. By this way the effect of mechanical and chemical surface treatment on the resistance to pitting corrosion, character, size and shape of pits are compared in the conditions of different mechanisms of corrosion process.

  2. Standard guide for computerized exchange of corrosion data for metals

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1995-01-01

    1.1 This guide covers the techniques used to encode corrosion of metals test results for exchange between computer systems. 1.2 Guidelines are given for creating a data exchange appendix for each ASTM corrosion of metals standard. 1.3 Instructions are given for creating data translation software from the contents of the data exchange appendix.

  3. Corrosion behaviour, microstructure and phase transitions of Zn ...

    Indian Academy of Sciences (India)

    This paper is aimed at investigating the corrosion behaviour, microstructure and phase transitions of Zn-based alloys with different compositions. The corrosion tests are carried out both in acidic medium using 1 N HCl solution and in temperature dependence of thermogravimetric analysis (TGA). In the two different media, ...

  4. Stress-Corrosion Cracking in Martensitic PH Stainless Steels

    Science.gov (United States)

    Humphries, T.; Nelson, E.

    1984-01-01

    Precipitation-hardening alloys evaluated in marine environment tests. Report describes marine-environment stress-corrosion cracking (SCC) tests of three martensitic precipitation hardening (PH) stainless-steel alloys.

  5. Corrosion Resistance of Copper Coatings Deposited by Cold Spraying

    Science.gov (United States)

    Winnicki, M.; Baszczuk, A.; Jasiorski, M.; Małachowska, A.

    2017-12-01

    In the article, a study of corrosion resistance of copper and copper-based cermet (Cu+Al2O3 and Cu+SiC) coatings deposited onto aluminum alloy substrate using the low-pressure cold spraying method is presented. The samples were subjected to two different corrosion tests at room temperature: (1) Kesternich test and (2) a cyclic salt spray test. The selected tests were allowed to simulate service conditions typical for urban, industrial and marine environment. Examination of corroded samples included analysis changes on the coating surface and in the microstructure. The physicochemical tests were carried out using x-ray diffraction to define corrosion products. Moreover, microhardness and electrical conductivity measurements were conducted to estimate mechanical and physical properties of the coatings after corrosion tests. XRD analysis clearly showed that regardless of corrosion conditions, for all samples cuprite (Cu2O) was the main product. However, in the case of Cu+Al2O3 cermet coating, chlorine- and sulfate-containing phases such as Cu2Cl(OH)3 (paracetamite) and Cu3(SO4)(OH)4 (antlerite) were also recorded. This observation gives better understanding of the lowest microstructure changes observed for Cu+Al2O3 coating after the corrosion tests. This is also a justification for the lowest decrease in electrical conductivity registered after the corrosion tests for this coating.

  6. Corrosion Resistance of Copper Coatings Deposited by Cold Spraying

    Science.gov (United States)

    Winnicki, M.; Baszczuk, A.; Jasiorski, M.; Małachowska, A.

    2017-10-01

    In the article, a study of corrosion resistance of copper and copper-based cermet (Cu+Al2O3 and Cu+SiC) coatings deposited onto aluminum alloy substrate using the low-pressure cold spraying method is presented. The samples were subjected to two different corrosion tests at room temperature: (1) Kesternich test and (2) a cyclic salt spray test. The selected tests were allowed to simulate service conditions typical for urban, industrial and marine environment. Examination of corroded samples included analysis changes on the coating surface and in the microstructure. The physicochemical tests were carried out using x-ray diffraction to define corrosion products. Moreover, microhardness and electrical conductivity measurements were conducted to estimate mechanical and physical properties of the coatings after corrosion tests. XRD analysis clearly showed that regardless of corrosion conditions, for all samples cuprite (Cu2O) was the main product. However, in the case of Cu+Al2O3 cermet coating, chlorine- and sulfate-containing phases such as Cu2Cl(OH)3 (paracetamite) and Cu3(SO4)(OH)4 (antlerite) were also recorded. This observation gives better understanding of the lowest microstructure changes observed for Cu+Al2O3 coating after the corrosion tests. This is also a justification for the lowest decrease in electrical conductivity registered after the corrosion tests for this coating.

  7. Evaluation of the corrosion inhibition potentials of green-tip forest lily ...

    African Journals Online (AJOL)

    Plant extracts are excellent alternatives as corrosion inhibitors because of availability, low toxicity, biodegradability and low cost. In this study, corrosion tests were performed on mild steel to evaluate the effect of concentration of inhibitor, varying immersion period and temperature on the corrosion inhibition properties of ...

  8. 49 CFR 179.201-5 - Postweld heat treatment and corrosion resistance.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment and corrosion resistance....201-5 Postweld heat treatment and corrosion resistance. (a) Tanks and attachments welded directly... tested to demonstrate that they possess the corrosion resistance specified in § 179.200-7(d), Footnote 2...

  9. Corrosion Inhibition of Titanium in Acidic Media Containing Fluoride with Bixin

    OpenAIRE

    Jinendra Singh Chauhan; D. K. Gupta

    2009-01-01

    The bixin in acidic media were tested for corrosion inhibition of Ti in 0.5 N sulphuric acid and 0.1 N HCl solution at 30 to 40 °C temperature range by electrochemical methods. It reveals that bixin works as a corrosion inhibitor in halide media and protect the metals from the corrosion with great efficiency

  10. Corrosion Inhibition of Titanium in Acidic Media Containing Fluoride with Bixin

    Directory of Open Access Journals (Sweden)

    Jinendra Singh Chauhan

    2009-01-01

    Full Text Available The bixin in acidic media were tested for corrosion inhibition of Ti in 0.5 N sulphuric acid and 0.1 N HCl solution at 30 to 40 °C temperature range by electrochemical methods. It reveals that bixin works as a corrosion inhibitor in halide media and protect the metals from the corrosion with great efficiency

  11. Energy and environmental research emphasizing low-rank coal: Task 6.1. Corrosion of advanced structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Nowok, J.W.; Strobel, T.M.; Bieber, J.A.; Hurley, J.P.

    1995-04-01

    In order to increase national energy self-sufficiency for the near future, energy systems will be required to fire low-grade fuels and use more efficient energy cycles than those available today. The steam cycle used at present is limited to a maximum steam temperature of 550{degrees}C and thus a conversion efficiency of 35%. To boost efficiency significantly, much higher working fluid temperatures are required, compelling subsystems to operate at much higher temperatures and, therefore, in much more corrosive environments than those currently used. Problems of special concern are corrosion and fatigue of direct-fired turbine blades, corrosion and blinding of hot-gas cleanup filters, catastrophic failure of high-temperature heat exchangers, and spalling and dissolution of refractory materials. The extreme conditions will require the use of advanced structural materials such as high-temperature ceramics for the construction of the subsystems. Unfortunately, little is known of the performance of these materials in actual coal combustion environments. Although some corrosion testing has been performed in the past, most has been done by groups experimenting with ash or slag stimulants composed of only one or two simple compounds. For this project performed at the Energy & Environmental Research Center (EERC), actual coal ash and slag will be used in simulated combustion conditions so that more realistic determinations of the mechanisms of corrosion can be made. The work includes three main research areas focusing on two fossil energy subsystems: high-temperature heat exchangers and hot-gas cleanup filters. The first area involves developing existing abilities in thermodynamic equilibrium calculations to determine the most appropriate corroding agents to include in the tests; the second area involves coal slag corrosion of high temperature heat exchangers; and the third, lower-temperature ash and gas corrosion hot-gas cleanup filters.

  12. NASA IN-STEP Cryo System Experiment flight test

    Science.gov (United States)

    Russo, S. C.; Sugimura, R. S.

    The Cryo System Experiment (CSE), a NASA In-Space Technology Experiments Program (IN-STEP) flight experiment, was flown on Space Shuttle Discovery (STS 63) in February 1995. The experiment was developed by Hughes Aircraft Company to validate in zero- g space a 65 K cryogenic system for focal planes, optics, instruments or other equipment (gamma-ray spectrometers and infrared and submillimetre imaging instruments) that requires continuous cryogenic cooling. The CSE is funded by the NASA Office of Advanced Concepts and Technology's IN-STEP and managed by the Jet Propulsion Laboratory (JPL). The overall goal of the CSE was to validate and characterize the on-orbit performance of the two thermal management technologies that comprise a hybrid cryogenic system. These thermal management technologies consist of (1) a second-generation long-life, low-vibration, Stirling-cycle 65 K cryocooler that was used to cool a simulated thermal energy storage device (TRP) and (2) a diode oxygen heat pipe thermal switch that enables physical separation between a cryogenic refrigerator and a TRP. All CSE experiment objectives and 100% of the experiment success criteria were achieved. The level of confidence provided by this flight experiment is an important NASA and Department of Defense (DoD) milestone prior to multi-year mission commitment. Presented are generic lessons learned from the system integration of cryocoolers for a flight experiment and the recorded zero- g performance of the Stirling cryocooler and the diode oxygen heat pipe.

  13. Tested Demonstrations. Brownian Motion: A Classroom Demonstration and Student Experiment.

    Science.gov (United States)

    Kirksey, H. Graden; Jones, Richard F.

    1988-01-01

    Shows how video recordings of the Brownian motion of tiny particles may be made. Describes a classroom demonstration and cites a reported experiment designed to show the random nature of Brownian motion. Suggests a student experiment to discover the distance a tiny particle travels as a function of time. (MVL)

  14. Comparison of organic peracids in wastewater treatment: Disinfection, oxidation and corrosion.

    Science.gov (United States)

    Luukkonen, Tero; Heyninck, Tom; Rämö, Jaakko; Lassi, Ulla

    2015-11-15

    The use of organic peracids in wastewater treatment is attracting increasing interest. The common beneficial features of peracids are effective anti-microbial properties, lack of harmful disinfection by-products and high oxidation power. In this study performic (PFA), peracetic (PAA) and perpropionic acids (PPA) were synthesized and compared in laboratory batch experiments for the inactivation of Escherichia coli and enterococci in tertiary wastewater, oxidation of bisphenol-A and for corrosive properties. Disinfection tests revealed PFA to be a more potent disinfectant than PAA or PPA. 1.5 mg L(-1) dose and 2 min of contact time already resulted in 3.0 log E. coli and 1.2 log enterococci reduction. Operational costs of disinfection were estimated to be 0.0114, 0.0261 and 0.0207 €/m(3) for PFA, PAA and PPA, respectively. Disinfection followed the first order kinetics (Hom model or S-model) with all studied peracids. However, in the bisphenol-A oxidation experiments involving Fenton-like conditions (pH = 3.5, Fe(2+) or Cu(2+) = 0.4 mM) peracids brought no additional improvement to traditionally used and lower cost hydrogen peroxide. Corrosion measurements showed peracids to cause only a negligible corrosion rate (<6 μm year(-1)) on stainless steel 316L while corrosion rates on the carbon steel sample were significantly higher (<500 μm year(-1)). Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The effect of O{sub 2} content on the corrosion behaviour of X65 and 5Cr in water-containing supercritical CO{sub 2} environments

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Yong, E-mail: leo.huayong@gmail.com; Barker, Richard; Neville, Anne

    2015-11-30

    Highlights: • Corrosion behaviour was evaluated in water-containing SC-CO{sub 2} with different O{sub 2} levels. • Corrosion was observed when no free water was present. • Localized corrosion was a fundamental consideration in water-containing CO{sub 2} systems. • O{sub 2} content plays a key role in influencing the critical water content. - Abstract: The general and localized corrosion behaviour of X65 carbon steel and 5Cr low alloy steel were evaluated in a water-saturated supercritical CO{sub 2} environment in the presence of varying concentrations of O{sub 2}. Experiments were performed at a temperature of 35 °C and a pressure of 80 bar to simulate the conditions encountered during CO{sub 2} transport and injection. Results indicated that increasing O{sub 2} concentration from 0 to 1000 ppm caused a progressive reduction in the general corrosion rate, but served to increase the extent of localized corrosion observed on both materials. Pitting (or localized attack) rates for X65 ranged between 0.9 and 1.7 mm/year, while for 5Cr rose from 0.3 to 1.4 mm/year as O{sub 2} concentration was increased from 0 to 1000 ppm. General corrosion rates were over an order of magnitude lower than the pitting rates measured. Increasing O{sub 2} content in the presence of X65 and 5Cr suppressed the growth of iron carbonate (FeCO{sub 3}) on the steel surface and resulted in the formation of a corrosion product consisting mainly of iron oxide (Fe{sub 2}O{sub 3}). 5Cr was shown to offer more resistance to pitting corrosion in comparison to X65 steel over the conditions tested. At concentrations of O{sub 2} above 500 ppm 5Cr produced general corrosion rates less than 0.04 mm/year, which were half that recorded for X65. The improved corrosion resistance of 5Cr was believed to be at least partially attributed to the formation of a Cr-rich film on the steel surface which was shown using X-ray photoelectron spectroscopy to contain chromium oxide (Cr{sub 2}O{sub 3}) and chromium

  16. Effects of Alloying Elements (Cr, Mn) on Corrosion Properties of Carbon Steel in Synthetic Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Youngmin; Kim, Heesan [Hongik University, Sejong (Korea, Republic of)

    2016-02-15

    Effects of alloying elements, manganese and chromium, on corrosion resistance of carbon steel were examined using weight loss test and electrochemical tests (polarization test and electrochemical impedance spectroscopy (EIS)) in synthetic seawater at 60 ℃. The results from the weight loss test showed that chromium effectively improved corrosion resistance of carbon steel during the entire immersion time, but manganese improved corrosion resistance after the lowered corrosion resistance at the beginnings of immersion. Unlike the weight loss test, the electrochemical tests showed that the corrosion resistance did not increase with immersion time, in all the specimens. This disagreement is explained by the presence of rust involved in electrochemical reaction during electrochemical tests. The analysis of rust with transmission electron microscopy (TEM)−energy dispersive spectroscopy (EDS) showed that the amorphous-like rust layer located at the metal/rust interface with enriched alloying element (Cr, Mn) prevents diffusion of corrosive species into a metal/rust interface effectively, which leads to increased corrosion resistance. The initial corrosion behaviour is also affected by the rust types. In other words, manganese accelerated the formation of spinel oxides, negatively affecting corrosion resistance. Meanwhile, chromium accelerated the formation of goethite but impeded the formation of spinel oxides, positively affecting the corrosion resistance. From the above results, the corrosion resistance of steel is closely related with a rust type.

  17. Flow-induced corrosion behavior of absorbable magnesium-based stents.

    Science.gov (United States)

    Wang, Juan; Giridharan, Venkataraman; Shanov, Vesselin; Xu, Zhigang; Collins, Boyce; White, Leon; Jang, Yongseok; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2014-12-01

    The aim of this work was to study corrosion behavior of magnesium (Mg) alloys (MgZnCa plates and AZ31 stents) under varied fluid flow conditions representative of the vascular environment. Experiments revealed that fluid hydrodynamics, fluid flow velocity and shear stress play essential roles in the corrosion behavior of absorbable magnesium-based stent devices. Flow-induced shear stress (FISS) accelerates the overall corrosion (including localized, uniform, pitting and erosion corrosions) due to the increased mass transfer and mechanical force. FISS increased the average uniform corrosion rate, the localized corrosion coverage ratios and depths and the removal rate of corrosion products inside the corrosion pits. For MgZnCa plates, an increase of FISS results in an increased pitting factor but saturates at an FISS of ∼0.15Pa. For AZ31 stents, the volume loss ratio (31%) at 0.056Pa was nearly twice that (17%) at 0Pa before and after corrosion. Flow direction has a significant impact on corrosion behavior as more severe pitting and erosion corrosion was observed on the back ends of the MgZnCa plates, and the corrosion product layer facing the flow direction peeled off from the AZ31 stent struts. This study demonstrates that flow-induced corrosion needs be understood so that Mg-based stents in vascular environments can be effectively designed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Analysis of Pipeline Steel Corrosion Data From NBS (NIST) Studies Conducted Between 1922-1940 and Relevance to Pipeline Management.

    Science.gov (United States)

    Ricker, Richard E

    2010-01-01

    commercially available software packages for statistical analysis. The emphasis was on identifying trends in the data that could be later exploited in the development of an empirical model for predicting the range of expected corrosion behavior for any given set of soil chemistry and conditions. A large number of issues were identified with this corrosion dataset, but given the limited knowledge of corrosion and statistical analysis at the time the study was conducted, these shortcomings are not surprising and many of these were recognized by the investigators before the study was concluded. However, it is important to keep in mind that complete soil data is provided for less than half of the sites in this study. In agreement with the initial study, it was concluded that any differences in the corrosion behavior of the alloys could not be resolved due to the scatter in the results from the environmental factors and no significant difference could be determined between alloys. Linear regression and curve fitting of the corrosion damage measurements against the measured soil composition and properties found some weak trends. These trends improved with multiple regression, and empirical equations representing the performance of the samples in the tests were developed with uncertainty estimates. The uncertainties in these empirical models for the corrosion data were large, and extrapolation beyond the parameter space or exposure times of these experiments will create additional uncertainties. It is concluded that equations for the estimation of corrosion damage distributions and rates can be developed from these data, but these models will always have relatively large uncertainties that will limit their utility. These uncertainties result from the scatter in the measurements due to annual, seasonal, and sample position dependent variations at the burial sites. The data indicate that more complete datasets with s