WorldWideScience

Sample records for test blanket modules

  1. Nuclear analysis of ITER Test Blanket Module Port Plug

    Energy Technology Data Exchange (ETDEWEB)

    Villari, Rosaria, E-mail: rosaria.villari@enea.it [ENEA, Fusion Technical Unit, Nuclear Technologies Laboratory, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Kim, Byoung Yoon; Barabash, Vladimir; Giancarli, Luciano; Levesy, Bruno; Loughlin, Michael; Merola, Mario [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 Saint Paul-lez-Durance Cedex (France); Moro, Fabio [ENEA, Fusion Technical Unit, Nuclear Technologies Laboratory, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Pascal, Romain [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 Saint Paul-lez-Durance Cedex (France); Petrizzi, Luigino [European Commission, DG Research & Innovation G5, CDMA 00/030, B-1049 Brussels (Belgium); Polunovsky, Eduard; Van Der Laan, Jaap G. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 Saint Paul-lez-Durance Cedex (France)

    2015-10-15

    Highlights: • 3D nuclear analysis of the ITER TBM Port Plug (PP). • Calculations of neutron fluxes, nuclear heating, damage and He-production in TBM PP components. • Shutdown dose rate assessment with Advanced D1S method considering different configurations. • Potential design improvements to reduce the shutdown dose rate in the port interspace. - Abstract: Nuclear analyses have been performed for the ITER Test Blanket Module Port Plug (TBM PP) using the MCNP-5 Monte Carlo Code. A detailed 3D model of the TBM Port Plug with dummy TBM has been integrated into the ITER MCNP model (B-lite v.3). Neutron fluxes, nuclear heating, helium production and neutron damage have been calculated in all the TBM PP components. Global shutdown dose rate calculations have also been performed with Advanced D1S method for different configurations of the TBM PP system. This paper presents the results of these analyses and discusses potential design improvements aiming to further reduce the shutdown dose rate in the port interspace.

  2. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2010-06-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  3. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2007-08-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  4. Liquid metal blanket module testing and design for ITER/TIBER II

    Energy Technology Data Exchange (ETDEWEB)

    Mattas, R.F.; Cha, Y.; Finn, P.A.; Majumdar, S.; Picologlou, B.; Stevens, H.; Turner, L.

    1988-05-01

    A major goal for ITER is the testing of nuclear components to demonstrate the integrated performance of the most attractive concepts that can lead to a commercial fusion reactor. As part of the ITER/TIBER II study, the test program and design of test models were examined for a number of blanket concepts. The work at Argonne National Laboratory focused on self-cooled liquid metal blankets. A test program for liquid metal blankets was developed based upon the ITER/TIBER II operating schedule and the specific data needs to resolve the key issues for liquid metals. Testing can begin early in reactor operation with liquid metal MHD tests to confirm predictive capability. Combined heat transfer/MHD tests can be performed during initial plasma operation. After acceptable heat transfer performance is verified, tests to determine the integrated high temperature performance in a neutron environment can begin. During the high availability phase operation, long term performance and reliability tests will be performed. It is envisioned that a companion test program will be conducted outside ITER to determine behavior under severe accident conditions and upper performance limits. A detailed design of a liquid metal test module and auxiliary equipment was also developed. The module followed the design of the TPSS blanket. Detailed analysis of the heat transfer and tritium systems were performed, and the overall layout of the systems was determined. In general, the blanket module appears to be capable of addressing most of the testing needs. 8 refs., 27 figs., 11 tabs.

  5. Electromagnetic analysis of the Korean helium cooled ceramic reflector test blanket module set

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngmin, E-mail: ymlee@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Ku, Duck Young [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahn, Mu-Young; Park, Yi-Hyun; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Korean helium cooled ceramic reflector (HCCR) test blanket module set (TBM-set) will be installed at equatorial port #18 of Vacuum Vessel in ITER in order to test the breeding blanket performance for forthcoming fusion power plant. Since ITER tokamak has a set of electromagnetic coils (Central Solenoid, Poloidal Field and Toroidal Field coil set) around Vacuum Vessel, the HCCR TBM-set, the TBM and associated shield, is greatly influenced by magnetic field generated by these coils. In the case of fast transient electromagnetic events such as major disruption, vertical displacement event or magnet fast discharge, magnetic field and induced eddy current results in huge electromagnetic load, known as Lorentz load, on the HCCR TBM-set. In addition, the TBM-set experiences electromagnetic load due to magnetization of the structural material not only during the fast transient events but also during normal operation since the HCCR TBM adopts Reduced Activation Ferritic Martensitic (RAFM) steel as a structural material. This is known as Maxwell load which includes Lorentz load as well as load due to magnetization of structure material. This paper presents electromagnetic analysis results for the HCCR TBM-set. For analysis, a 20° sector finite model was constructed considering ITER configuration such as Vacuum Vessel, ITER shield blankets, Central Solenoid, Poloidal Field, Toroidal Field coil set as well as the HCCR TBM-set. Three major disruptions (operational event, likely event and highly unlikely event) were selected for analysis based on the load specifications. ANSYS-EMAG was used as a calculation tool. The results of EM analysis will be used as input data for the structural analysis.

  6. Development of Reduced Activation Ferritic-Martensitic Steels and fabrication technologies for Indian test blanket module

    Science.gov (United States)

    Raj, Baldev; Jayakumar, T.

    2011-10-01

    For the development of Reduced Activation Ferritic-Martensitic Steel (RAFMS), for the Indian Test Blanket Module for ITER, a 3-phase programme has been adopted. The first phase consists of melting and detailed characterization of a laboratory scale heat conforming to Eurofer 97 composition, to demonstrate the capability of the Indian industry for producing fusion grade steel. In the second phase which is currently in progress, the chemical composition will be optimized with respect to tungsten and tantalum for better combination of mechanical properties. Characterization of the optimized commercial scale India-specific RAFM steel will be carried out in the third phase. The first phase of the programme has been successfully completed and the tensile, impact and creep properties are comparable with Eurofer 97. Laser and electron beam welding parameters have been optimized and welding consumables were developed for Narrow Gap - Gas Tungsten Arc welding and for laser-hybrid welding.

  7. Shutdown dose rate analysis of European test blanket modules shields in ITER Equatorial Port #16

    Energy Technology Data Exchange (ETDEWEB)

    Juárez, Rafael, E-mail: rjuarez@ind.uned.es [Departamento de Ingeniería Energética, ETSII-UNED, Calle Juan del Rosal 12, Madrid 28040 (Spain); Sauvan, Patrick; Perez, Lucia [Departamento de Ingeniería Energética, ETSII-UNED, Calle Juan del Rosal 12, Madrid 28040 (Spain); Panayotov, Dobromir; Vallory, Joelle; Zmitko, Milan; Poitevin, Yves [Fusion for Energy (F4E), Torres Diagonal Litoral B3, Josep Pla 2, Barcelona 08019 (Spain); Sanz, Javier [Departamento de Ingeniería Energética, ETSII-UNED, Calle Juan del Rosal 12, Madrid 28040 (Spain)

    2016-11-01

    Highlights: • Nuclear analysis for European TBMs and shields, in ITER Equatorial Port #16, has been conducted in support of the ‘Concept Design Review’ from ITER. • The objective of the work is the characterization of the Shutdown Dose Rates at Equatorial Port #16 interspace. • The role played by the TBM and TBM shields, the equatorial port gaps and the vacuum vessel permeation, in terms of neutron flux transmission is assessed. • The role played by the TBM, TBM shields, Port Plug Frame, Pipe Forest and the machine in terms of activation is also investigated. - Abstract: ‘Fusion for Energy’ (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). An essential element of the Conceptual Design Review (CDR) of these TBSs is the demonstration of capability of Test Blanket Modules (TBM) and their shields to fulfil their function and comply with the design requirements. One of the TBM shields highly relevant design aspects is the project target for shutdown dose rates (SDDR) in the interspace. We investigated two functions of the TBMs and TBM shields—the neutron flux attenuation along the shields, and the reduction of the activation of the components contributing to SDDR. It is shown that TBMs and TBM shields reduce significantly the neutron flux in the port plug (PP). In terms of neutron flux attenuation, the TBM shield provides sufficient neutron flux reduction, being responsible for 5 × 10{sup 6} n/cm{sup 2} s at port interspace, while the EPP gaps and BSM gaps are responsible for 5 × 10{sup 7} n/cm{sup 2} s each. When considering closed upper, lower and lateral neighbour equatorial ports (thus, excluding the cross-talk between ports), a SDDR of 121 μSv/h averaged near the port closure flange was obtained, out of which, only 4 μSv/h are due to the activation of TBMs and TBM shields. Maximum SDDR in the range

  8. Control Solutions for High Performance in ITER with Test Blanket Modules

    Science.gov (United States)

    Lanctot, M. J.; Degrassie, J. S.; La Haye, R. J.; Paz-Soldan, C.; Strait, E. J.; Buttery, R. J.; Snipes, J. A.; Reimerdes, H.; Logan, N. C.; Park, J.-K.; Solomon, W. M.; Grierson, B.; Hanson, J. M.

    2014-10-01

    DIII-D experiments indicate applied n = 1 fields can be used in high performance plasma regimes to reduce to a tolerable level the impact of the Test Blanket Modules (TBMs) error field (EF) on energy and particle confinement. Active coils, designed to mock-up the magnetic EF from two TBMs in one ITER equatorial port, were used to mimic the magnetization from the reduced-activation ferritic martensitic steel used in present TBM designs. The optimal correction fields, identified by maximizing the plasma toroidal angular momentum, reduced the impact of the TBM EF on energy, particle, and momentum confinement at βN = 2 . 9 by 60%, a factor of 2 improvement over previous results at βN = 1 . 8 . This improved performance of n = 1 control fields at high beta is consistent with the hypothesis that the strong beta dependence of TBM EF effects observed in previous campaigns is due mainly to amplification of the n = 1 component of the TBM EF. Similar performance was obtained with either internal or external n = 1 error field control coils. The results suggest that the impact of the TBM related EFs on high beta operation can be controlled with the external correction coils in ITER. Work supported by the US DOE under DE-FC02-04ER54698, DE-AC02-09CH11466 and DE-FG02-04ER54761.

  9. Breeding zone models of DEMO ceramic helium cooled blanket test module for testing in IVV-2M reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, V.; Kiryiak, L.; Lopatkin, A.; Marachev, A.; Muratov, V.; Strebkov, Yr. [Federal State Unitary Enterprise ' ' Dollezhal Research and Development Inst. of Power Engineering' ' , Moscow (Russian Federation); Davydov, D.; Kapyshev, V.; Kazennov, Yr.; Tebus, V. [Federal State Unitary Enterprise ' ' A.A. Bochvar All-Russia Research Inst. of Inorganic Materials' ' , Moscow (Russian Federation)

    2002-06-01

    The goal of DEMO ceramic helium cooled blanket test module (CHC BTM) is to demonstrate a breeding capability that would lead to tritium self-sufficiency in ITER reactor and to extract a high-grade heat suitable for electricity generation. Experimental validation of all the adopted design solutions is main important problem at design and calculation works carrying out in order to develop the CHC BTM. One important task for breeding zones feasibility validation is in-pile tests. Two models were developed and fabricated for testing in the fission IVV-2M reactor. Breeding zone is based on poloidal BIT-conception. The models structural material is ferrito-martensitic steel. Breeder material is lithium orthosilicate in pebble beds and pellet forms. Multiplier material is beryllium in pebble beds and porosity forms. The cooling is provided by helium at 10 MPa. The tritium produced in the breeder material is purged by the helium flow at 0.1-0.2 MPa. Designs of model description and experimental channel, results of neutronic and thermo-hydraulic calculations are presented in the paper. (orig.)

  10. Assessment of tritiated activities in the radwaste generated from ITER Chinese helium cooled ceramic breeding test blanket module system

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chang An, E-mail: chenchangan@caep.cn; Liu, Lingbo; Wang, Bo; Xiang, Xin; Yao, Yong; Song, Jiangfeng

    2016-11-15

    Highlights: • Approaches were developed for calculation/evaluation of tritium activities in the materials and components of a TBM system, with tritium permeation being considered for the first time. • Almost all tritiated materials and components were considered in CNHCCB TBM system including the TBM set, connection pipes, and the ancillary tritium handling systems. • Tritium activity data in HCCB TBM system were updated. Some of which in directly tritium contacted components are to be 2 or 4 magnitudes higher than the original neutron transmutation calculations. • The radwaste amount from both operation and decommission of HCCB TBM system was evaluated. - Abstract: Chinese Helium Cooled Ceramic Breeding Test blanket Module (CNHCCB TBM) will be tested in the ITER machine for the feasibility of in pile tritium production for a future magnetic confinement fusion reactor. The tritium inventories/retentions in the material/components were evaluated and updated mainly based on the tritium diffusion/permeation theory and the analysis of some reported data. Tritiated activities rank from less than 10 Bq g{sup −1} to 10{sup 9} Bq g{sup −1} for the different materials or components, which are generally higher than those from the previous neutron transmutation calculation. The amounts of tritiated radwaste were also estimated according to the operation, decommission, maintenance and replacement strategies, which vary from several tens of kilograms to tons in the different operation phases. The data can be used both for the tritium radiological safety evaluation and radwaste management of CNHCCB TBM set and its ancillary systems.

  11. The European ITER test blanket modules: Progress in development of fabrication technologies towards standardization

    Energy Technology Data Exchange (ETDEWEB)

    Zmitko, Milan, E-mail: milan.zmitko@f4e.europa.eu [Fusion for Energy (F4E), Josep Pla 2, Barcelona (Spain); Thomas, Noël [ATMOSTAT, F-94815 Villejuif (France); LiPuma, Antonella; Forest, Laurent [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette (France); Cogneau, Laurence [CEA-DRT, 38000 Grenoble (France); Rey, Jörg; Neuberger, Heiko [Karlsruhe Institute of Technology (KIT), Postfach 3640, Karlsruhe (Germany); Poitevin, Yves [Fusion for Energy (F4E), Josep Pla 2, Barcelona (Spain)

    2016-11-01

    Highlights: • Significant progress on the development of welding procedures for European TBM achieved. • Fabrication processes feasibility based on diffusion and fusion welding demonstrated. • An optimized welding scenario/sequence for TBM box assembly identified. • Future qualification of pF/WPS proposed through realization of a number of QMUs. - Abstract: The paper reviews progress achieved in development of fabrication technologies and procedures applied for manufacturing of the TBM sub-components, like, HCLL and HCPB cooling plates, HCLL/HCPB stiffening plates, and HCLL/HCPB first wall and side caps. The used technologies are based on fusion and diffusion welding techniques taking into account specificities of the EUROFER97 steel. Development of a standardized procedure complying with professional codes and standards (RCC-MRx), a preliminary fabrication/welding procedure specification (pF/WPS), is described based on fabrication and non-destructive and destructive characterization of feasibility mock-ups (FMU) aimed at assessing the suitability of a fabrication process for fulfilling the design and fabrication specifications. The main FMUs characterization results are reported (e.g. pressure resistance and helium leak tightness tests, mechanical properties and microstructure at the weld joints, geometrical characteristics of the sub-components and internal cooling channels) and the key pF/WPS steps and parameters are outlined. Also, fabrication procedures for the TBM box assembly are presently under development for the establishment of an optimized assembly sequence/scenario and development of standardized welding procedure specifications. In conclusions, further steps towards the pF/WPS qualification are briefly discussed.

  12. Development of a Flammability Test Method for Aircraft Blankets

    Science.gov (United States)

    1996-03-01

    Flammability testing of aircraft blankets was conducted in order to develop a fire performance test method and performance criteria for blankets supplied to commercial aircraft operators. Aircraft blankets were subjected to vertical Bunsen burner tes...

  13. Nuclear Analyses of Indian LLCB Test Blanket System in ITER

    Science.gov (United States)

    Swami, H. L.; Shaw, A. K.; Danani, C.; Chaudhuri, Paritosh

    2017-04-01

    Heading towards the Nuclear Fusion Reactor Program, India is developing Lead Lithium Ceramic Breeder (LLCB) tritium breeding blanket for its future fusion Reactor. A mock-up of the LLCB blanket is proposed to be tested in ITER equatorial port no.2, to ensure the overall performance of blanket in reactor relevant nuclear fusion environment. Nuclear analyses play an important role in LLCB Test Blanket System design & development. It is required for tritium breeding estimation, thermal-hydraulic design, coolants process design, radioactive waste management, equipment maintenance & replacement strategies and nuclear safety. The nuclear behaviour of LLCB test blanket module in ITER is predicated in terms of nuclear responses such as tritium production, nuclear heating, neutron fluxes and radiation damages. Radiation shielding capability of LLCB TBS inside and outside bio-shield was also assessed to fulfill ITER shielding requirements. In order to supports the rad-waste and safety assessment, nuclear activation analyses were carried out and radioactivity data were generated for LLCB TBS components. Nuclear analyses of LLCB TBS are performed using ITER recommended nuclear analyses codes (i.e. MCNP, EASY), nuclear cross section data libraries (i.e. FENDL 2.1, EAF) and neutronic model (ITER C-lite v.l). The paper describes a comprehensive nuclear performance of LLCB TBS in ITER.

  14. RELAP/SCDAPSIM/MOD4.0 modification for transient accident scenario of Test Blanket Modules in ITER involving helium flows into heavy liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Freixa, J.; Pérez, M.; Mas de les Valls, E.; Batet, L.; Sandeep, T.; Chaudhari, V.; Reventós, F.

    2015-07-01

    The Institute for Plasma Research (IPR), India, is currently involved in the design and development of its Test Blanket Module (TBM) for testing in ITER (International Thermo nuclear Experimental Reactor). The Indian TBM concept is a Lead-Lithium cooled Ceramic Breeder (LLCB), which utilizes lead-lithium eutectic alloy (LLE) as tritium breeder, neutron multiplier and coolant. The first wall facing the plasma is cooled by helium gas. In preparation of the regulatory safety files of ITER-TBM, a number of off-normal event sequences have been postulated. Thermal hydraulic safety analyses of the TBM system will be carried out with the system code RELAP/SCDAPSIM/MOD4.0 which was initially designed to predict the behavior of light water reactor systems during normal and accidental conditions. In order to analyze some of the postulated off-normal events, there is the need to simulate the mixing of Helium and Lead-Lithium fluids. The Technical University of Catalonia is cooperating with IPR to implement the necessary changes in the code to allow for the mixing of helium and liquid metal. In the present study, the RELAP/SCDAPSIM/MOD4 two-phase flow 6-equations structure has been modified to allow for the mixture of LLE in the liquid phase with dry Helium in the gas phase. Practically obtaining a two-fluid 6-equation model where each fluid is simulated with a set of energy, mass and momentum balance equations. A preliminary flow regime map for LLE and helium flow has been developed on the basis of numerical simulations with the OpenFOAM CFD toolkit. The new code modifications have been verified for vertical and horizontal configurations. (Author)

  15. APT Blanket System Loss-of-Helium-Gas Accident Based on Initial Conceptual Design - Helium Supply Rupture into Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    The model results are used to determine if beam power shutdown is necessary (or not) as a result of the LOHGA accident to maintain the blanket system well below any of the thermal-hydraulic constraints imposed on the design. The results also provide boundary conditions to the detailed bin model to study the detailed temperature response of the hot blanket module structure. The results for these two cases are documented in the report.

  16. First wall and blanket module safety enhancement by material selection and design decision

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, B.J.

    1980-01-01

    A thermal/mechanical study has been performed which illustrates the behavior of a fusion reactor first wall and blanket module during a loss of coolant flow event. The relative safety advantages of various material and design options were determined. A generalized first wall-blanket concept was developed to provide the flexibility to vary the structural material (stainless steel vs titanium), coolant (helium vs water), and breeder material (liquid lithium vs solid lithium aluminate). In addition, independent vs common first wall-blanket cooling and coupled adjacent module cooling design options were included in the study. The comparative analyses were performed using a modified thermal analysis code to handle phase change problems.

  17. UH-60 BIM Blanket Tap Test Evaluation

    Science.gov (United States)

    2007-09-22

    Laser Shearography systems , and a hand held ultrasonic tester with varying success. Implementation and Technology Transfer The NCDMM recommends the...implementation of a technology termed “Laser Shearography ” developed by Laser Technology, Inc. (LTI). Laser Shearography systems use a common path...accompanying the system is capable of stitching the individual test pictures together to form a picture of the complete blade surface. Utilizing this advanced

  18. Thermal-hydraulic analysis on the whole module of water cooled ceramic breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Kecheng; Ma, Xuebin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Cheng, Xiaoman [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Lin, Shuang [University of Science and Technology of China, Hefei, Anhui, 230027 (China); Huang, Kai [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China)

    2016-11-15

    Highlights: • The 3D thermal hydraulic analysis on the whole module of WCCB is performed by CFD method. • Temperature field and mass flow distribution have been obtained. • The design of WCCB is reasonable from the perspective of thermal-hydraulics. • The scheme for further optimization has been proposed. - Abstract: The Water Cooled Ceramic Breeder blanket (WCCB) is being researched for Chinese Fusion Engineering Test Reactor (CFETR). The thermal-hydraulic analysis is essential because the blanket should remove the high heat flux from the plasma and the volumetric heat generated by neutrons. In this paper, the detailed three dimensional (3D) thermal hydraulic analysis on the whole module of WCCB blanket has been performed by Computational Fluid Dynamics (CFD) method, which is capable of solving conjugate heat transfer between solid structure and fluid. The main results, including temperature field, distribution of mass flow rate and coolant pressure drop, have been calculated simultaneously. These provides beneficial guidance data for the further structural optimization and for the design arrangement of primary and secondary circuit. Under the total heat source of 1.23 MW, the coolant mass flow rate of 5.457 kg/s is required to make coolant water corresponding to the Pressurized Water Reactor (PWR) condition (15.5 MPa, 285 °C–325 °C), generating the total coolant pressure drop (△P) of 0.467 MPa. The results show that the present structural design can make all the materials effectively cooled to the allowable temperature range, except for a few small modifications on the both sides of FW. The main components, including the first wall (FW), cooling plates (CPs), side wall (SWs)&stiffening plates (SPs) and the manifold(1–4), dominate 4.7%/41.7%/13%/40.6% of the total pressure drop, respectively. Additionally, the mass flow rate of each channel has been obtained, showing the peak relative deviation of 3.4% and 2% from the average for the paratactic

  19. Progress of R&D on water cooled ceramic breeder for ITER test blanket system and DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshinori, E-mail: kawamura.yoshinori@jaea.go.jp [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Tanigawa, Hisashi; Hirose, Takanori; Enoeda, Mikio [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Sato, Satoshi [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Ochiai, Kentaro [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan); Konno, Chikara; Edao, Yuki; Hayashi, Takumi [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Hoshino, Tsuyoshi; Nakamichi, Masaru; Tanigawa, Hiroyasu [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan); Nishi, Hiroshi; Suzuki, Satoshi; Ezato, Koichiro; Seki, Yohji [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Yamanishi, Toshihiko [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan)

    2016-11-01

    Highlights: • Thermo-hydraulic calculation in the TBM at the water ingress event has been done. • Shielding calculations for the ITER equatorial port #18 were conducted by using C-lite model. • Prototypic pebbles of Be{sub 17}Ti{sub 2} and Be{sub 12}V had a good oxidation property similar to Be{sub 12}Ti pebble. • Li rich Li{sub 2}TiO{sub 3} pebbles were successfully fabricated using the emulsion method by controlling sintering atmosphere. • New tritium production/recovery experiments at FNS have been started by using ionization chamber as on-line gas monitor. - Abstract: The development of a water cooled ceramic breeder (WCCB) test blanket module (TBM) is being performed as one of the most important steps toward DEMO blanket in Japan. For the TBM testing and development of DEMO blanket, R&D has been performed on the module fabrication technology, breeder and multiplier pebble fabrication technology, tritium production rate evaluation, as well as structural and safety design activities. The fabrication of full-scale first wall, side walls, breeder pebble bed box and back wall was completed, and assembly of TBM with box structure was successfully achieved. Development of advanced breeder and multiplier pebbles for higher chemical stability was continued for future DEMO blanket application. From the view point of TBM test result evaluation and DEMO blanket performance design, the development of the blanket tritium transport simulation technology, investigation of the TBM neutron measurement technology and the evaluation of the tritium production and recovery test using D-T neutron in the fusion neutron source (FNS) facility has been performed. This paper provides an overview of the recent achievements of the development of the WCCB Blanket in Japan.

  20. Radwaste management aspects of the test blanket systems in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Laan, J.G. van der, E-mail: JaapG.vanderLaan@iter.org [ITER Organization, Route de Vinon sur Verdon, F-13067 Saint Paul Lez Durance (France); Canas, D. [CEA, DEN/DADN, centre de Saclay, F-91191 Gif-sur-Yvette cedex (France); Chaudhari, V. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Iseli, M. [ITER Organization, Route de Vinon sur Verdon, F-13067 Saint Paul Lez Durance (France); Kawamura, Y. [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 311-0193 (Japan); Lee, D.W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Petit, P. [European Commission, DG ENER, Brussels (Belgium); Pitcher, C.S.; Torcy, D. [ITER Organization, Route de Vinon sur Verdon, F-13067 Saint Paul Lez Durance (France); Ugolini, D. [Fusion for Energy, Barcelona (Spain); Zhang, H. [China Nuclear Energy Industry Corporation, Beijing 100032 (China)

    2016-11-01

    Highlights: • Test Blanket Systems are operated in ITER to test tritium breeding technologies. • The in-vessel parts of TBS become radio-active during the ITER nuclear phase. • For each TBM campaign the TBM, its shield and the Pipe Forests are removed. • High tritium contents and novel materials are specific TBS radwaste features. • A preliminary assessment confirmed RW routing, provided its proper conditioning. - Abstract: Test Blanket Systems (TBS) will be operated in ITER in order to prepare the next steps towards fusion power generation. After the initial operation in H/He plasmas, the introduction of D and T in ITER will mark the transition to nuclear operation. The significant fusion neutron production will give rise to nuclear heating and tritium breeding in the in-vessel part of the TBS. The management of the activated and tritiated structures of the TBS from operation in ITER is described. The TBS specific features like tritium breeding and power conversion at elevated temperatures, and the use of novel materials require a dedicated approach, which could be different to that needed for the other ITER equipment.

  1. In-pile testing of HCPB submodules. Feasibility study for the European Blanket project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Van der Laan, J.G.; Bakker, K.; Fokkens, J.H.; Haverkate, B.R.W.; Sciolla, C.M. [ECN Nuclear Research, Petten (Netherlands); Conrad, R. [JRC-IAM, HFR-Unit, Petten (Netherlands)

    1998-02-01

    Full size module systems of the candidate DEMO blanket concepts selected for the European Blanket Project (EBP) will be tested in ITER, presently called Test Blanket modules (TBM). The Helium Cooled Pebble Bed (HCPB) is one of the two concepts developed in the European Union (EU). This development path consists of several scaling steps, including integral testing of a subsized module at realistic operation conditions. As part of the HCPB development work for the TBMs, ECN performed jointly with JRC/IAM at Petten a feasibility study for irradiation tests of subsized HCPB modules. The first stage of the study was concluded with a report on the conceptual design of an in-pile test of a single submodule with a helium cooling loop. Such test was considered technically feasible, but would require significant project duration and expenditures. Further development of detailed objectives for in-pile tests was recommended, in particular in view of the different parameters for the HCPB-ITM and DEMO-concept. This objective has been modified by the EBP in fall 1997. For the final stage of the study the test objective has been: the in-pile testing of the thermal/mechanical behaviour of the HCPB ceramic breeder beds, while giving lower priority to tritium transport issues (release, permeation). Several configuration options in the High Flux Reactor (HFR) in Petten, Netherlands, to perform in-pile test of HCPB submodules have been considered. Neutronics analyses along with thermal and structural analyses have been made for selected options and several HFR peripheral in-tank positions. These pre-design analyses show that the whole range of breeder bed power densities and temperature levels, which are relevant to the HCPB DEMO and BTM designs, can be reached with the options presented. The options are all cooled by the reactor coolant flow. The use of an helium loop is not compulsory and is considered as an unnecessary complication with regard to the present test objectives

  2. Impact hammer test of ITER blanket remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Yuto, E-mail: noguchi.yuto@jaea.go.jp; Maruyama, Takahito; Ueno, Kenichi; Komai, Masafumi; Takeda, Nobukazu; Kakudate, Satoshi

    2016-11-01

    An impact hammer test of the full-scale mock-up of the ITER blanket remote handling system (BRHS) was carried out to validate the results of the seismic analysis of the BRHS which were performed using a finite element (FE) model. As the FE analysis of the BRHS predicted a vertical mode ∼8 Hz, which coincides with a major natural frequency of the vacuum vessel of ITER, evaluating the dynamic response of the BRHS experimentally and measuring the system's damping is indispensable in verifying the structural design of the system. Recent preliminary impact testing on the full-scale mock-up of the BRHS showed that the mock-up has a vertical major natural mode having a natural frequency of ∼7.5 Hz and a damping ratio of 0.5%. Several other major natural modes having frequencies less than 10 Hz were found to have damping ratios ranging from 0.2% to 2%. It was confirmed that the natural major frequencies obtained in the experiments are in agreement with the major frequencies obtained via analysis.

  3. Applicability of tungsten/EUROFER blanket module for the DEMO first wall

    Science.gov (United States)

    Igitkhanov, Yu.; Bazylev, B.; Landman, I.; Boccaccini, L.

    2013-07-01

    In this paper we analyse a sandwich-type blanket configuration of W/EUROFER for DEMO first wall under steady-state normal operation and off-normal conditions, such as vertical displacements and runaway electrons. The heat deposition and consequent erosion of the tungsten armour is modelled under condition of helium cooling of the first wall blanket module and by taking into account the conversion of the magnetic energy stored in the runaway electron current into heat through the ohmic dissipation of the return current induced in the metallic armour structure. It is shown that under steady-state DEMO operation the first wall sandwich type module will tolerate heat loads up to ˜14 MW/m2. It will also sustain the off-normal events, apart from the hot vertical displacement events, which will melt the tungsten armour surface.

  4. Applicability of tungsten/EUROFER blanket module for the DEMO first wall

    Energy Technology Data Exchange (ETDEWEB)

    Igitkhanov, Yu., E-mail: juri.igitkhanov@lhm.fzk.de [Karlsruhe Institute of Technology, IHM, Karlsruhe (Germany); Bazylev, B.; Landman, I. [Karlsruhe Institute of Technology, IHM, Karlsruhe (Germany); Boccaccini, L. [Karlsruhe Institute of Technology, INR, Karlsruhe (Germany)

    2013-07-15

    In this paper we analyse a sandwich-type blanket configuration of W/EUROFER for DEMO first wall under steady-state normal operation and off-normal conditions, such as vertical displacements and runaway electrons. The heat deposition and consequent erosion of the tungsten armour is modelled under condition of helium cooling of the first wall blanket module and by taking into account the conversion of the magnetic energy stored in the runaway electron current into heat through the ohmic dissipation of the return current induced in the metallic armour structure. It is shown that under steady-state DEMO operation the first wall sandwich type module will tolerate heat loads up to ∼14 MW/m{sup 2}. It will also sustain the off-normal events, apart from the hot vertical displacement events, which will melt the tungsten armour surface.

  5. Feasibility study of a neutron activation system for EU test blanket systems

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Kuo, E-mail: kuo.tian@kit.edu [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Calderoni, Pattrick [Fusion for Energy(F4E), Barcelona (Spain); Ghidersa, Bradut-Eugen; Klix, Axel [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)

    2016-11-01

    Highlights: • This paper summarizes the technical baseline and preliminary design of EU TBM Neutron Activation System, briefly describes the key components, and outlines the major integration challenges. - Abstract: The Neutron Activation System (NAS) for the EU Helium Cooled Lithium Lead (HCLL) and Helium Cooled Pebble Bed (HCPB) Test Blanket Systems (TBSs) is an instrument that is proposed to determine the absolute neutron fluence and absolute neutron flux with information on the neutron spectrum in selected positions of the corresponding Test Blanket Modules (TBMs). In the NAS activation probes are exposed to the ITER neutron flux for periods ranging from several tens of seconds up to a full plasma pulse length, and the induced gamma activities are subsequently measured. The NAS is composed of a pneumatic transfer system and a counting station. The pneumatic transfer system includes irradiation ends in TBMs, transfer pipes, return gas pipes, a transfer station with a distributor (carousel), and a pressurized gas driving system, while the counting station consists of gamma ray detectors, signal processing electronic devices, and data analyzing software for neutron source strength evaluation. In this paper, a brief description on the proposed TBM NAS as well as the key components is presented, and the integration challenges of TBM NAS are outlined.

  6. Tritium and heat management in ITER Test Blanket Systems port cell for maintenance operations

    Energy Technology Data Exchange (ETDEWEB)

    Giancarli, L.M., E-mail: luciano.giancarli@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Cortes, P.; Iseli, M.; Lepetit, L.; Levesy, B. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Livingston, D. [Frazer-Nash Consultancy Ltd., Stonebridge House, Dorking Business Park, Dorking, Surrey RH4 1HJ (United Kingdom); Nevière, J.C. [Comex-Nucleaire, 13115 Saint Paul Lez Durance (France); Pascal, R. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Ricapito, I. [Fusion for Energy, Josep Pla, 2, Torres Diagonal Litoral B3, Barcelona E-08019 (Spain); Shu, W. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Wyse, S. [Frazer-Nash Consultancy Ltd., Stonebridge House, Dorking Business Park, Dorking, Surrey RH4 1HJ (United Kingdom)

    2014-10-15

    Highlights: •The ITER TBM Program is one of the ITER missions. •We model a TBM port cell with CFD to optimize the design choices. •The heat and tritium releases management in TBM port cells has been optimized. •It is possible to reduce the T-concentration below one DAC in TBM port cells. •The TBM port cells can have human access within 12 h after shutdown. -- Abstract: Three ITER equatorial port cells are dedicated to the assessment of six different designs of breeding blankets, known as Test Blanket Modules (TBMs). Several high temperature components and pipework will be present in each TBM port cell and will release a significant quantity of heat that has to be extracted in order to avoid the ambient air and concrete wall temperatures to exceed allowable limits. Moreover, from these components and pipes, a fraction of the contained tritium permeates and/or leaks into the port cell. This paper describes the optimization of the heat extraction management during operation, and the tritium concentration control required for entry into the port cell to proceed with the required maintenance operations after the plasma shutdown.

  7. Development and testing of a zero stitch MLI blanket using plastic pins for space use

    Science.gov (United States)

    Hatakenaka, Ryuta; Miyakita, Takeshi; Sugita, Hiroyuki; Saitoh, Masanori; Hirai, Tomoyuki

    2014-11-01

    New types of MLI blanket have been developed to achieve high thermal performance while maintaining production and assembly workability equivalent to the conventional type. Tag-pins, which are widely used in commercial applications to hook price tags to products, are used to fix the films in place and the pin material is changed to polyetheretherketone (PEEK) for use in space. Thermal performance is measured by using a boil-off calorimeter, in which a rectangular liquid nitrogen tank is used to evaluate the degradation at the bending corner and joint of the blanket. Zero-stitch- and multi-blanket-type MLIs show significantly improved thermal performance (ɛeff is smaller than 0.0050 at room temperature) despite having the same fastener interface as traditional blankets, while the venting design and number of tag-pins are confirmed as appropriate in a depressurization test.

  8. Prototyping studies for the Blanket Shield Module of the ITER ECH Upper Port Plug

    Energy Technology Data Exchange (ETDEWEB)

    Spaeh, P. [Forschungszentrum Karlsruhe, Association FZK-Euratom, Institute for Materials Research I, P.O. Box 3640, D-76021 Karlsruhe (Germany)], E-mail: peter.spaeh@imf.fzk.de; Heidinger, R.; Kleefeldt, K.; Meier, A.; Scherer, T.; Strauss, D. [Forschungszentrum Karlsruhe, Association FZK-Euratom, Institute for Materials Research I, P.O. Box 3640, D-76021 Karlsruhe (Germany)

    2009-06-15

    A team of European associations is planning to procure ECH launcher turnkey systems for MHD control in the ITER plasma. ECH launchers will be installed to four ports on the upper level of the ITER vacuum vessel (VV). The structural system of the launchers accommodates the mm-wave components, cooling devices and elements for nuclear shielding. Its main components are the Blanket Shield Module (BSM), including the plasma facing First Wall Panel (FWP) and the port plug mainframe. A removable flange connection between the BSM and the main frame provides access to the internals. Appropriate remote handling capability is also taken as a design requirement. The BSM with the flange connection will be exposed to substantial nuclear heat loads. The manufacturing of machined components requires complex shaping with small tolerances and good quality of the surfaces due to operation under vacuum conditions. For the BSM and the front segment of the main frame a rigid double wall structure with meandering rectangular cooling channels was designed and analysed to meet these requirements. To investigate industrial manufacturing routes, a typical single-piece sample was machined and the manufacturing process was evaluated. Further two prototypes of a characteristic section of the BSM were manufactured, using two different fabrication techniques. These are (a) Hot Isostatic Pressing (HIP), which combines the sintering of metal powder inside of welded capsules and diffusion welding of solid parts and (b) brazing of bent and machined individual parts. The prototypes are under study at the Launcher Handling Test facility (LHT) at FZK, which offers a water circuit to provide coolant with adjustable parameters, simulating different ITER operating conditions. Extensive test series were performed to validate underlying analysis related to homogenous temperature distribution, tolerable pressure drop within the cooling paths and removal of applied heat loads.

  9. Thermal-hydraulic analysis of a cylindrical blanket module using ATHENA code

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J.G.; Herring, J.S.; Carlson, K.E.; Ransom, V.H.

    1981-01-01

    ATHENA (Advanced Thermal-Hydraulic Energy Network Analyzer) is a new computer code for thermal-hydraulic analyses of many energy systems. Multiple-loop and multiple-fluid capabilities have been emphasized during the code development. A pilot version of ATHENA has incorporated a fusion kinetic package to model the effect of first wall temperature variation on the reactor conditions. The capability has been demonstrated by analyzing the performance under various conditions of a cylindrical fusion blanket module. The results have shown the viability of using ATHENA for fusion reactor design and safety analyses.

  10. Japanese contribution to the design of primary module of shielding blanket in ITER-FEAT

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Toshimasa; Hatano, Toshihisa; Miki, Nobuharu; Hiroki, Seiji; Enoeda, Mikio; Ohmori, Junji; Akiba, Masato [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Sato, Shinichi [Kawasaki Heavy Industries, Ltd., Tokyo (Japan)

    2003-02-01

    Japanese contributions to the design activity on the shielding blanket module consisting of the separable first wall and the shield block for ITER-FEAT are compiled. Temperature and stress distributions in the first wall and the shield block are analyzed and evaluated with 2-D and 3-D models for steady state and also for transient condition according to plasma ramp-up and ramp-down. While temperatures and stresses in the first wall satisfy their allowable values, those in a front part of the shield block exceed the allowable guideline. Based on this result, design improvements are suggested. Coolant flow and pressure distributions along the complicated coolant channel in the shield block are preliminary analyzed. Though heat removal is satisfactory in all coolant channels, back flows due to choking in coolant collectors are found. Design improvements to avoid the choking are suggested. Electromagnetic forces acting on blanket modules are analyzed with detailed 3-D models of solid elements for different disruption scenarios. The maximum moment around radial axis is 1.36 MNm on module no.5 under fast upward VDE, and the maximum moment around vertical axis is 1.47 MNm on module no.1 under fast downward VDE. The supporting beam of the first wall with welded attachment to the shield block is designed. Required welding thickness and support conditions to withstand electromagnetic forces are estimated. Strength of the shield block at the region mating the flexible cartridge is also estimated. Though the shield block surface attached by the flexible cartridge shows sufficient strength, the internal thread mating the Inconel bolt would need more length. In addition, water-to-water leak detection system in case main supply/return manifolds are located within the vacuum vessel is designed. By using Kr as the tracer material, the possibility of water-to-water leak detection and the concept of the detection system are shown. The design of the shielding blanket of ITER-FEAT has

  11. Prototyping of the Blanket Shield Module for the ITER EC H and CD Upper launcher

    Energy Technology Data Exchange (ETDEWEB)

    Spaeh, Peter, E-mail: peter.spaeh@kit.edu [KIT – Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, D-76021 Karlsruhe (Germany); Aiello, G. [KIT – Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, D-76021 Karlsruhe (Germany); Binni, A. [MAN Diesel and Turbo SE, Deggendorf (Germany); Gessner, R. [KIT – Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, D-76021 Karlsruhe (Germany); Goldmann, A. [MAN Diesel and Turbo SE, Deggendorf (Germany); Grossetti, G. [KIT – Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, D-76021 Karlsruhe (Germany); Kroiss, A. [MAN Diesel and Turbo SE, Deggendorf (Germany); Meier, A. [KIT – Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, D-76021 Karlsruhe (Germany); Obermeier, C. [MAN Diesel and Turbo SE, Deggendorf (Germany); Scherer, T.; Schreck, S.; Strauss, D.; Vaccaro, A. [KIT – Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, D-76021 Karlsruhe (Germany)

    2014-10-15

    Highlights: • ITER EC H and CD prototype of structural In-vessel components manufactured and analyzed. • Preliminary design was adapted according to manufacturing requirements. • Analysis of flow characteristics for cooling system has been performed. Design was optimized according to this analysis. - Abstract: The design of the ITER Electron Cyclotron Heating and Current Drive (ECH and CD) Upper launcher is recently in the first of two final design phases. The first phase deals with the finalization of all FCS (First Confinement System) components as well as with specific design progress for the remaining In-vessel components. The most outstanding structural In-vessel component of an ECH and CD Upper launcher is the Blanket Shield Module (BSM) with the First Wall Panel (FWP). Both of them form the plasma facing part of the launcher, which has to meet strong demands on dissipation of nuclear heat loads and mechanical rigidity. Nuclear heat loads from 3 MW/m{sup 3} at the First Wall Panel’ surface, decaying down to a tenth in a distance of 0.5 m behind of it will affect the BSM and the FWP. Additional heating of maximum 0.5 MW/m{sup 2} due to plasma radiation must be dissipated from the FWP. To guarantee save and homogenous removal of such extensive heat loads, the BSM is designed as a welded steel-case with specific cooling channels inside its wall structure. Attached to its face side is the FWP with a high-power cooling structure. Based on computational analysis the optimum cooling channel geometry has been investigated. Specific pre-prototype tests have been made and associated assembly parameters have been determined in order to identify optimum manufacturing processes and joining techniques, which guarantee a robust design with maximum geometrical accuracy. This paper describes the design, manufacturing and testing of a full-size mock-up of the BSM. The study was carried out in an industrial cooperation with MAN Diesel and Turbo SE.

  12. Activity inventories and decay heat calculations for a DEMO with HCPB and HCLL blanket modules

    Energy Technology Data Exchange (ETDEWEB)

    Stankunas, Gediminas, E-mail: gediminas.stankunas@lei.lt [Lithuanian Energy Institute, Laboratory of Nuclear Installation Safety, Breslaujos Str. 3, LT-44403 Kaunas (Lithuania); Tidikas, Andrius [Lithuanian Energy Institute, Laboratory of Nuclear Installation Safety, Breslaujos Str. 3, LT-44403 Kaunas (Lithuania); Pereslavstev, Pavel [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Catalán, Juan; García, Raquel; Ogando, Francisco [Departamento de Ingeniería Energética, UNED, 28040 Madrid (Spain); Fischer, Ulrich [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-11-01

    Highlights: • The afterheat and activity inventories were calculated for Eurofer steel which is the reference structural material for DEMO. • The decay heat for the HCPB DEMO was found to be larger than for the HCLL both for short and longer cooling times. • The comparison calculations were performed for a single outboard blanket module of the HCLL DEMO assuming High-Temperature Ferritic–Martensitic (HT-FM) steel and SS-316 (LN) as structural material. - Abstract: Activation inventories, decay heat and radiation doses are important nuclear quantities which need to be assessed on a reliable basis for the safe operation of a fusion nuclear power reactor. The afterheat and activity inventories were shown to be dominated by the Eurofer steel which is the reference structural material for DEMO. The decay heat for the HCPB DEMO was found to be larger than for the HCLL both for short (a few days) and longer (more than a year) cooling times. As for the alternative steels, the induced radioactivity was turned out to be lowest for the SS-316 until about 200 years after shut-down. Afterwards, the activity level of SS-316 steel was found to be the highest. For these times, the activity of both Eurofer and the HT-FM steel is about one order of magnitude lower.

  13. Conceptual design of Blanket Remote Handling System for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jianghua, E-mail: weijh@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Song, Yuntao, E-mail: songyt@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); University of Science and Technology of China, Hefei (China); Pei, Kun; Zhao, Wenlong; Zhang, Yu; Cheng, Yong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2015-11-15

    Highlights: • The concept for the blanket maintenance is carried out, including three sub-systems. • The basic maintenance procedure for blanket between VV and hot cell is carried out. • The primary kinematics study is used to verify the feasibility of BRHS. • Virtual reality is adopted as another approach to verify the concept design. - Abstract: The China Fusion Engineering Testing Reactor (CFETR), which is a new superconducting tokamak device being designed by China, has a mission to achieve a high duty time (0.3–0.5). To accomplish this great mission, the big modular blanket option has been adopted to achieve the high efficiency of the blanket maintenance. Considering this mission and the large and heavy blanket module, a novel conceptual blanket maintenance system for CFETR has been carried out by us over the past year. This paper presents the conceptual design of the Blanket Remote Handling System (BRHS), which mainly comprises the In-Vessel-Maintenance-System (IVMS), Lifting System and Blanket-Tool-Manipulator System (BTMS). The BRHS implements the extraction and replacement between in-vessel (the blanket module operation configuration location) and ex-vessel (inside of the vertical maintenance cask) by the collaboration of these three sub systems. What is more, this paper represents the blanket maintenance procedure between the docking station (between hot cell building and tokamak building) and inside the vacuum vessel, in tokamak building. Virtual reality technology is also used to verify and optimize our concept design.

  14. The neutronic analysis of opportunity of ITER blanket element tests in RF research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lopatkin, A.; Tocheniy, L. [ENTEK-RDIPE, Moscow (Russian Federation)

    1994-12-31

    In the framework of development of plan of in-pile radiative tests of ITER blanket elements the calculations are carried out of the models of tritium-producing elements in loop channels, placed in the number of Russian various type test reactors. There are presented: (1) The variants of models of blanket, on the base of which the set of experiment goal parameters and its ranges are formed; (2) Outline of loop channel; (3) The experimental opportunities of research reactors with thermal (SM-3, MIR, IVV-2M, RBT) and fast (BOR-60, EBR) spectra of neutrons; (4) The calculation procedures - settlement models, codes. The results are given: (1) power generation rates in components of channel; (2) the tritium breeding rate; (3) the helium production rate in beryllium; (4) the neutron group fluxes; (5) absorption rates in zones of loop channel. The possible reactivity effects due to experimental channel accommodation in reactor core and to radiated sample replace inside of the channel are shown. The last section includes the recommendations for the choice of reactor acceptable from the neutronics point of view, and for the next study directions and stages.

  15. Residual stress in a laser welded EUROFER blanket module assembly using non-destructive neutron diffraction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, D.J., E-mail: d.hughes@warwick.ac.uk [WMG, University of Warwick, Coventry CV4 7AL (United Kingdom); Koukovini-Platia, E. [CERN, CH-1211 Geneva 23 (Switzerland); Heeley, E.L. [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2014-02-15

    Highlights: • Residual stresses were determined in a welded EUROFER blanket assembly with integrated cooling channels. • Good agreement was seen between experimentally determined and predicted stresses. • We show that microstructure changes that occur in EUROFER steels during welding must be considered for residual stress determination. • An experimental route is proposed for validation of predicted stresses in reactor components using non-destructive diffraction techniques. - Abstract: Whilst the structural integrity and lifetime considerations in welded joints for blanket modules can be predicted using finite element software, it is essential to prove the validity of these simulations. This paper provides detailed analysis for the first time, of the residual stress state in a laser-welded sample with integral cooling channels. State-of-the-art non-destructive neutron diffraction was employed to determine the triaxial stress state and to understand microstructural changes around the heat affected zone. Synchrotron X-ray diffraction was used to probe the variation of strain-free lattice reference parameter around the weld zone allowing correction of the neutron measurements. This paper details an important experimental route to validation of predicted stresses in complex safety-critical reactor components for future applications.

  16. Residual stress in a laser welded EUROFER blanket module assembly using non-destructive neutron diffraction techniques

    CERN Document Server

    Hughes, D J; Heeley, E L

    2014-01-01

    Whilst the structural integrity and lifetime considerations in welded joints for blanket modules can be predicted using finite element software, it is essential to prove the validity of these simulations. This paper provides detailed analysis for the first time, of the residual stress state in a laser-welded sample with integral cooling channels. State-of-the-art non-destructive neutron diffraction was employed to determine the triaxial stress state and to understand microstructural changes around the heat affected zone. Synchrotron X-ray diffraction was used to probe the variation of strain-free lattice reference parameter around the weld zone allowing correction of the neutron measurements. This paper details an important experimental route to validation of predicted stresses in complex safety-critical reactor components for future applications.

  17. Simulation study of pressure trends in the case of loss of coolant accident in Water Cooled Lithium Lead blanket module

    Energy Technology Data Exchange (ETDEWEB)

    Eboli, Marica, E-mail: marica.eboli@for.unipi.it [DICI-University of Pisa, Pisa (Italy); Del Nevo, Alessandro [ENEA UTIS-TCI, CR Brasimone, Camugnano (Italy); Pesetti, Alessio; Forgione, Nicola [DICI-University of Pisa, Pisa (Italy); Sardain, Pierre [CEA/IRFM Cadarache, St. Paul lez Durance Cedex (France)

    2015-10-15

    Highlights: • Review of the activities performed in the past on lithium-lead water interaction. • SIMMER-III code assessment of pressure trends based on BLAST experiments. • Identifying capabilities and deficiencies of SIMMER in modeling safety phenomena. • Proposal of experimental campaign in support of code validation. - Abstract: The water–lithium lead interaction implies a direct energy release, which leads to temperature and pressure increase, due to a combined thermal and chemical reaction, and an indirect form of energy release, the hydrogen production, due to secondary chemical reaction involving the initial reaction products. Review and understanding of the knowledge acquired in past studies, experimental works and numerical activities are needed in view of the renewed interest in the Water Cooled Lithium Lead blanket concept and safety issues connected with the fusion reactor design. This paper presents a review of the studies carried out in the past to characterize the potential safety concerns associated with the use of water and lithium-lead eutectic alloy, the main experimental campaigns, and numerical simulations of BLAST Test No. 5 performed by SIMMER-III code. As results, no code was found able to perform a satisfactory post-test analysis of separate effect experiments, without engineering assumptions. Therefore, a code model for the exothermic reaction and hydrogen production, and experimental data are needed for solving the WCLL blanket safety issues associated with the water–PbLi interaction.

  18. Breeding blanket design for ITER and prototype (DEMO) fusion reactors and breeding materials issues

    Energy Technology Data Exchange (ETDEWEB)

    Takatsu, H.; Enoeda, M. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1998-03-01

    Current status of the designs of the ITER breeding blanket and DEMO blankets is introduced placing emphasis on the breeding materials selection and related issues. The former design is based on the up-to-date design activities, as of October 1997, being performed jointly by Joint Central Team (JCT) and Home Teams (HT`s), while the latter is based on the DEMO blanket test module designs being proposed by each Party at the TBWG (Test Blanket Working Group) meetings. (J.P.N.)

  19. Manufacturing and testing of full scale prototype for ITER blanket shield block

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sa-Woong, E-mail: swkim12@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Kim, Duck-Hoi; Jung, Hun-Chea [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Sung-Ki [WONIL Co., Ltd., Haman (Korea, Republic of); Kang, Sung-Chan [POSCO Specialty Steel Co., Ltd., Changwon (Korea, Republic of); Zhang, Fu; Kim, Byoung-Yoon [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Ahn, Hee-Jae; Lee, Hyeon-Gon; Jung, Ki-Jung [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-04-15

    Highlights: • 316L(N)-IG forged steel was successfully fabricated and qualified. • Related R&D activities were implemented to resolve the fabrication issues. • SB #8 FSP was successfully manufactured with conventional fabrication techniques. • All of the validation tests were carried out and met the acceptance criteria. - Abstract: Based on the preliminary design of the ITER blanket shield block (SB) #8, the full scale prototype (FSP) has been manufactured and tested in accordance with pre-qualification program, and related R&D was performed to resolve the technical issues of fabrication. The objective of the SB pre-qualification program is to demonstrate the acceptable manufacturing quality by successfully passing the formal test program. 316L(N)-IG stainless steel forging blocks with 1.80L × 1.12W × 0.43t (m) were developed by using an electric arc furnace, and as a result, the material properties were satisfied with technical specification. In the course of applying conventional fabrication techniques such as cutting, milling, drilling and welding of the forged stainless steel block for the manufacturing of the SB #8 FSP, several technical problems have been addressed. And also, the hydraulic connector of cross-forged material re-melted by electro slag or vacuum arc requires the application of advanced joining techniques such as automatic bore TIG and friction welding. Many technical issues – drilling, welding, slitting, non-destructive test and so on – have been raised during manufacturing. Associated R&D including the computational simulation and coupon testing has been done in collaboration with relevant industries in order to resolve these engineering issues. This paper provides technical key issues and their possible resolutions addressed during the manufacture and formal test of the SB #8 FSP, and related R&D.

  20. Status report. KfK contribution to the development of DEMO-relevant test blankets for NET/ITER. Pt. 1: Self-cooled liquid metal breeder blanket. Vol. 1. Summary

    Energy Technology Data Exchange (ETDEWEB)

    Malang, S.; Reimann, J.; Sebening, H. [comps.; Barleon, L.; Bogusch, E.; Bojarsky, E.; Borgstedt, H.U.; Buehler, L.; Casal, V.; Deckers, H.; Feuerstein, H.; Fischer, U.; Frees, G.; Graebner, H.; John, H.; Jordan, T.; Kramer, W.; Krieg, R.; Lenhart, L.; Malang, S.; Meyder, R.; Norajitra, P.; Reimann, J.; Schwenk-Ferrero, A.; Schnauder, H.; Stieglitz, R.; Oschinski, J.; Wiegner, E.

    1991-12-01

    A self-cooled liquid metal breeder blanket for a fusion DEMO-reactor and the status of the development programme is described as a part of the European development programme of DEMO relevant test blankets for NET/ITER. Volume 1 (KfK 4907) contains a summary, Volume 2 (KfK 4908) a more detailed version of the report. Both volumes contain sections on previous studies on self-cooled liquid metal breeder blankets, the reference blanket design for a DEMO-reactor, a typical test blanket design including the ancillary loop system and the building requirements for NET/ITER together with the present status of the associated R and D-programme in the fields of neutronics, magnetohydrodynamics, tritium removal and recovery, liquid metal compatibility and purification, ancillary loop system, safety and reliability. An outlook is given regarding the required R and D-programme for the self-cooled liquid metal breeder blanket prior to tests in NET/ITER and the relevant test programme to be performed in NET/ITER. (orig.). [Deutsch] Ein selbstgekuehltes Fluessigmetall-Brutblanket fuer einen DEMO Fusionsreaktor und der Stand der Entwicklungsarbeiten, als Teil des Europaeischen Entwicklungsprogramms fuer ein DEMO-relevantes Testblanket fuer NET/ITER werden beschrieben. Band 1 (KfK 4907) enthaelt die Zusammenfassung und Band 2 (KfK 4708) den detaillierten Bericht. In den beiden Berichten werden bisher durchgefuehrte Untersuchungen fuer selbstgekuehlte Fluessigmetallbrutblankets beschrieben. Es werden der Referenzentwurf fuer das DEMO-Reaktorblanket und ein typischer Entwurf fuer ein Testblanket in NET/ITER mit den dazugehoerigen externen Kreislaeufen und einem Komponentenaufstellungsplan vorgestellt. Der augenblickliche Stand der Forschungs- und Entwicklungsarbeiten bezueglich: Neutronenrechnungen, Magnetohydrodynamik (MHD), Tritiumgewinnung, Bestaendigkeit im Fluessigmetall, Fluessigmetallreinigung sowie Sicherheit und Zuverlaessigkeit der Kreislaeufe wird aufgezeigt. Es wird ein

  1. Status report. KfK contribution to the development of DEMO-relevant test blankets for NET/ITER. Pt. 1: Self-cooled liquid metal breeder blanket. Vol. 2. Detailed version

    Energy Technology Data Exchange (ETDEWEB)

    John, H.; Malang, S.; Sebening, H. [comps.; Barleon, L.; Bojarsky, E.; Borgstedt, H.U.; Buehler, L.; Casal, V.; Deckers, H.; Feuerstein, H.; Fischer, U.; Frees, G.; Graebner, H.; John, H.; Jordan, T.; Kramer, W.; Krieg, R.; Lenhart, L.; Meyder, R.; Norajitra, P.; Reiser, H.; Reimann, J.; Schwenk-Ferrero, A.; Schnauder, H.; Stieglitz, R.; Oschinski, J.; Wiegner, E. [Kernforschungszentrum Karlsruhe GmbH (Germany). Projekt Kernfusion; Bogusch, E. [Interatom GmbH, Bergisch Gladbach (Germany)

    1991-12-01

    A self-cooled liquid metal breeder blanket for a fusion DEMO-reactor and the status of the development programme is described as a part of the European development programme of DEMO relevant test blankets for NET/ITER. Volume 1 (KfK 4907) contains a summary. Volume 2 (KfK 4908) a more detailed version of the report. Both volumes contain sections on previous studies on self-cooled liquid metal breeder blankets, the reference blanket design for a DEMO-reactor, a typical test blanket design including the ancillary loop system and the building requirements for NET/ITER together with the present status of the associated RandD-programme in the fields of neutronics, magnetohydrodynamics, tritium removal and recovery, liquid metal compatibility and purification, ancillary loop system, safety and reliability. An outlook is given regarding the required RandD-programme for the self-cooled liquid metal breeder blanket prior to tests in NET/ITER and the relevant test programme to be performed in NET/ITER. (orig.). [Deutsch] Ein selbstgekuehltes Fluessigmetall-Brutblanket fuer einen DEMO Fusionsreaktor und der Stand der Entwicklungsarbeiten, als Teil des Europaeischen Entwicklungsprogramms fuer ein DEMO-relevantes Testblanket fuer NET/ITER werden beschrieben. Band 1 (KfK 4907) enthaelt die Zusammenfassung und Band 2 (KfK 4708) den detaillierten Bericht. In den beiden Berichten werden bisher durchgefuehrte Untersuchungen fuer selbstgekuehlte Fluessigmetallbrutblankets beschrieben. Es werden der Referenzentwurf fuer das DEMO-Reaktorblanket und ein typischer Entwurf fuer ein Testblanket in NET/ITER mit den dazugehoerigen externen Kreislaeufen und einem Komponentenaufstellungsplan vorgestellt. Der augenblickliche Stand der Forschungs- und Entwicklungsarbeiten bezueglich: Neutronenrechnungen, Magnetohydrodynamik (MHD), Tritiumgewinnung, Bestaendigkeit im Fluessigmetall, Fluessigmetallreinigung und Sicherheit und Zuverlaessigkeit der Kreislaeufe wird aufgezeigt. Es wird ein Ausblick

  2. Finalization of the conceptual design of the auxiliary circuits for the European test blanket systems

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, A., E-mail: antonio.aiello@enea.it [ENEA UTIS – C.R. Brasimone, Bacino del Brasimone, I-40032 Camugnano, BO (Italy); Ghidersa, B.E. [Karlsruher Institut für Technologie (KIT) – Institut für Neutronenphysik und Reaktortechnik (INR), D-76021 Karlsruhe (Germany); Utili, M. [ENEA UTIS – C.R. Brasimone, Bacino del Brasimone, I-40032 Camugnano, BO (Italy); Vala, L. [Sustainable Energy (SUSEN), Technological Experimental Circuits, Centrum vyzkumu Rez s.r.o. (CV Rez), Hlavni c.p. 130, CZ-250 68 Husinec-Rez (Czech Republic); Ilkei, T. [Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest H-1525 (Hungary); Di Gironimo, G.; Mozzillo, R.; Tarallo, A. [CREATE/University of Naples Federico II, Department of Industrial Engineering, P.le Tecchio 80, 80125 Naples (Italy); Ricapito, I.; Calderoni, P. [TBM& MD Project, Fusion for Energy, EU Commission, Carrer J. Pla, 2, Building B3, 08019 Barcelona (Spain)

    2015-10-15

    In view of the ITER conceptual design review, the design of the ancillary systems of the European test blanket systems presented in [1] has been updated and made consistent with the ITER requirements for the present design phase. Europe is developing two concepts of TBM, the helium cooled lithium lead (HCLL) and the helium cooled pebble bed (HCPB) one, having in common the cooling media, pressurized helium at 8 MPa [2]. TBS, namely helium cooling system (HCS), coolant purification system (CPS), lead lithium loop and tritium extraction/removal system (TES–TRS) have the purpose to cool down the TBM and to remove tritium to be driven to TEP from breeder and coolant. These systems are placed in port cell 16 (PC#16), chemical and volume control system (CVCS) area and tritium building. Starting from the pre-conceptual design developed in the past, more mature technical interfaces with the ITER facility have been consolidated and iterative design activities were performed to comply with design requirements/specifications requested by IO to conclude the conceptual design phase. In this paper the present status of design of the TBS is presented together with the preliminary integration in ITER areas.

  3. Development of metal getter for in-situ irradiation test of fusion blanket

    Energy Technology Data Exchange (ETDEWEB)

    Futamura, Yoshiaki [Toyama Univ. (Japan). Hydrogen Isotope Research Center; Tsuchiya, Kunihiko; Imaizumi, Hideki; Wakisaka, Yuichi; Kabutomori, Toshiki; Kawamura, Hiroshi

    1995-03-01

    In-situ irradiation test of fusion blanket is planned in JMTR using lithium ceramics and beryllium as tritium breeders and neutron multipliers, and it is necessary for the recovery of tritium gas to develop metal getters. Characteristics of several materials were estimated and Zr{sub 9}Ni{sub 11} alloy, chosen in the report, was one candidate for a metal getter. It has a variety of advantages as compared to other metal getters: (1) Good characteristics similar to uranium (U), (2) Easy to handle, (3) Incombustible materials. Zr{sub 9}Ni{sub 11} alloy was fabricated and the equilibrium dissociation pressure of hydrogen was measured and evaluated on amounts of hydrogen absorption (H/M) at 20, 100, 200 and 300degC. It was evident from this measurement that Zr{sub 9}Ni{sub 11} alloy had broad and stable plateaus when H/M was more than 0.33 (50 cm{sup 3}/g). The equilibrium dissociation pressure of Zr{sub 9}Ni{sub 11} alloy was less than 10{sup -4} Pa within H/M=0.13 (20 cm{sup 3}/g). These results thus show Zr{sub 9}Ni{sub 11} alloy to be a preferable material for recovery of tritium gas. (author).

  4. Nuclear maintenance strategy and first steps for preliminary maintenance plan of the EU HCLL & HCPB Test Blanket Systems

    Energy Technology Data Exchange (ETDEWEB)

    Galabert, Jose, E-mail: jose.galabert@f4e.europa.eu [F4E Fusion for Energy, EU Domestic Agency, c/Josep Pla, 2. B3, 08019, Barcelona (Spain); Hopper, Dave [AMEC Foster Wheeler, Faraday Street, Birchwood Park, WA3 6GN (United Kingdom); Neviere, Jean-Cristophe [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, 13067, St. Paul Lez Durance Cedex (France); Nodwell, David [CCFE, Culham Science Centre, Abingdon, OX14 3DB, Oxfordshire (United Kingdom); Pascal, Romain [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, 13067, St. Paul Lez Durance Cedex (France); Poitevin, Yves; Ricapito, Italo [F4E Fusion for Energy, EU Domestic Agency, c/Josep Pla, 2. B3, 08019, Barcelona (Spain); White, Gareth [AMEC Foster Wheeler, Faraday Street, Birchwood Park, WA3 6GN (United Kingdom)

    2017-03-15

    Highlights: • Nuclear maintenance strategy for the two European (EU) Test Blanket Systems (TBS): i/. Helium Cooled Lead Lithium (HCLL) and ii/. Helium Cooled Pebble Bed (HCPB). • Preliminary identification of maintenance tasks for most relevant components of the EU HCLL & HCPB TBS. • Preliminary feasibility analysis for hands-on maintenance tasks of some relevant components of the European Test Blanket Systems. • Design recommendations for enhancement of the European Test Blanket Systems maintainability. - Abstract: This paper gives an overview of nuclear maintenance strategy to be followed for the European HCLL & HCPB Test Blanket Systems (TBS) to be installed in ITER. One of the several core documents to prepare in view of their licensing is their respective ‘Maintenance Plan’. This document is fundamental for ensuring sound performance and safety of the TBS during ITER’s operational phase and shall include, amongst others, relevant information on: maintenance organization, preventive and corrective maintenance task procedures, condition monitoring for key components, maintenance work planning, and a spare parts plan, just to mention some of the key topics. In compliance with the ITER Plant Maintenance policy, first steps have been taken aimed at defining nuclear maintenance strategy for some of the most relevant HCLL & HCPB TBS components, conducted by F4E in collaboration with industry. After a brief recall of maintenance strategy of the TBM Program (PBS-56), this paper analyses main features of EU HCLL & HCPB TBS maintainability and identifies, at their conceptual design phase, a preliminary list of maintenance tasks to be developed for their most representative components. In addition, the paper also presents the first nuclear maintenance studies conducted for replacement of the Q{sub 2} Getter Beds, identifying some design recommendations for their sound maintainability.

  5. On the optimization of the first wall of the DEMO water-cooled lithium lead outboard breeding blanket equatorial module

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A., E-mail: pietroalessandro.dimaio@unipa.it; Arena, P.; Bongiovì, G.; Chiovaro, P.; Forte, R.; Garitta, S.

    2016-11-01

    Highlights: • The geometric optimization of the DEMO WCLL blanket module first wall has been performed, maximizing the heat flux it may safely undergo. • Attention has been focused on the FW flat concept endowed with square cooling channels. • A theoretical-computational approach based on the finite element method (FEM) has been followed, adopting a qualified commercial FEM code. • Four optimized FW configurations have been found to safely withstand a heat flux up to 2 MW/m{sup 2} fulfilling all the rules prescribed by safety codes. - Abstract: Within the framework of EUROfusion R&D activities a research campaign has been carried out at the University of Palermo in order to investigate the thermo-mechanical performances of the DEMO water-cooled lithium lead (WCLL) breeding blanket first wall (FW). The research campaign has been mainly focused on the optimization of the FW geometric configuration in order to maximize the heat flux it may safely withstand fulfilling all the thermal, hydraulic and mechanical requirements foreseen by safety codes. Attention has been focused on the FW flat concept endowed with square cooling channels and the potential influence of its four main geometrical parameters on its thermo-mechanical performances has been assessed performing a parametric analysis by means of a qualified commercial finite element method code. A set of 5929 different FW geometric configurations has been considered and the thermal performances of each one of them have been numerically assessed in case it undergoes 26 different values of heat flux on its plasma-facing surface. The resulting 154154 thermal analyses have allowed to select those cases fulfilling the adopted thermal-hydraulic requirements, whose thermo-mechanical performances have been numerically assessed under both normal operation and over-pressurization steady state loading scenarios to check whether they met the mechanical requirements prescribed by the pertaining SDC-IC safety rules. Four

  6. Updated neutronics analyses of a water cooled ceramic breeder blanket for the CFETR

    Science.gov (United States)

    Xiaokang, ZHANG; Songlin, LIU; Xia, LI; Qingjun, ZHU; Jia, LI

    2017-11-01

    The water cooled ceramic breeder (WCCB) blanket employing pressurized water as a coolant is one of the breeding blanket candidates for the China Fusion Engineering Test Reactor (CFETR). Some updating of neutronics analyses was needed, because there were changes in the neutronics performance of the blanket as several significant modifications and improvements have been adopted for the WCCB blanket, including the optimization of radial build-up and customized structure for each blanket module. A 22.5 degree toroidal symmetrical torus sector 3D neutronics model containing the updated design of the WCCB blanket modules was developed for the neutronics analyses. The tritium breeding capability, nuclear heating power, radiation damage, and decay heat were calculated by the MCNP and FISPACT code. The results show that the packing factor and 6Li enrichment of the breeder should both be no less than 0.8 to ensure tritium self-sufficiency. The nuclear heating power of the blanket under 200 MW fusion power reaches 201.23 MW. The displacement per atom per full power year (FPY) of the plasma-facing component and first wall reach 0.90 and 2.60, respectively. The peak H production rate reaches 150.79 appm/FPY and the peak He production reaches 29.09 appm/FPY in blanket module #3. The total decay heat of the blanket modules is 2.64 MW at 1 s after shutdown and the average decay heat density can reach 11.09 kW m-3 at that time. The decay heat density of the blanket modules slowly decreases to lower than 10 W m-3 in more than ten years.

  7. Photovoltaic Module Qualification Plus Testing

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wohlgemuth, John [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kempe, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bosco, Nick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hacke, Peter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jordan, Dirk [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, David C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Silverman, Timothy J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Phillips, Nancy [3M Company, Maplewood, MN (United States); Earnest, Thomas [DuPont, Wilmington, DE (United States); Romero, Ralph [Black & Veatch, Overland Park, KS (United States)

    2013-12-01

    This report summarizes a set of test methods that are in the midst of being incorporated into IEC 61215 for certification of a module design or other tests that go beyond certification to establish bankability.

  8. Design and analysis of ITER shield blanket

    Energy Technology Data Exchange (ETDEWEB)

    Ohmori, Junji; Hatano, Toshihisa; Ezato, Kouichiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1998-12-01

    This report includes electromagnetic analyses for ITER shielding blanket modules, fabrication methods for the blanket modules and the back plate, the design and the fabrication methods for port limiter have been investigated. Studies on the runaway electron impact for Be armor have been also performed. (J.P.N.)

  9. Verification test results of a cutting technique for the ITER blanket cooling pipes

    Energy Technology Data Exchange (ETDEWEB)

    Shigematsu, Soichiro, E-mail: shigematsu.soichiro@jaea.go.jp [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki (Japan); Tanigawa, Hisashi; Aburadani, Atsushi; Takeda, Nobukazu; Kakudate, Satoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki (Japan); Mori, Seiji; Nakahira, Masataka; Raffray, Rene; Merola, Mario [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France)

    2012-08-15

    For replacement of the first wall (FW) of the international thermonuclear experimental reactor (ITER), cutting and welding tools for the cooling pipes must be able to access a pipe from the surface side of the FW and cut/weld the pipe from the inside the cooling pipe (inner diameter: 42.72 mm, thickness: 2.77 mm). The cutting tool for the pipe end is required to cut a flat plate circularly from the surface side of the FW (cutting diameter: approximately 44 mm, plate thickness: 5 mm). To determine the specifications for both the tools and the blanket hydraulic connections, the ITER Organization (IO) and the Japan Domestic Agency (JADA) conducted research and development activities regarding the FW replacement. This paper describes the current status of the development of cutting tools for the cooling pipe connection.

  10. Melting and evaporation analysis of the first wall in a water-cooled breeding blanket module under vertical displacement event by using the MARS code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Im, Kihak [National Fusion Research Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133 (Korea, Republic of)

    2017-05-15

    Highlights: • Material phase change of first wall was simulated for vertical displacement event. • An in-house first wall module was developed to simulate melting and evaporation. • Effective heat capacity method and evaporation model were proposed. • MARS code was proposed to predict two-phase phenomena in coolant channel. • Phase change simulation was performed by coupling MARS and in-house module. - Abstract: Plasma facing components of tokamak reactors such as ITER or the Korean fusion demonstration reactor (K-DEMO) can be subjected to damage by plasma instabilities. Plasma disruptions like vertical displacement event (VDE) with high heat flux, can cause melting and vaporization of plasma facing materials and burnout of coolant channels. In this study, to simulate melting and vaporization of the first wall in a water-cooled breeding blanket under VDE, one-dimensional heat equations were solved numerically by using an in-house first wall module, including phase change models, effective heat capacity method, and evaporation model. For thermal-hydraulics, the in-house first wall analysis module was coupled with the nuclear reactor safety analysis code, MARS, to take advantage of its prediction capability for two-phase flow and critical heat flux (CHF) occurrence. The first wall was proposed for simulation according to the conceptual design of the K-DEMO, and the heat flux of plasma disruption with a value of 600 MW/m{sup 2} for 0.1 s was applied. The phase change simulation results were analyzed in terms of the melting and evaporation thicknesses and the occurrence of CHF. The thermal integrity of the blanket first wall is discussed to confirm whether the structural material melts for the given conditions.

  11. Analytical study with the Athena code of the HCPB blanket design experimental activity on the HE-FUS3 facility

    Energy Technology Data Exchange (ETDEWEB)

    Meloni, P. [ENEA, Bologna (Italy); D' Auria, F.; Oriolo, F. [Pisa Univ. (Italy). Dipt. di Costruzioni Meccaniche e Nucleari; Dell' Orco, G.; Polazzi, G. [ENEA, Brasimone (Italy)

    1998-07-01

    Within the frame of the European Fusion Technology Programme, the HE-FUS3 helium facility was selected for the execution of thermal-hydraulic experimental campaigns on the HCPB Blanket mock-ups. The studies for the DEMO HCPB Blanket design, for the 1997-1998, contemplates a task concerning the Out-of-Pile tests for the HCPB Test Blanket Module (TBM). One of the main objectives of the task is the qualification of the HE-FUS3 capability to perform tests both in normal and off-normal conditions. (authors)

  12. Mars Observer Propulsion and Pyrotechnics Corrective Actions Test Program Blanket Release

    Science.gov (United States)

    Saulsberry, Regor L.; Fries, Joseph (Technical Monitor)

    1999-01-01

    The Mars Observer Propulsion and Pyrotechnic Corrective Actions Test Program has been in progress at the NASA White Sands Test Facility since 1995. This program has developed capabilities to accurately characterize pyrovalve hazards and has established corrective actions that arc helping to preclude loss of spacecraft due to pyrovalve and propellant interaction. Rather than wait for conclusion of the test program, significant rest results, findings, and safety recommendations have been and will continue to be released soon after they became available to meet needs of near-term NASA and commercial space programs. This release will cover approximately three to five papers per year until program end.

  13. Review of candidate welding processes of RAFM steels for ITER test blanket modules and DEMO

    Science.gov (United States)

    Aubert, P.; Tavassoli, F.; Rieth, M.; Diegele, E.; Poitevin, Y.

    2011-10-01

    EUROFER weldability is investigated in support of the European TBM manufacturing. Electron beam, hybrid, laser and NGTIG processes have been carried out on the EUROFER-97 steel (thickness up to 40 mm), a reduced activation ferritic-martensitic steel. It is shown that the most promising processes are laser, electron beam and hybrid welding, depending on the section size and accessibility. They produce similar welding results with high joint coefficients and are well adapted for minimizing residual distortions. The FZ are typically composed of martensite laths, with small grain sizes. In the HAZ, martensite grains contain carbide precipitates. High hardness values are measured in all these zones that if not tempered would degrade toughness and creep resistance. A one step PWHT (750 °C/3 h) is successfully applied to joints restoring good material performance. Distortion levels, with and without PWHT, are controlled through adaptation of manufacturing steps and clamping devices, obtaining levels not exceeding 120 μm (+/-60 μm) on a full "one cell mock-up".

  14. Integrated Performance Testing Workshop, Modules 6 - 11

    Energy Technology Data Exchange (ETDEWEB)

    Leach, Janice; Torres, Teresa M.

    2012-10-01

    These modules cover performance testing of: Interior Detection Systems; Access Controls; Exterior Detection Systems; Video Assessment Systems; SNM / Contraband Detection Systems; Access Delay Elements

  15. Whole Module Offgas Test Report: Space-Xl Dragon Module

    Science.gov (United States)

    James, John T.

    2012-01-01

    On September 26 and September 28,2012 a chemist from the JSC Toxicology Group acquired samples of air in 500 m1 evacuated canisters from the sealed Space-Xl Dragon Module. One sample was also acquired from Space-X Facility near the module at the start of the test. Samples of the module air were taken in triplicate once the module had been sealed, and then taken again in triplicate 1.98 days later. Ofthe triplicate samples, the first served as a line purge, and the last two were analyzed. The results of 5 samples are reported.

  16. Natural circulation in fusion reactor blankets

    Science.gov (United States)

    Gierszewski, P. J.; Mikic, B.; Todreas, N. E.

    1980-07-01

    The relative importance of natural circulation and heat conduction as heat transfer mechanisms in lithium, sodium and flibe is investigated for a range of magnetic field strengths of interest in fusion reactor blankets. The calculations are based on an order-of-magnitude simplification of the fluid equations, and a modified version of the fission reactor thermal-hydraulic code THERMIT. The results show that conduction is dominant for lithium (and sodium) for typical magnetic field strengths, but that natural circulation is most important in flibe. In fact, preliminary calculations suggest the possibility of a simple flibe blanket module with cooling only along the module boundaries.

  17. Environmental testing of CIS based modules

    Energy Technology Data Exchange (ETDEWEB)

    Willett, D.

    1995-11-01

    This report describes environmental testing of Siemen`s CIS modules. Charts and diagrams are presented on data concerning: temporary power loss of laminated mini-modules; the 50 thermal cycle test; the 10 humidity freeze cycle test; results after 1000 hours of exposure to damp heat; and interconnect test structures in damp heat testing. It is concluded that moisture ingress causes permanent increases in the series resistance of modules, and that improved packaging is needed for better high humidity reliability. Also, dry dark heat caused temporary power losses which were recovered in sunlight.

  18. Tritium transport analysis for CFETR WCSB blanket

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Pinghui, E-mail: phzhao@mail.ustc.edu.cn; Yang, Wanli; Li, Yuanjie; Ge, Zhihao; Nie, Xingchen; Gao, Zhongping

    2017-01-15

    Highlights: • A simplified tritium transport model for CFETR WCSB blanket was developed. • Tritium transport process in CFETR WCSB blanket was analyzed. • Sensitivity analyses of tritium transport parameters were carried out. - Abstract: Water Cooled Solid Breeder (WCSB) blanket was put forward as one of the breeding blanket candidate schemes for Chinese Fusion Engineering Test Reactor (CFETR). In this study, a simplified tritium transport model was developed. Based on the conceptual engineering design, neutronics and thermal-hydraulic analyses of CFETR WCSB blanket, tritium transport process was analyzed. The results show that high tritium concentration and inventory exist in primary water loop and total tritium losses exceed CFETR limits under current conditions. Conducted were sensitivity analyses of influential parameters, including tritium source, temperature, flow-rate capacity and surface condition. Tritium performance of WCSB blanket can be significantly improved under a smaller tritium impinging rate, a larger flow-rate capacity or a better surface condition. This work provides valuable reference for the enhancement of tritium transport behavior in CFETR WCSB blanket.

  19. Numerical research on the neutronic/thermal-hydraulic/mechanical coupling characteristics of the optimized helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Shijie; Zhang, Dalin, E-mail: dlzhang@mail.xjtu.edu.cn; Cheng, Jie; Tian, Wenxi; Su, G.H.

    2017-01-15

    As one of the candidate tritium breeding blankets for Chinese Fusion Engineering Test Reactor (CFETR), a conceptual structure of the helium cooled solid breeder blanket has recently been proposed. The neutronic, thermal-hydraulic and mechanical characteristics of the blanket directly affect its tritium breeding and safety performance. Therefore, neutronic/thermal-hydraulic/mechanical coupling analyses are of vital importance for a reliable blanket design. In this work, first, three-dimensional neutronics analysis and optimization of the typical outboard equatorial blanket module (No. 12) were performed for the comprehensive optimal scheme. Then, thermal and fluid dynamic analyses of the scheme under both normal and critical conditions were performed and coupled with the previous neutronic calculation results. With thermal-hydraulic boundaries, thermo-mechanical analyses of the structure materials under normal, critical and blanket over-pressurization conditions were carried out. In addition, several parametric sensitivity studies were also conducted to investigate the influences of the main parameters on the blanket temperature distributions. In this paper, the coupled analyses verify the reasonability of the optimized conceptual design preliminarily and can provide an important reference for the further analysis and optimization design of the CFETR helium cooled solid breeder blanket.

  20. Preliminary accident analysis of Loss of Off-Site Power and In-Box LOCA for the CFETR helium cooled solid breeder blanket

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Qiang; Cui, Shijie [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Tian, Wenxi, E-mail: wxtian@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Zhang, Jing; Zhang, Dalin; Su, G.H. [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China)

    2017-05-15

    Highlights: • The CFETR HCSB blanket has been investigated using RELAP5. • Loss of Off-Site Power is investigated. • The parametric analyses during In-Box LOCA are investigated. • The HCSB blanket for CFETR is designed with sufficient decay heat removal capability. - Abstract: As one of three candidate tritium breeding blanket concepts for Chinese Fusion Engineering Test Reactor (CFETR), a conceptual structure of helium cooled solid breeder (HCSB) blanket was recently proposed. In this paper, the preliminary thermal-hydraulic and safety analyses of the typical outboard equatorial blanket module (No.12) have been carried out using RELAP5/Mod3.4 code. Two design basis accidents are investigated based on the steady-state initialization, including Loss of Off-Site Power and In-Box Loss of Coolant Accident (LOCA). The differences between circulator coast down and circulator rotor locked under Loss of Off-Site Power are compared. Regarding the In-Box LOCA, the influences of different break sizes and locations are thoroughly analyzed based on a relatively accurate modeling method of the heat structures in sub-modules. The analysis results show that the blanket and the combined helium cooling system (HCS) are designed with sufficient decay heat removal capability for both accidents, which can preliminarily verify the feasibility of the conceptual design. The research work can also provide an important reference for parameter optimization of the blanket and its HCS in the next stage.

  1. CryoModule Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CMTFis able to test complete SRF cryomodules at cryogenic operating temperatures and with RF Power. CMTF will house the PIP-II Injector Experiment allowing test of...

  2. Whole Module Offgas Test Report: Space-X Dragon Module

    Science.gov (United States)

    James, John T.

    2012-01-01

    Between 7 April and 11 April 2012 a chemist from the JSC Toxicology Group acquired samples of air in 500 ml evacuated canisters from the sealed Dragon Module at the Space-X facility at KSC. Three samples were taken of facility air (two before the test and one after the test), and a total of 9 samples were taken from the sealed module in triplicate at the following times: 0 hours, 48 hours, and 96 hours. The module contained 470 kg, which was 100% of the mass to be launched. Analytical data contained in the Toxicology Group Report (attached) show that the ambient facility air was clean except for almost 9 milligrams per cubic meter of isopropanol (IPA) in the sample taken at the end of the test. Space-X must ensure that IPA is not introduced into the module before it is sealed for launch. Other minor contaminants in the ambient air included the following: perfluoro(2-methyl)pentane and hexamethylcyclotrisiloxane. The first-acquired samples of each triplicate from the module were not analyzed. Analyses of pairs of samples that were taken during the test show excellent agreement between the pairs and a linear increase in the T-values during the 4 days of the test (figure below). The rate of increase averaged 0.124 T units per day. If the time from last purge of the module on the ground to crew first entry on orbit is 10 days, then the T value at first entry should be less than 1.2 units, which is well below the criterion of 3.0 for consideration of additional protection of the crew from offgas products. The primary contributors were as follows: trimethylsilanol (0.057), fluorotrimethylsilane (0.047), acetaldehyde (0.004), hexamethylcyclopentasiloxane (0.003), and toluene (0.002).

  3. Testing Apache Modules with Python and Ctypes

    OpenAIRE

    Litz, Markus

    2009-01-01

    Writing tests for your Apache module is often a developer's least favourite task, especially if you don't like using the Perl Apache Testing Framework! One of the main reasons for this is that it's difficult to test your C code on-the-fly without a running Apache server. Using ctypes, you can test your modules without a running httpd, just by writing and using simple Python scripts! In this talk we will look at how to compile a specific version of the Apache webserver for testing, and how to ...

  4. Design of the helium cooled lithium lead breeding blanket in CEA: from TBM to DEMO

    Science.gov (United States)

    Aiello, G.; Aubert, J.; Forest, L.; Jaboulay, J.-C.; Li Puma, A.; Boccaccini, L. V.

    2017-04-01

    The helium cooled lithium lead (HCLL) blanket concept was originally developed in CEA at the beginning of 2000: it is one of the two European blanket concepts to be tested in ITER in the form of a test blanket module (TBM) and one of the four blanket concepts currently being considered for the DEMOnstration reactor that will follow ITER. The TBM is a highly optimized component for the ITER environment that will provide crucial information for the development of the DEMO blanket, but its design needs to be adapted to the DEMO reactor. With respect to the TBM design, reduction of the steel content in the breeding zone (BZ) is sought in order to maximize tritium breeding reactions. Different options are being studied, with the potential of reaching tritium breeding ratio (TBR) values up to 1.21. At the same time, the design of the back supporting structure (BSS), which is a DEMO specific component that has to support the blanket modules inside the vacuum vessel (VV), is ongoing with the aim of maximizing the shielding power and minimizing pumping power. This implies a re-engineering of the modules’ attachment system. Design changes however, will have an impact on the manufacturing and assembly sequences that are being developed for the HCLL-TBM. Due to the differences in joint configurations, thicknesses to be welded, heat dissipation and the various technical constraints related to the accessibility of the welding tools and implementation of non-destructive examination (NDE), the manufacturing procedure should be adapted and optimized for DEMO design. Laser welding instead of TIG could be an option to reduce distortions. The time-of-flight diffraction (TOFD) technique is being investigated for NDE. Finally, essential information expected from the HCLL-TBM program that will be needed to finalize the DEMO design is discussed.

  5. Status on DEMO Helium Cooled Lithium Lead breeding blanket thermo-mechanical analyses

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, J., E-mail: julien.aubert@cea.fr [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France); Aiello, G.; Jaboulay, J.-C. [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France); Kiss, B. [Institute of Nuclear Techniques, Budapest University of Technology and Economics, Budapest (Hungary); Morin, A. [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France)

    2016-11-01

    Highlights: • CEA with the support of Wigner-RCP and IPP-CR, is in charge of the design of the HCLL blanket for DEMO. The DEMO HCLL breeding blanket design capitalizes on the experience acquired on the HCLL Test Blanket Module designed for ITER. Design improvements are being implemented to adapt the design to DEMO specifications and performance objectives. • Thermal and mechanical analyses have been carried out in order to justify the design of the HCLL breeding blanket showing promising results for tie rods modules’ attachments system and relatively good behavior of the box in case of LOCA when comparing to RCC-MRx criteria. • CFD thermal analyses on generic breeding unit have enabled the consolidation of the results obtained with previous FEM design analyses. - Abstract: The EUROfusion Consortium develops a design of a fusion power demonstrator (DEMO) in the framework of the European “Horizon 2020” innovation and research program. One of the key components in the fusion reactor is the breeding blanket surrounding the plasma, ensuring tritium self-sufficiency, heat removal for conversion into electricity, and neutron shielding. The Helium Cooled Lithium Lead (HCLL) blanket is one of the concepts which is investigated for DEMO. It is made of a Eurofer structure and uses the eutectic liquid lithium–lead as tritium breeder and neutron multiplier, and helium gas as coolant. Within the EUROfusion organization, CEA with the support of Wigner-RCP and IPP-CR, is in charge of the design of the HCLL blanket for DEMO. This paper presents the status of the thermal and mechanical analyses carried out on the HCLL breeding blanket in order to justify the design. CFD thermal analyses on generic breeding unit including stiffening plates and cooling plates have been performed with ANSYS in order to consolidate results obtained with previous FEM design analyses. Moreover in order to expand the justification of the HCLL Breeding blanket design, the most loaded area of

  6. HHF test with 80x80x1 Be/Cu/SS Mock-ups for verifying the joining technology of the ITER blanket First Wall

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Bae, Young Dug; Kim, Suk Kwon; Hong, Bong Guen; Jeong, Yong Hwan; Park, Jeong Yong; Choi, Byung Kwon; Jung, Hyun Kyu

    2008-11-15

    Through the fabrication of the Cu/SS and Be/Cu joint specimens, fabrication procedure such as material preparation, canning, degassing, HIP (Hot Isostatic Pressing), PHHT (Post HIP heat treatment) was established. The HIP conditions (1050 .deg. C, 100 MPa 2 hr for Cu/SS, 580 .deg. C 100 MPa 2 hr for Be/Cu) were developed through the investigation on joint specimen fabricated with the various HIP conditions; the destructive tests of joint include the microstructure observation of the interface with the examination of the elemental distribution, tension test, bend test, Charpy impact test and fracture toughness test. However, since the joint should be tested under the High Heat Flux (HHF) conditions like the ITER operation for verifying its joint integrity, several HHF tests were performed like the previous HHF test with the Cu/SS, Be/Cu, Be/Cu/SS Mock-ups. In the present study, the HHF test with Be/Cu/SS Mock-ups, which have 80 mm x 80 mm single Be tile and each material depths were kept to be the same as the ITER blanket FW. The Mock-ups fabricated with three kinds of interlayers such as Cr/Ti/Cu, Ti/Cr/Cu, Ti/Cu, which were different from the developed interlayer (Cr/Cu), total 6 Mock-ups were fabricated. Preliminary analysis were performed to decide the test conditions; they were tested with up to 2.5 MW/m2 of heat fluxes and 20 cycles for each Mock-up in a given heat flux. They were tested with JUDITH-1 at FZJ in Germany. During tests, all Mock-ups showed delamination or full detachment of Be tile and it can be concluded that the joints with these interlayers have a bad joining but it can be used as a good data for developing the Be/Cu joint with HIP.

  7. Tokamak blanket design study, final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    A cylindrical module concept was developed, analyzed, and incorporated in a tokamak blanket system that includes piping systems, vacuum boundary sealing, and support structures. The design is based on the use of state-of-the-art structural materials (20% cold-worked type 316 stainless steel), lithium as the breeding material, and pressurized helium as the coolant. The module design consists of nested concentric cylinders (with an outer diameter of 10 cm) and features direct wall cooling by helium flowing between the outer (first-wall) cylinder and the inner (lithium-containing) cylinder. Each cylinder can withstand full coolant pressure, thus enhancing reliability. Results show that stainless steel is a viable material for a first wall subjected to a neutron wall loading of 4 MW/m/sup 2/ and a particle heat flux of 1 MW/m/sup 2/. Lifetime analysis shows that the first-wall design meets the goal of operating at 20-min cycles with 95% duty for 100,000 cycles. To reduce system complexity, a larger 20-cm-diam module also was analyzed for incorporation in the blanket assembly. Reliability assessment indicates that it may be possible to double the module in size from 10 to 20 cm in diameter. With a modest increase in coolant pumping power, a blanket assembly comprising 20-cm-diam modules can still achieve 100,000 operating cycles - equivalent to a 3.6-year design lifetime - with only one or two helium coolant leaks into the plasma.

  8. Using one hybrid 3D-1D-3D approach for the conceptual design of WCCB blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Kecheng; Zhang, Xiaokang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Li, Jia [University of Science and Technology of China, Hefei, Anhui, 230027 (China); Ma, Xuebin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China)

    2017-01-15

    Highlights: • The Hybrid 3D-1D-3D approach is used for radial building design of WCCB. • Nuclear heat obtained by this method agrees well with 3D neutronics results. • The final results of temperature and TBR satisfy with the requirements. • All the results show that this approach is high efficiency and high reliability. - Abstract: A hybrid 3D-1D-3D approach is proposed for the conceptual design of a blanket. Firstly, the neutron wall loading (NWL) of each blanket module is obtained through a neutronics calculation employing a 3D model, which contains the geometry outline of in-vacuum vessel components and the exact neutron source distribution. Secondly, a 1D cylindrical model with the blanket module containing a detailed radial building is adopted for the neutronics analysis, with the aim of calculating the tritium breeding ratio (TBR) and nuclear heating. Being normalized to the NWL, the nuclear heating is transferred to a 2D model for thermal-hydraulics analysis using the FLUENT code. Through a series analysis of nuclear-thermal iterations that considers the tritium breeding ratio (TBR) and thermal performance as optimization objectives, the optimized radial building of each module surrounding plasma can be obtained. Thirdly, the 3D structural design of each module is established by adding side walls, cover plates, stiffening plates, and other components based on the radial building. The 3D neutronics and thermal-hydraulics using the detailed blanket modules are re-analyzed. This approach has been successfully applied to the design of a water-cooled ceramic breeder blanket for the Chinese Fusion Engineering Test Reactor (CFETR). The radial building of each blanket module surrounding plasma is optimized. The global tritium breeding ratio (TBR) calculated by the 3D neutronics analysis is 1.21, and the temperature of all materials in the 3D blanket structure is below the upper limits. As indicated by the comparison of the 1D and 3D neutronics and thermal

  9. Nuclear-thermal-coupled optimization code for the fusion breeding blanket conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jia, E-mail: lijia@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui (China); Jiang, Kecheng; Zhang, Xiaokang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui (China); Nie, Xingchen [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui (China); Zhu, Qinjun; Liu, Songlin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui (China)

    2016-12-15

    Highlights: • A nuclear-thermal-coupled predesign code has been developed for optimizing the radial build arrangement of fusion breeding blanket. • Coupling module aims at speeding up the efficiency of design progress by coupling the neutronics calculation code with the thermal-hydraulic analysis code. • Radial build optimization algorithm aims at optimal arrangement of breeding blanket considering one or multiple specified objectives subject to the design criteria such as material temperature limit and available TBR. - Abstract: Fusion breeding blanket as one of the key in-vessel components performs the functions of breeding the tritium, removing the nuclear heat and heat flux from plasma chamber as well as acting as part of shielding system. The radial build design which determines the arrangement of function zones and material properties on the radial direction is the basis of the detailed design of fusion breeding blanket. For facilitating the radial build design, this study aims for developing a pre-design code to optimize the radial build of blanket with considering the performance of nuclear and thermal-hydraulic simultaneously. Two main features of this code are: (1) Coupling of the neutronics analysis with the thermal-hydraulic analysis to speed up the analysis progress; (2) preliminary optimization algorithm using one or multiple specified objectives subject to the design criteria in the form of constrains imposed on design variables and performance parameters within the possible engineering ranges. This pre-design code has been applied to the conceptual design of water-cooled ceramic breeding blanket in project of China fusion engineering testing reactor (CFETR).

  10. Apollo command module land impact tests

    Science.gov (United States)

    Mccullough, J. E.; Lands, J. F., Jr.

    1972-01-01

    Full-scale-model and actual spacecraft were impact tested to define the emergency land-landing capability of the Apollo command module. Structural accelerations and strains were recorded on analog instrumentation, and a summary to these data is included. The landing kinematics were obtained from high-speed photography. Photographs of the structural damage caused during the tests are included. Even though extensive damage can be expected, the crew will receive nothing more than minor injuries during the majority of the probable landing conditions.

  11. MIT LMFBR blanket research project. Final summary report

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, M.J.

    1983-08-01

    This is a final summary report on an experimental and analytical program for the investigation of LMFBR blanket characteristics carried out at MIT in the period 1969 to 1983. During this span of time, work was carried out on a wide range of subtasks, ranging from neutronic and photonic measurements in mockups of blankets using the Blanket Test Facility at the MIT Research Reactor, to analytic/numerical investigations of blanket design and economics. The main function of this report is to serve as a resource document which will permit ready reference to the more detailed topical reports and theses issued over the years on the various aspects of project activities. In addition, one aspect of work completed during the final year of the project, on doubly-heterogeneous blanket configurations, is documented for the record.

  12. Materials Testing for PV Module Encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, G.; Terwilliger, K.; Glick, S.; Pern, J.; McMahon, T.

    2003-05-01

    Important physical properties of materials used in PV module packaging are presented. High-moisture-barrier, high-resistivity, adhesion-promoting coatings on polyethyl-ene terephthalate (PET) films have been fabricated and characterized for use in PV module application and com-pared to standard polymer backsheet materials. Ethylene vinyl acetate (EVA) and an encapsulant replacement for EVA are studied for their water vapor transmission rate (WVTR) and adhesion properties. WVTR, at test conditions up to 85C/100% relative humidity (RH), and adhesion val-ues are measured before and after filtered xenon arc lamp ultraviolet (UV) exposure and damp heat exposure at 85C/85% RH. Water ingress is quantified by weight gain and embedded humidity sensors.

  13. Test System for Thermoelectric Modules and Materials

    Science.gov (United States)

    Hejtmánek, J.; Knížek, K.; Švejda, V.; Horna, P.; Sikora, M.

    2014-10-01

    We present a design for a complex measuring device that enables its user to assess the parameters of power-generating thermoelectric modules (TEMs) (or bulk thermoelectric materials) under a wide range of temperatures ( T cold = 25°C to 90°C, T hot thermocouple array connected to a data acquisition computer, and (iv) a thermostatic water-based cooling system with electronically controlled flow rate and temperature of cooling water. Our testing setup represents a useful tool able to assess, e.g., the thermoelectric parameters of newly developed TEMs and materials or to evaluate the thermoelectric parameters of commercially available modules and materials for comparison with values declared by the manufacturer.

  14. Aerogel Blanket Insulation Materials for Cryogenic Applications

    Science.gov (United States)

    Coffman, B. E.; Fesmire, J. E.; White, S.; Gould, G.; Augustynowicz, S.

    2009-01-01

    Aerogel blanket materials for use in thermal insulation systems are now commercially available and implemented by industry. Prototype aerogel blanket materials were presented at the Cryogenic Engineering Conference in 1997 and by 2004 had progressed to full commercial production by Aspen Aerogels. Today, this new technology material is providing superior energy efficiencies and enabling new design approaches for more cost effective cryogenic systems. Aerogel processing technology and methods are continuing to improve, offering a tailor-able array of product formulations for many different thermal and environmental requirements. Many different varieties and combinations of aerogel blankets have been characterized using insulation test cryostats at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Detailed thermal conductivity data for a select group of materials are presented for engineering use. Heat transfer evaluations for the entire vacuum pressure range, including ambient conditions, are given. Examples of current cryogenic applications of aerogel blanket insulation are also given. KEYWORDS: Cryogenic tanks, thermal insulation, composite materials, aerogel, thermal conductivity, liquid nitrogen boil-off

  15. Accelerated Stress Testing of Solar Photovoltaic Modules

    Science.gov (United States)

    1981-09-01

    Same Same. Also extensive internal corrosion where screw meets busbar . Loss of fill factor in 1-V curves after Not observed. No loss in fill factor...observed. Not observed. Extensive corrosion on oack ot ill cells 4tarting after 494 cycles. Teflon wire wicks water into busbar Same SAme where water...oxidizes busbar . 12 7 L L DI R< T. E: IZ -C& S E: RNI q - 0CT0 N R 0 L--F R 0F S T--- T .I ., F i T C YC LES FIGURE 3-2 Freeze Test Effects on OCLI Module 13

  16. Methodology for accident analyses of fusion breeder blankets and its application to helium-cooled pebble bed blanket

    Energy Technology Data Exchange (ETDEWEB)

    Panayotov, Dobromir, E-mail: dobromir.panayotov@f4e.europa.eu [Fusion for Energy (F4E), Josep Pla, 2, Torres Diagonal Litoral B3, Barcelona E-08019 (Spain); Grief, Andrew [Amec Foster Wheeler, Booths Park, Chelford Road, Knutsford WA16 8QZ, Cheshire (United Kingdom); Merrill, Brad J.; Humrickhouse, Paul [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID (United States); Trow, Martin; Dillistone, Michael; Murgatroyd, Julian T.; Owen, Simon [Amec Foster Wheeler, Booths Park, Chelford Road, Knutsford WA16 8QZ, Cheshire (United Kingdom); Poitevin, Yves [Fusion for Energy (F4E), Josep Pla, 2, Torres Diagonal Litoral B3, Barcelona E-08019 (Spain); Peers, Karen; Lyons, Alex; Heaton, Adam; Scott, Richard [Amec Foster Wheeler, Booths Park, Chelford Road, Knutsford WA16 8QZ, Cheshire (United Kingdom)

    2016-11-01

    Graphical abstract: - Highlights: • Test Blanket Systems (TBS) DEMO breeding blankets (BB) safety demonstration. • Comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena. • Development of accident analysis specifications (AAS) via the use of phenomena identification and ranking tables (PIRT). • PIRT application to identify required physical models for BB accidents analysis, code assessment and selection. • Development of MELCOR and RELAP5 codes TBS models. • Qualification of the models via comparison with finite element calculations, code-tocode comparisons, and sensitivity studies. - Abstract: ‘Fusion for Energy’ (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). Safety demonstration is an essential element for the integration of these TBSs into ITER and accident analysis is one of its critical components. A systematic approach to accident analysis has been developed under the F4E contract on TBS safety analyses. F4E technical requirements, together with Amec Foster Wheeler and INL efforts, have resulted in a comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena while remaining consistent with the approach already applied to ITER accident analyses. The methodology phases are illustrated in the paper by its application to the EU HCPB TBS using both MELCOR and RELAP5 codes.

  17. Spacecraft thermal blanket cleaning: Vacuum bake of gaseous flow purging

    Science.gov (United States)

    Scialdone, John J.

    1990-01-01

    The mass losses and the outgassing rates per unit area of three thermal blankets consisting of various combinations of Mylar and Kapton, with interposed Dacron nets, were measured with a microbalance using two methods. The blankets at 25 deg C were either outgassed in vacuum for 20 hours, or were purged with a dry nitrogen flow of 3 cu. ft. per hour at 25 deg C for 20 hours. The two methods were compared for their effectiveness in cleaning the blankets for their use in space applications. The measurements were carried out using blanket strips and rolled-up blanket samples fitting the microbalance cylindrical plenum. Also, temperature scanning tests were carried out to indicate the optimum temperature for purging and vacuum cleaning. The data indicate that the purging for 20 hours with the above N2 flow can accomplish the same level of cleaning provided by the vacuum with the blankets at 25 deg C for 20 hours, In both cases, the rate of outgassing after 20 hours is reduced by 3 orders of magnitude, and the weight losses are in the range of 10E-4 gr/sq cm. Equivalent mass loss time constants, regained mass in air as a function of time, and other parameters were obtained for those blankets.

  18. Study on the temperature control mechanism of the tritium breeding blanket for CFETR

    Science.gov (United States)

    Liu, Changle; Qiu, Yang; Zhang, Jie; Zhang, Jianzhong; Li, Lei; Yao, Damao; Li, Guoqiang; Gao, Xiang; Wu, Songtao; Wan, Yuanxi

    2017-12-01

    The Chinese fusion engineering testing reactor (CFETR) will demonstrate tritium self- sufficiency using a tritium breeding blanket for the tritium fuel cycle. The temperature control mechanism (TCM) involves the tritium production of the breeding blanket and has an impact on tritium self-sufficiency. In this letter, the CFETR tritium target is addressed according to its missions. TCM research on the neutronics and thermal hydraulics issues for the CFETR blanket is presented. The key concerns regarding the blanket design for tritium production under temperature field control are depicted. A systematic theory on the TCM is established based on a multiplier blanket model. In particular, a closed-loop method is developed for the mechanism with universal function solutions, which is employed in the CFETR blanket design activity for tritium production. A tritium accumulation phenomenon is found close to the coolant in the blanket interior, which has a very important impact on current blanket concepts using water coolant inside the blanket. In addition, an optimal tritium breeding ratio (TBR) method based on the TCM is proposed, combined with thermal hydraulics and finite element technology. Meanwhile, the energy gain factor is adopted to estimate neutron heat deposition, which is a key parameter relating to the blanket TBR calculations, considering the structural factors. This work will benefit breeding blanket engineering for the CFETR reactor in the future.

  19. Blanket comparison and selection study. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    1983-10-01

    This volume contains extensive data for the following chapters: (1) solid breeder tritium recovery, (2) solid breeder blanket designs, (3) alternate blanket concept screening, and (4) safety analysis. The following appendices are also included: (1) blanket design guidelines, (2) power conversion systems, (3) helium-cooled, vanadium alloy structure blanket design, (4) high wall loading study, and (5) molten salt safety studies. (MOW)

  20. Conceptual design of a test facility for the remote handling operations of the ITER Test Blanker Modules; Diseno conceptual de la instalacion de demostracion de los dispositivos de manipulacion remota para los Modulos de Ensayo de la Envoltura Regeneradora de ITER

    Energy Technology Data Exchange (ETDEWEB)

    Marqueta, A.; Garcia, I.; Gomez, A.; Garcia, L.; Sedano, E.; Fernandez, I.

    2012-07-01

    Conceptual Design of a test facility for the remote handling operations of the ITER Test Blanket Modules. Conditions inside a fusion reactor are incompatible with conventional manual maintenance tasks. the same applies for ancillary equipment. As a consequence, it will become necessary to turn to remote visualization and remote handling techniques, which will have in consideration the extreme conditions, both physical and operating, of ITER. Main goal of the project has been the realization of the conceptual design for the test facility for the Test Blanket Modules of ITER and their associated systems, related to the Remote Handling operations regarding the Port Cell area. Besides the definition of the operations and the specification of the main components and ancillary systems of the TBM graphical simulation have been used for the design, verification and validation of the remote handling operations. (Author)

  1. CMS Silicon Tracker Module Assembly and Testing at FNAL

    CERN Document Server

    Coppage, Don; Gerber, Cecilia Elena; Kahl, William E; Medel, E; Ronzhin, Anatoly; Sogut, Kenan; Shabalina, Elizaveta; Spiegel, Leonard; Ten, Timour Borisovich

    2005-01-01

    This note is intended to provide details on a recent activity at FNAL in which CMS Tracker Outer Barrel modules were assembled and tested as part of a qualification of some of the sensor fabrication lines. At the same time the note serves to document the assembly and testing operations at FNAL for CMS silicon tracker modules. Of the 88 modules produced fo the qualification study at FNAL, one module was outside the mechanical alignment specification. For module bonding an introduced failure rate of 4.0x10^-4 faults per channel was observed. Eighty-five of the modules passed the full set of electrical tests. Two of the failures could be attributed to the sensors and one to a problem with the front-end hybrid. Additionally, a couple of the passed modules drew unusually high leakage currents. The high current modules are discussed in some detail.

  2. Electromagneto-mechanical coupling analysis of a test module in J-TEXT Tokamak during plasma disruption

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Haijie; Yuan, Zhensheng; Yuan, Hongwei; Pei, Cuixiang [State Key Laboratory for Strength and Vibration of Mechanical Structures, Shanxi Engineering Research Center for NDT and Structural Integrity Evaluation Xi’an Jiaotong University, Xi’an 710049 (China); Chen, Zhenmao, E-mail: chenzm@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration of Mechanical Structures, Shanxi Engineering Research Center for NDT and Structural Integrity Evaluation Xi’an Jiaotong University, Xi’an 710049 (China); Yang, Jinhong; Wang, Weihua [Institute of Applied Physics of AOA, Hefei 230031 (China)

    2016-11-01

    In this paper, the dynamic response during plasma disruption of a test blanket module in vacuum vessel (VV) of the Joint TEXT (J-TEXT), which is an experimental Tokamak device with iron core, was simulated by applying a program developed by authors on the ANSYS platform using its parametric design language (APDL). The moving coordinate method as well as the load transfer and sequential coupling strategy were adopted to cope with the electromagneto-mechanical coupling effect. To establish the numerical model, the influence of the iron core on the eddy current and electromagnetic (EM) force during disruption was numerically investigated at first and the influence was found not significant. Together with the geometrical features of the J-TEXT Tokamak structure, 180° sector models without magnetic core were finally established for the EM field and the structural response simulations. To obtain the source plasma current, the plasma current evolution during disruption was simulated by using the Tokamak Simulation Code (TSC). With the numerical models and the source plasma current, the dynamic response of both the VV structure and the test module were calculated. The numerical results show that the maximum stress of the test module is in safe range, and the magnetic damping effect can weaken vibration of the test module. In addition, simulation without considering the coupling effect was carried out, which shows that the influence of coupling effect is not significant for the peak stress of the J-TEXT disruption problem.

  3. Neutronics Comparison Analysis of the Water Cooled Ceramics Breeding Blanket for CFETR

    Science.gov (United States)

    Li, Jia; Zhang, Xiaokang; Gao, Fangfang; Pu, Yong

    2016-02-01

    China Fusion Engineering Test Reactor (CFETR) is an ITER-like fusion engineering test reactor that is intended to fill the scientific and technical gaps between ITER and DEMO. One of the main missions of CFETR is to achieve a tritium breeding ratio that is no less than 1.2 to ensure tritium self-sufficiency. A concept design for a water cooled ceramics breeding blanket (WCCB) is presented based on a scheme with the breeder and the multiplier located in separate panels for CFETR. Based on this concept, a one-dimensional (1D) radial built breeding blanket was first designed, and then several three-dimensional models were developed with various neutron source definitions and breeding blanket module arrangements based on the 1D radial build. A set of nuclear analyses have been carried out to compare the differences in neutronics characteristics given by different calculation models, addressing neutron wall loading (NWL), tritium breeding ratio (TBR), fast neutron flux on inboard side and nuclear heating deposition on main in-vessel components. The impact of differences in modeling on the nuclear performance has been analyzed and summarized regarding the WCCB concept design. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy (Nos. 2013GB108004, 2014GB122000, and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  4. Comparative studies for two different orientations of pebble bed in an HCCB blanket

    Science.gov (United States)

    Paritosh, CHAUDHURI; Chandan, DANANI; E, RAJENDRAKUMAR

    2017-12-01

    The Indian Test Blanket Module (TBM) program in ITER is one of the major steps in its fusion reactor program towards DEMO and the future fusion power reactor vision. Research and development (R&D) is focused on two types of breeding blanket concepts: lead–lithium ceramic breeder (LLCB) and helium-cooled ceramic breeder (HCCB) blanket systems for the DEMO reactor. As part of the ITER-TBM program, the LLCB concept will be tested in one-half of ITER port no. 2, whose materials and technologies will be tested during ITER operation. The HCCB concept is a variant of the solid breeder blanket, which is presently part of our domestic R&D program for DEMO relevant technology development. In the HCCB concept Li2TiO3 and beryllium are used as the tritium breeder and neutron multiplier, respectively, in the form of a packed bed having edge-on configuration with reduced activation ferritic martensitic steel as the structural material. In this paper two design schemes, mainly two different orientations of pebble beds, are discussed. In the current concept (case-1), the ceramic breeder beds are kept horizontal in the toroidal–radial direction. Due to gravity, the pebbles may settle down at the bottom and create a finite gap between the pebbles and the top cooling plate, which will affect the heat transfer between them. In the alternate design concept (case-2), the pebble bed is vertically (poloidal–radial) orientated where the side plates act as cooling plates instead of top and bottom plates. These two design variants are analyzed analytically and 2D thermal-hydraulic simulation studies are carried out with ANSYS, using the heat loads obtained from neutronic calculations. Based on the analysis the performance is compared and details of the thermal and radiative heat transfer studies are also discussed in this paper.

  5. Land impact test of the Apollo Command Module at MSC

    Science.gov (United States)

    1968-01-01

    Technicians and engineers gather to monitor a land impact test of the Apollo Command Module (Airframe 009) in a test area at Manned Spacecraft Center (MSC). In this view, the Command Module test vehicle is released from the tower to fall to the ground.

  6. Analysis of a liquid metal cooled blanket transient using ATHENA

    Energy Technology Data Exchange (ETDEWEB)

    Roth, P.A.; Chow, H.

    1985-01-01

    A comprehensive safety analysis code called ATHENA, Advanced Thermal Hydraulic Energy Network Analyzer, is being developed by EG and G Idaho as part of the Fusion Safety Program. This code can be used to analyze transients and system interactions in fusion reactors with a wide variety of coolant, breeder, structural, and magnet materials. In the past, the code has been used to analyze a helium cooled blanket module and a water cooled blanket concept. As new concepts in fusion reactor designs evolve, the ATHENA code developers will add the necessary capabilities to model those concepts.

  7. Hydrological modelling of drained blanket peatland

    Science.gov (United States)

    Ballard, C. E.; McIntyre, N.; Wheater, H. S.; Holden, J.; Wallage, Z. E.

    2011-09-01

    SummaryOpen ditch drainage is a commonly implemented land management practice in upland blanket peatlands, particularly in the UK, where policy decisions between the 1940s and 1970s led to widespread drainage of the uplands. The change in the hydrological regime associated with the drainage of blanket peat is poorly understood, yet has perceived importance for flooding, low flows and water quality. We propose a new simplified physics-based model that allows the associated hydrological processes and flow responses to be explored. The model couples four one-dimensional models to represent a three-dimensional hillslope, allowing for the exploration of flow and water table response throughout the model domain for a range of drainage configurations and peat properties. The model is tested against a data set collected from Oughtershaw Beck, UK, with results showing good model performance for wet periods although less conformity with borehole observations during rewetting periods. A wider exploration of model behaviour indicates that the model is consistent with the hydrological response reported in the literature for a number of drained blanket peat sites, and therefore has potential to provide guidance to decision makers concerning the effects of management practices. Through a global sensitivity analysis, we conclude that further field investigations to assist in the surface and drain roughness parameterisation would help reduce the uncertainty in the model predictions.

  8. Current status of final design and R&D for ITER blanket shield blocks in Korea

    Science.gov (United States)

    Ha, M. S.; Kim, S. W.; Jung, H. C.; Hwang, H. S.; Heo, Y. G.; Kim, D. H.; Ahn, H. J.; Lee, H. G.; Jung, K. J.

    2015-07-01

    The main function of the ITER blanket shield block (SB) is to provide nuclear shielding and support the first wall (FW) panel. It needs to accommodate all the components located on the vacuum vessel (in particular the in-vessel coils, blanket manifolds and the diagnostics). The conceptual, preliminary and final design reviews have been completed in the framework of the Blanket Integrated Product Team. The Korean Domestic Agency has successfully completed not only the final design activities, including thermo-hydraulic and thermo-mechanical analyses for SBs #2, #6, #8 and #16, but also the SB full scale prototype (FSP) pre-qualification program prior to issuing of the procurement agreement. SBs #2 and #6 are located at the in-board region of the tokamak. The pressure drop was less than 0.3 MPa and fully satisfied the design criteria. The thermo-mechanical stresses were also allowable even though the peak stresses occurred at nearby radial slit end holes, and their fatigue lives were evaluated over many more than 30 000 cycles. SB #8 is one of the most difficult modules to design, since this module will endure severe thermal loading not only from nuclear heating but also from plasma heat flux at uncovered regions by the FW. In order to resolve this design issue, the neutral beam shine-through module concept was applied to the FW uncovered region and it has been successfully verified as a possible design solution. SB #16 is located at the out-board central region of the tokamak. This module is under much higher nuclear loading than other modules and is covered by an enhanced heat flux FW panel. In the early design stage, many cooling headers on the front region were inserted to mitigate peak stresses near the access hole and radial slit end hole. However, the cooling headers on the front region needed to be removed in order to reduce the risk from cover welding during manufacturing. A few cooling headers now remain after efforts through several iterations to remove

  9. Neutronic analyses of design issues affecting the tritium breeding performance in different DEMO blanket concepts

    Energy Technology Data Exchange (ETDEWEB)

    Pereslavtsev, Pavel, E-mail: pavel.pereslavtsev@kit.edu [Karlsruhe Institute for Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bachmann, Christian [EUROfusion – Programme Management Unit, Boltzmannstrasse 2, 85748 Garching (Germany); Fischer, Ulrich [Karlsruhe Institute for Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-11-01

    Highlights: • Realistic 3D MCNP model based on the CAD engineering model of DEMO. • Automated procedure for the generation and arrangement of the blanket modules for different DEMO concepts: HCPB, HCLL, WCLL, DCLL. • Several parameters affecting tritium breeding ratio (TBR) were investigated. • A set of practical guidelines was prepared for the designers developing the individual breeding blanket concepts. - Abstract: Neutronic analyses were performed to assess systematically the tritium breeding ratio (TBR) variations in the DEMO for the different blanket concepts HCPB, HCLL, WCLL and DCLL DEMOs due to modifications of the blanket configurations. A dedicated automated procedure was developed to fill the breeding modules in the common generic model in correspondence to the different concepts. The TBR calculations were carried out using the MCNP5 Monte Carlo code. The following parameters affecting the global TBR were investigated: TBR poloidal distribution, radial breeder zone depth, {sup 6}Li enrichment, steel content in the breeder modules, poloidal segmentation of the breeder blanket volume, size of gaps between blankets, thickness of the first wall and of the tungsten armour. Based on the results a set of practical guidelines was prepared for the designers developing the individual breeding blanket concepts with the goal to achieve the required tritium breeding performance in DEMO.

  10. Neutronic performance of two European breeder-inside-tube (BIT) blankets for DEMO: the helium-cooled ceramic LiAlO{sub 2} with Be multiplier and the water-cooled liquid Li{sub 17}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Petrizzi, L. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy); Rado, V. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy)

    1995-03-01

    In support of ENEA activity in the European Community Test Programme, neutron analysis has been performed on the two latest blanket designs: helium-cooled ceramic breeder-inside-tube (BIT) (with LiAlO{sub 2} and Be multiplier) and water-cooled liquid Li{sub 17}Pb in cylindrical modules (CM). The powerful MCNP Monte Carlo code was used (version 4.2). A detailed and accurate description of the geometrical model has been performed by inserting the main reactor details and avoiding breeder material dilution inside the modules. The tritium breeding ratio (TBR) performance is low for the solid breeder BIT blanket (with 10 ports 1.011) due mainly to low blanket coverage near the exhaust duct, and this solution should be revised. The CM Li{sub 17}Pb blanket reaches a sufficient TBR (1.059, with ports) to rely on tritium self-sufficiency. Shielding properties, with respect to the toroidal field coils, have been estimated in a simplified model by means of the ANISN code, supplied with a nuclear data library consistent with that used by MCNP. The analysis suggests that a careful shield thickness/composition design should be used to ensure the shielding capability of the whole blanket plus shield system. (orig.).

  11. Creep Burst Testing of a Woven Inflatable Module

    Science.gov (United States)

    Selig, Molly M.; Valle, Gerard D.; James, George H.; Oliveras, Ovidio M.; Jones, Thomas C.; Doggett, William R.

    2015-01-01

    A woven Vectran inflatable module 88 inches in diameter and 10 feet long was tested at the NASA Johnson Space Center until failure from creep. The module was pressurized pneumatically to an internal pressure of 145 psig, and was held at pressure until burst. The external environment remained at standard atmospheric temperature and pressure. The module burst occurred after 49 minutes at the target pressure. The test article pressure and temperature were monitored, and video footage of the burst was captured at 60 FPS. Photogrammetry was used to obtain strain measurements of some of the webbing. Accelerometers on the test article measured the dynamic response. This paper discusses the test article, test setup, predictions, observations, photogrammetry technique and strain results, structural dynamics methods and quick-look results, and a comparison of the module level creep behavior to the strap level creep behavior.

  12. Production accompanying testing of the ATLAS Pixel module

    CERN Document Server

    AUTHOR|(CDS)2067982; Klingenberg, R

    2004-01-01

    The ATLAS Pixel detector, innermost sub-detector of the ATLAS experiment at LHC, CERN, can be sensibly tested in its entirety the first time after its installation in 2006. Because of the poor accessibility (probably once per year) of the Pixel detector and tight scheduling the replacement of damaged modules after integration as well as during operation will become a highly exposed business. Therefore and to ensure that no affected parts will be used in following production steps, it is necessary that each production step is accompanied by testing the components before assembly and make sure the operativeness afterwards. Probably 300 of about total 2000 semiconductor hybrid pixel detector modules will be build at the Universität Dortmund. Thus a production test setup has been build up and examined before starting serial production. These tests contain the characterization and inspection of the module components and the module itself under different environmental conditions and diverse operating parameters. O...

  13. Design and Testing of CPAS Main Deployment Bag Energy Modulator

    Science.gov (United States)

    Mollmann, Catherine

    2017-01-01

    During the developmental testing program for CPAS (Capsule Parachute Assembly System), the parachute system for the NASA Orion Crew Module, simulation revealed that high loads may be experienced by the pilot risers during the most devere deployment conditions. As the role of the pilot parachutes is to deploy the main parachutes, these high loads introduced the possibility of main deployment failure. In order to mitigate these high loads, a set of energy modulators was incorporated between the pilot riser and the main deployment bag. An extensive developmental program was implemented to ensure the adequacy of these energy modulators. After initial design comparisons, the energy modulator design was validated through slow-speed joint tests as well as through high-speed bungee tests. This paper documents the design, development, and results of multiple tests completed on the final design.

  14. CLAS12 Silicon Vertex Tracker Module Test

    Energy Technology Data Exchange (ETDEWEB)

    Soha, Aria [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Eng, Brian [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gotra, Yuri [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Boiarinov, Sergei [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-09-11

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory and the experimenters of CLAS12 collaboration who have committed to participate in beam tests to be carried out during the 2013-2014 Fermilab Test Beam Facility program.

  15. Developing the impact testing module with labVIEW

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Soo; Jeon, Soo Hong; Jeong, Weui Bong [Pusan National Univ., Busan (Korea, Republic of)

    2007-07-01

    Fast Fourier Transformation (FFT) is one of the most useful way to analyze response signal for the purpose of grasping the dynamic characteristics of system. Vibration test using impact hammer is typical and simple experimental method widely used for catching hold of dynamic peculiar characters and modal behaviors of system. In this thesis, impact testing module for NI-PXI equipment is developed. The analyzing and visualizing module are developed with labVIEW tool. A user can see quickly and easily modal shape of system after analyzing acquired data. This developed module will be expected to build up more convenient and serviceable measurement system.

  16. Beam tests of ATLAS SCT silicon strip detector modules

    CERN Document Server

    Campabadal, F; Key, M; Lozano, M; Martínez, C; Pellegrini, G; Rafí, J M; Ullán, M; Johansen, L; Pommeresche, B; Stugu, B; Ciocio, A; Fadeev, V; Gilchriese, M G D; Haber, C; Siegrist, J; Spieler, H; Vu, C; Bell, P J; Charlton, D G; Dowell, John D; Gallop, B J; Homer, R J; Jovanovic, P; Mahout, G; McMahon, T J; Wilson, J A; Barr, A J; Carter, J R; Fromant, B P; Goodrick, M J; Hill, J C; Lester, C G; Palmer, M J; Parker, M A; Robinson, D; Sabetfakhri, A; Shaw, R J; Anghinolfi, F; Chesi, Enrico Guido; Chouridou, S; Fortin, R; Grosse-Knetter, J; Gruwé, M; Ferrari, P; Jarron, P; Kaplon, J; MacPherson, A; Niinikoski, T O; Pernegger, H; Roe, S; Rudge, A; Ruggiero, G; Wallny, R; Weilhammer, P; Bialas, W; Dabrowski, W; Grybos, P; Koperny, S; Blocki, J; Brückman, P; Gadomski, S; Godlewski, J; Górnicki, E; Malecki, P; Moszczynski, A; Stanecka, E; Stodulski, M; Szczygiel, R; Turala, M; Wolter, M; Ahmad, A; Benes, J; Carpentieri, C; Feld, L; Ketterer, C; Ludwig, J; Meinhardt, J; Runge, K; Mikulec, B; Mangin-Brinet, M; D'Onofrio, M; Donega, M; Moêd, S; Sfyrla, A; Ferrère, D; Clark, A G; Perrin, E; Weber, M; Bates, R L; Cheplakov, A P; Saxon, D H; O'Shea, V; Smith, K M; Iwata, Y; Ohsugi, T; Kohriki, T; Kondo, T; Terada, S; Ujiie, N; Ikegami, Y; Unno, Y; Takashima, R; Brodbeck, T; Chilingarov, A G; Hughes, G; Ratoff, P; Sloan, T; Allport, P P; Casse, G L; Greenall, A; Jackson, J N; Jones, T J; King, B T; Maxfield, S J; Smith, N A; Sutcliffe, P; Vossebeld, Joost Herman; Beck, G A; Carter, A A; Lloyd, S L; Martin, A J; Morris, J; Morin, J; Nagai, K; Pritchard, T W; Anderson, B E; Butterworth, J M; Fraser, T J; Jones, T W; Lane, J B; Postranecky, M; Warren, M R M; Cindro, V; Kramberger, G; Mandic, I; Mikuz, M; Duerdoth, I P; Freestone, J; Foster, J M; Ibbotson, M; Loebinger, F K; Pater, J; Snow, S W; Thompson, R J; Atkinson, T M; Bright, G; Kazi, S; Lindsay, S; Moorhead, G F; Taylor, G N; Bachindgagyan, G; Baranova, N; Karmanov, D; Merkine, M; Andricek, L; Bethke, Siegfried; Kudlaty, J; Lutz, Gerhard; Moser, H G; Nisius, R; Richter, R; Schieck, J; Cornelissen, T; Gorfine, G W; Hartjes, F G; Hessey, N P; de Jong, P; Muijs, A J M; Peeters, S J M; Tomeda, Y; Tanaka, R; Nakano, I; Dorholt, O; Danielsen, K M; Huse, T; Sandaker, H; Stapnes, S; Bargassa, Pedrame; Reichold, A; Huffman, T; Nickerson, R B; Weidberg, A; Doucas, G; Hawes, B; Lau, W; Howell, D; Kundu, N; Wastie, R; Böhm, J; Mikestikova, M; Stastny, J; Broklová, Z; Broz, J; Dolezal, Z; Kodys, P; Kubík, P; Reznicek, P; Vorobel, V; Wilhelm, I; Chren, D; Horazdovsky, T; Linhart, V; Pospísil, S; Sinor, M; Solar, M; Sopko, B; Stekl, I; Ardashev, E N; Golovnya, S N; Gorokhov, S A; Kholodenko, A G; Rudenko, R E; Ryadovikov, V N; Vorobev, A P; Adkin, P J; Apsimon, R J; Batchelor, L E; Bizzell, J P; Booker, P; Davis, V R; Easton, J M; Fowler, C; Gibson, M D; Haywood, S J; MacWaters, C; Matheson, J P; Matson, R M; McMahon, S J; Morris, F S; Morrissey, M; Murray, W J; Phillips, P W; Tyndel, M; Villani, E G; Dorfan, D E; Grillo, A A; Rosenbaum, F; Sadrozinski, H F W; Seiden, A; Spencer, E; Wilder, M; Booth, P; Buttar, C M; Dawson, I; Dervan, P; Grigson, C; Harper, R; Moraes, A; Peak, L S; Varvell, K E; Chu Ming Lee; Hou Li Shing; Lee Shih Chang; Teng Ping Kun; Wan Chang Chun; Hara, K; Kato, Y; Kuwano, T; Minagawa, M; Sengoku, H; Bingefors, N; Brenner, R; Ekelöf, T J C; Eklund, L; Bernabeu, J; Civera, J V; Costa, M J; Fuster, J; García, C; García, J E; González-Sevilla, S; Lacasta, C; Llosa, G; Martí i García, S; Modesto, P; Sánchez, J; Sospedra, L; Vos, M; Fasching, D; González, S; Jared, R C; Charles, E

    2005-01-01

    The design and technology of the silicon strip detector modules for the Semiconductor Tracker (SCT) of the ATLAS experiment have been finalised in the last several years. Integral to this process has been the measurement and verification of the tracking performance of the different module types in test beams at the CERN SPS and the KEK PS. Tests have been performed to explore the module performance under various operating conditions including detector bias voltage, magnetic field, incidence angle, and state of irradiation up to 3 multiplied by 1014 protons per square centimetre. A particular emphasis has been the understanding of the operational consequences of the binary readout scheme.

  17. Designing an Affordable Usability Test for E-Learning Modules

    Science.gov (United States)

    O'Bryan, Corliss A.; Johnson, Donald M.; Shores-Ellis, Katrina D.; Crandall, Philip G.; Marcy, John A.; Seideman, Steve C.; Ricke, Steven C.

    2010-01-01

    This article provides background and an introduction to a user-centered design and usability test in an inexpensive format that allows content experts who are novices in e-learning development to perform testing on newly developed technical training modules prior to their release. The use of a small number of test participants, avoidance of…

  18. APT {sup 3}He target/blanket. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    The {sup 3}He target/blanket (T/B) preconceptual design for the 3/8-Goal facility is based on a 1000-MeV, 200-mA accelerator to produce a high-intensity proton beam that is expanded and then strikes one of two T/B modules. Each module consists of a centralized neutron source made of tungsten and lead, a proton beam backstop region made of zirconium and lead, and a moderator made of D{sub 2}O. Helium-3 gas is circulated through the neutron source region and the blanket to create tritium through neutron capture. The gas is continually processed to extract the tritium with an online separation process.

  19. ORION - Crew Module Side Hatch: Proof Pressure Test Anomaly Investigation

    Science.gov (United States)

    Evernden, Brent A.; Guzman, Oscar J.

    2018-01-01

    The Orion Multi-Purpose Crew Vehicle program was performing a proof pressure test on an engineering development unit (EDU) of the Orion Crew Module Side Hatch (CMSH) assembly. The purpose of the proof test was to demonstrate structural capability, with margin, at 1.5 times the maximum design pressure, before integrating the CMSH to the Orion Crew Module structural test article for subsequent pressure testing. The pressure test was performed at lower pressures of 3 psig, 10 psig and 15.75 psig with no apparent abnormal behavior or leaking. During pressurization to proof pressure of 23.32 psig, a loud 'pop' was heard at 21.3 psig. Upon review into the test cell, it was noted that the hatch had prematurely separated from the proof test fixture, thus immediately ending the test. The proof pressure test was expected be a simple verification but has since evolved into a significant joint failure investigation from both Lockheed Martin and NASA.

  20. Direct LiT Electrolysis in a Metallic Fusion Blanket

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Luke [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-30

    A process that simplifies the extraction of tritium from molten lithium-based breeding blankets was developed. The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fusion/fission reactors is critical in order to maintain low concentrations. This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Extraction is complicated due to required low tritium concentration limits and because of the high affinity of tritium for the blanket. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering hydrogen and deuterium through an electrolysis step at high temperatures.

  1. Direct Lit Electrolysis In A Metallic Lithium Fusion Blanket

    Energy Technology Data Exchange (ETDEWEB)

    Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Babineau, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Elvington, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Vaquer, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-13

    A process that simplifies the extraction of tritium from molten lithium based breeding blankets was developed.  The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fission/fusion reactors is critical in order to maintained low concentrations.  This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Because of the high affinity of tritium for the blanket, extraction is complicated at the required low levels. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering the hydrogen and deuterium thru an electrolysis step at high temperatures. 

  2. Extended Method of Digital Modulation Recognition and Its Testing

    Directory of Open Access Journals (Sweden)

    A. Kubankova

    2011-04-01

    Full Text Available The paper describes a new method for the classification of digital modulations. ASK, 2FSK, 4FSK, MSK, BPSK, QPSK, 8PSK and 16QAM were chosen for recognition as best known digital modulations used in modern communication technologies. The maximum value of the spectral power density of the normalized-centered instantaneous amplitude of the received signal is used to discriminate between frequency modulations (2FSK, 4FSK and MSK on one hand and amplitude and phase modulations (ASK, BPSK, QPSK, 8PSK and 16QAM on the other hand. Then the 2FSK, 4FSK and MSK modulations are classified by means of spectrums. The histograms of the instantaneous phase are used to discriminate between ASK, BPSK, QPSK, 8PSK and 16QAM. The method designed was tested with simulated and measured signals corrupted by white Gaussian noise.

  3. Test-to-Failure of Crystalline Silicon Modules: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hacke, P.; Terwilliger, K.; Glick, S.; Trudell, D.; Bosco, N.; Johnston, S.; Kurtz, S. R.

    2010-10-01

    Accelerated lifetime testing of five crystalline silicon module designs was carried out according to the Terrestrial Photovoltaic Module Accelerated Test-to-Failure Protocol. This protocol compares the reliability of various module constructions on a quantitative basis. The modules under test are subdivided into three accelerated lifetime testing paths: 85..deg..C/85% relative humidity with system bias, thermal cycling between ?40..deg..C and 85..deg..C, and a path that alternates between damp heat and thermal cycling. The most severe stressor is damp heat with system bias applied to simulate the voltages that modules experience when connected in an array. Positive 600 V applied to the active layer with respect to the grounded module frame accelerates corrosion of the silver grid fingers and degrades the silicon nitride antireflective coating on the cells. Dark I-V curve fitting indicates increased series resistance and saturation current around the maximum power point; however, an improvement in junction recombination characteristics is obtained. Shunt paths and cell-metallization interface failures are seen developing in the silicon cells as determined by electroluminescence, thermal imaging, and I-V curves in the case of negative 600 V bias applied to the active layer. Ability to withstand electrolytic corrosion, moisture ingress, and ion drift under system voltage bias are differentiated.

  4. Ultra accelerated testing of PV module components

    Science.gov (United States)

    Pitts, J. R.; King, D. E.; Bingham, C.; Czanderna, A. W.

    1999-03-01

    Using concentrated natural sunlight at the NREL High Flux Solar Furnace, we have exposed several materials to acceleration factors of up to 400 times the normal outdoor UV exposure dose. This accelerated rate allows the exposure of materials such that a year of outdoor exposure can be simulated in about 5 hours. We have studied the solarization of cerium containing glass, the degradation of ethylene vinyl acetate laminated between borosilicate glass, and the yellowing of standard polystyrene test coupons. The first two candidates are of interest to the photovoltaics (PV) program, and the last candidate material is a widely used dosimeter for ultra violet (UV) exposure in accelerated weathering chambers.

  5. Ultra Accelerated Testing of PV Module Components

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, J. R.; King, D. E.; Bingham, C.; Czanderna, A. W.

    1998-10-28

    Using concentrated natural sunlight at the NREL High Flux Solar Furnace, we have exposed several materials to acceleration factors of up to 400 times the normal outdoor UV exposure dose. This accelerated rate allows the exposure of materials such that a year of outdoor exposure can be simulated in about 5 hours. We have studied the solarization of cerium containing glass, the degradation of ethylene vinyl acetate laminated between borosilicate glass, and the yellowing of standard polystyrene test coupons. The first two candidates are of interest to the photovoltaics (PV) program, and the last candidate material is a widely used dosimeter for ultra violet (UV) exposure in accelerated weathering chambers

  6. Tests of CMS MSGC Modules at PSI

    CERN Document Server

    Beaumont, Willem; Bernier, Kim; Blum, Peter; Bouhali, Othmane; Boulogne, Isabelle; Bozzo, Marco; Brez, Alessandro; Buzulutskov, A; Coffin, Jean-Pierre Coffin; Daubie, Evelyne; De Lentdecker, Gilles; Devroede, O; Erbacher, Th; Fahrer, Manuel; Fontaine, Jean-Charles; Flügge, Gunter; Gariano, G; Geist, Walter M; Gottschalk, M; Helleboid, Jean-Marie; Huss, Daniel; Iacopi, F; Kärcher, Kurt; Latronico, Luca; Lounis, Abdenour; Lumb, Nicholas; Maazouzi, Chaker; Macke, D; Massai, Marco Maria; Mörmann, Dirk; Müller, Th; Neuberger, D; Nowack, Andreas; Papanestis, Antonios; Raffo, R; Roederer, Frank; Schulte, R; Shekhtman, L I; Sigward, M H; Simonis, H J; Spandre, Gloria; Spezziga, Mario; Struczinski, W; Tatarinov, A A; Toropin, Alexander N.; Van Doninck, Walter; Van Dyck, C; Van Lancker, Luc; Van der Velde, C; Vanlaer, Pascal; Bellazzini, Ronaldo; Zander, A; Barvich, Tobias; Zghiche, Amina; Zhukov, Valery; Brom, Jean-Marie; Ageron, M; Chowotz, Piotr; Albert, A; Mirabito, Laurent; Bluem, P.; Kaercher, K; Moermann, Dirk; Mueller, Th; Roederer, Frank; Weiler, Thomas

    1999-01-01

    The CMS experiment, to be installed at the future p-p collider LHC at CERN, foresees the use of Micro-Strip Gas Counters ( MSGC's) for the outer layers of its central tracker. Present developments focus on the reliability of MSGC's in the harsh radiation environment imposed by the LHC. This paper reports on tests of two baseline CMS MSGC's identical to those foreseen for the barrel part of the tracker, in a high intensity pion beam at the Paul Scherrer Institute ( PSI), in april 1999.

  7. Standard Test Method for Saltwater Pressure Immersion and Temperature Testing of Photovoltaic Modules for Marine Environments

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method provides a procedure for determining the ability of photovoltaic modules to withstand repeated immersion or splash exposure by seawater as might be encountered when installed in a marine environment, such as a floating aid-to-navigation. A combined environmental cycling exposure with modules repeatedly submerged in simulated saltwater at varying temperatures and under repetitive pressurization provides an accelerated basis for evaluation of aging effects of a marine environment on module materials and construction. 1.2 This test method defines photovoltaic module test specimens and requirements for positioning modules for test, references suitable methods for determining changes in electrical performance and characteristics, and specifies parameters which must be recorded and reported. 1.3 This test method does not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of this test method. 1.4 The values stated in SI units are to be ...

  8. Standard Test Methods for Determining Mechanical Integrity of Photovoltaic Modules

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 These test methods cover procedures for determining the ability of photovoltaic modules to withstand the mechanical loads, stresses and deflections used to simulate, on an accelerated basis, high wind conditions, heavy snow and ice accumulation, and non-planar installation effects. 1.1.1 A static load test to 2400 Pa is used to simulate wind loads on both module surfaces 1.1.2 A static load test to 5400 Pa is used to simulate heavy snow and ice accumulation on the module front surface. 1.1.3 A twist test is used to simulate the non-planar mounting of a photovoltaic module by subjecting it to a twist angle of 1.2°. 1.1.4 A cyclic load test of 10 000 cycles duration and peak loading to 1440 Pa is used to simulate dynamic wind or other flexural loading. Such loading might occur during shipment or after installation at a particular location. 1.2 These test methods define photovoltaic test specimens and mounting methods, and specify parameters that must be recorded and reported. 1.3 Any individual mech...

  9. Eddy current induced electromagnetic loads on shield blankets during plasma disruptions in ITER: A benchmark exercise

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Duck-Hoi [ITER Korea: National Fusion Research Institute, Gwahangno 113, Yuseong-gu, Daejeon (Korea, Republic of); Oh, Dong-Keun, E-mail: spinhalf@nfri.re.k [ITER Korea: National Fusion Research Institute, Gwahangno 113, Yuseong-gu, Daejeon (Korea, Republic of); Pak, Sunil; Jhang, Hogun [ITER Korea: National Fusion Research Institute, Gwahangno 113, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Jaeyoul [Tae Sung S and E Inc., Yongsan-dong 575, Yuseong-gu, Daejeon (Korea, Republic of); Rozov, Vladimir [ITER Organization, Cadarache, F-13108 St. Paul-lez-Durance (France)

    2010-12-15

    According to recent updates of ITER shield blanket design, electromagnetic loads during the plasma disruption are being evaluated to verify the mechanical confidence and reliability. As a course of such evaluations, a benchmark activity for the electromagnetic analysis, coordinated by ITER Organization, is underway between ITER parties to compare the calculation results for disruption loads on the blankets. In this paper, we present calculation results for the electromagnetic loads on the simplified but practical model of ITER shield blankets with respect to six representative disruption scenarios of which ITER distributes simulation results based on the DINA code as a reference of the design and analysis. Commercial finite element method software, ANSYS/Emag{sup TM}, was employed to evaluate the eddy current on the blanket modules with the 40{sup o} sector model for major conducting structure of the tokamak including double-walled vacuum vessel, triangular support, and vertical targets of divertors. An interface between ANSYS/Emag{sup TM} and plasma simulator was implemented with a conversion tool assigning the plasma current density on the ANSYS elements corresponding to the current filaments in DINA outputs. Discussions are made of the possible improvement of the blanket model taking more realistic blanket configuration into account at the cost of the moderate increase in computational time. A final remark is given of the possibility of incorporating halo currents into ANSYS disruption simulations, which are major sources of electromagnetic loads on in-vessel components including blankets.

  10. Neutronic analyses of the preliminary design of a DCLL blanket for the EUROfusion DEMO power plant

    Energy Technology Data Exchange (ETDEWEB)

    Palermo, Iole, E-mail: iole.palermo@ciemat.es; Fernández, Iván; Rapisarda, David; Ibarra, Angel

    2016-11-01

    Highlights: • We perform neutronic calculations for the preliminary DCLL Blanket design. • We study the tritium breeding capability of the reactor. • We determine the nuclear heating in the main components. • We verify if the shielding of the TF coil is maintained. - Abstract: In the frame of the newly established EUROfusion WPBB Project for the period 2014–2018, four breeding blanket options are being investigated to be used in the fusion power demonstration plant DEMO. CIEMAT is leading the development of the conceptual design of the Dual Coolant Lithium Lead, DCLL, breeding blanket. The primary role of the blanket is of energy extraction, tritium production, and radiation shielding. With this aim the DCLL uses LiPb as primary coolant, tritium breeder and neutron multiplier and Eurofer as structural material. Focusing on the achievement of the fundamental neutronic responses a preliminary blanket model has been designed. Thus detailed 3D neutronic models of the whole blanket modules have been generated, arranged in a specific DCLL segmentation and integrated in the generic DEMO model. The initial design has been studied to demonstrate its viability. Thus, the neutronic behaviour of the blanket and of the shield systems in terms of tritium breeding capabilities, power generation and shielding efficiency has been assessed in this paper. The results demonstrate that the primary nuclear performances are already satisfactory at this preliminary stage of the design, having obtained the tritium self-sufficiency and an adequate shielding.

  11. Updated conceptual design of helium cooling ceramic blanket for HCCB-DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Suhao [University of Science and Technology of China, Hefei, Anhui (China); Southwestern Institute of Physics, Chengdu, Sichuan (China); Cao, Qixiang; Wu, Xinghua; Wang, Xiaoyu; Zhang, Guoshu [Southwestern Institute of Physics, Chengdu, Sichuan (China); Feng, Kaiming, E-mail: fengkm@swip.ac.cn [Southwestern Institute of Physics, Chengdu, Sichuan (China)

    2016-11-15

    Highlights: • An updated design of Helium Cooled Ceramic breeder Blanket (HCCB) for HCCB-DEMO is proposed in this paper. • The Breeder Unit is transformed to TBM-like sub-modules, with double “banana” shape tritium breeder. Each sub-module is inserted in space formed by Stiffen Grids (SGs). • The performance analysis is performed based on the R&D development of material, fabrication technology and safety assessment in CN ITER TBM program. • Hot spots will be located at the FW bend side. - Abstract: The basic definition of the HCCB-DEMO plant and preliminary blanket designed by Southwestern Institution of Physics was proposed in 2009. The DEMO fusion power is 2550 MW and electric power is 800 MW. Based on development of R&D in breeding blanket, a conceptual design of helium cooled blanket with ceramic breeder in HCCB-DEMO was presented. The main design features of the HCCB-DEMO blanket were: (1) CLF-1 structure materials, Be multiplier and Li{sub 4}SiO{sub 4} breeder; (2) neutronic wall load is 2.3 MW/m{sup 2} and surface heat flux is 0.43 MW/m{sup 2} (2) TBR ≈ 1.15; (3) geometry of breeding units is ITER TBM-like segmentation; (4)Pressure of helium is 8 MPa and inlet/outlet temperature is 300/500 °C. On the basis of these design, some important analytical results are presented in aspects of (i) neutronic behavior of the blanket; (ii) design of 3D structure and thermal-hydraulic lay-out for breeding blanket module; (iii) structural-mechanical behavior of the blanket under pressurization. All of these assessments proved current stucture fulfill the design requirements.

  12. New test and characterization methods for PV modules and cells

    Energy Technology Data Exchange (ETDEWEB)

    Van Aken, B.; Sommeling, P. [ECN Solar Energy, Petten (Netherlands); Scholten, H. [Solland, Heerlen (Netherlands); Muller, J. [Moser-Baer, Eindhoven (Netherlands); Grossiord, N. [Holst Centre, Eindhoven (Netherlands); Smits, C.; Blanco Mantecon, M. [Holland Innovative, Eindhoven (Netherlands); Verheijen, M.; Van Berkum, J. [Philips Innovation Services, Eindhoven (Netherlands)

    2012-08-15

    The results of the project geZONd (shared facility for solar module analysis and reliability testing) are described. The project was set up by Philips, ECN, Holst, Solland, OM and T and Holland Innovative. The partners have shared most of their testing and analysis equipment for PV modules and cells, and together developed new or improved methods (including the necessary application know-how). This enables faster and more efficient innovation projects for each partner, and via commercial exploitation for other interested parties. The project has concentrated on five failure modes: corrosion, delamination, moisture ingress, UV irradiation, and mechanical bending. Test samples represented all main PV technologies: wafer based PV and rigid and flexible thin-film PV. Breakthroughs are in very early detection of corrosion, in quantitative characterization of adhesion, in-situ detection of humidity and oxygen inside modules, and ultra-fast screening of materials on UV stability.

  13. Design requirement on HYPER blanket fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Lee, B. O.; Nam, C.; Ryu, W. S.; Lee, B. S.; Park, W. S

    2000-07-01

    This document describes design requirements which are needed for designing the blanket assembly of the HYPER as design guidance. The blanket assembly of the HYPER consists of blanket fuel rods, mounting rail, spacer, upper nozzle with handling socket, bottom nozzle with mounting rail and skeleton structure. The blanket fuel rod consists of top end plug, bottom end plug with key way, blanket fuel slug, and cladding. In the assembly, the rods are in a triangular pitch array. This report contains functional requirements, performance and operational requirements, interfacing systems requirements, core restraint and interface requirements, design limits and strength requirements, system configuration and essential feature requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements for the blanket fuel assembly of the HYPER.

  14. Fusion reactor blanket/shield design study

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Clemmer, R.G.; Harkness, S.D.

    1979-07-01

    A joint study of tokamak reactor first-wall/blanket/shield technology was conducted by Argonne National Laboratory (ANL) and McDonnell Douglas Astronautics Company (MDAC). The objectives of this program were the identification of key technological limitations for various tritium-breeding-blanket design concepts, establishment of a basis for assessment and comparison of the design features of each concept, and development of optimized blanket designs. The approach used involved a review of previously proposed blanket designs, analysis of critical technological problems and design features associated with each of the blanket concepts, and a detailed evaluation of the most tractable design concepts. Tritium-breeding-blanket concepts were evaluated according to the proposed coolant. The ANL effort concentrated on evaluation of lithium- and water-cooled blanket designs while the MDAC effort focused on helium- and molten salt-cooled designs. A joint effort was undertaken to provide a consistent set of materials property data used for analysis of all blanket concepts. Generalized nuclear analysis of the tritium breeding performance, an analysis of tritium breeding requirements, and a first-wall stress analysis were conducted as part of the study. The impact of coolant selection on the mechanical design of a tokamak reactor was evaluated. Reference blanket designs utilizing the four candidate coolants are presented.

  15. Development of radiation hard components for ITER blanket remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Makiko, E-mail: saito.makiko@jaea.go.jp; Anzai, Katsunori; Maruyama, Takahito; Noguchi, Yuto; Ueno, Kenichi; Takeda, Nobukazu; Kakudate, Satoshi

    2016-11-01

    Highlights: • Clarify the components that will degrade by gamma ray irradiation. • Perform the irradiation tests to BRHS components. • Optimize the materials to increase the radiation hardness. - Abstract: The ITER blanket remote handling system (BRHS) will be operated in a high radiation environment (250 Gy/h max.) and must stably handle the blanket modules, which weigh 4.5 t and are more than 1.5 m in length, with a high degree of position and posture accuracy. The reliability of the system can be improved by reviewing the failure events of the system caused by high radiation. A failure mode and effects analysis (FMEA) identified failure modes and determined that lubricants, O-rings, and electric insulation cables were the dominant components affecting radiation hardness. Accordingly, we tried to optimize the lubricants and cables of the AC servo motors by using polyphenyl ether (PPE)-based grease and polyether ether ketone (PEEK), respectively. Materials containing radiation protective agents were also selected for the cable sheaths and O-rings to improve radiation hardness. Gamma ray irradiation tests were performed on these components and as a result, a radiation hardness of 8 MGy was achieved for the AC servo motors. On the other hand, to develop the radiation hardness and BRHS compatibility furthermore, the improvement of materials of cable and O ring were performed.

  16. An Analysis of Ripple and Error Fields Induced by a Blanket in the CFETR

    Science.gov (United States)

    Yu, Guanying; Liu, Xufeng; Liu, Songlin

    2016-10-01

    The Chinese Fusion Engineering Tokamak Reactor (CFETR) is an important intermediate device between ITER and DEMO. The Water Cooled Ceramic Breeder (WCCB) blanket whose structural material is mainly made of Reduced Activation Ferritic/Martensitic (RAFM) steel, is one of the candidate conceptual blanket design. An analysis of ripple and error field induced by RAFM steel in WCCB is evaluated with the method of static magnetic analysis in the ANSYS code. Significant additional magnetic field is produced by blanket and it leads to an increased ripple field. Maximum ripple along the separatrix line reaches 0.53% which is higher than 0.5% of the acceptable design value. Simultaneously, one blanket module is taken out for heating purpose and the resulting error field is calculated to be seriously against the requirement. supported by National Natural Science Foundation of China (No. 11175207) and the National Magnetic Confinement Fusion Program of China (No. 2013GB108004)

  17. APT target/blanket design and thermal hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Cappiello, M.; Pitcher, E.; Pasamehmetoglu, K.

    1999-04-01

    The Accelerator Production of Tritium (APT) Target/Blanket (T/B) system is comprised of an assembly of tritium producing modules supported by control, heat removal, shielding and retargeting systems. The T/B assembly produces tritium using a high-energy proton beam, a tungsten/lead spallation neutron source and {sup 3}He gas as the tritium producing feedstock. For the nominal production mode, protons are accelerated to an energy of 1030 MeV at a current of 100 mA and are directed onto the T/B assembly. The protons are expanded using a raster/expansion system to illuminate a 0.19m by 1.9m beam spot on the front face of a centrally located tungsten neutron source. A surrounding lead blanket produces additional neutrons from scattered high-energy particles. The tungsten neutron source consists of nested, Inconel-718 clad tungsten cylinders assembled in horizontal Inconel-718 tubes. Each tube contains up to 6 cylinders with annular flow channel gaps of 0.102 cm. These horizontal tubes are manifolded into larger diameter vertical inlet and outlet pipes, which provide coolant. The horizontal and vertical tubes make up a structure similar to that of rungs on a ladder. The entire tungsten neutron source consists of 11 such ladders separated into two modules, one containing five ladders and the other six. Ladders are separated by a 0.3 m void region to increase nucleon leakage. The peak thermal-hydraulic conditions in the tungsten neutron source occur in the second ladder from the front. Because tungsten neutron source design has a significant number of parallel flow channels, the limiting thermal-hydraulic parameter is the onset of significant void (OSV) rather than critical heat flux (CHF). A blanket region surrounds the tungsten neutron source. The lateral blanket region is approximately 120 cm thick and 400 cm high. Blanket material consists of lead, {sup 3}He gas, aluminum, and light-water coolant. The blanket region is subdivided into rows based on the local power

  18. Current design of the European TBM systems and implications on DEMO breeding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Ricapito; Calderoni, P. [Fusion for Energy, 08019 Barcelona (Spain); Aiello, A. [ENEA, Bacino del Brasimone, I-40032 Camugnano, Bo (Italy); Ghidersa, B. [Karlsruher Institut für Technologie, D-76021 Karlsruhe (Germany); Poitevin, Y.; Pacheco, J. [Fusion for Energy, 08019 Barcelona (Spain)

    2016-11-01

    Highlights: • Description of the Helium Cooling Systems of HCLL and HCPB-TBS after the Conceptual Design Review. • Description of the PbLi loop of HCLL-TBS after the Conceptual Design Review. • Description of the possible ROX (Return of Experience) from design and operation of the Test Blanket Systems. • Discussion on the DEBO relevancy of the main technologies adopted in the Helium Cooling Systems and PbLi loop. - Abstract: Europe is committed in developing the design of the two Test Blanket Systems (TBS) based on HCLL (Helium Cooled Lithium Lead) and HCPB (Helium Cooled Pebble Bed) breeding blanket (BB) concepts. The complexity of the TBS design comes not only from the innovative fabrication technologies and materials adopted for Test Blanket Modules (TBM) but also from the requirements and functions that the TBM ancillary systems have to satisfy and implement. Indeed, the main TBM ancillary systems, namely the Helium Cooling System, the Coolant Purification System and Tritium Extraction System, all belonging to the Safety Important Class (SIC), have to implement fundamental functions, like the transport of the surface and volumetric heat from the TBM to the heat sink, the extraction and processing of the tritium generated in the TBM, the confinement of radioactive inventory, the support to the investment protection and safety functions. On top of the full compliance with the ITER safety principles, the design of the TBM systems is focused on providing high operational reliability and availability not to jeopardize ITER program and, at the same time, also a good operational flexibility to make possible the achievement of the main TBM scientific objectives. This paper gives an overview of the design status of the HCLL and HCPB-TBM (ancillary) systems, updated to the conclusion of the conceptual design phase (CDR). The most relevant technologies, the still open points, the main issues related to the integration in ITER and last relevant results from the on

  19. Liquid Metal Thermal Electric Converter bench test module

    Energy Technology Data Exchange (ETDEWEB)

    Lukens, L.L.; Andraka, C.E.; Moreno, J.B.

    1988-04-01

    This report describes the design, fabrication, and test of a Liquid Metal Thermal Electric Converter Bench Test Module. The work presented in this document was conducted as a part of Heat Engine Task of the US Department of Energy's (DOE) Solar Thermal Technology Program. The objective of this task is the development and evaluation of heat engine technologies applicable to distributed receiver systems, in particular, dish electric systems.

  20. Classification Using Markov Blanket for Feature Selection

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Luo, Jian

    2009-01-01

    Selecting relevant features is in demand when a large data set is of interest in a classification task. It produces a tractable number of features that are sufficient and possibly improve the classification performance. This paper studies a statistical method of Markov blanket induction algorithm...... induction as a feature selection method. In addition, we point out an important assumption behind the Markov blanket induction algorithm and show its effect on the classification performance....... for filtering features and then applies a classifier using the Markov blanket predictors. The Markov blanket contains a minimal subset of relevant features that yields optimal classification performance. We experimentally demonstrate the improved performance of several classifiers using a Markov blanket...

  1. ITER Blanket First Wall (WBS 1.6{sub 1}A)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bong Guen; Kim, H. G.; Kim, J. H. (and others)

    2008-03-15

    -up fabrication was started; Cu/SS joints were fabricated and purchase of Be tiles was prepared. Fabrication manual and test manual such as mechanical tests and NDE were documented in the form of the TSD. Based on the design by the ITER-O, 3D modeling of the module no. 4 for ITER blanket FW was produced, thermal-hydraulic and thermo-mechanical analysis were performed. The developed NDE methods were applied to all fabricated mock-ups before HHF test and the UT results were compared with the IR images, which were generated when screening test during HHF test. ECT probes were prepared according to the previous simulation results and they were evaluated experimentally with the NDT mock-up, which has artificial defects. The developed NDE methods and their application were documented as an inspection manual and a QC document, and they were included in the TS000.

  2. First adaptation of the European ceramic B. I. T. blanket design to the updated DEMO specifications

    Energy Technology Data Exchange (ETDEWEB)

    Anzidei, L.; Cecchi, P.; Cevolani, S.; Gallina, M.; Petrizzi, L.; Rado, V.; Talarico, C.; Violante, V.; Vettraino, V.; Zampaglione, V. (Associazione Euratom-ENEA sulla Fusione, Frascati (Italy)); Proust, E.; Giancarli, L.; Raepsaet, X.; Szczepanski, J.; Vallette, F.; Baraer, L.; Bielak, B.; Mercier, J. (Commissariat a l' Energie Atomique, DRN/DMT/SERMA, C.E.N. Saclay, 91 - Gif-sur-Yvette (France))

    1991-12-01

    The DEMO specifications defined so as to ensure the consistency of the various blanket conceptual design studies performed within the framework of the European Test Blanket Programme have been recently updated. A very first attempt has been made to adapt the European Ceramic Breeder Inside-Tube DEMO blanket to these new specifications. Two solutions have been investigated. The first would ensure tritium self-sufficiency of the plant with a large safety margin. The other one, which fully preserves the design simplicity and reliability of the initial design, appears to be somewhat marginal from the tritium breeding capability point of view, but to offer good improvement prospects. (orig.).

  3. NEPSTP Propulsion Module Design and Flight Test Plans

    Science.gov (United States)

    Herbert, Gregg A.; Day, Michael

    1994-07-01

    The Nuclear Electric Propulsion Space Test Program (NEPSTP) is a Ballistic Missile Defense Organization (BMDO) sponsored technology demonstration of a Russian space nuclear reactor and an international complement of xenon electric thrusters. The mission is described along with some of the design accomplishments to date. The spacecraft description includes discussions on the spacecraft bus and the propulsion module which supports the experimental electric thrusters. A discussion on the basic structural, thermal and electronic designs of the propulsion module is included. The baseline thruster set is presented highlighting the Russian, U.S. and UK participation. Ground and flight test plans for the electric thrusters are described and several of the key thruster/spacecraft integration and operational issues are addressed. The NEPSTP reached a preliminary design level in all significant areas in 1993. The unique opportunities for scientific and engineering demonstration of EP technologies and for international collaboration on a major space program are elaborated.

  4. Damage imaging in nonlinear vibro-acoustic modulation tests

    Science.gov (United States)

    Pieczonka, Lukasz; Klepka, Andrzej; Uhl, Tadeusz; Staszewski, Wieslaw J.

    2015-03-01

    The paper deals with the nonlinear vibro-acoustic modulation technique (VAM) used for nondestructive damage detection in composites. In its original form the technique allows only for the determination of the presence of damage in a structure. This paper presents an enhancement of the technique that allows also for the determination of damage location. Experimental testing of the proposed procedure is performed on carbon fiber/epoxy laminated composite plates with barely visible impact damage that was generated in an impact test. Shearography was used to verify damage location. Piezoceramic actuators are used for vibration excitation and a scanning laser vibrometer is used for data acquisition.

  5. Conceptual design of the blanket mechanical attachment for the helium-cooled lithium-lead reactor

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, G. [EURATOM-CIEMAT Association for Fusion, Avda. Complutense 22, 28040 Madrid (Spain); Branas, B. [EURATOM-CIEMAT Association for Fusion, Avda. Complutense 22, 28040 Madrid (Spain)], E-mail: beatriz.branas@ciemat.es; Lucas, J. [Elytt Energy, Po Castellana 114, 3, 7 28046 Madrid (Spain); Doncel, J.; Medrano, M.; Garcia, A. [EURATOM-CIEMAT Association for Fusion, Avda. Complutense 22, 28040 Madrid (Spain); Giancarli, L. [CEA/Saclay, DEN/CPT, 91191 Gif-sur-Yvette (France); Ibarra, A. [EURATOM-CIEMAT Association for Fusion, Avda. Complutense 22, 28040 Madrid (Spain); Li Puma, A. [CEA/Saclay, DEN/CPT, 91191 Gif-sur-Yvette (France); Maisonnier, D.; Sardain, P. [EFDA-Close Support Unit Garching, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2008-01-15

    The conceptual design of a new type of fusion reactor based on the helium-cooled lithium-lead (HCLL) blanket has been performed within the European Power Plant Conceptual Studies. As part of this activity, a new attachment system suitable for the HCLL blanket modules had to be developed. This attachment is composed of two parts. The first one is the connection between module and the first part of a shield, called high temperature shield, which operates at a temperature around 500 deg. C, close to that of the blanket module. This connection must be made at the lateral walls, in order to avoid openings through the first wall and breeding zone thus avoiding complex design and fabrication issues of the module. The second connection is the one between the high temperature shield and a second shield called low temperature shield, which has a temperature during reactor operation around 150 deg. C. The design of this connection is complex because it must allow the large differential thermal expansion (up to 30 mm) between the two components. Design proposals for both connections are presented, together with the results of finite element mechanical analyses which demonstrate the feasibility to support the blanket and shield modules during normal and accidental operation conditions.

  6. Test module development to detect the flase call probe pins on microeprocessor test equipment

    Science.gov (United States)

    Tang, L. W.; Ong, N. R.; Mohamad, I. S. B.; Alcain, J. B.; Retnasamy, V.

    2017-09-01

    Probe pins are useful for electrical testing of microelectronic components, printed circuit board assembly (PCBA), microprocessors and other electronic devices due to it provides the conductivity test based on specific device circuit design. During the repeatable test runs, the load of test modules, contact failures and the current conductivity induces layer wear off all the tip of probe pins contact. Contamination will be build-up on probe pins and increased contact resistivity which results of cost loss and time loss for rectifying programs, rectifying testers and exchanging new probe pins. In this study, a resistivity approach will be developed to provide "Testing of Test Probes". The test module based on "Four-wire Ohm measurement" method with two alternative ways of applying power supply, that are 9V from a single power supply and 5V from Arduino UNO power supply were demonstrated to measure the small resistance value of microprocessor probe pin. A microcontroller with VEE Pro software was used to record the measurement data. The accuracy of both test modules were calibrated under different temperature conditions and result shows that 9V from a single power supply test module has higher measurement accuracy.

  7. Integrated system tests of the LSST raft tower modules

    Science.gov (United States)

    O'Connor, P.; Antilogus, P.; Doherty, P.; Haupt, J.; Herrmann, S.; Huffer, M.; Juramy-Giles, C.; Kuczewski, J.; Russo, S.; Stubbs, C.; Van Berg, R.

    2016-07-01

    The science focal plane of the LSST camera is made up of 21 fully autonomous 144 Mpixel imager units designated raft tower modules (RTM). These imagers incorporate nine 4K x 4K fully-depleted CCDs and 144 channels of readout electronics, including a dedicated CMOS video processing ASIC and components that provide CCD biasing and clocking, video digitization, thermal stabilization, and a high degree of monitoring and telemetry. The RTM achieves its performance goals for readout speed, read noise, linearity, and crosstalk with a power budget of less than 400mW/channel. Series production is underway on the first units and the production will run until 2018. We present the RTM final design, tests of the integrated signal chain, and performance results for the fully-integrated module with pre-production CCDs.

  8. GPM Avionics Module Heat Pipes Design and Performance Test Results

    Science.gov (United States)

    Ottenstein, Laura; DeChristopher, Mike

    2011-01-01

    The Global Precipitation Measurement (GPM) mission is an international network of satellites that provide the next-generation global observations of rain and snow. The GPM core satellite carries an advanced radar / radiometer system to measure precipitation from space and serve as a reference standard to unify precipitation measurements from a constellation of research and operational satellites. Through improved measurements of precipitation globally, the GPM mission will help to advance our understanding of Earth's water and energy cycle, improve forecasting of extreme events that cause natural hazards and disasters, and extend current capabilities in using accurate and timely information of precipitation to directly benefit society. The avionics module on the core satellite contains a number of electronics boxes which are cooled by a network of aluminum/ammonia heat pipes and a honeycomb radiator which contains thirteen embedded aluminum/ammonia heat pipes. All heat pipes were individually tested by the vendor (Advanced Cooling Technologies, Inc.) prior to delivery. Following delivery to NASA, the flight avionics radiator and the flight spare transport heat pipes were mounted to flight-like test structure and a system level thermal vacuum test was performed. This test, which used simulators in place of all electronics boxes, was done to verify the operation of the thermal control system as a whole. This presentation will discuss the design of the avionics module heat pipes, and then discuss performance tests results for the individual heat pipes prior to delivery and for the system level thermal vacuum test. All heat pipes met their performance requirements. However, it was found that the power was too low in some instances to start all of the smaller radiator spreader heat pipes when they were tested in a reflux configuration (which is the nominal test configuration). Although this lowered the efficiency of the radiator somewhat, it did not impact the operating

  9. Heat Loads Due to Small Penetrations in Multilayer Insulation Blankets

    Science.gov (United States)

    Johnson, W. L.; Heckle, K. W.; Fesmire, J. E.

    2017-01-01

    The main penetrations (supports and piping) through multilayer insulation systems for cryogenic tanks have been previously addressed by heat flow measurements. Smaller penetrations due to fasteners and attachments are now experimentally investigated. The use of small pins or plastic garment tag fasteners to each the handling and construction of multilayer insulation (MLI) blankets goes back many years. While it has long been understood that penetrations and other discontinuities degrade the performance of the MLI blanket, quantification of this degradation has generally been lumped into gross performance multipliers (often called degradation factors or scale factors). Small penetrations contribute both solid conduction and radiation heat transfer paths through the blanket. The conduction is down the stem of the structural element itself while the radiation is through the hole formed during installation of the pin or fastener. Analytical models were developed in conjunction with MLI perforation theory and Fouriers Law. Results of the analytical models are compared to experimental testing performed on a 10 layer MLI blanket with approximately 50 small plastic pins penetrating the test specimen. The pins were installed at 76-mm spacing inches in both directions to minimize the compounding of thermal effects due to localized compression or lateral heat transfer. The testing was performed using a liquid nitrogen boil-off calorimeter (Cryostat-100) with the standard boundary temperatures of 293 K and 78 K. Results show that the added radiation through the holes is much more significant than the conduction down the fastener. The results are shown to be in agreement with radiation theory for perforated films.

  10. Conceptual design of a First Wall mock-up experiment in preparation for the qualification of breeding blanket technologies in the Helium Loop Karlsruhe (HELOKA) facility

    Energy Technology Data Exchange (ETDEWEB)

    Zeile, C., E-mail: christian.zeile@kit.edu [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Abou-Sena, A.; Boccaccini, L.V.; Ghidersa, B.E.; Kang, Q.; Kunze, A. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Lamberti, L. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Dipartimento Energia, Politecnico di Torino (Italy); Maione, I.A.; Rey, J.; Weth, A. von der [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-11-01

    Highlights: • Experiment in preparation for the qualification of Breeding Blanket technologies in HELOKA facility is proposed. • Experimental capabilities, instrumentation of the mock-up and experimental program are presented. • Design and manufacturing of the mock-up is described. • Design of modular attachment system to obtain different stress levels and distributions on the mock-up is discussed. - Abstract: An experimental program based on a First Wall mock-up is presented as preparation for the qualification of breeding blanket mock-ups at high heat flux in the Helium Loop Karlsruhe (HELOKA) facility. Two objectives of the experimental program have been defined: testing of the experimental setup and a first validation of FE models. The design and manufacturing of mock-up representing about 1/3 of the heated zone of an ITER Test Blanket Module (TBM) First Wall is discussed. A modular attachment system concept has been developed for the fixation of the mock-up in order to be able to generate different stress distributions and levels on the plate, which is confirmed by thermo-mechanical analyses. The HELOKA facility is able to provide a TBM relevant helium cooling system and to generate the required surface heat flux by an electron beam gun. An installed IR camera can be used to measure the temperature distribution on the surface.

  11. Silver Teflon blanket: LDEF tray C-08

    Science.gov (United States)

    Crutcher, E. Russ; Nishimura, L. S.; Warner, K. J.; Wascher, W. W.

    1992-01-01

    A study of the Teflon blanket surface at the edge of tray C-08 illustrates the complexity of the microenvironments on the Long Duration Exposure Facility (LDEF). The distribution of particulate contaminants varied dramatically over a distance of half a centimeter (quarter of an inch) near the edge of the blanket. The geometry and optical effects of the atomic oxygen erosion varied significantly over the few centimeters where the blanket folded over the edge of the tray resulting in a variety of orientations to the atomic oxygen flux. A very complex region of combined mechanical and atomic oxygen damage occurred where the blanket contacted the edge of the tray. A brown film deposit apparently fixed by ultraviolet light traveling by reflection through the Teflon film was conspicuous beyond the tray contract zone. Chemical and structural analysis of the surface of the brown film and beyond toward the protected edge of the blanket indicated some penetration of energetic atomic oxygen at least five millimeters past the blanket-tray contact interface.

  12. Thermo-mechanical characterization of ceramic pebbles for breeding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Lo Frano, Rosa, E-mail: rosa.lofrano@ing.unipi.it; Aquaro, Donato; Scaletti, Luca

    2016-11-01

    Highlights: • Experimental activities to characterize the Li{sub 4}SiO{sub 4}. • Compression tests of pebbles. • Experimental evaluation of thermal conductivity of pebbles bed at different temperatures. • Experimental test with/without compression load. - Abstract: An open issue for fusion power reactor is to design a suitable breeding blanket capable to produce the necessary quantity of the tritium and to transfer the energy of the nuclear fusion reaction to the coolant. The envisaged solution called Helium-Cooled Pebble Bed (HCPB) breeding blanket foresees the use of lithium orthosilicate (Li{sub 4}SiO{sub 4}) or lithium metatitanate (Li{sub 2}TiO{sub 3}) pebble beds. The thermal mechanical properties of the candidate pebble bed materials are presently extensively investigated because they are critical for the feasibility and performances of the numerous conceptual designs which use a solid breeder. This study is aimed at the investigation of mechanical properties of the lithium orthosilicate and at the characterization of the main chemical, physical and thermo-mechanical properties taking into account the production technology. In doing that at the Department of Civil and Industrial Engineering (DICI) of the University of Pisa adequate experiments were carried out. The obtained results may contribute to characterize the material of the pebbles and to optimize the design of the envisaged fusion breeding blankets.

  13. Preliminary neutronics design and analysis of helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Zhongliang; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Chen, Chong; Li, Min; Zhou, Guangming

    2015-06-15

    Highlights: • Neutronics design of a helium cooled solid breeder blanket for CFETR was presented. • The breeding zones parallel to FW and perpendicular to FW were optimized. • A series of neutronics analyses for the proposed blanket were shown. - Abstract: Chinese Fusion Engineering Test Reactor (CFETR) is a test tokamak reactor being designed in China to bridge the gap between ITER and future fusion power plant. Tritium self-sufficiency is one of the most important issues for CFETR and the tritium breeding ratio (TBR) is recommended not less than 1.2. As one of the candidates, a helium cooled solid breeder blanket for CFETR superconducting tokamak option was proposed. In the concept, radial arranged U-shaped breeding zones are adopted for higher TBR and simpler structure. In this work, three-dimensional neutronics design and analysis of the blanket were performed using the Monte Carlo N-Particle transport code MCNP with IAEA data library FENDL-2.1. Tritium breeding capability of the proposed blanket was assessed and the breeding zones parallel to first wall (FW) and perpendicular to FW were optimized. Meanwhile, the nuclear heating analysis and shielding performance were also presented for later thermal and structural analysis. The results showed that the blanket could well meet the tritium self-sufficiency target and the neutron shield could satisfy the design requirements.

  14. Neutronic investigation and activation calculation for CFETR HCCB blankets

    Science.gov (United States)

    Shuling, XU; Mingzhun, LEI; Sumei, LIU; Kun, LU; Kun, XU; Kun, PEI

    2017-12-01

    The neutronic calculations and activation behavior of the proposed helium cooled ceramic breeder (HCCB) blanket were predicted for the Chinese Fusion Engineering Testing Reactor (CFETR) design model using the MCNP multi-particle transport code and its associated data library. The tritium self-sufficiency behavior of the HCCB blanket was assessed, addressing several important breeding-related arrangements inside the blankets. Two candidate first wall armor materials were considered to obtain a proper tritium breeding ratio (TBR). Presentations of other neutronic characteristics, including neutron flux, neutron-induced damages in terms of the accumulated dpa and helium production were also conducted. Activation, decay heat levels and contact dose rates of the components were calculated to estimate the neutron-induced radioactivity and personnel safety. The results indicate that neutron radiation is efficiently attenuated and slowed down by components placed between the plasma and toroidal field coil. The dominant nuclides and corresponding isotopes in the structural steel were discussed. A radioactivity comparison between pure beryllium and beryllium with specific impurities was also performed. After a millennium cooling time, the decay heat of all the concerned components and materials is less than 1 × 10‑4 kW, and most associated in-vessel components qualify for recycling by remote handling. The results demonstrate that acceptable hands-on recycling and operation still require a further long waiting period to allow the activated products to decay.

  15. Space environment durability of beta cloth in LDEF thermal blankets

    Science.gov (United States)

    Linton, Roger C.; Whitaker, Ann F.; Finckenor, Miria M.

    1993-01-01

    Beta cloth performance for use on long-term space vehicles such as Space Station Freedom (S.S. Freedom) requires resistance to the degrading effects of the space environment. The major issues are retention of thermal insulating properties through maintaining optical properties, preserving mechanical integrity, and generating minimal particulates for contamination-sensitive spacecraft surfaces and payloads. The longest in-flight test of beta cloth's durability was on the Long Duration Exposure Facility (LDEF), where it was exposed to the space environment for 68 months. The LDEF contained 57 experiments which further defined the space environment and its effects on spacecraft materials. It was deployed into low-Earth orbit (LEO) in Apr. 1984 and retrieved Jan. 1990 by the space shuttle. Among the 10,000 plus material constituents and samples onboard were thermal control blankets of multilayer insulation with a beta cloth outer cover and Velcro attachments. These blankets were exposed to hard vacuum, thermal cycling, charged particles, meteoroid/debris impacts, ultraviolet (UV) radiation, and atomic oxygen (AO). Of these space environmental exposure elements, AO appears to have had the greatest effect on the beta cloth. The beta cloth analyzed in this report came from the MSFC Experiment S1005 (Transverse Flat-Plate Heat Pipe) tray oriented approximately 22 deg from the leading edge vector of the LDEF satellite. The location of the tray on LDEF and the placement of the beta cloth thermal blankets are shown. The specific space environment exposure conditions for this material are listed.

  16. Climate-driven expansion of blanket bogs in Britain during the Holocene

    Science.gov (United States)

    Gallego-Sala, A. V.; Charman, D. J.; Harrison, S. P.; Li, G.; Prentice, I. C.

    2016-01-01

    Blanket bog occupies approximately 6 % of the area of the UK today. The Holocene expansion of this hyperoceanic biome has previously been explained as a consequence of Neolithic forest clearance. However, the present distribution of blanket bog in Great Britain can be predicted accurately with a simple model (PeatStash) based on summer temperature and moisture index thresholds, and the same model correctly predicts the highly disjunct distribution of blanket bog worldwide. This finding suggests that climate, rather than land-use history, controls blanket-bog distribution in the UK and everywhere else. We set out to test this hypothesis for blanket bogs in the UK using bioclimate envelope modelling compared with a database of peat initiation age estimates. We used both pollen-based reconstructions and climate model simulations of climate changes between the mid-Holocene (6000 yr BP, 6 ka) and modern climate to drive PeatStash and predict areas of blanket bog. We compiled data on the timing of blanket-bog initiation, based on 228 age determinations at sites where peat directly overlies mineral soil. The model predicts that large areas of northern Britain would have had blanket bog by 6000 yr BP, and the area suitable for peat growth extended to the south after this time. A similar pattern is shown by the basal peat ages and new blanket bog appeared over a larger area during the late Holocene, the greatest expansion being in Ireland, Wales, and southwest England, as the model predicts. The expansion was driven by a summer cooling of about 2 °C, shown by both pollen-based reconstructions and climate models. The data show early Holocene (pre-Neolithic) blanket-bog initiation at over half of the sites in the core areas of Scotland and northern England. The temporal patterns and concurrence of the bioclimate model predictions and initiation data suggest that climate change provides a parsimonious explanation for the early Holocene distribution and later expansion of

  17. Further neutronic analyses of the European ceramic B.I.T. blanket for Demo

    Energy Technology Data Exchange (ETDEWEB)

    Giancarli, L.; Diop, C. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie; Petrizzi, L.; Rado, V. [ENEA, Frascati (Italy). Centro Ricerche Energia

    1992-12-31

    The present study concerns the most recent neutronic analyses of two design versions of the european ceramic B.I.T. blanket, jointly developed by ENEA and CEA since few years. The last year developments required a new 3-D geometry evaluations of the global TBR (Tritium Breeding Ratio). The results indicated that the ENEA version reaches a global TBR value of 1.13. The CEA version, in a 3-D model using a simplified description of the breeder module layout, reaches a TBR value of 1.12. Nuclear heat deposition density has been determined for all blanket components as a function of the poloidal co-ordinate. Shielding properties of this type of blanket have been analyzed.

  18. Environmental testing of Block II solar cell modules. Low-Cost Solar Array Project

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, J.S.

    1979-01-01

    The results of environmental tests of Block II solar modules are described. Block II was the second large scale procurement of silicon solar cell modules made by the JPL Low-Cost Solar Array Project with deliveries in 1977 and early 1978. The results of testing showed that the Block II modules were greatly improved over Block I modules. In several cases it was shown that design improvements were needed to reduce environmental test degradation. These improvements were incorporated during this production run.

  19. Optimisation of hot isostatic pressing bonded SS/SS joints conditions for ITER blanket shield

    Energy Technology Data Exchange (ETDEWEB)

    Cedat, D. [AREVA NP Technical Centre 30, Bld de l' industrie, 71205 Le Creusot Cedex (France); Bobin, I., E-mail: isabelle.bobinvastra@areva.com [AREVA NP Technical Centre 30, Bld de l' industrie, 71205 Le Creusot Cedex (France); Boireau, B. [AREVA NP Technical Centre 30, Bld de l' industrie, 71205 Le Creusot Cedex (France); Bucci, P. [CEA DRT/Liten/DTH, 38054 Grenoble (France); Lorenzetto, P. [FUSION FOR ENERGY, Torres Diagonal Litoral, B3, Carrer Josep Pla, 2, 08019 Barcelona (Spain)

    2012-08-15

    In the engineering design activity of international thermonuclear experimental reactor (ITER), stainless steels are being considered as candidates materials for several module type structures. Hot isostatic pressing (HIP) technique is expected for the fabrication of these modules. Stainless steel powders are simultaneously consolidated as mono-material block or/and joined in bi-material module. This paper reviews the manufacturing stages, non-destructive examination and the developments of the HIP bonded joints of 316L SS (powder and solid) for application to the ITER shield blanket. It is well known that the powder surface oxidation negatively influences the impact toughness of raw material and joints consolidated by this way. In order to get acceptable mechanical properties of materials, a study on the effect of reducing the powder oxygen content has been launched. To evaluate susceptibility to the oxygen content of HIPed joint specimens, tensile and toughness tests have been performed. From this study, optimal conditions of HIP were fitted and the influence of oxygen was mastered to obtain good mechanical properties of the consolidated powder material as well as for HIPed junction.

  20. Overview of the Acoustic Testing of the European Service Module Structural Test Article (E-STA)

    Science.gov (United States)

    Hughes, William; Fogt, Vince; Le Plenier, Cyprien; Duval, Francois; Durand, Jean-Francois; Staab, Lucas D.; Hozman, Aron; Mcnelis, Anne; Bittinger, Samantha; Thirkettle, Anthony; hide

    2017-01-01

    The European Space Agency (ESA) and their prime contractor Airbus Defense Space (ADS) are developing the European Service Module (ESM) for integration and utilization with other modules of NASAs Orion Multi-Purpose Crew Vehicle. As part of this development, ESA, ADS, NASA and the Lockheed Martin Company performed a series of reverberant acoustic tests in April-May 2016 on the ESM Structural Test Article (E-STA), the mechanical mock-up of the ESM designated for mechanical tests. Testing the E-STA under acoustic qualification loads verifies whether it can successfully withstand the medium and high frequency mechanical environment occurring during the vehicles lift-off and atmospheric phases of flight. The testing occurred at the Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Centers Plum Brook Station site in Sandusky, OH, USA. This highly successful acoustic test campaign excited the E-STA to acoustic test levels as high as 149.4 dB Overall Sound Pressure Level. This acoustic testing met all the ESA and ADSs test objectives, including establishingverifying the random vibration qualification test levels for numerous hardware components of the ESM, and qualifying the ESMs Solar Array Wing electrical power system. This paper will address the test objectives, the test articles configuration, the test instrumentation and excitation levels, the RATF site and capabilities, the series of acoustic tests performed, and the technical issues faced and overcome to result in a successful acoustic test campaign for the ESM. A discussion of several test results is also included.

  1. Review of Artificial Abrasion Test Methods for PV Module Technology

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Muller, Matt T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpson, Lin J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    This review is intended to identify the method or methods--and the basic details of those methods--that might be used to develop an artificial abrasion test. Methods used in the PV literature were compared with their closest implementation in existing standards. Also, meetings of the International PV Quality Assurance Task Force Task Group 12-3 (TG12-3, which is concerned with coated glass) were used to identify established test methods. Feedback from the group, which included many of the authors from the PV literature, included insights not explored within the literature itself. The combined experience and examples from the literature are intended to provide an assessment of the present industry practices and an informed path forward. Recommendations toward artificial abrasion test methods are then identified based on the experiences in the literature and feedback from the PV community. The review here is strictly focused on abrasion. Assessment methods, including optical performance (e.g., transmittance or reflectance), surface energy, and verification of chemical composition were not examined. Methods of artificially soiling PV modules or other specimens were not examined. The weathering of artificial or naturally soiled specimens (which may ultimately include combined temperature and humidity, thermal cycling and ultraviolet light) were also not examined. A sense of the purpose or application of an abrasion test method within the PV industry should, however, be evident from the literature.

  2. Environmental testing of the ATHENA mirror modules (Conference Presentation)

    Science.gov (United States)

    Landgraf, Boris; Girou, David; Collon, Maximilien J.; Vacanti, Giuseppe; Barrière, Nicolas M.; Günther, Ramses; Vervest, Mark; van der Hoeven, Roy; Beijersbergen, Marco W.; Bavdaz, Marcos; Wille, Eric; Fransen, Sebastiaan; Shortt, Brian; van Baren, Coen; Eigenraam, Alexander

    2017-09-01

    The European Space Agency (ESA) is studying the ATHENA (Advanced Telescope for High ENergy Astrophysics) X-ray telescope, the second L-class mission in their Cosmic Vision 2015 - 2025 program with a launch spot in 2028. The baseline technology for the X-ray lens is the newly developed high-performance, light-weight and modular Silicon Pore Optics (SPO). As part of the technology preparation, ruggedisation and environmental testing studies are being conducted to ensure mechanical stability and optical performance of the optics during and after launch, respectively. At cosine, a facility with shock, vibration, tensile strength, long time storage and thermal testing equipment has been set up in order to test SPO mirror module (MM) materials for compliance with an Ariane launch vehicle and the mission requirements. In this paper, we report on the progress of our ongoing investigations regarding tests on mechanical and thermal stability of MM components like single SPO stacks with and without multilayer coatings and complete MMs of inner (R = 250 mm), middle (R = 737 mm) and outer (R = 1500 mm) radii.

  3. Cygnus Pressurized Cargo Module (PCM) Flight Inertial Load Static Tests

    Science.gov (United States)

    Murgia, Giovanni; Mancini, Simone; Palmieri, Paolo; Rutigliano, Luigi

    2012-07-01

    Cygnus PCM Flight Inertial Load Static Test campaign has been performed by Thales Alenia Space - Italy (TAS-I) to achieve the Static Qualification of its Primary Structure. A “Proto-flight Approach” has been followed (as per [1] and [2]), thus the first flight unit, the PCM0, has been tested up to qualification level (qualification/acceptance factor equivalent to 1.2 [1]). The PCM0 has been constrained to a dummy Service Module (the second member of Cygnus Spacecraft), representative in terms of interfaces provisions, and flight load conditions have been reproduced with proper forces that have been applied by means of hydraulic jacks at internal PCM secondary structure interfaces. Test load cases have been defined in order to simulate load paths and relevant stress fields associated to the worst flight load conditions by using the FE model analyses. Tests have been monitored by means of gauges and displacement transducers and results have been utilized to correlate the PCM FEM following [3] requirements.

  4. Evaluation of Acoustic Emission NDE of Composite Crew Module Service Module/Alternate Launch Abort System (CCM SM/ALAS) Test Article Failure Tests

    Science.gov (United States)

    Horne, Michael R.; Madaras, Eric I.

    2010-01-01

    Failure tests of CCM SM/ALAS (Composite Crew Module Service Module / Alternate Launch Abort System) composite panels were conducted during July 10, 2008 and July 24, 2008 at Langley Research Center. This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests.

  5. Methodology for accident analyses of fusion breeder blankets

    Energy Technology Data Exchange (ETDEWEB)

    Dobromir Panayotov; Andrew Grief; Brad J. Merrill; Julian T. Murgatroyd; Paul Humrickhouse; Yves Poitevin; Simon Owen; Markus Iseli

    2015-06-01

    'Fusion for Energy' (F4E) develops designs and implements the European Test Blanket Systems (TBS) in ITER - Helium-Cooled Lithium-Lead (HCLL) and Helium-Cooled Pebble-Bed (HCPB). Safety demonstration is an essential element for the integration of TBS in ITER and accident analyses are one of its critical segments. A systematic approach to the accident analyses had been acquired under the F4E contract on TBS safety analyses. F4E technical requirements and AMEC and INL efforts resulted in the development of a comprehensive methodology for fusion breeding blanket accident analyses. It addresses the specificity of the breeding blankets design, materials and phenomena and at the same time is consistent with the one already applied to ITER accident analyses. Methodology consists of several phases. At first the reference scenarios are selected on the base of FMEA studies. In the second place elaboration of the accident analyses specifications we use phenomena identification and ranking tables to identify the requirements to be met by the code(s) and TBS models. Thus the limitations of the codes are identified and possible solutions to be built into the models are proposed. These include among others the loose coupling of different codes or code versions in order to simulate multi-fluid flows and phenomena. The code selection and issue of the accident analyses specifications conclude this second step. Furthermore the breeding blanket and ancillary systems models are built on. In this work challenges met and solutions used in the development of both MELCOR and RELAP5 codes models of HCLL and HCPB TBSs will be shared. To continue the developed models are qualified by comparison with finite elements analyses, by code to code comparison and sensitivity studies. Finally, the qualified models are used for the execution of the accident analyses of specific scenario. When possible the methodology phases will be illustrated in the paper by limited number of tables and

  6. Frequency modulation system test procedure shuttle task 501 approach and landing test configuration

    Science.gov (United States)

    Doland, G. D.

    1976-01-01

    Shuttle Task 501 is an in-line task to test the performance and compatibility of radiofrequency links between the SSO and ground, and relay via a satellite. Under Shuttle Task 501 approach and landing test (ALT) phase only a limited portion of the communication and tracking (C&T) equipment is to be tested. The principal item to be tested is a frequency modulated (FM) data link. To test this RF link, an ALT FM System was designed, constructed, and the console wiring verified. A step-by-step procedure to be used to perform the ALT FM system is presented. The ALT FM system test is to be performed prior to delivery of the equipment to the Electronic Systems Test Laboratory (ESTL).

  7. Development and trial manufacturing of 1/2-scale partial mock-up of blanket box structure for fusion experimental reactor

    Science.gov (United States)

    Hashimoto, Toshiyuki; Takatsu, Hideyuki; Sato, Satoshi

    1994-07-01

    Conceptual design of breeding blanket has been discussed during the CDA (Conceptual Design Activities) of ITER (International Thermonuclear Experimental Reactor). Structural concept of breeding blanket is based on box structure integrated with first wall and shield, which consists of three coolant manifolds for first wall, breeding and shield regions. The first wall must have cooling channels to remove surface heat flux and nuclear heating. The box structure includes plates to form the manifolds and stiffening ribs to withstand enormous electromagnetic load, coolant pressure and blanket internal (purge gas) pressure. A 1/2-scale partial model of the blanket box structure for the outboard side module near midplane is manufactured to estimate the fabrication technology, i.e. diffusion bonding by HIP (Hot Isostatic Pressing) and EBW (Electron Beam Welding) procedure. Fabrication accuracy is a key issue to manufacture first wall panel because bending deformation during HIP may not be small for a large size structure. Data on bending deformation during HIP was obtained by preliminary manufacturing of HIP elements. For the shield structure, it is necessary to reduce the welding strain and residual stress of the weldment to establish the fabrication procedure. Optimal shape of the parts forming the manifolds, welding locations and welding sequence have been investigated. In addition, preliminary EBW tests have been performed in order to select the EBW conditions, and fundamental data on built-up shield have been obtained. Especially, welding deformation by joining the first wall panel to the shield has been measured, and total deformation to build-up shield by EBW has been found to be smaller than 2 mm. Consequently, the feasibility of fabrication technologies has been successfully demonstrated for a 1m-scaled box structure including the first wall with cooling channels by means of HIP, EBW and TIG (Tungsten Inert Gas arc)-welding.

  8. Neutronic performance of two european breeder-inside tube (BIT) blankets for DEMO: Helium-cooled ceramic LiAlO{sub 2} with Be multiplier and water-cooled liquid Li17Pb 2103. international symposium on fusion nuclear technologies (ISFNT-3)

    Energy Technology Data Exchange (ETDEWEB)

    Petrizzi, L.; Rado, V. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy)

    1994-11-01

    In support of ENEA (Italian Agency for New Technologies, Energy and the Environment) activity in the European Community Test Programme, a neutronic analysis has been performed on the two latest blanket design relative to helium-cooled ceramic BIT (breeder-inside-tube) (with LiAIO{sub 2} and Be multiplier) and the water-cooled liquid Li17Pb in cylindrical modules. At this scope the powerful MCNP Monte Carlo code has been used (version 4). A detailed and accurate description of the geometrical model has been performed inserting the main reactor details and avoiding breeder material dilution inside the modules. TBR performance is low for the solid breeder BIT (with 10 ports 1.011) due mainly to low blanket coverage near the exhaust duct and this solution should be revised. CM Li17Pb blanket reaches sufficient TBR (1.059, with ports) to rely on tritium self-sufficiency. Shielding properties, with respect to the toroidal field coils, have been estimated in a simplified model by means of the ANISN code, supplied with nuclear data library coherent with the one used by MCNP. The analysis suggests a careful shield thickness/composition design to be confident on the shielding capability of the whole blanket and shield system.

  9. The climatic impact of supervolcanic ash blankets

    Science.gov (United States)

    Jones, Morgan T.; Sparks, R. Stephen J.; Valdes, Paul J.

    2007-11-01

    Supervolcanoes are large caldera systems that can expel vast quantities of ash, volcanic gases in a single eruption, far larger than any recorded in recent history. These super-eruptions have been suggested as possible catalysts for long-term climate change and may be responsible for bottlenecks in human and animal populations. Here, we consider the previously neglected climatic effects of a continent-sized ash deposit with a high albedo and show that a decadal climate forcing is expected. We use a coupled atmosphere-ocean General Circulation Model (GCM) to simulate the effect of an ash blanket from Yellowstone volcano, USA, covering much of North America. Reflectivity measurements of dry volcanic ash show albedo values as high as snow, implying that the effects of an ash blanket would be severe. The modeling results indicate major disturbances to the climate, particularly to oscillatory patterns such as the El Niño Southern Oscillation (ENSO). Atmospheric disruptions would continue for decades after the eruption due to extended ash blanket longevity. The climatic response to an ash blanket is not significant enough to instigate a change to stadial periods at present day boundary conditions, though this is one of several impacts associated with a super-eruption which may induce long-term climatic change.

  10. The climatic impact of supervolcanic ash blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Morgan T.; Sparks, R.S.J. [University of Bristol, Department of Earth Sciences, Bristol (United Kingdom); Valdes, Paul J. [University of Bristol, School of Geographical Sciences, Bristol (United Kingdom)

    2007-11-15

    Supervolcanoes are large caldera systems that can expel vast quantities of ash, volcanic gases in a single eruption, far larger than any recorded in recent history. These super-eruptions have been suggested as possible catalysts for long-term climate change and may be responsible for bottlenecks in human and animal populations. Here, we consider the previously neglected climatic effects of a continent-sized ash deposit with a high albedo and show that a decadal climate forcing is expected. We use a coupled atmosphere-ocean General Circulation Model (GCM) to simulate the effect of an ash blanket from Yellowstone volcano, USA, covering much of North America. Reflectivity measurements of dry volcanic ash show albedo values as high as snow, implying that the effects of an ash blanket would be severe. The modeling results indicate major disturbances to the climate, particularly to oscillatory patterns such as the El Nino Southern Oscillation (ENSO). Atmospheric disruptions would continue for decades after the eruption due to extended ash blanket longevity. The climatic response to an ash blanket is not significant enough to investigate a change to stadial periods at present day boundary conditions, though this is one of several impacts associated with a super-eruption which may induce long-term climatic change. (orig.)

  11. Fidget Blankets: A Sensory Stimulation Outreach Program.

    Science.gov (United States)

    Kroustos, Kelly Reilly; Trautwein, Heidi; Kerns, Rachel; Sobota, Kristen Finley

    2016-01-01

    Behavioral and Psychological Symptoms of Dementia (BPSD) include behaviors such as aberrant motor behavior, agitation, anxiety, apathy, delusions, depression, disinhibition, elation, hallucinations, irritability, and sleep or appetite changes. A student-led project to provide sensory stimulation in the form of "fidget blankets" developed into a community outreach program. The goal was to decrease the use of antipsychotics used for BPSD.

  12. ITER driver blanket, European Community design

    Energy Technology Data Exchange (ETDEWEB)

    Simbolotti, G. (EURATOM-ENEA Association on Fusion Research, C.R.E., Frascati (Italy)); Zampaglione, V. (EURATOM-ENEA Association on Fusion Research, C.R.E., Frascati (Italy)); Ferrari, M. (EURATOM-ENEA Association on Fusion Research, C.R.E., Frascati (Italy)); Gallina, M. (EURATOM-ENEA Association on Fusion Research, C.R.E., Frascati (Italy)); Mazzone, G. (EURATOM-ENEA Association on Fusion Research, C.R.E., Frascati (Italy)); Nardi, C. (EURATOM-ENEA Association on Fusion Research, C.R.E., Frascati (Italy)); Petrizzi, L. (EURATOM-ENEA Association on Fusion Research, C.R.E., Frascati (Italy)); Rado, V. (EURATOM-ENEA Association on Fusion Research, C.R.E., Frascati (Italy)); Violante, V. (EURATOM-ENEA Association on Fusion Research, C.R.E., Frascati (Italy)); Daenner, W. (NET Team, Max-Planck-Inst. fuer Plasmaphysik, Garching (Germany)); Lorenzetto, P. (NET Team, Max-Planck-Inst. fuer Plasmaphysik, Garching (Germany)); Gierszewski, P. (CFFTP, Mississauga, ON (Canada)); Gratt

    1993-07-01

    Depending on the final decision on the operation time of ITER (International Thermonuclear Experimental Reactor), the Driver Blanket might become a basic component of the machine with the main function of producing a significant fraction (close to 0.8) of the tritium required for the ITER operation, the remaining fraction being available from external supplies. The Driver Blanket is not required to provide reactor relevant performance in terms of tritium self-sufficiency. However, reactor relevant reliability and safety are mandatory requirements for this component in order not to significantly afftect the overall plant availability and to allow the ITER experimental program to be safely and successfully carried out. With the framework of the ITER Conceptual Design Activities (CDA, 1988-1990), a conceptual design of the ITER Driver Blanket has been carried out by ENEA Fusion Dept., in collaboration with ANSALDO S.p.A. and SRS S.r.l., and in close consultation with the NET Team and CFFTP (Canadian Fusion Fuels Technology Project). Such a design has been selected as EC (European Community) reference design for the ITER Driver Blanket. The status of the design at the end of CDA is reported in the present paper. (orig.)

  13. Standard Test Method for Hot Spot Protection Testing of Photovoltaic Modules

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method provides a procedure to determine the ability of a photovoltaic (PV) module to endure the long-term effects of periodic “hot spot” heating associated with common fault conditions such as severely cracked or mismatched cells, single-point open circuit failures (for example, interconnect failures), partial (or non-uniform) shadowing or soiling. Such effects typically include solder melting or deterioration of the encapsulation, but in severe cases could progress to combustion of the PV module and surrounding materials. 1.2 There are two ways that cells can cause a hot spot problem; either by having a high resistance so that there is a large resistance in the circuit, or by having a low resistance area (shunt) such that there is a high-current flow in a localized region. This test method selects cells of both types to be stressed. 1.3 This test method does not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of this test method....

  14. Disinfection of hospital blankets with synthetic phenolic compounds.

    Science.gov (United States)

    LARKIN, I M; BRIDSON, E Y; GRIEVE, W S; GIBSON, J W

    1961-01-01

    A cheap method by which hospital blankets may be effectively disinfected (approximately 3d. per blanket) is described. A recommendation is made that blankets from the patients' beds be divided into: ;socially dirty' blankets to be laundered, possibly at infrequent intervals; and ;socially clean' blankets to be disinfected frequently. The wide range of a synthetic phenolic compound is described. This substance is effective against all the common pathogenic bacteria in the presence of organic matter, anionic, or cationic detergents. Details are given of laboratory trials with this method of disinfection and of pilot trials at the Group hospital laundry. The recommended method is simpler and takes less time than ordinary washing.

  15. Robot vision system R and D for ITER blanket remote-handling system

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Takahito, E-mail: maruyama.takahito@jaea.go.jp [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan); Aburadani, Atsushi; Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan); Tesini, Alessandro [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France)

    2014-10-15

    For regular maintenance of the International Thermonuclear Experimental Reactor (ITER), a system called the ITER blanket remote-handling system is necessary to remotely handle the blanket modules because of the high levels of gamma radiation. Modules will be handled by robotic power manipulators and they must have a non-contact-sensing system for installing and grasping to avoid contact with other modules. A robot vision system that uses cameras was adopted for this non-contact-sensing system. Experiments for grasping modules were carried out in a dark room to simulate the environment inside the vacuum vessel and the robot vision system's measurement errors were studied. As a result, the accuracy of the manipulator's movements was within 2.01 mm and 0.31°, which satisfies the system requirements. Therefore, it was concluded that this robot vision system is suitable for the non-contact-sensing system of the ITER blanket remote-handling system.

  16. Reference module selection criteria for accurate testing of photovoltaic (PV) panels

    Energy Technology Data Exchange (ETDEWEB)

    Roy, J.N.; Gariki, Govardhan Rao; Nagalakhsmi, V. [Solar Semiconductor Pvt. Ltd., Banjara Hills, Hyderabad (India)

    2010-01-15

    It is shown that for accurate testing of PV panels the correct selection of reference modules is important. A detailed description of the test methodology is given. Three different types of reference modules, having different I{sub SC} (short circuit current) and power (in Wp) have been used for this study. These reference modules have been calibrated from NREL. It has been found that for accurate testing, both I{sub SC} and power of the reference module must be either similar or exceed to that of modules under test. In case corresponding values of the test modules are less than a particular limit, the measurements may not be accurate. The experimental results obtained have been modeled by using simple equivalent circuit model and associated I-V equations. (author)

  17. Comparison of forced-air warming systems with upper body blankets using a copper manikin of the human body.

    Science.gov (United States)

    Bräuer, A; English, M J M; Steinmetz, N; Lorenz, N; Perl, T; Braun, U; Weyland, W

    2002-09-01

    Forced-air warming with upper body blankets has gained high acceptance as a measure for the prevention of intraoperative hypothermia. However, data on heat transfer with upper body blankets are not yet available. This study was conducted to determine the heat transfer efficacy of eight complete upper body warming systems and to gain more insight into the principles of forced-air warming. Heat transfer of forced-air warmers can be described as follows: Qdot;=h. DeltaT. A, where Qdot;= heat flux [W], h=heat exchange coefficient [W m-2 degrees C-1], DeltaT=temperature gradient between the blanket and surface [ degrees C], and A=covered area [m2]. We tested eight different forced-air warming systems: (1) Bair Hugger and upper body blanket (Augustine Medical Inc. Eden Prairie, MN); (2) Thermacare and upper body blanket (Gaymar Industries, Orchard Park, NY); (3) Thermacare (Gaymar Industries) with reusable Optisan upper body blanket (Willy Rüsch AG, Kernen, Germany); (4) WarmAir and upper body blanket (Cincinnati Sub-Zero Products, Cincinnati, OH); (5) Warm-Gard and single use upper body blanket (Luis Gibeck AB, Upplands Väsby, Sweden); (6) Warm-Gard and reusable upper body blanket (Luis Gibeck AB); (7) WarmTouch and CareDrape upper body blanket (Mallinckrodt Medical Inc., St. Luis, MO); and (8) WarmTouch and reusable MultiCover trade mark upper body blanket (Mallinckrodt Medical Inc.) on a previously validated copper manikin of the human body. Heat flux and surface temperature were measured with 11 calibrated heat flux transducers. Blanket temperature was measured using 11 thermocouples. The temperature gradient between the blanket and surface (DeltaT) was varied between -8 and +8 degrees C, and h was determined by linear regression analysis as the slope of DeltaT vs. heat flux. Mean DeltaT was determined for surface temperatures between 36 and 38 degrees C, as similar mean skin surface temperatures have been found in volunteers. The covered area was estimated to be 0

  18. Blanketing effect of expansion foam on liquefied natural gas (LNG) spillage pool

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bin; Liu, Yi [Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A and M University System, College Station, TX 77843-3122 (United States); Olewski, Tomasz; Vechot, Luc [Mary Kay O’Connor Process Safety Center - Qatar, Texas A and M University at Qatar, PO Box 23874, Doha (Qatar); Mannan, M. Sam, E-mail: mannan@tamu.edu [Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A and M University System, College Station, TX 77843-3122 (United States)

    2014-09-15

    Highlights: • Reveal the existence of blocking effect of high expansion foam on an LNG pool. • Study the blanketing effect of high expansion foam quantitatively. • Correlate heat flux for vaporization with foam breaking rate. • Propose the physical mechanism of blanketing effect. - Abstract: With increasing consumption of natural gas, the safety of liquefied natural gas (LNG) utilization has become an issue that requires a comprehensive study on the risk of LNG spillage in facilities with mitigation measures. The immediate hazard associated with an LNG spill is the vapor hazard, i.e., a flammable vapor cloud at the ground level, due to rapid vaporization and dense gas behavior. It was believed that high expansion foam mitigated LNG vapor hazard through warming effect (raising vapor buoyancy), but the boil-off effect increased vaporization rate due to the heat from water drainage of foam. This work reveals the existence of blocking effect (blocking convection and radiation to the pool) to reduce vaporization rate. The blanketing effect on source term (vaporization rate) is a combination of boil-off and blocking effect, which was quantitatively studied through seven tests conducted in a wind tunnel with liquid nitrogen. Since the blocking effect reduces more heat to the pool than the boil-off effect adds, the blanketing effect contributes to the net reduction of heat convection and radiation to the pool by 70%. Water drainage rate of high expansion foam is essential to determine the effectiveness of blanketing effect, since water provides the boil-off effect.

  19. Sand Impact Tests of a Half-Scale Crew Module Boilerplate Test Article

    Science.gov (United States)

    Vassilakos, Gregory J.; Hardy, Robin C.

    2012-01-01

    Although the Orion Multi-Purpose Crew Vehicle (MPCV) is being designed primarily for water landings, a further investigation of launch abort scenarios reveals the possibility of an onshore landing at Kennedy Space Center (KSC). To gather data for correlation against simulations of beach landing impacts, a series of sand impact tests were conducted at NASA Langley Research Center (LaRC). Both vertical drop tests and swing tests with combined vertical and horizontal velocity were performed onto beds of common construction-grade sand using a geometrically scaled crew module boilerplate test article. The tests were simulated using the explicit, nonlinear, transient dynamic finite element code LS-DYNA. The material models for the sand utilized in the simulations were based on tests of sand specimens. Although the LSDYNA models provided reasonable predictions for peak accelerations, they were not always able to track the response through the duration of the impact. Further improvements to the material model used for the sand were identified based on results from the sand specimen tests.

  20. TCT hybrid preconceptual blanket design studies

    Energy Technology Data Exchange (ETDEWEB)

    Aase, D.T.; Bampton, M.C.C.; Doherty, T.J.; Leonard, B.R.; McCann, R.A.; Newman, D.F.; Perry, R.T.; Stewart, C.W.

    1978-01-01

    The conceptual design of a tokamak fusion-fission (hybrid) reactor, which produces electric power and fissile material, has been performed in a cooperative effort between Princeton's Plasma Physics Laboratory (PPPL) and Battelle's Pacific Northwest Laboratories (PNL). PPPL, who had overall project lead responsibility, designed the fusion driver system. Its core consists of a tokamak plasma maintained in the two-component torus (TCT) mode by both D and T beams and having a single null poloidal divertor. The blanket concept selected by PPPL consists of a neutron multiplying converter region, containing natural Uranium Molybdenum (U-Mo) slugs followed by a fuel burning blanket region of molten salt containing PuF/sub 3/. PNL analyzed this concept to determine its structural, thermal and hydraulic performance characteristics. An adequate first wall cooling method was determined, utilizing low pressure water in a double wall design. A conceptual layout of the converter region tubes was performed, providing adequate helium cooling and the desired movement of U-Mo slugs. A thermal hydraulic analysis of the power-producing blanket regions indicated that either more helium coolant tubes are needed or the salt must be circulated to obtain adequate heat removal capability.

  1. WRAP module 1 data management system software test report

    Energy Technology Data Exchange (ETDEWEB)

    Weidert, J.R.

    1997-07-25

    This document summarizes the test result information for the Data Management System (DMS). Appendix A contains test result information for all Functional Test cases and Appendix B contains the results for all the Performance Test cases.

  2. Analysis of Consistency of Printing Blankets using Correlation Technique

    Directory of Open Access Journals (Sweden)

    Lalitha Jayaraman

    2010-01-01

    Full Text Available This paper presents the application of an analytical tool to quantify material consistency of offset printing blankets. Printing blankets are essentially viscoelastic rubber composites of several laminas. High levels of material consistency are expected from rubber blankets for quality print and for quick recovery from smash encountered during the printing process. The present study aims at determining objectively the consistency of printing blankets at three specific torque levels of tension under two distinct stages; 1. under normal printing conditions and 2. on recovery after smash. The experiment devised exhibits a variation in tone reproduction properties of each blanket signifying the levels of inconsistency also in thicknessdirection. Correlation technique was employed on ink density variations obtained from the blanket on paper. Both blankets exhibited good consistency over three torque levels under normal printing conditions. However on smash the recovery of blanket and its consistency was a function of manufacturing and torque levels. This study attempts to provide a new metrics for failure analysis of offset printing blankets. It also underscores the need for optimizing the torque for blankets from different manufacturers.

  3. Laboratory Test of a Cylindrical Heat Storage Module with Water and Sodium Acetate Trihydrate

    DEFF Research Database (Denmark)

    Dannemand, Mark; Kong, Weiqiang; Johansen, Jakob Berg

    2016-01-01

    phase change material was reduced over 17 test cycles. The heat released after solidification of the supercooled sodium acetate trihydrate with thickening agent and graphite was stable over the test cycles. Stable supercooling was obtained in 7 out of 17 test cycles with the module with sodium acetate...... trihydrate with extra water and in 6 out of 35 test cycles for the module with thickening agent....

  4. Comparison of forced-air warming systems with lower body blankets using a copper manikin of the human body.

    Science.gov (United States)

    Bräuer, A; English, M J M; Lorenz, N; Steinmetz, N; Perl, T; Braun, U; Weyland, W

    2003-01-01

    Forced-air warming has gained high acceptance as a measure for the prevention of intraoperative hypothermia. However, data on heat transfer with lower body blankets are not yet available. This study was conducted to determine the heat transfer efficacy of six complete lower body warming systems. Heat transfer of forced-air warmers can be described as follows:[1]Qdot;=h.DeltaT.A where Qdot; = heat transfer [W], h = heat exchange coefficient [W m-2 degrees C-1], DeltaT = temperature gradient between blanket and surface [ degrees C], A = covered area [m2]. We tested the following forced-air warmers in a previously validated copper manikin of the human body: (1) Bair Hugger and lower body blanket (Augustine Medical Inc., Eden Prairie, MN); (2) Thermacare and lower body blanket (Gaymar Industries, Orchard Park, NY); (3) WarmAir and lower body blanket (Cincinnati Sub-Zero Products, Cincinnati, OH); (4) Warm-Gard(R) and lower body blanket (Luis Gibeck AB, Upplands Väsby, Sweden); (5) Warm-Gard and reusable lower body blanket (Luis Gibeck AB); and (6) WarmTouch and lower body blanket (Mallinckrodt Medical Inc., St. Luis, MO). Heat flux and surface temperature were measured with 16 calibrated heat flux transducers. Blanket temperature was measured using 16 thermocouples. DeltaT was varied between -10 and +10 degrees C and h was determined by a linear regression analysis as the slope of DeltaT vs. heat flux. Mean DeltaT was determined for surface temperatures between 36 and 38 degrees C, because similar mean skin temperatures have been found in volunteers. The area covered by the blankets was estimated to be 0.54 m2. Heat transfer from the blanket to the manikin was different for surface temperatures between 36 degrees C and 38 degrees C. At a surface temperature of 36 degrees C the heat transfer was higher (between 13.4 W to 18.3 W) than at surface temperatures of 38 degrees C (8-11.5 W). The highest heat transfer was delivered by the Thermacare system (8.3-18.3 W), the

  5. Marble Test. Training Module 5.235.2.77.

    Science.gov (United States)

    Bonte, John L.; Davidson, Arnold C.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the calcium carbonate stability determination by analytical measurements of pH and alkalinity and by calculation from temperature, calcium, alkalinity, and residual measurements. Included are objectives, an instructor guide, student…

  6. Comparative performance testing of photovoltaic modules in tropical climates of Indonesia

    Science.gov (United States)

    Rosyid, Oo Abdul

    2016-02-01

    Solar energy is one of the most significant types of the sustainable and renewable energy sources that have been used in Indonesia. Photovoltaic (PV) is known as the direct conversion of the sunlight to electricity energy with the used of solar cells. There are number of different types of solar PV modules, from an ever increasing range of manufacturers. Each of them claims that they are the best for one reason or another. This paper reports the study results of energy yield measurements of different PV module technologies performed at the outdoor testing facility of the Energy Technology Center (B2TE-BPPT) Kawasan Puspiptek Serpong-Indonesia from March 2014 through February 2015. The purposes of the study wereto evaluate and compare the performances of three different PV modules during a medium term outdoor exposure at the tropical climate of Indonesia. Normalized energy yields (Y), module efficiency (η), and performance ratio (PR) were calculated for each module, and the effect of module temperature and solar irradiance on these parameters was investigated. Monocrystalline PV module was better in terms of module efficiency and overall power production. Meanwhile micromorph silicon (uc-Si) showed the lowest module efficiency, but the more power production compared with polycrystalline PV module. Module efficiency and performance ratio showed a decreasing trend with increase of module temperature.

  7. Tester Board for testing mass-produced SMB modules for CMS Preshower

    CERN Document Server

    Velikzhanin, Yu S; Hsiung, Y B; Lee, Y J; Shiu, J G; Sun, C D; Wang, Y Z

    2007-01-01

    We have developed a Tester Board to test the electrical characteristics of the System Motherboard (SMB) for the CMS Preshower detector at CERN. The board is designed to test input resistances, output resistances, connections, interconnections and possible short- circuits of a module having up to 640 connector pins. The Tester Board is general-purpose in nature: it could be used to test any electronic module or cable by using dedicated cable sets. The module can detect a variety of problems not detected by either functional tests or the "flying probes" technique. The design, algorithms and results of using the Tester Board during mass production of CMS Preshower SMBs are presented.

  8. Neturonic performance of two European breeder-inside-tube (BIT) blankets for demo: The helium cooled ceramic LiAlO{sub 2} with be multiplier and the water cooled liquid Li17Pb

    Energy Technology Data Exchange (ETDEWEB)

    Petrizzi, L.; Rado, V. [Centro Ricerche Energia Frascati, Rome (Italy)

    1994-12-31

    In the European Community (EC) Test Blanket programme a selection is foreseen, by 1995 of two blanket designs among those under investigation which can be divided in two groups: those using a solid ceramic breeder, all of them helium cooled and with Be neutron multiplier and those using the Ll{sub 17}-Pb liquid metal breeder which could be self or water cooled, depending on the proposal. The design studies have been carried out according to the latest DEMONET specification (2200 MW fusion power, 20000 hours irradiation full power). The present study concerns the most recent neutronic analyses of the two blankets design in which there is ENEA contribution. Both are based on a BIT concept with poloidal running breeding elements which follow the first wall curvature: (1) the helium cooled ceramic BIT with {gamma}-LiAlO{sub 2} breeder material (75% Ll{sup 6} enriched) and Be as neutron multiplier, which has been studied by ENEA since a long time and from 1990, jointly developed with CEA; (2) the water cooled liquid Li{sub 17}Pb (90% Ll{sup 6} enriched) inside cylindrical breeder modules which was originally proposed by JRC Ispra and now it is jointly developed CEA and ENEA.

  9. Thin Thermal-Insulation Blankets for Very High Temperatures

    Science.gov (United States)

    Choi, Michael K.

    2003-01-01

    Thermal-insulation blankets of a proposed type would be exceptionally thin and would endure temperatures up to 2,100 C. These blankets were originally intended to protect components of the NASA Solar Probe spacecraft against radiant heating at its planned closest approach to the Sun (a distance of 4 solar radii). These blankets could also be used on Earth to provide thermal protection in special applications (especially in vacuum chambers) for which conventional thermal-insulation blankets would be too thick or would not perform adequately.

  10. Laser welding to expand the allowable gap in bore welding for ITER blanket hydraulic connection

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, Hisashi, E-mail: tanigawa.hisashi@jaea.go.jp; Maruyama, Takahito; Noguchi, Yuto; Takeda, Nobukazu; Kakudate, Satoshi

    2015-10-15

    For application to bore welding of hydraulic connection in the ITER blanket module, laser welding presents the following benefits: low weld heat input is preferred for re-welding of the irradiated material. Its contactless process can intrinsically avoid a failure mode of the tool sticking on the weld. The exact requirements for pipe alignment were assessed in comparison with the assembly tolerance. The groove geometry was modified to expand the allowable initial gap. The groove was machined to be partially thick to obviate the filler wire. First, plates with partially thick grooves were welded to elucidate the preferred groove geometry and welding conditions. With the modified groove, the plates were welded for the initial gap of 1.0 mm. Then the groove geometry and welding conditions were adjusted based on results of pipe welding tests. By application of the additional 0.5-mm-thick and 2.5-mm-wide metal in the groove, pipes with an initial gap of 0.7 mm were welded successfully.

  11. Physical Model Development and Benchmarking for MHD Flows in Blanket Design

    Energy Technology Data Exchange (ETDEWEB)

    Ramakanth Munipalli; P.-Y.Huang; C.Chandler; C.Rowell; M.-J.Ni; N.Morley; S.Smolentsev; M.Abdou

    2008-06-05

    An advanced simulation environment to model incompressible MHD flows relevant to blanket conditions in fusion reactors has been developed at HyPerComp in research collaboration with TEXCEL. The goals of this phase-II project are two-fold: The first is the incorporation of crucial physical phenomena such as induced magnetic field modeling, and extending the capabilities beyond fluid flow prediction to model heat transfer with natural convection and mass transfer including tritium transport and permeation. The second is the design of a sequence of benchmark tests to establish code competence for several classes of physical phenomena in isolation as well as in select (termed here as “canonical”,) combinations. No previous attempts to develop such a comprehensive MHD modeling capability exist in the literature, and this study represents essentially uncharted territory. During the course of this Phase-II project, a significant breakthrough was achieved in modeling liquid metal flows at high Hartmann numbers. We developed a unique mathematical technique to accurately compute the fluid flow in complex geometries at extremely high Hartmann numbers (10,000 and greater), thus extending the state of the art of liquid metal MHD modeling relevant to fusion reactors at the present time. These developments have been published in noted international journals. A sequence of theoretical and experimental results was used to verify and validate the results obtained. The code was applied to a complete DCLL module simulation study with promising results.

  12. Thermal control of solid breeder blankets

    Energy Technology Data Exchange (ETDEWEB)

    Raffray, A.R.; Ying, A.; Gorbis, Z.; Tillack, M.S.; Abdou, M.A.

    1991-12-31

    An assessment of the thermal control mechanisms applicable to solid breeder blanket designs under ITER-like operating conditions is presented in this paper. Four cases are considered: a helium gap; a sintered block Be region; a sintered block helium region with a metallic felt at the Be/clad interface; and a Be packed bed region. For these cases, typical operating are explored to determine the ranges of wall load which can be accommodated while maintaining the breeder within its allowable operating temperature window. The corresponding region thicknesses are calculated to help identify practicality and design tolerances.

  13. Thermal control of solid breeder blankets

    Energy Technology Data Exchange (ETDEWEB)

    Raffray, A.R.; Ying, A.; Gorbis, Z.; Tillack, M.S.; Abdou, M.A.

    1991-01-01

    An assessment of the thermal control mechanisms applicable to solid breeder blanket designs under ITER-like operating conditions is presented in this paper. Four cases are considered: a helium gap; a sintered block Be region; a sintered block helium region with a metallic felt at the Be/clad interface; and a Be packed bed region. For these cases, typical operating are explored to determine the ranges of wall load which can be accommodated while maintaining the breeder within its allowable operating temperature window. The corresponding region thicknesses are calculated to help identify practicality and design tolerances.

  14. ITER solid breeder blanket materials database

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.C. [Argonne National Lab., IL (United States); Dienst, W. [Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Material- und Festkoerperforschung; Flament, T. [CEA Centre d`Etudes de Fontenay-aux-Roses (France). Commissariat A L`Energie Atomique; Lorenzetto, P. [NET Team, Garching (Germany); Noda, K. [Japan Atomic Energy Research Inst., Takai, Ibaraki, (Japan); Roux, N. [CEA Centre d`Etudes et de Recherches Les Materiaux (France). Commissariat a L`Energie Atomique

    1993-11-01

    The databases for solid breeder ceramics (Li{sub 2},O, Li{sub 4}SiO{sub 4}, Li{sub 2}ZrO{sub 3} and LiAlO{sub 2}) and beryllium multiplier material are critically reviewed and evaluated. Emphasis is placed on physical, thermal, mechanical, chemical stability/compatibility, tritium, and radiation stability properties which are needed to assess the performance of these materials in a fusion reactor environment. Correlations are selected for design analysis and compared to the database. Areas for future research and development in blanket materials technology are highlighted and prioritized.

  15. Testing and Modeling of the Mars Atmospheric Processing Module

    Science.gov (United States)

    Muscatello, Anthony; Hintze, Paul; Meier, Anne; Petersen, Elspeth M.; Bayliss, Jon; Gomez Cano, Ricardo; Formoso, Rene; Shah, Malay; Berg, Jared; Vu, Bruce; hide

    2017-01-01

    Here we report further progress in the development of the MARCO POLO-Mars Pathfinder Atmospheric Processing Module (APM). The APM is designed to demonstrate in situ resource utilization (ISRU) of the Martian atmosphere, which primarily consists of carbon dioxide (CO2). The APM is part of a larger project with the overall goal of collecting and utilizing CO2 found in the atmosphere and water in the regolith of Mars to produce methane and oxygen to be used as rocket propellant, eliminating the need to import those to Mars for human missions, thus significantly reducing costs. The initial focus of NASA's new ISRU Project is modeling of key ISRU components, such as the CO2 Freezers and the Sabatier reactor of the APM. We have designed models of those components and verified the models with the APM by gathering additional data for the Sabatier reactor. Future efforts will be focused on simultaneous operations of the APM and other MARCO POLO-Mars Pathfinder modules.

  16. Design and test of a prototype silicon detector module for ATLAS Semiconductor Tracker endcaps

    CERN Document Server

    Clark, A G; Donega, M; Ferrère, D; Fortin, R; García, J E; González, S; Hirt, C; Ikegami, Y; Kagan, H; Kohriki, T; Kondo, T; Lindsay, S; MacPherson, A; Mangin-Brinet, M; Mikulec, B; Moorhead, G F; Niinikoski, T O; Pernegger, H; Perrin, E; Roe, S; Taylor, G N; Terada, S; Unno, Y; Vos, M; Wallny, R; Weber, M

    2005-01-01

    The ATLAS Semiconductor Tracker (SCT) will be a central part of the tracking system of the ATLAS experiment. The SCT consists of four concentric barrels of silicon detectors as well as two silicon endcap detectors formed by nine disks each. The layout of the forward silicon detector module presented in this paper is based on the approved layout of the silicon detectors of the SCT, their geometry and arrangement in disks, but uses otherwise components identical to the barrel modules of the SCT. The module layout is optimized for excellent thermal management and electrical performance, while keeping the assembly simple and adequate for a large scale module production. This paper summarizes the design and layout of the module and present results of a limited prototype production, which has been extensively tested in the laboratory and testbeam. The module design was not finally adopted for series production because a dedicated forward hybrid layout was pursued.

  17. Partial Shade Stress Test for Thin-Film Photovoltaic Modules: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, Timothy J.; Deceglie, Michael G.; Deline, Chris; Kurtz, Sarah

    2015-09-02

    Partial shade of monolithic thin-film PV modules can cause reverse-bias conditions leading to permanent damage. In this work, we propose a partial shade stress test for thin-film PV modules that quantifies permanent performance loss. We designed the test with the aid of a computer model that predicts the local voltage, current and temperature stress that result from partial shade. The model predicts the module-scale interactions among the illumination pattern, the electrical properties of the photovoltaic material and the thermal properties of the module package. The test reproduces shading and loading conditions that may occur in the field. It accounts for reversible light-induced performance changes and for additional stress that may be introduced by light-enhanced reverse breakdown. We present simulated and experimental results from the application of the proposed test.

  18. Bending cyclic load test for crystalline silicon photovoltaic modules

    Science.gov (United States)

    Suzuki, Soh; Doi, Takuya; Masuda, Atsushi; Tanahashi, Tadanori

    2018-02-01

    The failures induced by thermomechanical fatigue within crystalline silicon photovoltaic modules are a common issue that can occur in any climate. In order to understand these failures, we confirmed the effects of compressive or tensile stresses (which were cyclically loaded on photovoltaic cells and cell interconnect ribbons) at subzero, moderate, and high temperatures. We found that cell cracks were induced predominantly at low temperatures, irrespective of the compression or tension applied to the cells, although the orientation of cell cracks was dependent on the stress applied. The fracture of cell interconnect ribbons was caused by cyclical compressive stress at moderate and high temperatures, and this failure was promoted by the elevation of temperature. On the basis of these results, the causes of these failures are comprehensively discussed in relation to the viscoelasticity of the encapsulant.

  19. Test bench for thermal cycling of 10 kV silicon carbide power modules

    DEFF Research Database (Denmark)

    Sønderskov, Simon Dyhr; Jørgensen, Asger Bjørn; Maarbjerg, Anders Eggert

    2016-01-01

    This paper presents a test bench for lifetime investigation of 10 kV silicon carbide power modules. The test bench subjects high voltage switching operation to the modules while power cycling. Thus both a thermal and electrical operating point is emulated. The power cycling setup features offline...... made to validate the performance of the on-state voltage measurement and the thermal model. Issues are revealed in the form of common mode currents in gate drive supply, which should be remedied. Finally a new operating point for power cycling is suggested to better stress the power modules....... measurement of on-state voltages and direct real-time measurement of die surface temperatures, enabled by fiber optical sensors, which are built into the power modules. A thermal model of the module prototypes, based on the temperature measurements, is established. Independent verification steps have been...

  20. Activation analysis of ITER blanket first wall

    Energy Technology Data Exchange (ETDEWEB)

    Lopatkin, A.; Muratov, V. [RDIPE (NIKIET), Moscow (Russian Federation)

    1998-09-01

    To analyze the activation of ITER blanket structural components, the authors have prepared the AUCDAS code that calculates changes in nuclide concentrations and radioactivity characteristics during neutron irradiation and during cooling. UCDAS takes into account all neutron reactions and decay types, the prepared library of constants contains nuclear data of nuclides from hydrogen to californium. A comparative analysis of the results as obtained using UCDAS code and the widely known FISPACT code is given. The analysis of decay heat, gas generation and activity of ITER blanket first wall`s structural components was carried out. The beryllium coating, copper alloy and stainless steel were analysed. Calculations were performed for the first plasma burning pulse, 6 months and 1 year of operation in accordance with the ITER scenario. The materials recommended by ITER central team and their Russian analogs were considered: TGR and B1 (beryllium coating), GlidCop AL-25 Ds and Br-MKX (copper alloy), 316LN-IG and 12Cr18Ni10Ti (stainless steel). It has been demonstrated that there is a difference in all of the considered characteristics between the above materials. It is caused by impurities which are present in the materials. The report also considers the accumulation of gases (H, D, T, He{sup 3}, He{sup 4}) in the above materials. Besides, the change in the activity of irradiated materials during the cooling of up to 10{sup 7} years was calculated. (orig.) 7 refs.

  1. Cosmetic wastewater treatment by upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Puyol, D.; Monsalvo, V.M.; Mohedano, A.F. [Seccion de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain); Sanz, J.L. [Departamento de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain); Rodriguez, J.J., E-mail: juanjo.rodriguez@uam.es [Seccion de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain)

    2011-01-30

    Anaerobic treatment of pre-settled cosmetic wastewater in batch and continuous experiments has been investigated. Biodegradability tests showed high COD and solid removal efficiencies (about 70%), being the hydrolysis of solids the limiting step of the process. Continuous treatment was carried out in an upflow anaerobic sludge blanket reactor. High COD and TSS removal efficiencies (up to 95% and 85%, respectively) were achieved over a wide range of organic load rate (from 1.8 to 9.2 g TCOD L{sup -1} day{sup -1}). Methanogenesis inhibition was observed in batch assays, which can be predicted by means of a Haldane-based inhibition model. Both COD and solid removal were modelled by Monod and pseudo-first order models, respectively.

  2. Development of a carbon cloth heat post module for thermal vacuum testing of a spinning spacecraft

    Science.gov (United States)

    Levine, M. B.; Nelson, L. A.

    1972-01-01

    Development of a high temperature, high power density, isothermal, rapid transient, infrared thermal module is described. The investigation of various alternative approaches is discussed, as well as the rationale leading to the choice of a carbon cloth concept. Evolution of module design configurations and a summary of the development test results are included, along with a detailed description of the final design, which incorporated a black plate emitter radiantly heated by the carbon cloth. The final module configuration met design criteria during a 200-hour thermal vacuum performance test at 1000 F operating temperature without contaminating a solar cell array.

  3. Advanced Accelerated Power Cycling Test for Reliability Investigation of Power Device Modules

    DEFF Research Database (Denmark)

    Choi, Uimin; Jørgensen, Søren; Blaabjerg, Frede

    2016-01-01

    This paper presents an apparatus and methodology for an advanced accelerated power cycling test of insulated-gate bipolar transistor (IGBT) modules. In this test, the accelerated power cycling test can be performed under more realistic electrical operating conditions with online wear-out monitori...

  4. An assessment of the base blanket for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Raffray, A.R.; Abdou, M.A.; Ying, A.

    1991-12-31

    Ideally, the ITER base blanket would provide the necessary tritium for the reactor to be self-sufficient during operation, while having minimal impact on the overall reactor cost, reliability and safety. A solid breeder blanket has been developed in CDA phase in an attempt to achieve such objectives. The reference solid breeder base blanket configurations at the end of the CDA phase has many attractive features such as a tritium breeding ratio (TBR) of 0.8--0.9 and a reasonably low tritium inventory. However, some concerns regarding the risk, cost and benefit of the base blanket have been raised. These include uncertainties associated with the solid breeder thermal control and the potentially high cost of the amount of Be used to achieve high TBR and to provide the necessary thermal barrier between the high temperature solid breeder and low temperature coolant. This work addresses these concerns. The basis for the selection of a breeding blanket is first discussed in light of the incremental risk, cost and benefits relative to a non-breeding blanket. Key issues associated with the CDA breeding blanket configurations are then analyzed. Finally, alternative schemes that could enhance the attractiveness and flexibility of a breeding blanket are explored.

  5. An assessment of the base blanket for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Raffray, A.R.; Abdou, M.A.; Ying, A.

    1991-01-01

    Ideally, the ITER base blanket would provide the necessary tritium for the reactor to be self-sufficient during operation, while having minimal impact on the overall reactor cost, reliability and safety. A solid breeder blanket has been developed in CDA phase in an attempt to achieve such objectives. The reference solid breeder base blanket configurations at the end of the CDA phase has many attractive features such as a tritium breeding ratio (TBR) of 0.8--0.9 and a reasonably low tritium inventory. However, some concerns regarding the risk, cost and benefit of the base blanket have been raised. These include uncertainties associated with the solid breeder thermal control and the potentially high cost of the amount of Be used to achieve high TBR and to provide the necessary thermal barrier between the high temperature solid breeder and low temperature coolant. This work addresses these concerns. The basis for the selection of a breeding blanket is first discussed in light of the incremental risk, cost and benefits relative to a non-breeding blanket. Key issues associated with the CDA breeding blanket configurations are then analyzed. Finally, alternative schemes that could enhance the attractiveness and flexibility of a breeding blanket are explored.

  6. 75 FR 11557 - Woven Electric Blankets From China

    Science.gov (United States)

    2010-03-11

    ... either the electric blanket's wiring or a subassembly containing the electric blanket's wiring (e.g., wiring mounted on a substrate). A shell of woven fabric that is not packaged together, or in a kit, with...://www.usitc.gov ). The public record for this investigation may be viewed on the Commission's electronic...

  7. Objectives and status of EUROfusion DEMO blanket studies

    Energy Technology Data Exchange (ETDEWEB)

    Boccaccini, L.V., E-mail: lorenzo.boccaccini@kit.edu [Karlsruhe Institute of Technology (KIT) (Germany); Aiello, G.; Aubert, J. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette (France); Bachmann, C. [EUROfusion, PPPT, Garching (Germany); Barrett, T. [CCFE, Abingdon OX14 3DB (United Kingdom); Del Nevo, A. [ENEA CR Brasimone, 40032 Camugnano, BO (Italy); Demange, D. [Karlsruhe Institute of Technology (KIT) (Germany); Forest, L. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette (France); Hernandez, F.; Norajitra, P. [Karlsruhe Institute of Technology (KIT) (Germany); Porempovic, G. [Fuziotech Engineering Ltd (Hungary); Rapisarda, D. [CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Sardain, P. [CEA/IRFM, 13115 Saint-Paul-lès-Durance (France); Utili, M. [ENEA CR Brasimone, 40032 Camugnano, BO (Italy); Vala, L. [Centrum výzkumu Řež, 250 68 Husinec-Řež (Czech Republic)

    2016-11-01

    Highlights: • Short description of the new Breeding Blanket Project in the EUROfusion consortium for the design of the EU PPPT DEMO: objectives. • Presentation of the design approach used in the development of the Breeding Blanket design: requirements. • Breeding Blanket design; in particular the four blanket concepts included in the study are presented, recent results highlighted and the status discussed. • Auxiliary systems and related R&D programme: in particular the work areas addressed in the Project (Tritium Technology, Pb-Li and Solid Breeders Technology, First Wall Design and R&D, Manufacturing) are presented, recent results highlighted and the status discussed. - Abstract: The design of a DEMO reactor requires the design of a blanket system suitable of reliable T production and heat extraction for electricity production. In the frame of the EUROfusion Consortium activities, the Breeding Blanket Project has been constituted in 2014 with the goal to develop concepts of Breeding Blankets for the EU PPPT DEMO; this includes an integrated design and R&D programme with the goal to select after 2020 concepts on fusion plants for the engineering phase. The design activities are presently focalized around a pool of solid and liquid breeder blanket with helium, water and PbLi cooling. Development of tritium extraction and control technology, as well manufacturing and development of solid and PbLi breeders are part of the programme.

  8. Testing of FE Hybrids and Si detector modules for the CMS Tracker

    CERN Document Server

    Axer, M; Camps, C; Commichau, V; Flügge, G; Franke, T; Ilgin, C; Mnich, J; Niehusmann, J; Poettgens, M; Schorn, P; Schulte, R; Struczinski, W

    2002-01-01

    The innermost region of the CMS detector will consist of silicon pixel and silicon microstrip detectors. One microstrip detector module is essentially composed of three elements: a set of silicon sensors, a mechanical support structure and the Front End Electronics (FE hybrid). During the production phase of the CMS tracking device, various quality and functionality tests of each detector component have to be performed to assure a stable tracker performance for a time scale of about 10 years of LHC running. This demands a chain of testing procedures beginning at the Hybrid component level and ending at the assembled module level. Each production and assembly step needs a specific testing environment and procedure (e.g. long- or short-term tests and temperature cyclings). A compact, cost efficient test and diagnostic tool which is suited for the operation and characterization of hybrids and silicon detector modules will be presented. The test setup is mainly composed of two printed circuit boards, one interfac...

  9. Conceptual design of solid breeder blanket system cooled by supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Enoeda, Mikio; Akiba, Masato [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment] [and others

    2001-12-01

    This report is a summary of the design works, which was discussed in the design workshop held in 2000 for the demonstration (DEMO) blanket aimed to strengthen the commercial competitiveness and technical feasibility simultaneously. The discussion of the Fusion Council in 1999 updated the assessment of the mission of DEMO blanket. Updated mission of the DEMO blanket is to be the prototype of the commercially competitive power plant. The DEMO blanket must supply the feasibility and experience of the total design of the power plant and the materials. From such standing point, the conceptual design study was performed to determine the updated strategy and goal of the R and D of the DEMO blanket which applies the supercritical water cooling proposed in A-SSTR, taking into account the recent progress of the plasma research and reactor engineering technology. The DEMO blanket applies the solid breeder materials and supercritical water cooling. The product tritium is purged out by helium gas stream in the breeder region. In the breeder region, the pebble bed concept was applied to withstand instable cracking of the breeder and multiplier materials in high neutron irradiation and high temperature operation. Inlet temperature of the coolant is planned to be 280degC and final outlet temperature is 510degC to obtain high energy conversion efficiency up to 43%. Reduced activation ferritic steel, F82H and ODS ferritic steel were selected as the structural material. Lithium ceramics, Li{sub 2}TiO{sub 3} or Li{sub 2}O were selected as the breeder materials. Beryllium or its inter-metallic compound Be12Ti was selected as the neutron multiplier materials. Basic module structure was selected as the box type structure which enables the remote handling replacement of the module from in-vessel access. Dimension of the box is limited to 2 m x 2 m, or smaller, due to the dimension of the replacement port. In the supercritical water cooling, the high coolant temperature is the merit for

  10. LMFBR Blanket Physics Project progress report No. 6

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, M.J. (ed.)

    1975-06-30

    Progress is summarized in experimental and analytical investigations of the neutronics and photonics of benchmark mockups of LMFBR blankets. During the reporting period work was devoted primarily to a wide range of analytical/numerical investigations, including blanket fuel management/economics studies, evaluation of improved blanket designs, and assessment of state-of-the-art methods for gamma heating calculations. Experimental work included preparations for resumption of MIT Reactor operations, primarily fabrication of improved steel reflector assemblies for blanket mockups, and development of an improved radiophotoluminescent readout device for LiF thermoluminescent detectors. The most significant finding was that the neutronic and economic performance of radial blanket assemblies are essentially independent of core size (rating) for radially-power-flattened cores. Hence the methodology and results of current experiments and calculations should be valid for the large commercial LMFBR's of the future.

  11. Correction for Metastability in the Quantification of PID in Thin-film Module Testing: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hacke, Peter L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Johnston, Steven [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Spataru, Sergiu [Aalborg University

    2017-10-01

    A fundamental change in the analysis for the accelerated stress testing of thin-film modules is proposed, whereby power changes due to metastability and other effects that may occur due to the thermal history are removed from the power measurement that we obtain as a function of the applied stress factor. The power of reference modules normalized to an initial state - undergoing the same thermal and light- exposure history but without the applied stress factor such as humidity or voltage bias - is subtracted from that of the stressed modules. For better understanding and appropriate application in standardized tests, the method is demonstrated and discussed for potential-induced degradation testing in view of the parallel-occurring but unrelated physical mechanisms that can lead to confounding power changes in the module.

  12. Electrical production testing of the D0 Silicon microstrip tracker detector modules

    Energy Technology Data Exchange (ETDEWEB)

    D0, SMT Production Testing Group; /Fermilab

    2006-03-01

    The D0 Silicon Microstrip Tracker (SMT) is the innermost system of the D0 detector in Run 2. It consists of 912 detector units, corresponding to 5 different types of assemblies, which add up to a system with 792,576 readout channels. The task entrusted to the Production Testing group was to thoroughly debug, test and grade each detector module before its installation in the tracker. This note describes the production testing sequence and the procedures by which the detector modules were electrically tested and characterized at the various stages of their assembly.

  13. Phase change of First Wall in Water-Cooled Breeding Blankets of K-DEMO for Vertical

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Woo; Lee, Jeong Hun; Cho, Hyoung Kyu; Park, Goon Cherl [Seoul National University, Seoul (Korea, Republic of); Im, Ki Hak [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of this study is to simulate thermal-hydraulic behavior of a single blanket module when plasma disruption occurs. Plasma disruptions, such as vertical displacement events (VDE), with high heat flux can cause melting and vaporization of plasma facing materials and also burnout of coolant channels. The thermal design, evaluation and validation have been performed in order to establish the conceptual design guidelines of the water-cooled breeding blanket for the K-DEMO reactor. As a part of the NFRI research, Seoul National University (SNU) is conducting transient thermal-hydraulic analysis to confirm the integrity of blanket system for plasma disruption events. Vertical displacement events (VDE) with high heat flux can cause melting and vaporization of plasma facing materials (PFCs) and also burnout of coolant channels. In order to simulate melting of first wall in blanket module when VDE occurs, one-dimensional heat conduction equations were solved numerically with modification of the specific heat of the first wall materials using effective heat capacity method. Temperature profiles in first wall for VDE are shown in fig 7 - 9. At first, temperature of tungsten rapidly raised and even exceeded its melting temperature. When VDE just ended at 0.1 second, 0.83 mm thick of tungsten melted. But the other materials including vanadium and RAFM didn't exceed their melting temperatures after 500 seconds.

  14. Testing a scale pulsed modulator for an IEC neutron source into a resistive load

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Gregory E [Los Alamos National Laboratory; Wheat, Robert M [Los Alamos National Laboratory; Aragonez, Robert [Los Alamos National Laboratory

    2009-01-01

    A 1/10th scaled prototype pulse modulator for an Inertial Electrostatic Confinement (IEC) neutron source has been designed and tested at Los Alamos National Laboratory (LANL). The scaled prototype modulator is based on a solid-state Marx architecture and has an output voltage of 13 kV and an output current of 10 A. The modulator has a variable pulse width between 50 {micro}s and 1 ms with < 5% droop at all pulse widths. The modulator operates with a duty factor up to 5% and has a maximum pulse repetition frequency of 1 kHz. The use of a solid-state Marx modulator in this application has several potential benefits. These benefits include variable pulse width and amplitude, inherent switch overcurrent and transient overvoltage protection, and increased efficiency over DC supplies used in this application. Several new features were incorporated into this design including inductorless charging, fully snubberless operation, and stage fusing. The scaled prototype modulator has been tested using a 1 k{Omega} resistive load. Test results are given. Short (50 {micro}s) and long (1 ms) pulses are demonstrated as well as high duty factor operation (1 kHz rep rate at a 50 {micro}s pulse width for a 5% duty factor). Pulse agility of the modulator is demonstrated through turning the individual Marx stages on and off in sequence producing ramp, pyramid, and reverse pyramid waveforms.

  15. Orion Pad Abort 1 Crew Module Inertia Test Approach and Results

    Science.gov (United States)

    Herrera, Claudia; Harding, Adam

    2010-01-01

    The Flight Loads Laboratory at the Dryden Flight Research Center conducted tests to measure the inertia properties of the Orion Pad Abort 1 (PA-1) Crew Module. These measurements were taken to validate analytical predictions of the inertia properties of the vehicle and assist in reducing uncertainty for derived aero performance results calculated post launch. The first test conducted was to determine the Ixx of the Crew Module. This test approach used a modified torsion pendulum test step up that allowed the suspended Crew Module to rotate about the x axis. The second test used a different approach to measure both the Iyy and Izz properties. This test used a Knife Edge fixture that allowed small rotation of the Crew Module about the y and z axes. Discussions of the techniques and equations used to accomplish each test are presented. Comparisons with the predicted values used for the final flight calculations are made. Problem areas, with explanations and recommendations where available, are addressed. Finally, an evaluation of the value and success of these techniques to measure the moments of inertia of the Crew Module is provided.

  16. Orion Pad Abort 1 Crew Module Mass Properties Test Approach and Results

    Science.gov (United States)

    Herrera, Claudia; Harding, Adam

    2012-01-01

    The Flight Loads Laboratory at the Dryden Flight Research Center conducted tests to measure the inertia properties of the Orion Pad Abort 1 (PA-1) Crew Module (CM). These measurements were taken to validate analytical predictions of the inertia properties of the vehicle and assist in reducing uncertainty for derived aero performance coefficients to be calculated post-launch. The first test conducted was to determine the Ixx of the Crew Module. This test approach used a modified torsion pendulum test setup that allowed the suspended Crew Module to rotate about the x axis. The second test used a different approach to measure both the Iyy and Izz properties. This test used a Knife Edge fixture that allowed small rotation of the Crew Module about the y and z axes. Discussions of the techniques and equations used to accomplish each test are presented. Comparisons with the predicted values used for the final flight calculations are made. Problem areas, with explanations and recommendations where available, are addressed. Finally, an evaluation of the value and success of these techniques to measure the moments of inertia of the Crew Module is provided.

  17. Data acquisition and PV module power production in upgraded TEP/AzRISE solar test yard

    Science.gov (United States)

    Bennett, Whit E.; Fishgold, Asher D.; Lai, Teh; Potter, Barrett G.; Simmons-Potter, Kelly

    2017-08-01

    The Tucson Electric Power (TEP)/University of Arizona AzRISE (Arizona Research Institute for Solar Energy) solar test yard is continuing efforts to improve standardization and data acquisition reliability throughout the facility. Data reliability is ensured through temperature-insensitive data acquisition devices with battery backups in the upgraded test yard. Software improvements allow for real-time analysis of collected data, while uploading to a web server. Sample data illustrates high fidelity monitoring of the burn-in period of a polycrystalline silicon photovoltaic module test string with no data failures over 365 days of data collection. In addition to improved DAQ systems, precision temperature monitoring has been implemented so that PV module backside temperatures are routinely obtained. Weather station data acquired at the test yard provides local ambient temperature, humidity, wind speed, and irradiance measurements that have been utilized to enable characterization of PV module performance over an extended test period

  18. Using NI PXI Modules for Digital Signal Processing Microprocessor Testing

    Directory of Open Access Journals (Sweden)

    Marfin Vladimir

    2016-01-01

    Full Text Available The article considers the implementation of the external memory interface based on National Instruments modular PXI equipment for environmental testing of digital signal processing (DSP microprocessors. The block diagram of the developed device pointing out the advantages and disadvantages of this solution is provided. The block diagram of an improved external memory interface is also shown.

  19. Biostatistics Series Module 2: Overview of Hypothesis Testing.

    Science.gov (United States)

    Hazra, Avijit; Gogtay, Nithya

    2016-01-01

    Hypothesis testing (or statistical inference) is one of the major applications of biostatistics. Much of medical research begins with a research question that can be framed as a hypothesis. Inferential statistics begins with a null hypothesis that reflects the conservative position of no change or no difference in comparison to baseline or between groups. Usually, the researcher has reason to believe that there is some effect or some difference which is the alternative hypothesis. The researcher therefore proceeds to study samples and measure outcomes in the hope of generating evidence strong enough for the statistician to be able to reject the null hypothesis. The concept of the P value is almost universally used in hypothesis testing. It denotes the probability of obtaining by chance a result at least as extreme as that observed, even when the null hypothesis is true and no real difference exists. Usually, if P is hypothesis is rejected and sample results are deemed statistically significant. With the increasing availability of computers and access to specialized statistical software, the drudgery involved in statistical calculations is now a thing of the past, once the learning curve of the software has been traversed. The life sciences researcher is therefore free to devote oneself to optimally designing the study, carefully selecting the hypothesis tests to be applied, and taking care in conducting the study well. Unfortunately, selecting the right test seems difficult initially. Thinking of the research hypothesis as addressing one of five generic research questions helps in selection of the right hypothesis test. In addition, it is important to be clear about the nature of the variables (e.g., numerical vs. categorical; parametric vs. nonparametric) and the number of groups or data sets being compared (e.g., two or more than two) at a time. The same research question may be explored by more than one type of hypothesis test. While this may be of utility in

  20. Standard Test Methods for Photovoltaic Modules in Cyclic Temperature and Humidity Environments

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 These test methods provide procedures for stressing photovoltaic modules in simulated temperature and humidity environments. Environmental testing is used to simulate aging of module materials on an accelerated basis. 1.2 Three individual environmental test procedures are defined by these test methods: a thermal cycling procedure, a humidity-freeze cycling procedure, and an extended duration damp heat procedure. Electrical biasing is utilized during the thermal cycling procedure to simulate stresses that are known to occur in field-deployed modules. 1.3 These test methods define mounting methods for modules undergoing environmental testing, and specify parameters that must be recorded and reported. 1.4 These test methods do not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of these test methods. 1.5 Any of the individual environmental tests may be performed singly, or may be combined into a test sequence with other environmental or non-envir...

  1. Aerosol Blanket Likely Thinned During 1990s

    Science.gov (United States)

    2007-01-01

    Each day, a blanket of tiny particles drifting through the Earth's atmosphere filters out some of the sunlight headed for the planet's surface. These aerosols, including dust, smoke, and human-produced pollution, can reflect incoming light or absorb it, directly affecting the Earth's energy balance and climate. Aerosols also influence the climate indirectly, by affecting the brightness and amount of clouds. Research by NASA scientists on global aerosol patterns since the 1990s indicate the global aerosol blanket has likely thinned, allowing more sunlight to reach the Earth's surface over the past decade. The thinning of the blanket is shown by this trio of images based on satellite observations of aerosol optical thickness, a measurement that scientists use to describe how much the aerosols filter the incoming sunlight. Higher optical thickness (orange and red) means more sunlight blocking. The globes show average aerosol optical thickness for 1988-1991 (top), 2002-2005 (middle), and the change between the two time periods (bottom). Overall, the 1988-1991 image appears redder, a sign that aerosols were blocking more incoming sunlight; the 2002-2005 image has more light yellow areas. In the bottom image, small pockets of red (increased aerosol optical thickness), mostly near land masses in the Northern Hemisphere, are far outnumbered by blue areas (decreased aerosol optical thickness). Because they block incoming sunlight from reaching Earth's surface, aerosols may counterbalance greenhouse gas warming. The decline in the dimming power of aerosols over the past decade may have made the greenhouse warming trend more evident in the past decade than in previous decades. The scientists describe their results as a 'likely' trend because the National Oceanic and Atmospheric Administration satellite sensors they used in their analysis were not specifically designed to observe aerosols, and may contain some errors. However, specific, major aerosol events, such as large

  2. EU contribution to the procurement of the ITER blanket first wall

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzetto, Patrick, E-mail: Patrick.Lorenzetto@f4e.europa.eu [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Banetta, Stefano; Bellin, Boris [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Boireau, Bruno [AREVA NP, Centre Technique, 71200 Le Creusot (France); Bucci, Philippe [Atmostat, rue René Hamon 31, 94815 Villejuif Cedex (France); Cicero, Tindaro [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Conchon, Denis [Atmostat, rue René Hamon 31, 94815 Villejuif Cedex (France); Dellopoulos, Georges [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Hardaker, Stephen [Amec Foster Wheeler plc, Booths Park, Chelford Road, Knutsford WA16 8QZ (United Kingdom); Marshall, Paul [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Nogué, Patrice [AREVA NP, Centre Technique, 71200 Le Creusot (France); Pérez, Marcos [Leading Enterprises SL, Pasaje de La Agüera, 39409 San Felices de Buelna (Spain); Gutierrez, Leticia Ruiz [Iberdrola Ingeniería y Construcción S.A.U., Avenida Manoteras 20, 28050 Madrid (Spain); Samaniego, Fernando [Leading Enterprises SL, Pasaje de La Agüera, 39409 San Felices de Buelna (Spain); Sherlock, Paul [Amec Foster Wheeler plc, Booths Park, Chelford Road, Knutsford WA16 8QZ (United Kingdom); Zacchia, Francesco [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain)

    2016-11-01

    Highlights: • Presentation of the blanket first wall design concept to be procured by Europe. • Presentation of the main outcome of the R&D programme with the resulting FW fabrication route. • Presentation of the ITER first wall pre-qualification programme with the results achieved so far. • Presentation of the on-going irradiation experiments. • Presentation of the EU procurement strategy. - Abstract: Fusion for Energy (F4E), the European Union’s Domestic Agency for ITER, is responsible for the procurement of about 50% of the ITER blanket first wall (FW), called normal heat flux FW. A procurement strategy has been implemented by the In-Vessel Project Team at F4E aimed at mitigating technical and commercial risks for the procurement of ITER blanket FW panels, promoting as far as possible competition among industrial partners. This procurement strategy has been supported by an extensive Research and Development (R&D) programme, implemented over more than 15 years in Europe, to develop various fabrication technologies. It includes in particular the manufacture and testing of small-scale, medium-scale mock-ups and full-scale prototypes of blanket FW panels. In this R&D programme, significant efforts have been devoted to the development of a reliable materials joining technique. Hot Isostatic Pressing was selected for the manufacture of the FW panels made from beryllium, copper–chromium–zirconium alloy and 316L(N)-IG austenitic stainless steel. This paper presents the main outcome of the on-going R&D programme, the latest results of the FW qualification programme together with the procurement strategy implemented by F4E for the supply of the European contribution to the procurement of the ITER blanket FW.

  3. EEG INTERFACE MODULE FOR COGNITIVE ASSESSMENT THROUGH NEUROPHYSIOLOGIC TESTS

    Directory of Open Access Journals (Sweden)

    Kundan Lal Verma

    2014-12-01

    Full Text Available The cognitive signal processing is one of the important interdisciplinary field came from areas of life sciences, psychology, psychiatry, engi-neering, mathematics, physics, statistics and many other fields of research. Neurophysiologic tests are utilized to assess and treat brain injury, dementia, neurological conditions, and useful to investigate psychological and psychiatric disorders. This paper presents an ongoing research work on development of EEG interface device based on the principles of cognitive assessments and instrumentation. The method proposed engineering and science of cogni-tive signal processing in case of brain computer in-terface based neurophysiologic tests. The future scope of this study is to build a low cost EEG device for various clinical and pre-clinical applications with specific emphasis to measure the effect of cognitive action on human brain.

  4. Development and testing of shingle-type solar cell modules. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, N.F.

    1979-02-28

    The design, development, fabrication and testing of a shingle-type terrestrial solar cell module which produces 98 watts/m/sup 2/ of exposed module area at 1 kW/m/sup 2/ insolation and 61/sup 0/C are reported. These modules make it possible to easily incorporate photovoltaic power generation into the sloping roofs of residential or commercial buildings by simply nailing the modules to the plywood roof sheathing. This design consists of nineteen series-connected 53 mm diameter solar cells arranged in a closely packaged hexagon configuration. These cells are individually bonded to the embossed surface of a 3 mm thick thermally tempered hexagon-shaped piece of ASG SUNADEX glass. Monsanto SAFLEX polyvinyl butyral is used as the laminating adhesive. RTVII functions as the encapsulant between the underside of the glass superstrate and a rear protective sheet of 0.8 mm thick TEXTOLITE. The semi-flexible portion of each shingle module is a composite laminate construction consisting of outer layers of B.F. Goodrich FLEXSEAL and an epichlorohydrin closed cell foam core. The module design has satisfactorily survived the JPL-defined qualification testing program which includes 50 thermal cycles between -40 and +90/sup 0/C, a seven-day temperature-humidity exposure test and a mechanical integrity test consisting of a bidirectional cyclic loading at 2390 Pa (50 lb/ft/sup 2/) which is intended to simulate loads due to a 45 m/s (100 mph) wind.

  5. U.S. technical report for the ITER blanket/shield: A. blanket: Topical report, July 1990--November 1990

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    Three solid-breeder water-cooled blanket concepts have been developed for ITER based on a multilayer configuration. The primary difference among the concepts is in the fabricated form of breeder and multiplier. All the concepts have beryllium for neutron multiplication and solid-breeder temperature control. The blanket design does not use helium gaps or insulator material to control the solid breeder temperature. Lithium oxide (Li{sub 2}O) and lithium zirconate (Li{sub 2}ZrO{sub 3}) are the primary and the backup breeder materials, respectively. The lithium-6 enrichment is 95%. The use of high lithium-6 enrichment reduces the solid breeder volume required in the blanket and consequently the total tritium inventory in the solid breeder material. Also, it increases the blanket capability to accommodate power variation. The multilayer blanket configuration can accommodate up to a factor of two change in the neutron wall loading without violating the different design guidelines. The blanket material forms are sintered products and packed bed of small pebbles. The first concept has a sintered product material (blocks) for both the beryllium multiplier and the solid breeder. The second concept, the common ITER blanket, uses a packed bed breeder and beryllium blocks. The last concept is similar to the first except for the first and the last beryllium zones. Two small layers of beryllium pebbles are located behind the first wall and the back of the last beryllium zone to reduce the total inventory of the beryllium material and to improve the blanket performance. The design philosophy adopted for the blanket is to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. Also, the reliability and the safety aspects of the blanket are enhanced by using low-pressure water coolant and the separation of the tritium purge flow from the coolant system by several barriers.

  6. Test of CMS tracker silicon detector modules with the ARC readout system

    CERN Document Server

    Axer, M; Flügge, G; Franke, T; Hegner, B; Hermanns, T; Kasselmann, S T; Mnich, J; Nowack, A; Pooth, O; Pottgens, M

    2004-01-01

    The CMS tracker will be equipped with 16,000 silicon microstrip detector modules covering a surface of approximately 220 m**2. For quality control, a compact and inexpensive DAQ system is needed to monitor the mass production in industry and in the CMS production centres. To meet these requirements a set-up called APV Readout Controller (ARC) system was developed and distributed among all collaborating institutes to perform full readout tests of hybrids and modules at each production step. The system consists of all necessary hardware components, C++ based readout software using LabVIEW **1 Lab VIEW is a product of National Instruments, Austin, USA. as graphical user interface and provides full database connection to track every single module component during the production phase. Two preseries of Tracker End Cap (TEC) silicon detector modules have been produced by the TEC community and tested with the ARC system at Aachen. The results of the second series are presented.

  7. Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe

    Science.gov (United States)

    Skupinski, Robert C.; Tower, Leonard K.; Madi, Frank J.; Brusk, Kevin D.

    1993-01-01

    The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.

  8. Testing of PCM Heat Storage Modules with Solar Collectors as Heat Source

    DEFF Research Database (Denmark)

    Englmair, Gerald; Dannemand, Mark; Johansen, Jakob Berg

    2016-01-01

    was to actively utilize the ability of the material to supercool to obtain long storage periods. The modules were charged with solar heat supplied by 22.4 m2 evacuated tubular collectors. The investigation showed that it was possible to fully charge one module within a period of 270 minutes with clear skies......A latent heat storage based on the phase change material Sodium Acetate Trihydrate (SAT) has been tested as part of a demonstration system. The full heat storage consisted of 4 individual modules each containing about 200 kg of sodium acetate trihydrate with different additives. The aim...

  9. Intermediate load modules for test and evaluation: Flat-Plate Solar Array Project

    Science.gov (United States)

    Bower, M. J.

    1985-01-01

    Two versions of a 36 stainless steel solar module were built. The first version was built as a commercial module for marine applications and was purchased for evaluation by JPL. Design deficiencies were identified as a result of the evaluation. The second version was built and the improvements that resulted from design changes are described. Assembly problems, electrical performance, and qualification test results are provided.

  10. Test Results of a MSGC Detector Module for the CMS forward MSGC-Tracker

    CERN Document Server

    Kräber, Michael; Kärcher, Kurt; Knoblauch, Dieter; Metri, R; Müller, Thomas; Neuberger, Dirk; Pallarès, Anne; Simonis, Hans-Jürgen; Thümmel, Wolf Hagen

    1998-01-01

    We report on the construction and test beam results of a MSGC detector module with four trapezoidal elements arranged in a geometry as planned for the CMS forward tracker. Our objective is to study a concept for the forward detector modules which is easy to build with minimal contribution to the material budget. Signal to noise ratio and spatial resolution of the detector are studied for different bias voltages in a 100 GeV muon beam at CERN.

  11. Standard Test Method for Electrical Performance of Concentrator Terrestrial Photovoltaic Modules and Systems Under Natural Sunlight

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers the determination of the electrical performance of photovoltaic concentrator modules and systems under natural sunlight using a normal incidence pyrheliometer. 1.2 The test method is limited to module assemblies and systems where the geometric concentration ratio specified by the manufacturer is greater than 5. 1.3 This test method applies to concentrators that use passive cooling where the cell temperature is related to the air temperature. 1.4 Measurements under a variety of conditions are allowed; results are reported under a select set of concentrator reporting conditions to facilitate comparison of results. 1.5 This test method applies only to concentrator terrestrial modules and systems. 1.6 This test method assumes that the module or system electrical performance characteristics do not change during the period of test. 1.7 The performance rating determined by this test method applies only at the period of the test, and implies no past or future performance level. 1.8...

  12. Design analyses of self-cooled liquid metal blankets

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.

    1986-12-01

    A trade-off study of liquid metal self-cooled blankets was carried out to define the performance of these blankets and to determine the potential to operate at the maximum possible values of the performance parameters. The main parameters considered during the course of the study were the tritium breeding ratio (TBR), the blanket energy multiplication factor, the energy fraction lost to the shield, the lithium-6 enrichment in the breeder material, the total blanket thickness, the reflector material selection, and the compositions of the different blanket zones. Also, a study was carried out to assess the impact of different reactor design choices on the reactor performance parameters. The design choices include the impurity control system (limiter or divertor), the material choice for the limiter, the elimination of tritium breeding from the inboard section of tokamak reactors, and the coolant choice for the nonbreeding inboard blanket. In addition, tritium breeding benchmark calculations were performed using different transport codes and nuclear data libraries. The importance of the TBR in the blanket design motivated the benchmark calculations.

  13. Performance testing and module monitoring at the EC Necessary steps to develop cost-effective PV modules

    Science.gov (United States)

    Krebs, K.

    Testing programs carried out by the European Communities to establish testing techniques and standards for verifying the reliability and integrity of solar cells intended for the marketplace are described. The efforts are being expended to assure quality control and certification for photovoltaic (PV) products manufactured in any of the member nations. The failure rate for PV modules was lowered to 0.5 pct/year by 1981, and single cell failures are projected to be lowered to 0.00001/yr, connectors to 0.001/yr, and batteries to 0.01/yr. Day/night thermal cycling causes the most dominant type of failures, i.e., cracked cells and interconnect defects. Tests have been standardized for inspection, verification, performance, mechanical loading, hail impact, damp heat, high temperature long exposure, hot-spot heating, thermal cycling, and humidity-freezing tolerance.

  14. Irradiation and beam tests qualification for ATLAS IBL Pixel Modules

    CERN Document Server

    Rubinskiy, Igor

    2013-01-01

    The upgrade for the ATLAS detector will have different steps towards HL-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (foreseen for 2013-14). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of 33 mm. The IBL will require the development of several new technologies to cope with the increase of the radiation damage and the pixel occupancy and also to improve the physics performance, which will be achieved by reduction of the pixel size and of the material budget. Two different promising silicon sensor technologies (Planar n-in-n and 3D) are currently under investigation for the pixel detector. An overview of the sensor technologies’ qualification with particular emphasis on irradiation and beam tests are presented.

  15. Irradiation and beam tests qualification for ATLAS IBL Pixel Modules

    CERN Document Server

    Rubinskiy, I

    2013-01-01

    The upgrade for the ATLAS detector will have different steps towards HL-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (foreseen for 2013–2014). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing Pixel Detector and a new (smaller radius) beam-pipe at a radius of 33 mm. The IBL will require the development of several new technologies to cope with the increase in the radiation damage and the pixel occupancy and also to improve the physics performance, which will be achieved by reduction of the pixel size and of the material budget. Two different promising silicon sensor technologies (Planar n-in-n and 3D) are currently under investigation for the Pixel Detector. An overview of the sensor technologies' qualification with particular emphasis on irradiation and beam tests is presented.

  16. Fusion reactor blanket with Li17-Pb83 eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Antipenkov, A.; Danilov, I.; Epinatiev, A.; Eremin, S.; Kalinin, G.; Kolganov, V.; Poliksha, V.; Shchipakin, O.; Shiverski, E.; Sidorov, A.; Skladnov, K.; Strebkov, Yu. (Research and Development Inst. of Power Engineering, Moscow (USSR)); Butko, A.; Kuzmin, A. (Moscow Inst. for Hydraulic Engineering and Land-Reclamation (USSR)); Chepovski, A.; Khripunov, V.; Shatalov, G. (Kurchatov Inst. of Atomic Energy, Moscow (USSR))

    1991-04-01

    The article contains some features of using Li17-Pb83 eutectic as a breeder for ITER/OTR fusion reactor. Described blanket design options aim to reduce electromagnetic loads or relieve eutectic/channel interaction. Eutectic channel stress analysis confirms design feasibility. Channel temperature behaviour is analyzed for loss of blanket cooling system power and rupture of a distribution header accidents. First wall and blanket failure rates were evaluated. The results of neutron power density distribution and tritium breeding ratio estimation are presented. Polonium concentration dynamics is estimated for accidental conditions. Some guide-lines for future work and design progress are advised. (orig.).

  17. Magnetohydrodynamic (MHD) considerations for liquid metal blanket and a SiC/SiC composite structure

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, R.; Greeff, J. de; Vinche, C. [Commission Europeenne Community, JRC, Vatican City State, Holy See (Italy)

    1998-07-01

    The electrical conductivity was measured on SiC/SiC composite specimens, in the as-received conditions and after neutron irradiation, for temperatures between 20 deg. C and 1000 deg. C. The tests were aimed at estimating the magnitude of MHD effects in liquid metal blankets and a SiC/SiC composites structure. The electrical conductivity of the unirradiated samples increased continuously with temperature and ranged from 330 ({omega} m){sup -1} at 20 deg. C to 550 ({omega} m){sup -1} at 1000 deg.C. The irradiation reduced only slightly the magnitude of {sigma} indicating the materials tested cannot be treated as an electrical insulator in a MHD analysis for liquid metal blankets. (authors)

  18. Special Testing for Modules Deployed in Hot Use Environments - Are We Doing This in a Low-Cost Way?

    Energy Technology Data Exchange (ETDEWEB)

    Repins, Ingrid; Jordan, Dirk; Bosco, Nick; Flueckiger, Chris

    2016-09-12

    The proposed new IEC standard will address the test temperature requirements in IEC 61215 (module design), IEC 61730 (module safety), IEC 62790 (junction box safety) and IEC 62852 (connectors), and will provide guidelines to modify temperature limits in four existing standards to better describe module performance in hotter climates. This workshop includes four presentations: Special Testing for Modules Deployed in Hot Use Environments - Are We Doing This in a Low-Cost Way?, Experimental Evidence, Why the highest temperatures are the most stressful to PV modules during thermal cycling, and Safety Aspects for Modules Deployed in Hot Use Environments.

  19. Test Methods for Telemetry Systems and Subsystems. Volume 5: Test Methods for Digital Recorder/Reproducer Systems and Recorder Memory Modules

    Science.gov (United States)

    2016-09-26

    Telemetry Group Document 118-16 (Volume V) TEST METHODS FOR TELEMETRY SYSTEMS AND SUBSYSTEMS VOLUME V TEST METHODS FOR DIGITAL RECORDER ...AND SUBSYSTEMS VOLUME V TEST METHODS FOR DIGITAL RECORDER /REPRODUCER SYSTEMS AND RECORDER MEMORY MODULES September 2016...parameters of digital recorder systems and recorder memory modules, to test compatibility and standard compliance, and to increase interoperability

  20. Membrane installation for enhanced up-flow anaerobic sludge blanket (UASB) performance.

    Science.gov (United States)

    Liu, Yin; Zhang, Kaisong; Bakke, Rune; Li, Chunming; Liu, Haining

    2013-09-01

    It is postulated that up-flow anaerobic sludge blanket (UASB) reactor efficiency can be enhanced by a membrane immersed in the reactor to operate it as an anaerobic membrane bioreactor (AnMBR) for low-strength wastewater treatment. This postulate was tested by comparing the performance with and without a hollow fiber microfiltration membrane module immersed in UASB reactors operated at two specific organic loading rates (SOLR). Results showed that membrane filtration enhanced process performance and stability, with over 90% total organic carbon (TOC) removal consistently achieved. More than 91% of the TOC removal was achieved by suspended biomass, while less than 6% was removed by membrane filtration and digestion in the membrane attached biofilm during stable AnMBRs operation. Although the membrane and its biofilm played an important role in initial stage of the high SOLR test, linear increased TOC removal by bulk sludge mainly accounted for the enhanced process performance, implying that membrane led to enhanced biological activity of the suspended sludge. The high retention of active fine sludge particles in suspension was the main reason for this significant improvement of performance and biological activity, which led to decreased SOLR with time to a theoretical optimal level around 2  g COD/g MLVSS·d and the establishment of a microbial community dominated by Methanothrix-like microbes. It was concluded that UASB process performance can be enhanced by transforming such to AnMBR operation when the loading rate is too high for sufficient sludge retention, and/or when the effluent water quality demands are especially stringent. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Test and characterization of a trigger logic firmware for a VME module

    Energy Technology Data Exchange (ETDEWEB)

    Ralet, Damian; Pietri, Stephane; Gerl, Juergen [GSI, Darmstadt (Germany); Johansson, Hakan T. [Chalmers University, Gothenburg (Sweden); Pietralla, Norbert [TU, Darmstadt (Germany); Collaboration: AGATA-Collaboration

    2012-07-01

    For the PRESPEC collaboration and for the preparation of the AGATA campaign at GSI a firmware called TRigger LOgic (TRLO) was installed on the FPGA (Field Programmable Gate Array) of the VME module, the VULOM4. This software was configured to mimic the PRESPEC trigger, and was tested during summer 2011. The purpose of the test were: (i) to check if the generation of triggers were coherent with the one made with NIM electronics. (ii) to compare the required time to generate the readout gates. (iii) to test the integration of the module in the PreSPEC DAQ. The results confirmed our expectations, and this module will be used for the AGATA campaign at GSI.

  2. Testing of parameters of proposed robotic wrist based on the precision modules

    Directory of Open Access Journals (Sweden)

    Jan Semjon

    2016-10-01

    Full Text Available The use of precision actuators in robotic arm comes from the need to ensure the resulting accuracy of the robot at the maximum speed of movement. The replacement of actuators by means of electrical module allows the use of carrier body of the module for gripping flanges or other modules. Development of new modules is based on the requirement of providing a complete solution for the customer’s needs. After the development of new modules, the producer checks the parameters, receives feedback, and uses the authentication options in the independent workplaces, which can provide impartial results. Based on this data, manufacturers can optimize their solutions and deliver the products to market, complying with not only their vision but mainly the needs of customers. This article describes how to verify the characteristics of the modules used in the construction of robotic wrist. It primarily focuses on verification of the accuracy of results and repeatability of position of the wrist on output flange end module. In addition, it presents the design of the testing stand and selection methodologies of measurement. The declared values are compared with the values measured during verification.

  3. Evaluation of Maxim Module-Integrated Electronics at the DOE Regional Test Centers: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Deline, C.; Sekulic, B.; Stein, J.; Barkaszi, S.; Yang, J.; Kahn, S.

    2014-07-01

    Module-embedded power electronics developed by Maxim Integrated are under evaluation through a partnership with the Department of Energy's Regional Test Center (RTC) program. Field deployments of both conventional modules and electronics-enhanced modules are designed to quantify the performance advantage of Maxim's products under different amounts of inter-row shading, and their ability to be deployed at a greater ground-coverage-ratio than conventional modules. Simulations in PVSYST have quantified the predicted performance difference between conventional modules and Maxim's modules from inter-row shading. Initial performance results have identified diffuse irradiance losses at tighter row spacing for both the Maxim and conventional modules. Comparisons with published models show good agreement with models predicting the greatest diffuse irradiance losses. At tighter row spacing, all of the strings equipped with embedded power electronics outperformed their conventional peers. An even greater performance advantage is predicted to occur in the winter months when the amount of inter-row shading mismatch is at a maximum.

  4. System high voltage stress degradation test in various photovoltaic modules and encapsulant sheets

    Science.gov (United States)

    Liu, Han-Chang; Lee, Wen-Kuei; Lin, Mei-Hsiu; Huang, Chung-Teng; Lin, Fu-Ming; Huang, Jen-Loong

    2013-09-01

    The more and more solar power requirements and balance of system (BOS) cost saving issues, photovoltaic power plants have increasing system voltage, in Europe, for example, the system voltage requirements up to 1000 volts to 1500 volts. Solar module reliability expose to the high voltage stress (HVS) need reassessment. It is well-known that HVS can lower the PV power significantly that means potential induced degradation (PID) effect. However, the effects of the PID and other environmental conditions on module performance have not been included in the IEC qualification standards yet. In this paper we review various PV module type, example MG-Si, poly-Si, CIGS module and encapsulant sheets performance suffer high voltage stress effect. To evaluate module durability in the presence of continuous high voltage we used four accelerated tests to qualify the HVS effect. The first one is under room temperature, 100% relative humidity (RH), second method is room temperature and aluminum foil covered the front sheet, the third method is climatic chamber test at 85℃and 85% RH and the last one is the 60°C and 85%RH with -1000V bias applied to active layer, respectively. The I-V characteristics and Electroluminescence (EL) images have been measured after several time steps to quantify the degradation process of each module. Besides the recovery characterization was also investigation.

  5. A tool for designing digital test objects for module performance evaluation in medical digital imaging.

    Science.gov (United States)

    Kocsis, O; Costaridou, L; Efstathopoulos, E P; Lymberopoulos, D; Panayiotakis, G

    1999-01-01

    Currently, medical digital imaging systems are characterized by the introduction of additional modules such as digital display, image compression and image processing, as well as film printing and digitization. These additional modules require performance evaluation to ensure high image quality. A tool for designing computer-generated test objects applicable to performance evaluation of these modules is presented. The test objects can be directly used as digital images in the case of film printing, display, compression and image processing, or indirectly as images on film in the case of digitization. The performance evaluation approach is quality control protocol based. Digital test object design is user-driven according to specifications related to the requirements of the modules being tested. The available quality control parameters include input/output response curve, high contrast resolution, low contrast discrimination, noise, geometric distortion and field uniformity. The tool has been designed and implemented according to an object oriented approach in Visual C++ 5.0, and its user interface is based on the Microsoft Foundation Class Library version 4.2, which provides interface items such as windows, dialog boxes, lists, buttons, etc. The compatibility with DICOM 3.0 part 10 image formats specifications allows the integration of the tool in the existing software framework for medical digital imaging systems. The capability of the tool is demonstrated by direct use of the test objects in case of image processing, and indirect use of the test objects in case of film digitization.

  6. Cryogenic System for the Test Facilities of the ATLAS Liquid Argon Calorimeter Modules

    CERN Document Server

    Bremer, J; Chalifour, M; Haug, F; Passardi, Giorgio; Tischhauser, Johann

    1998-01-01

    To perform cold tests on the different modules of the ATLAS liquid argon calorimeter, a cryogenic system has been constructed and is now operated at the CERN North Experimental Area. Three different test cryostats will house the modules, which can also be exposed to particle beams for calibration purposes. The three cryostats share a common liquid argon and liquid nitrogen distribution system. The system is rather complex since it has to allow operations of the three cryostats at the same time. Liquid nitrogen is used as cold source for both the cool-down of the cryostats and for normal operation of the cryostats filled with liquid argon.

  7. Uranium Fission Track Integrator for Measurement of Energy Production in the Subcritical Uranium Blanket of Electronuclear Assembly

    CERN Document Server

    Chultem, D; Krivopustov, M I

    2001-01-01

    Using nuclear track detectors in the uranium blanket of electronuclear assembly partial fission integrals have been measured. The merit of this method lies in the fact that uranium fission integrals are determined in every points of measurement as well as in whole volume of blanket. In addition, not only measurement of neutron spectra \\Phi(E_n) but also without going into details of excitation functions: \\sigma_f^5(E_n) and \\sigma_f^8(E_n) in wide range of energies, without recourse to group averaged cross sections are not required. The method was tested in the experiment on uranium blanket of electronuclear assembly "Energy plus transmutation" calorimetry at 1.5 GeV beam from synchrophasotron (JINR).

  8. Development of self-cooled liquid metal breeder blankets

    Energy Technology Data Exchange (ETDEWEB)

    Malang, S.; Tillack, M.S. [comps.; Barleon, L.; Baumgaertner, S.; Borgstedt, H.U.; Buehler, L.; Buerkle, G.; Dammel, F.; Feuerstein, H.; Fischer, U.; Gabel, K.; Gerhardt, H.; Glasbrenner, H.; Heider, T.; Jordan, T.; Kleefeldt, K.; Kleykamp, H.; Lindau, R.; Moeslang, A.; Norajitra, F.; Reimann, G.; Reimann, J.; Riesch-Oppermann, H.; Ritzhaupt-Kleissl, H.J.; Schleisiek, K.; Schmitz, G.; Schnauder, H.; Stieglitz, R.; Tellini, B.; Tsige-Tamirat, H.

    1995-11-01

    The development of liquid metal breeder blankets for fusion reactors has been performed in the Forschungszentrum Karlsruhe as a part of the European fusion blanket development program with the aim to select the two most promising concepts in 1995 for further development. In this report are described the designs of self-cooled blankets together with the results of the accompanying R and D program of the years 1992-1995. The program includes design studies as well as theoretical and experimental work in the fields of neutronics, magneto-hydrodynamics, thermohydraulics, mechanical stresses, compatibility and purification of lead-lithium, tritium extraction and control, safety, reliability, electrical insulating coatings, and fabrication technologies for blanket segments. (orig.) 250 refs.

  9. Advanced Acoustic Blankets for Improved Aircraft Interior Noise Reduction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed Phase II research effort is to develop heterogeneous (HG) blankets for improved sound reduction in aircraft structures. Phase I...

  10. Fusion blanket for high-efficiency power cycles

    Energy Technology Data Exchange (ETDEWEB)

    Usher, J.L.; Powell, J.R.; Fillo, J.A.; Horn, F.L.; Lazareth, O.W.; Taussig, R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperature (500/sup 0/C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO/sub 2/ interior (cooled by Ar) utilizing Li/sub 2/O for tritium breeding. In this design, approx. 60% of the fusion energy is deposited in the high-temperature interior. The maximum Ar temperature is 2230/sup 0/C leading to an overall efficiency estimate of 55 to 60% for this reference case.

  11. Advanced Acoustic Blankets for Improved Aircraft Interior Noise Reduction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this project advanced acoustic blankets for improved low frequency interior noise control in aircraft will be developed and demonstrated. The improved performance...

  12. Lightweight IMM Multi-Junction Photovoltaic Flexible Blanket Assembly Project

    Data.gov (United States)

    National Aeronautics and Space Administration — DSS's recently completed successful NASA SBIR Phase 1 program has established a TRL 3/4 classification for an innovative IMM PV Integrated Modular Blanket Assembly...

  13. Thin Thermal-Insulation Blankets for Very High Temperatures

    Science.gov (United States)

    Choi, Michael K.

    2003-01-01

    Thermal-insulation blankets of a proposed type would be exceptionally thin and would endure temperatures up to 2,100 C. These blankets were originally intended to protect components of the NASA Solar Probe spacecraft against radiant heating at its planned closest approach to the Sun (a distance of 4 solar radii). These blankets could also be used on Earth to provide thermal protection in special applications (especially in vacuum chambers) for which conventional thermal-insulation blankets would be too thick or would not perform adequately. A blanket according to the proposal (see figure) would be made of molybdenum, titanium nitride, and carbon- carbon composite mesh, which melt at temperatures of 2,610, 2,930, and 2,130 C, respectively. The emittance of molybdenum is 0.24, while that of titanium nitride is 0.03. Carbon-carbon composite mesh is a thermal insulator. Typically, the blanket would include 0.25-mil (.0.00635-mm)-thick hot-side and cold-side cover layers of molybdenum. Titanium nitride would be vapor-deposited on both surfaces of each cover layer. Between the cover layers there would be 10 inner layers of 0.15-mil (.0.0038-mm)-thick molybdenum with vapor-deposited titanium nitride on both sides of each layer. The thickness of each titanium nitride coat would be about 1,000 A. The cover and inner layers would be interspersed with 0.25-mil (0.00635-mm)-thick layers of carbon-carbon composite mesh. The blanket would have total thickness of 4.75 mils (approximately equal to 0.121 mm) and an areal mass density of 0.7 kilograms per square meter. One could, of course, increase the thermal- insulation capability of the blanket by increasing number of inner layers (thereby unavoidably increasing the total thickness and mass density).

  14. Cryo-Vacuum Testing of the JWST Integrated Science Instrument Module

    Science.gov (United States)

    Kimble, Randy A.; Vila, M. Begona; Van Campen, Julie M.; Birkmann, Stephen M.; Comber, Brian J.; Fatig, Curtis C.; Glasse, Alistair C. H.; Glazer, Stuart D.; Kelly, Douglas M.; Mann, Steven D.; hide

    2016-01-01

    In late 2015 early 2016, a major cryo-vacuum test was carried out for the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope. This test comprised the final cryo-certification and calibration test of the ISIM before its delivery for integration with the rest of the JWST observatory. Over the roughly 100-day period of the round-the-clock test program, the full complement of ISIM flight instruments, structure, harness radiator, and electronics were put through a comprehensive program of thermal, optical, electrical, and operational tests. We briefly summarize the goals, setup, execution, and key results for this critical JWST milestone.

  15. Effects of UV on power degradation of photovoltaic modules in combined acceleration tests

    Science.gov (United States)

    Ngo, Trang; Heta, Yushi; Doi, Takuya; Masuda, Atsushi

    2016-05-01

    UV exposure and other factors such as high/low temperature, humidity and mechanical stress have been reported to degrade photovoltaic (PV) module materials. By focusing on the combined effects of UV stress and moisture on PV modules, two new acceleration tests of light irradiation and damp heat (DH) were designed and conducted. The effects of UV exposure were validated through a change in irradiation time (UV dosage) and a change of the light irradiation side (glass side vs backsheet side) in the UV-preconditioned DH and cyclic sequential tests, respectively. The chemical corrosion of finger electrodes in the presence of acetic acid generated from ethylene vinyl acetate used as an encapsulant was considered to be the main origin of degradation. The module performance characterized by electroluminescence images was confirmed to correlate with the measured acetic acid concentration and Ag finger electrode resistance.

  16. Use of Melt Flow Rate Test in Reliability Study of Thermoplastic Encapsulation Materials in Photovoltaic Modules

    Energy Technology Data Exchange (ETDEWEB)

    Moseley, J.; Miller, D.; Shah, Q.-U.-A. S. J.; Sakurai, K.; Kempe, M.; Tamizhmani, G.; Kurtz, S.

    2011-10-01

    Use of thermoplastic materials as encapsulants in photovoltaic (PV) modules presents a potential concern in terms of high temperature creep, which should be evaluated before thermoplastics are qualified for use in the field. Historically, the issue of creep has been avoided by using thermosetting polymers as encapsulants, such as crosslinked ethylene-co-vinyl acetate (EVA). Because they lack crosslinked networks, however, thermoplastics may be subject to phase transitions and visco-elastic flow at the temperatures and mechanical stresses encountered by modules in the field, creating the potential for a number of reliability and safety issues. Thermoplastic materials investigated in this study include PV-grade uncured-EVA (without curing agents and therefore not crosslinked); polyvinyl butyral (PVB); thermoplastic polyurethane (TPU); and three polyolefins (PO), which have been proposed for use as PV encapsulation. Two approaches were used to evaluate the performance of these materials as encapsulants: module-level testing and a material-level testing.

  17. An electro-hydraulic servo control system research for CFETR blanket RH

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Changqi [Hefei University of Technology, Hefei 230009, Anhui (China); Tang, Hongjun, E-mail: taurustang@126.com [Hefei University of Technology, Hefei 230009, Anhui (China); Qi, Songsong [Hefei University of Technology, Hefei 230009, Anhui (China); Cheng, Yong; Feng, Hansheng; Peng, Xuebing; Song, Yuntao [Institute of Plasma Physics Chinese Academy of Sciences, Hefei 230031, Anhui (China)

    2014-11-15

    Highlights: • We discussed the conceptual design of CFETR blanket RH maintenance system. • The mathematical model of electro-hydraulic servo system was calculated. • A fuzzy adaptive PD controller was designed based on control theory and experience. • The co-simulation models of the system were established with AMESim/Simulink. • The fuzzy adaptive PD algorithm was designed as the core strategy of the system. - Abstract: Based on the technical design requirements of China Fusion Engineering Test Reactor (CFETR) blanket remote handling (RH) maintenance, this paper focus on the control method of achieving high synchronization accuracy of electro-hydraulic servo system. Based on fuzzy control theory and practical experience, a fuzzy adaptive proportional-derivative (PD) controller was designed. Then a more precise co-simulation model was established with AMESim/Simulink. Through the analysis of simulation results, a fuzzy adaptive PD control algorithm was designed as the core strategy of electro-hydraulic servo control system.

  18. Snowstorm Blankets Midwestern U.S.

    Science.gov (United States)

    2002-01-01

    An early blast of wintry weather swept across the midwestern United States on November 27-28, 2001, leaving a wide swath of snow and ice on the ground extending from northern Texas up into the Dakotas and as far east as Michigan. Two inches of snow accumulated in the Texas panhandle while sleet and freezing rain glazed bridges and roads as far south as the Dallas-Fort Worth area. Meanwhile, more than 2 feet (0.61 meters) of snow fell in parts of the Dakotas, Wisconsin and Michigan. The town of Willmar, Minnesota, recorded an accumulation of 29 inches (74 cm) of snow. By December 1, the clouds had cleared enough to afford the Moderate-resolution Imaging Spectroradiometer (MODIS) this true-color view of the midwest. The wide swath of white snow, contrasted with the brownish colors of the bare surface, reveals the extent of the region affected by the snowstorm. This scene spans from Ontario, Canada, and Minnesota (upper right) westward across the Dakotas and Montana (upper left). Moving southward, we see the storm blanketed half of Nebraska and the northeast corner of Colorado (lower left). The Missouri River can be seen clearly winding its way southeastward through South Dakota. The Missouri also defines the border between Nebraska and Iowa. The Minnesota River can also be seen in southwestern Minnesota. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  19. Cosmic ray test system for the ATLAS thin gap chamber modules at KOBE

    CERN Document Server

    Suigmoto, T; Arataki, Y; Bando, T; Homma, Y; Ichimiya, R; Ikeno, M; Ishii, K; Ishino, M; Iwasaki, H; Kurashige, H; Mima, T; Miyazaki, Y; Nakagawa, Y; Nakaune, Y; Nozaki, M; Ohshita, H; Okumura, K; Sasaki, O; Suzuki, R; Takeda, H; Takeshita, T; Tanaka, S; Uda, J; Yokoyama, C

    2004-01-01

    Thin gap chamber modules giving function of forward muon trigger to the ATLAS detector in the LHC experiment have been constructed at High Energy Research Organization (KEK) in Japan and their performances have been checked at Kobe University. A large-scale test system specially designed for measuring uniformity of the detection efficiencies and the timing resolution of 8 TGC modules at the same time was successfully operated. Each TGC module had 72 anode wire channels and 64 cathode strip channels (in total 1088 readout channels for 8 modules). Drift tubes consisted of 12 layers (total 428 tubes), between which the TGC modules are put, determined trajectories of cosmic rays. Hit pattern and timing of all detector signals (Trigger counter. Drift tubes and TGCs) were measured by using VME modules. In regular data acquisition situation, i.e. about effective 19 Hz trigger rate from scintillation counters and 73% tracking efficiency by the drift tubes, the detection efficiency of each layer by 5 mm * 5 mm region ...

  20. Thermal conductivity of aerogel blanket insulation under cryogenic-vacuum conditions in different gas environments

    Science.gov (United States)

    E Fesmire, J.; Ancipink, J. B.; Swanger, A. M.; White, S.; Yarbrough, D.

    2017-12-01

    Thermal conductivity of low-density materials in thermal insulation systems varies dramatically with the environment: cold vacuum pressure, residual gas composition, and boundary temperatures. Using a reference material of aerogel composite blanket (reinforcement fibers surrounded by silica aerogel), an experimental basis for the physical heat transmission model of aerogel composites and other low-density, porous materials is suggested. Cryogenic-vacuum testing between the boundary temperatures of 78 K and 293 K is performed using a one meter cylindrical, absolute heat flow calorimeter with an aerogel blanket specimen exposed to different gas environments of nitrogen, helium, argon, or CO2. Cold vacuum pressures include the full range from 1×10-5 torr to 760 torr. The soft vacuum region, from about 0.1 torr to 10 torr, is complex and difficult to model because all modes of heat transfer – solid conduction, radiation, gas conduction, and convection – are significant contributors to the total heat flow. Therefore, the soft vacuum tests are emphasized for both heat transfer analysis and practical thermal data. Results for the aerogel composite blanket are analyzed and compared to data for its component materials. With the new thermal conductivity data, future applications of aerogel-based insulation systems are also surveyed. These include Mars exploration and surface systems in the 5 torr CO2 environment, field joints for vacuum-jacketed cryogenic piping systems, common bulkhead panels for cryogenic tanks on space launch vehicles, and liquid hydrogen cryofuel systems with helium purged conduits or enclosures.

  1. Correction for Metastability in the Quantification of PID in Thin-film Module Testing

    DEFF Research Database (Denmark)

    Hacke, Peter; Spataru, Sergiu; Johnston, Steve

    2017-01-01

    A fundamental change in the analysis for the accelerated stress testing of thin-film modules is proposed, whereby power changes due to metastability and other effects that may occur due to the thermal history are removed from the power measurement that we obtain as a function of the applied stress...

  2. Paradigm Change for Accelerated Stress Testing of Thin-Film Modules

    DEFF Research Database (Denmark)

    Hacke, Peter; Spataru, Sergiu; Johnston, Steve

    2017-01-01

    A fundamental change in the analysis for the accelerated stress testing of thin-film modules is proposed, whereby power changes due to metastability and other effects that may occur due to the thermal history are removed from the power measurement that we obtain as a function of the applied stres...

  3. Test du Module BECKHOFF (BK7420) Entrées/Sorties deportees sur FIPIO de SCHNEIDER

    CERN Document Server

    Palluel, J; CERN. Geneva. AB Department

    2004-01-01

    Cette note présente le test du nouveau coupleur I/O déporté sur FIPIO de Beckhoff référencé BK7420 (voir photo ci-dessous), et notamment son évaluation sur différentes longueurs par rapport à un module semblable de Schneider (Momentum 170 FNT 110 01).

  4. Laboratory test of a prototype heat storage module based on stable supercooling of sodium acetate trihydrate

    DEFF Research Database (Denmark)

    Dannemand, Mark; Kong, Weiqiang; Fan, Jianhua

    2015-01-01

    Laboratory test of a long term heat storage module utilizing the principle of stable supercooling of 199.5 kg of sodium acetate water mixture has been carried out. Avoiding phase separation of the incongruently melting salt hydrate by using the extra water principle increased the heat storage...

  5. LHCb VErtex LOcator module characterisation and long term quality assurance tests

    CERN Document Server

    Bates, A; Doherty, F; Dumps, R; Dwyer, L; Gersabeck, M; Marinho, 1, F; Melone, J; Parkes, C; Saavedra, A; Tobin, M; Viret, S

    2009-01-01

    LHCb is the dedicated b-physics experiment of the LHC. Its vertex detector, the VErtex LOcator (VELO), will operate in a harsh radiation environment with limited access due to its proximity to the LHC beam. To ensure the long term operation and performance, every module was required to pass a set of quality assurance tests. These were specifically developed for the VELO modules to take into account their operational environment and assembly steps. Each VELO module was rigorously inspected, tested and thermally cycled in the Glasgow module burn-in procedures. This paper provides details of the burn-in procedures and summarises the main results that were found. Some of the major results presented in this paper are: the full characterisation of the leakage currents; identification of bad channels; and signal to noise measurements. A few minor problems were identified through visual inspections of the modules and the feedback into the production process proved critical. As a result of the electrical and thermal t...

  6. ATLAS Level-1 Calorimeter Trigger Subsystem Tests of a Prototype Cluster Processor Module

    CERN Document Server

    Garvey, J; Apostologlou, P; Ay, C; Barnett, B M; Bauss, B; Brawn, I P; Bohm, C; Dahlhoff, A; Davis, A O; Edwards, J; Eisenhandler, E F; Gee, C N P; Gillman, A R; Hanke, P; Hellman, S; Hidévgi, A; Hillier, S J; Jakobs, K; Kluge, E E; Landon, M; Mahboubi, K; Mahout, G; Meier, K; Meshkov, P; Moye, T H; Mills, D; Moyse, E; Nix, O; Penno, K; Perera, V J O; Qian, W; Schmitt, K; Schäfer, U; Silverstein, S; Staley, R J; Thomas, J; Trefzger, T M; Watkins, P M; Watson, A; 9th Workshop On Electronics For LHC Experiments - LECC 2003

    2003-01-01

    The Level-1 Calorimeter Trigger consists of a Preprocessor (PP), a Cluster Processor (CP), and a Jet/Energy-sum Processor (JEP). The CP and JEP receive digitised trigger-tower data from the Preprocessor and produce trigger multiplicity and Region-of-Interest (RoI) information. The trigger will also provide intermediate results to the data acquisition (DAQ) system for monitoring and diagnostic purposes by using Readout Driver (ROD) Modules. The CP Modules (CPM) are designed to find isolated electron/photon and hadron/tau clusters in overlapping windows of trigger towers. Each pipelined CPM processes 8-bit data from a total of 128 trigger towers at each LHC crossing. Four full-specification prototypes of CPMs have been built and results of complete tests on individual boards will be presented. These modules were then integrated with other modules to build an ATLAS Level-1 Calorimeter Trigger subsystem test bench. Realtime data were exchanged between modules, and time-slice readout data were tagged and transferr...

  7. First test beam results of prototype modules for the upgrade of the ATLAS strip tracking detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00218553; The ATLAS collaboration

    2016-01-01

    The LHC is foreseen to be upgraded to the High-Luminosity LHC (HL-LHC). This will result in higher particle rates and radiation doses. The ATLAS experiment plans to replace its inner tracking detector by a new all-silicon tracker which is based on the concept of modularity. For the new silicon strip tracker a large prototyping and evaluation campaign is ongoing. Many modules of different types were built and tested both in the laboratories and in test beams. In the following first results obtained in test beams are presented. Both mini and full-size modules for the central and forward regions were tested before and after irradiation to fluences as expected at the HL-LHC.

  8. Advanced power cycler with intelligent monitoring strategy of IGBT module under test

    DEFF Research Database (Denmark)

    Choi, U. M.; Blaabjerg, F.; Iannuzzo, F.

    2017-01-01

    and diode, which for the wear-out condition monitoring are presented. This advanced power cycler allows to perform power cycling test cost-effectively under conditions close to real power converter applications. In addition, an intelligent monitoring strategy for the separation of package-related wear......Power cycling (PC) test is one of the important test methods to assess the reliability performance of power device modules related to packaging technology, in respect to temperature stress. In this paper, an advanced power cycler with a real-time VCE_ON and VF measurement circuit for the IGBT......-out failure mechanisms has been proposed. By means of the proposed method, the wear-out failure mechanisms of an IGBT module can be separated without any additional efforts during the power cycling tests. The validity and effectiveness of the proposed monitoring strategy are also verified by experiments....

  9. Advanced power cycling test for power module with on-line on-state VCE measurement

    DEFF Research Database (Denmark)

    Choi, Ui-min; Trintis, Ionut; Blaabjerg, Frede

    2015-01-01

    estimation of power semiconductor devices and capacitors have been done. Accelerated power cycling test is one of the common tests to assess the power device module and develop the lifetime model considering the physics of failure. In this paper, a new advanced power cycling test setup is proposed for power......Recent research has made an effort to improve the reliability of power electronic systems to comply with more stringent constraints on cost, safety, predicted lifetime and availability in many applications. For this, studies about failure mechanisms of power electronic components and lifetime...... module. The proposed concept can perform various stress conditions which is valid in a real mission profile and it is using a real power converter application with small loss. The concept of the proposed test setup is first presented. Then, the on-line on-state collector-emitter voltage VCE measurement...

  10. Accelerated Stress Testing of Thin-Film Modules with SnO2:F Transparent Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Osterwald, C. R.; McMahon, T. J.; del Cueto, J. A.; Adelstein, J.; Puett, J.

    2003-05-01

    This paper reviews a testing program conducted at NREL for the past two years that applied voltage, water vapor, and light stresses to thin-film photovoltaic (PV) modules with SnO2:F transparent conducting oxides (TCOs) deposited on soda-lime glass superstrates. Electrochemical corrosion at the glass-TCO interface was observed to result in delamination of the thin-film layers. Experimental testing was directed toward accelerating the corrosion and understanding the nature of the resulting damage.

  11. Analyses of Hubble Space Telescope Aluminized-Teflon Multilayer Insulation Blankets Retrieved After 19 Years of Space Exposure

    Science.gov (United States)

    de Groh, Kim K.; Perry, Bruce A.; Mohammed, Jelila S.; Banks, Bruce

    2015-01-01

    Since its launch in April 1990, the Hubble Space Telescope (HST) has made many important observations from its vantage point in low Earth orbit (LEO). However, as seen during five servicing missions, the outer layer of multilayer insulation (MLI) has become increasingly embrittled and has cracked in many areas. In May 2009, during the 5th servicing mission (called SM4), two MLI blankets were replaced with new insulation and the space-exposed MLI blankets were retrieved for degradation analyses by teams at NASA Glenn Research Center (GRC) and NASA Goddard Space Flight Center (GSFC). The retrieved MLI blankets were from Equipment Bay 8, which received direct sunlight, and Equipment Bay 5, which received grazing sunlight. Each blanket was divided into several regions based on environmental exposure and/or physical appearance. The aluminized-Teflon (DuPont, Wilmington, DE) fluorinated ethylene propylene (Al-FEP) outer layers of the retrieved MLI blankets have been analyzed for changes in optical, physical, and mechanical properties, along with chemical and morphological changes. Pristine and as-retrieved samples (materials) were heat treated to help understand degradation mechanisms. When compared to pristine material, the analyses have shown how the Al-FEP was severely affected by the space environment. Most notably, the Al-FEP was highly embrittled, fracturing like glass at strains of 1 to 8 percent. Across all measured properties, more significant degradation was observed for Bay 8 material as compared to Bay 5 material. This paper reviews the tensile and bend-test properties, density, thickness, solar absorptance, thermal emittance, x-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) elemental composition measurements, surface and crack morphologies, and atomic oxygen erosion yields of the Al-FEP outer layer of the retrieved HST blankets after 19 years of space exposure.

  12. A field test for companded single sideband modulation Implications for capacity enhancement and transmission planning

    Science.gov (United States)

    Wallace, E.; Adams, C.; Arnstein, D.

    A series of field tests of companded single sideband modulation (CSSB) technique for use in the Intelsat system is described. A 12-channel circuit group was tested between switches in Pittsburgh, and the Deutsche Bundespost (DBP) in Frankfurt via the Etam and Raisting satellite earth stations. A transponder bulk that included existing FDM-FM carriers was chosen to match the typical, Intelsat operating conditions, thus permitting the compatibility of FDM/FM and CSSB to be examined simultaneously. Results of objective performance tests are discussed, and a description of several subjective testing techniques is also given.

  13. Embedded design-for-testability strategies to test high-resolution SD modulators

    Science.gov (United States)

    Escalera, Sara; Espin, Alvaro; Guerra, Oscar; de la Rosa, Jose M.; Medeiro, Fernando; Perez-Verdu, Belen

    2005-06-01

    This paper describes the design-for-testability strategies integrated in a 0.35μm CMOS 17-bit@40-kS/s chopper-stabilized Switched-Capacitor 2-1 cascade ΣΔ modulator for automotive sensor interfaces. After a brief review on the most important effects degrading the circuit performance, a test technique, based on the division of the circuit into several blocks that are tested separately, is presented. Experimental results shows the utility of the implemented test technique to detect errors in the circuit and to characterize the most important blocks with a minimum increase of extra area for the additional test circuitry.

  14. Impact analysis of the time trend of TBR and irradiation damage assessment of HCSB blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Qin, E-mail: zengqin@ustc.edu.cn; Chen, Hongli; Lv, Zhongliang; Pan, Lei; Zhang, Haoran; Shi, Wei

    2017-01-15

    Chinese Fusion Engineering Testing Reactor (CFETR) is a test tokamak reactor to bridge the gap between ITER and future fusion power plants and to demonstrate generation of fusion power in China. In fusion power plants, tritium is generated from the reaction of neutron and Lithium. One of the missions of CFETR is the full cycle of tritium self-sufficiency. For the mission, a Helium Cooled Solid Breeder blanket (HCSB) was proposed for CFETR and its conceptual design has been carried out. In order to assess the capacity of the tritium breeding and irradiation damage of first wall of the HCSB blanket during the 8 years’ engineering test stage, this paper presents the time trend of TBR analysis and irradiation damage assessment of HCSB blanket based on the three-dimensional (3D) neutronics model which is created by McCad. In the 3D neutronics model, the outboard blanket on equatorial plane is described based on the detailed 3D engineering model. The calculations were performed by MCNP and FISPACT with FENDL/2.1 data library. The impact analysis of the thickness of coolant plates (CP) and the structural material content in CPs to the TBR is assessment.

  15. Test flight of a bioreactor module for cartilage tissue on MASER 9

    Science.gov (United States)

    Conza, Nadine; Cogoli, Augusto; Dreier, Rita; Bruckner, Peter; Berardi-Vilei, Simona; Kraemer, Jutta; Huijser, Ron

    2003-08-01

    Within the frame of a project supported by the Microgravity Application Program of ESA we have developed a module for the growth of cartilage tissue starting from primary chondrocytes. The module is based on the scaffold-free chamber "Denovo" of Centerpulse. The long-term goal of the project is the development of a modular bioreactor for tissue engineering on the International Space Station. The two objectives of the experiment on MASER 9 were: first, to test the module and its service unit, second, to investigate whether short exposure to microgravity may after the structure of the cytoskeleton and genetic expression of 10 selected genes. Post-flight analyses showed that the apparatus worked nominally. No changes were detected in the cytoskeleton. The genetic expression of biglycan was slightly depressed at 0g.

  16. Deep sea tests of a prototype of the KM3NeT digital optical module

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S.; Ardid, M.; Llorens Alvarez, C.D.; Saldana, M. [Universitat Politecnica de Valencia, Instituto de Investigacion para la Gestion Integrada de las Zonas Costeras, Gandia (Spain); Ageron, M.; Bertin, V.; Beurthey, S.; Billault, M.; Brunner, J.; Caillat, L.; Cosquer, A.; Coyle, P.; Curtil, C.; Destelle, J.J.; Dornic, D.; Gallo, F.; Henry, S.; Keller, P.; Lamare, P.; Royon, J.; Solazzo, M.; Tezier, D.; Theraube, S.; Yatkin, K. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Aharonian, F.; Drury, L. [DIAS, Dublin (Ireland); Aiello, S.; Giordano, V.; Leonora, E.; Randazzo, N.; Sipala, V. [INFN, Sezione di Catania, Catania (Italy); Albert, A.; Drouhin, D.; Racca, C. [GRPHE, Universite de Haute Alsace, IUT de Colmar, Colmar (France); Ameli, F.; De Bonis, G.; Nicolau, C.A.; Simeone, F. [INFN, Sezione di Roma, Rome (Italy); Anassontzis, E.G. [National and Kapodistrian University of Athens, Deparment of Physics, Athens (Greece); Anghinolfi, M.; Cereseto, R.; Hugon, C.; Kulikovskiy, V.; Musico, P.; Orzelli, A. [INFN, Sezione di Genova, Genoa (Italy); Anton, G.; Classen, L.; Eberl, T.; Enzenhoefer, A.; Gal, T.; Graf, K.; Heid, T.; Herold, B.; Hofestaedt, J.; Hoessl, J.; James, C.; Kalekin, O.; Kappes, A.; Katz, U.; Lahmann, R.; Reubelt, J.; Schnabel, J.; Seitz, T.; Stransky, D.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Anvar, S.; Chateau, F.; Durand, D.; Le Provost, H.; Louis, F.; Moudden, Y.; Zonca, E. [CEA, Irfu/Sedi, Centre de Saclay, Gif-sur-Yvette (France); Asmundis, R. de; Deniskina, N.; Migliozzi, P.; Mollo, C. [INFN, Sezione di Napoli, Naples (Italy); Balasi, K.; Drakopoulou, E.; Markou, C.; Pikounis, K.; Siotis, I.; Stavropoulos, G.; Tzamariudaki, E. [Institute of Nuclear Physics, NCSR ' ' Demokritos' ' , Athens (Greece); Band, H.; Berbee, E.; Berkien, A.; Beveren, V. van; Boer Rookhuizen, H.; Bouwhuis, M.; Gajana, D.; Gebyehu, M.; Heijboer, A.; Heine, E.; Hoek, M. van der; Hogenbirk, J.; Jansweijer, P.; Kieft, G.; Kok, H.; Koopstra, J.; Korporaal, A.; Michael, T.; Mos, S.; Peek, H.; Schmelling, J.; Steijger, J.; Timmer, P.; Vermeulen, J.; Werneke, P.; Wiggers, L.; Zwart, A. [Nikhef, Amsterdam (Netherlands); Barbarino, G.; Barbato, F.; De Rosa, G.; Garufi, F.; Vivolo, D. [INFN, Sezione di Napoli, Naples (Italy); Universita ' Federico II' , Dipartimento di Fisica, Naples (Italy); Barbarito, E.; Ceres, A.; Circella, M.; Mongelli, M.; Sgura, I. [INFN, Sezione di Bari, Bari (Italy); Baret, B.; Baron, S.; Champion, C.; Colonges, S.; Creusot, A.; Galata, S.; Gracia Ruiz, R.; Kouchner, A.; Lindsey Clark, M.; Van Elewyck, V. [APC,Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Belias, A.; Rapidis, P.A.; Trapierakis, H.I. [Institute of Nuclear Physics, NCSR ' ' Demokritos' ' , Athens (Greece); National Observatory of Athens, NESTOR Institute for Deep Sea Research, Technology, and Neutrino Astroparticle Physics, Pylos (Greece); Berg, A.M. van den; Dorosti-Hasankiadeh, Q.; Hevinga, M.A.; Kavatsyuk, O.; Loehner, H.; Wooning, R.H.L. van [KVI-CART, University of Groningen, Groningen (Netherlands); Beverini, N. [INFN, Sezione di Pisa, Pisa (Italy); Universita di Pisa, Dipertimento di Fisica, Pisa (Italy); Biagi, S.; Cecchini, S.; Fusco, L.A.; Margiotta, A.; Spurio, M. [INFN, Sezione di Bologna, Bologna (Italy); Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Bianucci, S.; Bouhadef, B.; Calamai, M.; Morganti, M.; Raffaelli, F.; Terreni, G. [Universita di Pisa, Dipertimento di Fisica, Pisa (Italy); Birbas, A.; Bourlis, G.; Christopoulou, B.; Gizani, N.; Leisos, A.; Lenis, D.; Tsirigotis, A.; Tzamarias, S. [Hellenic Open University, School of Science and Technology, Patras (Greece); Bormuth, R.; Jong, M. de; Samtleben, D.F.E. [Nikhef, Amsterdam (Netherlands); Leiden University, Leiden Institute of Physics, Leiden (Netherlands); Bouche, V.; Fermani, P.; Masullo, R.; Perrina, C. [INFN, Sezione di Roma, Rome (Italy); Universita di Roma La Sapienza, Dipartimento di Fisica, Rome (Italy); Bozza, C.; Grella, G. [Universita ' Federico II' , Dipartimento di Fisica, Naples (Italy); Universita di Salerno, Dipartimento di Fisica, Fisciano (Italy); Bruijn, R.; Koffeman, E.; Wolf, E. de [Nikhef, Amsterdam (Netherlands); University of Amsterdam, Institute of Physics, Amsterdam (Netherlands); Cacopardo, G.; Caruso, F.; Cocimano, R.; Coniglione, R.; Costa, M.; Cuttone, G.; D' Amato, C.; D' Amico, A.; Distefano, C.; Grasso, R.; Grmek, A.; Imbesi, M.; Larosa, G.; Lattuada, D.; Migneco, E.; Miraglia, A.; Musumeci, M.; Orlando, A.; Papaleo, R.; Pellegrino, C.; Pellegriti, M.G.; Piattelli, P. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Collaboration: KM3NeT Collaboration; and others

    2014-09-15

    The first prototype of a photo-detection unit of the future KM3NeT neutrino telescope has been deployed in the deep waters of the Mediterranean Sea. This digital optical module has a novel design with a very large photocathode area segmented by the use of 31 three inch photomultiplier tubes. It has been integrated in the ANTARES detector for in-situ testing and validation. This paper reports on the first months of data taking and rate measurements. The analysis results highlight the capabilities of the new module design in terms of background suppression and signal recognition. The directionality of the optical module enables the recognition of multiple Cherenkov photons from the same {sup 40}K decay and the localisation of bioluminescent activity in the neighbourhood. The single unit can cleanly identify atmospheric muons and provide sensitivity to the muon arrival directions. (orig.)

  17. Detecting cheaters without thinking: testing the automaticity of the cheater detection module.

    Science.gov (United States)

    Van Lier, Jens; Revlin, Russell; De Neys, Wim

    2013-01-01

    Evolutionary psychologists have suggested that our brain is composed of evolved mechanisms. One extensively studied mechanism is the cheater detection module. This module would make people very good at detecting cheaters in a social exchange. A vast amount of research has illustrated performance facilitation on social contract selection tasks. This facilitation is attributed to the alleged automatic and isolated operation of the module (i.e., independent of general cognitive capacity). This study, using the selection task, tested the critical automaticity assumption in three experiments. Experiments 1 and 2 established that performance on social contract versions did not depend on cognitive capacity or age. Experiment 3 showed that experimentally burdening cognitive resources with a secondary task had no impact on performance on the social contract version. However, in all experiments, performance on a non-social contract version did depend on available cognitive capacity. Overall, findings validate the automatic and effortless nature of social exchange reasoning.

  18. Detecting cheaters without thinking: testing the automaticity of the cheater detection module.

    Directory of Open Access Journals (Sweden)

    Jens Van Lier

    Full Text Available Evolutionary psychologists have suggested that our brain is composed of evolved mechanisms. One extensively studied mechanism is the cheater detection module. This module would make people very good at detecting cheaters in a social exchange. A vast amount of research has illustrated performance facilitation on social contract selection tasks. This facilitation is attributed to the alleged automatic and isolated operation of the module (i.e., independent of general cognitive capacity. This study, using the selection task, tested the critical automaticity assumption in three experiments. Experiments 1 and 2 established that performance on social contract versions did not depend on cognitive capacity or age. Experiment 3 showed that experimentally burdening cognitive resources with a secondary task had no impact on performance on the social contract version. However, in all experiments, performance on a non-social contract version did depend on available cognitive capacity. Overall, findings validate the automatic and effortless nature of social exchange reasoning.

  19. Trial Run of a Junction-Box Attachment Test for Use in Photovoltaic Module Qualification (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.; Deibert, S.; Wohlgemuth, J.

    2014-06-01

    Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development and manufacturing process control. There are historical incidences of adverse effects (e.g., fires), caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp-heat', 'thermal-cycle', or 'creep' tests within the IEC qualification protocol is proposed to verify the basic robustness of the adhesion system. The details of the proposed test are described, in addition to a trial run of the test procedure. The described experiments examine 4 moisture-cured silicones, 4 foam tapes, and a hot-melt adhesive used in conjunction with glass, KPE, THV, and TPE substrates. For the purpose of validating the experiment, j-boxes were adhered to a substrate, loaded with a prescribed weight, and then subjected to aging. The replicate mock-modules were aged in an environmental chamber (at 85 deg C/85% relative humidity for 1000 hours; then 100 degrees C/<10% relative humidity for 200 hours) or fielded in Golden, Miami, and Phoenix for 1 year. Attachment strength tests, including pluck and shear test geometries, were also performed on smaller component specimens.

  20. Training-test module in the system of pedagogical control of physical fitness in lower grades

    Directory of Open Access Journals (Sweden)

    I.N. Peleshenko

    2014-06-01

    Full Text Available Purpose : to substantiate model characteristics of physical fitness of elementary school students of secondary schools through the introduction of training and test module in the pedagogical control. Material : the study involved 320 boys and 278 girls in grades 1-4 schools in Kharkov number number 57, 112, 166. Results : the level of physical fitness of elementary school students with available motor tests and the results are compared between the experimental data and control classes. Found that the introduction of educational test module in the process of physical education in the experimental classes has enhanced the level of physical fitness. In the experimental classes compared to the control classes, there was an increase of indicators (boys 22.2%, girls 24.6%. Conclusions : the introduction of educational test module in the pedagogical control for primary school pupils, will improve the physical fitness of children in the experimental classes, compared with controls, as well as to determine the averages on basic motor tests that can be used as a model characteristics of physical fitness.

  1. Pre-irradiation testing of actively cooled Be-Cu divertor modules

    Energy Technology Data Exchange (ETDEWEB)

    Linke, J.; Duwe, R.; Kuehnlein, W. [Forschungszentrum Juelich GmbH (Germany)] [and others

    1995-09-01

    A set of neutron irradiation tests is prepared on different plasma facing materials (PFM) candidates and miniaturized components for ITER. Beside beryllium the irradiation program which will be performed in the High Flux Reactor (HFR) in Petten, includes different carbon fiber composites (CFQ) and tungsten alloys. The target values for the neutron irradiation will be 0.5 dpa at temperatures of 350{degrees}C and 700{degrees}C, resp.. The post irradiation examination (PIE) will cover a wide range of mechanical tests; in addition the degradation of thermal conductivity will be investigated. To determine the high heat flux (HHF) performance of actively cooled divertor modules, electron beam tests which simulate the expected heat loads during the operation of ITER, are scheduled in the hot cell electron beam facility JUDITH. These tests on a selection of different actively cooled beryllium-copper and CFC-copper divertor modules are performed before and after neutron irradiation; the pre-irradiation testing is an essential part of the program to quantify the zero-fluence high heat flux performance and to detect defects in the modules, in particular in the brazed joints.

  2. Proceedings of the sixth international workshop on ceramic breeder blanket interactions

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji [ed.

    1998-03-01

    This report is the Proceedings of `the Sixth International Workshop on Ceramic Breeder Blanket Interactions` which was held as a workshop on ceramic breeders under Annex II of IEA Implementing Agreement on a Programme of Research and Development on Fusion Materials, and Japan-US Workshop 97FT4-01. This workshop was held in Mito city, Japan on October 22-24, 1997. About forty experts from EU, Japan, USA, and Chile attended the workshop. The scope of the workshop included the following: (1) fabrication and characterization of ceramic breeders, (2) properties data for ceramic breeders, (3) tritium release characteristics, (4) modeling of tritium behavior, (5) irradiation effects on performance behavior, (6) blanket design and R and D requirements, (7) hydrogen behavior in materials, and (8) blanket system technology and structural materials. In the workshop, information exchange was performed for fabrication technology of ceramic breeder pebbles in EU and Japan, data of various properties of Li{sub 2}TiO{sub 3}, tritium release behavior of Li{sub 2}TiO{sub 3} and Li{sub 2}ZrO{sub 3} including tritium diffusion, modeling of tritium release from Li{sub 2}ZrO{sub 3} in ITER condition, helium release behavior from Li{sub 2}O, results of tritium release irradiation tests of Li{sub 4}SiO{sub 4} pebbles in EXOTIC-7, R and D issues for ceramic breeders for ITER and DEMO blankets, etc. The 23 of the papers are indexed individually. (J.P.N.)

  3. Preliminary electromagnetic analysis of Helium Cooled Solid Blanket for CFETR by MAXWELL

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Cheng; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2016-11-15

    Highlights: • A FEM model of the blanket and magnetic system was built. • Electromagnetic forces and moments of the typical blanket for ferromagnetic and non-ferromagnetic materials were computed and analyzed. • Maxwell forces and Lorentz forces were computed and compared. • Eddy current in the blanket was analyzed under MD condition. - Abstract: A Helium Cooled Solid Blanket (HCSB) for CFETR (Chinese Fusion Engineering Test Reactor) was designed by USTC. The structural and thermal-hydraulic analysis has been carried out, while electromagnetic analysis was not carefully researched. In this paper, a FEM (finite element method) model of the HCSB was developed and electromagnetic forces as well as moments was computed by a FEM software called MAXWELL integrated in ANSYS Workbench. In the geometrical model, flow channels and small connecting parts were neglected because of the extreme complication and the reasonable conservative assumption by neglecting these circumstantial details. As for electromagnetic (EM) analysis, Lorentz forces due to eddy currents caused by main disruption and Maxwell forces due to the magnetization of RAFM steel (i.e. EUROFER97) were computed. Since the unavailability of the details of the plasma in CFETR, when disruptions happen, the condition where a linear current quench of main disruption occurs was assumed. The maximum magnitude of the electromagnetic forces was 356.45 kN and the maximum value of the coupled electromagnetic moments was 1899.40 N m around the radial direction. It is feasible to couple electromagnetic analysis, structural analysis and thermal-hydraulic analysis in the future since MAXWELL has good channels to exchange data between different analytic parts.

  4. Final tuning of the EPFL heating module for response tests; Finalisation du module de l'EPFL pour les tests de reponse

    Energy Technology Data Exchange (ETDEWEB)

    Lyesse, L.; Steinmann, G.

    2002-07-01

    Within this project, the heating equipment of the Swiss Federal Institute of Technology (EPFL), in Lausanne, carried out in 1998 to study the thermomechanical behavior of thermal piles, is optimized to also carry out response tests on the geothermal probes and to determine the thermal characteristics of soils (conductivity and heat capacity). The principal improvements made during this project are: a) the reduction of the volume of the heating equipment, necessary in order to facilitate the transport on the building sites, b) the control and the improvement of the insulation, c) a new range of power is currently available, d) the partial automation of the test with acquisition and data processing. A calibration of the various sensors was carried out in this new configuration. The results obtained showed that the transformation of the heating module improved the quality of measurements. This work also made it possible to carry out a complete and detailed procedure for response tests for a forthcoming accreditation of this test. A first response test with the new configuration was carried out successfully in the canton of St-Gallen. (author)

  5. Qualification and calibration tests of detector modules for the CMS Pixel Phase 1 upgrade

    Science.gov (United States)

    Zhu, D.; Backhaus, M.; Berger, P.; Meinhard, M.; Starodumov, A.; Tavolaro, V.

    2018-01-01

    In high energy particle physics, accelerator- and detector-upgrades always go hand in hand. The instantaneous luminosity of the Large Hadron Collider will increase to up to L = 2×1034cm‑2s‑1 during Run 2 until 2023. In order to cope with such luminosities, the pixel detector of the CMS experiment has been replaced early 2017. The so-called CMS Pixel phase 1 upgrade detector consists of 1184 modules with new design. An important production step is the module qualification and calibration, ensuring their proper functionality within the detector. This paper summarizes the qualification and calibration tests and results of modules used in the innermost two detector layers with focus on methods using module-internal calibration signals. Extended characterizations on pixel level such as electronic noise and bump bond connectivity, optimization of operational parameters, sensor quality and thermal stress resistance were performed using a customized setup with controlled environment. It could be shown that the selected modules have on average 0.55‰ ± 0.01‰ defective pixels and that all performance parameters stay within their specifications.

  6. Cryo-vacuum testing of the JWST Integrated Science Instrument Module (SPIE)

    Science.gov (United States)

    Kimble, Randy A.; Vila, M. Begona; Van Campen, Julie; Birkmann, Stephan M.; Comber, Brian J.; Fatig, Curtis C.; Glasse, Alistair C. H.; Glazer, Stuart D.; Kelly, Douglas M.; Mann, Steven D.; hide

    2016-01-01

    In late 2015/early 2016, a major cryo-vacuum test was carried out for the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST). This test comprised the final cryo-certification and calibration test of the ISIM, after its ambient environmental test program (vibration, acoustics, EMI/EMC), and before its delivery for integration with the rest of the JWST observatory. Over the 108-day period of the round-the-clock test program, the full complement of ISIM flight instruments, structure, harness radiator, and electronics were put through a comprehensive program of thermal, optical, electrical, and operational tests. The test verified the health and excellent performance of the instruments and ISIM systems, proving the ISIM element's readiness for integration with the telescope. We report here on the context, goals, setup, execution, and key results for this critical JWST milestone.

  7. Helium-Cooled Refractory Alloys First Wall and Blanket Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C.; Nygren, R.E.; Baxi, C.B.; Fogarty, P.; Ghoniem, N.; Khater, H.; McCarthy, K.; Merrill, B.; Nelson, B.; Reis, E.E.; Sharafat, S.; Schleicher, R.; Sze, D.K.; Ulrickson, M.; Willms, S.; Youssef, M.; Zinkel, S.

    1999-08-01

    Under the APEX program the He-cooled system design task is to evaluate and recommend high power density refractory alloy first wall and blanket designs and to recommend and initiate tests to address critical issues. We completed the preliminary design of a helium-cooled, W-5Re alloy, lithium breeder design and the results are reported in this paper. Many areas of the design were assessed, including material selection, helium impurity control, and mechanical, nuclear and thermal hydraulics design, and waste disposal, tritium and safety design. System study results show that at a closed cycle gas turbine (CCGT) gross thermal efficiency of 57.5%, a superconducting coil tokamak reactor, with an aspect ratio of 4, and an output power of 2 GWe, can be projected to have a cost of electricity at 54.6 mill/kWh. Critical issues were identified and we plan to continue the design on some of the critical issues during the next phase of the APEX design study.

  8. Cryo-Vacuum Testing of the Integrated Science Instrument Module for the James Webb Space Telescope

    Science.gov (United States)

    Kimble, Randy A.; Davila, P. S.; Drury, M. P.; Glazer, S. D.; Krom, J. R.; Lundquist, R. A.; Mann, S. D.; McGuffey, D. B.; Perry, R. L.; Ramey, D. D.

    2011-01-01

    With delivery of the science instruments for the James Webb Space Telescope (JWST) to Goddard Space Flight Center (GSFC) expected in 2012, current plans call for the first cryo-vacuum test of the Integrated Science Instrument Module (ISIM) to be carried out at GSFC in early 2013. Plans are well underway for conducting this ambitious test, which will perform critical verifications of a number of optical, thermal, and operational requirements of the IS 1M hardware, at its deep cryogenic operating temperature. We describe here the facilities, goals, methods, and timeline for this important Integration & Test milestone in the JWST program.

  9. Removal of residual dissolved methane gas in an upflow anaerobic sludge blanket reactor treating low-strength wastewater at low temperature with degassing membrane

    OpenAIRE

    Bandara, Wasala M.K.R.T.W.; Satoh, Hisashi; Sasakawa, Manabu; Nakahara, Yoshihito; Takahashi, Masahiro; Okabe, Satoshi

    2011-01-01

    In this study, we investigated the efficiency of dissolved methane (D-CH4) collection by degasification from the effluent of a bench-scale upflow anaerobic sludge blanket (UASB) reactor treating synthetic wastewater. A hollow-fiber degassing membrane module was used for degasification. This module was connected to the liquid outlet of the UASB reactor. After chemical oxygen demand (COD) removal efficiency of the UASB reactor became stable, D-CH4 discharged from the UASB reac...

  10. Overview of design activities for Li/V blankets

    Energy Technology Data Exchange (ETDEWEB)

    Sze, D.K.; Mattas, R.F.

    1997-12-31

    Recent fusion power plant design studies in the US have been conducted within the ARIES project. The most recent design of Li/V blankets was conducted as part of the ARIES-RS design. The ARIES-RS fusion power plant design study is based on reversed-shear (RS) physics with a Li/V (lithium breeder and vanadium structure) blanket. The reversed-shear discharge has been documented in many large tokamak experiments. The plasma in the RS mode has a high beta, low current, and low current drive requirement. Therefore, it is an attractive physics regime for a fusion power plant. The blanket system based on a Li/V has high temperature operating capability, good tritium breeding, excellent high heat flux removal capability, long structural life time, low activation, low after heat and good safety characteristics. For these reasons, the ARIES-RS reactor study selected Li/V as the reference blanket. The combination of attractive physics and attractive blanket engineering is expected to result in a superior power plant design.

  11. Analytical Models for Rotor Test Module, Strut, and Balance Frame Dynamics in the 40 by 80 Ft Wind Tunnel

    Science.gov (United States)

    Johnson, W.

    1976-01-01

    A mathematical model is developed for the dynamics of a wind tunnel support system consisting of a balance frame, struts, and an aircraft or test module. Data are given for several rotor test modules in the Ames 40 by 80 ft wind tunnel. A model for ground resonance calculations is also described.

  12. In-Situ Measurement of Power Loss for Crystalline Silicon Modules Undergoing Thermal Cycling and Mechanical Loading Stress Testing: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Spataru, Sergiu; Hacke, Pater; Sera, Dezso

    2015-09-15

    We analyze the degradation of multi-crystalline silicon photovoltaic modules undergoing simultaneous thermal, mechanical, and humidity stress testing to develop a dark environmental chamber in-situ measurement procedure for determining module power loss. From the analysis we determine three main categories of failure modes associated with the module degradation consisting of: shunting, recombination losses, increased series resistance losses, and current mismatch losses associated with a decrease in photo-current generation by removal of some cell areas due to cell fractures. Based on the analysis, we propose an in-situ module power loss monitoring procedure that relies on dark current-voltage measurements taken during the stress test, and initial and final module flash testing, to determine the power degradation characteristic of the module.

  13. Examination of a Junction-Box Adhesion Test for Use in Photovoltaic Module Qualification (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. C.; Wohlgemuth, J. H.

    2012-08-01

    Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development. There are historical incidences of adverse effects (e.g., fires) caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp heat' IEC qualification test is proposed to verify the basic robustness of its adhesion system. The details of the proposed test will be described, in addition to the preliminary results obtained using representative materials and components. The described discovery experiments examine moisture-cured silicone, foam tape, and hot-melt adhesives used in conjunction with PET or glass module 'substrates.' To be able to interpret the results, a set of material-level characterizations was performed, including thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. PV j-boxes were adhered to a substrate, loaded with a prescribed weight, and then placed inside an environmental chamber (at 85C, 85% relative humidity). Some systems did not remain attached through the discovery experiments. Observed failure modes include delamination (at the j-box/adhesive or adhesive/substrate interface) and phase change/creep. The results are discussed in the context of the application requirements, in addition to the plan for the formal experiment supporting the proposed modification to the qualification test.

  14. Examination of a Junction-Box Adhesion Test for Use in Photovoltaic Module Qualification: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. C.; Wohlgemuth, J. H.

    2012-08-01

    Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development. There are historical incidences of adverse effects (e.g., fires) caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp heat' IEC qualification test is proposed to verify the basic robustness of its adhesion system. The details of the proposed test will be described, in addition to the preliminary results obtained using representative materials and components. The described discovery experiments examine moisture-cured silicone, foam tape, and hot-melt adhesives used in conjunction with PET or glass module 'substrates.' To be able to interpret the results, a set of material-level characterizations was performed, including thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. PV j-boxes were adhered to a substrate, loaded with a prescribed weight, and then placed inside an environmental chamber (at 85C, 85% relative humidity). Some systems did not remain attached through the discovery experiments. Observed failure modes include delamination (at the j-box/adhesive or adhesive/substrate interface) and phase change/creep. The results are discussed in the context of the application requirements, in addition to the plan for the formal experiment supporting the proposed modification to the qualification test.

  15. Tests of Low-Noise MMIC Amplifier Module at 290 to 340 GHz

    Science.gov (United States)

    Gaier, Todd; Samoska, Lorene; Fung, King Man; Deal, William; Mei, Xiaobing; Lai, Richard

    2009-01-01

    A document presents data from tests of a low-noise amplifier module operating in the frequency range from 290 to 340 GHz said to be the highest-frequency low-noise, solid-state amplifier ever developed. The module comprised a three-stage monolithic microwave integrated circuit (MMIC) amplifier integrated with radial probe MMIC/waveguide transitions and contained in a compact waveguide package, all according to the concepts described in the immediately preceding article and in the referenced prior article, "Integrated Radial Probe Transition From MMIC to Waveguide" (NPO-43957), NASA Tech Briefs Vol. 31, No. 5 (May 2007), page 38. The tests included measurements by the Y-factor method, in which noise figures are measured repeatedly with an input noise source alternating between an "on" (hot-load) condition and an "off" (cold-load) condition. (The Y factor is defined as the ratio between the "on" and "off" noise power levels.) The test results showed that, among other things, the module exhibited a minimum noise figure of about 8.7 dB at 325 GHz and that the gain at that frequency under the bias conditions that produced the minimum noise figure was between about 9 and 10 dB.

  16. A Test Device Module of the Step Motor Driver for HANARO CAR Operation

    Energy Technology Data Exchange (ETDEWEB)

    Im, Yun-Taek; Doo, Seung-Gyu; Shin, Jin-Won; Kim, Ki-Hyun; Choi, Young-San; Lee, Jung-Hee; Kim, Hyung-Kyoo; Lee, Choong-Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The brand-new control system is reliable and has advantages compared with the old control system, and the installed system covers all functional operations of old system. Nevertheless, packaged RTP systems do not include a step motor or driver, and it is necessary to develop a proper test device to check the step motor and driver without using the RTP system. In particular, the operation of a CAR (Control Absorber Rod) requires many complicated procedures. Occasionally, it takes significant time to prepare for a field test. In this work, a test device module for a step motor diver is shown to emulate a HANARO CAR operation, and the test device system architecture, operational principle, and experiment results are presented. A commercial 8-bit μ-processor is applied to implement the device. A portable test device for HANARO CAR operation is presented. An 8-bit μ-controller is used to emulate a HANARO CAR operation. The digital interface, as well as the functional operation, of the test device module matches that of the currently used driver. This device can be used to check the functional validity of the step motor and driver.

  17. James Webb Space Telescope (JWST) Integrated Sciene Instrument Module (ISIM) Cryo-Vac 3 (CV3) Thermal Vacuum Test

    Science.gov (United States)

    Packard, Ed

    2016-01-01

    This presentation describes the test objectives, test summary, test configuration and test performance of the James Webb Space Telescope Integrated Science Instrument Module CryoVac 3 Thermal Vacuum Test. Verify the ISIM System in its final configuration after environmental exposure and provide a post-environmental performance baseline, including critical ground calibrations needed for science data processing in flight.

  18. Design, fabrication, and testing of a helium-cooled module for the ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Baxi, C.B.; Smith, J.P.; Youchison, D.

    1994-08-01

    The International Thermonuclear Reactor (ITER) will have a single-null divertor with total power flow of 200 MW and a peak heat flux of about 5 MW/m{sup 2}. The reference coolant for the divertor is water. However, helium is a viable alternative and offers advantages from safety considerations, such as excellent radiation stability and chemical inertness. In order to prove the feasibility of helium cooling at ITER relevant heat flux conditions, General Atomics designed, fabricated, and tested a helium-cooled divertor module. The module was made from dispersion strengthened copper, with a heat flux surface 25 mm wide and 80 mm long, designed for twice the ITER divertor heat flux. Different techniques were examined to enhance the heat transfer, which in turn reduced the flow and pumping power required to cool the module. It was concluded that an extended surface was the most practical solution. An optimization study was performed to find the best extended surface parameters. The optimum extended surface geometry consisted of fins: 10 mm high, 0.4 mm thick with a 1 mm pitch. It was estimated to require a pumping power of 150 W to remove 20 kW of power. This is more than an order of magnitude reduction in pumping power requirement, compared to smooth surface. The module was fabricated by electric discharge machining (EDM) process. The testing was carried out at SNLA during August 1993. The testing confirmed the design calculations. The peak heat flux during the test was 10 MW/m{sup 2} applied over a surface area of 20 cm{sup 2}. The pumping power calculated from flow rate and pressure drop measurement was about 160 W, which was less than 1% of the power removed. It is planned to test the module to higher temperature limits and higher heat fluxes during coming months. As a result of this effort we conclude that helium cooling of the ITER divertor is feasible without requiring a very large helium pressure or a large pumping power.

  19. Design of a Multi-Tube Pd-Membrane Module for Tritium Recovery from He in DEMO

    Directory of Open Access Journals (Sweden)

    Marco Incelli

    2016-10-01

    Full Text Available Dense self-supported Pd-alloy membranes are used to selectively separate hydrogen and hydrogen isotopes. In particular, deuterium (D and tritium (T are currently identified as the main elements for the sustainability of the nuclear fusion reaction aimed at carbon free power generation. In the fusion nuclear reactors, a breeding blanket produces the tritium that is extracted and purified before being sent to the plasma chamber in order to sustain the fusion reaction. In this work, the application of Pd-alloy membranes has been tested for recovering tritium from a solid breeding blanket through a helium purge stream. Several simulations have been performed in order to optimize the design of a Pd-Ag multi-tube module in terms of geometry, operating parameters, and membrane module configuration (series vs. parallel. The results demonstrate that a pre-concentration stage before the Pd-membrane unit is mandatory because of the very low tritium concentration in the He which leaves the breeding blanket of the fusion reactor. The most suitable operating conditions could be reached by: (i increasing the hydrogen partial pressure in the lumen side and (ii decreasing the shell pressure. The preliminary design of a membrane unit has been carried out for the case of the DEMO fusion reactor: the optimized membrane module consists of an array of 182 Pd-Ag tubes of 500 mm length, 10 mm diameter, and 0.100 mm wall thickness (total active area of 2.85 m2.

  20. 78 FR 26360 - Dominion Transmission Inc.; Prior Notice Activity Under Blanket Certificate

    Science.gov (United States)

    2013-05-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Dominion Transmission Inc.; Prior Notice Activity Under Blanket Certificate... blanket certificate issued in Docket No. G-1391. Dominion seeks authorization to replace pipeline...

  1. Testing Results and Prospects of Educational Module “Individualization and Personalization of Educational Work with Students of Different Types”

    Directory of Open Access Journals (Sweden)

    Zaslavskaya O.Y.

    2015-11-01

    Full Text Available The article presents the testing results of educational module “Individualization and Personalization of Educational Work with Students of Different Types” in pedagogical master program, Teacher education (secondary general education teacher training direction. The module based on the professional direction, involving the connection of the objectives, content, forms, tools, and educational results with the main educational results according to Federal State Educational standard, as well as the content of different professional activities of future teachers of secondary education, are contained in the professional standards of the teacher. We characterized the structure and content of module subjects, the kinds of master educational activity organization, assessment tools which were used for the module educational outcomes (competencies, job functions and teacher activity in master students. The article describes the changes and updates that have been made in teaching and guidance documents on the results of the module testing and presents the perspectives of module in master students training.

  2. Damage Tolerance Testing of a NASA TransHab Derivative Woven Inflatable Module

    Science.gov (United States)

    Edgecombe, John; delaFuente, Horacio; Valle, Gerard

    2009-01-01

    Current options for Lunar habitat architecture include inflatable habitats and airlocks. Inflatable structures can have mass and volume advantages over conventional structures. However, inflatable structures carry different inherent risks and are at a lower Technical Readiness Level (TRL) than more conventional metallic structures. One of the risks associated with inflatable structures is in understanding the tolerance to induced damage. The Damage Tolerance Test (DTT) is designed to study the structural integrity of an expandable structure. TransHab (Figure 1) was an experimental inflatable module developed at the NASA/Johnson Space Center in the 1990 s. The TransHab design was originally envisioned for use in Mars Transits but was also studied as a potential habitat for the International Space Station (ISS). The design of the TransHab module was based on a woven design using an Aramid fabric. Testing of this design demonstrated a high level of predictability and repeatability with analytical predictions of stresses and deflections. Based on JSC s experience with the design and analysis of woven inflatable structures, the Damage Tolerance Test article was designed and fabricated using a woven design. The DTT article was inflated to 45 psig, representing 25% of the ultimate burst pressure, and one of the one-inch wide longitudinal structural members was severed by initiating a Linear Shaped Charge (LSC). Strain gage measurements, at the interface between the expandable elements (straps) and the nonexpandable metallic elements for pre-selected longitudinal straps, were taken throughout pressurization of the module and strap separation. Strain gage measurements show no change in longitudinal strap loading at the bulkhead interface after strap separation indicating loads in the restraint layer were re-distributed local to the damaged area due to the effects of friction under high internal pressure loading. The test completed all primary objectives with better than

  3. Thermomechanical characterization of joints for blanket and divertor application processed by electrochemical plating

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Wolfgang; Lorenz, Julia; Konys, Jürgen; Basuki, Widodo; Aktaa, Jarir

    2016-11-01

    Highlights: • Electroplating is a relevant technology for brazing of blanket and divertor parts. • Tungsten, Eurofer and steel joints successfully fabricated. • Reactive interlayers improve adherence and reduce failure risks. • Qualification of joints performed by thermo-mechanical testing and aging. • Shear strength of joints comparable with conventionally brazing of steels. - Abstract: Fusion technology requires in the fields of first wall and divertor development reliable and adjusted joining processes of plasma facing tungsten to heat sinks or blanket structures. The components to be bonded will be fabricated from tungsten, steel or other alloys like copper. The parts have to be joined under functional and structural aspects considering the metallurgical interactions of alloys to be assembled and the filler materials. Application of conventional brazing showed lacks ranging from bad wetting of tungsten up to embrittlement of fillers and brazing zones. Thus, the deposition of reactive interlayers and filler components, e.g. Ni, Pd or Cu was initiated to overcome these metallurgical restrictions and to fabricate joints with aligned mechanical behavior. This paper presents results concerning the joining of tungsten, Eurofer and stainless steel for blanket and divertor application by applying electroplating technology. Metallurgical and mechanical characterization by shear testing were performed to analyze the joints quality and application limits in dependence on testing temperature between room temperature and 873 K and after thermal aging of up to 2000 h. The tested interlayers Ni and Pd enhanced wetting and enabled the processing of reliable joints with a shear strength of more than 200 MPa at RT.

  4. The beam test measurements of the Belle II vertex detector modules

    Science.gov (United States)

    Bilka, T.

    2017-03-01

    The Belle II experiment designed to study CP Violation and Beyond Standard model physics at the decays of B-mesons is quickly approaching its first physics run with the SuperKEKB accelerator (Tsukuba, Japan) already under commissioning. To operate in the unique conditions of the Belle II experiment, its vertex detector (VXD) is a six layers silicon detector with two innermost layers of DEPFET active pixel modules and four layers of double-sided strip modules. A section of it will become a commissioning detector for the first collisions of the next-generation high luminosity B-factory. The same setup, from cooling services, mechanical support or sensors and front-end electronics to DAQ, including the software and alignment framework, is tested under an electron beam provided by DESY facilities. We present the basic characteristics of the pixel and strip modules and the setup under test, including software and alignment framework—as close to the final system as possible.

  5. Estimating service lifetimes of a polymer encapsulant for photovoltaic modules from accelerated testing

    Energy Technology Data Exchange (ETDEWEB)

    Czanderna, A.W.; Pern, F.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    In this paper, most of the emphasis is on A9918 ethylene vinyl acetate (EVA) used commercially as the pottant for encapsulating photovoltaic (PV) modules, in which the efficiencies in field-deployed modules have been reduced by 10-70% in 4-12 years. Yet, projections were made by several different research groups in the 1980s that the EVA lifetime could range from 2-100 years. The authors (1) elucidate the complexity of the encapsulation problem, (2) indicate the performance losses reported for PV systems deployed since 1981, (3) critically assess the service lifetime predictions for EVA as a PV pottant based on studies by others for which they review the inherent errors in their assumptions about the Arrhenius relation, (4) show how degradation of minimodules in laboratory experiments that simulate reality can produce efficiency losses comparable to those in field-degraded PV modules reported in the literature, and (5) outline an acceptable methodology for making a service lifetime prediction of the polymer encapsulant, including the essential need for relating accelerated lifetime testing to real-time testing with a sufficient number of samples.

  6. Neutronic analysis of a dual He/LiPb coolant breeding blanket for DEMO

    OpenAIRE

    Catalán, J.P.; Ogando Serrano, Francisco; Sanz Gonzalo, Javier; Palermo, I.; Veredas, G.; Gómez Ros, J.M.; Sedano, L.

    2010-01-01

    A conceptual design of a DEMO fusion reactor is being developed under the Spanish Breeding Blanket Technology Programme: TECNO_FUS based on a He/LiPb dual coolant blanket as reference design option. The following issues have been analyzed to address the demonstration of the neutronic reliability of this conceptual blanket design: power amplification capacity of the blanket, tritium breeding capability for fuel self-sufficiency, power deposition due to nuclear heating in superconducting coils ...

  7. Alignment of the Pixel and SCT Modules for the 2004 ATLAS Combined Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    ATLAS Collaboration; Ahmad, A.; Andreazza, A.; Atkinson, T.; Baines, J.; Barr, A.J.; Beccherle, R.; Bell, P.J.; Bernabeu, J.; Broklova, Z.; Bruckman de Renstrom, P.A.; Cauz, D.; Chevalier, L.; Chouridou, S.; Citterio, M.; Clark, A.; Cobal, M.; Cornelissen, T.; Correard, S.; Costa, M.J.; Costanzo, D.; Cuneo, S.; Dameri, M.; Darbo, G.; de Vivie, J.B.; Di Girolamo, B.; Dobos, D.; Drasal, Z.; Drohan, J.; Einsweiler, K.; Elsing, M.; Emelyanov, D.; Escobar, C.; Facius, K.; Ferrari, P.; Fergusson, D.; Ferrere, D.; Flick,, T.; Froidevaux, D.; Gagliardi, G.; Gallas, M.; Gallop, B.J.; Gan, K.K.; Garcia, C.; Gavrilenko, I.L.; Gemme, C.; Gerlach, P.; Golling, T.; Gonzalez-Sevilla, S.; Goodrick, M.J.; Gorfine, G.; Gottfert, T.; Grosse-Knetter, J.; Hansen, P.H.; Hara, K.; Hartel, R.; Harvey, A.; Hawkings, R.J.; Heinemann, F.E.W.; Henss, T.; Hill, J.C.; Huegging, F.; Jansen, E.; Joseph, J.; Unel, M. Karagoz; Kataoka, M.; Kersten, S.; Khomich, A.; Klingenberg, R.; Kodys, P.; Koffas, T.; Konstantinidis, N.; Kostyukhin, V.; Lacasta, C.; Lari, T.; Latorre, S.; Lester, C.G.; Liebig, W.; Lipniacka, A.; Lourerio, K.F.; Mangin-Brinet, M.; Marti i Garcia, S.; Mathes, M.; Meroni, C.; Mikulec, B.; Mindur, B.; Moed, S.; Moorhead, G.; Morettini, P.; Moyse, E.W.J.; Nakamura, K.; Nechaeva, P.; Nikolaev, K.; Parodi, F.; Parzhitskiy, S.; Pater, J.; Petti, R.; Phillips, P.W.; Pinto, B.; Poppleton, A.; Reeves, K.; Reisinger, I.; Reznicek, P.; Risso, P.; Robinson, D.; Roe, S.; Rozanov, A.; Salzburger, A.; Sandaker, H.; Santi, L.; Schiavi, C.; Schieck, J.; Schultes, J.; Sfyrla, A.; Shaw, C.; Tegenfeldt, F.; Timmermans, C.J.W.P.; Toczek, B.; Troncon, C.; Tyndel, M.; Vernocchi, F.; Virzi, J.; Anh, T. Vu; Warren, M.; Weber, J.; Weber, M.; Weidberg, A.R.; Weingarten, J.; Wellsf, P.S.; Zhelezkow, A.

    2008-06-02

    A small set of final prototypes of the ATLAS Inner Detector silicon tracking system(Pixel Detector and SemiConductor Tracker), were used to take data during the 2004 Combined Test Beam. Data were collected from runs with beams of different flavour (electrons, pions, muons and photons) with a momentum range of 2 to 180 GeV/c. Four independent methods were used to align the silicon modules. The corrections obtained were validated using the known momenta of the beam particles and were shown to yield consistent results among the different alignment approaches. From the residual distributions, it is concluded that the precision attained in the alignmentof the silicon modules is of the order of 5 mm in their most precise coordinate.

  8. Alignment of the Pixel and SCT Modules for the 2004 ATLAS Combined Test Beam

    Science.gov (United States)

    Ahmad, A.; Andreazza, A.; Atkinson, T.; Baines, J.; Barr, A. J.; Beccherle, R.; Bell, P. J.; Bernabeu, J.; Broklova, Z.; Bruckman de Renstrom, P. A.; Cauz, D.; Chevalier, L.; Chouridou, S.; Citterio, M.; Clark, A.; Cobal, M.; Cornelissen, T.; Correard, S.; Costa, M. J.; Costanzo, D.; Cuneo, S.; Dameri, M.; Darbo, G.; de Vivie, J. B.; Di Girolamo, B.; Dobos, D.; Drasal, Z.; Drohan, J.; Einsweiler, K.; Elsing, M.; Emelyanov, D.; Escobar, C.; Facius, K.; Ferrari, P.; Fergusson, D.; Ferrere, D.; Flick, T.; Froidevaux, D.; Gagliardi, G.; Gallas, M.; Gallop, B. J.; Gan, K. K.; Garcia, C.; Gavrilenko, I. L.; Gemme, C.; Gerlach, P.; Golling, T.; Gonzalez-Sevilla, S.; Goodrick, M. J.; Gorfine, G.; Göttfert, T.; Grosse-Knetter, J.; Hansen, P. H.; Hara, K.; Härtel, R.; Harvey, A.; Hawkings, R. J.; Heinemann, F. E. W.; Henss, T.; Hill, J. C.; Huegging, F.; Jansen, E.; Joseph, J.; Karagöz Ünel, M.; Kataoka, M.; Kersten, S.; Khomich, A.; Klingenberg, R.; Kodys, P.; Koffas, T.; Konstantinidis, N.; Kostyukhin, V.; Lacasta, C.; Lari, T.; Latorre, S.; Lester, C. G.; Liebig, W.; Lipniacka, A.; Lourerio, K. F.; Mangin-Brinet, M.; Garcia, S. Marti i.; Mathes, M.; Meroni, C.; Mikulec, B.; Mindur, B.; Moed, S.; Moorhead, G.; Morettini, P.; Moyse, E. W. J.; Nakamura, K.; Nechaeva, P.; Nikolaev, K.; Parodi, F.; Parzhitskiy, S.; Pater, J.; Petti, R.; Phillips, P. W.; Pinto, B.; Poppleton, A.; Reeves, K.; Reisinger, I.; Reznicek, P.; Risso, P.; Robinson, D.; Roe, S.; Rozanov, A.; Salzburger, A.; Sandaker, H.; Santi, L.; Schiavi, C.; Schieck, J.; Schultes, J.; Sfyrla, A.; Shaw, C.; Tegenfeldt, F.; Timmermans, C. J. W. P.; Toczek, B.; Troncon, C.; Tyndel, M.; Vernocchi, F.; Virzi, J.; Anh, T. Vu; Warren, M.; Weber, J.; Weber, M.; Weidberg, A. R.; Weingarten, J.; Wells, P. S.; Zhelezko, A.

    2008-09-01

    A small set of final prototypes of the ATLAS Inner Detector silicon tracking system (Pixel Detector and SemiConductor Tracker), were used to take data during the 2004 Combined Test Beam. Data were collected from runs with beams of different flavour (electrons, pions, muons and photons) with a momentum range of 2 to 180 GeV/c. Four independent methods were used to align the silicon modules. The corrections obtained were validated using the known momenta of the beam particles and were shown to yield consistent results among the different alignment approaches. From the residual distributions, it is concluded that the precision attained in the alignment of the silicon modules is of the order of 5 μm in their most precise coordinate.

  9. A ceramic breeder in a poloidal tube blanket for a tokamak reactor

    Energy Technology Data Exchange (ETDEWEB)

    Amici, A.; Anzidei, L.; Gallina, M.; Rado, V.; Simbolotti, G.; Violante, V.; Zampaglione, V.; Petrizzi, L. (Associazione Euratom-CNEN sulla Fusione, Centro di Frascati (Italy))

    1989-04-01

    A conceptual study of a helium-cooled solid breeder blanket for a tokamak reactor is presented. Tritium breeding capability together with system reliability are taken as the main design criteria. The blanket consists of tubular poloidal modules made of a central bundle of ceramic rods ({gamma}LiAlO/sub 2/) with a coaxial distribution of the inlet/outlet coolant flow (He) surrounded by a multiplier material (Be) in the form of bored bricks. The Be to {gamma}LiAlO/sub 2/ volume ratio is 4/1. The He inlet and outlet branches are cooling Be and {gamma}LiAlO/sub 2/, respectively. A purge He flow running through small central holes of the ceramic rods is derived from the main flow. Under the typical conditions of a tokamak reactor (neutron wall load=2 MW/m/sup 2/), a full coverage tritium breeding ratio of 1.47 is achieved for the following design and operating parameters: outlet He temperature=570/sup 0/C; inlet He temperature=250/sup 0/; total extracted power=2700 MW; He pumping power percentage=2%; minimum/maximum {gamma}LiAlO/sub 2/ temperature=400/900/sup 0/C; maximum structural temperature=475/sup 0/C; and maximum Be temperature=525/sup 0/C. (orig.).

  10. Free-free and fixed base modal survey tests of the Space Station Common Module Prototype

    Science.gov (United States)

    Driskill, T. C.; Anderson, J. B.; Coleman, A. D.

    This paper describes the testing aspects and the problems encountered during the free-free and fixed base modal surveys completed on the original Space Station Common Module Prototype (CMP). The CMP is a 40-ft long by 14.5-ft diameter 'waffle-grid' cylinder built by the Boeing Company and housed at the Marshall Space Flight Center (MSFC) near Huntsville, AL. The CMP modal survey tests were conducted at MSFC by the Dynamics Test Branch. The free-free modal survey tests (June '90 to Sept. '90) included interface verification tests (IFVT), often referred to as impedance measurements, mass-additive testing and linearity studies. The fixed base modal survey tests (Feb. '91 to April '91), including linearity studies, were conducted in a fixture designed to constrain the CMP in 7 total degrees-of-freedom at five trunnion interfaces (two primary, two secondary, and the keel). The fixture also incorporated an airbag off-load system designed to alleviate the non-linear effects of friction in the primary and secondary trunnion interfaces. Numerous test configurations were performed with the objective of providing a modal data base for evaluating the various testing methodologies to verify dynamic finite element models used for input to coupled load analysis.

  11. Free-free and fixed base modal survey tests of the Space Station Common Module Prototype

    Science.gov (United States)

    Driskill, T. C.; Anderson, J. B.; Coleman, A. D.

    1992-01-01

    This paper describes the testing aspects and the problems encountered during the free-free and fixed base modal surveys completed on the original Space Station Common Module Prototype (CMP). The CMP is a 40-ft long by 14.5-ft diameter 'waffle-grid' cylinder built by the Boeing Company and housed at the Marshall Space Flight Center (MSFC) near Huntsville, AL. The CMP modal survey tests were conducted at MSFC by the Dynamics Test Branch. The free-free modal survey tests (June '90 to Sept. '90) included interface verification tests (IFVT), often referred to as impedance measurements, mass-additive testing and linearity studies. The fixed base modal survey tests (Feb. '91 to April '91), including linearity studies, were conducted in a fixture designed to constrain the CMP in 7 total degrees-of-freedom at five trunnion interfaces (two primary, two secondary, and the keel). The fixture also incorporated an airbag off-load system designed to alleviate the non-linear effects of friction in the primary and secondary trunnion interfaces. Numerous test configurations were performed with the objective of providing a modal data base for evaluating the various testing methodologies to verify dynamic finite element models used for input to coupled load analysis.

  12. Examination of the Structural Response of the Orion European Service Module to Reverberant and Direct Field Acoustic Testing

    Science.gov (United States)

    McNelis, Mark E.; Hughes, William O.; Larko, Jeffrey M.; Bittinger, Samantha A.; Le-Plenier, Cyprien; Fogt, Vincent A.; Ngan, Ivan; Thirkettle, Anthony C.; Skinner, Mitch; Larkin, Paul

    2017-01-01

    The NASA Orion Multi-Purpose Crew Vehicle (MPCV), comprised of the Service Module, the Crew Module, and the Launch Abort System, is the next generation human spacecraft designed and built for deep space exploration. Orion will launch on NASAs new heavy-lift rocket, the Space Launch System. The European Space Agency (ESA) is responsible for providing the propulsion sub-assembly of the Service Module to NASA, called the European Service Module (ESM). The ESM is being designed and built by Airbus Safran Launchers for ESA. Traditionally, NASA has utilized reverberant acoustic testing for qualification of spaceflight hardware. The ESM Structural Test Article (E-STA) was tested at the NASA Plum Brook Stations (PBS) Reverberant Acoustic Test Facility in April-May 2016. However, Orion is evaluating an alternative acoustic test method, using direct field acoustic excitation, for the MPCVs Service Module and Crew Module. Lockheed Martin is responsible for the Orion proof-of-concept direct field acoustic test program. The E-STA was exposed to direct field acoustic testing at NASA PBS in February 2017. This paper compares the dynamic response of the E-STA structure and its components to both the reverberant and direct field acoustic test excitations. Advantages and disadvantages of direct field acoustic test excitation method are discussed.

  13. Development and application of a UV light source for PV-module testing

    Science.gov (United States)

    Koehl, Michael; Philipp, Daniel; Lenck, Norbert; Zundel, Matthias

    2009-08-01

    Photovoltaic (PV)-modules are exposed to solar irradiation, which includes Ultra-violet (UV) light. UV light is wellknown as degradation factor for polymeric materials, as used for encapsulation of PV-cells. Therefore they are protected by UV-filtering glass or UV protecting additives. The UV-stability is only tested on a very low level (total UV energy of 15kWh/m2) according to the actual type approval standards (IEC 61215, IEC61646, e.g.). An undefined acceleration is provided by the testing temperature of 60°C. The real UV-dose can reach more than 120 kWh/m2 per year, however. The module-temperature during high UV-irradiation ranges between 40°C and 60°C, usually. The main reason for the inadequate test conditions is the lack of well-defined and inexpensive UV-light sources and therefore small test capacities. We developed an UV-radiation unit based on fluorescence tubes, which have the advantage of low visible and NIR irradiation avoiding overheating of the samples. The spectral irradiation is solar-like in the short-wavelength UV and lower in the long-wavelength UV, with a limited number of disturbing emission-lines. The design of the unit has been optimized for high UV-intensities up to 5X and usage on both sides. Our prototype has an area of 1.7m * 3m, which yields an usable testing area of 6m *1.7m. The unit is designed for usage in humid ambient in a temperature range up to 90°C for the future development of combined damp-heat and UV tests, in order to get the tests closer to reality.

  14. Design requirement on KALIMER blanket fuel assembly duct

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Kang, H. Y.; Nam, C.; Kim, J. O

    1998-03-01

    This document describes design requirements which are needed for designing the blanket fuel assembly duct of the KALIMER as design guidance. The blanket fuel assembly duct of the KALIMER consists of fuel rods, mounting rail, nosepiece, duct with pad, handling socket with pad. Blanket fuel rod consists of top end plug, bottom end plug with solid ferritic-martensitic steel rod and key way blanket fuel slug, cladding, and wire wrap. In the assembly, the rods are in a triangular pitch array, and the rod bundle is attached to the nosepiece with mounting rails. The bottom end of the assembly duct is formed by a long nosepiece which provides the lower restraint function and the paths for coolant inlet. This report contains functional requirements, performance and operational requirements, interfacing systems requirements, core restraint and interface requirements, design limits and strength requirements, system configuration and essential feature requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements. (author). 20 refs., 4 figs.

  15. Optimization of up-flow anaerobic sludge blanket reactor for ...

    African Journals Online (AJOL)

    aghomotsegin

    2013-06-05

    Jun 5, 2013 ... Key words: Composite wastewater, up-flow anaerobic sludge blanket (UASB), anaerobic biological treatment, biogas, granulated anaerobic ... collected from the top of the reactor to a flexible water-filled gasholder fitted with .... changes in microbial diversity in biogranules in response to changes in nature ...

  16. Thermal-hydraulic analysis of low activity fusion blanket designs

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J A; Powell, J; Yu, W S

    1977-01-01

    The heat transfer aspects of fusion blankets are considered where: (a) conduction and (b) boiling and condensation are the dominant heat transfer mechanisms. In some cases, unique heat transfer problems arise and additional heat transfer data and analyses may be required.

  17. First-wall/blanket materials selection for STARFIRE tokamak reactor

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Mattas, R.F.; Clemmer, R.G.; Davis, J.W.

    1980-01-01

    The development of the reference STARFIRE first-wall/blanket design involved numerous trade-offs in the materials selection process for the breeding material, coolant structure, neutron multiplier, and reflector. The major parameters and properties that impact materials selection and design criteria are reviewed.

  18. Ecohydrological analysis of a groundwater influenced blanket bog: occurrence of Schoenus nigricans in Roundstone Bog, Connemara, Ireland

    Directory of Open Access Journals (Sweden)

    A.P. Grootjans

    2016-04-01

    Full Text Available Since the late 1960s, the occurrence of Schoenus nigricans in Irish blanket bogs has been attributed to inputs of salt spray to the blanket bogs, due to their proximity to the coast and the predominant westerly winds from the Atlantic Ocean. To test this hypothesis we carried out an ecohydrological field study at a large blanket bog in the western part of Connemara, Ireland. We described peat profiles in two transects and sampled pore water from peat at different depths. The water samples were analysed and their macro-ionic composition was used to locate possible inputs of calcareous groundwater to the system. We found clear evidence for inflow of calcareous groundwater at various sites and depths. Inflow of rather base-rich groundwater was indicated by high values of electrical conductivity (EC, high contents of calcium and bicarbonate, and high pH of the pore water. The peat profiles contained macro-remains of reed (Phragmites australis, in most cases only in deeper layers of peat, but at one location throughout the profile. This is another indication that the blanket bog was a groundwater-fed fen for quite some time. We conclude that the occurrence of S. nigricans in the blanket bog studied could be well explained by the hypothesis that S. nigricans is a relic from former more base-rich conditions. Relatively high base saturation could have persisted due to the prevailing groundwater flow in the upper layers preventing decalcification or other loss of cations from the whole soil profile including the topsoil.

  19. Cryo Testing of tbe James Webb Space Telescope's Integrated Science Instrument Module

    Science.gov (United States)

    VanCampen, Julie

    2004-01-01

    The Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope will be integrated and tested at the Environmental Test Facilities at Goddard Space Flight Center (GSFC). The cryogenic thermal vacuum testing of the ISIM will be the most difficult and problematic portion of the GSFC Integration and Test flow. The test is to validate the coupled interface of the science instruments and the ISIM structure and to sufficiently stress that interface while validating image quality of the science instruments. The instruments and the structure are not made from the same materials and have different CTE. Test objectives and verification rationale are currently being evaluated in Phase B of the project plan. The test program will encounter engineering challenges and limitations, which are derived by cost and technology many of which can be mitigated by facility upgrades, creative GSE, and thorough forethought. The cryogenic testing of the ISIM will involve a number of risks such as the implementation of unique metrology techniques, mechanical, electrical and optical simulators housed within the cryogenic vacuum environment. These potential risks are investigated and possible solutions are proposed.

  20. Oxide fuel element and blanket element development programs. Quarterly progress report, April-June 1978

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    Approval-in-principle has been granted for run beyond breach experiment XY-2, which will incorporate an F11A series rod. Fuel microstructures and operating parameters have been tabulated for 118 specimens from the F20 power to melt experiment. Retained gas measurements have been compiled indicating 36-50 ..mu..l/gm in this high power fuel. Topical report GEFR-00367 was prepared describing F20 results. Preparation of the Test Design Description for axial blanket experiment AB-1 is proceeding on schedule (for Cycle 2 irradiation). The safety analysis calculations, showing no fuel melting nor sodium boiling in design-basis upsets, have been completed.

  1. Completion of an Online Library Module Improves Engineering Student Performance on Information Literacy Skills Tests

    Directory of Open Access Journals (Sweden)

    Rachel E. Scott

    2016-12-01

    Full Text Available A Review of: Zhang, Q., Goodman, M., & Xie, S. (2015. Integrating library instruction into the Course Management System for a first-year engineering class: An evidence-based study measuring the effectiveness of blended learning on students’ information literacy levels. College & Research Libraries, 76(7, 934-958. http://dx.doi.org/10.5860/crl.76.7.934 Objective – To assess the efficacy of an online library module and of blended learning methods on students’ information literacy skills. Design – Multi-modal, pre- and posttests, survey questionnaire, and focus groups. Setting – Public research university in London, Ontario, Canada. Subjects – First-year engineering students. Methods – Of 413 students enrolled in Engineering Science (ES 1050, 252 volunteered to participate in the study. Participants were asked to complete the online module, a pretest, a posttest, an online follow-up survey, and to take part in a focus group. Researchers generated a pretest and a posttest, each comprised of 15 questions:; multiple choice, true or false, and matching questions which tested students’ general and engineering-specific information literacy skills. The pretest and posttest had different, but similarly challenging, questions to ensure that students involved in the study would not have an advantage over those who had opted out. While all components of the study were voluntary, the posttest was a graded course assignment. In-person tutorials were offered on 4 occasions, with only 15 students participating. Both tutorial and module content were designed to cover all questions and competencies tested in the pretest and the posttest, including Boolean operators, peer review, identifying plagiarism, engineering standards, engineering handbooks, search strategies, patents, article citations, identifying reliable sources, and how to read journal articles. The posttest survey was delivered in the CMS immediately after the posttest was completed. It

  2. Validation Tests of Prediction Modules of Shrinkage Defects in Cast Iron Sample

    Directory of Open Access Journals (Sweden)

    Hajkowski J.

    2017-03-01

    Full Text Available The paper presents the results of experimental-simulation tests of expansion-shrinkage phenomena occurring in cast iron castings. The tests were based on the standard test for inspecting the tendency of steel-carbon alloys to create compacted discontinuities of the pipe shrinkage type. The cast alloy was a high-silicone ductile iron of GJS - 600 - 10 grade. The validation regarding correctness of prognoses of the shrinkage defects was applied mostly to the simulation code (system NovaFlow & Solid CV (NFS CV. The obtained results were referred to the results obtained using the Procast system (macro- and micromodel. The analysis of sensitivity of the modules responsible for predicting the shrinkage discontinuities on selected pre-processing parameters was performed, focusing mostly on critical fractions concerning the feeding flows (mass and capillary and variation of initial temperature of the alloy in the mould and heat transfer coefficient (HTC on the casting - chill interface.

  3. Fixed Base Modal Survey of the MPCV Orion European Service Module Structural Test Article

    Science.gov (United States)

    Winkel, James P.; Akers, J. C.; Suarez, Vicente J.; Staab, Lucas D.; Napolitano, Kevin L.

    2017-01-01

    Recently, the MPCV Orion European Service Module Structural Test Article (E-STA) underwent sine vibration testing using the multi-axis shaker system at NASA GRC Plum Brook Station Mechanical Vibration Facility (MVF). An innovative approach using measured constraint shapes at the interface of E-STA to the MVF allowed high-quality fixed base modal parameters of the E-STA to be extracted, which have been used to update the E-STA finite element model (FEM), without the need for a traditional fixed base modal survey. This innovative approach provided considerable program cost and test schedule savings. This paper documents this modal survey, which includes the modal pretest analysis sensor selection, the fixed base methodology using measured constraint shapes as virtual references and measured frequency response functions, and post-survey comparison between measured and analysis fixed base modal parameters.

  4. Plant Growth Research for Food Production: Development and Testing of Expandable Tuber Growth Module

    Science.gov (United States)

    Cordova, Brennan A.

    2017-01-01

    Controlled and reliable growth of a variety of vegetable crops is an important capability for manned deep space exploration systems for providing nutritional supplementation and psychological benefits to crew members. Because current systems have been limited to leafy vegetables that require minimal root space, a major goal for these systems is to increase their ability to grow new types of crops, including tuber plants and root vegetables that require a large root space. An expandable root zone module and housing was developed to integrate this capability into the Vegetable Production System (Veggie). The expandable module uses a waterproof, gas-permeable bag with a structure that allows for root space to increase vertically throughout the growth cycle to accommodate for expanding tuber growth, while minimizing the required media mass. Daikon radishes were chosen as an ideal tuber crop for their subterraneous tuber size and rapid growth cycle, and investigations were done to study expanding superabsorbent hydrogels as a potential growth media. These studies showed improved water retention, but restricted oxygen availability to roots with pure gel media. It was determined that these hydrogels could be integrated in lower proportions into standard soil to achieve media expansion and water retention desired. Using the constructed module prototype and ideal gel and soil media mixture, daikon radishes are being grown in the system to test the capability and success of the system through a full growth cycle.

  5. Translation and focus group testing of the WHOQOL spirituality, religiousness, and personal beliefs module in Norway.

    Science.gov (United States)

    Berg Torskenæs, Kristina; Kalfoss, Mary H

    2013-03-01

    The purpose of this study is to describe the Norwegian translation of the World Health Organization Quality of Life Spirituality, Religiousness, and Personal Beliefs module. This is an exploratory study using convenience sampling. Translation has followed the World Health Organization's standardized protocol. Six focus groups were recruited from six geographical regions in southeastern Norway: three groups of health professionals (n = 18) and three groups of patients (n = 15). All facets and items were found to be culturally relevant. The facet awe underwent three literary changes, spiritual strength two, and meaning, inner peace, and faith underwent one change each. The facets spiritual connection, wholeness, and integration and hope and optimism did not undergo any changes. The facets spiritual connection, meaning in life, experiences of awe, and wholeness and integration displayed the strongest discriminatory power. Internal consistency reliability of the overall module tested with Cronbach's alpha was high (α = .93). Translating questionnaires and adapting them in comprehensible forms, while maintaining the meaning of the original items, is a challenge in holistic nursing. Even though certain difficulties in comprehension were revealed, the results of this study indicate that all facets and items on the Spirituality, Religiousness, and Personal Beliefs module were equally important.

  6. Low-Speed Flight Dynamic Tests and Analysis of the Orion Crew Module Drogue Parachute System

    Science.gov (United States)

    Hahne, David E.; Fremaux, C. Michael

    2008-01-01

    A test of a dynamically scaled model of the NASA Orion Crew Module (CM) with drogue parachutes was conducted in the NASA-Langley 20-Foot Vertical Spin Tunnel. The primary test objective was to assess the ability of the Orion Crew Module drogue parachute system to adequately stabilize the CM and reduce angular rates at low subsonic Mach numbers. Two attachment locations were tested: the current design nominal and an alternate. Experimental results indicated that the alternate attachment location showed a somewhat greater tendency to attenuate initial roll rate and reduce roll rate oscillations than the nominal location. Comparison of the experimental data to a Program To Optimize Simulated Trajectories (POST II) simulation of the experiment yielded results for the nominal attachment point that indicate differences between the low-speed pitch and yaw damping derivatives in the aerodynamic database and the physical model. Comparisons for the alternate attachment location indicate that riser twist plays a significant role in determining roll rate attenuation characteristics. Reevaluating the impact of the alternate attachment points using a simulation modified to account for these results showed significantly reduced roll rate attenuation tendencies when compared to the original simulation. Based on this modified simulation the alternate attachment point does not appear to offer a significant increase in allowable roll rate over the nominal configuration.

  7. Single Event Effects Testing of the Linfinity SG1525A Pulse Width Modulator Controller

    Science.gov (United States)

    Howard, J. W., Jr.; Carts, M. A.; LaBel, K. A.; Forney, J. D.; Irwin, T. L.

    2003-01-01

    Pulse Width Modulator (PWM) Controllers are the heart of switching power supply systems in development today. The PWMs considered here have the same integration advantages as many other controllers but it also includes the interface drivers for the follow-on power Field Effect Transistors (FET). Previous work on these types of devices looked into the required test methodologies [ 11 and the impact of radiation on the soft start and shutdown circuits of typically incorporated in the technology [2]. Taking advantage of this previous work this study was undertaken to determine the single event destructive and transient susceptibility of the Linfinity SG1525A Pulse Width Modulator Controller. The device was monitored for transient interruptions in the output signals and for destructive events induced by exposing it to a heavy ion beam at the Texas A&M University Cyclotron Single Event Effects Test Facility. After exposing these devices to the beam, a new upset mode has been identified that can lead to catastrophic power supply system failure if this event would occur while drive power FETs off the two device outputs. The devices and the test methods used will be described first. This will be followed by a brief description of the data collected to date (not all data can be presented with the length constraints of the summary) and a summary of the key results.

  8. Extended Pulse-Powered Humidity-Freeze Cycling for Testing Module-Level Power Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Hacke, Peter L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rodriguez, Miguel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kempe, Michael D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Repins, Ingrid L [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-28

    An EMI suppression capacitor (polypropylene film type) failed by 'popcorning' due to vapor outgassing in pulse powered humidity-freeze cycles. No shorts or shunts could be detected despite mildly corroded metallization visible in the failed capacitor. Humidity-freeze cycling is optimized to break into moisture barriers. However, further studies will be required on additional module level power electronic (MLPE) devices to optimize the stress testing for condensation to precipitate any weakness to short circuiting and other humidity/bias failure modes.

  9. Integrated testing strategies (ITS) for bioaccumulation: hierarchical scheme of chemistrydriven modules and definition of applicability domains

    DEFF Research Database (Denmark)

    Nendza, M.; Scheringer, M.; Strempel, S.

    2011-01-01

    The efficient assessment of the bioaccumulation potential of chemicals under REACH with integrated test strategies (ITS) requires multiple tools. Existing data have to be searched and information from chemical structures and physico-chemical properties need to be evaluated prior to considering...... for chemical registration. The alternative ITS modules share three major objectives to save time and money by reducing the number of experimental animals required to come to a conclusion about the bioaccumulation potential of chemicals under REACH: · Classification of non-B/B/vB-compounds · Omission of BCF...

  10. Use of Nuclear Data Sensitivity and Uncertainty Analysis for the Design Preparation of the HCLL Breeder Blanket Mockup Experiment for ITER

    Directory of Open Access Journals (Sweden)

    I. Kodeli

    2008-01-01

    Full Text Available An experiment on a mockup of the test blanket module based on helium-cooled lithium lead (HCLL concept will be performed in 2008 in the Frascati Neutron Generator (FNG in order to study neutronics characteristics of the module and the accuracy of the computational tools. With the objective to prepare and optimise the design of the mockup in the sense to provide maximum information on the state-of-the-art of the cross-section data the mockup was pre-analysed using the deterministic codes for the sensitivity/uncertainty analysis. The neutron fluxes and tritium production rate (TPR, their sensitivity to the underlying basic cross-sections, as well as the corresponding uncertainties were calculated using the deterministic transport codes (DOORS package, the sensitivity/uncertainty code package SUSD3D, and the VITAMINJ/ COVA covariance matrix libraries. The cross-section reactions with largest contribution to the uncertainty of the calculated TPR were identified to be (n,2n and (n,3n reactions on lead. The conclusions of this work support the main benchmark design and suggest some modifications and improvements. In particular this study recommends the use, as far as possible, of both natural and enriched lithium pellets for the TRP measurements. The combined use is expected to provide additional and complementary information on the sensitive cross-sections.

  11. Stiffness, intralimb coordination, and joint modulation during a continuous vertical jump test.

    Science.gov (United States)

    Dal Pupo, Juliano; Dias, Jonathan Ache; Gheller, Rodrigo Ghedini; Detanico, Daniele; dos Santos, Saray Giovana

    2013-09-01

    This study analysed the modulation of jump performance, vertical stiffness as well as joint and intralimb coordination throughout a 30-s vertical jump test. Twenty male athletes performed the test on a force plate while undergoing kinematic analysis. Jump height, power output, ground contact time, vertical stiffness, maximum knee and hip flexion angles, and coordination by continuous relative phase (CRP) were analysed. Analysis of variance was used to compare variables within deciles, and t-tests were used to compare CRP data between the initial and final jumps. Results showed reduction in jump height, power output, and vertical stiffness, with an increase in contact time found during the test. Maximum knee and hip flexion angles declined, but hip angle decreased earlier (10-20% of the test) than knee angle (90-100%). No changes were observed in CRP for thigh-leg coupling when comparing initial and final jumps, but the trunk-thigh coupling was more in-phase near the end of the test. We conclude that fatigue causes reduction in jump performance, as well as changes in stiffness and joint angles. Furthermore, changes in intralimb coordination appear at the last 10% of the test, suggesting a neuromotor mechanism to counterbalance the loss of muscle strength.

  12. Testing and Analysis for Lifetime Prediction of Crystalline Silicon PV Modules Undergoing Degradation by System Voltage Stress: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hacke, P.; Smith, R.; Terwiliger, K.; Glick, S.; Jordan, D.; Johnston, S.; Kempe, M.; Kurtz, S.

    2012-07-01

    Acceleration factors are calculated for crystalline silicon PV modules under system voltage stress by comparing the module power during degradation outdoors to that in accelerated testing at three temperatures and 85% relative humidity. A lognormal analysis is applied to the accelerated lifetime test data considering failure at 80% of the initial module power. Activation energy of 0.73 eV for the rate of failure is determined, and the probability of module failure at an arbitrary temperature is predicted. To obtain statistical data for multiple modules over the course of degradation in-situ of the test chamber, dark I-V measurements are obtained and transformed using superposition, which is found well suited for rapid and quantitative evaluation of potential-induced degradation. It is determined that shunt resistance measurements alone do not represent the extent of power degradation. This is explained with a two-diode model analysis that shows an increasing second diode recombination current and ideality factor as the degradation in module power progresses. Failure modes of the modules stressed outdoors are examined and compared to those stressed in accelerated tests.

  13. Optimization of the breeder zone cooling tubes of the DEMO Water-Cooled Lithium Lead breeding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A.; Arena, P.; Bongiovì, G. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy); Chiovaro, P., E-mail: pierluigi.chiovaro@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy); Del Nevo, A. [ENEA Brasimone, Camugnano, BO (Italy); Forte, R. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy)

    2016-11-01

    Highlights: • Determination of an optimal configuration for the breeder zone cooling tubes. • Attention has been focused on the toroidal–radial breeder zone cooling tubes lay out. • A theoretical-computational approach based on the Finite Element Method (FEM) has been followed, adopting a qualified commercial FEM code. • Five different configurations have been investigated to optimize the breeder zone cooling tubes arrangement fulfilling all the rules prescribed by safety codes. - Abstract: The determination of an optimal configuration for the breeder zone (BZ) cooling tubes is one of the most important issues in the DEMO Water-Cooled Lithium Lead (WCLL) breeding blanket R&D activities, since BZ cooling tubes spatial distribution should ensure an efficient heat power removal from the breeder, avoiding hotspots occurrence in the thermal field. Within the framework of R&D activities supported by the HORIZON 2020 EUROfusion Consortium action on the DEMO WCLL breeding blanket design, a campaign of parametric analyses has been launched at the Department of Energy, Information Engineering and Mathematical Models of the University of Palermo (DEIM), in close cooperation with ENEA-Brasimone, in order to assess the potential influence of BZ cooling tubes number on the thermal performances of the DEMO WCLL outboard breeding blanket equatorial module under the nominal steady state operative conditions envisaged for it, optimizing their geometric configuration and taking also into account that a large number of cooling pipes can deteriorate the tritium breeding performances of the module. In particular, attention has been focused on the toroidal-radial option for the BZ tube bundles lay-out and a parametric study has been carried out taking into account different tube bundles arrangement within the module. The study has been carried out following a numerical approach, based on the finite element method (FEM), and adopting a qualified commercial FEM code. Results

  14. Uav Photogrammetric Solution Using a Raspberry pi Camera Module and Smart Devices: Test and Results

    Science.gov (United States)

    Piras, M.; Grasso, N.; Jabbar, A. Abdul

    2017-08-01

    Nowadays, smart technologies are an important part of our action and life, both in indoor and outdoor environment. There are several smart devices very friendly to be setting, where they can be integrated and embedded with other sensors, having a very low cost. Raspberry allows to install an internal camera called Raspberry Pi Camera Module, both in RGB band and NIR band. The advantage of this system is the limited cost (Raspberry Pi with the Camera Module was installed onto a UAV hexacopter based on arducopter system, with purpose to collect pictures for photogrammetry issue. Firstly, the system was tested with aim to verify the performance of RPi camera in terms of frame per second/resolution and the power requirement. Moreover, a GNSS receiver Ublox M8T was installed and connected to the Raspberry platform in order to collect real time position and the raw data, for data processing and to define the time reference. IMU was also tested to see the impact of UAV rotors noise on different sensors like accelerometer, Gyroscope and Magnetometer. A comparison of the achieved results (accuracy) on some check points of the point clouds obtained by the camera will be reported as well in order to analyse in deeper the main discrepancy on the generated point cloud and the potentiality of these proposed approach. In this contribute, the assembling of the system is described, in particular the dataset acquired and the results carried out will be analysed.

  15. Automation of testing modules of controller ELSY-ТМК

    Science.gov (United States)

    Dolotov, A. E.; Dolotova, R. G.; Petuhov, D. V.; Potapova, A. P.

    2017-01-01

    In modern life, there are means for automation of various processes which allow one to provide high quality standards of released products and to raise labour efficiency. In the given paper, the data on the automation of the test process of the ELSY-TMK controller [1] is presented. The ELSY-TMK programmed logic controller is an effective modular platform for construction of automation systems for small and average branches of industrial production. The modern and functional standard of communication and open environment of the logic controller give a powerful tool of wide spectrum applications for industrial automation. The algorithm allows one to test controller modules by operating the switching system and external devices faster and at a higher level of quality than a human without such means does.

  16. Optical Testing and Verification Methods for the James Webb Space Telescope Integrated Science Instrument Module Element

    Science.gov (United States)

    Antonille, Scott R.; Miskey, Cherie L.; Ohl, Raymond G.; Rohrbach, Scott O.; Aronstein, David L.; Bartoszyk, Andrew E.; Bowers, Charles W.; Cofie, Emmanuel; Collins, Nicholas R.; Comber, Brian J.; hide

    2016-01-01

    NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (40K). The JWST Observatory includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) that contains four science instruments (SI) and the fine guider. The SIs are mounted to a composite metering structure. The SI and guider units were integrated to the ISIM structure and optically tested at the NASA Goddard Space Flight Center as a suite using the Optical Telescope Element SIMulator (OSIM). OSIM is a full field, cryogenic JWST telescope simulator. SI performance, including alignment and wave front error, were evaluated using OSIM. We describe test and analysis methods for optical performance verification of the ISIM Element, with an emphasis on the processes used to plan and execute the test. The complexity of ISIM and OSIM drove us to develop a software tool for test planning that allows for configuration control of observations, associated scripts, and management of hardware and software limits and constraints, as well as tools for rapid data evaluation, and flexible re-planning in response to the unexpected. As examples of our test and analysis approach, we discuss how factors such as the ground test thermal environment are compensated in alignment. We describe how these innovative methods for test planning and execution and post-test analysis were instrumental in the verification program for the ISIM element, with enough information to allow the reader to consider these innovations and lessons learned in this successful effort in their future testing for other programs.

  17. TOKOPS: Tokamak Reactor Operations Study: The influence of reactor operations on the design and performance of tokamaks with solid-breeder blankets: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conn, R.W.; Ghoniem, N.M.; Firestone, M.A. (eds.)

    1986-09-01

    Reactor system operation and procedures have a profound impact on the conception and design of power plants. These issues are studied here using a model tokamak system employing a solid-breeder blanket. The model blanket is one which has evolved from the STARFIRE and BCSS studies. The reactor parameters are similar to those characterizing near-term fusion engineering reactors such as INTOR or NET (Next European Tokamak). Plasma startup, burn analysis, and methods for operation at various levels of output power are studied. A critical, and complicating, element is found to be the self-consistent electromagnetic response of the system, including the presence of the blanket and the resulting forces and loadings. Fractional power operation, and the strategy for burn control, is found to vary depending on the scaling law for energy confinement, and an extensive study is reported. Full-power reactor operation is at a neutron wall loading pf 5 MW/m/sup 2/ and a surface heat flux of 1 MW/m/sup 2/. The blanket is a pressurized steel module with bare beryllium rods and low-activation HT-9-(9-C-) clad LiAlO/sub 2/ rods. The helium coolant pressure is 5 MPa, entering the module at 297/sup 0/C and exiting at 550/sup 0/C. The system power output is rated at 1000 MW(e). In this report, we present our findings on various operational scenarios and their impact on system design. We first start with the salient aspects of operational physics. Time-dependent analyses of the blanket and balance of plant are then presented. Separate abstracts are included for each chapter.

  18. Design, Construction, and Testing of Lightweight X-ray Mirror Modules

    Science.gov (United States)

    McClelland, Ryan S.; Biskach, Michael P.; Chan, Kai-Wing; Espina, Rebecca A.; Hohl, Bruce R.; Matson, Elizabeth A.; Saha, Timo C.; Zhang, William W.

    2013-01-01

    Lightweight and high resolution optics are needed for future space-based X-ray telescopes to achieve advances in high-energy astrophysics. The Next Generation X-ray Optics (NGXO) team at NASA GSFC is nearing mission readiness for a 10 arc-second Half Power Diameter (HPD) slumped glass mirror technology while laying the groundwork for a future 1-2 arc-second technology based on polished silicon mirrors. Technology Development Modules (TDMs) have been designed, fabricated, integrated with mirrors segments, and extensively tested to demonstrate technology readiness. Tests include X-ray performance, thermal vacuum, acoustic load, and random vibration. The thermal vacuum and acoustic load environments have proven relatively benign, while the random vibration environment has proven challenging due to large input amplification at frequencies above 500 Hz. Epoxy selection, surface preparation, and larger bond area have increased bond strength while vibration isolation has decreased vibration amplification allowing for space launch requirements to be met in the near term. The next generation of TDMs, which demonstrates a lightweight structure supporting more mirror segments, is currently being fabricated. Analysis predicts superior performance characteristics due to the use of E-60 Beryllium-Oxide Metal Matrix Composite material, with only a modest cost increase. These TDMs will be larger, lighter, stiffer, and stronger than the current generation. Preliminary steps are being taken to enable mounting and testing of 1-2 arc-second mirror segments expected to be available in the future. A Vertical X-ray Test Facility (VXTF) will minimize module gravity distortion and allow for less constrained mirror mounts, such as fully kinematic mounts. Permanent kinematic mounting into a modified TDM has been demonstrated to achieve 2 arc-second level distortion free alignment.

  19. PV module performance at Mead, Nebraska test site. Quarterly report for October 1, 1978--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Forman, S. E.; Themelis, M. P.

    1979-04-01

    The Department of Energy has set a 20-year lifetime goal for terrestrial photovoltaic modules. Massachusetts Institute of Technology's Lincoln Laboratory, in its capacity as a Photovoltaic Field Tests and Applications Center, has established various experimental test sites in the United States ranging in size from 0.1 to 25 kW of peak power. These sites serve as test beds for photovoltaic system components and include modules from several manufacturers. This report summarizes the activities of the Materials, Processes and Testing Laboratory of the Solar Photovoltaic Project during a three-month (10/1/78--12/31/78) period. Particular attention is given to testing and analysis of solar modules from the Mead, Nebraska site, which contains a 25-kW array. A trip to the site was made, where various testing and inspection procedures were followed, in order to ascertain the physical and electrical degradation which had occurred in modules. In addition, several modules were removed for more detailed testing and inspection in the Laboratory. The results of both the field testing and laboratory analyses are reported here.

  20. Mechanical behavior of Be–Ti pebbles at blanket relevant temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kurinskiy, Petr, E-mail: petr.kurinskiy@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials—Applied Materials Physics (IAM-AWP), P.O. Box 3640, 76021 Karlsruhe (Germany); Rolli, Rolf [Karlsruhe Institute of Technology, Institute for Applied Materials—Materials Biomechanics (IAM-WBM), P.O. Box 3640, 76021 Karlsruhe (Germany); Kim, Jae-Hwan; Nakamichi, Masaru [Breeding Functional Materials Development Group, Department of Blanket Fusion Institute, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Oaza-Obuchi-Aza-Omotedate, Rokkasho-mura, Kamikita-gun, Aoori 039-3212 (Japan)

    2016-11-01

    Highlights: • Mechanical behavior of two kinds of Be–Ti pebbles in the temperature range of 400–800 °C was investigated. • It was experimentally shown that Be-7 at.%Ti pebbles have the enhanced ductile properties compared to Be-7.7 at.%Ti pebbles. • Brittle failure of both kinds of Be–Ti pebbles was observed by testing at 400 °C using the constant loading with 150 N. - Abstract: Mechanical performance of beryllium-based materials is a matter of a great interest from the point of view of their use as neutron multipliers of the tritium breeding blankets. The compression strains which can occur in beryllium pebble beds under blanket working conditions will lead to deformation or even failure of individual pebbles [1,2] (Reimann et al. 2002; Ishitsuka and Kawamura, 1995). Mechanical behavior of Be–Ti pebbles having chemical contents of Be-7.0 at.% Ti and Be-7.7 at.%Ti was investigated in the temperature range of 400–800 °C. Constant loads varying from 10 up to 150 N were applied uniaxially. It was shown that Be–Ti pebbles compared to pure beryllium pebbles possess much lower ductility, although their strength properties exceed corresponding characteristics of pure beryllium. Also, the influence of titanium content on mechanical behavior of Be–Ti pebbles was investigated. Specific features of deformation of pure beryllium and Be–Ti pebbles having different titanium contents at blanket operation temperatures are discussed.

  1. Analysis of trace levels of impurities and hydrogen isotopes in helium purge gas using gas chromatography for tritium extraction system of an Indian lead lithium ceramic breeder test blanket module.

    Science.gov (United States)

    Devi, V Gayathri; Sircar, Amit; Yadav, Deepak; Parmar, Jayraj

    2018-01-12

    In the fusion fuel cycle, the accurate analysis and understanding of the chemical composition of any gas mixture is of great importance for the efficient design of a tritium extraction and purification system or any tritium handling system. Methods like laser Raman spectroscopy and gas chromatography with thermal conductivity detector have been considered for hydrogen isotopes analyses in fuel cycles. Gas chromatography with a cryogenic separation column has been used for the analysis of hydrogen isotopes gas mixtures in general due to its high reliability and ease of operation. Hydrogen isotopes gas mixture analysis with cryogenic columns has been reported earlier using different column materials for percentage level composition. In the present work, trace levels of hydrogen isotopes (∼100 ppm of H 2 and D 2 ) have been analyzed with a Zeolite 5A and a modified γ-Al 2 O 3 column. Impurities in He gas (∼10 ppm of H 2 , O 2 , and N 2 ) have been analyzed using a Zeolite 13-X column. Gas chromatography with discharge ionization detection has been utilized for this purpose. The results of these experiments suggest that the columns developed were able to separate ppm levels of the desired components with a small response time (<6 min) and good resolution in both cases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Determine ISS Soyuz Orbital Module Ballistic Limits for Steel Projectiles Hypervelocity Impact Testing

    Science.gov (United States)

    Lyons, Frankel

    2013-01-01

    A new orbital debris environment model (ORDEM 3.0) defines the density distribution of the debris environment in terms of the fraction of debris that are low-density (plastic), medium-density (aluminum) or high-density (steel) particles. This hypervelocity impact (HVI) program focused on assessing ballistic limits (BLs) for steel projectiles impacting the enhanced Soyuz Orbital Module (OM) micrometeoroid and orbital debris (MMOD) shield configuration. The ballistic limit was defined as the projectile size on the threshold of failure of the OM pressure shell as a function of impact speeds and angle. The enhanced OM shield configuration was first introduced with Soyuz 30S (launched in May 2012) to improve the MMOD protection of Soyuz vehicles docked to the International Space Station (ISS). This test program provides HVI data on U.S. materials similar in composition and density to the Russian materials for the enhanced Soyuz OM shield configuration of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz OM penetration risk assessments. The objective of this hypervelocity impact test program was to determine the ballistic limit particle size for 440C stainless steel spherical projectiles on the Soyuz OM shielding at several impact conditions (velocity and angle combinations). This test report was prepared by NASA-JSC/ HVIT, upon completion of tests.

  3. Lithium-vanadium advanced blanket development. ITER final report on U.S. contribution: Task T219/T220

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Mattas, R.F. [comps.

    1997-07-01

    The objective of this task is to develop the required data base and demonstrate the performance of a liquid lithium-vanadium advanced blanket design. The task has two main activities related to vanadium structural material and liquid lithium system developments. The vanadium alloy development activity included four subtasks: (1.1) baseline mechanical properties of non irradiated base metal and weld metal joints; (1.2) compatibility with liquid lithium; (1.3) material irradiation tests; and (1.4) development of material manufacturing and joining methods. The lithium blanket technology activity included four subtasks: (2.1) electrical insulation development and testing for liquid metal systems; (2.2) MHD pressure drop and heat transfer study for self-cooled liquid metal systems; (2.3) chemistry of liquid lithium; and (2.4) design, fabrication and testing of ITER relevant size blanket mockups. A summary of the progress and results obtained during the period 1995 and 1996 in each of the subtask areas is presented in this report.

  4. Establishment of design and fabrication technology and domestic qualification for ITER blanket system

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bong Guen; In, S. R.; Bae, Y. D. (and others)

    2006-02-15

    To obtain and analyze the detailed design and manufacturing technology of the blanket system for each components, the related data are collected through the various sources. And also, design processes and results of the FWs, shield blocks, and TBMs are investigated. From these analysis of the blanket R and D status of each party, we develop the KO R and D plan and it is used in the selection of manufacturing method and the materials. For the ITA16-10 subtask1, we had the official agreement with ITER IT in December 2004 for the qualification of the FW panel fabrication methods and to establish the NDT methods for the FW panel. From the technical reports we published, we compare the manufacturing methods and the proposed material for each component according to the parties. Be is proposed as a plasma facing material and most parties have interest in S-65C. Cu alloy is proposed as a heat sink material and DSCu or CuCrZr are investigated now. For the structural material, stainless steel such as SS316L(N) is investigated internationally. HIP and brazing are proposed as the manufacturing methods. In order to establish the blanket system technology, design contents of shield block by ITER IT and other parties were investigated through participating the international workshop and meeting, dispatching the researcher to the ITER IT or other parties to collect the drafting and 3D modeling files. The modification items of blanket design were investigated and a researcher was dispatched in the ITER IT and participated in the analysis on cooling problem in shield block such as front header and drilled manifold. To investigate the development status of TBM, we participated the 14th TBWG meeting and proposed the KO HCSB and HCML as candidates. And also, we obtain the R and D results of other parties and make document about the R and D status of other parties for the TBM. Finally, we establish the KO TBM R and D plan and proposed it to ITER IT and other parties. In which, the

  5. Post-test analysis of components from selenide isotope generator modules M-7, M-15, and M-18

    Energy Technology Data Exchange (ETDEWEB)

    Wei, G.C.; Keiser, J.R.; Crouse, R.S.; Allen, M.D.; Schaffhauser, A.C.

    1979-05-01

    Several critical components removed from SIG (Selenide Isotope Generator) thermoelectric modules M-7, M-15C, M-15D, and M-18 were examined. These modules failed to show the predicted stability and conversion efficiency. Understanding the degradation and identifying means for preventing it necessitated detailed post-test examinations of key parts in the modules. Steel springs, which provided pressure for contacts at the hot and cold ends of P- or N-legs, relaxed more than expected. Beryllium oxide insulators had dark deposits that caused electrical shorts. The GdSe/sub 1/ /sub 49/ N-leg exhibited cracking. The (Cu,Ag)/sub 2/Se P-leg lost weight or sublimed excessively in module M-7 and more than expected in the other modules.

  6. Spectral modulation effect in teleseismic P-waves from DPRK nuclear tests recorded at different azimuths

    Science.gov (United States)

    Gitterman, Yefim; Kim, So Gu; Hofstetter, Abraham

    2014-05-01

    Two underground nuclear explosions conducted by North Korea in 2009 and 2013 were recorded by the Israel Seismic Network. Pronounced coherent minima (spectral nulls) at 1.2-1.3 Hz were revealed in the spectra of teleseismic P-waves. For a ground-truth explosion with a shallow source depth (relatively to an earthquake), this phenomenon can be interpreted in terms of the interference between the down-going P-wave and the pP phase reflected from the Earth's surface. A similar effect was observed at ISN stations for the Pakistan nuclear explosion at a different frequency 1.7 Hz indicating a source and not site-effect. Similar spectral minima with about the same frequency were observed in teleseismic P-waves of all three North Korea explosions (including the 2006 test) recorded at network stations and arrays in Kazakhstan (KURK), Norway (NORESS, ARCESS), Australia (Alice Springs, Warramunga) and Canada (Yellowknife), covering a broad azimuthal range. Data of the 2013 test at Warramunga array showed harmonic spectral modulation with several minima, evidencing a clear interference effect. These observations support the above-mentioned interpretation. Based on the null frequency dependency on the near-surface acoustic velocity and the source depth, the depth of the North Korea tests was estimated as ~2 km (different from the value ~1 km reported by USGS for the third test). This unusual depth estimation needs an additional validation based on more stations and verification by other methods.

  7. MHD considerations for a self-cooled liquid lithium blanket

    Energy Technology Data Exchange (ETDEWEB)

    Sze, D.K.; Mattas, R.F.; Hull, A.B.; Picologlou, B.F.; Smith, D.L.

    1992-03-01

    The magnetohydrodynamic (MHD) effects can present a feasibility issue for a self-cooled liquid metal blanket of magnetically confined fusion reactors, especially inboard regime of a tokamak. This pressure drop can be significantly reduced by using insulated wall structure. A self-healing insulating coating has been identified, which will reduce the pressure drop by more than a factor of 10. The future research direction to further quantify the performance of this coating is also outlined.

  8. Development of insulating coatings for liquid metal blankets

    Energy Technology Data Exchange (ETDEWEB)

    Malang, S.; Borgstedt, H.U. [Kernforschungszentrum Karlsruhe GmbH (Germany); Farnum, E.H. [Los Alamos National Lab., NM (United States); Natesan, K. [Argonne National Lab., IL (United States); Vitkovski, I.V. [Efremov Inst., St. Petersburg (Russian Federation). MHD-Machines Lab.

    1994-07-01

    It is shown that self-cooled liquid metal blankets are feasible only with electrically insulating coatings at the duct walls. The requirements on the insulation properties are estimated by simple analytical models. Candidate insulator materials are selected based on insulating properties and thermodynamic consideration. Different fabrication technologies for insulating coatings are described. The status of the knowledge on the most crucial feasibility issue, the degradation of the resisivity under irradiation, is reviewed.

  9. MULTIOBJECTIVE OPTIMIZATION OF AN UPFLOW ANAEROBIC SLUDGE BLANKET REACTOR

    OpenAIRE

    Tomita, Rosana K.; CETESB-Tecnología de Saneamiento Ambiental Empresa del Estado de São Paulo; Sotomayor, Oscar A. Z.; CESQ-Dpto. de Ingeniería Química, Escuela Politécnica Superior de la Universidad de São Paulo; Park, Song W.; CESQ-Dpto. de Ingeniería Química, Escuela Politécnica Superior de la Universidad de São Paulo; Tisza Contreras, Juan F.; FIEM-Universidad Tecnológica del Perú, Lima, Perú

    2014-01-01

    The purpose of this paper is to optimiza the operation of an upflow anaerobic sludge blanket (UASB) reactor. In this kind of processes, besides to maximiza organic matter removal, it is attractive to capture the biogas and to use it to provide energy services. For this purpose, the biogas has to be produced in large quantities. Thus, we have two clear objectives to be achieved: to maximiza both the organic matter removal and the biogas production. Three multiobjective optimization techniques ...

  10. Blanket comparison and selection study. Final report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1984-09-01

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li/sub 2/O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N/sub 2/) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concepts are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li/sub 2/O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concept are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue.

  11. Development of test particle module for impurity generation and transport in BOUT++ framework

    Science.gov (United States)

    Xiao, Xiaotao; Xu, Xueqiao

    2014-10-01

    Developing the test particle module in BOUT++ framework is the first step to enhance its capability to simulate impurity generation and transport in edge plasmas, which potentially can be extended to efficiently simulate both turbulence and neoclassical physics in realistic geometry. The motion of impurity charged particles are governed by guiding-center (GC) equations in the presence of turbulent electromagnetic fields. The GC equations are the well-known Hamiltonian guiding center equation given by Littlejohn, Boozer, White and others. The Fourth-order Runge-Kutta algorithm is used to advance the GC equations in time. In order easily to couple with BOUT++ fluid module, the same field aligned coordinates are used except near the region close to X-point. The bilinear interpolation is used to interpolate 3D fluid turbulent electromagnetic fields from grid points to particle positions. The calculated orbits in equilibrium configuration are checked to conserve constants of motion. The various guiding-center orbits in divertor configuration under BOUT++ framework are demonstrated and benchmarked. Then spatial distribution of impurities in edge plasmas from given sources at the divertor plates and at the protection limiters near RF antennas is obtained in given background plasma. This work was performed for USDOE by LLNL under DE-AC52-07NA27344, LLNL LDRD project 12-ERD-022 and the China Natural Science Foundation under Contract No. 11105185.

  12. Design and Validation of the APT Target/Blanket System

    Science.gov (United States)

    Waters, L. S.

    1998-04-01

    The Accelerator Production of Tritium (APT) project is now under development as part of DOE's dual track strategy for the replenishment of the nation's tritium supply. APT produces tritium through the He^3(n,p)t reaction, with neutrons generated in a tungsten spallation target and moderated in a surrounding lead blanket filled with He^3 gas tubes. A 100 mA, 1.7 GeV linac provides source protons for the target, and a separate tritium extraction facility continually processes the helium gas stream. Within APT, the Target/Blanket and Materials Engineering Development and Demonstration Project has primary responsibility for validating the neutronics performance of the Target/Blanket system, and for addressing materials issues for all of APT. The APT target design and T/B & Materials ED&D activities will be briefly reviewed, with special emphasis placed on activities leading to the development and validation of radiation transport codes and nuclear data used in the APT design. These include the evolution of the MCNPX simulation code, as well as theoretical work and cross section measurements now underway to support high energy nuclear data library evaluations. Large scale benchmarking measurements completed or planned at LANSCE, the Brookhaven AGS, and Saturne will also be discussed.

  13. Neutronic performance issues of the breeding blanket options for the European DEMO fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, U., E-mail: ulrich.fischer@kit.edu [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bachmann, C. [EUROfusion—Programme Management Unit, Boltzmannstr. 2, 85748 Garching (Germany); Jaboulay, J.-C. [CEA-Saclay, DEN, DM2S, SERMA, LPEC, 91191 Gif-sur-Yvette (France); Moro, F. [ENEA, Dipartimento Fusione e tecnologie per la Sicurezza Nucleare, Via E. Fermi 45, 00044 Frascati, Rome (Italy); Palermo, I. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Pereslavtsev, P. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Villari, R. [ENEA, Dipartimento Fusione e tecnologie per la Sicurezza Nucleare, Via E. Fermi 45, 00044 Frascati, Rome (Italy)

    2016-11-01

    Highlights: • Breeder blanket concepts for DEMO—design features. • Neutronic characteristics of breeder blankets. • Evaluation of Tritium breeding potential. • Evaluation of shielding performance. - Abstract: This paper presents nuclear performance issues of the HCPB, HCLL, DCLL and WCLL breeder blankets, which are under development within the PPPT (Power Plant Physics and Technology) programme of EUROfusion, with the objective to assess the potential and suitability of the blankets for the application to DEMO. The assessment is based on the initial design versions of the blankets developed in 2014. The Tritium breeding potential is considered sufficient for all breeder blankets although the initial design versions of the HCPB, HCLL and DCLL blankets were shown to require further design improvements. Suitable measures have been proposed and proven to be sufficient to achieve the required Tritium Breeding Ratio (TBR) ≥ 1.10. The shielding performance was shown to be sufficient to protect the super-conducting toroidal field coil provided that efficient shielding material mixtures including WC or borated water are utilized. The WCLL blanket does not require the use of such shielding materials due to a very compact blanket support structure/manifold configuration which yet requires design verification. The vacuum vessel can be safely operated over the full anticipated DEMO lifetime of 6 full power years for all blanket concepts considered.

  14. Hatch Integration Testing of a NASA TransHab Derivative Woven Inflatable Module

    Science.gov (United States)

    Edgecombe, John; Valle, Gerald

    2009-01-01

    Current options for Lunar habitat architecture include inflatable habitats and airlocks. Inflatable structures can have mass and volume advantages over conventional structures. However, inflatable structures are also perceived to carry additional risk because they are at a lower Technical Readiness Level (TRL) than more conventional metallic structures. The use of inflatable structures for habitation will require large penetrations in the inflatable structure to accommodate hatches and/or windows The Hatch Integration Test is designed to study the structural integrity of an expandable structure with an integrated hatch, and to verify mathematical models of the structure. The TransHab project developed an experimental inflatable module at Johnson Space Center in the 1990's. The TransHab design was originally envisioned for use in Mars Transits but was also studied as a potential habitat for the International Space Station (ISS).

  15. A review of test results on solar thermal power modules with dish-mounted Stirling and Brayton cycle engines

    Science.gov (United States)

    Jaffe, Leonard D.

    1988-01-01

    This paper presents results of development tests of various solar thermal parabolic dish modules and assemblies that used dish-mounted Brayton or Stirling cycle engines for production of electric power. These tests indicate that early modules achieve net efficiencies up to 29 percent in converting sunlight to electricity, as delivered to the grid. Various equipment deficiencies were observed and a number of malfunctions occurred. The performance measurements, as well as the malfunctions and other test experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  16. Die degradation effect on aging rate in accelerated cycling tests of SiC power MOSFET modules

    DEFF Research Database (Denmark)

    Luo, Haoze; Baker, Nick; Iannuzzo, Francesco

    2017-01-01

    In order to distinguish the die and bond wire degradations, in this paper both the die and bond wire resistances of SiC MOSFET modules are measured and tested during the accelerated cycling tests. It is proved that, since the die degradation under specific conditions increases the temperature swing...

  17. An Overview of Integration and Test of the James Webb Space Telescope Integrated Science Instrument Module

    Science.gov (United States)

    Drury, Michael; Becker, Neil; Bos, Brent; Davila, Pamela; Frey, Bradley; Hylan, Jason; Marsh, James; McGuffey, Douglas; Novak, Maria; Ohl, Raymond; hide

    2007-01-01

    The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (approx.40K). The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The SIs and Guider are mounted to a composite metering structure with outer dimensions of 2.1x2.2x1.9m. The SI and Guider units are integrated to the ISIM structure and optically tested at NASA/Goddard Space Flight Center as an instrument suite using a high-fidelity, cryogenic JWST telescope simulator that features a 1.5m diameter powered mirror. The SIs are integrated and aligned to the structure under ambient, clean room conditions. SI performance, including focus, pupil shear and wavefront error, is evaluated at the operating temperature. We present an overview of the ISIM integration within the context of Observatory-level construction. We describe the integration and verification plan for the ISIM element, including an overview of our incremental verification approach, ambient mechanical integration and test plans and optical alignment and cryogenic test plans. We describe key ground support equipment and facilities.

  18. TBM/MTM for HTS-FNSF: An Innovative Testing Strategy to Qualify/Validate Fusion Technologies for U.S. DEMO

    Directory of Open Access Journals (Sweden)

    Laila El-Guebaly

    2016-08-01

    Full Text Available The qualification and validation of nuclear technologies are daunting tasks for fusion demonstration (DEMO and power plants. This is particularly true for advanced designs that involve harsh radiation environment with 14 MeV neutrons and high-temperature operating regimes. This paper outlines the unique qualification and validation processes developed in the U.S., offering the only access to the complete fusion environment, focusing on the most prominent U.S. blanket concept (the dual cooled PbLi (DCLL along with testing new generations of structural and functional materials in dedicated test modules. The venue for such activities is the proposed Fusion Nuclear Science Facility (FNSF, which is viewed as an essential element of the U.S. fusion roadmap. A staged blanket testing strategy has been developed to test and enhance the DCLL blanket performance during each phase of FNSF D-T operation. A materials testing module (MTM is critically important to include in the FNSF as well to test a broad range of specimens of future, more advanced generations of materials in a relevant fusion environment. The most important attributes for MTM are the relevant He/dpa ratio (10–15 and the much larger specimen volumes compared to the 10–500 mL range available in the International Fusion Materials Irradiation Facility (IFMIF and European DEMO-Oriented Neutron Source (DONES.

  19. The development and testing of a unique and flexible training module for residents and fellows using digital breast tomosythesis (DBT)

    Science.gov (United States)

    Hakim, Christiane M.; Drescher, John; King, Jill L.; Logue, Durwin; Klym, Amy H.; Gur, David

    2017-03-01

    The transition from FFDM to digital breast tomosynthesis (DBT) necessitates new approaches for training radiology residents and fellows that highlight depiction differences between the same abnormalities on the two modalities. We developed a unique, flexible training module that enables training with complete feedback, as well as testing performance before and after use of this training module. Currently, 219 examinations, with priors and other relevant information, are included. Using a special interface to the Secure View workstation (Hologic), we developed a management program that displays each case in a randomized manner and in a sequential mode (i.e. FFDM first followed by FFDM+DBT) and allows the reader to rate the case followed by viewing the images side by side with results of the full imaging based history (reporting) by the screening interpreter, the diagnostic workup interpreter (when applicable), and the actual pathology (biopsy and/or surgical). This approach allows the reader to review their correct and/or incorrect interpretation at each step of the management decision making. The module also has sets of pre- and post-training cases, allowing for a test-train-test study to be performed, if so desired. Two observer studies using 18 radiologists, residents, and fellows have been performed using this module, to date. The training module was assembled, tested, and implemented. We found it to be extremely flexible and useful in training. After completing two observer performance studies, the module was installed in our clinical facility and is currently being used to train residents and fellows at their own pace. All users found this module to be useful and extremely informative.

  20. Fusion materials: Technical evaluation of the technology of vandium alloys for use as blanket structural materials in fusion power systems

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-04

    The Committee`s evaluation of vanadium alloys as a structural material for fusion reactors was constrained by limited data and time. The design of the International Thermonuclear Experimental Reactor is still in the concept stage, so meaningful design requirements were not available. The data on the effect of environment and irradiation on vanadium alloys were sparse, and interpolation of these data were made to select the V-5Cr-5Ti alloy. With an aggressive, fully funded program it is possible to qualify a vanadium alloy as the principal structural material for the ITER blanket in the available 5 to 8-year window. However, the data base for V-5Cr-5Ti is United and will require an extensive development and test program. Because of the chemical reactivity of vanadium the alloy will be less tolerant of system failures, accidents, and off-normal events than most other candidate blanket structural materials and will require more careful handling during fabrication of hardware. Because of the cost of the material more stringent requirements on processes, and minimal historical worlding experience, it will cost an order of magnitude to qualify a vanadium alloy for ITER blanket structures than other candidate materials. The use of vanadium is difficult and uncertain; therefore, other options should be explored more thoroughly before a final selection of vanadium is confirmed. The Committee views the risk as being too high to rely solely on vanadium alloys. In viewing the state and nature of the design of the ITER blanket as presented to the Committee, h is obvious that there is a need to move toward integrating fabrication, welding, and materials engineers into the ITER design team. If the vanadium allay option is to be pursued, a large program needs to be started immediately. The commitment of funding and other resources needs to be firm and consistent with a realistic program plan.

  1. Megawatt-Scale Power Hardware-in-the-Loop Simulation Testing of a Power Conversion Module for Naval Applications

    Science.gov (United States)

    2015-06-21

    possible, a PCM equivalent to the DUT. Thus, the test concept document generally specified the types of tests to be conducted and the characteristics...including a description of PHIL testing of a 1.2 MW, 4.16 kV AC/1 kV DC power conversion module ( PCM ). Section II provides an overview of the...a simulated PCM . The process of defining the surrounding systems to be employed focused on assessing the minimum components needed to suitably

  2. Test results of an organic Rankine-cycle power module for a small community solar thermal power experiment

    Science.gov (United States)

    Clark, T. B.

    1985-01-01

    The organic Rankine-cycle (ORC) power conversion assembly was tested. Qualification testing of the electrical transport subsystem was also completed. Test objectives were to verify compatibility of all system elements with emphasis on control of the power conversion assembly, to evaluate the performance and efficiency of the components, and to validate operating procedures. After 34 hours of power generation under a wide range of conditions, the net module efficiency exceeded 18% after accounting for all parasitic losses.

  3. Proposed Junction-Box Stress Test (Using an Added Weight) for Use During the Module Qualification (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. C.; Wohlgemuth, J. H.; Kurtz, S. R.

    2012-02-01

    Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development. Furthermore, there are historical incidences of adverse effects (e.g., fires) caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp heat' IEC qualification test is proposed to verify the basic robustness of the j-box adhesion system. The details of the proposed test are described, in addition to the preliminary results conducted using representative materials and components.

  4. Particle Physics and Astronomy Research Council (PPARC) members, United Kingdom, visiting the ATLAS semiconductor tracker (SCT) module tests.

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    Photo 01: Mr Peter Warry, PPARC Chairman, Victrex Plc, United Kingdom visiting the ATLAS SCT module tests with Dr Joleen Pater, SCT (Manchester). Photo 02: PPARC Council Members, United Kingdom, visiting the ATLAS SCT module tests. L.t to r.: Mrs Judith Scott, Chief Executive, British Computer Society, Prof. George Efstathiou, Institute of Astronomy, University of Cambridge, Mr Peter Warry, PPARC Chairman, Victrex Plc, Prof. Martin Ward, Director X-Ray Astronomy, of Leicester, Prof. James Stirling, Director, Institute for Particle Physics Phenomenology, University of Durham and Prof. Brian Foster, University of Bristol.

  5. Use of Ball Blanket in attention-deficit/hyperactivity disorder sleeping problems

    DEFF Research Database (Denmark)

    Hvolby, Allan; Bilenberg, Niels

    2011-01-01

    Blanket. The time it takes to fall asleep when using the Ball Blanket is found to be at the same level as the healthy control subjects. Teacher rating of symptoms show an improvement in both activity levels and attention span of approximately 10% after using the Ball Blankets. Conclusions: The results......Objectives: Based on actigraphic surveillance, attention-deficit/hyperactivity disorder (ADHD) symptom rating and sleep diary, this study will evaluate the effect of Ball Blanket on sleep for a sample of 8-13-year-old children with ADHD. Design: Case-control study. Setting: A child and adolescent...

  6. Detecting Cheaters without Thinking: Testing the Automaticity of the Cheater Detection Module

    OpenAIRE

    Jens Van Lier; Russell Revlin; Wim De Neys

    2013-01-01

    Evolutionary psychologists have suggested that our brain is composed of evolved mechanisms. One extensively studied mechanism is the cheater detection module. This module would make people very good at detecting cheaters in a social exchange. A vast amount of research has illustrated performance facilitation on social contract selection tasks. This facilitation is attributed to the alleged automatic and isolated operation of the module (i.e., independent of general cognitive capacity). This s...

  7. Design of a Compact, Portable Test System for Thermoelectric Power Generator Modules

    Science.gov (United States)

    Faraji, Amir Yadollah; Akbarzadeh, Aliakbar

    2013-07-01

    Measurement of fundamental parameters of a thermoelectric generator (TEG) module, including efficiency, internal electrical resistance, thermal resistance, power output, Seebeck coefficient, and figure of merit ( Z), is necessary in order to design a thermoelectric-based power generation system. This paper presents a new design for a compact, standalone, portable test system that enables measurement of the main parameters of a TEG over a wide range of temperature differences and compression pressures for a 40 mm × 40 mm specimen. The Seebeck coefficient and figure of merit can also be calculated from the information obtained. In the proposed system, the temperature of each side of the TEG can be set at the desired temperature—the hot side as high as 380°C and the cold side as low as 5°C, with 0.5°C accuracy—utilizing an electrical heating system and a thermoelectric-based compact chilling system. Heating and cooling procedures are under control of two proportional-integral-derivative (PID) temperature controllers. Using a monitored pressure mechanism, the TEG specimen is compressed between a pair of hot and cold aluminum cubes, which maintain the temperature difference across the two sides of the TEG. The compressive load can be varied from 0 kPa to 800 kPa. External electrical loading is applied in the form of a direct-current (DC) electronic load. Data collection and processing are through an Agilent 34972A data logger, a computer, and BenchLink software, with results available as computer output. The input power comes from a 240-V general-purpose power point, and the only sound-generating component is a 4-W cooling fan. Total calculated uncertainty in results is approximately 7%. Comparison between experimental data and the manufacturer's published datasheet for a commercially available specimen shows good agreement. These results obtained from a preliminary experimental setup serve as a good guide for the design of a fully automatic portable test system

  8. SU-E-T-508: End to End Testing of a Prototype Eclipse Module for Planning Modulated Arc Therapy On the Siemens Platform

    Energy Technology Data Exchange (ETDEWEB)

    Huang, L [Huntsman Cancer Hospital, Salt Lake City, UT (United States); Sarkar, V [University of Utah Hospitals, Salt Lake City, UT (United States); Spiessens, S [Varian Medical Systems France, Buc Cedex (France); Rassiah-Szegedi, P; Huang, Y; Salter, B [University Utah, Salt Lake City, UT (United States); Zhao, H [University of Utah, Salt Lake City, UT (United States); Szegedi, M [Huntsman Cancer Hospital, The University of Utah, Salt Lake City, UT (United States)

    2014-06-01

    Purpose: The latest clinical implementation of the Siemens Artiste linac allows for delivery of modulated arcs (mARC) using full-field flattening filter free (FFF) photon beams. The maximum doserate of 2000 MU/min is well suited for high dose treatments such as SBRT. We tested and report on the performance of a prototype Eclipse TPS module supporting mARC capability on the Artiste platform. Method: our spine SBRT patients originally treated with 12/13 field static-gantry IMRT (SGIMRT) were chosen for this study. These plans were designed to satisfy RTOG0631 guidelines with a prescription of 16Gy in a single fraction. The cases were re-planned as mARC plans in the prototype Eclipse module using the 7MV FFF beam and required to satisfy RTOG0631 requirements. All plans were transferred from Eclipse, delivered on a Siemens Artiste linac and dose-validated using the Delta4 system. Results: All treatment plans were straightforwardly developed, in timely fashion, without challenge or inefficiency using the prototype module. Due to the limited number of segments in a single arc, mARC plans required 2-3 full arcs to yield plan quality comparable to SGIMRT plans containing over 250 total segments. The average (3%/3mm) gamma pass-rate for all arcs was 98.5±1.1%, thus demonstrating both excellent dose prediction by the AAA dose algorithm and excellent delivery fidelity. Mean delivery times for the mARC plans(10.5±1.7min) were 50-70% lower than the SGIMRT plans(26±2min), with both delivered at 2000 MU/min. Conclusion: A prototype Eclipse module capable of planning for Burst Mode modulated arc delivery on the Artiste platform has been tested and found to perform efficiently and accurately for treatment plan development and delivered-dose prediction. Further investigation of more treatment sites is being carried out and data will be presented.

  9. The Parsing Syllable Envelopes Test for Assessment of Amplitude Modulation Discrimination Skills in Children: Development, Normative Data, and Test-Retest Reliability Studies.

    Science.gov (United States)

    Cameron, Sharon; Chong-White, Nicky; Mealings, Kiri; Beechey, Tim; Dillon, Harvey; Young, Taegan

    2018-02-01

    Intensity peaks and valleys in the acoustic signal are salient cues to syllable structure, which is accepted to be a crucial early step in phonological processing. As such, the ability to detect low-rate (envelope) modulations in signal amplitude is essential to parse an incoming speech signal into smaller phonological units. The Parsing Syllable Envelopes (ParSE) test was developed to quantify the ability of children to recognize syllable boundaries using an amplitude modulation detection paradigm. The envelope of a 750-msec steady-state /a/ vowel is modulated into two or three pseudo-syllables using notches with modulation depths varying between 0% and 100% along an 11-step continuum. In an adaptive three-alternative forced-choice procedure, the participant identified whether one, two, or three pseudo-syllables were heard. Development of the ParSE stimuli and test protocols, and collection of normative and test-retest reliability data. Eleven adults (aged 23 yr 10 mo to 50 yr 9 mo, mean 32 yr 10 mo) and 134 typically developing, primary-school children (aged 6 yr 0 mo to 12 yr 4 mo, mean 9 yr 3 mo). There were 73 males and 72 females. Data were collected using a touchscreen computer. Psychometric functions (PFs) were automatically fit to individual data by the ParSE software. Performance was related to the modulation depth at which syllables can be detected with 88% accuracy (referred to as the upper boundary of the uncertainty region [UBUR]). A shallower PF slope reflected a greater level of uncertainty. Age effects were determined based on raw scores. z Scores were calculated to account for the effect of age on performance. Outliers, and individual data for which the confidence interval of the UBUR exceeded a maximum allowable value, were removed. Nonparametric tests were used as the data were skewed toward negative performance. Across participants, the performance criterion (UBUR) was met with a median modulation depth of 42%. The effect of age on the UBUR was

  10. The neutronic analysis for the ITER reference breeding blanket design

    Energy Technology Data Exchange (ETDEWEB)

    Petrizzi, L.; Ferrari, M. [Association Euratom-ENEA sulla Fusione, Centro Ricerche Energia Frascati (Italy); Lopatkin, A.; Muratov, V. [RDIPE, Moscow (Russian Federation); Plenteda, R.; Santoro, R.; Valenza, D. [ITER Joint Work Site, Garching (Germany)

    1998-07-01

    This paper provides an overview of the neutronic analyses performed during the design development of the ITER breeding blanket beginning in 1997, when the reference BB design was started to the present. In Section 2 optimisation studies for the initial boundary conditions are presented. In Section 3, the detailed three dimensional analyses that were performed are illustrated plus additional optimisation for new boundary conditions. It is shown that a TBR = 0.97 is achieved in the reference configuration for the ITER machine as described in the Final Design Report of the ITER Engineering Design Activity. (authors)

  11. Space Station Freedom solar array panels plasma interaction test facility

    Science.gov (United States)

    Martin, Donald F.; Mellott, Kenneth D.

    1989-01-01

    The Space Station Freedom Power System will make extensive use of photovoltaic (PV) power generation. The phase 1 power system consists of two PV power modules each capable of delivering 37.5 KW of conditioned power to the user. Each PV module consists of two solar arrays. Each solar array is made up of two solar blankets. Each solar blanket contains 82 PV panels. The PV power modules provide a 160 V nominal operating voltage. Previous research has shown that there are electrical interactions between a plasma environment and a photovoltaic power source. The interactions take two forms: parasitic current loss (occurs when the currect produced by the PV panel leaves at a high potential point and travels through the plasma to a lower potential point, effectively shorting that portion of the PV panel); and arcing (occurs when the PV panel electrically discharges into the plasma). The PV solar array panel plasma interaction test was conceived to evaluate the effects of these interactions on the Space Station Freedom type PV panels as well as to conduct further research. The test article consists of two active solar array panels in series. Each panel consists of two hundred 8 cm x 8 cm silicon solar cells. The test requirements dictated specifications in the following areas: plasma environment/plasma sheath; outgassing; thermal requirements; solar simulation; and data collection requirements.

  12. Wireless tracking of cotton modules Part II: automatic machine identification and system testing

    Science.gov (United States)

    Mapping the harvest location of cotton modules is essential to practical understanding and utilization of spatial-variability information in fiber quality. A wireless module-tracking system was recently developed, but automation of the system is required before it will find practical use on the far...

  13. Composite functional module inference: detecting cooperation between transcriptional regulation and protein interaction by mantel test

    Directory of Open Access Journals (Sweden)

    Su Fei

    2010-06-01

    Full Text Available Abstract Background Functional modules are basic units of cell function, and exploring them is important for understanding the organization, regulation and execution of cell processes. Functional modules in single biological networks (e.g., the protein-protein interaction network, have been the focus of recent studies. Functional modules in the integrated network are composite functional modules, which imply the complex relationships involving multiple biological interaction types, and detect them will help us understand the complexity of cell processes. Results We aimed to detect composite functional modules containing co-transcriptional regulation interaction, and protein-protein interaction, in our pre-constructed integrated network of Saccharomyces cerevisiae. We computationally extracted 15 composite functional modules, and found structural consistency between co-transcriptional regulation interaction sub-network and protein-protein interaction sub-network that was well correlated with their functional hierarchy. This type of composite functional modules was compact in structure, and was found to participate in essential cell processes such as oxidative phosphorylation and RNA splicing. Conclusions The structure of composite functional modules containing co-transcriptional regulation interaction, and protein-protein interaction reflected the cooperation of transcriptional regulation and protein function implementation, and was indicative of their important roles in essential cell functions. In addition, their structural and functional characteristics were closely related, and suggesting the complexity of the cell regulatory system.

  14. Design, Simulation and Testing of the OOK NRZ Modulation Format for Free Space Optic Communication in a Simulation Box

    Directory of Open Access Journals (Sweden)

    Ales Vanderka

    2014-01-01

    Full Text Available This article deals with the construction of a modulator and demodulator for Free-Space Optical (FSO communication. In FSO optics, the modulated optical signal is propagated in the constantly changing environment (atmosphere. The optical signal is strongly influenced by the actual composition of air, which is directly linked to the change in refractive index in the turbulent cells. This article examines primarily the appropriate modulation format for FSO. For this purpose, one type of an OOK-NRZ modulator and one type of a demodulator were designed. This article also describes the construction of two types of photo detectors (the high impedance and the transimpedance ones. All electronic constructions were tested in the MicroCap simulator and they were experimentally measured as well. For the OOK NRZ modulation the, maximum transmission speed achieved the value of 160~Mbps. Measuring the quality of the modulation formats was carried out under mechanical and thermal turbulences. The last part of this work gives the results of the measurements of fog influences.

  15. Assembly and Electrical Tests of the First Full-size Forward Module for the ATLAS ITk Strip Detector

    CERN Document Server

    Garcia-Argos, Carlos; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment will replace the existing Inner Detector by an all-silicon detector named the Inner Tracker (ITk) for the High Luminosity LHC upgrades. In the outer region of the Inner Tracker is the strip detector, which consists of a four layer barrel and six discs to each side of the barrel, with silicon-strip modules as basic units. Each module is composed of a sensor and one or more flex circuits that hold the read-out electronics. In the experiment, the modules are mounted on support structures with integrated power and cooling. The modules are designed with geometries that accommodate the central and forward regions, with rectangular sensors in the barrels and wedge shaped sensors in the end-caps. The strips lengths and pitch sizes vary according to the occupancy of the region. In this contribution, we present the construction and the results of the electrical tests of the first full-size module of the innermost forward region, named Ring 0 in the ATLAS ITk strip detector nomenclature. This module...

  16. Thermo-Mechanical tests for the CLIC two-beam module study

    CERN Document Server

    Xydou, A; Riddone, G; Daskalaki, E

    2014-01-01

    The luminosity goal of CLIC requires micron level precision with respect to the alignment of the components on its two-meter long modules, composing the two main linacs. The power dissipated inside the module components introduces mechanical deformations affecting their alignment and therefore the resulting machine performance. Several two-beam prototype modules must be assembled to extensively measure their thermo-mechanical behavior under different operation modes. In parallel, the real environmental conditions present in the CLIC tunnel should be studied. The air conditioning and ventilation system providing specified air temperature and flow has been installed in the dedicated laboratory. The power dissipation occurring in the modules is being reproduced by the electrical heaters inserted inside the RF structure mock-ups and the quadrupoles. The efficiency of the cooling systems is being verified and the alignment of module components is monitored. The measurement results will be compared to finite elemen...

  17. Development and testing of thermal energy storage modules for use in active solar heating and cooling systems

    Science.gov (United States)

    Parker, J. C.

    1981-01-01

    The project development requirements and criteria are presented along with technical data for the modules. Performance tests included: ducting, temperature, pressure and air flow measurements, dry and wet bulb temperature; duct pressure measurements; and air conditioning apparatus checks; installation, operation, and maintenance instructions are included.

  18. Elevator mode convection in liquid metal blankets for fusion reactors

    Science.gov (United States)

    Zikanov, Oleg; Liu, Li

    2015-11-01

    The work is motivated by the design of liquid-metal blankets for nuclear fusion reactors. Mixed convection in a downward flow in a vertical duct with strong contant-rate heating of one wall (the Grashof number up to 1012) and strong transverse magnetic field (the Hartmann number up to 104) is considered. It is found that in an infinitely long duct the flow is dominated by exponentially growing elevator modes having the form of a combination of ascending and descending jets. An analytical solution approximating the growth rate of the modes is derived. Analogous flows in finite-length pipes and ducts are analyzed using the high-resolution numerical simulations. The results of the recent experiments are reproduced and explained. It is found that the flow evolves in cycles consisting of periods of exponential growth and breakdowns of the jets. The resulting high-amplitude fluctuations of temperature is a feature potentially dangerous for operation of a reactor blanket. Financial support was provided by the US NSF (Grant CBET 1232851).

  19. Inhibition of Frying Oil Oxidation by Carbon Dioxide Blanketing.

    Science.gov (United States)

    Totani, Nagao; Inoue, Ryota; Yawata, Miho

    2016-06-01

    The oxidation of oil starts, in general, from the penetration of atmospheric oxygen into oil. Inhibition of the vigorous oxidation of oil at deep-frying temperature under carbon dioxide flow, by disrupting the contact between oil and air, was first demonstrated using oil in a round bottom flask. Next, the minimum carbon dioxide flow rate necessary to blanket 4 L of frying oil in an electric fryer (surface area 690 cm(2)) installed with nonwoven fabric cover, was found to be 40 L/h. Then deep-frying of potato was done accordingly; immediately after deep-frying, an aluminum cover was placed on top of the nonwoven fabric cover to prevent the loss of carbon dioxide and the carbon dioxide flow was shut off. In conclusion, the oxidation of oil both at deep-frying temperature and during standing was remarkably inhibited by carbon dioxide blanketing at a practical flow rate and volume. Under the deep-frying conditions employed in this study, the increase in polar compound content was reduced to half of that of the control.

  20. Performance of silvered Teflon (trademark) thermal control blankets on spacecraft

    Science.gov (United States)

    Pippin, Gary; Stuckey, Wayne; Hemminger, Carol

    1993-01-01

    Silverized Teflon (Ag/FEP) is a widely used passive thermal control material for space applications. The material has a very low alpha/e ratio (less than 0.1) for low operating temperatures and is fabricated with various FEP thicknesses (as the Teflon thickness increases, the emittance increases). It is low outgassing and, because of its flexibility, can be applied around complex, curved shapes. Ag/FEP has achieved multiyear lifetimes under a variety of exposure conditions. This has been demonstrated by the Long Duration Exposure Facility (LDEF), Solar Max, Spacecraft Charging at High Altitudes (SCATHA), and other flight experiments. Ag/FEP material has been held in place on spacecraft by a variety of methods: mechanical clamping, direct adhesive bonding of tapes and sheets, and by Velcro(TM) tape adhesively bonded to back surfaces. On LDEF, for example, 5-mil blankets held by Velcro(TM) and clamping were used for thermal control over 3- by 4-ft areas on each of 17 trays. Adhesively bonded 2- and 5-mil sheets were used on other LDEF experiments, both for thermal control and as tape to hold other thermal control blankets in place. Performance data over extended time periods are available from a number of flights. The observed effects on optical properties, mechanical properties, and surface chemistry will be summarized in this paper. This leads to a discussion of performance life estimates and other design lessons for Ag/FEP thermal control material.

  1. Uranium self-shielding in fast reactor blankets

    Energy Technology Data Exchange (ETDEWEB)

    Kadiroglu, O.K.; Driscoll, M.J.

    1976-03-01

    The effects of heterogeneity on resonance self-shielding are examined with particular emphasis on the blanket region of the fast breeder reactor and on its dominant reaction--capture in /sup 238/U. The results, however, apply equally well to scattering resonances, to other isotopes (fertile, fissile and structural species) and to other environments, so long as the underlying assumptions of narrow resonance theory apply. The heterogeneous resonance integral is first cast into a modified homogeneous form involving the ratio of coolant-to-fuel fluxes. A generalized correlation (useful in its own right in many other applications) is developed for this ratio, using both integral transport and collision probability theory to infer the form of correlation, and then relying upon Monte Carlo calculations to establish absolute values of the correlation coefficients. It is shown that a simple linear prescription can be developed for the flux ratio as a function of only fuel optical thickness and the fraction of the slowing-down source generated by the coolant. This in turn permitted derivation of a new equivalence theorem relating the heterogeneous self-shielding factor to the homogeneous self-shielding factor at a modified value of the background scattering cross section per absorber nucleus. A simple version of this relation is developed and used to show that heterogeneity has a negligible effect on the calculated blanket breeding ratio in fast reactors.

  2. Fracture toughness of irradiated candidate materials for ITER first wall/blanket structures: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, D.J.; Pawel, J.E.; Grossbeck, M.L.; Rowcliffe, A.F. [Oak Ridge National Lab., TN (United States)] [and others

    1996-04-01

    Disk compact specimens of candidate materials for first wall/blanket structures in ITER have been irradiated to damage levels of about 3 dpa at nominal irradiation temperatures of either 90 250{degrees}C. These specimens have been tested over a temperature range from 20 to 250{degrees}C to determine J-integral values and tearing moduli. The results show that irradiation at these temperatures reduces the fracture toughness of austenic stainless steels, but the toughness remains quite high. The toughness decreases as the temperature increases. Irradiation at 250{degrees}C is more damaging that at 90{degrees}C, causing larger decreases in the fracture toughness. The ferritic-martensitic steels HT-9 and F82H show significantly greater reductions in fracture toughness that the austenitic stainless steels.

  3. Power cycling test and failure analysis of molded Intelligent Power IGBT Module under different temperature swing durations

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Jørgensen, Søren

    2016-01-01

    on the lifetime of 600 V, 30 A, 3-phase molded Intelligent PowerModules (IPM) and their failuremechanismsare investigated. The study is based on the accelerated power cycling test results of 36 samples under 6 different conditions and tests are performed under realistic electrical conditions by an advanced power...... cycling test setup. The results show that the temperature swing duration has a significant effect on the lifetime of IGBTmodules. Longer temperature swing duration leads to the smaller number of cycles to failure. Further, it also shows that the bond-wire crack is the main failuremechanismof the tested...

  4. Standard Test Method for Determining Resistance of Photovoltaic Modules to Hail by Impact with Propelled Ice Balls

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method provides a procedure for determining the ability of photovoltaic modules to withstand impact forces of falling hail. Propelled ice balls are used to simulate falling hailstones. 1.2 This test method defines test specimens and methods for mounting specimens, specifies impact locations on each test specimen, provides an equation for determining the velocity of any size ice ball, provides a method for impacting the test specimens with ice balls, provides a method for determining changes in electrical performance, and specifies parameters that must be recorded and reported. 1.3 This test method does not establish pass or fail levels. The determination of acceptable or unacceptable levels of ice ball impact resistance is beyond the scope of this test method. 1.4 The size of the ice ball to be used in conducting this test is not specified. This test method can be used with various sizes of ice balls. 1.5 This test method may be applied to concentrator and nonconcentrator modules. 1.6 The v...

  5. Development of high temperature liquid metal test facilities for qualification of materials and investigations of thermoelectrical modules

    Science.gov (United States)

    Onea, A.; Hering, W.; Reiser, J.; Weisenburger, A.; Diez de los Rios Ramos, N.; Lux, M.; Ziegler, R.; Baumgärtner, S.; Stieglitz, R.

    2017-07-01

    Three classes of experimental liquid metal facilities have been completed during the LIMTECH project aiming the qualification of materials, investigation of thermoelectrical modules, investigation of sodium transitional regimes and fundamental thermo-dynamical flows in concentrating solar power (CSP) relevant geometries. ATEFA facility is dedicated to basic science investigation focussed on the alkali metal thermal-to-electric converter (AMTEC) technology. Three SOLTEC facilities are aimed to be used in different laboratories for long term material investigation sodium environment up to a 1000 K temperature and for long term tests of AMTEC modules. The medium scale integral facility KASOLA is planned as the backbone for CSP development and demonstration.

  6. Establishment of a PID Pass/Fail Test for Crystalline Silicon Modules by Examining Field Performance for Five Years: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hacke, Peter L [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    In an experiment with five module designs and multiple replicas, it is found that crystalline silicon cell modules that can pass a criterion of less than 5 percent power degradation in stress test conditions of 60 degrees Celsius, 85 percent relative humidity (RH), 96 h, and nameplate-rated system voltage bias show no power degradation by potential induced degradation in the range of 4-6 years duration in the Florida, USA environment. This data suggests that this chamber stress level is useful as a pass/fail criterion for PID, and will help ensure against degradation by system voltage stress in Florida, or less stressful climates, for at least 5 years.

  7. 75 FR 60095 - Sempra LNG Marketing, LLC; Application for Blanket Authorization To Export Liquefied Natural Gas

    Science.gov (United States)

    2010-09-29

    ... capacity to import LNG via ocean-going carrier and with which trade is not prohibited by U.S. law or policy... LNG Marketing, LLC; Application for Blanket Authorization To Export Liquefied Natural Gas AGENCY..., by Sempra LNG Marketing, LLC (Sempra), requesting blanket authorization to export up to a total of...

  8. 77 FR 25711 - Cheniere Marketing, LLC; Application for Blanket Authorization To Export Previously Imported...

    Science.gov (United States)

    2012-05-01

    ... capacity to import LNG via ocean-going carrier and with which trade is not prohibited by U.S. law or policy... Cheniere Marketing, LLC; Application for Blanket Authorization To Export Previously Imported Liquefied... application (Application), filed on March 30, 2012, by Cheniere Marketing, LLC (CMI), requesting blanket...

  9. 18 CFR 284.403 - Code of conduct for persons holding blanket marketing certificates.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Code of conduct for persons holding blanket marketing certificates. 284.403 Section 284.403 Conservation of Power and Water... Pipelines § 284.403 Code of conduct for persons holding blanket marketing certificates. (a) To the extent...

  10. 77 FR 31004 - Southern Natural Gas Company; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2012-05-24

    ...] Southern Natural Gas Company; Notice of Request Under Blanket Authorization Take notice that on May 9, 2012, Southern Natural Gas Company (Southern), 569 Brookwood Village, Suite 501, Birmingham, Alabama 35209, filed... Commission's regulations under the Natural Gas Act (NGA), and Southern's blanket certificate issued in Docket...

  11. Altitude or slope position - gaseous carbon cycling on UK blanket peat bogs

    Science.gov (United States)

    Dixon, Simon; Rowson, James; Worrall, Fred

    2010-05-01

    Blanket peat accounts for 87% of Britain's total peatlands and represents one of the UK's largest terrestrial carbon stores. For peatlands to accumulate carbon the net ecosystem exchange of CO2 (NEE) must be negative with respect to the atmosphere. Unlike many other peatlands, upland blanket peat bogs in the UK are draped across hillsides and so it could be that both altitude and slope position are significant controls upon the magnitude and direction of NEE. The role that altitude and slope position play on NEE in upland blanket peat is poorly constrained on a local scale. Thus a hillslope transect was set up to measure how the gaseous exchange of CO2 varies across altitude and with slope position. The slope-transect consisted of 4 sites, in the English Peak District, with three replicates per site. The transect spanned the entire margin of peat occurrence on the hillside, from the summit (447m ASL) to the lowest occurrence of peat at (378m ASL). The sites were positioned to sample each of the distinct points of the variation in slope from the flat top, to the point of slope steepening, to the point of slope leveling to the final flattening out of the slope. Each site was located in Calluna vulgaris of similar age and in the same growth phase (degenerate). Data were gathered for a year in order to sample a complete seasonal cycle. The results of analysis by ANOVA showed that altitudinal effects were either not present or so small as to be masked by other effects. However both NER and GPP seemed to be linked to slope position. ANOVA and post hoc Tukey testing showed that only the site on the point of slope steepening was significantly different to the other sites with NER being 47% higher and GPP being 63% greater than the average of the other sites. But the elevated rates of GPP and NER cancelled each other out resulting in a non-significant 3% greater rate of overall NEE from the point of slope steepening. Another slope position effect observed was that of hill

  12. Total Ionizing Dose Test Report for the UC1823A Pulse Width Modulator

    Science.gov (United States)

    Chen, Dakai; Forney, James

    2017-01-01

    The purpose of this study is to examine the total ionizing dose susceptibility for the UC1823A pulse width modulator manufactured by Texas Instruments, Inc. The part is suspected to be vulnerable to enhanced low dose rate sensitivity (ELDRS).

  13. Wash resistance and repellent properties of Africa University mosquito blankets against mosquitoes

    Directory of Open Access Journals (Sweden)

    N. Lukwa

    2013-04-01

    Full Text Available The effect of permethrin-treated Africa University (AU mosquito blankets on susceptible female Anopheles gambiae sensu lato mosquitoes was studied under laboratory conditions at Africa University Campus in Mutare, Zimbabwe. Wash resistance (ability to retain an effective dose that kills ≥80% of mosquitoes after a number of washes and repellence (ability to prevent ≥80% of mosquito bites properties were studied. The AU blankets were wash resistant when 100% mortality was recorded up to 20 washes, declining to 90% after 25 washes. Untreated AU blankets did not cause any mortality on mosquitoes. However, mosquito repellence was 96%, 94%, 97.9%, 87%, 85% and 80.7% for treated AU blankets washed 0, 5, 10, 15, 20 and 25 times, respectively. Mosquito repellence was consistently above 80% from 0-25 washes. In conclusion, AU blankets washed 25 times were effective in repelling and killing An. gambiae sl mosquitoes under laboratory conditions.

  14. User-centered design and usability testing of an innovative health-related quality of life module.

    Science.gov (United States)

    Nagykaldi, Z J; Jordan, M; Quitoriano, J; Ciro, C A; Mold, J W

    2014-01-01

    Various computerized health risk appraisals (HRAs) are available, but few of them assess health-related quality of life (HRQoL) in a goal-directed framework. This study describes the user-centered development and usability testing of an innovative HRQoL module that extends a validated HRA tool in primary care settings. Systematic user-centered design, usability testing, and qualitative methods were used to develop the HRQoL module in primary care practices. Twenty two patients and 5 clinicians participated in two rounds of interactive technology think-out-loud sessions (TOLs) and semi-structured interviews (SSIs) to iteratively develop a four-step, computerized process that collects information on patient goals for meaningful life activities and current level of disability and presents a personalized and prioritized list of preventive recommendations linked to online resources. Analysis of TOLs and SSIs generated 5 categories and 11 sub-categories related to facilitators and barriers to usability and human-technology interaction. The categories included: Understanding the Purpose, Usability, Perceived Value, Literacy, and Participant Motivation. Some categories were inter-connected. The technology was continually and iteratively improved between sessions until saturation of positive feedback was achieved in 4 categories (addressing motivation will require more research). Usability of all screen units of the module was improved substantially. Clinician feedback emphasized the importance of the module's ability to translate the patient-centered HRQoL Report into actionable items for clinicians to facilitate shared decision-making. Complete integration of the HRQoL module into the existing HRA will require further development and testing. Systematic application of user-centered design and human factors principles in technology development and testing may significantly improve the usability and clinical value of health information systems. This more sophisticated

  15. Application of LABVIEW and LABVIEW FPGA module in serial communication of satellite-ground associated test system

    Science.gov (United States)

    Wang, PingHua; Li, ChengGui; Ma, Miao

    2006-11-01

    This paper presents a new method of FPGA design that a custom virtual instrument was created and downloaded to the user-reconfigurable FPGA on the NI PXI7831R by using LabVIEW, a graphical programming environment, and LabVIEW FPGA Module. The FPGA was designed as multi-channel synchronous serial ports and asynchronous serial ports. And the drive program of which were built in Labview for Windows to DLL called by the main test program running on DSC (dynamics simulation computer). The module and device completed multichannel serial communication between DSC and GNCC (gesture navigation control computer). It provided a dynamic close-looped debug and test environment for the Satellite-Ground Associated Test System so as to verify the validity of the program running on GNCC, the accuracy and integrality of the whole system. The potential bugs of software could be also found ahead.

  16. Construction and Test of Full-Size Micromegas Modules for the ATLAS New Small Wheel Upgrade

    CERN Document Server

    Bortfeldt, Jonathan; The ATLAS collaboration

    2015-01-01

    In 2015 the first full size resistive-strip Micromegas operational modules for the ATLAS New Small Wheel upgrade will be realized. The goal is to provide precision muon tracking with spatial resolution below 100$\\mu$m on trapezoidal four-layer detector modules with areas between 2 and 3m$^2$. This poses stringent limits on the overall accuracy of the modules with respect to strip positioning and planarity. The overall thickness of each modules is about 70mm and the total number of readout channels is on the order of $1.5\\cdot10^4$ per module. Each module is a quadruplet of four resistive strip Micromegas layers with 5mm drift gap. It is constructed from two readout panels with readout anodes on both sides and three drift panels, that carry the cathode structure. The panels are realized as sandwich structures of aluminum honeycomb, framed by aluminum bars and faced by printed circuit boards, carrying readout or cathode structures. The readout structure consists of strips with 0.43mm pitch and up to 2m length. ...

  17. Trial-Run of a Junction-Box Attachment Test for Use in Photovoltaic Module Qualification: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. C.; Deibert, S. L.; Wohlgemuth, J. H.

    2014-06-01

    Engineering robust adhesion of the junction box (j-box) is a hurdle typically encountered by photovoltaic module manufacturers during product development and manufacturing process control. There are historical incidences of adverse effects (e.g., fires) caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp-heat,' 'thermal-cycle,' or 'creep' tests within the IEC qualification protocol is proposed to verify the basic robustness of the adhesion system. The details of the proposed test are described, in addition to a trial-run of the test procedure. The described experiments examine four moisture-cured silicones, four foam tapes, and a hot-melt adhesive used in conjunction with glass, KPE, THV, and TPE substrates. For the purpose of validating the experiment, j-boxes were adhered to a substrate, loaded with a prescribed weight, and then subjected to aging. The replicate mock-modules were aged in an environmental chamber (at 85 degrees C/85% relative humidity for 1000 hours; then 100 degrees C/<10% relative humidity for 200 hours) or fielded in Golden (CO), Miami (FL), and Phoenix (AZ) for one year. Attachment strength tests, including pluck and shear test geometries, were also performed on smaller component specimens.

  18. From Classrooms to Geosciences Careers: Developing and Testing a Curriculum Module and Web Application for Modeling Water in Urban Environments

    Science.gov (United States)

    Cervenec, J. M.; Durand, M. T.

    2014-12-01

    A curriculum module created to teach basic principles of hydrology and promote geoscience careers at the high school level will be shared. The module, consisting of five exercises of increasing complexity, focuses on investigating local problems in hydrology using tangible models, readily available online tools, and a custom-built web application. The module culminates in students examining changing land use patterns over time and looking at subsequent impacts on runoff. Materials were field tested during two summer workshops for educators and support was provided during the subsequent school years. Participants reported that the materials filled existing voids in their instructional materials, that they preferred to select individual exercises for use in their classrooms rather than the module as a whole, and that they found online tools in geosciences and connections to local field sites and geoscience professionals to be particularly valuable. Furthermore, while the five exercises where developed for use together in high school classrooms, individual exercises were found to be applicable in classrooms from the elementary through graduate levels. The module addresses NGSS Disciplinary Core Idea - The Role of Water in Earth's Surface Processes in addition to Cross Cutting Concepts - Systems and System Models and Influence of Engineering, Technology, and Science on Society and the Natural World and multiple NGSS Practices.

  19. Assembly and Electrical Tests of the First Full-size Forward Module for the ATLAS ITk Strip Detector

    CERN Document Server

    Garcia-Argos, Carlos; The ATLAS collaboration

    2018-01-01

    The ATLAS experiment will replace the existing Inner Detector by an all-silicon detector named the Inner Tracker (ITk) for the High Luminosity LHC upgrades. In the outer region of the Inner Tracker is the strip detector, which consists of a four layer barrel and six discs to each side of the barrel, with silicon-strip modules as basic units. Each module is composed of a sensor and one or more flex circuits that hold the read-out electronics. In the experiment, the modules are mounted on support structures with integrated power and cooling. The modules are designed with geometries that accommodate the central and forward regions, with rectangular sensors in the barrels and wedge shaped sensors in the end-caps. The strips lengths and pitch sizes vary according to the occupancy of the region. In this contribution, we present the construction and results of the electrical tests of the first full-size module of the innermost forward region, named \\textit{Ring 0} in the ATLAS ITk strip detector nomenclature. This m...

  20. 75 FR 38459 - Certain Woven Electric Blankets From the People's Republic of China: Final Determination of Sales...

    Science.gov (United States)

    2010-07-02

    ... Antidumping Investigations involving Non-Market Economy Countries,'' which states: \\23\\ See Certain Woven... International Trade Administration Certain Woven Electric Blankets From the People's Republic of China: Final... Department'') has determined that certain woven electric blankets (``woven electric blankets'') from the...

  1. Impact of Diabetes Type 1 in Children on Autonomic Modulation at Rest and in Response to the Active Orthostatic Test.

    Science.gov (United States)

    Giacon, Thais Roque; Vanderlei, Franciele Marques; Christofaro, Diego Giulliano Destro; Vanderlei, Luiz Carlos Marques

    2016-01-01

    Cardiovascular autonomic neuropathy is one of the most common complications of diabetes mellitus type 1 (DM1), of which one of the first subclinical manifestations is changes in heart rate variability (HRV). Thus, analysis of HRV associated with the autonomic active orthostatic test is important in this population. To analyze the autonomic modulation responses induced by the implementation of the active orthostatic test, in children with DM1, and study the autonomic modulation by means of HRV indices. Data of 35 children were analyzed, of both sexes, aged between 7 and 15 years, who were divided into two groups: Diabetic (n = 16) and Control (n = 19). The following variables were collected initially: weight, height, body fat percentage, heart rate, blood pressure and casual blood glucose. Subsequently, for analysis of autonomic modulation, the beat-to-beat heart rate was captured by a heart rate monitor in the supine position for 30 minutes and after 10 minutes standing during performance of the active orthostatic test. HRV indices were calculated in the time and frequency domains. For data analysis, covariance analysis was used to compare groups and ANOVA for repeated measures to compare the effects of the active orthostatic test. These data were adjusted for age, sex, ethnicity, body fat percentage and casual blood glucose, with a 5% significance level. The results suggested that diabetic children at rest present a decrease in SDNN (50.4 vs. 75.2), rMSSD (38.7 vs 57.6) and LF [ms2] (693.6 vs 1874.6). During the active orthostatic test the children in both groups demonstrated a reduction in SDNN, RMSSD and LF [ms2] compared to the resting position, and this response was less pronounced in the diabetic group. We conclude that regardless of age, sex, ethnicity, body fat percentage and casual blood glucose, performing the active orthostatic test promoted increased sympathetic modulation and reduced parasympathetic modulation in both groups, and this response was less

  2. Impact of Diabetes Type 1 in Children on Autonomic Modulation at Rest and in Response to the Active Orthostatic Test.

    Directory of Open Access Journals (Sweden)

    Thais Roque Giacon

    Full Text Available Cardiovascular autonomic neuropathy is one of the most common complications of diabetes mellitus type 1 (DM1, of which one of the first subclinical manifestations is changes in heart rate variability (HRV. Thus, analysis of HRV associated with the autonomic active orthostatic test is important in this population.To analyze the autonomic modulation responses induced by the implementation of the active orthostatic test, in children with DM1, and study the autonomic modulation by means of HRV indices.Data of 35 children were analyzed, of both sexes, aged between 7 and 15 years, who were divided into two groups: Diabetic (n = 16 and Control (n = 19. The following variables were collected initially: weight, height, body fat percentage, heart rate, blood pressure and casual blood glucose. Subsequently, for analysis of autonomic modulation, the beat-to-beat heart rate was captured by a heart rate monitor in the supine position for 30 minutes and after 10 minutes standing during performance of the active orthostatic test. HRV indices were calculated in the time and frequency domains. For data analysis, covariance analysis was used to compare groups and ANOVA for repeated measures to compare the effects of the active orthostatic test. These data were adjusted for age, sex, ethnicity, body fat percentage and casual blood glucose, with a 5% significance level.The results suggested that diabetic children at rest present a decrease in SDNN (50.4 vs. 75.2, rMSSD (38.7 vs 57.6 and LF [ms2] (693.6 vs 1874.6. During the active orthostatic test the children in both groups demonstrated a reduction in SDNN, RMSSD and LF [ms2] compared to the resting position, and this response was less pronounced in the diabetic group.We conclude that regardless of age, sex, ethnicity, body fat percentage and casual blood glucose, performing the active orthostatic test promoted increased sympathetic modulation and reduced parasympathetic modulation in both groups, and this response

  3. Separation Test Method for Investigation of Current Density Effects on Bond Wires of SiC Power MOSFET Modules

    DEFF Research Database (Denmark)

    Luo, Haoze; Iannuzzo, Francesco; Blaabjerg, Frede

    2017-01-01

    and average temperature during the test. By analyzing the output characteristics of the linear region of MOSFET, the constraint relations among the gate voltage, on-state voltage drop and junction temperature are revealed in this paper. The one-to-one correspondence between gate voltage and conduction power...... loss can be used to adjust the current density under fixed temperature swing and average temperature. The commercial Silicon Carbide (SiC) MOSFET modules are tested to experimentally verify the proposed method. Finally, the effectiveness of proposed test method is validated by the experimental results....

  4. Study on measurement accuracy of active optics null test systems based on liquid crystal spatial light modulator and laser interferometer

    Science.gov (United States)

    Liu, Shijie; Xu, Longbo; Ma, Xiao; Zhang, Zhigang; Zhou, You; Lu, Qi; Bai, Yunbo; Shao, Jianda

    2017-06-01

    A common way to test high-quality aspherical lenses is to use a measurement system based on a set of null corrector and a laser interferometer. The null corrector can either be a combination of spherical lenses or be a computer generated hologram (CGH), which compensates the aspheric wave-front being tested. However, the null optics can't be repeatedly used once the shape of tested optics changes. Alternative active null correctors have been proposed based on dynamic phase modulator devices. A typical dynamic phase modulator is liquid crystal spatial light modulator (LCSLM), which can spatially change the refractive index of the liquid crystal and thus modify the phase of the input wave-front. Even though the measurement method based on LCSLM and laser interferometer has been proposed and demonstrated for optical testing several years ago, it still can't be used in the high quality measurement process due to its limited accuracy. In this paper, we systematically study the factors such as LCSLM structure parameters, encoding error and laser interferometer performance, which significantly affect the measurement accuracy. Some solutions will be proposed in order to improve the measurement accuracy based on LCSLM and laser interferometer.

  5. System tests with silicon strip module prototypes for the Phase-2-upgrade of the CMS tracker

    Energy Technology Data Exchange (ETDEWEB)

    Feld, Lutz; Karpinski, Waclaw; Klein, Katja; Preuten, Marius [I. Physikalisches Institut B, RWTH Aachen University (Germany)

    2016-07-01

    To prepare the CMS experiment for the High Luminosity LHC and its instantaneous luminosity of 5 . 10{sup 34} cm{sup -2}s{sup -1}, in the Long Shutdown 3 (around 2024) the CMS Silicon Tracker will be replaced. The Silicon Strip Modules for the new Tracker will host two vertically stacked sensors. The combination of hit information from both sensors will allow the estimation of the transverse momentum (p{sub T}) of charged particles in the module front-end. This can be used to identify hits from potential interesting high-p{sub T} tracks (above 2 GeV) for the first trigger level. The CMS Binary Chip (CBC) provides the analogue readout of two sensors and a digital section, into which the momentum discrimination is integrated. The modules will host a new DC-DC converter chain, which will allow individual powering of each module. First measurements with early prototypes on the interplay between DC-DC powering and the read-out functions of the module are presented in this talk.

  6. Fusion Blanket Coolant Section Criteria, Methodology, and Results

    Energy Technology Data Exchange (ETDEWEB)

    DeMuth, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meier, W. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jolodosky, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frantoni, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reyes, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-02

    The focus of this LDRD was to explore potential Li alloys that would meet the tritium breeding and blanket cooling requirements but with reduced chemical reactivity, while maintaining the other attractive features of pure Li breeder/coolant. In other fusion approaches (magnetic fusion energy or MFE), 17Li- 83Pb alloy is used leveraging Pb’s ability to maintain high TBR while lowering the levels of lithium in the system. Unfortunately this alloy has a number of potential draw-backs. Due to the high Pb content, this alloy suffers from very high average density, low tritium solubility, low system energy, and produces undesirable activation products in particular polonium. The criteria considered in the selection of a tritium breeding alloy are described in the following section.

  7. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B. William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chiu, Ing L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  8. Accelerator-driven molten-salt blankets: Physics issues

    Energy Technology Data Exchange (ETDEWEB)

    Houts, M.G.; Beard, C.A.; Buksa, J.J.; Wiley Davidson, J.; Durkee, J.W.; Perry, R.T.; Poston, D.I. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1995-01-20

    A number of nuclear physics issues concerning the Los Alamos molten-salt, accelerator-driven plutonium converter are discussed. General descriptions of several concepts using internal and external moderation are presented. Burnup and salt processing requirement calculations are presented for four concepts, indicating that both the high power density externally moderated concept and an internally moderated concept achieve total plutonium burnups approaching 90% at salt processing rates of less than 2 m{sup 3} per year. Beginning-of-life reactivity temperature coefficients and system kinetic response are also discussed. Future research should investigate the effect of changing blanket composition on operational and safety characteristics. {copyright}American Institute of Physcis 1995

  9. Uranium decay products found on Mir space blanket mitt.

    Science.gov (United States)

    Grismore, R; Rosen, A Z; Llewellyn, R A; Taylor, J S

    2001-01-01

    The space blanket mitt which covered the Trek detector on Mir during four years of orbital flight has been measured for gamma radiation with HPGe and multidimensional spectrometers. Difference spectra from very-long-period spectrometer runs on the mitt and on a similar non-deployed mitt from the same manufacturer show that the mitt has acquired small but significant amounts of gamma radioactivity during orbital flight. Twelve gamma-ray peaks have been measured in the difference spectra, including peaks identified as due to 214Bi and 214Pb from the uranium-radium alpha decay series, and others possibly due to the uranium-actinium series. This implies the presence of a sparse population of uranium decay products in lower orbital space which can only have come from nuclear explosions, burned-up satellite nuclear batteries, the solar wind, or supernova fragments in the local interstellar medium.

  10. Very long pulse high-RF power test of a lower hybrid frequency antenna module

    Energy Technology Data Exchange (ETDEWEB)

    Goniche, M.; Brossaud, J.; Barral, C.; Berger-By, G.; Bibet, Ph.; Poli, S.; Rey, G.; Tonon, G. [Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Seki, M.; Obara, K. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1994-03-01

    Outgassing, induced by very long RF waves injection at high power density was studied in a module, able to be used for a lower hybrid frequency antenna. Good RF properties of the module are reported, however, resonance phenomena with strong absorption of RF power (15%) was observed at high temperature (T>400 deg C). A large outgassing data base is provided by the 75 shots cumulating 27 hours of RF injection. The comparison with previous experiments (Tore Supra and TdV prototype modules) confirm the effect of baking and results are consistent. Outgassing increases exponentially with -1/T, and a desorption model with an activation energy Ed {approx} 0.35 eV fits the data up to 400 deg C. In order to design vacuum pumping system for large lower hybrid frequency antenna, outgassing rates are given for different working temperatures. (author). 11 refs., 55 figs.

  11. James Webb Space Telescope (JWST) Integrated Science Instruments Module (ISIM) Cryo-Vacuum (CV) Test Campaign Summary

    Science.gov (United States)

    Yew, Calinda; Whitehouse, Paul; Lui, Yan; Banks, Kimberly

    2016-01-01

    JWST Integrated Science Instruments Module (ISIM) has completed its system-level testing program at the NASA Goddard Space Flight Center (GSFC). In March 2016, ISIM was successfully delivered for integration with the Optical Telescope Element (OTE) after the successful verification of the system through a series of three cryo-vacuum (CV) tests. The first test served as a risk reduction test; the second test provided the initial verification of the fully-integrated flight instruments; and the third test verified the system in its final flight configuration. The complexity of the mission has generated challenging requirements that demand highly reliable system performance and capabilities from the Space Environment Simulator (SES) vacuum chamber. As JWST progressed through its CV testing campaign, deficiencies in the test configuration and support equipment were uncovered from one test to the next. Subsequent upgrades and modifications were implemented to improve the facility support capabilities required to achieve test requirements. This paper: (1) provides an overview of the integrated mechanical and thermal facility systems required to achieve the objectives of JWST ISIM testing, (2) compares the overall facility performance and instrumentation results from the three ISIM CV tests, and (3) summarizes lessons learned from the ISIM testing campaign.

  12. Peningkatan mutu blanket karet alam melalui proses predrying dan penyemprotan asap cair

    Directory of Open Access Journals (Sweden)

    Afrizal Vachlepi

    2017-06-01

    Full Text Available Most of Indonesian rubber products SIR 20 are made from the material of raw rubber obtained from smallholders. However, the quality of this material is not good enough. Thus, quality improvement has to be carried out by manufacturers. The liquid smoke used during the blanket hanging process can improve the quality of the rubber products SIR 20. This research aimed to determine and study the effects of liquid smoke spraying and blanket hanging duration on the drying factor, the dry rubber content, technical quality, vulcanization characteristics, and physical properties of vulcanized natural rubber. Treatments consisted of various hanging duration (6, 8, and 10 days, and without hanging and spraying (with and without spraying of liquid smoke. The results showed that the spraying of liquid smoke on natural rubber blankets could improve the technical quality of the natural rubber, especially the values of Po and PRI. The spraying of liquid smoke could reduce the blanket hanging duration to 6-8 days. The blankets sprayed with liquid smoke had the optimum cure time of around 15 minutes and 19 seconds and the scorch time of around 3 minutes and 22 seconds. These values indicated that the vulcanization characteristics of blankets which were sprayed with liquid smoke were generally better than those of blankets which were not sprayed with liquid smoke

  13. Synthesis and Characterization of Fibre Reinforced Silica Aerogel Blankets for Thermal Protection

    Directory of Open Access Journals (Sweden)

    S. Chakraborty

    2016-01-01

    Full Text Available Using tetraethoxysilane (TEOS as the source of silica, fibre reinforced silica aerogels were synthesized via fast ambient pressure drying using methanol (MeOH, trimethylchlorosilane (TMCS, ammonium fluoride (NH4F, and hexane. The molar ratio of TEOS/MeOH/(COOH2/NH4F was kept constant at 1 : 38 : 3.73 × 10−5 : 0.023 and the gel was allowed to form inside the highly porous meta-aramid fibrous batting. The wet gel surface was chemically modified (silylation process using various concentrations of TMCS in hexane in the range of 1 to 20% by volume. The fibre reinforced silica aerogel blanket was obtained subsequently through atmospheric pressure drying. The aerogel blanket samples were characterized by density, thermal conductivity, hydrophobicity (contact angle, and Scanning Electron Microscopy. The radiant heat resistance of the aerogel blankets was examined and compared with nonaerogel blankets. It has been observed that, compared to the ordinary nonaerogel blankets, the aerogel blankets showed a 58% increase in the estimated burn injury time and thus ensure a much better protection from heat and fire hazards. The effect of varying the concentration of TMCS on the estimated protection time has been examined. The improved thermal stability and the superior thermal insulation of the flexible aerogel blankets lead to applications being used for occupations that involve exposure to hazards of thermal radiation.

  14. Ca2+-modulated ROS-GC1 transduction system in testes and its presence in the spermatogenic cells

    Directory of Open Access Journals (Sweden)

    Anna eJankowska

    2014-04-01

    Full Text Available ROS-GC1 belongs to the Ca2+-modulated sub-family of membrane guanylate cyclases. It primarily exists and is linked with signaling of the sensory neurons – sight, smell, taste and pinealocytes. Exceptionally, it is also present and is Ca2+-modulated in the non-neuronal cells, the sperm cells in the testes, where S100B protein serves its Ca2+ sensor. The present report demonstrates the identification of an additional Ca2+ sensor of ROS-GC1 in the testes, neurocalcin . Through mouse molecular genetic models, it compares and quantifies the relative input of the S100B and neurocalcin  in regulating the Ca2+ signaling of ROS-GC1 transduction machinery, and via immunochemistry it demonstrates the co-presence of neurocalcin  and ROS-GC1 in the spermatogenic cells of the testes. The suggestion is that in more ways than one the Ca2+-modulated ROS-GC1 transduction system is linked with the testicular function. This non-neuronal transduction system may represent an illustration of the ROS-GC1 expanding role in the trans-signaling of the neural and non-neural systems.

  15. A framework for discovering, designing, and testing microproteins to regulate synthetic transcriptional modules

    NARCIS (Netherlands)

    Fiume, Elisa; de Klein, Niek; Rhee, Seung Yon; Magnani, Enrico

    2016-01-01

    Transcription factors often form protein complexes and give rise to intricate transcriptional networks. The regulation of transcription factor multimerization plays a key role in the fine-tuning of the underlying transcriptional pathways and can be exploited to modulate synthetic transcriptional

  16. Analysis and optimization of minor actinides transmutation blankets with regards to neutron and gamma sources

    Directory of Open Access Journals (Sweden)

    Kooyman Timothée

    2017-01-01

    Full Text Available Heterogeneous loading of minor actinides in radial blankets is a potential solution to implement minor actinides transmutation in fast reactors. However, to compensate for the lower flux level experienced by the blankets, the fraction of minor actinides to be loaded in the blankets must be increased to maintain acceptable performances. This severely increases the decay heat and neutron source of the blanket assemblies, both before and after irradiation, by more than an order of magnitude in the case of neutron source for instance. We propose here to implement an optimization methodology of the blankets design with regards to various parameters such as the local spectrum or the mass to be loaded, with the objective of minimizing the final neutron source of the spent assembly while maximizing the transmutation performances of the blankets. In a first stage, an analysis of the various contributors to long- and short-term neutron and gamma source is carried out whereas in a second stage, relevant estimators are designed for use in the effective optimization process, which is done in the last step. A comparison with core calculations is finally done for completeness and validation purposes. It is found that the use of a moderated spectrum in the blankets can be beneficial in terms of final neutron and gamma source without impacting minor actinides transmutation performances compared to more energetic spectrum that could be achieved using metallic fuel for instance. It is also confirmed that, if possible, the use of hydrides as moderating material in the blankets is a promising option to limit the total minor actinides inventory in the fuel cycle. If not, it appears that focus should be put upon an increased residence time for the blankets rather than an increase in the acceptable neutron source for handling and reprocessing.

  17. Analysis and optimization of minor actinides transmutation blankets with regards to neutron and gamma sources

    Science.gov (United States)

    Kooymana, Timothée; Buiron, Laurent; Rimpault, Gérald

    2017-09-01

    Heterogeneous loading of minor actinides in radial blankets is a potential solution to implement minor actinides transmutation in fast reactors. However, to compensate for the lower flux level experienced by the blankets, the fraction of minor actinides to be loaded in the blankets must be increased to maintain acceptable performances. This severely increases the decay heat and neutron source of the blanket assemblies, both before and after irradiation, by more than an order of magnitude in the case of neutron source for instance. We propose here to implement an optimization methodology of the blankets design with regards to various parameters such as the local spectrum or the mass to be loaded, with the objective of minimizing the final neutron source of the spent assembly while maximizing the transmutation performances of the blankets. In a first stage, an analysis of the various contributors to long and short term neutron and gamma source is carried out while in a second stage, relevant estimators are designed for use in the effective optimization process, which is done in the last step. A comparison with core calculations is finally done for completeness and validation purposes. It is found that the use of a moderated spectrum in the blankets can be beneficial in terms of final neutron and gamma source without impacting minor actinides transmutation performances compared to more energetic spectrum that could be achieved using metallic fuel for instance. It is also confirmed that, if possible, the use of hydrides as moderating material in the blankets is a promising option to limit the total minor actinides inventory in the fuel cycle. If not, it appears that focus should be put upon an increased residence time for the blankets rather than an increase in the acceptable neutron source for handling and reprocessing.

  18. Quality Control for Scoring Tests Administered in Continuous Mode: An NCME Instructional Module

    Science.gov (United States)

    Allalouf, Avi; Gutentag, Tony; Baumer, Michal

    2017-01-01

    Quality control (QC) in testing is paramount. QC procedures for tests can be divided into two types. The first type, one that has been well researched, is QC for tests administered to large population groups on few administration dates using a small set of test forms (e.g., large-scale assessment). The second type is QC for tests, usually…

  19. Neutronic study on seed-blanket type reduced-moderation water reactor fuel assembly

    OpenAIRE

    Shelley, A.; 久語 輝彦; 嶋田 昭一郎; 大久保 努; 岩村 公道

    2004-01-01

    Neutronic study has been done for a PWR-type reduced-moderation water reactor with seed-blanket fuel assemblies to achieve a high conversion ratio, a negative void coefficient and a high burnup by using a MOX fuel. The results of the precise assembly burnup calculations show that the recommended numbers of seed and blanket layers are 15(S15) and 5(B5), respectively. By the optimization of axial configuration, the S15B5 assembly with the seed of 1000times2 mm high, internal blanket of 150 mm h...

  20. First tests of a MIEZE (modulated intensity by Zero effort)-type instrument on a pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Bleuel, M. [Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 (United States)]. E-mail: mbleuel@anl.gov; Broell, M. [Technische Universitaet Muenchen, J. Franck Str., Garching, 84748 (Germany); Lang, E. [Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 (United States); Littrell, K. [Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 (United States); Gaehler, R. [Institut Laue Langevin, 6 Rue J.Horowitz, Grenoble, 38042 (France); Lal, J. [Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

    2006-01-31

    In this paper we report the results of our first tests of a novel proof-of-principle instrument developed at the IPNS, Argonne. The experiment was performed on the time of flight POSY1 instrument, the polarized reflectometer at the IPNS, which was modified to accommodate the apparatus. Two sets of RF-flippers were tested together, generating a modulated intensity by zero effort (MIEZE)-type neutron resonant spin echo signal which was observed at the detector using a wide neutron wavelength band.

  1. Evaluation of Cortaderia selloana (Capim-dos-pampas) blankets as sorbent materials for oil spills in simulated hydro equipment; Estudo do desempenho de tecidos e mantas para utilizacao como sorventes para petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Bonetti, T.F.; Sydenstricker, T.H.D. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil)], e-mail: thais@demec.ufpr.br; Amico, S.C. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2006-07-01

    Oil spills in aquatic environments may cause serious economy losses and severe environmental impact which both drive the development of commercial systems (e.g. sorbents) to control these accidents. One way of using sorbents is to encapsulate them with an involucre or cover, i.e. producing blankets. The focus of this research is to evaluate the key characteristics of interest (aerial density, water and oil sorption, mechanical strength and cost) of different materials to use as covers for blankets and to prepare blankets and compare their performance when made with various core materials, such as Cortaderia selloana fibers and different commercial sorbents. A simulated aqueous body with stream was used for the sorption experiments, where the oil and water phases were circulated and forced to pass under the blankets. On the sorption tests, the fibers of Cortaderia selloana reached a performance lower to that of commercial sorbents, mainly due to their low density and high volume (difficult packing), nevertheless a clear trend was noted, heavier blankets with higher sorption periods lead to higher sorption. (author)

  2. Approaching Repetitive Short Circuit Tests on MW-Scale Power Modules by means of an Automatic Testing Setup

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Wang, Huai; Iannuzzo, Francesco

    2016-01-01

    with no significant damage. The developed system has been demonstrated to be very helpful in performing a large number of repetition tests as required by modern testing protocols for robustness and reliability assess-ment. The software algorithm and a demonstration video are available for download....

  3. In plain sight: the Chesapeake Bay crater ejecta blanket

    Science.gov (United States)

    Griscom, D. L.

    2012-02-01

    The discovery nearly two decades ago of a 90 km-diameter impact crater below the lower Chesapeake Bay has gone unnoted by the general public because to date all published literature on the subject has described it as "buried". To the contrary, evidence is presented here that the so-called "upland deposits" that blanket ∼5000 km2 of the U.S. Middle-Atlantic Coastal Plain (M-ACP) display morphologic, lithologic, and stratigraphic features consistent with their being ejecta from the 35.4 Ma Chesapeake Bay Impact Structure (CBIS) and absolutely inconsistent with the prevailing belief that they are of fluvial origin. Specifically supporting impact origin are the facts that (i) a 95 %-pure iron ore endemic to the upland deposits of southern Maryland, eastern Virginia, and the District of Columbia has previously been proven to be impactoclastic in origin, (ii) this iron ore welds together a small percentage of well-rounded quartzite pebbles and cobbles of the upland deposits into brittle sheets interpretable as "spall plates" created in the interference-zone of the CBIS impact, (iii) the predominantly non-welded upland gravels have long ago been shown to be size sorted with an extreme crater-centric gradient far too large to have been the work of rivers, but well explained as atmospheric size-sorted interference-zone ejecta, (iv) new evidence is provided here that ~60 % of the non-welded quartzite pebbles and cobbles of the (lower lying) gravel member of the upland deposits display planar fractures attributable to interference-zone tensile waves, (v) the (overlying) loam member of the upland deposits is attributable to base-surge-type deposition, (vi) several exotic clasts found in a debris flow topographically below the upland deposits can only be explained as jetting-phase crater ejecta, and (vii) an allogenic granite boulder found among the upland deposits is deduced to have been launched into space and sculpted by hypervelocity air friction during reentry. An

  4. Training Master Students of "Education and Pedagogy" Enlarged Profession Group: Testing the Module "Personalization and Differentiation of Educational Work in Teaching Students of Different Categories"

    Directory of Open Access Journals (Sweden)

    Postavnev V.M.

    2015-11-01

    Full Text Available The article presents the main characteristics of the module "Individualization and differentiation of educational work with students of different categories of" innovative educational program of professional (teaching graduate. It provides an educational discipline module focused on two target groups of students who have significant differences in psycho-pedagogical training. It offers the option of building the interdisciplinary evaluation of students upon completion of the module and uncovered testing peculiarities of the module in terms of networking. We presented the role of the teacher-supervisor, the content and organization of advanced professional practice, of the potentialities of the individual blocks of practice in enriching the content and forms of the educational process in the magistracy. Based on the analysis results of the module there are conclusions about the capabilities of the module being tested in preparation of masters of pedagogical and psycho-pedagogical directions.

  5. Testing and Validation Studies of the NSMII-Benthic Sediment Diagenesis Module

    Science.gov (United States)

    2016-07-01

    model multiple water quality constituents and biogeochemical processes in aquatic sys- tems. The NSMs consist of two kinetics modules: NSMI and NSMII...three models were run with, to the extent possible, a consistent set of kinetic co- efficients and parameters, initial conditions, deposition fluxes...predictions for SOD and sediment-water fluxes of ammonia , ni- (f) ERDC/EL TR-16-11 24 trate, phosphate, and methane are shown in Figure 10. The two models

  6. Beam-loss-induced electrical stress test on CMS Silicon Strip Modules

    CERN Document Server

    Fahrer, M; Hartmann, F; Heier, S; MacPherson, A; Muller, T H; Weiler, T h

    2004-01-01

    Based on simulated LHC beam loss scenarios, fully depleted CMS silicon tracker modules and sensors were exposed to 42 ns-long beam spills of approximately 10**1**1 protons per spill at the PS at CERN. The ionisation dose was sufficient to short circuit the silicon sensors. The dynamic behaviour of bias voltage, leakage currents and voltages over coupling capacitors were monitored during the impact. Results of pre- and post-qualification as well as the dynamic behaviour are shown.

  7. Construction and Test of Full-Size Micromegas Modules for the ATLAS New Small Wheel Upgrade

    CERN Document Server

    Bortfeldt, Jonathan; The ATLAS collaboration

    2015-01-01

    In 2015 the first full size resistive-strip MicroMegas operational modules for the ATLAS New Small Wheel upgrade will be realized. The goal is to provide precision muon tracking with spatial resolution below 100 μm on trapezoidal detector areas between 2 and 3 m^2. The overall thickness of each detector modules is about 70 mm and the total number of read-out channels is of the order of 10^4. Each module consists of a quadruplet of four MicroMegas with 5 mm drift gaps intervaled with 2 read-out panels with anodes on both sides and 3 drift panels. The panels are realized as 11 mm thick stiffening sandwiches made of 10 mm thick honeycomb, 0.5 mm thick FR4 pcb material sheets as surfaces and aluminium frames. The active part of the read-out anodes consists of horizontal strips with 0.45 mm pitch. Two out of the four anode planes are built with stereo strips of identical pitch and stereo angles of ±1.5 degrees. A sequence of 128 μm height insulating pillars on the read-out planes allows the pretensioned microme...

  8. Analysis using formal method and testing technique for the processor module for safety-critical application

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J. Y.; Choi, B. J.; Song, H. J.; Hwang, D. Y.; Song, G. H.; Lee, H. [Korea University, Seoul (Korea, Republic of)

    2008-06-15

    This research is on help develop nuclear power plant control system, through the requirement specification and verification method development. As the result of applying the test method, a test standard was obtain through test documentation writing support and a test document reflecting the standard test activities based on the test standard. The specification and verification of the pCOS system and the unified testing documentation and execution helps the entire project to progress and enable us to achieve necessary documents and technology to develop a safety critical system.

  9. Suitability of the HAM-Nat test and TMS module "basic medical-scientific understanding" for medical school selection.

    Science.gov (United States)

    Hissbach, Johanna; Feddersen, Lena; Sehner, Susanne; Hampe, Wolfgang

    2012-01-01

    Tests with natural-scientific content are predictive of the success in the first semesters of medical studies. Some universities in the German speaking countries use the 'Test for medical studies' (TMS) for student selection. One of its test modules, namely "medical and scientific comprehension", measures the ability for deductive reasoning. In contrast, the Hamburg Assessment Test for Medicine, Natural Sciences (HAM-Nat) evaluates knowledge in natural sciences. In this study the predictive power of the HAM-Nat test will be compared to that of the NatDenk test, which is similar to the TMS module "medical and scientific comprehension" in content and structure. 162 medical school beginners volunteered to complete either the HAM-Nat (N=77) or the NatDenk test (N=85) in 2007. Until spring 2011, 84.2% of these successfully completed the first part of the medical state examination in Hamburg. Via different logistic regression models we tested the predictive power of high school grade point average (GPA or "Abiturnote") and the test results (HAM-Nat and NatDenk) with regard to the study success criterion "first part of the medical state examination passed successfully up to the end of the 7(th) semester" (Success7Sem). The Odds Ratios (OR) for study success are reported. For both test groups a significant correlation existed between test results and study success (HAM-Nat: OR=2.07; NatDenk: OR=2.58). If both admission criteria are estimated in one model, the main effects (GPA: OR=2.45; test: OR=2.32) and their interaction effect (OR=1.80) are significant in the HAM-Nat test group, whereas in the NatDenk test group only the test result (OR=2.21) significantly contributes to the variance explained. On their own both HAM-Nat and NatDenk have predictive power for study success, but only the HAM-Nat explains additional variance if combined with GPA. The selection according to HAM-Nat and GPA has under the current circumstances of medical school selection (many good applicants

  10. Framework for a Comparative Accelerated Testing Standard for PV Modules: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, S.; Wohlgemuth, J.; Yamamichi, M.; Sample, T.; Miller, D.; Meakin, D.; Monokroussos, C.; TamizhMani, M.; Kempe, M.; Jordan, D.; Bosco, N.; Hacke, P.; Bermudez, V.; Kondo, M.

    2013-08-01

    As the photovoltaic industry has grown, the interest in comparative accelerated testing has also grown. Private test labs offer testing services that apply greater stress than the standard qualification tests as tools for differentiating products and for gaining increased confidence in long-term PV investments. While the value of a single international standard for comparative accelerated testing is widely acknowledged, the development of a consensus is difficult. This paper strives to identify a technical basis for a comparative standard.

  11. Fiber Attachment Module Experiment (FAME): Using a Multiplexed Miniature Hollow Fiber Membrane Bioreactor Solution for Rapid Process Testing

    Science.gov (United States)

    Lunn, Griffin; Wheeler, Raymond; Hummerick, Mary; Birmele, Michele; Richards, Jeffrey; Coutts, Janelle; Koss, Lawrence; Spencer, Lashelle.; Johnsey, Marissa; Ellis, Ronald

    Bioreactor research, even today, is mostly limited to continuous stirred-tank reactors (CSTRs). These are not an option for microgravity applications due to the lack of a gravity gradient to drive aeration as described by the Archimedes principle. This has led to testing of Hollow Fiber Membrane Bioreactors (HFMBs) for microgravity applications, including possible use for wastewater treatment systems for the International Space Station (ISS). Bioreactors and filtration systems for treating wastewater could avoid the need for harsh pretreatment chemicals and improve overall water recovery. However, the construction of these reactors is difficult and commercial off-the-shelf (COTS) versions do not exist in small sizes. We have used 1-L modular HFMBs in the past, but the need to perform rapid testing has led us to consider even smaller systems. To address this, we designed and built 125-mL, rectangular reactors, which we have called the Fiber Attachment Module Experiment (FAME) system. A polycarbonate rack of four square modules was developed with each module containing removable hollow fibers. Each FAME reactor is self-contained and can be easily plumbed with peristaltic and syringe pumps for continuous recycling of fluids and feeding, as well as fitted with sensors for monitoring pH, dissolved oxygen, and gas measurements similar to their larger counterparts. The first application tested in the FAME racks allowed analysis of over a dozen fiber surface treatments and three inoculation sources to achieve rapid reactor startup and biofilm attachment (based on carbon oxidation and nitrification of wastewater). With these miniature FAME reactors, data for this multi-factorial test were collected in duplicate over a six-month period; this greatly compressed time period required for gathering data needed to study and improve bioreactor performance.

  12. 77 FR 76015 - Prior Notice of Activity Under Blanket Certificate; Dominion Transmission, Inc.

    Science.gov (United States)

    2012-12-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Prior Notice of Activity Under Blanket Certificate; Dominion Transmission, Inc. On December 7, 2012, Dominion Transmission, Inc. (Dominion) filed with the Federal Energy...

  13. Comparison of three MHD flow control methods for self-cooled liquid metal blankets

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.S.; Picologlou, B.F.

    1986-01-01

    The heat deposition in a blanket is concentrated near the first wall. Uniform liquid-metal velocity in a self-cooled blanket is unattractive, because it leads to low mixed-mean temperature rise through the blanket and reduced power conversion efficiency. The objective of MHD flow control is to use the electromagnetic forces to produce a non-uniform velocity distribution which gives a uniform temperature distribution over the thickness of the blanket. Three methods of MHD flow control are presented here and the MHD pressure drops corresponding to the three methods are compared. One of the methods, although successful at achieving nonuniform velocity profiles, permits a large circulation of electric current which produces a high pressure drop. The analytical results do not indicate a clear choice between the other two methods. The analytical results do point to possible difference in heat transfer performance with the two methods.

  14. Feasibility study of a fission supressed blanket for a tandem-mirror hybrid reactor

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.; Lee, J.D.; Barr, W.L.

    1981-10-05

    A study of fission suppressed blankets for the tandem mirror not only showed such blankets to be feasible but also to be safer than fissioning blankets. Such hybrids could produce enough fissile material to support up to 17 light water reactors of the same nuclear power rating. Beryllium was compared to /sup 7/Li for neutron multiplication; both were considered feasible but the blanket with Li produced 20% less fissile fuel per unit of nuclear power in the reactor. The beryllium resource, while possibly being too small for extensive pure fusion application, would be adequate (with carefully planned industrial expansion) for the hybrid because of the large support ratio, and hence few hybrids required. Radiation damage and coatings for beryllium remain issues to be resolved by further study and experimentation.

  15. Comparison of Size Modulation Standard Automated Perimetry and Conventional Standard Automated Perimetry with a 10-2 Test Program in Glaucoma Patients.

    Science.gov (United States)

    Hirasawa, Kazunori; Takahashi, Natsumi; Satou, Tsukasa; Kasahara, Masayuki; Matsumura, Kazuhiro; Shoji, Nobuyuki

    2017-08-01

    This prospective observational study compared the performance of size modulation standard automated perimetry with the Octopus 600 10-2 test program, with stimulus size modulation during testing, based on stimulus intensity and conventional standard automated perimetry, with that of the Humphrey 10-2 test program in glaucoma patients. Eighty-seven eyes of 87 glaucoma patients underwent size modulation standard automated perimetry with Dynamic strategy and conventional standard automated perimetry using the SITA standard strategy. The main outcome measures were global indices, point-wise threshold, visual defect size and depth, reliability indices, and test duration; these were compared between size modulation standard automated perimetry and conventional standard automated perimetry. Global indices and point-wise threshold values between size modulation standard automated perimetry and conventional standard automated perimetry were moderately to strongly correlated (p 33.40, p modulation standard automated perimetry than with conventional standard automated perimetry, but the visual-field defect size was smaller (p modulation-standard automated perimetry than on conventional standard automated perimetry. The reliability indices, particularly the false-negative response, of size modulation standard automated perimetry were worse than those of conventional standard automated perimetry (p modulation standard automated perimetry than with conventional standard automated perimetry (p = 0.02). Global indices and the point-wise threshold value of the two testing modalities correlated well. However, the potential of a large stimulus presented at an area with a decreased sensitivity with size modulation standard automated perimetry could underestimate the actual threshold in the 10-2 test protocol, as compared with conventional standard automated perimetry.

  16. Liquid immersion blanket design for use in a compact modular fusion reactor

    Science.gov (United States)

    Sorbom, Brandon; Ball, Justin; Barnard, Harold; Haakonsen, Christian; Hartwig, Zachary; Olynyk, Geoffrey; Sierchio, Jennifer; Whyte, Dennis

    2012-10-01

    Traditional tritium breeding blankets in fusion reactor designs include a large amount of structural material. This results in complex engineering requirements, complicated sector maintenance, and marginal tritium breeding ratios (TBR). We present a conceptual design of a fully liquid blanket. To maximize tritium breeding volume, the vacuum vessel is completely immersed in a continuously recycled FLiBe blanket, with the exception of small support posts. FLiBe has a wide liquid temperature window (459 C to 1430 C), low electrical conductivity to minimize MHD effects, similar thermal/fluid characteristics to water, and is chemically inert. While tritium breeding with FLiBe in traditional blankets is poor, we use MCNP neutronics analysis to show that the immersion blanket design coupled with a beryllium neutron multiplier results in TBR > 1. FLiBe is shown to be a sufficient radiation shield for the toroidal field magnets and can be used as a coolant for the vacuum vessel and divertor, allowing for a simplified single-phase, low-pressure, single-fluid cooling scheme. When coupled with a high-field compact reactor design, the immersion blanket eliminates the need for complex sector maintenance, allows the vacuum vessel to be a replaceable component, and reduces financial cost.

  17. The state of the art report on the development of manufacturing technology of fusion reactor FW blanket and mock-up in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. Y.; Jeong, Y. H.; Baek, J. H.; Kim, J. H.; Kim, H. G

    2004-08-15

    The joining technology of first wall blanket has been developed by JAERI in collaboration with Kawasaki Heavy Industry, Isuau Motors and University of Tsukuba in Japan. A variety of joining technologies including HIP, brazing, casing and friction welding was applied to the manufacturing of SS/SS and Cu/SS joint. In Be/Cu joining, it was emphasized to find the optimal HIP temperature lower than 650 .deg. C in order to avoid excessive SS sensitization because the joining of Be tile to Cu heat sink is a final processing step in the manufacturing of FW blanket. The selected HIP condition were 620 .deg. C, 150MPa and 2hr with Cu interlayer. Sample tests for joints was completed by 1995. The small scale mockup was manufactured and its performance was qualified by end of 2000. From 2001, the manufacturing and the characterization has been carried out for the larger scale mockup.

  18. Vacuum Permeator Analysis for Extraction of Tritium from DCLL Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Humrickhouse, Paul Weston [Idaho National Laboratory; Merrill, Brad Johnson [Idaho National Laboratory

    2014-11-01

    It is envisioned that tritium will be extracted from DCLL blankets using a vacuum permeator. We derive here an analytical solution for the extraction efficiency of a permeator tube, which is a function of only two dimensionless numbers: one that indicates whether radial transport is limited in the PbLi or in the solid membrane, and another that is the ratio of axial and radial transport times in the PbLi. The permeator efficiency is maximized by decreasing the velocity and tube diameter, and increasing the tube length. This is true regardless of the mass transport correlation used; we review several here and find that they differ little, and the choice of correlation is not a source of significant uncertainty here. The PbLi solubility, on the other hand, is a large source of uncertainty, and we identify upper and lower bounds from the literature data. Under the most optimistic assumptions, we find that a ferritic steel permeator operating at 550 °C will need to be at least an order of magnitude larger in volume than previous conceptual designs using niobium and operating at higher temperatures.

  19. Is a Blanket Elective Single Embryo Transfer Policy Defensible?

    Directory of Open Access Journals (Sweden)

    Eli Y. Adashi

    2017-04-01

    Full Text Available For the purpose of reducing maternal and neonatal morbidity, elective single transfer (eSET in in vitro fertilization (IVF was first proposed in 1999. The purpose of this review is to summarize recent oral debate between a proponent and an opponent of expanded eSET utilization in an attempt to determine whether a blanket eSET policy, as is increasingly considered, is defensible. While eSET is preferable when possible, and agreed upon by provider and patient, selective double embryo transfer (DET must be seriously entertained if deemed more appropriate or is desired by the patient. Patient autonomy, let alone prolonged infertility and advancing age, demand nothing less. Importantly, IVF-generated twins represent only 15.7% of the national twin birth rate in the United States. Non-IVF fertility treatments have been identified as the main cause of all multiple births for quite some time. However, educational and regulatory efforts over the last decade, paradoxically, have exclusively only been directed at the practice of IVF, although IVF patient populations are rapidly aging. It is difficult to understand why non-IVF fertility treatments, usually applied to younger women, have so far escaped attention. This debate on eSET utilization in association with IVF may contribute to a redirection of priorities.

  20. Advancement in tritium transport simulations for solid breeding blanket system

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Alice, E-mail: ying@fusion.ucla.edu [Mechanical and Aerospace Engineering Department, UCLA, Los Angeles, CA 90095 (United States); Zhang, Hongjie [Mechanical and Aerospace Engineering Department, UCLA, Los Angeles, CA 90095 (United States); Merrill, Brad J. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Ahn, Mu-Young [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    In this paper, advancement on tritium transport simulations was demonstrated for a solid breeder blanket HCCR TBS, where multi-physics and detailed engineering descriptions are considered using a commercial simulation code. The physics involved includes compressible purge gas fluid flow, heat transfer, chemical reaction, isotope swamping effect, and tritium isotopes mass transport. The strategy adopted here is to develop numerical procedures and techniques that allow critical details of material, geometric and operational heterogeneity in a most complete engineering description of the TBS being incorporated into the simulation. Our application focuses on the transient assessment in view of ITER being pulsed operations. An immediate advantage is a more realistic predictive and design analysis tool accounting pulsed operations induced temperature variations which impact helium purge gas flow as well as Q{sub 2} composition concentration time and space evolutions in the breeding regions. This affords a more accurate prediction of tritium permeation into the He coolant by accounting correct temperature and partial pressure effects and realistic diffusion paths. The analysis also shows that by introducing by-pass line to accommodate ITER pulsed operations in the TES loop allows tritium extraction design being more cost effective.

  1. Effect of graphite reflector on activation of fusion breeding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Woo, E-mail: cwl@kaeri.re.kr [Korea Atomic Energy Research Institute, Daeduk-daero 989, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Hanyang University, 222 Wangshimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Lee, Young-Ouk; Lee, Dong Won [Korea Atomic Energy Research Institute, Daeduk-daero 989, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Cho, Seungyon; Ahn, Mu-Young [National Fusion Research Institute, Gwahangno, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2016-11-01

    Highlights: • The graphite reflector concept has been applied in the design of the Korea HCCR TBM for ITER and this concept is also a candidate design option for Korea Demo. • In the graphite reflector, C-14, B-11 and Be-10 are produced after an irradiation. Impurities in both case of beryllium and graphite is dominant in the shutdown dose after an irradiation. • Based on the evaluation, the graphite reflector is a good alternative of the beryllium multiplier in the view of induced activity and shutdown dose. But C-14 produced in the graphite reflector should be considered carefully in the view of radwaste management. - Abstract: Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. In this paper, activity analysis was performed and the effect of graphite reflector in the view of activation was compared to the beryllium multiplier. As a result, it is expected that using the graphite reflector instead of the beryllium multiplier decreases total activity very effectively. But the graphite reflector produces C-14 about 17.2 times than the beryllium multiplier. Therefore, C-14 produced in the graphite reflector is expected as a significant nuclide in the view of radwaste management.

  2. EVOLVE - an advanced first wall/blanket system.

    Energy Technology Data Exchange (ETDEWEB)

    Khater, H.; Majumdar, S.; Malang, S.; Mattas, R. F.; Mogahed, E.; Nelson, B.; Sawan, M.; Sze, D. K.

    1999-07-21

    A new concept for an advanced fusion first wall and blanket has been identified. The key feature of the concept is the use of the heat of vaporization of lithium (about 10 times higher than water) as the primary means for capturing and removing the fusion power. A reasonable range of boiling temperatures of this alkali metal is 1200 to 1400 C, corresponding with a saturation pressure of 0.035 to 0.2 MPa. Calculations indicate that a evaporative system with Li at {approximately}1200 C can remove a first wall surface heat flux of >2 MW/m2 with an accompanying neutron wall load of >10 MW/m2. Work to date shows that the system provides adequate tritium breeding and shielding, very high thermal conversion efficiency, and low system pressure. Tungsten is used as the structural material, and it is expected to operate at a surface wall load of 2 MW/m2 at temperatures above 1200 C.

  3. Hydrogen permeation through Flinabe fluoride molten salts for blanket candidates

    Energy Technology Data Exchange (ETDEWEB)

    Nishiumi, Ryosuke, E-mail: r.nishiumi@aees.kyushu-u.ac.jp; Fukada, Satoshi; Nakamura, Akira; Katayama, Kazunari

    2016-11-01

    Highlights: • H{sub 2} diffusivity, solubility and permeability in Flinabe as T breeder are determined. • Effects in composition differences among Flibe, Fnabe and Flinabe are compared. • Changes of pressure dependence of Flinabe permeation rate are clarified. - Abstract: Fluoride molten salt Flibe (2LiF + BeF{sub 2}) is a promising candidate for the liquid blanket of a nuclear fusion reactor, because of its large advantages of tritium breeding ratio and heat-transfer fluid. Since its melting point is higher than other liquid candidates, another new fluoride molten salt Flinabe (LiF + NaF + BeF{sub 2}) is recently focused on because of its lower melting point while holding proper breeding properties. In this experiment, hydrogen permeation behavior through the three molten salts of Flibe (2LiF + BeF{sub 2}), Fnabe (NaF + BeF{sub 2}) and Flinabe are investigated in order to clarify the effects of their compositions on hydrogen transfer properties. After making up any of the three molten salts and purifying it using HF, hydrogen permeability, diffusivity and solubility of the molten salts are determined experimentally by using a system composed of tertiary cylindrical tubes. Close agreement is obtained between experimental data and analytical solutions. H{sub 2} permeability, diffusivity and solubility are correlated as a function of temperature and are compared among the three molten salts.

  4. Beam incidents - High particle rate tests of an LHCb/Velo silicon strip module

    CERN Document Server

    Eklund, L; Behrendt, O; van Beuzekomb, M; Buytaert, J; Collins, P; Ferro-Luzzi, M; Hennessy, K; Imong, J

    2009-01-01

    A silicon micro-strip detector module from the LHCb/Velo detector was exposed to proton rates in the range of $2\\times 10^9$ to $9\\times 10^{12}$ protons per pulse. The beam energy was $1.4~\\rm{GeV}$ and the pulse length was 200 ns, concentrated on a surface area of approximately $0.5~{\\rm cm^2}$. The sensor is of $n$-in-$n$ type and AC-coupled to a front-end chip in $0.25~\\rm{\\mu m}$ CMOS technology. Both the active sensor area and the readout chips were exposed to successive beam pulses, at perpendicular impact. The module was powered with both low and high voltage, and read out during and between beam exposures. We report on the measurements of the backplane bias voltage collapse, of the leakage current, as well as noise and pedestal variations of the front-end readout. No degradation or damage was observed beyond those normally expected from the accumulated radiation dose.

  5. Implementation and testing of a desert dust module in a regional climate model

    Directory of Open Access Journals (Sweden)

    A. S. Zakey

    2006-01-01

    Full Text Available In an effort to improve our understanding of aerosol impacts on climate, we implement a desert dust module within a regional climate model (RegCM. The dust module includes emission, transport, gravitational settling, wet and dry removal and calculations of dust optical properties. The coupled RegCM-dust model is used to simulate two dust episodes observed over the Sahara region (a northeastern Africa dust outbreak, and a west Africa-Atlantic dust outbreak observed during the SHADE "Saharan Dust Experiment", as well as a three month simulation over an extended domain covering the Africa-Europe sector. Comparisons with satellite and local aerosol optical depth measurements shows that the model captures the main spatial (both horizontal and vertical and temporal features of the dust distribution. The main model deficiency occurs in the representation of certain dynamical patterns observed during the SHADE case which is associated with an active easterly wave that contributed to the generation of the dust outbreak. The model appears suitable to conduct long term simulations of the effects of Saharan dust on African and European climate.

  6. Biosphere 2 test module: A ground-based sunlight-driven prototype of a closed ecological life support system

    Science.gov (United States)

    Nelson, Mark; Leigh, Linda; Alling, Abigail; MacCallum, Taber; Allen, John; Alvarez-Romo, Norberto

    Constructed in 1986, the Biosphere 2 Test Module has been used since the end of that year for closed ecological systems experiments. It is the largest closed ecological facility ever built, with a sealed variable volume of some 480 cubic meters. It is built with a skin of steel spaceframes with double-laminated glass panels admitting about 65 percent Photosynthetically Active Radiation (PAR). The floor is of welded steel and there is an underground atmospheric connection via an air duct to a variable volume chamber (``lung'') permitting expansion and contraction of the Test Module's air volume caused by changes in temperature and barometric pressure, which causes a slight positive pressure from inside the closed system to the outside thereby insuring that the very small leakage rate is outward. Several series of closed ecological system investigations have been carried out in this facility. One series of experiments investigated the dynamics of higher plants and associated soils with the atmosphere under varying light and temperature conditions. Another series of experiments included one human in the closed system for three, five and twenty-one days. During these experiments the Test Module had subsystems which completely recycled its water and atmosphere; all the human dietary needs were produced within the facility, and all wastes were recycled using a marsh plant/microbe system. Other experiments have examined the capability of individual component systems used, such as the soil bed reactors, to eliminate experimentally introduced trace gases. Analytic systems developed for these experiments include continuous monitors of eleven atmospheric gases in addition to the complete gas chromatography mass spectrometry (GCMS) examinations of potable, waste system and irrigation water quality.

  7. James Webb Space Telescope Integrated Science Instrument Module Thermal Vacuum Thermal Balance Test Campaign at NASA's Goddard Space Flight Center

    Science.gov (United States)

    Glazer, Stuart; Comber, Brian (Inventor)

    2016-01-01

    The James Webb Space Telescope is a large infrared telescope with a 6.5-meter primary mirror, designed as a successor to the Hubble Space Telescope when launched in 2018. Three of the four science instruments contained within the Integrated Science Instrument Module (ISIM) are passively cooled to their operational temperature range of 36K to 40K with radiators, and the fourth instrument is actively cooled to its operational temperature of approximately 6K. Thermal-vacuum testing of the flight science instruments at the ISIM element level has taken place in three separate highly challenging and extremely complex thermal tests within a gaseous helium-cooled shroud inside Goddard Space Flight Centers Space Environment Simulator. Special data acquisition software was developed for these tests to monitor over 1700 flight and test sensor measurements, track over 50 gradients, component rates, and temperature limits in real time against defined constraints and limitations, and guide the complex transition from ambient to final cryogenic temperatures and back. This extremely flexible system has proven highly successful in safeguarding the nearly $2B science payload during the 3.5-month-long thermal tests. Heat flow measurement instrumentation, or Q-meters, were also specially developed for these tests. These devices provide thermal boundaries o the flight hardware while measuring instrument heat loads up to 600 mW with an estimated uncertainty of 2 mW in test, enabling accurate thermal model correlation, hardware design validation, and workmanship verification. The high accuracy heat load measurements provided first evidence of a potentially serious hardware design issue that was subsequently corrected. This paper provides an overview of the ISIM-level thermal-vacuum tests and thermal objectives; explains the thermal test configuration and thermal balances; describes special measurement instrumentation and monitoring and control software; presents key test thermal results

  8. Development of pipe welding, cutting and inspection tools for the ITER blanket

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Ito, Akira; Taguchi, Kou; Takiguchi, Yuji; Takahashi, Hiroyuki; Tada, Eisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-07-01

    In D-T burning reactors such as International Thermonuclear Experimental Reactor (ITER), an internal access welding/cutting of blanket cooling pipe with bend sections is inevitably required because of spatial constraint due to nuclear shield and available port opening space. For this purpose, internal access pipe welding/cutting/inspection tools for manifolds and branch pipes are being developed according to the agreement of the ITER R and D task (T329). A design concept of welding/cutting processing head with a flexible optical fiber has been developed and the basic feasibility studies on welding, cutting and rewelding are performed using stainless steel plate (SS316L). In the same way, a design concept of inspection head with a non-destructive inspection probe (including a leak-testing probe) has been developed and the basic characteristic tests are performed using welded stainless steel pipes. In this report, the details of welding/cutting/inspection heads for manifolds and branch pipes are described, together with the basic experiment results relating to the welding/cutting and inspection. In addition, details of a composite type optical fiber, which can transmit both the high-power YAG laser and visible rays, is described. (author)

  9. Do proficiency testing participants learn from their mistakes? Experience from the EXCEL throat culture module.

    Science.gov (United States)

    Novak, Robert W

    2002-02-01

    Participation in proficiency testing is required under the Clinical Laboratory Improvement Amendments of 1988. Although the primary purpose of this testing is evaluation of current laboratory performance, a major secondary benefit of such testing is postulated to be progressive improvement in laboratory performance over time as laboratories learn from their previous experiences and feedback. To test the hypothesis that a secondary result of proficiency testing is improvement over time of laboratory performance. The performance of participants in a large proficiency testing program (EXCEL), designed for clinic and office laboratories, on a specific problematic competence, the ability to differentiate group A streptococcus from group C streptococci, was monitored during a 6-year period (1996-2001) for changes in participant performance. With each testing cycle, feedback on performance relative to peers and an educational discussion analyzing performance and suggesting best practices was submitted to participants. Despite consistent feedback, there was no significant change in participant performance throughout the period studied. In a large, stable proficiency testing program, a significant throat culture competence, which demonstrated less than optimal performance, did not improve over time, suggesting that current utilization of proficiency testing results in laboratory improvement programs is suboptimal.

  10. A Long-Pulse Modulator for the TESLA Test Facility (TTF)

    CERN Document Server

    Kaesler, W

    2004-01-01

    The long-pulse (1.6 ms) klystron modulator for TTF is a hardtube pulser using a Bouncer-circuit for droop compensation. It is built up with new advanced components representing industrial standards. The on-/off switch is a rugged 12 kV IGCT-stack with a fast 4kA turn-off capability. The 100 kJ storage capacitor bank contains only three capacitors with self-healing, segmented PP-foil technology. A new 100 kA solid-state switch based on light triggered thyristors (LTT) replaced the standard ignitrons as crowbar switches. The 300 kW high voltage power supply is based on modern switched mode technology.

  11. Waste receiving and processing module 2A mixing tests status report

    Energy Technology Data Exchange (ETDEWEB)

    Weber, J.R.; Hull, K.J.

    1994-11-18

    The purpose of this report is to document the Phase II test conditions, observations, and results of this work. This report provides additional mixing performance test data and rheologic data that provide further indications that there are clear and distinct advantages in the preliminary choice of high-shear mixing alone, and high-shear dispersion in combination with, or followed by, a low-speed type mixer/stirrer for WRAP 2A facility design. Another objective was to determine if significant scale-up problems might exist in the various mix and mixer designs. In the later Phase 2 tests the test material quantities were significantly larger than in the Phase 1 tests.

  12. Multipath interference test method using synthesized chirped signal from directly modulated DFB-LD with digital-signal-processing technique.

    Science.gov (United States)

    Aida, Kazuo; Sugie, Toshihiko

    2011-12-12

    We propose a method of testing transmission fiber lines and distributed amplifiers. Multipath interference (MPI) is detected as a beat spectrum between a multipath signal and a direct signal using a synthesized chirped test signal with lightwave frequencies of f(1) and f(2) periodically emitted from a distributed feedback laser diode (DFB-LD). This chirped test pulse is generated using a directly modulated DFB-LD with a drive signal calculated using a digital signal processing technique (DSP). A receiver consisting of a photodiode and an electrical spectrum analyzer (ESA) detects a baseband power spectrum peak appearing at the frequency of the test signal frequency deviation (f(1)-f(2)) as a beat spectrum of self-heterodyne detection. Multipath interference is converted from the spectrum peak power. This method improved the minimum detectable MPI to as low as -78 dB. We discuss the detailed design and performance of the proposed test method, including a DFB-LD drive signal calculation algorithm with DSP for synthesis of the chirped test signal and experiments on single-mode fibers with discrete reflections. © 2011 Optical Society of America

  13. Cooperative effort between Consorcio European Spallation Source--Bilbao and Oak Ridge National Laboratory spallation neutron source for manufacturing and testing of the JEMA-designed modulator system

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, David E [ORNL

    2017-01-02

    The JEMA modulator was originally developed for the European Spallation Source (ESS) when Spain was under consideration as a location for the ESS facility. Discussions ensued and the Spallation Neutron Source Research Accelerator Division agreed to form a collaboration with ESS-Bilbao (ESS-B) consortium to provide services for specifying the requirements for a version of the modulator capable of operating twelve 550 kW klystrons, monitoring the technical progress on the contract with JEMA, installing and commissioning the modulator at SNS, and performing a 30 day full power test. This work was recently completed, and this report discusses those activities with primary emphasis on the installation and testing activities.

  14. Cytocompatibility testing of cell culture modules fabricated from specific candidate biomaterials using injection molding.

    Science.gov (United States)

    Hiebl, Bernhard; Lützow, Karola; Lange, Maik; Jung, Friedrich; Seifert, Barbara; Klein, Frank; Weigel, Thomas; Kratz, Karl; Lendlein, Andreas

    2010-07-01

    Most polymers used in clinical applications today are materials that have been developed originally for application areas other than biomedicine. Testing the cell- and tissue-compatibility of novel materials in vitro and in vivo is of key importance for the approval of medical devices and is regulated according to the Council Directive 93/42/EEC of the European communities concerning medical devices. In the standardized testing methods the testing sample is placed in commercially available cell culture plates, which are often made from polystyrene. Thus not only the testing sample itself influences cell behavior but also the culture vessel material. In order to exclude this influence, a new system for cell testing will be presented allowing a more precise and systematic investigation by preparing tailored inserts which are made of the testing material. Inserts prepared from polystyrene, polycarbonate and poly(ether imide) were tested for their cytotoxity and cell adherence. Furthermore a proof of principle concerning the preparation of inserts with a membrane-like surface structure and its surface modification was established. Physicochemical investigations revealed a similar morphology and showed to be very similar to the findings to analogous preparations and modifications of flat-sheet membranes. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  15. Test-beam evaluation of heavily irradiated silicon strip modules for ATLAS Phase-II Strip Tracker Upgrade

    CERN Document Server

    Blue, Andrew; The ATLAS collaboration

    2018-01-01

    The planned HL-LHC (High Luminosity LHC) is being designed to maximise the physics potential of the LHC with 10 years of operation at instantaneous luminosities of 7.5x1034cm−2s−1. A consequence of this increased luminosity is the expected radiation damage requiring the tracking detectors to withstand hadron equivalences to over 1x1015 1 MeV neutron equivalent per cm2 in the ATLAS Strips system. The silicon strip tracker exploits the concept of modularity. Fast readout electronics, deploying 130nm CMOS front-end electronics are glued on top of a silicon sensor to make a module. The radiation hard n-in-p micro-strip sensors used have been developed by the ATLAS ITk Strip Sensor collaboration and produced by Hamamatsu Photonics. A series of tests were performed at the DESY-II and CERN SPS test beam facilities to investigate the detailed performance of a strip module with both 2.5cm and 5cm length strips before and after irradiation with 8x1014neqcm−2 protons and a total ionising dose of 37.2MRad. The DURA...

  16. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Univ. of California, Berkeley, CA (United States); Fratoni, M. [Univ. of California, Berkeley, CA (United States)

    2015-09-22

    Lithium is often the preferred choice as breeder and coolant in fusion blankets as it offers excellent heat transfer and corrosion properties, and most importantly, it has a very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and exacerbates plant safety concerns. For this reason, over the years numerous blanket concepts have been proposed with the scope of reducing concerns associated with lithium. The European helium cooled pebble bed breeding blanket (HCPB) physically confines lithium within ceramic pebbles. The pebbles reside within a low activation martensitic ferritic steel structure and are cooled by helium. The blanket is composed of the tritium breeding lithium ceramic pebbles and neutron multiplying beryllium pebbles. Other blanket designs utilize lead to lower chemical reactivity; LiPb alone can serve as a breeder, coolant, neutron multiplier, and tritium carrier. Blankets employing LiPb coolants alongside silicon carbide structural components can achieve high plant efficiency, low afterheat, and low operation pressures. This alloy can also be used alongside of helium such as in the dual-coolant lead-lithium concept (DCLL); helium is utilized to cool the first wall and structural components made up of low-activation ferritic steel, whereas lithium-lead (LiPb) acts as a self-cooled breeder in the inner channels of the blanket. The helium-cooled steel and lead-lithium alloy are separated by flow channel inserts (usually made out of silicon carbide) which thermally insulate the self-cooled breeder region from the helium cooled steel walls. This creates a LiPb breeder with a much higher exit temperature than the steel which increases the power cycle efficiency and also lowers the magnetohydrodynamic (MHD) pressure drop [6]. Molten salt blankets with a mixture of lithium, beryllium, and fluorides (FLiBe) offer good tritium breeding

  17. Performance Comparison of Stion CIGS Modules to Baseline Monocrystalline Modules at the New Mexico Florida and Vermont Regional Test Centers: January 2015-December 2016.

    Energy Technology Data Exchange (ETDEWEB)

    Lave, Matthew Samuel [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Stein, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burnham, Laurie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    This report provides performance data and analysis for two Stion copper indium gallium selenide (CIGS) module types, one framed, the other frameless, and installed at the New Mexico, Florida and Vermont RTCs. Sandia looked at data from both module types and compared the latter with data from an adjacent monocrystalline baseline array at each RTC. The results indicate that the Stion modules are slightly outperforming their rated power, with efficiency values above 100% of rated power, at 25degC cell temperatures. In addition, Sandia sees no significant performance differences between module types, which is expected because the modules differ only in their framing. In contrast to the baseline systems, the Stion strings showed increasing efficiency with increasing irradiance, with the greatest increase between zero and 400 Wm -2 but still noticeable increases at 1000 Wm -2 . Although baseline data availability in Vermont was spotty and therefore comparative trends are difficult to discern, the Stion modules there may offer snow- shedding advantages over monocrystalline-silicon modules but these findings are preliminary.

  18. A passively-safe fusion reactor blanket with helium coolant and steel structure

    Energy Technology Data Exchange (ETDEWEB)

    Crosswait, Kenneth Mitchell [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1994-04-01

    Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel as a structural material and is designed for neutron wall loads exceeding 4 MW/m{sup 2}. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ``beryllium-joint`` concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket.

  19. Comparison of the Effect of Plastic Cover and Blanket on Body Temperature of Preterm Infants Hospitalized in NICU: Randomized Clinical Trial.

    Science.gov (United States)

    Valizadeh, Leila; Mahallei, Majid; Safaiyan, Abdolrasoul; Ghorbani, Fatemeh; Peyghami, Maryam

    2017-06-01

    Introduction: Preterm infants are unable to regulate their body temperature and there are insufficient research evidences on different kinds of covers for hospitalized preterm infants; therefore, the present study was conducted with the aim of comparing the effects of plastic and blanket covers on the body temperature of preterm infants under radiant warmer. Methods: This randomized cross-over clinical trial was carried out upon 80 infants with the gestational age of 28-30 weeks and birth weight of 800- 1250 gr who were in Neonatal Intensive Care Unit on the second day of their hospitalization. The study lasted for two days. In group 1, the plastic cover was used during the first day of the study while the blankets were used during the second day. Infants' heads were kept out of the cover and coated with a hat. In group 2, the plastic cover was used during the first day of the study while the blanket was used during second day. Digital thermometer was used to measure infants' axillary temperature. The data was analyzed using SPSS ver 13 and MiniTab software. Descriptive statistics, (Mean (SE), 95%CI) and inferential statistics (Repeated measurement and ANCOVA tests) were used. Results: The mean body temperature of the infants in the group covered with the plastic was calculated to be higher and the warmer was set on low temperature. Conclusion: Using plastic cover during the first few days of hospitalization in NICU resulted in regulation of preterm infants' body temperature.

  20. Verification of dimensional stability on ITER blanket shield block after stress relieving

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sa-Woong, E-mail: swkim12@nfri.re.kr; Jung, Hun-Chea; Ha, Min-Su; Shim, Hee-Jin

    2016-11-01

    Highlights: • The SB#08 FSP were manufactured by using conventional manufacturing processes such as cutting, milling, drilling and welding. • Especially, a strong back system was adopted in order to prevent welding deformation during cover plate welding process. • Post-Welding Heat Treatment (PWHT) for stress relieving and Hot He Leak Test (HHLT) were waived from the lake of huge test facility in the pre-qualification program. • The PWHT combined with the HHLT, however, were implemented to remove the residual stress and to confirm the soundness of welded parts as an internal R&D activities after the pre-qualification program. • Three dimensional inspection also carried out after the PWHT to check the dimensional stabilization. - Abstract: The tight tolerance requirement is one of key issue to manufacture the ITER blanket shield blocks (SBs) which have many interfaces with the First Wall (FW) and Vacuum Vessel (VV). Manufactured SB shall be satisfied with general tolerances (Class “C” of ISO 2768-1 and “L” of ISO 2768-2) and specific tolerance in 2D general assembly drawings. In order to fulfill the tight tolerance requirements in the final stage of SB, stress relieving after welding operations in the manufacturing process shall be performed. Hot helium leak test, Post Welding Heat Treatment (PWHT) and three-dimensional inspection before and after heat treatment were implemented by using the Full Scale Prototype (FSP) of SB in the framework of domestic R&D activities. The hot He leak test was performed at 250 °C for 30 min, and the result was satisfied the requirements. PWHT was carried out at 400 °C for 24 h by brazing furnace with test chamber. The deformation value before and after was measured by contact type coordinate measuring machine. The objective of this study is to verify dimensional stability of SB after stress relieving. The results will support to determine the machining allowance prior to welding process.

  1. Testing Seam Concepts for Advanced Multilayer Insulation

    Science.gov (United States)

    Chato, D. J.; Johnson, W. L.; Alberts, Samantha J.

    2017-01-01

    Multilayer insulation (MLI) is considered the state of the art insulation for cryogenic propellant tanks in the space environment. MLI traditionally consists of multiple layers of metalized films separated by low conductivity spacers. In order to better understand some of the details within MLI design and construction, GRC has been investigating the heat loads caused by multiple types of seams. To date testing has been completed with 20 layer and 50 layer blankets. Although a truly seamless blanket is not practical, a blanket lay-up where each individual layer was overlapped and tapped together was used as a baseline for the other seams tests. Other seams concepts tested included: an overlap where the complete blanket was overlapped on top of itself; a butt joint were the blankets were just trimmed and butted up against each other, and a staggered butt joint where the seam in the out layers is offset from the seam in the inner layers. Measured performance is based on a preliminary analysis of rod calibration tests conducted prior to the start of seams testing. Baseline performance for the 50 layer blanket showed a measured heat load of 0.46 Watts with a degradation to about 0.47 Watts in the seamed blankets. Baseline performance for the 20 layer blanket showed a measured heat load of 0.57 Watts. Heat loads for the seamed tests are still begin analyzed. So far analysis work has suggested the need for corrections due to heat loads from both the heater leads and the instrumentation wires. A careful re-examination of the calibration test results with these factors accounted for is also underway. This presentation will discuss the theory of seams in MLI, our test results to date, and the uncertainties in our measurements.

  2. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    Energy Technology Data Exchange (ETDEWEB)

    Nietert, R.E.

    1983-02-01

    The heat-transfer characteristics of flowing and stationary packed-particle beds have recently become of interest in connection with conceptual designs of fusion reactor blankets. A detailed literature survey has shown that the processes taking place in such beds are not fully understood despite their widespread use in the chemical industry and other engineering disciplines for more than five decades. In this study, two experimental investigations were pursued. In the first, a heat-transfer loop was constructed through which glass microspheres were allowed to flow by rgravity at controlled rates through an electrically heated stainless steel tubular test section. In the second, an annular packed bed was constructed in which heat was applied through the outer wall by electric heating of a stainless steel tube. Cooling occurred at the inner wall of the annular bed by flowing air through the central tube. A second air stream was allowed to flow through the voids of the packed bed. An error-minimization technique was utilized in order to obtain the two-dimensional one-parameter effective conductivity for the bed by comparing the experimental and theoretically predicted temperature profiles. Experiments were conducted for various modified Reynolds numbers less than ten.

  3. On the hydraulic behaviour of ITER Shield Blocks #14 and #08. Computational analysis and comparison with experimental tests

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo Viale delle Scienze, 90128, Palermo (Italy); Merola, M.; Mitteau, R.; Raffray, R. [ITER Organization, Route de Vinon sur Verdon, 13067 Saint Paul, Lez Durance (France); Vallone, E., E-mail: eug.vallone@gmail.com [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo Viale delle Scienze, 90128, Palermo (Italy)

    2016-11-01

    Highlights: • A benchmarking activity has been carried out focusing the attention on the cooling circuits of ITER Shield Blocks #08 and #14. • A theoretical-computational fluid-dynamic approach based on the Finite Volume Method has been followed, adopting a commercial code. • Hydraulic characteristic functions and spatial distributions of coolant mass flow rate, velocity and pressure drop have been assessed. • Results obtained have allowed code benchmarking for Blanket modules and the numerical predictions have been found to be generally lower than but quite close to the experimental results (lower than 10%). - Abstract: As a consequence of its position and functions, the ITER blanket system will be subjected to significant heat loads under nominal reference conditions. Therefore, the design of its cooling system is particularly demanding. Coolant water is distributed individually to the 440 blanket modules (BMs) through manifold piping, which makes it a highly parallelized system. The mass flow rate distribution is finely tuned to meet all operation constraints: adequate margin to burn out in the plasma facing components, even distribution of water flow among the so-called plasma-facing “fingers” of the Blanket First Wall panels, high enough water flow rate to avoid excessive water temperature in the outlet pipes, maximum allowable water velocity lower than 7 m/s in manifold pipes. Furthermore the overall pressure drop and flow rate in each BM shall be within the fixed specified design limit to avoid an unduly unbalance of cooling among the 440 modules. Analyses have to be carried out following a computational fluid-dynamic (CFD) approach based on the finite volume method and adopting a CFD commercial code to assess the thermal-hydraulic behaviour of each single circuit of the ITER blanket cooling system. This paper describes the code benchmarking needed to determine the best method to get reliable and timely results. Since experimental tests are

  4. Rapid prototyping of centrifugal microfluidic modules for point of care blood testing

    CSIR Research Space (South Africa)

    Madzivhandila, Phophi

    2016-11-01

    Full Text Available We present modular centrifugal microfluidic devices that enable a series of blood tests to be performed towards a full blood count. The modular approach allows for rapid prototyping of device components in a generic format to complete different...

  5. Space station common module thermal management: Design and construction of a test bed

    Science.gov (United States)

    Barile, R. G.

    1986-01-01

    In this project, a thermal test bed was designed, simulated, and planned for construction. The thermal system features interior and exterior thermal loads and interfacing with the central-radiator thermal bus. Components of the test bed include body mounted radiator loop with interface heat exchangers (600 Btu/hr); an internal loop with cabin air-conditioning and cold plates (3400 Btu/hr); interface heat exchangers to the central bus (13,000 Btu/hr); and provisions for new technology including advanced radiators, thermal storage, and refrigeration. The apparatus will be mounted in a chamber, heated with lamps, and tested in a vacuum chamber with LN2-cooled walls. Simulation of the test bed was accomplished using a DEC PRO 350 computer and the software package TK! olver. Key input variables were absorbed solar radiation and cold plate loads. The results indicate temperatures on the two loops will be nominal when the radiation and cold plate loads are in the range of 25% to 75% of peak loads. If all loads fall to zero, except the cabin air system which was fixed, the radiator fluid will drop below -100 F and may cause excessive pressure drop. If all loads reach 100%, the cabin air temperature could rise to 96 F.

  6. Evaluating vibration performance of a subsea pump module by full-scale testing and numerical modelling

    NARCIS (Netherlands)

    Beek, P.J.G. van; Pereboom, H.P.; Slot, H.J.

    2016-01-01

    Prior to subsea installation, a subsea system has to be tested to verify whether it performs in accordance with specifications and component specific performance evaluation criteria. It is important to verify that the assembled components work in accordance with the assumptions and design criteria

  7. Perceptions of Examiner Behavior Modulate Power Relations in Oral Performance Testing

    Science.gov (United States)

    Plough, India C.; Bogart, Pamela S. H.

    2008-01-01

    To what extent are the discourse behaviors of examiners salient to participants of an oral performance test? This exploratory study employs a grounded ethnographic approach to investigate the perceptions of the verbal, paralinguistic and nonverbal discourse behaviors of an examiner in a one-on-one role-play task that is one of four tasks in an…

  8. Tritium transport modeling at system level for the EUROfusion dual coolant lithium-lead breeding blanket

    Science.gov (United States)

    Urgorri, F. R.; Moreno, C.; Carella, E.; Rapisarda, D.; Fernández-Berceruelo, I.; Palermo, I.; Ibarra, A.

    2017-11-01

    The dual coolant lithium lead (DCLL) breeding blanket is one of the four breeder blanket concepts under consideration within the framework of EUROfusion consortium activities. The aim of this work is to develop a model that can dynamically track tritium concentrations and fluxes along each part of the DCLL blanket and the ancillary systems associated to it at any time. Because of tritium nature, the phenomena of diffusion, dissociation, recombination and solubilisation have been modeled in order to describe the interaction between the lead-lithium channels, the structural material, the flow channel inserts and the helium channels that are present in the breeding blanket. Results have been obtained for a pulsed generation scenario for DEMO. The tritium inventory in different parts of the blanket, the permeation rates from the breeder to the secondary coolant and the amount of tritium extracted from the lead-lithium loop have been computed. Results present an oscillating behavior around mean values. The obtained average permeation rate from the liquid metal to the helium is 1.66 mg h-1 while the mean tritium inventory in the whole system is 417 mg. Besides the reference case results, parametric studies of the lead-lithium mass flow rate, the tritium extraction efficiency and the tritium solubility in lead-lithium have been performed showing the reaction of the system to the variation of these parameters.

  9. Design and construction of the ATEFA facility for experimental investigations of AMTEC test modules

    Science.gov (United States)

    Diez de los Rios Ramos, N.; Hering, W.; Weisenburger, A.; Stüber, M.; Onea, A.; Lux, M.; Ulrich, S.; Stieglitz, R.

    2017-07-01

    The Alkali Metal Thermal-to-Electric Converter (AMTEC) is an electrochemical cell that requires a high temperature heat source to generate electricity. At KIT the AMTEC technology is being investigated focusing on the use of concentrating solar energy as heat source. First a review on AMTEC technology is given. Further, the design and realization phases of the AMTEC Test Facility (ATEFA) and AMTEC test cell are presented, including the data acquisition and control system and two key technology developments: a ceramic to metal joint for high temperatures (800 - 1000 °C) and the magnetron sputtering of cathode layers on the ceramic electrolyte. The sheet resistance of several electrode samples has been analyzed using the 4-point probe technique and the microstructure of the cathode layer has been examined using the scanning electron microscopy (SEM).

  10. Initial test results from the RedFlow 5 kW, 10 kWh zinc-bromide module, phase 1.

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Summer Rhodes; Rose, David Martin

    2012-02-01

    In this paper the performance results of the RedFlow zinc-bromide module (ZBM) Gen 2.0 are reported for Phase 1 of testing, which includes initial characterization of the module. This included physical measurement, efficiency as a function of charge and discharge rates, efficiency as a function of maximum charge capacity, duration of maximum power supplied, and limited cycling with skipped strip cycles. The goal of this first phase of testing was to verify manufacturer specifications of the zinc-bromide flow battery. Initial characterization tests have shown that the ZBM meets the manufacturer's specifications. Further testing, including testing as a function of temperature and life cycle testing, will be carried out during Phase 2 of the testing, and these results will be issued in the final report, after Phase 2 testing has concluded.

  11. Validation of a CFD model simulating charge and discharge of a small heat storage test module based on a sodium acetate water mixture

    DEFF Research Database (Denmark)

    Dannemand, Mark; Fan, Jianhua; Furbo, Simon

    2014-01-01

    for a Computational Fluid Dynamics (CFD) model. The CFD calculated temperatures are compared to measured temperatures internally in the box to validate the CFD model. Four cases are investigated; heating the test module with the sodium acetate water mixture in solid phase from ambient temperature to 52˚C; heating...... the module starting with the salt water mixture in liquid phase from 72˚C to 95˚C; heating up the module from ambient temperature with the salt water mixture in solid phase, going through melting, ending in liquid phase at 78˚C/82˚C; and discharging the test module from liquid phase at 82˚C, going through...

  12. Beam test results of STS prototype modules for the future accelerator experiments FAIR/CBM and NICA/MPD projects

    Science.gov (United States)

    Kharlamov, Petr; Dementev, Dmitrii; Shitenkov, Mikhail

    2017-10-01

    High-energy heavy-ion collision experiments provide the unique possibility to create and investigate extreme states of strongly-interacted matter and address the fundamental aspects of QCD. The experimental investigation the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. The reconstruction of the charged particles created in the nuclear collisions, including the determination of their momenta, is the central detection task in high-energy heavy-ion experiments. It is taken up by the Silicon Tracking System in CBM@FAIR and by Inner Tracker in MPD@NICA currently under development. These experiments requires very fast and radiation hard detectors, a novel data read-out and analysis concept including free streaming front-end electronics. Thermal and beam tests of prototype detector modules for these tracking systems showed the stability of sensors and readout electronics operation.

  13. Binary pseudo-random grating as a standard test surface formeasurement of modulation transfer function of interferometricmicroscopes

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V.; McKinney, Wayne R.; Takacs, Peter Z.

    2007-07-25

    The task of designing high performance X-ray optical systemsrequires the development of sophisticated X-ray scattering calculationsbased on rigorous information about the optics. One of the mostinsightful approaches to these calculations is based on the powerspectral density (PSD) distribution of the surface height. The majorproblem of measurement of a PSD distribution with an interferometricand/or atomic force microscope arises due to the unknown ModulationTransfer Function (MTF) of the instruments. The MTF characterizes theperturbation of the PSD distribution at higher spatial frequencies. Here,we describe a new method and dedicated test surfaces for calibration ofthe MTF of a microscope. The method is based on use of a speciallydesigned Binary Pseudo-random (BPR) grating. Comparison of atheoretically calculated PSD spectrum of a BPR grating with a spectrummeasured with the grating provides the desired calibration of theinstrumental MTF. The theoretical background of the method, as well asresults of experimental investigations are presented.

  14. Beam test results of STS prototype modules for the future accelerator experiments FAIR/CBM and NICA/MPD projects

    Directory of Open Access Journals (Sweden)

    Kharlamov Petr

    2017-01-01

    Full Text Available High-energy heavy-ion collision experiments provide the unique possibility to create and investigate extreme states of strongly-interacted matter and address the fundamental aspects of QCD. The experimental investigation the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. The reconstruction of the charged particles created in the nuclear collisions, including the determination of their momenta, is the central detection task in high-energy heavy-ion experiments. It is taken up by the Silicon Tracking System in CBM@FAIR and by Inner Tracker in MPD@NICA currently under development. These experiments requires very fast and radiation hard detectors, a novel data read-out and analysis concept including free streaming front-end electronics. Thermal and beam tests of prototype detector modules for these tracking systems showed the stability of sensors and readout electronics operation.

  15. Management of horses with focus on blanketing and clipping practices reported by members of the Swedish and Norwegian equestrian community.

    Science.gov (United States)

    Hartmann, E; Bøe, K E; Jørgensen, G H M; Mejdell, C M; Dahlborn, K

    2017-03-01

    Limited information is available on the extent to which blankets are used on horses and the owners' reasoning behind clipping the horse's coat. Research on the effects of those practices on horse welfare is scarce but results indicate that blanketing and clipping may not be necessary from the horse's perspective and can interfere with the horse's thermoregulatory capacities. Therefore, this survey collected robust, quantitative data on the housing routines and management of horses with focus on blanketing and clipping practices as reported by members of the Swedish and Norwegian equestrian community. Horse owners were approached via an online survey, which was distributed to equestrian organizations and social media. Data from 4,122 Swedish and 2,075 Norwegian respondents were collected, of which 91 and 84% of respondents, respectively, reported using blankets on horses during turnout. Almost all respondents owning warmblood riding horses used blankets outdoors (97% in Sweden and 96% in Norway) whereas owners with Icelandic horses and coldblood riding horses used blankets significantly less ( horse's coat was clipped by 67% of respondents in Sweden and 35% of Norwegian respondents whereby owners with warmblood horses and horses primarily used for dressage and competition reported clipping the coat most frequently. In contrast to scientific results indicating that recovery time after exercise increases with blankets and that clipped horses have a greater heat loss capacity, only around 50% of respondents agreed to these statements. This indicates that evidence-based information on all aspects of blanketing and clipping has not yet been widely distributed in practice. More research is encouraged, specifically looking at the effect of blankets on sweaty horses being turned out after intense physical exercise and the effect of blankets on social interactions such as mutual grooming. Future efforts should be tailored to disseminate knowledge more efficiently, which can

  16. Supporting the Creation and Publication of Reviewed and Tested Teaching Modules through the InTeGrate Project

    Science.gov (United States)

    Bruckner, M. Z.; Birnbaum, S. J.; Bralower, T. J.; Egger, A. E.; Fox, S.; Gosselin, D. C.; Iverson, E. A. R.; Manduca, C. A.; Mcconnell, D. A.; Steer, D. N.; Taber, J. J.

    2016-12-01

    InTeGrate is dedicated to providing robust curricular materials that increase Earth literacy among undergraduate students. As of August 2016, 14 modules that use an interdisciplinary approach to teach about Earth-related sustainability issues across the curriculum have been published, and 19 courses and modules are undergoing final revisions. Materials are designed for undergraduate courses and have been tested in a variety of disciplines including geoscience, engineering, humanities, ethics, and Spanish language courses. The materials were developed, tested, revised, and reviewed using a two-year, highly scaffolded process that involves meeting a series of checkpoints, and is supported by a team of experts who provide guidance and formative feedback throughout the process. A series of webinars also supported teams in the development process. Author teams comprise 3-6 faculty members from at least three different institutions. Authors work collaboratively in a templated webspace designed specifically for creating materials, and representatives from the InTeGrate leadership, assessment, and web teams support each group of authors. This support team provides guidance and feedback on content, pedagogy, and web layout as authors develop materials. Authors attend two face-to-face meetings, one at the beginning of the process and another after materials are piloted in authors' classes. These meetings serve to initially orient authors to the development process, including the rubric that will guide their work, and in making revisions following the piloting phase of the project. Authors report that the meetings also provide professional development experience wherein they learn about pedagogy from each other and team leaders. The bulk of the materials development occurs remotely, with teams meeting regularly via teleconference as they follow the project timeline. All materials undergo review against the Materials Design and Refinement Rubric to ensure they meet project

  17. Intra-laboratory validation of a human cell based in vitro angiogenesis assay for testing angiogenesis modulators

    Directory of Open Access Journals (Sweden)

    Jertta-Riina Sarkanen

    2011-01-01

    Full Text Available The developed standardized human cell based in vitro angiogenesis assay was intra-laboratory validated to verify that the method is reliable and relevant for routine testing of modulators of angiogenesis e.g. pharmaceuticals and industrial chemicals. This assay is based on the earlier published method but it was improved and shown to be more sensitive and rapid than the previous assay. The performance of the assay was assessed by using 6 reference chemicals, which are widely used pharmaceuticals that inhibit angiogenesis: acetyl salicylic acid, erlotinib, 2-methoxyestradiol, levamisole, thalidomide, and anti-vascular endothelial growth factor. In the intra-laboratory validation, the sensitivity of the assay (upper and lower limits of detection and linearity of response in tubule formation, batch to batch variation in tubule formation between different Master cell bank batches, and precision as well as the reliability of the assay (reproducibility and repeatability were tested. The pre-set acceptance criteria for the intra-laboratory validation study were met. The relevance of the assay in man was investigated by comparing the effects of reference chemicals and their concentrations to the published human data. The comparison showed a good concordance, which indicates that this human cell based angiogenesis model predicts well the effects in man and has the potential to be used to supplement and/or replace of animal tests.

  18. Bioaugmentation of an acetate-oxidising anaerobic consortium in up-flow sludge blanket reactor subjected to high ammonia loads

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Angelidaki, Irini

    . in association with Methanoculleus spp. strain MAB1), is an acetate oxidising methanogenic consortium that can produce methane (CH4) at high ammonia levels. In the current study the bioaugmentation of the SAO culture in a mesophilic up-flow anaerobic sludge blanket (UASB) reactor subjected to high ammonia loads...... was tested. The co-cultivation in fed-batch of a fast-growing hydrogenotrophic methanogen (i.e. Methanoculleus bourgensis) with the SAO culture was also investigated. Results obtained clearly demonstrated that bioaugmentation of SAO culture in a UASB reactor was not possible most probably due to the slow...... growth of the culture. The incubation period (duration of lag+exponential phase) of SAO culture was reduced more than 30% when it was cocultivated with Methanoculleus bourgensis, in fed-batch reactors. Therefore, the bioaugmentation of the SAO culture along with Methanoculleus bourgensis in a UASB...

  19. Free-vibration characteristics of a large split-blanket solar array in a 1-g field

    Science.gov (United States)

    Shaker, F. J.

    1976-01-01

    Two methods for studying the free vibration characteristics of a large split blanket solar array in both a 0-g and a 1-g cantilevered configuration are presented. The 0-g configuration corresponds to an in-orbit configuration of the array; the 1-g configuration is a typical ground test configuration. The first method applies the equations of continuum mechanics to determine the mode shapes and frequencies of the array; the second method uses the Rayleigh-Ritz approach. In the Rayleigh-Ritz method the array displacements are represented by string modes and cantilevered beam modes. The results of this investigation are summarized by a series of graphs illustrating the effects of various array parameters on the mode shapes and frequencies of the system. The results of the two methods are also compared in tabular form.

  20. Evaluation of heat transfer characteristics of a sphere-packed pipe for Flibe blanket

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Atsushi, E-mail: awata@karma.qse.tohoku.ac.jp [Tohoku University, Sendai (Japan); Ebara, Shinji [Tohoku University, Sendai (Japan); Sagara, Akio [National Institute for Fusion Science, Toki (Japan); Hashizume, Hidetoshi [Tohoku University, Sendai (Japan)

    2013-10-15

    A Flibe blanket has been proposed to be used in FFHR. Since Flibe has poor heat transfer performance, heat transfer promoter is required, and a sphere-packed pipe (SPP) has been proposed to enhance the heat transfer performance in the Flibe blanket. In this paper, the fluid flow and heat transfer characteristics in the SPP is evaluated numerically using a k–ε turbulent model for the flow field and an algebraic model for the thermal field. As a result, it was shown that bypass flows in the SPP play a significant role in heat transfer. Also it is thought that the turbulent energy can strongly affect heat transfer performance.

  1. Final analysis of the GCFR radial blanket and shield integral experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.T.; Williams, L.R.

    1981-04-01

    An integral experiment has been performed for verification of radiation transport methods and nuclear data used in the design of the radial shield for the proposed gas-cooled fast breeder reactor demonstration plant. The experiment was conducted at the ORNL Tower Shielding Facility and consisted of integral and spectral measurements of the neutron and gamma-ray flux transmitted through slabs of materials which modeled a GCFR-type radial blanket and radial shield. Both UO/sub 2/ and ThO/sub 2/ blankets were investigated as well as several shield designs comprising stainless steel, graphite, and boronated graphite.

  2. Flibe blanket concept for transmuting transuranic elements and long lived fission products.

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.

    2000-11-15

    A Molten salt (Flibe) fusion blanket concept has been developed to solve the disposition problems of the spent nuclear fuel and the transuranic elements. This blanket concept can achieve the top rated solution, the complete elimination of the transuranic elements and the long-lived fission products. Small driven fusion devices with low neutron wall loading and low neutron fluence can perform this function. A 344-MW integrated fusion power from D-T plasmas for thirty years with an availability factor of 0.75 can dispose of 70,000 tons of the US inventory of spent nuclear fuel generated up to the year 2015. In addition, the utilization of this blanket concept eliminates the need for a geological repository site, which is a major advantage. This application provides an excellent opportunity to develop and to enhance the public acceptance of the fusion energy for the future. The energy from the transmutation process is utilized to produce revenue. Flibe, lithium-lead eutectic, and liquid lead are possible candidates. The liquid blankets have several features, which are suited for W application. It can operate at constant thermal power without interruption for refueling by adjusting the concentration of the transuranic elements and lithium-6. These liquids operate at low-pressure, which reduces the primary stresses in the structure material. Development and fabrication costs of solid transuranic materials are eliminated. Burnup limit of the transuranic elements due to radiation effects is eliminated. Heat is generated within the liquid, which simplifies the heat removal process without producing thermal stresses. These blanket concepts have large negative temperature coefficient with respect to the blanket reactivity, which enhances the safety performance. These liquids are chemically and thermally stable under irradiation conditions, which minimize the radioactive waste volume. The operational record of the Molten Salt Breeder Reactor with Flibe was very successful

  3. Treatment of slaughterhouse wastewater in an upflow anaerobic sludge blanket reactor: Sludge characteristics

    OpenAIRE

    Mohammad Mehdi Amin; Nasim Rafiei; Ensiyeh Taheri

    2016-01-01

    Aims: Present study was done by using upflow anaerobic sludge blanket (UASB) reactor to investigate the effect of influent chemical oxygen demand (COD) and organic load rate on the formation of anaerobic granules in wastewater treatment. Martials and Methods: Upflow anaerobic sludge blanket reactor with working volume 30 L was studied using actual slaughterhouse wastewater at a hydraulic retention time of 1.24 d and at temperatures in the range of 35°C ± 0.5°C for 320 days. The inoculum wa...

  4. Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications: Task 9 - Selective agglomeration Module Testing and Evaluation.

    Energy Technology Data Exchange (ETDEWEB)

    Moro, N.` Jha, M.C.

    1997-09-29

    The primary goal of this project was the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing of both processes on six coals to optimize the processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. This report summarizes the findings of all the selective agglomeration (SA) test work performed with emphasis on the results of the PDU SA Module testing. Two light hydrocarbons, heptane and pentane, were tested as agglomerants in the laboratory research program which investigated two reactor design concepts: a conventional two-stage agglomeration circuit and a unitized reactor that combined the high- and low-shear operations in one vessel. The results were used to design and build a 25 lb/hr bench-scale unit with two-stage agglomeration. The unit also included a steam stripping and condensation circuit for recovery and recycle of heptane. It was tested on six coals to determine the optimum grind and other process conditions that resulted in the recovery of about 99% of the energy while producing low ash (1-2 lb/MBtu) products. The fineness of the grind was the most important variable with the D80 (80% passing size) varying in the 12 to 68 micron range. All the clean coals could be formulated into coal-water-slurry-fuels with acceptable properties. The bench-scale results were used for the conceptual and detailed design of the PDU SA Module which was integrated with the existing grinding and dewatering circuits. The PDU was operated for about 9 months. During the first three months, the shakedown testing was performed to fine tune the operation and control of various equipment. This was followed by parametric testing, optimization/confirmatory testing, and finally a

  5. 76 FR 2093 - Eni USA Gas Marketing LLC; Application for Blanket Authorization To Export Liquefied Natural Gas

    Science.gov (United States)

    2011-01-12

    ... Gas Marketing LLC; Application for Blanket Authorization To Export Liquefied Natural Gas AGENCY... November 30, 2010, by Eni USA Gas Marketing LLC (Eni USA), requesting blanket authorization to export..., Louisiana, to any country with the capacity to import LNG via ocean-going carrier and with which trade is...

  6. 78 FR 2990 - Bear Creek Storage Company, L.L.C.; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2013-01-15

    ... Energy Regulatory Commission Bear Creek Storage Company, L.L.C.; Notice of Request Under Blanket Authorization Take notice that on December 21, 2012, Bear Creek Storage Company, L.L.C. (Bear Creek), 569... the Natural Gas Act, and Bear Creek's blanket certificate issued in Docket No. CP10-28-000 on January...

  7. Functional Tests of 2S Modules for the CMS Phase-2 Tracker Upgrade with a microTCA-based Readout System

    CERN Document Server

    Preuten, Marius

    2017-01-01

    First full size 2S module prototypes for the CMS Phase-2 Tracker Upgrade have been assembled. With two sensors with realistic geometries and 16 CBC2 readout chips on two front-end hybrids these allow to study the characteristics of these complex objects.A microTCA based readout system was developed to test multiple front-end hybrids simultaneously. Therefore the concurrent information of the full module can be used for differential and common mode noise characterization, as well as for signal tests with radioactive sources or cosmic particles.This talk will discuss the readout system and test results obtained with the first full size 2S module prototypes.

  8. Simplified pilot module development and testing within the ATLAS PanDA Pilot 2.0 Project

    CERN Document Server

    Drizhuk, Daniil; The ATLAS collaboration

    2016-01-01

    The Production and Distributed Analysis (PanDA) system has been developed to meet ATLAS production and analysis requirements for a data-driven workload management system capable of operating at the LHC data processing scale. The PanDA pilot is one of the major components in the PanDA system. It runs on a worker node and takes care of setting up the environment, fetching and pushing data to storage, getting jobs from the PanDA server and executing them. The original PanDA Pilot was designed over 10 years ago and has since then grown organically. Large parts of the original pilot code base are now getting old and are difficult to maintain. Incremental changes and refactoring have been pushed to the limit, and the time is now right for a fresh start, informed by a decade of experience, with the PanDA Pilot 2.0 Project. To create a testing environment for module development and automated unit and functional testing for next generation pilot tasks, a simple pilot version was developed. It resembles the basic workf...

  9. European infrastructures for R&D and test of superconducting radio-frequency cavities and cryo-modules

    CERN Document Server

    Weingarten, W

    2011-01-01

    The volume is copyright CERN and can be distributed under CC-BY license. The need for a European facility to build and test superconducting RF accelerating structures and cryo‐modules (SRF test facility) was extensively discussed during the preparation of EuCARD [1,2]. It comprised a distributed network of equipment across Europe to be assessed and, if needed, completed by hardware. It also addressed the quest for a deeper basic understanding, a better control and optimisation of the manufacture of superconducting RF structures with the aim of a substantial improvement of the accelerating gradient, a reduction of its spread and a cost minimisation. However, consequent to EU budget restrictions, the proposal was not maintained. Instead, a more detailed analysis was requested by a sub‐task inside the EuCARD Network [3] AccNet ‐ RFTech [4]. The main objective of this “SRF sub‐task” consists of intensifying a collaborative effort between European accelerator labs. The aim focused on planning and later...

  10. Effect of increasing nitrobenzene loading rates on the performance of anaerobic migrating blanket reactor and sequential anaerobic migrating blanket reactor/completely stirred tank reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Kuscu, Ozlem Selcuk [Department of Environmental Engineering, Faculty of Engineering and Architecture, Sueleyman Demirel University, 32360, Isparta (Turkey); Sponza, Delia Teresa, E-mail: delya.sponza@deu.edu.tr [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eyluel University, Buca Kaynaklar Campus, 35160, Izmir (Turkey)

    2009-08-30

    A laboratory scale anaerobic migrating blanket reactor (AMBR) reactor was operated at nitrobenzene (NB) loading rates increasing from 3.33 to 66.67 g NB/m{sup 3} day and at a constant hydraulic retention time (HRT) of 6 days to observe the effects of increasing NB concentrations on chemical oxygen demand (COD), NB removal efficiencies, bicarbonate alkalinity, volatile fatty acid (VFA) accumulation and methane gas percentage. Moreover, the effect of an aerobic completely stirred tank reactor (CSTR) reactor, following the anaerobic reactor, on treatment efficiencies was also investigated. Approximately 91-94% COD removal efficiencies were observed up to a NB loading rate of 30.00 g/m{sup 3} day in the AMBR reactor. The COD removal efficiencies decreased from 91% to 85% at a NB loading rate of 66.67 g/m{sup 3} day. NB removal efficiencies were approximately 100% at all NB loading rates. The maximum total gas, methane gas productions and methane percentage were found to be 4.1, 2.6 l/day and 59%, respectively, at a NB loading rate of 30.00 g/m{sup 3} day. The optimum pH values were found to be between 7.2 and 8.4 for maximum methanogenesis. The total volatile fatty acid (TVFA) concentrations in the effluent were 110 and 70 mg/l in the first and second compartments at NB loading rates as high as 66.67 and 6.67 g/m{sup 3} day, respectively, while they were measured as zero in the effluent of the AMBR reactor. In this study, from 180 mg/l NB 66 mg/l aniline was produced in the anaerobic reactor while aniline was completely removed and transformed to 2 mg/l of cathechol in the aerobic CSTR reactor. Overall COD removal efficiencies were found to be 95% and 99% for NB loading rates of 3.33 and 66.67 g/m{sup 3} day in the sequential anaerobic AMBR/aerobic CSTR reactor system, respectively. The toxicity tests performed with Photobacterium phosphoreum (LCK 480, LUMIStox) and Daphnia magna showed that the toxicity decreased with anaerobic/aerobic sequential reactor system from

  11. Performance Comparison of Four SolarWorld Module Technologies at the US DOE Regional Test Center in New Mexico: November 2016 - March 2017.

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, Laurie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lave, Matthew Samuel [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Stein, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    This report provides a preliminary (three month) analysis for the SolarWorld system installed at the New Mexico Regional Test Center (RTC.) The 8.7kW, four-string system consists of four module types): bifacial, mono-crystalline, mono-crystalline glass-glass and polycrystalline. Overall, the SolarWorld system has performed well to date: most strings closely match their specification-sheet module temperature coefficients and Sandia 's f lash tests show that Pmax values are well within expectations. Although the polycrystalline modules underperformed, the results may be a function of light exposure, as well as mismatch within the string, and not a production flaw. The instantaneous bifacial gains for SolarWorld 's Bisun modules were modest but it should be noted that the RTC racking is not optimized for bifacial modules, nor is albedo optimized at the site. Additional analysis, not only of the SolarWorld installation in New Mexico but of the SolarWorld installations at the Vermont and Florida RTCs will be provide much more information regarding the comparative performance of the four module types.

  12. Development and pilot testing of an online module for ethics education based on the Nigerian National Code for Health Research Ethics

    Science.gov (United States)

    2013-01-01

    Background The formulation and implementation of national ethical regulations to protect research participants is fundamental to ethical conduct of research. Ethics education and capacity are inadequate in developing African countries. This study was designed to develop a module for online training in research ethics based on the Nigerian National Code of Health Research Ethics and assess its ease of use and reliability among biomedical researchers in Nigeria. Methodology This was a three-phased evaluation study. Phase one involved development of an online training module based on the Nigerian Code of Health Research Ethics (NCHRE) and uploading it to the Collaborative Institutional Training Initiative (CITI) website while the second phase entailed the evaluation of the module for comprehensibility, readability and ease of use by 45 Nigerian biomedical researchers. The third phase involved modification and re-evaluation of the module by 30 Nigerian biomedical researchers and determination of test-retest reliability of the module using Cronbach’s alpha. Results The online module was easily accessible and comprehensible to 95% of study participants. There were significant differences in the pretest and posttest scores of study participants during the evaluation of the online module (p = 0.001) with correlation coefficients of 0.9 and 0.8 for the pretest and posttest scores respectively. The module also demonstrated excellent test-retest reliability and internal consistency as shown by Cronbach’s alpha coefficients of 0.92 and 0.84 for the pretest and posttest respectively. Conclusion The module based on the Nigerian Code was developed, tested and made available online as a valuable tool for training in cultural and societal relevant ethical principles to orient national and international biomedical researchers working in Nigeria. It would complement other general research ethics and Good Clinical Practice modules. Participants suggested that awareness of the

  13. Development and pilot testing of an online module for ethics education based on the Nigerian National Code for Health Research Ethics

    Directory of Open Access Journals (Sweden)

    Ogunrin Olubunmi A

    2013-01-01

    Full Text Available Abstract Background The formulation and implementation of national ethical regulations to protect research participants is fundamental to ethical conduct of research. Ethics education and capacity are inadequate in developing African countries. This study was designed to develop a module for online training in research ethics based on the Nigerian National Code of Health Research Ethics and assess its ease of use and reliability among biomedical researchers in Nigeria. Methodology This was a three-phased evaluation study. Phase one involved development of an online training module based on the Nigerian Code of Health Research Ethics (NCHRE and uploading it to the Collaborative Institutional Training Initiative (CITI website while the second phase entailed the evaluation of the module for comprehensibility, readability and ease of use by 45 Nigerian biomedical researchers. The third phase involved modification and re-evaluation of the module by 30 Nigerian biomedical researchers and determination of test-retest reliability of the module using Cronbach’s alpha. Results The online module was easily accessible and comprehensible to 95% of study participants. There were significant differences in the pretest and posttest scores of study participants during the evaluation of the online module (p = 0.001 with correlation coefficients of 0.9 and 0.8 for the pretest and posttest scores respectively. The module also demonstrated excellent test-retest reliability and internal consistency as shown by Cronbach’s alpha coefficients of 0.92 and 0.84 for the pretest and posttest respectively. Conclusion The module based on the Nigerian Code was developed, tested and made available online as a valuable tool for training in cultural and societal relevant ethical principles to orient national and international biomedical researchers working in Nigeria. It would complement other general research ethics and Good Clinical Practice modules. Participants

  14. Causes of degradation and erosion of a blanket mire in the southern Pennines, UK

    NARCIS (Netherlands)

    Yeloff, D.; Hunt, C.O.; Labadz, J.C.

    2006-01-01

    This study investigates the causes of erosion and degradation of March Haigh, a blanket mire in the southern Pennines (UK), over a period of 160 years starting in 1840 AD. Peat samples taken from the site were dated using 210Pb; their humification and magnetic susceptibility were measured; and they

  15. 78 FR 35263 - Freeport LNG Development, L.P.; Application for Blanket Authorization To Export Previously...

    Science.gov (United States)

    2013-06-12

    ... the LNG at the time of export. The Application was filed under section 3 of the Natural Gas Act (NGA... not prohibited by U.S. law or policy. Current Application The current Application is filed in... Freeport LNG Development, L.P.; Application for Blanket Authorization To Export Previously Imported...

  16. 78 FR 53737 - ConocoPhillips Company; Application for Blanket Authorization To Export Previously Imported...

    Science.gov (United States)

    2013-08-30

    ...Phillips Company; Application for Blanket Authorization To Export Previously Imported Liquefied Natural Gas... which trade is not prohibited by U.S. law or policy. The Application was filed under section 3 of the...). In reviewing this Application, DOE will consider domestic need for the natural gas, as well as any...

  17. 76 FR 62048 - ConocoPhillips Company; Application for Blanket Authorization To Export Previously Imported...

    Science.gov (United States)

    2011-10-06

    ...Phillips Company; Application for Blanket Authorization To Export Previously Imported Liquefied Natural Gas... which trade is not prohibited by U.S. law or policy. The application was filed under section 3 of the... need for natural gas shall be the primary focus of DOE when evaluating an export application.\\4...

  18. Cyclic purging for low-temperature solid fusion reactor blanket operation

    Energy Technology Data Exchange (ETDEWEB)

    Was, G.S.; Lidsky, L.M.

    1979-05-01

    A purging process was developed that will permit operation of fusion reactor blankets employing solid LiAlO/sub 2/ as the breeder material at fuel temperatures of <600/sup 0/C. The low fuel temperature would greatly reduce the problems of fuel sintering, densification, and volume expansion that occur at fuel temperatures in excess of 900/sup 0/C without degrading the plant thermal efficiency. The process consists of heating the blanket to a specified temperature for a given time at regular intervals to release tritium held up in the breeding material. As an example, a detailed purging cycle was developed for the breeder rod shim rod blanket that uses LiAlO/sub 2/ in the form of micronsize particles compacted into millimeter-size pellets and is designed for low-temperature operation. Tritium inventory, doubling time, purging time, purging temperature, purging frequency, and particle size are the parameters used to evaluate the process. Calculations indicate that breeder particle sizes ranging from 20 to 50 ..mu..m and purging temperatures ranging from 600 to 700/sup 0/C can result in purge times of <1 h with three or more weeks between purges, and a doubling time of 7 yr for a blanket inventory limit of 5 kg and a breeding ratio of <1.02.

  19. 78 FR 4400 - Eni USA Gas Marketing LLC; Application for Blanket Authorization To Export Previously Imported...

    Science.gov (United States)

    2013-01-22

    ... carrier and with which trade is not prohibited by U.S. law or policy. Eni USA Gas Marketing is requesting... law or policy. Eni USA Gas Marketing states that it does not seek authorization to export domestically... USA Gas Marketing LLC; Application for Blanket Authorization To Export Previously Imported Liquefied...

  20. 75 FR 19954 - Cheniere Marketing, LLC; Application for Blanket Authorization To Export Liquefied Natural Gas

    Science.gov (United States)

    2010-04-16

    ... trade is not prohibited by U.S. law or policy, over a two year period commencing on the date of the... vessel and with which trade is not prohibited by U.S. law or policy, should market conditions in the... Cheniere Marketing, LLC; Application for Blanket Authorization To Export Liquefied Natural Gas AGENCY...

  1. 78 FR 9679 - National Fuel Gas Supply Corporation; Prior Notice of Activity Under Blanket Certificate

    Science.gov (United States)

    2013-02-11

    ... Energy Regulatory Commission National Fuel Gas Supply Corporation; Prior Notice of Activity Under Blanket Certificate On January 24, 2013, National Fuel Gas Supply Corporation (National Fuel) filed with the Federal... Boone Mountain Storage Field located in Elk County, Pennsylvania. National Fuel seeks authority to plug...

  2. 78 FR 13657 - Southwest Gas Storage Company; Prior Notice of Activity Under Blanket Certificate

    Science.gov (United States)

    2013-02-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Southwest Gas Storage Company; Prior Notice of Activity Under Blanket Certificate On February 8, 2013, Southwest Gas Storage Company (Southwest) filed a prior notice request...

  3. 75 FR 2140 - Florida Gas Transmission Company, LLC; Notice of Staff Protest to Proposed Blanket Certificate...

    Science.gov (United States)

    2010-01-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Florida Gas Transmission Company, LLC; Notice of Staff Protest to Proposed Blanket Certificate Activity January 7, 2010. Commission staff (Protestor) hereby protests the prior...

  4. The effect of downstream perforated blanket on the safety against piping in heading-up structures

    Directory of Open Access Journals (Sweden)

    Mona A. Hagras

    2014-03-01

    It was found that piping index (Pe is governed by perforation ration (PR, relative hole diameter (D/Lb, ratio of length of the blanket to length of the apron (Lb/La, head difference between upstream and downstream structure and the depth of downstream cutoff.

  5. Salted lamb meat blanket of Petrolina-Pernambuco, Brazil: process and quality

    Directory of Open Access Journals (Sweden)

    Nely de Almeida Pedrosa

    2014-03-01

    Full Text Available Salted lamb meat blanket, originated from boning, salting, and drying of whole lamb carcass, was studied aiming at obtaining information that support the search for guarantees of origin for this typical regional product from the city of Petrolina-Pernambuco-Brazil. Data from three processing units were obtained, where it was observed the use of a traditional local technology that uses salting, an ancient preservation method; however, with a peculiar boning technique, resulting in a meat product with great potential for exploitation in the form of meat blanket. Based on the values of pH (6.22 ± 0.22, water activity (0.97 ± 0.02, and moisture (69.86 ± 2.26 lamb meat blanket is considered a perishable product, and consequently it requires the use of other preservation methods combined with salt, which along with the results of the microbiological analyses (absence of Salmonella sp, score <10 MPN/g of halophilic bacteria, total coliforms between 6.7 × 10³ and 5.2 × 10(6 FUC/g, and Staphylococcus from 8.1 × 10³ CFU/g at uncountable reinforce the need of hygienic practices to ensure product safety. These results, together with the product notoriety and the organization of the sector are important factors in achieving Geographical Indication of the Salted lamb Meat blanket of Petrolina.

  6. Stochastic modeling to determine the economic effects of blanket, selective, and no dry cow therapy

    NARCIS (Netherlands)

    Huijps, K.; Hogeveen, H.

    2007-01-01

    In many countries, blanket dry cow therapy (DCT) is the standard way to dry off cows. Because of concerns about antibiotic resistance, selective DCT is proposed as an alternative. The economic consequences of different types of DCT were studied previously, but variation between input traits and

  7. 76 FR 18216 - Southern Natural Gas Company; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2011-04-01

    ... Federal Energy Regulatory Commission Southern Natural Gas Company; Notice of Request Under Blanket Authorization Take notice that on March 16, 2011, Southern Natural Gas Company (Southern), Post Office Box 2563... and 157.216 of the Commission's Regulations under the Natural Gas Act (NGA) as amended, to abandon in...

  8. 75 FR 13535 - Northern Natural Gas Company; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2010-03-22

    ... Energy Regulatory Commission Northern Natural Gas Company; Notice of Request Under Blanket Authorization March 16, 2010. Take notice that on March 12, 2010, Northern Natural Gas Company (Northern), 1111 South... External Affairs, Northern Natural Gas Company, 1111 South 103rd Street, Omaha, Nebraska 68124, at (402...

  9. 75 FR 3232 - Northern Natural Gas Company; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2010-01-20

    ... Energy Regulatory Commission Northern Natural Gas Company; Notice of Request Under Blanket Authorization January 8, 2010. Take notice that on December 30, 2009, Northern Natural Gas Company (Northern), 1111... sections 157.205 and 157.214 of the Commission's regulations under the Natural Gas Act for authorization to...

  10. Comparison of sulfate-reducing and conventional Anammox upflow anaerobic sludge blanket reactors.

    Science.gov (United States)

    Rikmann, Ergo; Zekker, Ivar; Tomingas, Martin; Vabamäe, Priit; Kroon, Kristel; Saluste, Alar; Tenno, Taavo; Menert, Anne; Loorits, Liis; Rubin, Sergio S C dC; Tenno, Toomas

    2014-10-01

    Autotrophic NH4(+) removal has been extensively researched, but few studies have investigated alternative electron acceptors (for example, SO4(2-)) in NH4(+) oxidation. In this study, sulfate-reducing anaerobic ammonium oxidation (SRAO) and conventional Anammox were started up in upflow anaerobic sludge blanket reactors (UASBRs) at 36 (±0.5)°C and 20 (±0.5)°C respectively, using reject water as a source of NH4(+). SO4(2-) or NO2(-), respectively, were applied as electron acceptors. It was assumed that higher temperature could promote the SRAO, partly compensating its thermodynamic disadvantage comparing with the conventional Anammox to achieve comparable total nitrogen (TN) removal rate. Average volumetric NH4(+)-N removal rate in the sulfate-reducing UASBR1 was however 5-6 times less (0.03 kg-N/(m(3) day)) than in the UASBR2 performing conventional nitrite-dependent autotrophic nitrogen removal (0.17 kg-N/(m(3) day)). However, the stoichiometric ratio of NH4(+) removal in UASBR1 was significantly higher than could be expected from the extent of SO4(2-) reduction, possibly due to interactions between the N- and S-compounds and organic matter of the reject water. Injections of N2H4 and NH2OH accelerated the SRAO. Similar effect was observed in batch tests with anthraquinone-2,6-disulfonate (AQDS). For detection of key microorganisms PCR-DGGE was used. From both UASBRs, uncultured bacterium clone ATB-KS-1929 belonging to the order Verrucomicrobiales, Anammox bacteria (uncultured Planctomycete clone Pla_PO55-9) and aerobic ammonium-oxidizing bacteria (uncultured sludge bacterium clone ASB08 "Nitrosomonas") were detected. Nevertheless the SRAO process was shown to be less effective for the treatment of reject water, compared to the conventional Anammox. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Upflow anaerobic sludge blanket and aerated constructed wetlands for swine wastewater treatment: a pilot study.

    Science.gov (United States)

    Masi, F; Rizzo, A; Martinuzzi, N; Wallace, S D; Van Oirschot, D; Salazzari, P; Meers, E; Bresciani, R

    2017-07-01

    Swine wastewater management is often affected by two main issues: a too high volume for optimal reuse as a fertilizer and a too high strength for an economically sustainable treatment by classical solutions. Hence, an innovative scheme has been tested to treat swine wastewater, combining a low cost anaerobic reactor, upflow anaerobic sludge blanket (UASB), with intensified constructed wetlands (aerated CWs) in a pilot scale experimental study. The swine wastewater described in this paper is produced by a swine production facility situated in North Italy. The scheme of the pilot plant consisted of: (i) canvas-based thickener; (ii) UASB; (iii) two intensified aerated vertical subsurface flow CWs in series; (iv) a horizontal flow subsurface CW. The influent wastewater quality has been defined for total suspended solids (TSS 25,025 ± 9,323 mg/l), organic carbon (chemical oxygen demand (COD) 29,350 ± 16,983 mg/l), total reduced nitrogen and ammonium (total Kjeldahl nitrogen (TKN) 1,783 ± 498 mg/l and N-NH4+ 735 ± 251 mg/l) and total phosphorus (1,285 ± 270 mg/l), with nitrates almost absent. The overall system has shown excellent performances in terms of TSS, COD, N-NH4+ and TKN removal efficiencies (99.9%, 99.6%, 99.5%, and 99.0%, respectively). Denitrification (N-NO3- effluent concentration equal to 614 ± 268 mg/l) did not meet the Italian quality standards for discharging in water bodies, mainly because the organic carbon was almost completely removed in the intensified CW beds.

  12. Economic Organization Module. Test Booklet. Test Items for Booklets 1, 2, 3=Libro de prueba. Modulo de organizacion economica. Itemes de prueba para los libros 1, 2, 3.

    Science.gov (United States)

    California State Univ., Los Angeles. National Dissemination and Assessment Center.

    The booklet is part of a grade 10-12 social studies series produced for bilingual education. The series consists of six major thematic modules, with four to five booklets in each. The interdisciplinary modules are based on major ideas and designed to help students understand some major human problems and make sound, responsive decisions to improve…

  13. Personality Module. Test Booklet. Test Items for Booklets 1, 2, 3=Modulo de personalidad. Libro de prueba. Itemes de prueba para los libros 1, 2, 3.

    Science.gov (United States)

    California State Univ., Los Angeles. National Dissemination and Assessment Center.

    The booklet is part of a grade 10-12 social studies series produced for bilingual education. The series consists of six major thematic modules, with four to five booklets in each. The interdisciplinary modules are based on major ideas and designed to help students understand some major human problems and make sound, responsive decisions to improve…

  14. Alignment Methods Developed for the Validation of the Thermal and Mechanical Behaviour of the Two Beam Test Modules for the CLIC Project

    CERN Document Server

    Mainaud Durand, Helene; Sosin, Mateusz; Rude, Vivien

    2014-01-01

    CLIC project will consist of more than 20 000 two meters long modules. A test setup made of three modules is being built at CERN to validate the assembly and integration of all components and technical systems and to validate the short range strategy of pre-alignment. The test setup has been installed in a room equipped with a sophisticated system of ventilation able to reproduce the environmental conditions of the CLIC tunnel. Some of the components have been equipped with electrical heaters to simulate the power dissipation, combined with a water cooling system integrated in the RF components. Using these installations, to have a better understanding of the thermal and mechanical behaviour of a module under different operation modes, machine cycles have been simulated; the misalignment of the components and their supports has been observed. This paper describes the measurements methods developed for such a project and the results obtained.

  15. Integral neutronics experiments in analytical mockups for blanket of a hybrid reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rong, E-mail: liurongzy@163.com; Zhu, Tonghua; Lu, Xinxin; Wang, Xinhua; Yan, Xiaosong; Fen