WorldWideScience

Sample records for test bed designed

  1. Design requirements for the supercritical water oxidation test bed

    International Nuclear Information System (INIS)

    Svoboda, J.M.; Valentich, D.J.

    1994-05-01

    This report describes the design requirements for the supercritical water oxidation (SCWO) test bed that will be located at the Idaho National Engineering Laboratory (INEL). The test bed will process a maximum of 50 gph of waste plus the required volume of cooling water. The test bed will evaluate the performance of a number of SCWO reactor designs. The goal of the project is to select a reactor that can be scaled up for use in a full-size waste treatment facility to process US Department of Energy mixed wastes. EG ampersand G Idaho, Inc. will design and construct the SCWO test bed at the Water Reactor Research Test Facility (WRRTF), located in the northern region of the INEL. Private industry partners will develop and provide SCWO reactors to interface with the test bed. A number of reactor designs will be tested, including a transpiring wall, tube, and vessel-type reactor. The initial SCWO reactor evaluated will be a transpiring wall design. This design requirements report identifies parameters needed to proceed with preliminary and final design work for the SCWO test bed. A flow sheet and Process and Instrumentation Diagrams define the overall process and conditions of service and delineate equipment, piping, and instrumentation sizes and configuration Codes and standards that govern the safe engineering and design of systems and guidance that locates and interfaces test bed hardware are provided. Detailed technical requirements are addressed for design of piping, valves, instrumentation and control, vessels, tanks, pumps, electrical systems, and structural steel. The approach for conducting the preliminary and final designs and environmental and quality issues influencing the design are provided

  2. Test bed control center design concept for Tank Waste Retrieval Manipulator Systems

    International Nuclear Information System (INIS)

    Sundstrom, E.; Draper, J.V.; Fausz, A.

    1995-01-01

    This paper describes the design concept for the control center for the Single Shell Tank Waste Retrieval Manipulator System test bed and the design process behind the concept. The design concept supports all phases of the test bed mission, including technology demonstration, comprehensive system testing, and comparative evaluation for further development and refinement of the TWRMS for field operations

  3. Material control system design: Test Bed Nitrate Storage Area (TBNSA)

    International Nuclear Information System (INIS)

    Clark, G.A.; Da Roza, R.A.; Dunn, D.R.; Sacks, I.J.; Harrison, W.; Huebel, J.G.; Ross, W.N.; Salisbury, J.D.; Sanborn, R.H.; Weissenberger, S.

    1978-05-01

    This report provides an example of a hypothetical Special Nuclear Material (SNM) Safeguard Material Control and Accounting (MC and A) System which will be used as a subject for the demonstration of the Lawrence Livermore Laboratory MC and A System Evaluation Methodology in January 1978. This methodology is to become a tool in the NRC evaluation of license applicant submittals for Nuclear Fuel Cycle facilities. The starting point for this test bed design was the Allied-General Nuclear Services--Barnwell Nuclear Fuel Plant Reprocessing plant as described in the Final Safety Analysis Report (FSAR), of August 1975. The test bed design effort was limited to providing an SNM safeguard system for the plutonium nitrate storage area of this facility

  4. Designing a CR Test bed

    DEFF Research Database (Denmark)

    Cattoni, Andrea Fabio; Buthler, Jakob Lindbjerg; Tonelli, Oscar

    2014-01-01

    with their own set up, since the potential costs and efforts could not pay back in term of expected research results. Software Defined Radio solutions offer an easy way to communication researchers for the development of customized research test beds. While several hardware products are commercially available......, an overview on common research-oriented software products for SDR development, namely GNU Radio, Iris, and ASGARD, will be provided, including how to practically start the software development of simple applications. Finally, best practices and examples of all the software platforms will be provided, giving...... they are up and running in generating results. With this chapter we would like to provide a tutorial guide, based on direct experience, on how to enter in the world of test bed-based research, providing both insight on the issues encountered in every day development, and practical solutions. Finally...

  5. Design of Multilayer Insulation for the Multipurpose Hydrogen Test Bed

    Science.gov (United States)

    Marlow, Weston A.

    2011-01-01

    Multilayer insulation (MLI) is a critical component for future, long term space missions. These missions will require the storage of cryogenic fuels for extended periods of time with little to no boil-off and MLI is vital due to its exceptional radiation shielding properties. Several MLI test articles were designed and fabricated which explored methods of assembling and connecting blankets, yielding results for evaluation. Insight gained, along with previous design experience, will be used in the design of the replacement blanket for the Multipurpose Hydrogen Test Bed (MHTB), which is slated for upcoming tests. Future design considerations are discussed which include mechanical testing to determine robustness of such a system, as well as cryostat testing of samples to give insight to the loss of thermal performance of sewn panels in comparison to the highly efficient, albeit laborious application of the original MHTB blanket.

  6. Design study of a 1 MV, 4 A, D- test bed in european community

    International Nuclear Information System (INIS)

    Pamela, J.; Hemsworth, R.; Jacquot, C.; Holmes, A.J.T.

    1991-01-01

    The design study of a 1 MV, 4 A, D - , > 30 seconds, test bed is being conducted by the EURATOM-CEA association (Cadarache) with support from the EURATOM-UKAEA association (Culham) and from FOM-Amsterdam. A proposal for the construction of this test bed at Cadarache will be made by the middle of next year. The options chosen for the beamline are derived from the conceptual design originally proposed one year ago by A.Holmes et al. for the ITER neutral beam systems: pure volume negative ion production, electrostatic multi-stage accelerator, vertically subdivided beamline, electrostatic deflection of the ions at the neutralizer exit, HV vacuum insulation with voltage grading screens. This design has been reviewed in detail and in particular three basic topics have been carefully examined: beam acceleration, gas flow and beam transmission. This review resulted in various changes with respect to the original design, the major change being the decision to put the ion source at high voltage. In parallel to this test bed design study, the conceptual study of a 1 MV, 15 A power supply and of its protection system is conducted by european industrial companies under the supervision of Cadarache

  7. Space station common module thermal management: Design and construction of a test bed

    Science.gov (United States)

    Barile, R. G.

    1986-01-01

    In this project, a thermal test bed was designed, simulated, and planned for construction. The thermal system features interior and exterior thermal loads and interfacing with the central-radiator thermal bus. Components of the test bed include body mounted radiator loop with interface heat exchangers (600 Btu/hr); an internal loop with cabin air-conditioning and cold plates (3400 Btu/hr); interface heat exchangers to the central bus (13,000 Btu/hr); and provisions for new technology including advanced radiators, thermal storage, and refrigeration. The apparatus will be mounted in a chamber, heated with lamps, and tested in a vacuum chamber with LN2-cooled walls. Simulation of the test bed was accomplished using a DEC PRO 350 computer and the software package TK! olver. Key input variables were absorbed solar radiation and cold plate loads. The results indicate temperatures on the two loops will be nominal when the radiation and cold plate loads are in the range of 25% to 75% of peak loads. If all loads fall to zero, except the cabin air system which was fixed, the radiator fluid will drop below -100 F and may cause excessive pressure drop. If all loads reach 100%, the cabin air temperature could rise to 96 F.

  8. Multicell fluidized bed boiler design construction and test program. Quarterly progress status report, January--March 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-07-01

    The objective of this program is to design, construct, and test a multicell fluidized-bed boiler as a pollution-free method of burning high-sulfur or highly corrosive coals without excessive maintenance problems. The fluidized-bed boiler will provide approximately 300,000 pounds of steam per hour. Steam pressure and temperature conditions were selected to meet requirements of the site at which the boiler was installed.

  9. European Helium Cooled Pebble Bed (HCPB) test blanket. ITER design description document. Status 1.12.1996

    International Nuclear Information System (INIS)

    Albrecht, H.; Boccaccini, L.V.; Dalle Donne, M.; Fischer, U.; Gordeev, S.; Hutter, E.; Kleefeldt, K.; Norajitra, P.; Reimann, G.; Ruatto, P.; Schleisiek, K.; Schnauder, H.

    1997-04-01

    The Helium Cooled Pebble Bed (HCPB) blanket is based on the use of separate small lithium orthosilicate and beryllium pebble beds placed between radial toroidal cooling plates. The cooling is provided by helium at 8 MPa. The tritium produced in the pebble beds is purged by the flow of helium at 0.1 MPa. The structural material is martensitic steel. It is foreseen, after an extended R and D work, to test in ITER a blanket module based on the HCPB design, which is one of the two European proposals for the ITER Test Blanket Programme. To facilitate the handling operation the Blanket Test Module (BTM) is bolted to a surrounding water cooled frame fixed to the ITER shield blanket back plate. For the design of the test module, three-dimensional Monte Carlo neutronic calculations and thermohydraulic and stress analyses for the operation during the Basic Performance Phase (BPP) and during the Extended Performance Phase (EPP) of ITER have been performed. The behaviour of the test module during LOCA and LOFA has been investigated. Conceptual designs of the required ancillary loops have been performed. The present report is the updated version of the Design Description Document (DDD) for the HCPB Test Module. It has been written in accordance with a scheme given by the ITER Joint Central Team (JCT) and accounts for the comments made by the JCT to the previous version of this report. This work has been performed in the framework of the Nuclear Fusion Project of the Forschungszentrum Karlsruhne and it is supported by the European Union within the European Fusion Technology Program. (orig.) [de

  10. The SSM/PMAD automated test bed project

    Science.gov (United States)

    Lollar, Louis F.

    1991-01-01

    The Space Station Module/Power Management and Distribution (SSM/PMAD) autonomous subsystem project was initiated in 1984. The project's goal has been to design and develop an autonomous, user-supportive PMAD test bed simulating the SSF Hab/Lab module(s). An eighteen kilowatt SSM/PMAD test bed model with a high degree of automated operation has been developed. This advanced automation test bed contains three expert/knowledge based systems that interact with one another and with other more conventional software residing in up to eight distributed 386-based microcomputers to perform the necessary tasks of real-time and near real-time load scheduling, dynamic load prioritizing, and fault detection, isolation, and recovery (FDIR).

  11. Overview and evolution of the LeRC PMAD DC test bed

    Science.gov (United States)

    Soeder, James F.; Frye, Robert J.

    1992-01-01

    Since the beginning of the Space Station Freedom Program (SSFP), the Lewis Research Center (LeRC) has been developed electrical power system test beds to support the overall design effort. Through this time, the SSFP has changed the design baseline numerous times, however, the test bed effort has endeavored to track these changes. Beginning in August 1989 with the baseline and an all DC system, a test bed was developed to support the design baseline. The LeRC power measurement and distribution (PMAD) DC test bed and the changes in the restructure are described. The changes included the size reduction of primary power channel and various power processing elements. A substantial reduction was also made in the amount of flight software with the subsequent migration of these functions to ground control centers. The impact of these changes on the design of the power hardware, the controller algorithms, the control software, and a description of their current status is presented. An overview of the testing using the test bed is described, which includes investigation of stability and source impedance, primary and secondary fault protection, and performance of a rotary utility transfer device. Finally, information is presented on the evolution of the test bed to support the verification and operational phases of the SSFP in light of these restructure scrubs.

  12. Tests for evaluation of pellets as foundation bed material KBP1003 - ASKAR

    International Nuclear Information System (INIS)

    Johnsson, Anna

    2011-12-01

    The reference design for the backfill of deposition tunnels, described in SKB (2010), include bentonite blocks, bentonite pellets and a foundation bed of bentonite pellets or granulate. The tunnel floor needs to be flat and have sufficient bearing capacity to make it possible to stack the backfill blocks according to the reference design. To achieve a flat foundation the tunnel floor will be covered with a bed of pellets or granulate made of bentonite clay. The bed can be either compacted or non compacted. Bed tests have been performed as a part of the project KBP1003 DP1 Design, which is a subproject of KBP1003 ASKAR. The main objectives for KBP1003 DP1 is to define all requirements for the backfill and its production and installation prior to start of the large scale tests, based on given perquisites. KBP1003 is based on the reference design for the backfill of deposition tunnels which was developed in 2010 (SKB 2010). The concept for installation and block design has been further developed during the project. A new dimension of the backfill blocks has been developed; the chosen dimension makes it possible to gain overlapping joints between the blocks by block stacking. The further developed concept is hereinafter referred to as the ASKAR-concept. The purpose of the performed bed tests was to define the bed requirements in the backfill installation to enable stable stacking of backfill blocks. The tests included stacking of blocks on different bed materials, on blasted and wire sawn floor, with and without concurrent water inflow. The bed tests was subdivided into four main parts: - block stacking on different bed compositions - block stacking on bed during water inflow - block stacking in a realistic test tunnel - block stacking on the upper part of the deposition hole and bevel

  13. Tests for evaluation of pellets as foundation bed material KBP1003 - ASKAR

    Energy Technology Data Exchange (ETDEWEB)

    Johnsson, Anna (ES-Konsult AB (Sweden))

    2011-12-15

    The reference design for the backfill of deposition tunnels, described in SKB (2010), include bentonite blocks, bentonite pellets and a foundation bed of bentonite pellets or granulate. The tunnel floor needs to be flat and have sufficient bearing capacity to make it possible to stack the backfill blocks according to the reference design. To achieve a flat foundation the tunnel floor will be covered with a bed of pellets or granulate made of bentonite clay. The bed can be either compacted or non compacted. Bed tests have been performed as a part of the project KBP1003 DP1 Design, which is a subproject of KBP1003 ASKAR. The main objectives for KBP1003 DP1 is to define all requirements for the backfill and its production and installation prior to start of the large scale tests, based on given perquisites. KBP1003 is based on the reference design for the backfill of deposition tunnels which was developed in 2010 (SKB 2010). The concept for installation and block design has been further developed during the project. A new dimension of the backfill blocks has been developed; the chosen dimension makes it possible to gain overlapping joints between the blocks by block stacking. The further developed concept is hereinafter referred to as the ASKAR-concept. The purpose of the performed bed tests was to define the bed requirements in the backfill installation to enable stable stacking of backfill blocks. The tests included stacking of blocks on different bed materials, on blasted and wire sawn floor, with and without concurrent water inflow. The bed tests was subdivided into four main parts: - block stacking on different bed compositions - block stacking on bed during water inflow - block stacking in a realistic test tunnel - block stacking on the upper part of the deposition hole and bevel

  14. An adaptable, low cost test-bed for unmanned vehicle systems research

    Science.gov (United States)

    Goppert, James M.

    2011-12-01

    An unmanned vehicle systems test-bed has been developed. The test-bed has been designed to accommodate hardware changes and various vehicle types and algorithms. The creation of this test-bed allows research teams to focus on algorithm development and employ a common well-tested experimental framework. The ArduPilotOne autopilot was developed to provide the necessary level of abstraction for multiple vehicle types. The autopilot was also designed to be highly integrated with the Mavlink protocol for Micro Air Vehicle (MAV) communication. Mavlink is the native protocol for QGroundControl, a MAV ground control program. Features were added to QGroundControl to accommodate outdoor usage. Next, the Mavsim toolbox was developed for Scicoslab to allow hardware-in-the-loop testing, control design and analysis, and estimation algorithm testing and verification. In order to obtain linear models of aircraft dynamics, the JSBSim flight dynamics engine was extended to use a probabilistic Nelder-Mead simplex method. The JSBSim aircraft dynamics were compared with wind-tunnel data collected. Finally, a structured methodology for successive loop closure control design is proposed. This methodology is demonstrated along with the rest of the test-bed tools on a quadrotor, a fixed wing RC plane, and a ground vehicle. Test results for the ground vehicle are presented.

  15. Design and adjustment on test bed of replacing subassembly machine control system for China experimental fast reactor

    International Nuclear Information System (INIS)

    Dong Shengguo; Ma Hongsheng; Zhao Lixia

    2008-01-01

    The present research concerns in the design and adjustment of replacing sub- assembly machine control system of China Experimental Fast Reactor. The design of replacing subassembly machine control system adopts some electric equipments, such as programmable controllers, digital DC drivers. The designed control system was adjusted on the test bed. The results indicate that the operation of the control system is steady and reliable, and designed control system can meet the needs of the design specification. (authors)

  16. Torsion testing of bed joints

    DEFF Research Database (Denmark)

    Hansen, Klavs Feilberg; Pedersen, Carsten Mørk

    2008-01-01

    This paper describes a simple test method for determining the torsion strength of a single bed joint between two bricks and presents results from testing using this test method. The setup for the torsion test is well defined, require minimal preparation of the test specimen and the test can...... be carried out directly in a normal testing machine. The torsion strength is believed to be the most important parameter in out-of-plane resistance of masonry walls subjected to bending about an axis perpendicular to the bed joints. The paper also contains a few test results from bending of small walls about...... an axis perpendicular to the bed joints, which indicate the close connection between these results and results from torsion tests. These characteristics make the torsion strength well suited to act as substitute parameter for the bending strength of masonry about an axis perpendicular to the bed joints....

  17. Growth plan for an inspirational test-bed of smart textile services

    NARCIS (Netherlands)

    Wensveen, S.A.G.; Tomico, O.; Bhomer, ten M.; Kuusk, K.

    2015-01-01

    In this pictorial we visualize the growth plan for an inspirational test-bed of smart textile product service systems. The goal of the test-bed is to inspire and inform the Dutch creative industries of textile, interaction and service design to combine their strengths and share opportunities. The

  18. Particle fuel bed tests

    International Nuclear Information System (INIS)

    Horn, F.L.; Powell, J.R.; Savino, J.M.

    1985-01-01

    Gas-cooled reactors, using packed beds of small diameter coated fuel particles have been proposed for compact, high-power systems. The particulate fuel used in the tests was 800 microns in diameter, consisting of a thoria kernel coated with 200 microns of pyrocarbon. Typically, the bed of fuel particles was contained in a ceramic cylinder with porous metallic frits at each end. A dc voltage was applied to the metallic frits and the resulting electric current heated the bed. Heat was removed by passing coolant (helium or hydrogen) through the bed. Candidate frit materials, rhenium, nickel, zirconium carbide, and zirconium oxide were unaffected, while tungsten and tungsten-rhenium lost weight and strength. Zirconium-carbide particles were tested at 2000 K in H 2 for 12 hours with no visible reaction or weight loss

  19. Design and control of the precise tracking bed based on complex electromechanical design theory

    Science.gov (United States)

    Ren, Changzhi; Liu, Zhao; Wu, Liao; Chen, Ken

    2010-05-01

    The precise tracking technology is wide used in astronomical instruments, satellite tracking and aeronautic test bed. However, the precise ultra low speed tracking drive system is one high integrated electromechanical system, which one complexly electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. The precise Tracking Bed is one ultra-exact, ultra-low speed, high precision and huge inertial instrument, which some kind of mechanism and environment of the ultra low speed is different from general technology. This paper explores the design process based on complex electromechanical optimizing design theory, one non-PID with a CMAC forward feedback control method is used in the servo system of the precise tracking bed and some simulation results are discussed.

  20. Design Of Fluidized-bed Incinerator

    International Nuclear Information System (INIS)

    Lee, Bong Hun

    1992-04-01

    This book tells of design of fluidized-bed incinerator, which includes outline of fluidized-bed incinerator such as definition, characteristic, structure of principle of incineration and summary of the system, facilities of incinerator with classification of incinerator apparatus of supply of air, combustion characteristic, burnup control and point of design of incinerator, preconditioning facilities on purpose, types and characteristic of that system, a crusher, point of design of preconditioning facilities, rapid progress equipment, ventilation equipment, chimney facilities, flue gas cooling facilities boiler equipment, and removal facility of HCI/SOX and NOX.

  1. Hazard classification for the supercritical water oxidation test bed. Revision 1

    International Nuclear Information System (INIS)

    Ramos, A.G.

    1994-10-01

    A hazard classification of ''routinely accepted by the public'' has been determined for the operation of the supercritical water oxidation test bed at the Idaho National Engineering Laboratory. This determination is based on the fact that the design and proposed operation meet or exceed appropriate national standards so that the risks are equivalent to those present in similar activities conducted in private industry. Each of the 17 criteria for hazards ''routinely accepted by the public,'' identified in the EG and G Idaho, Inc., Safety Manual, were analyzed. The supercritical water oxidation (SCWO) test bed will treat simulated mixed waste without the radioactive component. It will be designed to operate with eight test wastes. These test wastes have been chosen to represent a broad cross-section of candidate mixed wastes anticipated for storage or generation by DOE. In particular, the test bed will generate data to evaluate the ability of the technology to treat chlorinated waste and other wastes that have in the past caused severe corrosion and deposition in SCWO reactors

  2. Development of Chinese HTR-PM pebble bed equivalent conductivity test facility

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Cheng; Yang, Xingtuan; Jiang, Shengyao [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology

    2016-01-15

    The first two 250-MWt high-temperature reactor pebble bed modules (HTR-PM) have been installing at the Shidaowan plant in Shandong Province, China. The values of the effective thermal conductivity of the pebble bed core are essential parameters for the design. For their determination, Tsinghua University in China has proposed a full-scale heat transfer experiment to conduct comprehensive thermal transfer tests in packed pebble bed and to determine the effective thermal conductivity.

  3. Deep Bed Iodine Sorbent Testing FY 2011 Report

    International Nuclear Information System (INIS)

    Soelberg, Nick; Watson, Tony

    2011-01-01

    Nuclear fission results in the production of fission products (FPs) and activation products that increasingly interfere with the fission process as their concentrations increase. Some of these fission and activation products tend to evolve in gaseous species during used nuclear fuel reprocessing. Analyses have shown that I129, due to its radioactivity, high potential mobility in the environment, and high longevity (half life of 15.7 million years), can require control efficiencies of up to 1,000x or higher to meet regulatory emission limits. Deep-bed iodine sorption testing has been done to evaluate the performance of solid sorbents for capturing iodine in off-gas streams from nuclear fuel reprocessing plants. The objectives of the FY 2011 deep bed iodine sorbent testing are: (1) Evaluate sorbents for iodine capture under various conditions of gas compositions and operating temperature (determine sorption efficiencies, capacities, and mass transfer zone depths); and (2) Generate data for dynamic iodine sorption modeling. Three tests performed this fiscal year on silver zeolite light phase (AgZ-LP) sorbent are reported here. Additional tests are still in progress and can be reported in a revision of this report or a future report. Testing was somewhat delayed and limited this year due to initial activities to address some questions of prior testing, and due to a period of maintenance for the on-line GC. Each test consisted of (a) flowing a synthetic blend of gases designed to be similar to an aqueous dissolver off-gas stream over the sorbent contained in three separate bed segments in series, (b) measuring each bed inlet and outlet gas concentrations of iodine and methyl iodide (the two surrogates of iodine gas species considered most representative of iodine species expected in dissolver off-gas), (c) operating for a long enough time to achieve breakthrough of the iodine species from at least one (preferably the first two) bed segments, and (d) post-test purging

  4. The development of test beds to support the definition and evolution of the Space Station Freedom power system

    Science.gov (United States)

    Soeder, James F.; Frye, Robert J.; Phillips, Rudy L.

    1991-01-01

    Since the beginning of the Space Station Freedom Program (SSFP), the NASA Lewis Research Center (LeRC) and the Rocketdyne Division of Rockwell International have had extensive efforts underway to develop testbeds to support the definition of the detailed electrical power system design. Because of the extensive redirections that have taken place in the Space Station Freedom Program in the past several years, the test bed effort was forced to accommodate a large number of changes. A short history of these program changes and their impact on the LeRC test beds is presented to understand how the current test bed configuration has evolved. The current test objectives and the development approach for the current DC test bed are discussed. A description of the test bed configuration, along with its power and controller hardware and its software components, is presented. Next, the uses of the test bed during the mature design and verification phase of SSFP are examined. Finally, the uses of the test bed in the operation and evolution of the SSF are addressed.

  5. Helium-cooled pebble bed test blanket module alternative design and fabrication routes

    International Nuclear Information System (INIS)

    Lux, M.

    2007-01-01

    According to first results of the recently started European DEMO study, a new blanket integration philosophy was developed applying so-called multi-module segments. These consist of a number of blanket modules flexibly mounted onto a common vertical manifold structure that can be used for replacing all modules in one segment at one time through vertical remote-handling ports. This principle gives new freedom in the design choices applied to the blanket modules itself. Based on the alternative design options considered for DEMO also the ITER test blanket module was newly analyzed. As a result of these activities it was decided to keep the major principles of the reference design like stiffening grid, breeder unit concept and perpendicular arrangement of pebble beds related to the First Wall because of the very positive results of thermo-mechanical and neutronics studies. The present paper gives an overview on possible further design optimization and alternative fabrication routes. One of the most significant improvements in terms of the hydraulic performance of the Helium cooled reactor can be reached with a new First Wall concept. That concept is based on an internal heat transfer enhancement technique and allows drastically reducing the flow velocity in the FW cooling channels. Small ribs perpendicular to the flow direction (transverse-rib roughness) are arranged on the inner surface of the First Wall cooling channels at the plasma side. In the breeder units cooling plates which are mostly parallel but bent into U-shape at the plasma-side are considered. In this design all flow channels are parallel and straight with the flow entering on one side of the parallel plate sections and exiting on the other side. The ceramic pebble beds are embedded between two pairs of such type of cooling plates. Different modifications could possibly be combined, whereby the most relevant discussed in this paper are (i) rib-cooled First Wall channels, (ii) U-bent cooling plates for

  6. The regeneration test of the secondary loop condensate polishing mixed bed resin in Qinshan NPP

    International Nuclear Information System (INIS)

    Xu Meijing; Dong Liming

    1995-12-01

    There are four condensate polishing mixed beds in the water chemical treatment plant of Qinshan NPP. 2125 kg of D001-TR type cation exchange resin, 2000 kg of D201-TR type anion exchange resin, and 375 kg of S-TR type inert resin are filled into each mixed bed. The bed height of resin is 1.2 m and the volume is about 2.7 m 3 . In order to regenerate the exhausted resin out of the bed, the pre-designed condensate polishing mixed bed regeneration process was used to regenerate the first exhausted resin. After the resin was scrubbed and separated, cation resin and anion resin were respectively regenerated, rinsed to resume the exchange capability of the resin. The regenerated mixed bed is able to keep higher efficiency for condensate polishing. The outlet water quality and the resin service-life are able to meet the design requirements or more favorable than that. During the test, some main cations and anions in the blow-off water at each procedure were analyzed. The analyzed results were used to make pre-designed regeneration process better. The test results proved that pre-designed process is reasonable and effective. (6 refs., 6 figs., 7 tabs.)

  7. 77 FR 18793 - Spectrum Sharing Innovation Test-Bed Pilot Program

    Science.gov (United States)

    2012-03-28

    .... 120322212-2212-01] Spectrum Sharing Innovation Test-Bed Pilot Program AGENCY: National Telecommunications... Innovation Test-Bed pilot program to assess whether devices employing Dynamic Spectrum Access techniques can... Spectrum Sharing Innovation Test-Bed (Test-Bed) pilot program to examine the feasibility of increased...

  8. Deep space test bed for radiation studies

    International Nuclear Information System (INIS)

    Adams, James H.; Adcock, Leonard; Apple, Jeffery; Christl, Mark; Cleveand, William; Cox, Mark; Dietz, Kurt; Ferguson, Cynthia; Fountain, Walt; Ghita, Bogdan; Kuznetsov, Evgeny; Milton, Martha; Myers, Jeremy; O'Brien, Sue; Seaquist, Jim; Smith, Edward A.; Smith, Guy; Warden, Lance; Watts, John

    2007-01-01

    The Deep Space Test-Bed (DSTB) Facility is designed to investigate the effects of galactic cosmic rays on crews and systems during missions to the Moon or Mars. To gain access to the interplanetary ionizing radiation environment the DSTB uses high-altitude polar balloon flights. The DSTB provides a platform for measurements to validate the radiation transport codes that are used by NASA to calculate the radiation environment within crewed space systems. It is also designed to support other exploration related investigations such as measuring the shielding effectiveness of candidate spacecraft and habitat materials, testing new radiation monitoring instrumentation, flight avionics and investigating the biological effects of deep space radiation. We describe the work completed thus far in the development of the DSTB and its current status

  9. Engineering test facility design center

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This section describes the status of this design

  10. Bed occupancy monitoring: data processing and clinician user interface design.

    Science.gov (United States)

    Pouliot, Melanie; Joshi, Vilas; Goubran, Rafik; Knoefel, Frank

    2012-01-01

    Unobtrusive and continuous monitoring of patients, especially at their place of residence, is becoming a significant part of the healthcare model. A variety of sensors are being used to monitor different patient conditions. Bed occupancy monitoring provides clinicians a quantitative measure of bed entry/exit patterns and may provide information relating to sleep quality. This paper presents a bed occupancy monitoring system using a bed pressure mat sensor. A clinical trial was performed involving 8 patients to collect bed occupancy data. The trial period for each patient ranged from 5-10 weeks. This data was analyzed using a participatory design methodology incorporating clinician feedback to obtain bed occupancy parameters. The parameters extracted include the number of bed exits per night, the bed exit weekly average (including minimum and maximum), the time of day of a particular exit, and the amount of uninterrupted bed occupancy per night. The design of a clinical user interface plays a significant role in the acceptance of such patient monitoring systems by clinicians. The clinician user interface proposed in this paper was designed to be intuitive, easy to navigate and not cause information overload. An iterative design methodology was used for the interface design. The interface design is extendible to incorporate data from multiple sensors. This allows the interface to be part of a comprehensive remote patient monitoring system.

  11. Fuel Design for Particle-Bed Reactors for Thermal Propulsion Applications

    Science.gov (United States)

    Husser, Dewayne L.; Evans, Robert S.; Jensen, Russell R.; Kerr, John M.

    1994-07-01

    The design of particle bed reactor (PBR) fuels is an iterative process involving close coordination of design and manufacturing operations. The process starts with the generation of an initial particle design, based on a knowledge of the system requirements and interfaces (such as, fissile loading requirements, coolant type, exit gas temperatures, operation time, number of cycles, contacting materials, etc.). The designer must consider materials property data, heat-transfer and thermal-hydraulic characteristics of the particle and particle bed, and available (or anticipated) manufacturing technology. The design process also uses parametric studies to identify the influences of composition, size, and coating thickness on fuel performance. This resulting design is then used to provide a target manufacturing specification against which initial manufacturing development can be assessed and which provides the framework for manufacturing and testing derived feedback that can be incorporated into the subsequent particle design modifications. In this paper, an example of this design process for a hypothetical particle using a (U,Zr)C kernel and a NbC outer coating designed for a thermal propulsion application is given.

  12. Development of a Remotely Operated Vehicle Test-bed

    Directory of Open Access Journals (Sweden)

    Biao WANG

    2013-06-01

    Full Text Available This paper presents the development of a remotely operated vehicle (ROV, designed to serve as a convenient, cost-effective platform for research and experimental validation of hardware, sensors and control algorithms. Both of the mechanical and control system design are introduced. The vehicle with a dimension 0.65 m long, 0.45 m wide has been designed to have a frame structure for modification of mounted devices and thruster allocation. For control system, STM32 based MCU boards specially designed for this project, are used as core processing boards. And an open source, modular, flexible software is developed. Experiment results demonstrate the effectiveness of the test-bed.

  13. A Physical Protection Systems Test Bed for International Counter-Trafficking System Development

    International Nuclear Information System (INIS)

    Stinson, Brad J.; Kuhn, Michael J.; Donaldson, Terrence L.; Richardson, Dave; Rowe, Nathan C.; Younkin, James R.; Pickett, Chris A.

    2011-01-01

    Physical protection systems have a widespread impact on the nuclear industry in areas such as nuclear safeguards, arms control, and trafficking of illicit goods (e.g., nuclear materials) across international borders around the world. Many challenges must be overcome in design and deployment of foreign border security systems such as lack of infrastructure, extreme environmental conditions, limited knowledge of terrain, insider threats, and occasional cultural resistance. Successful security systems, whether it be a system designed to secure a single facility or a whole border security system, rely on the entire integrated system composed of multiple subsystems. This test bed is composed of many unique sensors and subsystems, including wireless unattended ground sensors, a buried fiber-optic acoustic sensor, a lossy coaxial distributed sensor, wireless links, pan-tilt-zoom cameras, mobile power generation systems, unmanned aerial vehicles, and fiber-optic-fence intrusion detection systems. A Common Operating Picture software architecture is utilized to integrate a number of these subsystems. We are currently performance testing each system for border security and perimeter security applications by examining metrics such as probability of sense and a qualitative understanding of the sensors vulnerability of defeat. The testing process includes different soil conditions for buried sensors (e.g., dry, wet, and frozen) and an array of different tests including walking, running, stealth detection, and vehicle detection. Also, long term sustainability of systems is tested including performance differences due to seasonal variations (e.g. summer versus winter, while raining, in foggy conditions). The capabilities of the test bed are discussed. Performance testing results, both at the individual component level and integrated into a larger system for a specific deployment (in situ), help illustrate the usefulness and need for integrated testing facilities to carry out this

  14. Design and construction of an optical test bed for LISA imaging systems and tilt-to-length coupling

    International Nuclear Information System (INIS)

    Chwalla, M; Fitzsimons, E; Danzmann, K; Fernández Barranco, G; Gerberding, O; Heinzel, G; Lieser, M; Schuster, S; Schwarze, T S; Tröbs, M; Zwetz, M; Killow, C J; Perreur-Lloyd, M; Robertson, D I; Ward, H

    2016-01-01

    The laser interferometer space antenna (LISA) is a future space-based interferometric gravitational-wave detector consisting of three spacecraft in a triangular configuration. The interferometric measurements of path length changes between satellites will be performed on optical benches in the satellites. Angular misalignments of the interfering beams couple into the length measurement and represent a significant noise source. Imaging systems will be used to reduce this tilt-to-length coupling. We designed and constructed an optical test bed to experimentally investigate tilt-to-length coupling. It consists of two separate structures, a minimal optical bench and a telescope simulator. The minimal optical bench comprises the science interferometer where the local laser is interfered with light from a remote spacecraft. In our experiment, a simulated version of this received beam is generated on the telescope simulator. The telescope simulator provides a tilting beam, a reference interferometer and an additional static beam as a phase reference. The tilting beam can either be a flat-top beam or a Gaussian beam. We avoid tilt-to-length coupling in the reference interferometer by using a small photo diode placed at an image of the beam rotation point. We show that the test bed is operational with an initial measurement of tilt-to-length coupling without imaging systems. Furthermore, we show the design of two different imaging systems whose performance will be investigated in future experiments. (paper)

  15. Tests of Bed Agglomeration Tendency Using a Rotating Furnace; Roterugn foer bedoemning av sintringsbenaegenhet

    Energy Technology Data Exchange (ETDEWEB)

    Larfeldt, Jenny; Zintl, Frank [TPS Termiska Processer AB, Nykoeping (Sweden)

    2003-08-01

    Bed sintering is a well known problem in fluidised bed boilers. In order to avoid bed sintering the bed material turn over ratio is high which leads a high consumption of bed material. This work aims at developing and evaluating a method for testing the bed agglomeration tendency of a FB bed material by using a rotating furnace. A rotating furnace has been designed and tests have shown that three temperatures describing the increasing agglomeration tendency can be evaluated; TA when several particles stick to each other and to the crucible wall, TB when half of the material sticks to the wall and TC when almost all the material forms a ball in the crucible. Comparison with bed agglomeration tests has shown that TA is between 80 deg C to 130 deg C lower than the bed agglomeration temperature from fluid bed tests. It is shown that TB is closer to the bed agglomeration temperature and finally that the temperature TC is higher than the bed agglomeration temperature. It is concluded that in the rotating furnace sticking of particles is visualised early, and that this sticking will not cause defluidisation of the bed until more than half of the material in the crucible is sticky. Repeated tests has been performed at a heating rate of 5 deg/minute and a rotating speed of 12 rpm and a furnace inclination of 20 deg was found to give distinct results in the evaluation. The evaluation has shown to be reproducible at lower temperatures. At higher temperatures, around 1,000 deg C, the evaluation was complicated by a poor picture quality which probably can be improved by proper cooling of the camera. It has also been shown that sticking of material in the rotating furnace could be detected at relatively low temperatures of 750 deg C that disappeared at higher temperatures. This is likely to be explained by melting salts that evaporates as temperature increase. At even higher temperatures the sticking reappeared until a ball was formed in the crucible. The latter sticking is

  16. TEST BED FOR THE SIMULATION OF MAGNETIC FIELD MEASUREMENTS OF LOW EARTH ORBIT SATELLITES

    Directory of Open Access Journals (Sweden)

    Alberto Gallina

    2018-03-01

    Full Text Available The paper presents a test bed designed to simulate magnetic environment experienced by a spacecraft on low Earth orbit. It consists of a spherical air bearing located inside a Helmholtz cage. The spherical air bearing is used for simulating microgravity conditions of orbiting bodies while the Helmholtz cage generates a controllable magnetic field resembling the one surrounding a satellite during its motion. Dedicated computer software is used to initially calculate the magnetic field on an established orbit. The magnetic field data is then translated into current values and transmitted to programmable power supplies energizing the cage. The magnetic field within the cage is finally measured by a test article mounted on the air bearing. The paper provides a description of the test bed and the test article design. An experimental test proves the good performance of the entire system.

  17. Hydrodynamic studies in designing of fluidized bed system

    International Nuclear Information System (INIS)

    Mohamad Puad Abu; Muhd Noor Muhd Yunus; Syed Nasaruddin Syed Idris

    2002-01-01

    Fluidized bed process have been used mostly in the petroleum and paper industries, and for processing nuclear wastes, spent cook liquor, wood chips, and sewage sludge disposal. Even at MINT some of the equipment available used this principal. Before we use or purchase this equipment, it is very grateful if we could understand how the system has been designed. The hydrodynamic fluidization studies is very important in designing of fluidized bed system especially in determining the minimum fluidizing velocity, terminal velocity, flexibility of operation, slugging condition, bubble size and velocity, and transport disengaging height. They can be determined either by calculation or experimentation. This paper will highlight the hydrodynamic study that need to be performed in designing of fluidized bed system so that its can be used appropriately. (Author)

  18. Simulation Facilities and Test Beds for Galileo

    Science.gov (United States)

    Schlarmann, Bernhard Kl.; Leonard, Arian

    2002-01-01

    Galileo is the European satellite navigation system, financed by the European Space Agency (ESA) and the European Commission (EC). The Galileo System, currently under definition phase, will offer seamless global coverage, providing state-of-the-art positioning and timing services. Galileo services will include a standard service targeted at mass market users, an augmented integrity service, providing integrity warnings when fault occur and Public Regulated Services (ensuring a continuity of service for the public users). Other services are under consideration (SAR and integrated communications). Galileo will be interoperable with GPS, and will be complemented by local elements that will enhance the services for specific local users. In the frame of the Galileo definition phase, several system design and simulation facilities and test beds have been defined and developed for the coming phases of the project, respectively they are currently under development. These are mainly the following tools: Galileo Mission Analysis Simulator to design the Space Segment, especially to support constellation design, deployment and replacement. Galileo Service Volume Simulator to analyse the global performance requirements based on a coverage analysis for different service levels and degrades modes. Galileo System Simulation Facility is a sophisticated end-to-end simulation tool to assess the navigation performances for a complete variety of users under different operating conditions and different modes. Galileo Signal Validation Facility to evaluate signal and message structures for Galileo. Galileo System Test Bed (Version 1) to assess and refine the Orbit Determination &Time Synchronisation and Integrity algorithms, through experiments relying on GPS space infrastructure. This paper presents an overview on the so called "G-Facilities" and describes the use of the different system design tools during the project life cycle in order to design the system with respect to

  19. Design of fluidized-bed, biological denitrification systems

    International Nuclear Information System (INIS)

    Patton, B.D.; Hancher, C.W.; Pitt, W.W.; Walker, J.F.

    1982-01-01

    Many commercial processes yield nitrate-containing wastewaters that are being discharged to the environment because traditional recovery or disposal methods are economically unacceptable. The anticipated discharge limits (i.e., 10 to 20 g (NO 3 - )/m 3 ) being considered by many states will not allow continued release of these wastewaters. The new discharge standards can be met economically by use of the fluidizied-bed, biological denitrification process. Research and development studies were conducted with 0.05-, 0.10-, 0.20-, and 0.50-m-diam fluidized-bed bioreactor systems. Feed nitrate concentrations were in the 0 to 10,000 g (NO 3 - )/m 3 range. Using the data from these studies, rate expressions were developed for the destruction of nitrate as a function of nitrate concentration. Methods were also developed for sizing bioreactors and biomass control systems. The sizing methods for fluidized-bed denitrification systems are described, and support systems such as sampling and analysis, instrumentation and controls, utilities, and bacteria storage are discussed. Operation of the process is also briefly discussed to aid the designer. Using the methods presented in this report, fluidized-bed, biological denitrification systems can be designed to treat nitrate wastewater streams

  20. Use of communication architecture test bed to evaluate data network performance

    International Nuclear Information System (INIS)

    Clapp, N.E. Jr.; Swail, B.K.; Naser, J.A.

    1994-01-01

    Local area networks (LANs) are becoming more prevalent in nuclear power plants. Traditionally, LANs were only used as information highways, providing office automation services. LANs are now being used as data highways for applications in plant data acquisition and control systems. A communication architecture test bed, which contains network simulators, is needed to allow network performance studies and to resolve design issues prior to equipment purchase. Two levels of granularity of simulation are needed to provide the dynamic information about network performance. A coarse-grain simulator is used to estimate the dynamic performance of the network due to major resources such as workstations, gateways, and data acquisition systems. A fine-grain simulator allows a greater level of detail about the underlying network protocol and resources to be simulated. The combination of coarse-grain and fine-grain simulation packages provides the network designer with the required tools to thoroughly understand the behavior of the modeled network. This paper describes the development of a communication architecture test bed using commercial network simulation packages. Network simulators allow the resolution of major design issues in software without the expense of purchasing costly hardware components

  1. The Space Station Module Power Management and Distribution automation test bed

    Science.gov (United States)

    Lollar, Louis F.

    1991-01-01

    The Space Station Module Power Management And Distribution (SSM/PMAD) automation test bed project was begun at NASA/Marshall Space Flight Center (MSFC) in the mid-1980s to develop an autonomous, user-supportive power management and distribution test bed simulating the Space Station Freedom Hab/Lab modules. As the test bed has matured, many new technologies and projects have been added. The author focuses on three primary areas. The first area is the overall accomplishments of the test bed itself. These include a much-improved user interface, a more efficient expert system scheduler, improved communication among the three expert systems, and initial work on adding intermediate levels of autonomy. The second area is the addition of a more realistic power source to the SSM/PMAD test bed; this project is called the Large Autonomous Spacecraft Electrical Power System (LASEPS). The third area is the completion of a virtual link between the SSM/PMAD test bed at MSFC and the Autonomous Power Expert at Lewis Research Center.

  2. Thermal enhancement cartridge heater modified tritium hydride bed development, Part 2 - Experimental validation of key conceptual design features

    Energy Technology Data Exchange (ETDEWEB)

    Heroux, K.J.; Morgan, G.A. [Savannah River Laboratory, Aiken, SC (United States)

    2015-03-15

    The Thermal Enhancement Cartridge Heater Modified (TECH Mod) tritium hydride bed is an interim replacement for the first generation (Gen1) process hydride beds currently in service in the Savannah River Site (SRS) Tritium Facilities. 3 new features are implemented in the TECH Mod hydride bed prototype: internal electric cartridge heaters, porous divider plates, and copper foam discs. These modifications will enhance bed performance and reduce costs by improving bed activation and installation processes, in-bed accountability measurements, end-of-life bed removal, and He-3 recovery. A full-scale hydride bed test station was constructed at the Savannah River National Laboratory (SRNL) in order to evaluate the performance of the prototype TECH Mod hydride bed. Controlled hydrogen (H{sub 2}) absorption/ desorption experiments were conducted to validate that the conceptual design changes have no adverse effects on the gas transfer kinetics or H{sub 2} storage/release properties compared to those of the Gen1 bed. Inert gas expansions before, during, and after H{sub 2} flow tests were used to monitor changes in gas transfer rates with repeated hydriding/de-hydriding of the hydride material. The gas flow rates significantly decreased after initial hydriding of the material; however, minimal changes were observed after repeated cycling. The data presented herein confirm that the TECH Mod hydride bed would be a suitable replacement for the Gen1 bed with the added enhancements expected from the advanced design features. (authors)

  3. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    International Nuclear Information System (INIS)

    Soelberg, Nicholas Ray; Watson, Tony Leroy

    2015-01-01

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO 3 and increased NO 2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO 2 , very low H 2 O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I 2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  4. IPv6 Test Bed for Testing Aeronautical Applications

    Science.gov (United States)

    Wilkins, Ryan; Zernic, Michael; Dhas, Chris

    2004-01-01

    Aviation industries in United States and in Europe are undergoing a major paradigm shift in the introduction of new network technologies. In the US, NASA is also actively investigating the feasibility of IPv6 based networks for the aviation needs of the United States. In Europe, the Eurocontrol lead, Internet Protocol for Aviation Exchange (iPAX) Working Group is actively investigating the various ways of migrating the aviation authorities backbone infrastructure from X.25 based networks to an IPv6 based network. For the last 15 years, the global aviation community has pursued the development and implementation of an industry-specific set of communications standards known as the Aeronautical Telecommunications Network (ATN). These standards are now beginning to affect the emerging military Global Air Traffic Management (GATM) community as well as the commercial air transport community. Efforts are continuing to gain a full understanding of the differences and similarities between ATN and Internet architectures as related to Communications, Navigation, and Surveillance (CNS) infrastructure choices. This research paper describes the implementation of the IPv6 test bed at NASA GRC, and Computer Networks & Software, Inc. and these two test beds are interface to Eurocontrol over the IPv4 Internet. This research work looks into the possibility of providing QoS performance for Aviation application in an IPv6 network as is provided in an ATN based network. The test bed consists of three autonomous systems. The autonomous system represents CNS domain, NASA domain and a EUROCONTROL domain. The primary mode of connection between CNS IPv6 testbed and NASA and EUROCONTROL IPv6 testbed is initially a set of IPv6 over IPv4 tunnels. The aviation application under test (CPDLC) consists of two processes running on different IPv6 enabled machines.

  5. Test-element assembly and loading parameters for the in-pile test of HCPB ceramic pebble beds

    Energy Technology Data Exchange (ETDEWEB)

    Laan, J.G. van der E-mail: vanderlaan@nrg-nl.com; Boccaccini, L.V.; Conrad, R.; Fokkens, J.H.; Jong, M.; Magielsen, A.J.; Pijlgroms, B.J.; Reimann, J.; Stijkel, M.P.; Malang, S

    2002-11-01

    In the framework of developing the helium cooled pebble-bed (HCPB) blanket an irradiation test of pebble-bed assemblies is prepared at the HFR Petten. The test objective is to concentrate on the effect of neutron irradiation on the thermal-mechanical behaviour of the HCPB breeder pebble-bed at DEMO representative levels of temperature and defined thermal-mechanical loads. The paper reports on the project status, and presents the results of pre-tests, material characteristics, the manufacturing of the pebble-bed assemblies, and the nuclear and thermo-mechanical loading parameters.

  6. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, Nicholas Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony Leroy [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-30

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO3 and increased NO2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO2, very low H2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  7. A wave model test bed study for wave energy resource characterization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Neary, Vincent S.; Wang, Taiping; Gunawan, Budi; Dallman, Annie R.; Wu, Wei-Cheng

    2017-12-01

    This paper presents a test bed study conducted to evaluate best practices in wave modeling to characterize energy resources. The model test bed off the central Oregon Coast was selected because of the high wave energy and available measured data at the site. Two third-generation spectral wave models, SWAN and WWIII, were evaluated. A four-level nested-grid approach—from global to test bed scale—was employed. Model skills were assessed using a set of model performance metrics based on comparing six simulated wave resource parameters to observations from a wave buoy inside the test bed. Both WWIII and SWAN performed well at the test bed site and exhibited similar modeling skills. The ST4 package with WWIII, which represents better physics for wave growth and dissipation, out-performed ST2 physics and improved wave power density and significant wave height predictions. However, ST4 physics tended to overpredict the wave energy period. The newly developed ST6 physics did not improve the overall model skill for predicting the six wave resource parameters. Sensitivity analysis using different wave frequencies and direction resolutions indicated the model results were not sensitive to spectral resolutions at the test bed site, likely due to the absence of complex bathymetric and geometric features.

  8. Implementation of an Electric Vehicle Test Bed Controlled by a Virtual Power Plant for Contributing to Regulating Power Reserves

    DEFF Research Database (Denmark)

    Marra, Francesco; Sacchetti, Dario; Pedersen, Anders Bro

    2012-01-01

    and communication interfaces, is able to respond in real-time to smart grid control signals. The EV test bed is equipped with a Lithium-ion battery pack, a Battery Management System (BMS), a charger and a Vehicle-to-Grid (V2G) unit for feeding power back to the grid. The designed solution serves......With the increased focus on Electric Vehicles (EV) research and the potential benefits they bring for smart grid applications, there is a growing need for an evaluation platform connected to the electricity grid. This paper addresses the design of an EV test bed, which using real EV components...... requests from the Danish TSO are used as a proof-of-concept, to demonstrate the EV test bed power response. Test results have proven the capability to respond to frequent power control requests and they reveal the potential EV ability for contributing to regulating power reserves....

  9. Reference repository design concept for bedded salt

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.W.; Martin, R.W.

    1980-10-08

    A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood.

  10. Reference repository design concept for bedded salt

    International Nuclear Information System (INIS)

    Carpenter, D.W.; Martin, R.W.

    1980-01-01

    A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood

  11. Test plan: Hydraulic fracturing and hydrologic tests in Marker Beds 139 and 140

    International Nuclear Information System (INIS)

    Wawersik, W.R.; Beauheim, R.L.

    1991-03-01

    Combined hydraulic fracturing and hydrological measurements in this test plan are designed to evaluate the potential influence of fracture formation in anhydrite Marker Beds 139 and 140 on gas pressure in and gas flow from the disposal rooms in the Waste Isolation Pilot Plant with time. The tests have the further purpose of providing comparisons of permeabilities of anhydrite interbeds in an undisturbed (virgin) state and after fracture development and/or opening and dilation of preexisting partially healed fractures. Three sets of combined hydraulic fracturing and hydrological measurements are planned. A set of trial measurements is expected to last four to six weeks. The duration of each subsequent experiment is anticipated to be six to eight weeks

  12. Discussion on Design Transients of Pebble-bed High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Wang Yan; Li Fu; Zheng Yanhua

    2014-01-01

    In order to assure high quality for the components and their supports in the reactor coolant system, etc., some thermal-hydraulic transient conditions will be selected and researched for equipment design evaluation to satisfy the requirements ASME code, which are based on the conservative estimates of the magnitude and frequency of the temperature and pressure transients resulting from various operating conditions in the plant. In the mature design on pressurized water reactor, five conditions are considered. For the developing advanced pebble-bed high temperature gas-cooled reactor(HTGR), its design and operation has much difference with other reactors, so the transients of the pebble-bed high temperature gas-cooled reactor have distinctive characteristics. In this paper, the possible design transients of the pebble-bed HTGR will be discussed, and the frequency of design transients for equipment fatigue analysis and stress analysis due to cyclic stresses is also studied. The results will provide support for the design and construct of the pebble-bed HTGR. (author)

  13. Preliminary Neutronic Design of High Burnup OTTO Cycle Pebble Bed Reactor

    OpenAIRE

    Setiadipura, T; Irwanto, D; Zuhair, Zuhair

    2015-01-01

    The pebble bed type High Temperature Gas-cooled Reactor (HTGR) is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR) which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO) cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor ...

  14. Design of expanded bed supports for the recovery of plasmid DNA by anion exchange adsorption

    DEFF Research Database (Denmark)

    Theodossiou, Irini; Søndergaard, M.; Thomas, Owen R. T.

    2001-01-01

    In this study we detail the rational design of new chromatographic adsorbents tailored for the capture of plasmid DNA. Features present on current chromatographic supports that can significantly enhance plasmid binding capacity have been identified in packed bed chromatography experiments...... and blueprints for improved expanded bed adsorbents have been put forward. The characterisation and testing of small (20-40 mum) high density (>3.7 g cm(-3)) pellicular expanded bed materials functionalised with various anion exchange structures is presented. In studies with calf thymus DNA, dynamic binding...... capacities of 1.2 and 3.4 mg ml(-1) were recorded for prototype diethylaminoethyl-and polyethylene imine-linked adsorbents which were respectively 25 and 70 fold higher than those of equivalently derivatised commercial expanded bed materials. The prototype polyethylene imine-coupled material exhibited severe...

  15. Integration of the SSPM and STAGE with the MPACT Virtual Facility Distributed Test Bed.

    Energy Technology Data Exchange (ETDEWEB)

    Cipiti, Benjamin B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shoman, Nathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    The Material Protection Accounting and Control Technologies (MPACT) program within DOE NE is working toward a 2020 milestone to demonstrate a Virtual Facility Distributed Test Bed. The goal of the Virtual Test Bed is to link all MPACT modeling tools, technology development, and experimental work to create a Safeguards and Security by Design capability for fuel cycle facilities. The Separation and Safeguards Performance Model (SSPM) forms the core safeguards analysis tool, and the Scenario Toolkit and Generation Environment (STAGE) code forms the core physical security tool. These models are used to design and analyze safeguards and security systems and generate performance metrics. Work over the past year has focused on how these models will integrate with the other capabilities in the MPACT program and specific model changes to enable more streamlined integration in the future. This report describes the model changes and plans for how the models will be used more collaboratively. The Virtual Facility is not designed to integrate all capabilities into one master code, but rather to maintain stand-alone capabilities that communicate results between codes more effectively.

  16. Preliminary neutronic design of high burnup OTTO cycle pebble bed reactor

    International Nuclear Information System (INIS)

    Setiadipura, T.; Zuhair; Irwanto, D.

    2015-01-01

    The pebble bed type High Temperature Gas-cooled Reactor (HTGR) is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR) which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO) cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor design in general, is improving the nuclear fuel utilization which is shown by attaining a higher burnup value. This study performed a preliminary neutronic design study of a 200 MWt OTTO cycle PBR with high burnup while fulfilling the safety criteria of the PBR design.The safety criteria of the design was represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. The maximum burnup value was also limited by the tested maximum burnup value which maintained the integrity of the pebble fuel. Parametric surveys were performed to obtain the optimized parameters used in this study, which are the fuel enrichment, per-pebble heavy metal (HM) loading, and the average axial speed of the fuel. An optimum design with burnup value of 131.1 MWd/Kg-HM was achieved in this study which is much higher compare to the burnup of the reference design HTR-MODUL and a previously proposed OTTO-cycle PBR design. This optimum design uses 17% U-235 enrichment with 4 g HM-loading per fuel pebble. (author)

  17. Preliminary Neutronic Design of High Burnup OTTO Cycle Pebble Bed Reactor

    Directory of Open Access Journals (Sweden)

    T. Setiadipura

    2015-04-01

    Full Text Available The pebble bed type High Temperature Gas-cooled Reactor (HTGR is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor design in general, is improving the nuclear fuel utilization which is shown by attaining a higher burnup value. This study performed a preliminary neutronic design study of a 200 MWt OTTO cycle PBR with high burnup while fulfilling the safety criteria of the PBR design.The safety criteria of the design was represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. The maximum burnup value was also limited by the tested maximum burnup value which maintained the integrity of the pebble fuel. Parametric surveys were performed to obtain the optimized parameters used in this study, which are the fuel enrichment, per-pebble heavy metal (HM loading, and the average axial speed of the fuel. An optimum design with burnup value of 131.1 MWd/Kg-HM was achieved in this study which is much higher compare to the burnup of the reference design HTR-MODUL and a previously proposed OTTO-cycle PBR design. This optimum design uses 17% U-235 enrichment with 4 g HM-loading per fuel pebble

  18. Thermal enhancement cartridge heater modified (TECH Mod) tritium hydride bed development, Part 1 - Design and fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.E.; Estochen, E.G. [Savannah River National Laboratory, Aiken, SC (United States)

    2015-03-15

    The Savannah River Site (SRS) tritium facilities have used first generation (Gen1) LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride storage beds for tritium absorption, storage, and desorption. The Gen1 design utilizes hot and cold nitrogen supplies to thermally cycle these beds. Second and third generation (Gen2 and Gen3) storage bed designs include heat conducting foam and divider plates to spatially fix the hydride within the bed. For thermal cycling, the Gen2 and Gen3 beds utilize internal electric heaters and glovebox atmosphere flow over the bed inside the bed external jacket for cooling. The currently installed Gen1 beds require replacement due to tritium aging effects on the LANA0.75 material, and cannot be replaced with Gen2 or Gen3 beds due to different designs of these beds. At the end of service life, Gen1 bed desorption efficiencies are limited by the upper temperature of hot nitrogen supply. To increase end-of-life desorption efficiency, the Gen1 bed design was modified, and a Thermal Enhancement Cartridge Heater Modified (TECH Mod) bed was developed. Internal electric cartridge heaters in the new design to improve end-of-life desorption, and also permit in-bed tritium accountability (IBA) calibration measurements to be made without the use of process tritium. Additional enhancements implemented into the TECH Mod design are also discussed. (authors)

  19. Design of Jet lower hybrid current drive generator and operation of high power test bed

    International Nuclear Information System (INIS)

    Dobbing, J.A.; Bosia, G.; Brandon, M.; Gammelin, M.; Gormezano, C.; Jacquinot, J.; Jessop, G.; Lennholm, M.; Pain, M.; Sibley, A.

    1989-01-01

    The JET Lower Hybrid Current Drive (LHCD) generator consists of 24 klystrons each rated for 650 KW operating at 3.7 GHz, giving a nominal generator power of 15.6 MW for 10 seconds or 12 MW for 20 seconds. This power will be transmitted through 24 waveguides to a phased array launcher on one of the main ports of the JET machine. In addition, two klystrons are currently being operated on a high power test bed to establish reliable operation of the generators components and test high power microwave components prior to their installation

  20. Numerical study of propagation effects in a wireless mesh test bed

    CSIR Research Space (South Africa)

    Lysko, AA

    2008-07-01

    Full Text Available The present layout of the indoor wireless mesh network test-bed build at the Meraka Institute is introduced. This is followed by a description of a numerical electromagnetic model for the complete test-bed, including the coupling and diffraction...

  1. Geomechanical Analysis and Design Considerations for Thin-Bedded Salt Caverns. Final Report

    International Nuclear Information System (INIS)

    Michael S. Bruno

    2005-01-01

    The bedded salt formations located throughout the United States are layered and interspersed with non-salt materials such as anhydrite, shale, dolomite and limestone. The salt layers often contain significant impurities. GRI and DOE have initialized this research proposal in order to increase the gas storage capabilities by providing operators with improved geotechnical design and operating guidelines for thin bedded salt caverns. Terralog has summarized the geologic conditions, pressure conditions, and critical design factors that may lead to: (1) Fracture in heterogeneous materials; (2) Differential deformation and bedding plane slip; (3) Propagation of damage around single and multiple cavern; and (4) Improved design recommendations for single and multiple cavern configurations in various bedded salt environments. The existing caverns within both the Permian Basin Complex and the Michigan and Appalachian Basins are normally found between 300 m to 1,000 m (1,000 ft to 3,300 ft) depth depending on local geology and salt dissolution depth. Currently, active cavern operations are found in the Midland and Anadarko Basins within the Permian Basin Complex and in the Appalachian and Michigan Basins. The Palo Duro and Delaware Basins within the Permian Basin Complex also offer salt cavern development potential. Terralog developed a number of numerical models for caverns located in thin bedded salt. A modified creep viscoplastic model has been developed and implemented in Flac3D to simulate the response of salt at the Permian, Michigan and Appalachian Basins. The formulation of the viscoplastic salt model, which is based on an empirical creep law developed for Waste Isolation Pilot Plant (WIPP) Program, is combined with the Drucker-Prager model to include the formation of damage and failure. The Permian salt lab test data provided by Pfeifle et al. 1983, are used to validate the assumptions made in the material model development. For the actual cavern simulations two

  2. Development of a Quadrotor Test Bed — Modelling, Parameter Identification, Controller Design and Trajectory Generation

    Directory of Open Access Journals (Sweden)

    Wei Dong

    2015-02-01

    Full Text Available In this paper, a quadrotor test bed is developed. The technical approach for this test bed is firstly proposed by utilizing a commercial quadrotor, a Vicon motion capture system and a ground station. Then, the mathematical model of the quadrotor is formulated considering aerodynamic effects, and the parameter identification approaches for this model are provided accordingly. Based on the developed model and identified parameters, a simulation environment that is consistent with the real system is developed. Subsequently, a flight control strategy and a trajectory generation method, both of which are conceptually and computationally lightweight, are developed and tested in the simulation environment. The developed algorithms are then directly transplanted to the real system, and the experimental results show that their responses in the real-time flights match well with those from the simulations. This indicates that the control algorithms developed for the quadrotor can be preliminarily verified and refined though simulations, and then directly implemented to the real system, which could significantly reduce the experimental risks and costs. Meanwhile, real-time experiments show that the developed flight controller can efficiently stabilize the quadrotor when external disturbances exist, and the trajectory generation approach can provide safe guidance for the quadrotor to fly smoothly through cluttered environments with obstacle rings. All of these features are valuable for real applications, thus demonstrating the feasibility of further development.

  3. Test bed for applications of heterogeneous unmanned vehicles

    Directory of Open Access Journals (Sweden)

    Filiberto Muñoz Palacios

    2017-01-01

    Full Text Available This article addresses the development and implementation of a test bed for applications of heterogeneous unmanned vehicle systems. The test bed consists of unmanned aerial vehicles (Parrot AR.Drones versions 1 or 2, Parrot SA, Paris, France, and Bebop Drones 1.0 and 2.0, Parrot SA, Paris, France, ground vehicles (WowWee Rovio, WowWee Group Limited, Hong Kong, China, and the motion capture systems VICON and OptiTrack. Such test bed allows the user to choose between two different options of development environments, to perform aerial and ground vehicles applications. On the one hand, it is possible to select an environment based on the VICON system and LabVIEW (National Instruments or robotics operating system platforms, which make use the Parrot AR.Drone software development kit or the Bebop_autonomy Driver to communicate with the unmanned vehicles. On the other hand, it is possible to employ a platform that uses the OptiTrack system and that allows users to develop their own applications, replacing AR.Drone’s original firmware with original code. We have developed four experimental setups to illustrate the use of the Parrot software development kit, the Bebop Driver (AutonomyLab, Simon Fraser University, British Columbia, Canada, and the original firmware replacement for performing a strategy that involves both ground and aerial vehicle tracking. Finally, in order to illustrate the effectiveness of the developed test bed for the implementation of advanced controllers, we present experimental results of the implementation of three consensus algorithms: static, adaptive, and neural network, in order to accomplish that a team of multiagents systems move together to track a target.

  4. Control, data acquisition and analysis for the JET neutral injection test bed

    International Nuclear Information System (INIS)

    Jones, T.T.C.; Brenan, P.R.; Rodgers, M.E.; Stork, D.; Young, I.D.

    1984-01-01

    The Neutral Injection Test-Bed (NITB) is a major experimental assembly in support of the Neutral Beam Heating Programme for JET. In addition to its prime function of testing the Neutral Injection hardware, the Test Bed serves as the prototype to test the computer control and data acquisition system, which is described. (author)

  5. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds

    Directory of Open Access Journals (Sweden)

    Jared A. Frank

    2016-08-01

    Full Text Available Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability.

  6. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds.

    Science.gov (United States)

    Frank, Jared A; Brill, Anthony; Kapila, Vikram

    2016-08-20

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability.

  7. LMFBR post accident heat removal testing needs and conceptual design of a test facility

    International Nuclear Information System (INIS)

    Kleefeldt, K.; Kuechle, M.; Royl, P.; Werle, H.; Boenisch, G.; Heinzel, V.; Mueller, R.A.; Schramm, K.; Smidt, D.

    1977-03-01

    A study has been carried out in which the needs and requirements for a test facility were derived, enabling detailed investigation of key phenomena anticipated during the post accident heat removal (PAHR) phase as a consequence of a postulated LMFBR whole core accident. Part I of the study concentrates on demonstrating the PAHR phenomena and related testing needs. Three types of experiments were identified which require in-pile testing, ranging from 10 to 70 cm test bed diameter and correspondingly, 30 to 5 W/g minimum power density in the test fuel. In part II a conceptual design for a test facility is presented, emphasizing the capability for accomodating large test beds. This is achieved by a below-reactor-vessel testing device, neutronically coupled to a 100 MWt sodium cooled fast reactor. (orig.) [de

  8. Development of a smart-antenna test-bed, demonstrating software defined digital beamforming

    NARCIS (Netherlands)

    Kluwer, T.; Slump, Cornelis H.; Schiphorst, Roelof; Hoeksema, F.W.

    2001-01-01

    This paper describes a smart-antenna test-bed consisting of ‘common of the shelf’ (COTS) hardware and software defined radio components. The use of software radio components enables a flexible platform to implement and test mobile communication systems as a real-world system. The test-bed is

  9. Space station environmental control and life support systems test bed program - an overview

    Science.gov (United States)

    Behrend, Albert F.

    Station ECLSS Test Bed Program. The Space Station ECLSS Test Bed Program, which is managed by the NASA, is designed to parallel and to provide continuing support to the Space Station Program. The prime objective of this multiphase test bed program is to provide viable, mature, and enhancing technical options in time for Space Station implementation. To accomplish this objective, NASA is actively continuing the development and testing of critical components and engineering preprototype subsystems for urine processing, washwater recovery, water quality monitoring, carbon dioxide removal and reduction, and oxygen generation. As part of the ECLSS Test Bed Program, these regenerative subsystems and critical components are tested in a development laboratory to characterize subsystem performance and to identify areas in which further technical development is required. Proven concepts are then selected for development into prototype subsystems in which flight issues such as packaging and maintenance are addressed. These subsystems then are to be assembled as an integrated system and installed in an integrated systems test bed facility for extensive unmanned and manned testing.

  10. Smart Grid: Network simulator for smart grid test-bed

    International Nuclear Information System (INIS)

    Lai, L C; Ong, H S; Che, Y X; Do, N Q; Ong, X J

    2013-01-01

    Smart Grid become more popular, a smaller scale of smart grid test-bed is set up at UNITEN to investigate the performance and to find out future enhancement of smart grid in Malaysia. The fundamental requirement in this project is design a network with low delay, no packet drop and with high data rate. Different type of traffic has its own characteristic and is suitable for different type of network and requirement. However no one understands the natural of traffic in smart grid. This paper presents the comparison between different types of traffic to find out the most suitable traffic for the optimal network performance.

  11. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds

    OpenAIRE

    Jared A. Frank; Anthony Brill; Vikram Kapila

    2016-01-01

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their em...

  12. Development of an In-Situ Decommissioning Sensor Network Test Bed for Structural Condition Monitoring - 12156

    Energy Technology Data Exchange (ETDEWEB)

    Zeigler, Kristine E.; Ferguson, Blythe A. [Savannah River National Laboratory, Aiken, South Carolina 29808 (United States)

    2012-07-01

    The Savannah River National Laboratory (SRNL) has established an In Situ Decommissioning (ISD) Sensor Network Test Bed, a unique, small scale, configurable environment, for the assessment of prospective sensors on actual ISD system material, at minimal cost. The Department of Energy (DOE) is presently implementing permanent entombment of contaminated, large nuclear structures via ISD. The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. Validation of ISD system performance models and verification of actual system conditions can be achieved through the development a system of sensors to monitor the materials and condition of the structure. The ISD Sensor Network Test Bed has been designed and deployed to addresses the DOE-Environmental Management Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building at the Savannah River Site. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of groutable thermistors for temperature and moisture monitoring, strain gauges for crack growth monitoring, tilt-meters for settlement monitoring, and a communication system for data collection. Baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment. The Sensor Network Test Bed at SRNL uses COTS sensors on concrete blocks from the outer wall of the P Reactor Building to measure conditions expected to occur in ISD structures. Knowledge and lessons learned gained from installation, testing, and monitoring of the equipment will be applied to sensor installation in a meso-scale test bed at FIU and in future ISD structures. The initial data collected from the sensors

  13. Automated Design and Optimization of Pebble-bed Reactor Cores

    International Nuclear Information System (INIS)

    Gougar, Hans D.; Ougouag, Abderrafi M.; Terry, William K.

    2010-01-01

    We present a conceptual design approach for high-temperature gas-cooled reactors using recirculating pebble-bed cores. The design approach employs PEBBED, a reactor physics code specifically designed to solve for and analyze the asymptotic burnup state of pebble-bed reactors, in conjunction with a genetic algorithm to obtain a core that maximizes a fitness value that is a function of user-specified parameters. The uniqueness of the asymptotic core state and the small number of independent parameters that define it suggest that core geometry and fuel cycle can be efficiently optimized toward a specified objective. PEBBED exploits a novel representation of the distribution of pebbles that enables efficient coupling of the burnup and neutron diffusion solvers. With this method, even complex pebble recirculation schemes can be expressed in terms of a few parameters that are amenable to modern optimization techniques. With PEBBED, the user chooses the type and range of core physics parameters that represent the design space. A set of traits, each with acceptable and preferred values expressed by a simple fitness function, is used to evaluate the candidate reactor cores. The stochastic search algorithm automatically drives the generation of core parameters toward the optimal core as defined by the user. The optimized design can then be modeled and analyzed in greater detail using higher resolution and more computationally demanding tools to confirm the desired characteristics. For this study, the design of pebble-bed high temperature reactor concepts subjected to demanding physical constraints demonstrated the efficacy of the PEBBED algorithm.

  14. Thermo-mechanical screening tests to qualify beryllium pebble beds with non-spherical pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, Joerg, E-mail: joerg.reimann@partner.kit.edu [IKET, Karlsruhe Institute of Technology, Karlsruhe (Germany); Fretz, Benjamin [KBHF GmbH, Eggenstein-Leopoldshafen (Germany); Pupeschi, Simone [IAM, Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2015-10-15

    Highlights: • In present ceramic breeder blankets, pebble-shaped beryllium is used as a neutron multiplier. • Spherical pebbles are considered as the candidate material, however, non-spherical particles are of economic interest. • Thermo-mechanical pebble bed data do merely exist for non-spherical beryllium grades. • Uniaxial compression tests (UCTs), combined with the Hot Wire Technique (HWT) were used to measure the stress–strain relations and the thermal conductivity. • A small experimental set-up had to be used and a detailed 3D modelling was of prime importance. • Compared to spherical pebble beds, non-spherical pebble beds are generally softer and mainly the thermal conductivity is lower. - Abstract: In present ceramic breeder blankets, pebble-shaped beryllium is used as a neutron multiplier. Fairly spherical pebbles are considered as a candidate material, however, non-spherical particles are of economic interest because production costs are much lower. Yet, thermo-mechanical pebble bed data do merely exist for these beryllium grades, and the blanket relevant potential of these grades cannot be judged. Screening experiments were performed with three different grades of non-spherical beryllium pebbles, produced by different companies, accompanied by experiments with the reference beryllium pebble beds. Uniaxial compression tests (UCTs), combined with the Hot Wire Technique (HWT), were performed to measure both the stress–strain relation and the thermal conductivity, k, at different stress levels. Because of the limited amounts of the non-spherical materials, the experimental set-ups were small and a detailed 3D modelling was of prime importance in order to prove that the used design was appropriate. Compared to the pebble beds consisting of spherical pebbles, non-spherical pebble beds are generally softer (smaller stress for a given strain), and, mainly as a consequence of this, for a given strain value, the thermal conductivity is lower. This

  15. Data Quality Objectives For Selecting Waste Samples To Test The Fluid Bed Steam Reformer Test

    International Nuclear Information System (INIS)

    Banning, D.L.

    2010-01-01

    This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Fluid Bed Steam Reformer testing. The type, quantity and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluid bed steam reformer (FBSR). A determination of the adequacy of the FBSR process to treat Hanford tank waste is required. The initial step in determining the adequacy of the FBSR process is to select archived waste samples from the 222-S Laboratory that will be used to test the FBSR process. Analyses of the selected samples will be required to confirm the samples meet the testing criteria.

  16. Status of the in-pile test of HCPB pebble-bed assemblies in the HFR Petten

    Energy Technology Data Exchange (ETDEWEB)

    Laan, J.G. van der; Fokkens, J.H.; Hofmans, H.E.; Jong, M.; Magielsen, A.J.; Pijlgroms, B.J.; Stijkel, M.P. [NRG, Petten (Netherlands); Conrad, R. [JRC, Inst. for Energy, Petten (Netherlands); Malang, S.; Reimann, J. [FZK, Karlsruhe (Germany); Roux, N. [CEA Saclay (France)

    2002-06-01

    In the framework of developing the helium cooled pebble-bed (HCPB) blanket an irradiation test of pebble-bed assemblies is prepared at the HFR Petten. The test objective is to concentrate on the effect of neutron irradiation on the thermal-mechanical behaviour of the HCPB breeder pebble-bed at DEMO representative levels of temperature and defined thermal-mechanical loads. The basic test elements are EUROFER-97 cylinders with a horizontal bed of ceramic breeder pebbles sandwiched between two beryllium beds. The pebble beds are separated by EUROFER-97 steel plates. The heat flow is managed such as to have a radial temperature distribution in the ceramic breeder pebble-bed as flat as reasonably possible. The paper reports on the project status, and presents the results of pre-tests, material characteristics, the manufacturing of the pebble-bed assemblies, and the nuclear and thermo-mechanical loading parameters. (orig.)

  17. Real time test bed development for power system operation, control and cyber security

    Science.gov (United States)

    Reddi, Ram Mohan

    The operation and control of the power system in an efficient way is important in order to keep the system secure, reliable and economical. With advancements in smart grid, several new algorithms have been developed for improved operation and control. These algorithms need to be extensively tested and validated in real time before applying to the real electric power grid. This work focuses on the development of a real time test bed for testing and validating power system control algorithms, hardware devices and cyber security vulnerability. The test bed developed utilizes several hardware components including relays, phasor measurement units, phasor data concentrator, programmable logic controllers and several software tools. Current work also integrates historian for power system monitoring and data archiving. Finally, two different power system test cases are simulated to demonstrate the applications of developed test bed. The developed test bed can also be used for power system education.

  18. Experimental study of flow field characteristics on bed configurations in the pebble bed reactor

    International Nuclear Information System (INIS)

    Jia, Xinlong; Gui, Nan; Yang, Xingtuan; Tu, Jiyuan; Jia, Haijun; Jiang, Shengyao

    2017-01-01

    Highlights: • PTV study of flow fields of pebble bed reactor with different configurations are carried out. • Some criteria are proposed to quantify vertical velocity field and flow uniformity. • The effect of different pebble bed configurations is also compared by the proposed criteria. • The displacement thickness is used analogically to analyze flow field characteristics. • The effect of mass flow variation in the stagnated region of the funnel flow is measured. - Abstract: The flow field characteristics are of fundamental importance in the design work of the pebble bed high temperature gas cooled reactor (HTGR). The different effects of bed configurations on the flow characteristics of pebble bed are studied through the PTV (Particle Tracking Velocimetry) experiment. Some criteria, e.g. flow uniformity (σ) and mass flow level (α), are proposed to estimate vertical velocity field and compare the bed configurations. The distribution of the Δθ (angle difference between the individual particle velocity and the velocity vector sum of all particles) is also used to estimate the resultant motion consistency level. Moreover, for each bed configuration, the thickness of displacement is analyzed to measure the effect of the funnel flow zone based on the boundary layer theory. Detailed information shows the quantified characteristics of bed configuration effects on flow uniformity and other characteristics; and the sequence of levels of each estimation criterion is obtained for all bed configurations. In addition, a good design of the pebble bed configuration is suggested and these estimation criteria can be also applied and adopted in testing other geometry designs of pebble bed.

  19. Modular Electric Propulsion Test Bed Aircraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An all electric aircraft test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered aircraft....

  20. Mixed waste landfill monitoring prototype test design for Los Alamos National Laboratory. Final report

    International Nuclear Information System (INIS)

    Keller, C.

    1994-09-01

    The purpose of this contract is to design the prototype tests necessary for the verification of the measurement methods proposed for the Mixed Waste Disposal Facility. The design is limited to the hydrological performance of the measurement methods. It does not include the mechanical testing of the methods proposed. The test site is to be selected and when approved, construction drawings provided. The contract also includes testing of vitrified clay pipe as the liner of choice for the passages under the landfill. The tests are to be done of both he hydrologic and the mechanical capability of the pipe. The test bed construction is to be supervised as it is being done by the construction contractor monitored by LANL. This contract does not include the logical subsequent work of performance of the measurements in the test bed. Since this contract was received by September 15, with the work to be completed by September 30, only that work possible in the short time was performed. That included the design of the test bed, the purchase of the vitrified clay pipe and the mechanical tests of the pipe, and the purchase of the SEAMIST systems for testing in the clay pipe. None of those could be delivered in time for flow tests to be done on the clay pipe. The mechanical tests were done as part of the pipe purchase and are reported here. The contract was not extended beyond September 30 for lack of funds. This report is therefore limited to the preliminary design of the test bed and to the specification of the orders for the materials. The hope is that funding will be restored to the program for the completion of the design and measurement effort

  1. Modular Electric Propulsion Test Bed Aircraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A hybrid electric aircraft simulation system and test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of hybrid...

  2. A PC-based Flexible Solution for Virtual Instrumentation of a Multi-Purpose Test Bed

    Directory of Open Access Journals (Sweden)

    Benatzky Christian

    2006-11-01

    Full Text Available The aim of the paper is to give an overview of a test bed set up for lightweight flexible structures. The purpose of the test bed is to compare different concepts for suppressing structural vibrations. It is demonstrated that such a complex measurement and actuation task can be easily implemented on a single PC using standard software like Matlab/SIMULINK® with a minimum of custom hardware. With the help of this PC standard engineering tasks like measuring, identification of transfer functions, as well as controller design and implementation in soft real-time can be carried out easily (rapid prototyping. The resulting system is flexible and scalable, enabling an engineer to perform all the above mentioned tasks for a given test object within minimum time. Additionally, the utilization of Matlab/SIMULINK® facilitates the realization of a versatile virtual instrumentation system which is easy to use and may also be remote-controlled.

  3. SPOUTED BED DESIGN CONSIDERATIONS FOR COATED NUCLEAR FUEL PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Douglas W.

    2017-07-01

    High Temperature Gas Cooled Reactors (HTGRs) are fueled with tristructural isotropic (TRISO) coated nuclear fuel particles embedded in a carbon-graphite fuel body. TRISO coatings consist of four layers of pyrolytic carbon and silicon carbide that are deposited on uranium ceramic fuel kernels (350µm – 500µm diameters) in a concatenated series of batch depositions. Each layer has dedicated functions such that the finished fuel particle has its own integral containment to minimize and control the release of fission products into the fuel body and reactor core. The TRISO coatings are the primary containment structure in the HTGR reactor and must have very high uniformity and integrity. To ensure high quality TRISO coatings, the four layers are deposited by chemical vapor deposition (CVD) using high purity precursors and are applied in a concatenated succession of batch operations before the finished product is unloaded from the coating furnace. These depositions take place at temperatures ranging from 1230°C to 1550°C and use three different gas compositions, while the fuel particle diameters double, their density drops from 11.1 g/cm3 to 3.0 g/cm3, and the bed volume increases more than 8-fold. All this is accomplished without the aid of sight ports or internal instrumentation that could cause chemical contamination within the layers or mechanical damage to thin layers in the early stages of each layer deposition. The converging section of the furnace retort was specifically designed to prevent bed stagnation that would lead to unacceptably high defect fractions and facilitate bed circulation to avoid large variability in coating layer dimensions and properties. The gas injection nozzle was designed to protect precursor gases from becoming overheated prior to injection, to induce bed spouting and preclude bed stagnation in the bottom of the retort. Furthermore, the retort and injection nozzle designs minimize buildup of pyrocarbon and silicon carbide on the

  4. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds

    Science.gov (United States)

    Frank, Jared A.; Brill, Anthony; Kapila, Vikram

    2016-01-01

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability. PMID:27556464

  5. Calibration of an experimental model of tritium storage bed designed for 'in situ' accountability

    International Nuclear Information System (INIS)

    Bidica, Nicolae; Stefanescu, Ioan; Bucur, Ciprian; Bulubasa, Gheorghe; Deaconu, Mariea

    2009-01-01

    Full text: Objectives: Tritium accountancy of the storage beds in tritium facilities is an important issue for tritium inventory control. The purpose of our work was to perform calibration of an experimental model of tritium storage bed with a special design, using electric heaters to simulate tritium decay, and to evaluate the detection limit of the accountancy method. The objective of this paper is to present an experimental method used for calibration of the storage bed and the experimental results consisting of calibration curves and detection limit. Our method is based on a 'self-assaying' tritium storage bed. The basic characteristics of the design of our storage bed consists, in principle, of a uniform distribution of the storage material on several copper thin fins (in order to obtain a uniform temperature field inside the bed), an electrical heat source to simulate the tritium decay heat, a system of thermocouples for measuring the temperature field inside the bed, and good thermal isolation of the bed from the external environment. Within this design of the tritium storage bed, the tritium accounting method is based on determining the decay heat of tritium by measuring the temperature increase of the isolated storage bed. Experimental procedure consisted in measuring of temperature field inside the bed for few values of the power injected with the aid of electrical heat source. Data have been collected for few hours and the temperature increase rate was determined for each value of the power injected. Graphical representation of temperature rise versus injected powers was obtained. This accounting method of tritium inventory stored as metal tritide is a reliable solution for in-situ tritium accountability in a tritium handling facility. Several improvements can be done regarding the design of the storage bed in order to improve the measurement accuracy and to obtain a lower detection limit as for instance use of more accurate thermocouples or special

  6. Development Of A Sensor Network Test Bed For ISD Materials And Structural Condition Monitoring

    International Nuclear Information System (INIS)

    Zeigler, K.; Ferguson, B.; Karapatakis, D.; Herbst, C.; Stripling, C.

    2011-01-01

    The P Reactor at the Savannah River Site is one of the first reactor facilities in the US DOE complex that has been placed in its end state through in situ decommissioning (ISD). The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. To evaluate the feasibility and utility of remote sensors to provide verification of ISD system conditions and performance characteristics, an ISD Sensor Network Test Bed has been designed and deployed at the Savannah River National Laboratory. The test bed addresses the DOE-EM Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of: (1) Groutable thermistors for temperature and moisture monitoring; (2) Strain gauges for crack growth monitoring; (3) Tiltmeters for settlement monitoring; and (4) A communication system for data collection. Preliminary baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment.

  7. DEVELOPMENT OF A SENSOR NETWORK TEST BED FOR ISD MATERIALS AND STRUCUTRAL CONDITION MONITORING

    Energy Technology Data Exchange (ETDEWEB)

    Zeigler, K.; Ferguson, B.; Karapatakis, D.; Herbst, C.; Stripling, C.

    2011-07-06

    The P Reactor at the Savannah River Site is one of the first reactor facilities in the US DOE complex that has been placed in its end state through in situ decommissioning (ISD). The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. To evaluate the feasibility and utility of remote sensors to provide verification of ISD system conditions and performance characteristics, an ISD Sensor Network Test Bed has been designed and deployed at the Savannah River National Laboratory. The test bed addresses the DOE-EM Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of: (1) Groutable thermistors for temperature and moisture monitoring; (2) Strain gauges for crack growth monitoring; (3) Tiltmeters for settlement monitoring; and (4) A communication system for data collection. Preliminary baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment.

  8. Characterization of a New High-Dose Dry Powder Inhaler (DPI) Based on a Fluidized Bed Design.

    Science.gov (United States)

    Farkas, Dale R; Hindle, Michael; Longest, P Worth

    2015-11-01

    The objective of this study was to develop a new high-efficiency dry powder inhaler (DPI) that can effectively aerosolize large masses (25-100 mg) of spray dried powder formulations. The DPI was designed to implement a concept similar to a fluidized bed for aerosolization using small mixing balls made of polytetrafluoroethylene along with a larger, hollow dosing sphere filled with the powder. The performance of the fluidized bed DPI was compared, based on emitted dose (ED) and aerosolization efficiency, to other recently developed capsule-based DPIs that were designed to accommodate smaller powder masses (~2-20 mg). The inhalers were tested with spray dried excipient enhanced growth (EEG) formulations that contained an antibiotic (ciprofloxacin) and hygroscopic excipient (mannitol). The new fluidized bed design produced an ED of 71% along with a mass median aerodynamic diameter of 1.53 μm and fine particle fractions <5 and 1 μm of 93 and 36%, respectively, when used to deliver a 100 mg loaded mass of EEG powder with the advantage of not requiring multiple capsules. Surprisingly, performance of the device was further improved by removing the mixing balls from the inhaler and only retaining the dose containment sphere.

  9. The microelectronics and photonics test bed (MPTB) space, ground test and modeling experiments

    International Nuclear Information System (INIS)

    Campbell, A.

    1999-01-01

    This paper is an overview of the MPTB (microelectronics and photonics test bed) experiment, a combination of a space experiment, ground test and modeling programs looking at the response of advanced electronic and photonic technologies to the natural radiation environment of space. (author)

  10. Design of particle bed reactors for the space nuclear thermal propulsion program

    International Nuclear Information System (INIS)

    Ludewig, H.; Powell, J.R.; Todosow, M.; Maise, G.; Barletta, R.; Schweitzer, D.G.

    1996-01-01

    This paper describes the design for the Particle Bed Reactor (PBR) that was considered for the Space Nuclear Thermal Propulsion (SNTP) Program. The methods of analysis and their validation are outlined first. Monte Carlo methods were used for the physics analysis, several new algorithms were developed for the fluid dynamics, heat transfer and transient analysis; and commercial codes were used for the stress analysis. We carried out a critical experiment, prototypic of the PBR to validate the reactor physics; blowdown experiments with beds of prototypic dimensions were undertaken to validate the power-extraction capabilities from particle beds. In addition, materials and mechanical design concepts for the fuel elements were experimentally validated. (author)

  11. The Design and Simulation of Natural Personalised Ventilation (NPV System for Multi-Bed Hospital Wards

    Directory of Open Access Journals (Sweden)

    Zulfikar A. Adamu

    2015-05-01

    Full Text Available Adequate ventilation is necessary for thermal comfort and reducing risks from infectious bio-aerosols in hospital wards, but achieving this with mechanical ventilation has carbon and energy implications. Natural ventilation is often limited to window-based designs whose dilution/mixing effectiveness are subject to constraints of wind speed, cross ventilation, and in the case of hospital wards, proximity of patients to external walls. A buoyancy-driven natural ventilation system capable of achieving dilution/mixing was shown to be feasible in a preceding study of novel system called natural personalised ventilation (NPV. This system combined both architecture and airflow engineering principles of space design and buoyancy and was tested and validated (salt-bath experiment for a single bed ward. This research extends the previous work and is proof-of-concept on the feasibility of NPV system for multi-bed wards. Two different four-bed ward types were investigated of using computational fluid dynamics (CFD simulations under wind-neutral conditions. Results predict that NPV system could deliver fresh air to multiple patients, including those located 10 m away from external wall, with absolute flow rates of between 32 L·s−1 and 54 L·s−1 for each patient/bed. Compared to same wards simulated using window design, ingress of airborne contaminants into patients’ breathing zone and summer overheating potential were minimised, while overall ward dilution was maximised. Findings suggest the NPV has potentials for enabling architects and building service engineers to decouple airflow delivery from the visualisation and illumination responsibilities placed upon windows.

  12. Cyclic loading tests on ceramic breeder pebble bed by discrete element modeling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Guo, Haibing; Shi, Tao [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Ye, Minyou [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Huang, Hongwen, E-mail: hhw@caep.cn [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Zhenghong, E-mail: inpcnyb@sina.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); University of Science and Technology of China, Hefei 230027 (China)

    2017-05-15

    Highlights: • Methods of cyclic loading tests on the pebble beds were developed in DEM. • Size distribution and sphericity of the pebbles were considered for the specimen. • Mechanical responses of the pebble beds under cyclic loading tests were assessed. - Abstract: Complex mechanics and packing instability can be induced by loading operation on ceramic breeder pebble bed for its discrete nature. A numerical approach using discrete element method (DEM) is applied to study the mechanical performance of the ceramic breeder pebble bed under quasi-static and cyclic loads. A preloaded specimen can be made with servo-control mechanism, the quasi-static and dynamic stress-strain performances are studied during the tests. It is found that the normalized normal contact forces under quasi-static loads have the similar distributions, and increase with increasing loads. Furthermore, the relatively low volumetric strain can be absorbed by pebble bed after several loading and unloading cycles, but the peak normal contact force can be extremely high during the first cycle. Cyclic loading with target pressure is recommended for densely packing, irreversible volume reduction gradually increase with cycles, and the normal contact forces decrease with cycles.

  13. Cyclic loading tests on ceramic breeder pebble bed by discrete element modeling

    International Nuclear Information System (INIS)

    Zhang, Hao; Guo, Haibing; Shi, Tao; Ye, Minyou; Huang, Hongwen; Li, Zhenghong

    2017-01-01

    Highlights: • Methods of cyclic loading tests on the pebble beds were developed in DEM. • Size distribution and sphericity of the pebbles were considered for the specimen. • Mechanical responses of the pebble beds under cyclic loading tests were assessed. - Abstract: Complex mechanics and packing instability can be induced by loading operation on ceramic breeder pebble bed for its discrete nature. A numerical approach using discrete element method (DEM) is applied to study the mechanical performance of the ceramic breeder pebble bed under quasi-static and cyclic loads. A preloaded specimen can be made with servo-control mechanism, the quasi-static and dynamic stress-strain performances are studied during the tests. It is found that the normalized normal contact forces under quasi-static loads have the similar distributions, and increase with increasing loads. Furthermore, the relatively low volumetric strain can be absorbed by pebble bed after several loading and unloading cycles, but the peak normal contact force can be extremely high during the first cycle. Cyclic loading with target pressure is recommended for densely packing, irreversible volume reduction gradually increase with cycles, and the normal contact forces decrease with cycles.

  14. Test Bed for Safety Assessment of New e-Navigation Systems

    Directory of Open Access Journals (Sweden)

    Axel Hahn

    2014-12-01

    Full Text Available New e-navigation strains require new technologies, new infrastructures and new organizational structures on bridge, on shore as well as in the cloud. Suitable engineering and safety/risk assessment methods facilitate these efforts. Understanding maritime transportation as a sociotechnical system allows the application of system-engineering methods. Formal, simulation based and in situ verification and validation of e-navigation technologies are important methods to obtain system safety and reliability. The modelling and simulation toolset HAGGIS provides methods for system specification and formal risk analysis. It provides a modelling framework for processes, fault trees and generic hazard specification and a physical world and maritime traffic simulation system. HAGGIS is accompanied by the physical test bed LABSKAUS which implements a physical test bed. The test bed provides reference ports and waterways in combination with an experimental Vessel Traffic Services (VTS system and a mobile integrated bridge: This enables in situ experiments for technological evaluation, testing, ground research and demonstration. This paper describes an integrated seamless approach for developing new e-navigation technologies starting with simulation based assessment and ending in physical real world demonstrations

  15. A Monocular Vision Measurement System of Three-Degree-of-Freedom Air-Bearing Test-Bed Based on FCCSP

    Science.gov (United States)

    Gao, Zhanyu; Gu, Yingying; Lv, Yaoyu; Xu, Zhenbang; Wu, Qingwen

    2018-06-01

    A monocular vision-based pose measurement system is provided for real-time measurement of a three-degree-of-freedom (3-DOF) air-bearing test-bed. Firstly, a circular plane cooperative target is designed. An image of a target fixed on the test-bed is then acquired. Blob analysis-based image processing is used to detect the object circles on the target. A fast algorithm (FCCSP) based on pixel statistics is proposed to extract the centers of object circles. Finally, pose measurements can be obtained when combined with the centers and the coordinate transformation relation. Experiments show that the proposed method is fast, accurate, and robust enough to satisfy the requirement of the pose measurement.

  16. CERTS Microgrid Laboratory Test Bed - PIER Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H.; Eto, Joseph H.; Lasseter, Robert; Schenkman, Ben; Klapp, Dave; Linton, Ed; Hurtado, Hector; Roy, Jean; Lewis, Nancy Jo; Stevens, John; Volkommer, Harry

    2008-07-25

    The objective of the CERTS Microgrid Laboratory Test Bed project was to enhance the ease of integrating small energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of small generating sources. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation; 2) an approach to electrical protection within the microgrid that does not depend on high fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications. The techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers 1547 and power quality requirements. The electrical protections system was able to distinguish between normal and faulted operation. The controls were found to be robust and under all conditions, including difficult motor starts. The results from these test are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations involving microgrids that involve one or mroe of the CERTS Microgrid concepts.

  17. PTC test bed upgrades to provide ACSES testing support capabilities at transportation technology center.

    Science.gov (United States)

    2015-06-01

    FRA Task Order 314 upgraded the Positive Train Control (PTC) Test Bed at the Transportation Technology Center to support : testing of PTC systems, components, and related equipment associated with the Advanced Civil Speed Enforcement System : (ACSES)...

  18. High-Resolution Adaptive Optics Test-Bed for Vision Science

    International Nuclear Information System (INIS)

    Wilks, S.C.; Thomspon, C.A.; Olivier, S.S.; Bauman, B.J.; Barnes, T.; Werner, J.S.

    2001-01-01

    We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefront correction are done at different wavelengths. Issues associated with these techniques will be discussed

  19. Improvement for the design of packed moving bed adsorption column

    International Nuclear Information System (INIS)

    Xiao Wei

    2014-01-01

    The problems needed to pay attention to in the physical design of packed moving bed adsorption column were presented. The design of key parts such as the inlet and outlet of liquid phase and gas phase were improved. The expected effect was achieved by the improvement. (author)

  20. Advanced Core Design And Fuel Management For Pebble-Bed Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hans D. Gougar; Abderrafi M. Ougouag; William K. Terry

    2004-10-01

    A method for designing and optimizing recirculating pebble-bed reactor cores is presented. At the heart of the method is a new reactor physics computer code, PEBBED, which accurately and efficiently computes the neutronic and material properties of the asymptotic (equilibrium) fuel cycle. This core state is shown to be unique for a given core geometry, power level, discharge burnup, and fuel circulation policy. Fuel circulation in the pebble-bed can be described in terms of a few well?defined parameters and expressed as a recirculation matrix. The implementation of a few heat?transfer relations suitable for high-temperature gas-cooled reactors allows for the rapid estimation of thermal properties critical for safe operation. Thus, modeling and design optimization of a given pebble-bed core can be performed quickly and efficiently via the manipulation of a limited number key parameters. Automation of the optimization process is achieved by manipulation of these parameters using a genetic algorithm. The end result is an economical, passively safe, proliferation-resistant nuclear power plant.

  1. A new design method for fluidized bed conversion of largely heterogeneous binary fuels

    Directory of Open Access Journals (Sweden)

    Szentannai Pal

    2017-01-01

    Full Text Available Binary fuels of a fluidized bed combustor or gasifier are solids composed of two groups of particles. Their optimal handling in the same bed becomes rather difficult if their hydrodynamic properties differ by two orders of magnitude or more. Both of these fuel classes are directly fed into the reactor in most cases but the rather homogeneous fuel originally fed switches into a binary character inside the reactor in some others. A typical example of the latter case is the thermal utilization of rubber wastes. A novel design is proposed in the present paper by setting up a non-mixing, non-elutriated binary bed. Design criteria and procedure are formulated as well. One of the known calculation methods is proposed to be applied for assuring a segregated bed by means of choosing the bed components, geometry, and gas velocity conveniently. Cold model experiments are proposed to be applied for assuring no elutriation of the fine fuel particles and no sinking of the coarse fuel particles in the same time. A simple experiment is proposed for determining the common minimum fluidization velocity of the binary bed because known calculation methods can not be applied here.

  2. Design and simulation of a circulating fluidized bed to clean the products of biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Uchoa Neto, Moises; Carvalho, Yuri de Araujo [Dept. de Engenharia Mecanica. Faculdade de Tecnologia. Universidade de Brasilia, DF (Brazil); Oliveira, Taygoara Felamingo de; Barcelos, Manuel [Faculdade do Gama. Universidade de Brasilia, Gama, DF (Brazil)], e-mail: taygoara@unb.br

    2010-07-01

    The main goal of this work is to design a workbench circulating fluidized bed to study the cracking of tar in gases from the processes of biomass gasification. For this, a design methodology based on analytical results and empirical correlations for fluidized beds was employed. In parallel, a numerical code of open source technology (MFIX) for the solution of the transport equations of the multiphase flow in the column of a fluidized bed was used to give support to the choice of the design elements. The whole project of the workbench fluidized bed was completely developed, whose operation parameters such as bed geometry, gas velocity, circulating ratio and void fraction characterize a fast fluidization process. A preliminary mesh convergence study was executed with the numerical tool, that was validated comparing with analytical results. Among the most important results, the code computed the predicted value for the minimum fluidization. (author)

  3. Implementation of a RPS Cyber Security Test-bed with Two PLCs

    International Nuclear Information System (INIS)

    Shin, Jinsoo; Heo, Gyunyoung; Son, Hanseong; An, Yongkyu; Rizwan, Uddin

    2015-01-01

    Our research team proposed the methodology to evaluate cyber security with Bayesian network (BN) as a cyber security evaluation model and help operator, licensee, licensor or regulator in granting evaluation priorities. The methodology allowed for overall evaluation of cyber security by considering architectural aspect of facility and management aspect of cyber security at the same time. In order to emphasize reality of this model by inserting true data, it is necessary to conduct a penetration test that pretends an actual cyber-attack. Through the collaboration with University of Illinois at Urbana-Champaign, which possesses the Tricon a safety programmable logic controller (PLC) used at nuclear power plants and develops a test-bed for nuclear power plant, a test-bed for reactor protection system (RPS) is being developed with the PLCs. Two PLCs are used to construct a simple test-bed for RPS, bi-stable processor (BP) and coincidence processor (CP). By using two PLCs, it is possible to examine cyber-attack against devices such as PLC, cyber-attack against communication between devices, and the effects of a PLC on the other PLC. Two PLCs were used to construct a test-bed for penetration test in this study. Advantages of using two or more PLCs instead of single PLC are as follows. 1) Results of cyber-attack reflecting characteristics among PLCs can be obtained. 2) Cyber-attack can be attempted using a method of attacking communication between PLCs. True data obtained can be applied to existing cyber security evaluation model to emphasize reality of the model

  4. Implementation of a RPS Cyber Security Test-bed with Two PLCs

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jinsoo; Heo, Gyunyoung [Kyung Hee Univ., Yongin (Korea, Republic of); Son, Hanseong [Joongbu Univ., Geumsan (Korea, Republic of); An, Yongkyu; Rizwan, Uddin [University of Illinois at Urbana-Champaign, Urbana (United States)

    2015-10-15

    Our research team proposed the methodology to evaluate cyber security with Bayesian network (BN) as a cyber security evaluation model and help operator, licensee, licensor or regulator in granting evaluation priorities. The methodology allowed for overall evaluation of cyber security by considering architectural aspect of facility and management aspect of cyber security at the same time. In order to emphasize reality of this model by inserting true data, it is necessary to conduct a penetration test that pretends an actual cyber-attack. Through the collaboration with University of Illinois at Urbana-Champaign, which possesses the Tricon a safety programmable logic controller (PLC) used at nuclear power plants and develops a test-bed for nuclear power plant, a test-bed for reactor protection system (RPS) is being developed with the PLCs. Two PLCs are used to construct a simple test-bed for RPS, bi-stable processor (BP) and coincidence processor (CP). By using two PLCs, it is possible to examine cyber-attack against devices such as PLC, cyber-attack against communication between devices, and the effects of a PLC on the other PLC. Two PLCs were used to construct a test-bed for penetration test in this study. Advantages of using two or more PLCs instead of single PLC are as follows. 1) Results of cyber-attack reflecting characteristics among PLCs can be obtained. 2) Cyber-attack can be attempted using a method of attacking communication between PLCs. True data obtained can be applied to existing cyber security evaluation model to emphasize reality of the model.

  5. Chaotic hydrodynamics of fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Van der Stappen, M.L.M. [Unit Process and Systems Engineering, Advanced Manufacturing Technology Group, Unilever Research Laboratorium, Vlaardingen (Netherlands)

    1996-12-31

    The major goals of this thesis are: (1) to develop and evaluate an analysis method based on techniques from non-linear chaos theory to characterize the nonlinear hydrodynamics of gas-solids fluidized beds quantitatively; and (2) to determine the dependence of the chaotic invariants on the operating conditions and investigate how the chaos analysis method can be profitably applied to improve scale-up and design of gas-solids fluidized bed reactors. Chaos theory is introduced in chapter 2 with emphasis on analysis techniques for (experimental) time series, known from literature at the start of this work (1990-1991). In chapter 3, the testing of existing and newly developed techniques on both model and fluidized bed data is described. This leads to the development of the chaos analysis method to analyze measured pressure fluctuations time series of a fluidized bed. Following, in chapter 4, this method is tested and all choices for the parameters are evaluated. The influence of the experimental parameters and external disturbances on the measurements and analysis results is discussed and quantified. The result is a chaos measurement and analysis protocol, which is further used in this work. In chapter 5, the applications to fluidized beds are discussed. It is shown that the entropy is a good measure for the characterization of the dynamical behavior of gas-solids bubbling/slugging fluidized beds. Entropy is applied to characterize the influence of the operating conditions, to assess regime transitions and to analyze dimensionless similar beds of different scale. Quantitative design correlations that relate entropy to the operating parameters (including the bed diameter) are described. Finally, it is discussed how the results of this work might be used in scaling up the chaotic dynamics of fluidized beds. The overall conclusions and outlook from this work are presented in chapter 6. 182 refs.

  6. New grid based test bed environment for carrying out ad-hoc networking experiments

    CSIR Research Space (South Africa)

    Johnson, D

    2006-09-01

    Full Text Available and the third is to do analysis on a real test bed network which has implemented the ad-hoc networking protocol. This paper concerns the third option. Most researchers who have done work on test bed environments have used either indoor Wifi inter-office links...

  7. Pebble bed blanket design for deuterium burning tandem mirror reactors

    International Nuclear Information System (INIS)

    Grotz, S.P.; Dhir, V.K.

    1983-01-01

    The UCLA tandem mirror reactor, SATYR, was developed around the capability of tandem mirrors with thermal barriers to burn deuterium at reasonable efficiency levels. The pebble bed concept has been incorporated into our blanket design for the following reasons: 1) Large area-to-volume ratio for purposes of heat removal; 2) Large volume of structure for high thermal capacity thus increasing the safety margin during off-normal incidents; 3) Relatively inexpensive manufacturing costs because of large acceptable tolerances and lack of exotic materials (i.e., lithium). A simplified stress analysis of the blanket module was performed to optimize and simplify the design. The pre-specified stress intensity limitations used were based upon a 30-year predicted lifetime for each module. Along with stress analysis of the vessel a detailed thermal hydraulic analysis of the pebble bed has been completed. Parameters affecting the pebble bed design are fluidization velocity, pressure drop, heat transfer coefficient, thermally induced stress in the spheres and spatial variation of the power density. Although reasonable gross thermal efficiencies of the 2 designs has been achieved (28% for H 2 O and 39% for He) the high net recirculating power fraction for heating and neutral beams results in relatively low net plant efficiencies (21% and 27%). The results show that a blanket can be designed with good thermal efficiency and a relative-ly simple configuration. However, application of this concept to the high Q deuterium-tritium fuel cycle would have difficulties resulting from the need for continuous removal of the tritium. (orig./HP)

  8. Next generation network based carrier ethernet test bed for IPTV traffic

    DEFF Research Database (Denmark)

    Fu, Rong; Berger, Michael Stübert; Zheng, Yu

    2009-01-01

    This paper presents a Carrier Ethernet (CE) test bed based on the Next Generation Network (NGN) framework. After the concept of CE carried out by Metro Ethernet Forum (MEF), the carrier-grade Ethernet are obtaining more and more interests and being investigated as the low cost and high performanc...... services of transport network to carry the IPTV traffic. This test bed is approaching to support the research on providing a high performance carrier-grade Ethernet transport network for IPTV traffic....

  9. Petrology and geochemistry of samples from bed-contact zones in Tunnel Bed 5, U12g-Tunnel, Nevada Test Site

    International Nuclear Information System (INIS)

    Connolly, J.R.; Keil, K.; Mansker, W.L.; Allen, C.C.; Husler, J.; Lowy, R.; Fortney, D.R.; Lappin, A.R.

    1984-10-01

    This report summarizes the detailed geologic characterization of samples of bed-contact zones and surrounding nonwelded bedded tuffs, both within Tunnel Bed 5, that are exposed in the G-Tunnel complex beneath Rainier Mesa on the Nevada Test Site (NTS). Original planning studies treated the bed-contact zones in Tunnel Bed 5 as simple planar surfaces of relatively high permeability. Detailed characterization, however, indicates that these zones have a finite thickness, are depositional in origin, vary considerably over short vertical and horizontal distances, and are internally complex. Fluid flow in a sequence of nonwelded zeolitized ash-flow or bedded tuffs and thin intervening reworked zones appears to be a porous-medium phenomenon, regardless of the presence of layering. There are no consistent differences in either bulk composition or detailed mineralogy between bedded tuffs and bed-contact zones in Tunnel Bed 5. Although the original bulk composition of Tunnel Bed 5 was probably peralkaline, extensive zeolitization has resulted in a present peraluminous bulk composition of both bedded tuffs and bed-contact zones. The major zeolite present, clinoptilolite, is intermediate (Ca:K:Na = 26:35:39) and effectively uniform in composition. This composition is similar to that of clinoptilolite from the tuffaceous beds of Calico Hills above the static water level in hole USW G-1, but somewhat different from that reported for zeolites from below the static water level in USW G-2. Tunnel Bed 5 also contains abundant hydrous manganese oxides. The similarity in composition of the clinoptilolites from Tunnel Bed 5 and those above the static water level at Yucca Mountain indicates that many of the results of nuclide-migration experiments in Tunnel Bed 5 would be transferrable to zeolitized nonwelded tuffs above the static water level at Yucca Mountain

  10. Design and full scale test of a sand bed filter

    International Nuclear Information System (INIS)

    Kaercher, M.

    1991-01-01

    All French pressurized water reactor plants are equipped with a containment venting system. this system is designed and implemented by Electricite de France with the technical support of safety authorities (Institute of Protection and Nuclear Safety of Atomic Energy Commission). This paper covers the following items: main assumptions, sizing and design requirements; basic design of the filter resulting from PITEAS R and D program carried out between 1983 and 1989 at Cadarache nuclear center; full scale tests performed in 1990 on FUCHIA loop at Cadarache including description of the loop using plasma torches to generate CsOH aerosols in a steam - air flow, and preliminary results concerning thermohydraulic and thermic behavior under residual power simulated filtration efficiency with CsOH aerosols and iodine; complementary design, including hydrogen risk during condensation period, radiological shieldings of the filter, and heat removal after the filter closure; and conclusion on the validation of the filter

  11. Conceptual design of Tritium Extraction System for the European HCPB Test Blanket Module

    International Nuclear Information System (INIS)

    Ciampichetti, A.; Nitti, F.S.; Aiello, A.; Ricapito, I.; Liger, K.; Demange, D.; Sedano, L.; Moreno, C.; Succi, M.

    2012-01-01

    Highlights: ► HCPB (Helium Cooled Pebble Bed) Test Blanket Module (TBM) to be tested in ITER. ► Tritium extraction by gas purging, removal and transfer to the Tritium Plant. ► Conceptual design of TES and revision of the previous configuration. ► Main components: adsorption column, ZrCo getter beds and PERMCAT reactor. - Abstract: The HCPB (Helium Cooled Pebble Bed) Test Blanket Module (TBM), developed in EU to be tested in ITER, adopts a ceramic containing lithium as breeder material, beryllium as neutron multiplier and helium at 80 bar as primary coolant. In HCPB-TBM the main function of Tritium Extraction System (TES) is to extract tritium from the breeder by gas purging, to remove it from the purge gas and to route it to the ITER Tritium Plant for the final tritium processing. In this paper, starting from a revision of the so far reference process considered for HCPB-TES and considering a new modeling activity aimed to evaluate tritium concentration in purge gas, an updated conceptual design of TES is reported.

  12. Developing and evaluating a meeting assistant test bed

    NARCIS (Netherlands)

    Post, W.M.; Lincoln, M.

    2008-01-01

    A test bed has been developed in which participants are tasked to work in simulated, scenario based, projects in which face-to-face and remote meetings of about 45 minutes have to be held. Measures on performance, team factors and remote aspects are automatically collected with electronic

  13. The Tore Supra Lower Hybrid Test Bed : improvements and applications

    International Nuclear Information System (INIS)

    Delpech, L.; Achard, J.; Beaumont, B.

    2006-01-01

    Within the CIMES project framework in Tore Supra, a klystron TH2103C (3.7 GHz) is under development at THALES ELECTRON DEVICES. It differs from the previous klystrons used in Tore Supra generator mainly in that it has no modulating anode, the RF output power will reach 700 kW CW, by raising the High Voltage value to 76 kV and a beam current up to 23 A. The Tore Supra test bed is a dedicated facility used for high power tests on RF components or on RF transmitters. It has been improved to integrate the TH2103C klystron and a specific 100 kV solide state switch which control the beam current. Since April 2005, the integration of the first tube (without modulating anode) and the 100 kV switch has been completed in the Test Bed and has allowed the modifications and tests of the interfaces and security system for the devices. Improvements were also made on the cooling loop flow to dissipate a power of 1750 kW CW. With these devices, the RF power routinely available in the Lower Hybrid Test Bed is 400 kW CW. With the development of the TH2103C, detailed studies and tests on RF components which will be used up to 750 kW CW on match load or 700 kW on VSWR = 1.4, are necessary to evaluate their performances and thermal behaviour. The test a crucial component, the recombiner, which adds the RF powers coming from the two RF outputs of the TH2103C and inject the resulted power into one WR284 waveguide to a test load or to the plasma, was completed. Two tests have been performed : a thermal study with 400 kW during 1000 s, and RF pulsed tests on short cuts to increase the value of the electric field inside the component. The experiments and calculations (ANSYS and HFSS codes) validate the use of this device with the TH2103C. A module made with two different Beryllium Oxide RF windows, has been under test. The losses on each window are measured by calorimetric measurements and evaluated by computation with HFSS and ANSYS code. The results are compared. In this paper, the

  14. Control, data acquisition and analysis for the JET neutral injection test bed

    International Nuclear Information System (INIS)

    Jones, T.T.C.; Brenan, P.R.; Rodgers, M.E.; Stork, D.; Young, I.D.

    1985-01-01

    The Neutral Injection Test-Bed (NITB) is a major experimental assembly in support of the Neutral Beam Heating Programme for JET. In addition to its prime function of testing the Neutral Injection hardware, the Test Bed serves as the prototype to test the computer control and data acquisition system, which is described in this paper. The software system has been written in a portable, data-driven manner with the aim to adapt it, with only minor modifications to the operation of the first. Neutral Injection Beamline on JET, which will involve operation both synchronous and asynchronous with that of the JET Tokamak

  15. Engineering scale tests of an FFTF fission gas delay bed

    International Nuclear Information System (INIS)

    Kabele, T.J.; Bohringer, A.P.

    1975-01-01

    The dynamic adsorption coefficient of 85 Kr on activated charcoal from a nitrogen carrier gas was measured at -80 and -120 0 C at pressures of zero and 30 psig. The effects of the presence of impurities in the nitrogen carrier gas (1 percent oxygen, and 100 vppm carbon dioxide) on the adsorption coefficient of 85 Kr were also measured. The 85 Kr adsorption coefficient increased with decreasing temperature, and increased with increasing pressure. The presence of oxygen and carbon dioxide impurities in the nitrogen carrier gas had no discernible effect upon the adsorption coefficient. The adsorption coefficient for 85 Kr from nitrogen gas was lower than for adsorption of 85 Kr from an argon gas stream. The work concluded a test program which provided design data for the fission gas delay beds which will be installed in the Fast Flux Test Facility (FFTF). (U.S.)

  16. Integrated design approach of the pebble bed modular using models

    International Nuclear Information System (INIS)

    Venter, P.J.

    2005-01-01

    The Pebble Bed Modular Reactor (PBMR) is the first pebble bed reactor that will be utilised in a high temperature direct Brayton cycle configuration. This implies that there are a number of unique features in the PBMR that extend from the German experience base. One of the challenges in the design of the PBMR is managing the integrated design process between the designers, the physicists and the analysts. This integrated design process is managed through model-based development work. Three-dimensional CAD models are constructed of the components and parts in the reactor. From the CAD models, CFD models, neutronic models, shielding models, FEM models and other thermodynamic models are derived. These models range from very simple models to extremely detailed and complex models. The models are used in legacy software as well as commercial off-the-shelf software. The different models are also used in code-to-code comparisons to verify the results. This paper will briefly discuss the different models and the interaction between the models, showing the iterative design process that is used in the development of the reactor at PBMR. (author)

  17. CIRCULATING MOVING BED COMBUSTION PROOF OF CONCEPT

    Energy Technology Data Exchange (ETDEWEB)

    Jukkola, Glen

    2010-06-30

    Circulating Moving Bed (CMB) combustion technology has its roots in traditional circulating fluidized bed technology and involves a novel method of solid fuel combustion and heat transfer. CMB technology represents a step change in improved performance and cost relative to conventional PC and FBC boilers. The CMB heat exchanger preheats the energy cycle working fluid, steam or air, to the high temperature levels required in systems for advanced power generation. Unique features of the CMB are the reduction of the heat transfer surfaces by about 60% as a result of the enhanced heat transfer rates, flexibility of operation, and about 30% lower cost over existing technology. The CMB Phase I project ran from July 2001 through March 2003. Its objective was to continue development of the CMB technology with a series of proof of concept tests. The tests were conducted at a scale that provided design data for scale up to a demonstration plant. These objectives were met by conducting a series of experiments in ALSTOM Power’s Multi-use Test Facility (MTF). The MTF was modified to operate under CMB conditions of commercial interest. The objective of the tests were to evaluate gas-to-solids heat transfer in the upper furnace, assess agglomeration in the high temperature CMB bubbling bed, and evaluate solids-to-tube heat transfer in the moving bed heat exchanger. The Phase I program results showed that there are still some significant technical uncertainties that needed to be resolved before the technology can be confidently scaled up for a successful demonstration plant design. Work remained in three primary areas: • scale up of gas to solid heat transfer • high temperature finned surface design • the overall requirements of mechanical and process design. The CMB Phase II workscope built upon the results of Phase I and specifically addressed the remaining technical uncertainties. It included a scaled MTF heat transfer test to provide the necessary data to scale up gas

  18. Design and Test of Semi-Active Vibration-Reducing System for Lathe

    Directory of Open Access Journals (Sweden)

    Hongsheng Hu

    2014-09-01

    Full Text Available In this paper, its theory design, analysis and test system of semi-active vibration controlling system used for precision machine have been done. Firstly, lathe bed and spindle entity were modeled by using UG software; Then modes of the machine bed and the key components of spindle were obtained by using ANSYS software; Finally, harmonic response analysis of lathe spindle under complex load was acquired, which provided a basis of MR damper’s structure optimization design for a certain type of precision machine. In order to prove its effectives, a prototype semi-active vibration controlling lathe with MR damper was developed. Tests have been done, and comparison results between passive vibration isolation equipment and semi-active vibration controlling equipment proved its good performances of MR damper.

  19. Multi-Column Experimental Test Bed for Xe/Kr Separation

    International Nuclear Information System (INIS)

    Greenhalgh, Mitchell Randy; Garn, Troy Gerry; Welty, Amy Keil; Lyon, Kevin Lawrence; Watson, Tony Leroy

    2015-01-01

    Previous research studies have shown that INL-developed engineered form sorbents are capable of capturing both Kr and Xe from various composite gas streams. The previous experimental test bed provided single column testing for capacity evaluations over a broad temperature range. To advance research capabilities, the employment of an additional column to study selective capture of target species to provide a defined final gas composition for waste storage was warranted. The second column addition also allows for compositional analyses of the final gas product to provide for final storage determinations. The INL krypton capture system was modified by adding an additional adsorption column in order to create a multi-column test bed. The purpose of this modification was to investigate the separation of xenon from krypton supplied as a mixed gas feed. The extra column was placed in a Stirling Ultra-low Temperature Cooler, capable of controlling temperatures between 190 and 253K. Additional piping and valves were incorporated into the system to allow for a variety of flow path configurations. The new column was filled with the AgZ-PAN sorbent which was utilized as the capture medium for xenon while allowing the krypton to pass through. The xenon-free gas stream was then routed to the cryostat filled with the HZ-PAN sorbent to capture the krypton at 191K. Selectivities of xenon over krypton were determined using the new column to verify the system performance and to establish the operating conditions required for multi-column testing. Results of these evaluations verified that the system was operating as designed and also demonstrated that AgZ-PAN exhibits excellent selectivity for xenon over krypton in air at or near room temperature. Two separation tests were performed utilizing a feed gas consisting of 1000 ppmv xenon and 150 ppmv krypton with the balance being made up of air. The AgZ-PAN temperature was held at 295 or 253K while the HZ-PAN was held at 191K for both

  20. A Method to Analyze Threats and Vulnerabilities by Using a Cyber Security Test-bed of an Operating NPP

    International Nuclear Information System (INIS)

    Kim, Yong Sik; Son, Choul Woong; Lee, Soo Ill

    2016-01-01

    In order to implement cyber security controls for an Operating NPP, a security assessment should conduct in advance, and it is essential to analyze threats and vulnerabilities for a cyber security risk assessment phase. It might be impossible to perform a penetration test or scanning for a vulnerability analysis because the test may cause adverse effects on the inherent functions of ones. This is the reason why we develop and construct a cyber security test-bed instead of using real I and C systems in the operating NPP. In this paper, we propose a method to analyze threats and vulnerabilities of a specific target system by using a cyber security test-bed. The test-bed is being developed considering essential functions of the selected safety and non-safety system. This paper shows the method to analyze threats and vulnerabilities of a specific target system by using a cyber security test-bed. In order to develop the cyber security test-bed with both safety and non-safety functions, test-bed functions analysis and preliminary threats and vulnerabilities identification have been conducted. We will determine the attack scenarios and conduct the test-bed based vulnerability analysis

  1. A Method to Analyze Threats and Vulnerabilities by Using a Cyber Security Test-bed of an Operating NPP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Sik; Son, Choul Woong; Lee, Soo Ill [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    In order to implement cyber security controls for an Operating NPP, a security assessment should conduct in advance, and it is essential to analyze threats and vulnerabilities for a cyber security risk assessment phase. It might be impossible to perform a penetration test or scanning for a vulnerability analysis because the test may cause adverse effects on the inherent functions of ones. This is the reason why we develop and construct a cyber security test-bed instead of using real I and C systems in the operating NPP. In this paper, we propose a method to analyze threats and vulnerabilities of a specific target system by using a cyber security test-bed. The test-bed is being developed considering essential functions of the selected safety and non-safety system. This paper shows the method to analyze threats and vulnerabilities of a specific target system by using a cyber security test-bed. In order to develop the cyber security test-bed with both safety and non-safety functions, test-bed functions analysis and preliminary threats and vulnerabilities identification have been conducted. We will determine the attack scenarios and conduct the test-bed based vulnerability analysis.

  2. Design of a Loose Part Monitoring System Test-bed using CompactRIO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-seok; Lee, Kwang-Dae; Lee, Eui-Jong [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    A loose part monitoring system (LPMS) is included in the NSSS integrity monitoring system (NIMS), which serves to detect loose parts in reactor coolant systems (RCS). LPMSs at Nuclear Power Plants (NPPs) in Korea follow the ASME OM standard and acquire data from 18 sensors simultaneously. Data acquisition requires a sampling rate of more than 50KHz along with a 12bit A/D converter. Existing LPMS equipment is composed of several different platforms, such as a digital signal processor (DSP), a field-programmable gate array (FPGA), a micro control unit (MCU), and electric circuit cards. These systems have vulnerabilities, such as discontinuance due to aging and incompatibility issues between different pieces of equipment. This paper suggests CompactRIO as a new platform. We devised a Test-bed using CompactRIO and demonstrate that the proposed method meets the criteria required by the standard. The LPMS provides an alert when an impact event occurs and provides information with which to analyze the location, energy, and mass of the loose parts. LPMSs in NPPs in Korea operate on a variety of platforms. Thus, these systems are vulnerable to discontinuances due to aging and incompatibilities arising from the use of different type of equipment. In order to solve these problems, this paper suggests CompactRIO as a new platform. It is a rugged, reconfigurable, high-performance industrial embedded system. The results of performance tests meet the criteria set by the current standard.

  3. Circulating fluidized bed boilers design and operations

    CERN Document Server

    Basu, Prabir

    1991-01-01

    This book provides practicing engineers and students with insight into the design and operation of circulating fluidized bed (CFB) boilers. Through a combination of theoretical concepts and practical experience, this book gives the reader a basic understanding of the many aspects of this subject.Important environmental considerations, including solid waste disposal and predicted emissions, are addressed individually in separate chapters. This book places an emphasis on combustion, hydrodynamics, heat transfer, and material issues, and illustrates these concepts with numerous examples of pres

  4. WTP Pretreatment Facility Potential Design Deficiencies--Sliding Bed and Sliding Bed Erosion Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-05-06

    This assessment is based on readily available literature and discusses both Newtonian and non-Newtonian slurries with respect to sliding beds and erosion due to sliding beds. This report does not quantify the size of the sliding beds or erosion rates due to sliding beds, but only assesses if they could be present. This assessment addresses process pipelines in the Pretreatment (PT) facility and the high level waste (HLW) transfer lines leaving the PT facility to the HLW vitrification facility concentrate receipt vessel.

  5. WTP Pretreatment Facility Potential Design Deficiencies--Sliding Bed and Sliding Bed Erosion Assessment

    International Nuclear Information System (INIS)

    Hansen, E. K.

    2015-01-01

    This assessment is based on readily available literature and discusses both Newtonian and non-Newtonian slurries with respect to sliding beds and erosion due to sliding beds. This report does not quantify the size of the sliding beds or erosion rates due to sliding beds, but only assesses if they could be present. This assessment addresses process pipelines in the Pretreatment (PT) facility and the high level waste (HLW) transfer lines leaving the PT facility to the HLW vitrification facility concentrate receipt vessel.

  6. Experimental Study and Computational Simulations of Key Pebble Bed Thermo-mechanics Issues for Design and Safety

    Energy Technology Data Exchange (ETDEWEB)

    Tokuhiro, Akira; Potirniche, Gabriel; Cogliati, Joshua; Ougouag, Abderrafi

    2014-07-08

    An experimental and computational study, consisting of modeling and simulation (M&S), of key thermal-mechanical issues affecting the design and safety of pebble-bed (PB) reactors was conducted. The objective was to broaden understanding and experimentally validate thermal-mechanic phenomena of nuclear grade graphite, specifically, spheres in frictional contact as anticipated in the bed under reactor relevant pressures and temperatures. The contact generates graphite dust particulates that can subsequently be transported into the flowing gaseous coolent. Under postulated depressurization transients and with the potential for leaked fission products to be adsorbed onto graphite 'dust', there is the potential for fission products to escape from the primary volume. This is a design safety concern. Furthermore, earlier safety assessment identified the distinct possibility for the dispersed dust to combust in contact with air if sufficient conditions are met. Both of these phenomena were noted as important to design review and containing uncertainty to warrant study. The team designed and conducted two separate effects tests to study and benchmark the potential dust-generation rate, as well as study the conditions under which a dust explosion may occure in a standardized, instrumented explosion chamber.

  7. Design and evaluation of fluidized bed heat recovery for diesel engine systems

    Science.gov (United States)

    Hamm, J. R.; Newby, R. A.; Vidt, E. J.; Lippert, T. E.

    1985-01-01

    The potential of utilizing fluidized bed heat exchangers in place of conventional counter-flow heat exchangers for heat recovery from adiabatic diesel engine exhaust gas streams was studied. Fluidized bed heat recovery systems were evaluated in three different heavy duty transport applications: (1) heavy duty diesel truck; (2) diesel locomotives; and (3) diesel marine pushboat. The three applications are characterized by differences in overall power output and annual utilization. For each application, the exhaust gas source is a turbocharged-adiabatic diesel core. Representative subposed exhaust gas heat utilization power cycles were selected for conceptual design efforts including design layouts and performance estimates for the fluidized bed heat recovery heat exchangers. The selected power cycles were: organic rankine with RC-1 working fluid, turbocompound power turbine with steam injection, and stirling engine. Fuel economy improvement predictions are used in conjunction with capital cost estimates and fuel price data to determine payback times for the various cases.

  8. Design procedure for sizing a submerged-bed scrubber for airborne particulate removal

    International Nuclear Information System (INIS)

    Ruecker, C.M.; Scott, P.A.

    1987-04-01

    Performance correlations to design and operate the submerged bed scrubber were developed for various applications. Structural design procedure outlined in this report focuses on off-gas scrubbing for HLW vitrification applications; however, the method is appropriate for other applications

  9. Climate Science for a Sustainable Energy Future Test Bed and Data Infrastructure Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Van Dam, Kerstin Kleese [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shipman, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-05-04

    The collaborative Climate Science for a Sustainable Energy Future (CSSEF) project started in July 2011 with the goal of accelerating the development of climate model components (i.e., atmosphere, ocean and sea ice, and land surface) and enhancing their predictive capabilities while incorporating uncertainty quantification (UQ). This effort required accessing and converting observational data sets into specialized model testing and verification data sets and building a model development test bed, where model components and sub-models can be rapidly evaluated. CSSEF’s prototype test bed demonstrated, how an integrated testbed could eliminate tedious activities associated with model development and evaluation, by providing the capability to constantly compare model output—where scientists store, acquire, reformat, regrid, and analyze data sets one-by-one—to observational measurements in a controlled test bed.

  10. Construction of test-bed system of voltage management system to ...

    African Journals Online (AJOL)

    Construction of test-bed system of voltage management system to apply physical power system. ... Journal of Fundamental and Applied Sciences ... system of voltage management system (VMS) in order to apply physical power system.

  11. Atmospheric Fluidized Bed Combustion testing of North Dakota lignite

    Energy Technology Data Exchange (ETDEWEB)

    Goblirsch, G; Vander Molen, R H; Wilson, K; Hajicek, D

    1980-05-01

    The sulfur retention by the inherent alkali, and added limestone sorbent, perform about the same and are reasonably predictable within a range of about +-10% retention by application of alkali to sulfur ratio. Temperature has a substantial effect on the retention of sulfur by the inherent alkali or limestone. The temperature effect is not yet fully understood but it appears to be different for different coals and operational conditions. The emission of SO/sub 2/ from the fluid bed burning the Beulah lignite sample used for these tests can be controlled to meet or better the current emission standards. The injection of limestone to an alkali-to-sulfur molar ratio of 1.5 to 1, should lower the SO/sub 2/ emissions below the current requirement of 0.6 lb SO/sub 2//10/sup 6/ Btu to 0.4 lb SO/sub 2//10/sup 6/ Btu, a safe 33% below the standard. Agglomeration of bed material, and consequent loss of fluidization quality can be a problem when burning high sodium lignite in a silica bed. There appears, however, to be several ways of controlling the problem including the injection of calcium compounds, and careful control of operating conditions. The heat transfer coefficients measured in the CPC and GFETC tests are comparable to data obtained by other researchers, and agree reasonably well with empirical conditions. The NO/sub x/ emissions measured in all of the tests on Beulah lignite are below the current New Source Performance Standard of 0.5 lb NO/sub 2//10/sup 6/ Btu input. Combustion efficiencies for the Beulah lignite are generally quite high when ash recycle is being used. Efficiencies in the range of 98% to 99%+ have been measured in all tests using this fuel.

  12. Parallel-Processing Test Bed For Simulation Software

    Science.gov (United States)

    Blech, Richard; Cole, Gary; Townsend, Scott

    1996-01-01

    Second-generation Hypercluster computing system is multiprocessor test bed for research on parallel algorithms for simulation in fluid dynamics, electromagnetics, chemistry, and other fields with large computational requirements but relatively low input/output requirements. Built from standard, off-shelf hardware readily upgraded as improved technology becomes available. System used for experiments with such parallel-processing concepts as message-passing algorithms, debugging software tools, and computational steering. First-generation Hypercluster system described in "Hypercluster Parallel Processor" (LEW-15283).

  13. Summary of particle bed reactor designs for the Space Nuclear Thermal Propulsion Program

    Science.gov (United States)

    Powell, J. R.; Ludewig, H.; Todosow, M.

    1993-09-01

    A summary report of the Particle Bed Reactor (PBR) designs considered for the space nuclear thermal propulsion program has been prepared. The first chapters outline the methods of analysis, and their validation. Monte Carlo methods are used for the physics analysis, several new algorithms are used for the fluid dynamics heat transfer and engine system analysis, and commercially available codes are used for the stress analysis. A critical experiment, prototypic of the PBR was used for the physics validation, and blowdown experiments using fuel beds of prototypic dimensions were used to validate the power extraction capabilities from particle beds. In all four different PBR rocket reactor designs were studied to varying degrees of detail. They varied in power from 400 MW to 2000 MW. These designs were all characterized by a negative prompt coefficient, due to Doppler feedback, and the feedback due to moderator heat up varied from slightly negative to slightly positive. In all practical cases, the coolant worth was positive, although core configurations with negative coolant worth could be designed. In all practical cases the thrust/weight ratio was greater than 20.

  14. Neutronic design of a Liquid Salt-cooled Pebble Bed Reactor (LSPBR)

    International Nuclear Information System (INIS)

    De Zwaan, S. J.; Boer, B.; Lathouwers, D.; Kloosterman, J. L.

    2006-01-01

    A renewed interest has been raised for liquid salt cooled nuclear reactors. The excellent heat transfer properties of liquid salt coolants provide several benefits, like lower fuel temperatures, higher coolant outlet temperatures, increased core power density and better decay heat removal. In order to benefit from the online refueling capability of a pebble bed reactor, the Liquid Salt Pebble Bed Reactor (LSPBR) is proposed. This is a high temperature pebble-bed reactor with a fuel design similar to existing HTRs, but using a liquid salt as a coolant. In this paper, the selection criteria for the liquid salt coolant are described. Based on its neutronic properties, LiF-BeF 2 (FLIBE) was selected for the LSPBR. Two designs of the LSPBR were considered: a cylindrical core and an annular core with a graphite inner reflector. Coupled neutronic-thermal hydraulic calculations were performed to obtain the steady state power distribution and the corresponding fuel temperatures. Finally, calculations were performed to investigate the decay heat removal capability in a protected loss-of-forced cooling accident. The maximum allowable power that can be produced with the LSPBR is hereby determined. (authors)

  15. Development and testing of analytical models for the pebble bed type HTRs

    International Nuclear Information System (INIS)

    Huda, M.Q.; Obara, T.

    2008-01-01

    The pebble bed type gas cooled high temperature reactor (HTR) appears to be a good candidate for the next generation nuclear reactor technology. These reactors have unique characteristics in terms of the randomness in geometry, and require special techniques to analyze their systems. This study includes activities concerning the testing of computational tools and the qualification of models. Indeed, it is essential that the validated analytical tools be available to the research community. From this viewpoint codes like MCNP, ORIGEN and RELAP5, which have been used in nuclear industry for many years, are selected to identify and develop new capabilities needed to support HTR analysis. The geometrical model of the full reactor is obtained by using lattice and universe facilities provided by MCNP. The coupled MCNP-ORIGEN code is used to estimate the burnup and the refuelling scheme. Results obtained from Monte Carlo analysis are interfaced with RELAP5 to analyze the thermal hydraulics and safety characteristics of the reactor. New models and methodologies are developed for several past and present experimental and prototypical facilities that were based on HTR pebble bed concepts. The calculated results are compared with available experimental data and theoretical evaluations showing very good agreement. The ultimate goal of the validation of the computer codes for pebble bed HTR applications is to acquire and reinforce the capability of these general purpose computer codes for performing HTR core design and optimization studies

  16. Smart Home Test Bed: Examining How Smart Homes Interact with the Power Grid

    Energy Technology Data Exchange (ETDEWEB)

    2016-11-01

    This fact sheet highlights the Smart Home Test Bed capability at the Energy Systems Integration Facility. The National Renewable Energy Laboratory (NREL) is working on one of the new frontiers of smart home research: finding ways for smart home technologies and systems to enhance grid operations in the presence of distributed, clean energy technologies such as photovoltaics (PV). To help advance this research, NREL has developed a controllable, flexible, and fully integrated Smart Home Test Bed.

  17. Effects of bedding systems selected by manual muscle testing on sleep and sleep-related respiratory disturbances.

    Science.gov (United States)

    Tsai, Ling-Ling; Liu, Hau-Min

    2008-03-01

    In this study, we investigated the feasibility of applying manual muscle testing (MMT) for bedding selection and examined the bedding effect on sleep. Four lay testers with limited training in MMT performed muscle tests for the selection of the bedding systems from five different mattresses and eight different pillows for 14 participants with mild sleep-related respiratory disturbances. For each participant individually, two bedding systems-one inducing stronger muscle forces and the other inducing weaker forces-were selected. The tester-participant pairs showed 85% and 100% agreement, respectively, for the selection of mattresses and pillows that induced the strongest muscle forces. The firmness of the mattress and the height of the pillow were significantly correlated with the body weight and body mass index of the participants for the selected strong bedding system but not for the weak bedding system. Finally, differences were observed between the strong and the weak bedding systems with regard to sleep-related respiratory disturbances and the percentage of slow-wave sleep. It was concluded that MMT can be performed by inexperienced testers for the selection of bedding systems.

  18. 7 CFR 2902.15 - Bedding, bed linens, and towels.

    Science.gov (United States)

    2010-01-01

    ... PROCUREMENT Designated Items § 2902.15 Bedding, bed linens, and towels. (a) Definition. (1) Bedding is that... minimum biobased content is 12 percent and shall be based on the amount of qualifying biobased carbon in..., and silk are not qualifying biobased feedstocks for the purpose of determining the biobased content of...

  19. Advanced Photovoltaic Inverter Control Development and Validation in a Controller-Hardware-in-the-Loop Test Bed

    Energy Technology Data Exchange (ETDEWEB)

    Prabakar, Kumaraguru [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Shirazi, Mariko [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Singh, Akanksha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chakraborty, Sudipta [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-07

    Penetration levels of solar photovoltaic (PV) generation on the electric grid have increased in recent years. In the past, most PV installations have not included grid-support functionalities. But today, standards such as the upcoming revisions to IEEE 1547 recommend grid support and anti-islanding functions-including volt-var, frequency-watt, volt-watt, frequency/voltage ride-through, and other inverter functions. These functions allow for the standardized interconnection of distributed energy resources into the grid. This paper develops and tests low-level inverter current control and high-level grid support functions. The controller was developed to integrate advanced inverter functions in a systematic approach, thus avoiding conflict among the different control objectives. The algorithms were then programmed on an off-the-shelf, embedded controller with a dual-core computer processing unit and field-programmable gate array (FPGA). This programmed controller was tested using a controller-hardware-in-the-loop (CHIL) test bed setup using an FPGA-based real-time simulator. The CHIL was run at a time step of 500 ns to accommodate the 20-kHz switching frequency of the developed controller. The details of the advanced control function and CHIL test bed provided here will aide future researchers when designing, implementing, and testing advanced functions of PV inverters.

  20. High temperature degradation by erosion-corrosion in bubbling fluidized bed combustors

    Directory of Open Access Journals (Sweden)

    Hou Peggy

    2004-01-01

    Full Text Available Heat-exchanger tubes in fluidized bed combustors (FBCs often suffer material loss due to combined corrosion and erosion. Most severe damage is believed to be caused by the impact of dense packets of bed material on the lower parts of the tubes. In order to understand this phenomenon, a unique laboratory test rig at Berkeley was designed to simulate the particle hammering interactions between in-bed particles and tubes in bubbling fluidized bed combustors. In this design, a rod shaped specimen is actuated a short distance within a partially fluidized bed. The downward specimen motion is controlled to produce similar frequencies, velocities and impact forces as those experienced by the impacting particle aggregates in practical systems. Room temperature studies have shown that the degradation mechanism is a three-body abrasion process. This paper describes the characteristics of this test rig, reviews results at elevated temperatures and compares them to field experience. At higher temperatures, deposits of the bed material on tube surfaces can act as a protective layer. The deposition depended strongly on the type of bed material, the degree of tube surface oxidation and the tube and bed temperatures. With HCl present in the bed, wastage was increased due to enhanced oxidation and reduced oxide scale adherence.

  1. Creating a Test Validated Structural Dynamic Finite Element Model of the Multi-Utility Technology Test Bed Aircraft

    Science.gov (United States)

    Pak, Chan-Gi; Truong, Samson S.

    2014-01-01

    Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of Multi Utility Technology Test Bed, X-56A, aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of X-56A. The ground vibration test validated structural dynamic finite element model of the X-56A is created in this study. The structural dynamic finite element model of the X-56A is improved using a model tuning tool. In this study, two different weight configurations of the X-56A have been improved in a single optimization run.

  2. Fuel cleanup system for the tritium systems test assembly: design and experiments

    International Nuclear Information System (INIS)

    Kerr, E.C.; Bartlit, J.R.; Sherman, R.H.

    1980-01-01

    A major subsystem of the Tritium Systems Test Assembly is the Fuel Cleanup System (FCU) whose functons are to: (1) remove impurities in the form of argon and tritiated methane, water, and ammonia from the reactor exhaust stream and (2) recover tritium for reuse from the tritiated impurities. To do this, a hybrid cleanup system has been designed which utilizes and will test concurrently two differing technologies - one based on disposable, hot metal (U and Ti) getter beds and a second based on regenerable cryogenic asdorption beds followed by catalytic oxidation of impurities to DTO and stackable gases and freezout of the resultant DTO to recover essentially all tritium for reuse

  3. Risk-informed design of a pebble bed gas reactor

    International Nuclear Information System (INIS)

    Ritterbusch, Stanley; Dimitrijevic, Vesna; Simic Zdenko; Savkina Marina

    2003-01-01

    One of the major challenges to the successful deployment of new nuclear plants in the United States is the regulatory process, which is largely based on water-reactor design technology and operating experience. While ongoing and expected efforts to license new LWR designs are based primarily on current regulations, guidance, and past experience, the pre-application review of the gas-cooled Pebble Bed Modular Reactor (PBMR) has shown that efforts are being made to provide additional 'risk-informed' improvements to the licensing process. These improvements are aimed at resolving new design and regulatory issues using a plant-wide integrated evaluation method - state-of-the-art Probabilistic Risk Assessment - which addresses all significant design features and operating modes. The integrated PRA evaluation is supported by the usual deterministic design analyses, engineering judgments, and margins added to address uncertainties (i.e., defense-in-depth). The work performed for this paper was completed as part of the United States Department of Energy's Nuclear Energy Research Initiative. The purpose of this particular project was to develop the methods for a new 'highly risk-informed' design and regulatory process. In this work. PRA techniques were applied in order to provide an integrated and systematic analysis of the plant design, to quantify uncertainties and explicitly account for defense-in-depth features. This work concentrates on the application of the risk-informed principles to a new plant design such as the PBMR. The implementation example completed for this project included specification of the design configuration, use of the PRA to evaluate the design, and iterations to identify design changes that improve the overall level of safety and system reliability. This paper summarizes the new 'highly risk-informed' design process, the design of the PBMR, and the results obtained. These results, consistent with the known inherent safety features of a pebble-bed

  4. Design, fabrication and commissioning of motorized scanning bed mechanism for shadow shield whole body counting system

    International Nuclear Information System (INIS)

    Arun, B.; Varalakshimi, S.; Manohari, M.; Mathiyarasu, R.

    2012-01-01

    A new scanning bed mechanism for shadow shield counting system is designed, fabricated and commissioned at RSD, IGCAR. The present motorized scanning bed mechanism has varying scan speeds, state of art limit sensors, smooth bed movement, touch screen based software controlled operation parameters with UPS power back-up. In view of the improved personnel safety the entire system has been designed to operate with low voltage power supply (24V). The evaluation demonstrated that the incorporation of the new motorized scanning mechanism has not affected the counting performance of the shadow shield wholebody counting system. (author)

  5. Rapid-cycle testing cuts bed turnaround by 85%.

    Science.gov (United States)

    2004-11-01

    You can use rapid-cycle testing to try out new approaches to overcrowding much more frequently than with more traditional process improvement strategies. Improving bed turnaround notification can yield dramatic improvements. Telling staff they have to try a new process only for three days makes it easier to gain buy-in. Look for old policies that are no longer needed, yet continue to keep your staff bogged down.

  6. The effect of bedding system selected by manual muscle testing on sleep-related cardiovascular functions.

    Science.gov (United States)

    Kuo, Terry B J; Li, Jia-Yi; Lai, Chun-Ting; Huang, Yu-Chun; Hsu, Ya-Chuan; Yang, Cheryl C H

    2013-01-01

    Different types of mattresses affect sleep quality and waking muscle power. Whether manual muscle testing (MMT) predicts the cardiovascular effects of the bedding system was explored using ten healthy young men. For each participant, two bedding systems, one inducing the strongest limb muscle force (strong bedding system) and the other inducing the weakest limb force (weak bedding system), were identified using MMT. Each bedding system, in total five mattresses and eight pillows of different firmness, was used for two continuous weeks at the participant's home in a random and double-blind sequence. A sleep log, a questionnaire, and a polysomnography were used to differentiate the two bedding systems. Heart rate variability and arterial pressure variability analyses showed that the strong bedding system resulted in decreased cardiovascular sympathetic modulation, increased cardiac vagal activity, and increased baroreceptor reflex sensitivity during sleep as compared to the weak bedding system. Different bedding systems have distinct cardiovascular effects during sleep that can be predicted by MMT.

  7. Life-finding detector development at NASA GSFC using a custom H4RG test bed

    Science.gov (United States)

    Mosby, Gregory; Rauscher, Bernard; Kutyrev, Alexander

    2018-01-01

    Chemical species associated with life, called biosignatures, should be visible in exoplanet atmospheres with larger space telescopes. These signals will be faint and require very low noise (~e-) detectors to robustly measure. At NASA Goddard we are developing a single detector H4RG test bed to characterize and identify potential technology developments needed for the next generation's large space telescopes. The vacuum and cryogenic test bed will include near infrared light sources from integrating spheres using a motorized shutter. The detector control and readout will be handled by a Leach controller. Detector cables have been manufactured and test planning has begun. Planned tests include testing minimum read noise capabilities, persistence mitigation strategies using long wavelength light, and measuring intrapixel variation which might affect science goals of future missions. In addition to providing a means to identify areas of improvement in detector technology, we hope to use this test bed to probe some fundamental physics of these infrared arrays.

  8. An Apparatus for Bed Material Sediment Extraction From Coarse River Beds in Large Alluvial Rivers

    Science.gov (United States)

    Singer, M. B.; Adam, H.; Cooper, J.; Cepello, S.

    2005-12-01

    Grain size distributions of bed material sediment in large alluvial rivers are required in applications ranging from habitat mapping, calibration of sediment transport models, high resolution sediment routing, and testing of existing theories of longitudinal and cross steam sediment sorting. However, characterizing bed material sediment from coarse river beds is hampered by difficulties in sediment extraction, a challenge that is generally circumvented via pebble counts on point bars, even though it is unclear whether the bulk grain size distribution of bed sediments is well represented by pebble counts on bars. We have developed and tested a boat-based sampling apparatus and methodology for extracting bulk sediment from a wide range of riverbed materials. It involves the use of a 0.4 x 0.4 x 0.2 meter stainless steel toothed sampler, called the Cooper Scooper, which is deployed from and dragged downstream by the weight of a jet boat. The design is based on that of a river anchor such that a rotating center bar connected to a rope line in the boat aligns the sampler in the downstream direction, the teeth penetrate the bed surface, and the sampler digs into the bed. The sampler is fitted with lead weights to keep it from tipping over. The force of the sampler `biting' into the bed can be felt on the rope line held by a person in the boat at which point they let out slack. The boat then motors to the spot above the embedded sampler, which is hoisted to the water surface via a system of pulleys. The Cooper Scooper is then clipped into a winch and boom assembly by which it is brought aboard. This apparatus improves upon commonly used clamshell dredge samplers, which are unable to penetrate coarse or mixed bed surfaces. The Cooper Scooper, by contrast, extracts statistically representative bed material sediment samples of up to 30 kilograms. Not surprisingly, the sampler does not perform well in very coarse or armored beds (e.g. where surface material size is on the

  9. Improved design model for the multi-bed system in the storage and delivery system at ITER: Effects of decay of hydriding and dehydriding rate of a getter bed

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Uk [Department of Chemical Engineering, Pohang University of Science and Technology, San 31, Hyoja-Dong, Pohang 790-784 (Korea, Republic of); Chang, Min Ho; Yun, Sei-Hun [National Fusion Research Institute, 169-148-gil Kwahak-ro, Yusong-gu, Daejon 34133 (Korea, Republic of); Lee, Euy Soo, E-mail: eslee@dongguk.edu [Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 100-715 (Korea, Republic of); Lee, In-Beum [Department of Chemical Engineering, Pohang University of Science and Technology, San 31, Hyoja-Dong, Pohang 790-784 (Korea, Republic of)

    2016-12-15

    This paper proposes an improved design model for the multi-bed system in the Storage and Delivery System considering that the hydriding and dehydriding rates of a getter bed decay over time. More specifically, the hydriding and dehydriding rates are influenced by the amount of remaining inventory in the getter bed and time simultaneously. Therefore, we formulate the rate decays mathematically to consider these features in the design model. The optimization problem is formulated as a mixed integer nonlinear program (MINLP) model with nonlinear constraints. Inductive operation scenario is presented to illustrate the applicability of the proposed model.

  10. Improved design model for the multi-bed system in the storage and delivery system at ITER: Effects of decay of hydriding and dehydriding rate of a getter bed

    International Nuclear Information System (INIS)

    Lee, Jae-Uk; Chang, Min Ho; Yun, Sei-Hun; Lee, Euy Soo; Lee, In-Beum

    2016-01-01

    This paper proposes an improved design model for the multi-bed system in the Storage and Delivery System considering that the hydriding and dehydriding rates of a getter bed decay over time. More specifically, the hydriding and dehydriding rates are influenced by the amount of remaining inventory in the getter bed and time simultaneously. Therefore, we formulate the rate decays mathematically to consider these features in the design model. The optimization problem is formulated as a mixed integer nonlinear program (MINLP) model with nonlinear constraints. Inductive operation scenario is presented to illustrate the applicability of the proposed model.

  11. Thermomechanical interactions of particle bed-structural wall in a layered configuration. Pt. 1. Effect of particle bed thermal expansions

    International Nuclear Information System (INIS)

    Tehranian, F.

    1995-01-01

    Materials in the form of particle beds have been considered for shielding and tritium breeding as well as neutron multiplication in many of the conceptual reactor design studies. As the level of effort of the fusion blanket community in the area of out-of-pile and in-pile (ITER) testing of integrated test modules increases, so does the need for modelling capability for predicting the thermomechanical responses of the test modules under reactor environment.In this study, the thermomechanical responses of a particle bed-structural wall system in a layered configuration, subjected to bed temperature rise and/or external coolant pressure, were considered. Equations were derived which represent the dependence of the particle-to-particle and particle-to-wall contact forces and areas on the structural wall deformations and in turn on the thermomechanical loads. Using the derived equations, parametric analyses were performed to study the variations in the thermomechanical response quantities of a beryllium particle bed-stainless steel structural wall when subjected to thermomechanical loads. The results are presented in two parts. In Part I, presented in this paper, the derivation of the analytical equations and the effects of bed temperature rise are discussed. In Part II of this study, also presented in this symposium, the effects of external coolant pressure as well as the combined effects of bed temperature rise and coolant pressure on the thermomechanical responses are given.It is shown that, depending on the stiffness of the structural walls, uniform bed temperature rises in the range 100-400 C result in non-uniform effective thermal properties through the prticle bed and could increase the bed effective thermal conductivity by a factor of 2-5 and the bed-wall interface thermal conductance by even a larger factor. (orig.)

  12. Development Of A Mobile Robot As A Test Bed For Tele-Presentation

    Directory of Open Access Journals (Sweden)

    Diogenes Armando D. Pascua

    2016-01-01

    Full Text Available In this paper a human-sized tracked wheel robot with a large payload capacity for tele-presentation is presented. The robot is equipped with different sensors for obstacle avoidance and localization. A high definition web camera installed atop a pan and tilt assembly was in place as a remote environment feedback for users. An LCD monitor provides the visual display of the operator in the remote environment using the standard Skype teleconferencing software. Remote control was done via the internet through the free Teamviewer VNC remote desktop software. Moreover, this paper presents the design details, fabrication and evaluation of individual components. Core mobile robot movement and navigational controls were developed and tested. The effectiveness of the mobile robot as a test bed for tele-presentation were evaluated and analyzed by way of its real time response and time delay effects of the network.

  13. Development of a Mobile Robot as a Test Bed for Tele-Presentation

    Directory of Open Access Journals (Sweden)

    Diogenes Armando D. Pascua

    2016-05-01

    Full Text Available In this paper a human-sized tracked wheel robot with a large payload capacity for tele-presentation is presented. The robot is equipped with different sensors for obstacle avoidance and localization. A high definition web camera installed atop a pan and tilt assembly was in place as a remote environment feedback for users. An LCD monitor provides the visual display of the operator in the remote environment using the standard Skype teleconferencing software. Remote control was done via the internet through the free Teamviewer VNC remote desktop software. Moreover, this paper presents the design details, fabrication and evaluation of individual components. Core mobile robot movement and navigational controls were developed and tested. The effectiveness of the mobile robot as a test bed for tele-presentation were evaluated and analyzed by way of its real time response and time delay effects of the network

  14. Steam and sodium leak simulation in a fluidized-bed steam generator

    International Nuclear Information System (INIS)

    Vaux, W.G.; Keeton, A.R.; Keairns, D.L.

    1977-01-01

    A fluidized-bed steam generator for the liquid metal fast breeder reactor enhances plant availability and minimizes the probability of a water/sodium reaction. An experimental test program was conceived to assess design criteria and fluidized-bed operation under conditions of water, steam, and sodium leaks. Sodium, steam, and water were leaked into helium-fluidized beds of metal and ceramic particles at 900 F. Test results show the effects of leaks on the heat transfer coefficient, quality of fluidization, leak detection, and cleanup procedures

  15. Lewis pressurized, fluidized-bed combustion program. Data and calculated results

    Science.gov (United States)

    Rollbuhler, R. J.

    1982-03-01

    A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.

  16. Pressurized Fluidized Bed Combustion of Sewage Sludge

    Science.gov (United States)

    Suzuki, Yoshizo; Nojima, Tomoyuki; Kakuta, Akihiko; Moritomi, Hiroshi

    A conceptual design of an energy recovering system from sewage sludge was proposed. This system consists of a pressurized fluidized bed combustor, a gas turbine, and a heat exchanger for preheating of combustion air. Thermal efficiency was estimated roughly as 10-25%. In order to know the combustion characteristics of the sewage sludge under the elevated pressure condition, combustion tests of the dry and wet sewage sludge were carried out by using laboratory scale pressurized fluidized bed combustors. Combustibility of the sewage sludge was good enough and almost complete combustion was achieved in the combustion of the actual wet sludge. CO emission and NOx emission were marvelously low especially during the combustion of wet sewage sludge regardless of high volatile and nitrogen content of the sewage sludge. However, nitrous oxide (N2O) emission was very high. Hence, almost all nitrogen oxides were emitted as the form of N2O. From these combustion tests, we judged combustion of the sewage sludge with the pressurized fluidized bed combustor is suitable, and the conceptual design of the power generation system is available.

  17. Effect of bed configuration on pebble flow uniformity and stagnation in the pebble bed reactor

    International Nuclear Information System (INIS)

    Gui, Nan; Yang, Xingtuan; Tu, Jiyuan; Jiang, Shengyao

    2014-01-01

    Highlights: • Pebble flow uniformity and stagnation characteristics are very important for HTR-PM. • Arc- and brachistochrone-shaped configuration effects are studied by DEM simulation. • Best bed configurations with uniform flow and no stagnated pebbles are suggested. • Detailed quantified characteristics of bed configuration effects are shown for explanation. - Abstract: Pebble flow uniformity and stagnation characteristics are very important for the design of pebble bed high temperature gas-cooled reactor. Pebble flows inside some specifically designed contraction configurations of pebble bed are studied by discrete element method. The results show the characteristics of stagnation rates, recycling rates, radial distribution of pebble velocity and residence time. It is demonstrated clearly that the bed with a brachistochrone-shaped configuration achieves optimum levels of flow uniformity and recycling rate concentration, and almost no pebbles are stagnated in the bed. Moreover, the optimum choice among the arc-shaped bed configurations is demonstrated too. Detailed information shows the quantified characteristics of bed configuration effects on flow uniformity. In addition, a good design of the pebble bed configuration is suggested

  18. In-bed accountability of tritium in production scale metal hydride storage beds

    International Nuclear Information System (INIS)

    Klein, J.E.

    1995-01-01

    An ''in-bed accountability'' (IBA) flowing gas calorimetric measurement method has been developed and implemented to eliminate the need to remove tritium from production scale metal hydride storage beds for inventory measurement purposes. Six-point tritium IBA calibration curves have been completed for two, 390 gram tritium metal hydride storage beds. The calibration curves for the two tritium beds are similar to those obtained from the ''cold'' test program. Tritium inventory errors at the 95 percent confidence level ranged from ± 7.3 to 8.6 grams for the cold test results compared to ± 4.2 to 7.5 grams obtained for the two tritium calibrated beds

  19. Integrated design approach of the pebble BeD modular reactor using models

    International Nuclear Information System (INIS)

    Venter, Pieter J.; Mitchell, Mark N.

    2007-01-01

    The pebble bed modular reactor (PBMR) is the first pebble bed reactor that will be utilised in a high temperature direct Brayton cycle configuration. This implies that there are a number of unique features in the PBMR that extend from the German experience base. One of the challenges in the design of the PBMR is developing an understanding of the expected behaviour of the reactor through analyses and simulations and managing the integrated design process between the designers, the physicists and the analysts. This integrated design process is managed through model-based development work. Three-dimensional CAD models are constructed of the components and parts in the reactor. From the CAD models, CFD models, neutronic models, shielding models, FEM models and other thermodynamic models are derived. These models range from very simple models to extremely detailed and complex models. The models are used in legacy software as well as commercial off-the-shelf software. The different models are also used in code-to-code comparisons to verify the results. This paper will briefly discuss the different models and the interaction between the models, and how the models are used in the iterative design process that is used in the development of the reactor at PBMR

  20. Full Scale Drinking Water System Decontamination at the Water Security Test Bed

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EPA’s Water Security Test Bed (WSTB) facility is a full-scale representation of a drinking water distribution system. In collaboration with the Idaho National...

  1. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    International Nuclear Information System (INIS)

    Betsill J, David; Elkins, Ned Z.; Wu, Chuan-Fu; Mewhinney, James D.; Aamodt, Paul

    2000-01-01

    Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ''The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic

  2. Bed agglomeration characteristics of palm shell and corncob combustion in fluidized bed

    International Nuclear Information System (INIS)

    Chaivatamaset, Pawin; Sricharoon, Panchan; Tia, Suvit

    2011-01-01

    Bed particle agglomeration was studied experimentally in an atmospheric laboratory scale fluidized bed combustor using quartz sand as bed material. Palm shell and corncob were tested. The objectives of the study were (i) to describe the contributions of the biomass ash properties and the operating conditions on the bed agglomeration tendency in term of the bed defluidization time (t def ) and the extent of potassium accumulation in the bed (K/Bed) and (ii) to further elucidate the ash inorganic behaviors and the governing bed agglomeration mechanisms. Defluidization caused by the bed agglomeration was experienced in all experiments during combustion of these biomasses, as a consequence of the presence of potassium in biomass. The experimental results indicated that biomass ash characteristics were the significant influence on the bed agglomeration. The increasing bed temperature, bed particle size and static bed height and the decreasing fluidizing air velocity enhanced the bed agglomeration tendency. The SEM/EDS analyses on the agglomerates confirmed that the agglomeration was attributed to the formation of potassium silicate liquid enriched on the surface of quartz sand particles in conjunction with the high surface temperature of the burning biomass char particles. Thermodynamic examination based on the phase diagram analysis confirmed that the molten phase formation was responsible for the agglomeration. In this study, the high molten ash fraction resulting from the high potassium content in biomass promoted the agglomeration and thus defluidization. - Highlights: → Palm shell and corncob of Thailand are tested their bed agglomeration behaviors during fluidized bed combustion. → The increase of bed temperature, bed particle size and static bed height and the decrease of air velocity enhance bed agglomeration. → The formation of ash derived potassium silicate melts enriched on sand surface is the key process. → The collision between char and sand

  3. Development of the rf linear accelerator test bed for heavy-ion fusion

    International Nuclear Information System (INIS)

    Watson, J.M.

    1981-01-01

    The amount of absorbed energy required by high gain deuterium-tritium targets for inertial confinement fusion reactors is now projected to be greater than 1 Megajoule. It has become apparent that a heavy ion fusion driver is the preferred choice in this scenario. To demonstrate this accelerator-based option, the national program has established two test beds: one at Argonne for the rf linac/storage ring approach, and one at Lawrence Berkeley Laboratory developing an induction linac. The Argonne Beam Development Facility (BDF) would consist of a 40 mA rf linac for Xe + 8 , a storage ring, and a 10 GeV synchrotron. The design and status of the BDF is described as well as future program options to demonstrate as many solutions as possible of the issues involved in this approach

  4. Thermalhydraulics of flowing particle-bed-type fusion reactor blankets

    International Nuclear Information System (INIS)

    Nietert, R.E.; Abdelk-Khalik, S.I.

    1982-01-01

    An experimental investigation has been conducted to determine the heat transfer characteristics of gravity-flowing particle beds using a special heat transfer loop. Glass microspheres were allowed to flow by gravity at controlled rates through an electrically heated stainless steel tubular test section. Values of the local and average convective heat transfer coefficient as a function of the average bed velocity, particle size and heat flux were determined. Such information is necessary for the design of gravity-flowing particle-bed type fusion reactor-blankets and associated tritium recovery systems. (orig.)

  5. A review of some parameters involved in fluidized bed bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Wright, P.C. [School of Chemical Engineering and Industrial Chemistry, The Univ. of New South Wales, Sydney (Australia); Raper, J.A. [School of Chemical Engineering and Industrial Chemistry, The Univ. of New South Wales, Sydney (Australia)

    1996-02-01

    Three-phase fluidized bed bioreactors have advantages over conventional chemical reaction systems. There is a lack of agreement over most major operational conditions, and a wide range of design variables are open to question. A large body of recent work in the field has been reviewed, with a degree of historical comparison and discussion. It has been found that aspects of fluidized bed biofilm reactors of vital importance include: choice of solid media, gas and liquid loadings, bacterial type and reactor mechanical design. A large proportion of the work in the field of three-phase fluidization is non-biologically specific, or not tested on a bacterially inoculated system. The majority of three-phase fluidized bed bioreactor work is in the field of water treatment. Although this work has highlighted the potential for use of bio-fluidized beds for this application, there are still specific problems hinderin the large scale industrial acceptance of three-phase fluidized bed bioreactors. (orig.)

  6. Conceptual design of a passively safe thorium breeder Pebble Bed Reactor

    International Nuclear Information System (INIS)

    Wols, F.J.; Kloosterman, J.L.; Lathouwers, D.; Hagen, T.H.J.J. van der

    2015-01-01

    Highlights: • This work proposes three possible designs for a thorium Pebble Bed Reactor. • A high-conversion PBR (CR > 0.96), passively safe and within practical constraints. • A thorium breeder PBR (220 cm core) in practical regime, but not passively safe. • A passively safe breeder, requiring higher fuel reprocessing and recycling rates. - Abstract: More sustainable nuclear power generation might be achieved by combining the passive safety and high temperature applications of the Pebble Bed Reactor (PBR) design with the resource availability and favourable waste characteristics of the thorium fuel cycle. It has already been known that breeding can be achieved with the thorium fuel cycle inside a Pebble Bed Reactor if reprocessing is performed. This is also demonstrated in this work for a cylindrical core with a central driver zone, with 3 g heavy metal pebbles for enhanced fission, surrounded by a breeder zone containing 30 g thorium pebbles, for enhanced conversion. The main question of the present work is whether it is also possible to combine passive safety and breeding, within a practical operating regime, inside a thorium Pebble Bed Reactor. Therefore, the influence of several fuel design, core design and operational parameters upon the conversion ratio and passive safety is evaluated. A Depressurized Loss of Forced Cooling (DLOFC) is considered the worst safety scenario that can occur within a PBR. So, the response to a DLOFC with and without scram is evaluated for several breeder PBR designs using a coupled DALTON/THERMIX code scheme. With scram it is purely a heat transfer problem (THERMIX) demonstrating the decay heat removal capability of the design. In case control rods cannot be inserted, the temperature feedback of the core should also be able to counterbalance the reactivity insertion by the decaying xenon without fuel temperatures exceeding 1600 °C. Results show that high conversion ratios (CR > 0.96) and passive safety can be combined in

  7. Continuous austempering fluidized bed furnace. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, M.N. [Lamar Univ., Beaumont, TX (United States). Dept. of Mechanical Engineering

    1997-09-23

    The intended objective of this project was to show the benefits of using a fluidized bed furnace for austenitizing and austempering of steel castings in a continuous manner. The division of responsibilities was as follows: (1) design of the fluidized bed furnace--Kemp Development Corporation; (2) fabrication of the fluidized bed furnace--Quality Electric Steel, Inc.; (3) procedure for austempering of steel castings, analysis of the results after austempering--Texas A and M University (Texas Engineering Experiment Station). The Department of Energy provided funding to Texas A and M University and Kemp Development Corporation. The responsibility of Quality Electric Steel was to fabricate the fluidized bed, make test castings and perform austempering of the steel castings in the fluidized bed, at their own expense. The project goals had to be reviewed several times due to financial constraints and technical difficulties encountered during the course of the project. The modifications made and the associated events are listed in chronological order.

  8. Development of a Torque Sensor-Based Test Bed for Attitude Control System Verification and Validation

    Science.gov (United States)

    2017-12-30

    AFRL-RV-PS- AFRL-RV-PS- TR-2018-0008 TR-2018-0008 DEVELOPMENT OF A TORQUE SENSOR- BASED TEST BED FOR ATTITUDE CONTROL SYSTEM VERIFICATION AND...Sensor-Based Test Bed for Attitude Control System Verification & Validation 5a. CONTRACT NUMBER FA9453-15-1-0315 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...NUMBER 62601F 6. AUTHOR(S) Norman Fitz-Coy 5d. PROJECT NUMBER 4846 5e. TASK NUMBER PPM00015968 5f. WORK UNIT NUMBER EF125135 7. PERFORMING

  9. Improved PFB operations - 400-hour turbine test results. [Pressurized Fluidized Bed

    Science.gov (United States)

    Rollbuhler, R. J.; Benford, S. M.; Zellars, G. R.

    1980-01-01

    The paper deals with a 400-hr small turbine test in the effluent of a pressurized fluidized bed (PFB) at an average temperature of 770 C, an average relative gas velocity of 300 m/sec, and average solid loadings of 200 ppm. Consideration is given to combustion parameters and operating procedure as well as to the turbine system and turbine test operating procedures. Emphasis is placed on erosion/corrosion results.

  10. Script of Healthcare Technology: Do Designs of Robotic Beds Exclude or Include Users?

    DEFF Research Database (Denmark)

    Brodersen, Søsser Grith Kragh; Hansen, Meiken; Lindegaard, Hanne

    2015-01-01

    Many new product designs are currently being implemented in the healthcare sector, and this presents designers with challenges involved in socially innovative design. In this paper, we argue that designing assistive technologies requires focus on multiple users and use practices. We see the design...... of assistive technologies as design of socio-material assemblies , which include an analysis of the products already used in relation to multiple users, their practices and wishes. In the article we focus on the challenges in the implementation of two types of robotic beds used for disability care...

  11. Design, fabrication and initial evaluation of an upflow fixed-bed adsorption column for lead (Pb2+) using Carica papaya seeds

    International Nuclear Information System (INIS)

    Piquero, Ronald E.

    2005-03-01

    The study is about the adsorption pf lead (Pb 2+ ) using Carica papaya as biosorbent in an upflow continuous fixed-bed adsorption column. A column was designed and fabricated which was used in the experiment. It aimed to determine the effect of flowrates in the adsorption mechanism of the biosorbent. Three flowrates were used in the experiment: 100 mL/min, 150 mL/min, and 200 mL/min. A solution of 100 ppm of unbuffered lead was allowed to pass through a bed of biosorbent that has a length of 15 cm and the amount of lead ions was measured using flame atomic absorption spectroscopy in terms of residual concentration of lead in the outlet stream. The result showed that the 100 mL/min flowrate had the lowest amount of residual concentration measured compared to the 150 mL/min and 200 mL/min. This means that the 100 mL/min had the most lead ions adsorbed. Statistical test like the one-factor anova and t-test were also done in the research. Anova result showed that the flowrate has significant effect in the adsorption of lead ions of the biosorbent while the t-test results showed that the 100 ml/min is the most effective flowrate wherein the bed had adsorbed the most amounts of ions. (Author)

  12. Design and study of Engineering Test Facility - Helium Circulator

    International Nuclear Information System (INIS)

    Jiang Huijing; Ye Ping; Zhao Gang; Geng Yinan; Wang Jie

    2015-01-01

    Helium circulator is one of the key equipment of High-temperature Gas-cooled Reactor Pebble-bed Module (HTR-PM). In order to simulate most normal and accident operating conditions of helium circulator in HTR-PM, a full scale, rated flow rate and power, engineering test loop, which was called Engineering Test Facility - Helium Circulator (ETF-HC), was designed and established. Two prototypes of helium circulator, which was supported by Active Magnetic Bearing (AMB) or sealed by dry gas seals, would be tested on ETF-HC. Therefore, special interchangeable design was under consideration. ETF-HC was constructed compactly, which consisted of eleven sub-systems. In order to reduce the flow resistance of the circuit, special ducts, elbows, valves and flowmeters were selected. Two stages of heat exchange loops were designed and a helium - high pressure pure water heat exchanger was applied to ensure water wouldn't be vaporized while simulating accident conditions. Commissioning tests were carried out and operation results showed that ETF-HC meets the requirement of helium circulator operation. On this test facility, different kinds of experiments were supposed to be held, including mechanical and aerodynamic performance tests, durability tests and so on. These tests would provide the features and performance of helium circulator and verify its feasibility, availability and reliability. (author)

  13. Design, Fabrication, and Shakeout Testing of ATALANTE Dissolver Off-Gas Sorbent-Based Capture System

    International Nuclear Information System (INIS)

    Walker Jr, Joseph Franklin; Jubin, Robert Thomas; Jordan, Jacob A.; Bruffey, Stephanie H.

    2015-01-01

    A sorbent-based capture system designed for integration into the existing dissolver off-gas (DOG) treatment system at the ATelier Alpha et Laboratoires pour ANalyses, Transuraniens et Etudes de retraitement (ATALANTE) facility has been successfully designed and fabricated and has undergone shakeout testing. Discussions with personnel from the ATALANTE facility provided guidance that was used for the design. All components for this system were specified, procured, and received on site at Oak Ridge National Laboratory (ORNL). The system was then fabricated and tested at ORNL to verify operation. Shakeout testing resulted in a simplified system. This system should be easily installed into the existing facility and should be straightforward to operate during future experimental testing. All parts were selected to be compatible with ATALANTE power supplies, space requirements, and the existing DOG treatment system. Additionally, the system was demonstrated to meet all of four design requirements. These include (1) a dissolver off-gas flow rate of ?100 L/h (1.67 L/min), (2) an external temperature of ?50°C for all system components placed in the hot cell, (3) a sorbent bed temperature of ~150°C, and (4) a gas temperature of ~150°C upon entry into the sorbent bed. The system will be ready for shipment and installation in the existing DOG treatment system at ATALANTE in FY 2016.

  14. Using bedding in a test environment critically affects 50-kHz ultrasonic vocalizations in laboratory rats.

    Science.gov (United States)

    Natusch, C; Schwarting, R K W

    2010-09-01

    Rats utter distinct classes of ultrasonic vocalizations depending on their developmental stage, current state, and situational factors. One class, comprising the so-called 50-kHz calls, is typical for situations where rats are anticipating or actually experiencing rewarding stimuli, like being tickled by an experimenter, or when treated with drugs of abuse, such as the psychostimulant amphetamine. Furthermore, rats emit 50-kHz calls when exposed to a clean housing cage. Here, we show that such vocalization effects can depend on subtle details of the testing situation, namely the presence of fresh rodent bedding. Actually, we found that adult males vocalize more in bedded cages than in bare ones. Also, two experiments showed that adult rats emitted more 50-kHz calls when tickled on fresh bedding. Furthermore, ip amphetamine led to more 50-kHz vocalization in activity boxes containing such bedding as compared to bare ones. The analysis of psychomotor activation did not yield such group differences in case of locomotion and centre time, except for rearing duration in rats tested on bedding. Also, the temporal profile of vocalization did not parallel that of behavioural activation, since the effects on vocalization peaked and started to decline again before those of psychomotor activation. Therefore, 50-kHz calls are not a simple correlate of psychomotor activation. A final experiment with a choice procedure showed that rats prefer bedded conditions. Overall, we assume that bedded environments induce a positive affective state, which increases the likelihood of 50-kHz calling. Based on these findings, we recommend that contextual factors, like bedding, should receive more research attention, since they can apparently decrease the aversiveness of a testing situation. Also, we recommend to more routinely measure rat ultrasonic vocalization, especially when studying emotion and motivation, since this analysis can provide information about the subject's status, which may

  15. Volatile Removal Assembly Flight Experiment and KC-135 Packed Bed Experiment: Results and Lessons Learned

    Science.gov (United States)

    Holder, Donald W.; Parker, David

    2000-01-01

    The Volatile Removal Assembly (VRA) is a high temperature catalytic oxidation process that will be used as the final treatment for recycled water aboard the International Space Station (ISS). The multiphase nature of the process had raised concerns as to the performance of the VRA in a microgravity environment. To address these concerns, two experiments were designed. The VRA Flight Experiment (VRAFE) was designed to test a full size VRA under controlled conditions in microgravity aboard the SPACEHAB module and in a 1 -g environment and compare the performance results. The second experiment relied on visualization of two-phase flow through small column packed beds and was designed to fly aboard NASA's microgravity test bed plane (KC-135). The objective of the KC-135 experiment was to understand the two-phase fluid flow distribution in a packed bed in microgravity. On Space Transportation System (STS) flight 96 (May 1999), the VRA FE was successfully operated and in June 1999 the KC-135 packed bed testing was completed. This paper provides an overview of the experiments and a summary of the results and findings.

  16. Development of Open Test-bed for Autonomous Operation in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Seungmin; Heo, Gyunyoung

    2017-01-01

    Nuclear power plants also recognize the need for automation. However, it is dangerous technology to have a significant impact on human society. In addition, due to the uncertain legal responsibility for autonomous operation, the application and development speed of nuclear energy related automation technology will be significantly decrease compared to other industries. It is argued that the application of AI and automation technology to power plants should not be prematurely applied or not based on the principle of applying proven technology since nuclear power plants are the highest level security operated facilities. As described above, the overall algorithm of the Test Bed is an autonomous operation algorithm (rulebased algorithm, learning-based algorithm, semiautonomous operation algorithm) to judge the entry condition of the procedure through condition monitoring and to enter the appropriate operating procedure. In order to make a test bed, the investigation for the heuristic part of the existing procedures and the heuristic part from the circumstance which is not specified in the procedure is needed. In the learning based and semi-autonomous operation algorithms, using MARS to extract its operating data and operational logs and try out various diagnostic algorithms as described above. Through the completion of these future tasks, the test bed which can compared with actual operators will be constructed and that it will be able to check its effectiveness by improving competitively with other research teams through the characteristics of shared platform.

  17. Pebble Bed Reactors Design Optimization Methods and their Application to the Pebble Bed Fluoride Salt Cooled High Temperature Reactor (PB-FHR)

    Science.gov (United States)

    Cisneros, Anselmo Tomas, Jr.

    The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids---flibe (33%7Li2F-67%BeF)---from molten salt reactors. This combination of fuel and coolant enables FHRs to operate in a high-temperature low-pressure design space that has beneficial safety and economic implications. In 2012, UC Berkeley was charged with developing a pre-conceptual design of a commercial prototype FHR---the Pebble Bed- Fluoride Salt Cooled High Temperature Reactor (PB-FHR)---as part of the Nuclear Energy University Programs' (NEUP) integrated research project. The Mark 1 design of the PB-FHR (Mk1 PB-FHR) is 236 MWt flibe cooled pebble bed nuclear heat source that drives an open-air Brayton combine-cycle power conversion system. The PB-FHR's pebble bed consists of a 19.8% enriched uranium fuel core surrounded by an inert graphite pebble reflector that shields the outer solid graphite reflector, core barrel and reactor vessel. The fuel reaches an average burnup of 178000 MWt-d/MT. The Mk1 PB-FHR exhibits strong negative temperature reactivity feedback from the fuel, graphite moderator and the flibe coolant but a small positive temperature reactivity feedback of the inner reflector and from the outer graphite pebble reflector. A novel neutronics and depletion methodology---the multiple burnup state methodology was developed for an accurate and efficient search for the equilibrium composition of an arbitrary continuously refueled pebble bed reactor core. The Burnup Equilibrium Analysis Utility (BEAU) computer program was developed to implement this methodology. BEAU was successfully benchmarked against published results generated with existing equilibrium depletion codes VSOP

  18. A 34-meter VAWT (Vertical Axis Wind Turbine) point design

    Science.gov (United States)

    Ashwill, T. D.; Berg, D. E.; Dodd, H. M.; Rumsey, M. A.; Sutherland, H. J.; Veers, P. S.

    The Wind Energy Division at Sandia National Laboratories recently completed a point design based on the 34-m Vertical Axis Wind Turbine (VAWT) Test Bed. The 34-m Test Bed research machine incorporates several innovations that improve Darrieus technology, including increased energy production, over previous machines. The point design differs minimally from the Test Bed; but by removing research-related items, its estimated cost is substantially reduced. The point design is a first step towards a Test-Bed-based commercial machine that would be competitive with conventional sources of power in the mid-1990s.

  19. Tests of candidate materials for particle bed reactors

    International Nuclear Information System (INIS)

    Horn, F.L.; Powell, J.R.; Wales, D.

    1987-01-01

    Rhenium metal hot frits and zirconium carbide-coated fuel particles appear suitable for use in flowing hydrogen to at least 2000 K, based on previous tests. Recent tests on alternate candidate cooled particle and frit materials are described. Silicon carbide-coated particles began to react with rhenium frit material at 1600 K, forming a molten silicide at 2000 K. Silicon carbide was extensively attacked by hydrogen at 2066 K for 30 minutes, losing 3.25% of its weight. Vitrous carbon was also rapidly attacked by hydrogen at 2123 K, losing 10% of its weight in two minutes. Long term material tests on candidate materials for closed cycle helium cooled particle bed fuel elements are also described. Surface imperfections were found on the surface of pyrocarbon-coated fuel particles after ninety days exposure to flowing (∼500 ppM) impure helium at 1143 K. The imperfections were superficial and did not affect particle strength

  20. Development of Research Reactor Simulator and Its Application to Dynamic Test-bed

    International Nuclear Information System (INIS)

    Kwon, Kee Choon; Park, Jae Chang; Lee, Seung Wook; Bang, Dane; Bae, Sung Won

    2014-01-01

    We developed HANARO and the Jordan Research and Training Reactor (JRTR) real-time simulator for operating staff training. The main purpose of this simulator is operator training, but we modified this simulator as a dynamic test-bed to test the reactor regulating system in HANARO or JRTR before installation. The simulator configuration is divided into hardware and software. The simulator hardware consists of a host computer, 6 operator stations, a network switch, and a large display panel. The simulator software is divided into three major parts: a mathematical modeling module, which executes the plant dynamic modeling program in real-time, an instructor station module that manages user instructions, and a human machine interface (HMI) module. The developed research reactors are installed in the Korea Atomic Energy Research Institute nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by a hardware controller and the simulator and target controller were interfaced with a hard-wired and network-based interface

  1. Development of Research Reactor Simulator and Its Application to Dynamic Test-bed

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon; Park, Jae Chang; Lee, Seung Wook; Bang, Dane; Bae, Sung Won [KAERI, Daejeon (Korea, Republic of)

    2014-08-15

    We developed HANARO and the Jordan Research and Training Reactor (JRTR) real-time simulator for operating staff training. The main purpose of this simulator is operator training, but we modified this simulator as a dynamic test-bed to test the reactor regulating system in HANARO or JRTR before installation. The simulator configuration is divided into hardware and software. The simulator hardware consists of a host computer, 6 operator stations, a network switch, and a large display panel. The simulator software is divided into three major parts: a mathematical modeling module, which executes the plant dynamic modeling program in real-time, an instructor station module that manages user instructions, and a human machine interface (HMI) module. The developed research reactors are installed in the Korea Atomic Energy Research Institute nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by a hardware controller and the simulator and target controller were interfaced with a hard-wired and network-based interface.

  2. Computational and experimental prediction of dust production in pebble bed reactors, Part II

    Energy Technology Data Exchange (ETDEWEB)

    Hiruta, Mie; Johnson, Gannon [Department of Mechanical Engineering, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83401 (United States); Rostamian, Maziar, E-mail: mrostamian@asme.org [Department of Mechanical Engineering, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83401 (United States); Potirniche, Gabriel P. [Department of Mechanical Engineering, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83401 (United States); Ougouag, Abderrafi M. [Idaho National Laboratory, 2525 N Fremont Avenue, Idaho Falls, ID 83401 (United States); Bertino, Massimo; Franzel, Louis [Department of Physics, Virginia Commonwealth University, Richmond, VA 23284 (United States); Tokuhiro, Akira [Department of Mechanical Engineering, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83401 (United States)

    2013-10-15

    Highlights: • Custom-built high temperature, high pressure tribometer is designed. • Two different wear phenomena at high temperatures are observed. • Experimental wear results for graphite are presented. • The graphite wear dust production in a typical Pebble Bed Reactor is predicted. -- Abstract: This paper is the continuation of Part I, which describes the high temperature and high pressure helium environment wear tests of graphite–graphite in frictional contact. In the present work, it has been attempted to simulate a Pebble Bed Reactor core environment as compared to Part I. The experimental apparatus, which is a custom-designed tribometer, is capable of performing wear tests at PBR relevant higher temperatures and pressures under a helium environment. This environment facilitates prediction of wear mass loss of graphite as dust particulates from the pebble bed. The experimental results of high temperature helium environment are used to anticipate the amount of wear mass produced in a pebble bed nuclear reactor.

  3. Review of acute cancer beds.

    LENUS (Irish Health Repository)

    Evans, D S

    2012-01-01

    A review of admissions to cancer services at University Hospital Galway (UHG) was undertaken to assess the appropriateness of hospital usage. All cancer specialty patients admitted from 26-28 May 2009 were reviewed (n = 82). Chi square tests, Exact tests, and One-way ANOVA were utilised to analyse key issues emerging from the data. Fifty (61%) were classified as emergencies. Twenty three (67%) occupied a designated cancer bed with 24 (30%) in outlying non-oncology wards. The mean length of stay was 29.3 days. Possible alternatives to admission were identified for 15 (19%) patients. There was no evidence of discharge planning for 50 (60%) admissions. There is considerable potential to make more appropriate utilisation of UHG for cancer patients, particularly in terms of reducing bed days and length of stay and the proportion of emergency cancer admissions, and further developing integrated systems of discharge planning.

  4. SAPE Database Building for a Security System Test Bed

    International Nuclear Information System (INIS)

    Jo, Kwangho; Kim, Woojin

    2013-01-01

    Physical protection to prevent radiological sabotage and the unauthorized removal of nuclear material is one of the important activities. Physical protection system (PPS) of nuclear facilities needs the effectiveness analysis. This effectiveness analysis of PPS is evaluated by the probability of blocking the attack at the most vulnerable path. Systematic Analysis of Physical Protection Effectiveness (SAPE) is one of a computer code developed for the vulnerable path analysis. SAPE is able to analyze based on the data of the experimental results that can be obtained through the Test Bed. In order to utilize the SAPE code, we conducted some field tests on several sensors and acquired data. This paper aims at describing the way of DB (database) establishment

  5. Infant's bed climate and bedding in the Japanese home.

    Science.gov (United States)

    Nakamura Ikeda, Rie; Fukai, Kiyoko; Okamoto Mizuno, Kazue

    2012-06-01

    to assess the bed climate of infants in their homes in Japan. descriptive, exploratory, non-experimental research design. the data were collected at the participants' homes under normal circumstances. nineteen healthy infants between the ages of two and five months. Their mothers, who joined a parenting class organised by a maternity clinic in Okayama, Japan, consented to participate in this study. we visited the infants' homes and interviewed their mothers concerning the types and use of bedding. The temperature and relative humidity of the bed climate at the back and foot of the bedding, and in the room were measured every minute for four consecutive days. Differences among the bed climates measured during three seasons (spring, summer, and autumn) were assessed by one-way analysis of variance. The bed temperature was higher for infants than for adults. No significant difference in temperature was noted among the three seasons. The bed temperature was about 36.0°C when waterproof sheets and futon mattresses for children or adult were used. The average relative humidity of the bed climate at the back was highest in summer, followed by that in spring and autumn; the differences were significant. The use of waterproof sheets and futon mattresses for children in summer increased the relative humidity to 80% or more. The use of infant beds, sunoko drainboards, and cotton futon mattresses in summer was effective in reducing the bed humidity. these results suggest that nurse-midwives should advise the parents on comfortable bed climates for their infants, as well as how to select and use bedding for them. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Effect of bed particles to combustion of gases in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, R.; Wallen, V.; Etelaeaho, R.; Correia, S. [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1997-10-01

    The objective of this project was to obtain experimental data on effects of sand particles to the combustion of gases. The effect of the surface area of the particles was tested using different sized particles. The fluidized bed reactor used in these experiments was a stainless-steel tube with an internal diameter of 42 mm surrounded by an electric heater. The test rig was built in the Laboratory of Energy and Process Engineering at Tampere University of Technology. In order to elucidate the possible changes of particle surface, microscopic and porosimetric studies were conducted with both fresh bed particles and used bed particles. These measurements indicate that carbon monoxide significantly reacts with oxygen in the particulate or emulsion phase of a fluidized bed, if the residence time is long enough. The reaction rate depends mainly on temperature, air coefficient, residence time and particle size of the solids. It seems that the combustion enhances if the average particle size increases. Whether this is caused by increased free path length or reduced specific surface area of the bed is yet unknown. The first might be more probable cause because the majority of reactions often took place in the freeboard right above the bed. It was clear that the bed hindered proper combustion in several cases. (orig.)

  7. Preliminary Core Design Analysis of a 200MWth Pebble Bed-type VHTR

    International Nuclear Information System (INIS)

    Jo, Chang Keun; Noh, Jae Man

    2007-01-01

    This paper intends to suggest the preliminary core design analysis of a VHTR for a hydrogen production. The nuclear hydrogen system that utilizes the high temperature heat generated from the VHTR is a promising candidate for a cost effective, safe and clean supply of hydrogen in the age of hydrogen economy. Among two candidate VHTR cores, that is, a prismatic modular reactor (PMR) and a pebble bed-type reactor (PBR), we focus on the design of a 200MWth PBR (hereinafter PBR200) in this paper. Here, the 200MWth power is selected for a demonstration plant. The core configuration of the PBR200 is similar to the PBMR (Pebble Bed Modular Reactor, 400MWth) of South Africa, but the overall dimension of the reactor system is scaled-down. This paper is to suggest two candidate PBR200 cores. One is an annular core with an inner reflector (PBR200-CD1) which was presented at IWRES07, and the other is a cylindrical core without an inner reflector (PBR200-CD2)

  8. Carbon Bed Mercury Emissions Control For Mixed Waste Treatment

    International Nuclear Information System (INIS)

    Soelberg, Nick; Enneking, Joe

    2010-01-01

    Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (both radioactive and hazardous according to the Resource Conservation and Recovery Act) wastes. Depending on regulatory requirements, the mercury in the off-gas must be controlled with sometimes very high efficiencies. Compliance to the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards can require off-gas mercury removal efficiencies up to 99.999% for thermally treating some mixed waste streams. Several test programs have demonstrated this level of off-gas mercury control using fixed beds of granular sulfur-impregnated activated carbon. Other results of these tests include: (a) The depth of the mercury control mass transfer zone was less than 15-30 cm for the operating conditions of these tests, (b) MERSORB(reg s ign) carbon can sorb Hg up to 19 wt% of the carbon mass, and (c) the spent carbon retained almost all (98-99.99%) of the Hg; but when even a small fraction of the total Hg dissolves, the spent carbon can fail the TCLP test when the spent carbon contains high Hg concentrations. Localized areas in a carbon bed that become heated through heat of adsorption, to temperatures where oxidation occurs, are referred to as 'bed hot spots.' Carbon bed hot spots must be avoided in processes that treat radioactive and mixed waste. Key to carbon bed hot spot mitigation are (a) designing for sufficient gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) monitoring and control of inlet gas flowrate, temperature, and composition, (c) monitoring and control of in-bed and bed outlet gas temperatures, and (d) most important, monitoring of bed outlet CO concentrations. An increase of CO levels in the off-gas downstream of the carbon bed to levels about 50-100 ppm higher than the inlet CO concentration indicate CO formation in the bed, caused by carbon bed

  9. Technical and economic assessment of fluidized bed augmented compressed air energy storage system. Volume III. Preconceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01

    A technical and economic assessment of fluidized bed combustion augmented compressed air energy storage systems is presented. The results of this assessment effort are presented in three volumes. Volume III - Preconceptual Design contains the system analysis which led to the identification of a preferred component configuration for a fluidized bed combustion augmented compressed air energy storage system, the results of the effort which transformed the preferred configuration into preconceptual power plant design, and an introductory evaluation of the performance of the power plant system during part-load operation and while load following.

  10. Design of a fusion engineering test facility

    International Nuclear Information System (INIS)

    Sager, P.H.

    1980-01-01

    The fusion Engineering Test Facility (ETF) is being designed to provide for engineering testing capability in a program leading to the demonstration of fusion as a viable energy option. It will combine power-reactor-type components and subsystems into an integrated tokamak system and provide a test bed to test blanket modules in a fusion environment. Because of the uncertainties in impurity control two basic designs are being developed: a design with a bundle divertor (Design 1) and one with a poloidal divertor (Design 2). The two designs are similar where possible, the latter having somewhat larger toroidal field (TF) coils to accommodate removal of the larger torus sectors required for the single-null poloidal divertor. Both designs have a major radius of 5.4 m, a minor radius of 1.3 m, and a D-shaped plasma with an elongation of 1.6. Ten TF coils are incorporated in both designs, producing a toroidal field of 5.5 T on-axis. The ohmic heating and equilibrium field (EF) coils supply sufficient volt-seconds to produce a flat-top burn of 100 s and a duty cycle of 135 s, including a start of 12 s, a burn termination of 10 s, and a pumpdown of 13 s. The total fusion power during burn is 750 MW, giving a neutron wall loading of 1.5 MW/m 2 . In Design 1 of the poloidal field (PF) coils except the fast-response EF coils are located outside the FT coils and are superconducting. The fast-response coils are located inside the TF coil bore near the torus and are normal conducting so that they can be easily replaced.In Design 2 all of the PF coils are located outside the TF coils and are superconducting. Ignition is achieved with 60 MW of neutral beam injection at 150 keV. Five megawatts of radio frequency heating (electron cyclotron resonance heating) is used to assist in the startup and limit the breakdown requirement to 25 V

  11. A low-cost test-bed for real-time landmark tracking

    Science.gov (United States)

    Csaszar, Ambrus; Hanan, Jay C.; Moreels, Pierre; Assad, Christopher

    2007-04-01

    A low-cost vehicle test-bed system was developed to iteratively test, refine and demonstrate navigation algorithms before attempting to transfer the algorithms to more advanced rover prototypes. The platform used here was a modified radio controlled (RC) car. A microcontroller board and onboard laptop computer allow for either autonomous or remote operation via a computer workstation. The sensors onboard the vehicle represent the types currently used on NASA-JPL rover prototypes. For dead-reckoning navigation, optical wheel encoders, a single axis gyroscope, and 2-axis accelerometer were used. An ultrasound ranger is available to calculate distance as a substitute for the stereo vision systems presently used on rovers. The prototype also carries a small laptop computer with a USB camera and wireless transmitter to send real time video to an off-board computer. A real-time user interface was implemented that combines an automatic image feature selector, tracking parameter controls, streaming video viewer, and user generated or autonomous driving commands. Using the test-bed, real-time landmark tracking was demonstrated by autonomously driving the vehicle through the JPL Mars yard. The algorithms tracked rocks as waypoints. This generated coordinates calculating relative motion and visually servoing to science targets. A limitation for the current system is serial computing-each additional landmark is tracked in order-but since each landmark is tracked independently, if transferred to appropriate parallel hardware, adding targets would not significantly diminish system speed.

  12. The optimal design of the bed structure of bedstand based on ABAQUS

    Science.gov (United States)

    Yang, Xudong; Dong, Yu; Ge, Qingkuan; Wang, Song

    2017-12-01

    Hydraulic transmission bedstand is one kind of the most commonly used in engineering machinery companies, and the bed structure is the most important part. Based on the original hydraulic transmission bedstand bed structure and the CAE technology, the original bed structure is improved. The optimized bed greatly saves the material of the production bed and improves the seismic performance of the bed. In the end, the performance of the optimized bed was compared with the original bed.

  13. Progress on pebble bed experimental activity for the HE-FUS3 mock-ups

    International Nuclear Information System (INIS)

    Dell'Orco, G.; Sansone, L.; Simoncini, M.; Zito, D.

    2002-01-01

    The EU Long Term for DEMO Programme foresees the qualification of the reference design of the helium cooled pebble bed (HCPB) - test blanket module (TBM) to be tested in ITER Reactor. In this frame, FZK and ENEA have launched many experimental activities for the evaluation of the interactions between the Tritium breeder and neutron multiplier pebble beds and the steel containment walls. Main aim of these activities is the measuring the pebble bed effective thermal conductivity, the wall heat transfer coefficient as well as their dependency from the mechanical constraints. The paper presents the progress of the testing activity and results of the tests on two mock-up, called Tazza and Helichetta, carried out on the HE-FUS3 facility at ENEA Brasimone. (orig.)

  14. Design study of an ERL Test Facility at CERN

    CERN Document Server

    Jensen, E; Brüning, O; Calaga, R; Catalan-Lasheras, N; Goddard, B; Klein, M; Torres-Sanchez, R; Valloni, A

    2014-01-01

    The modern concept of an Energy Recovery Linac allows providing large electron currents at large beam energy with low power consumption. This concept is used in FEL’s, electron-ion colliders and electron coolers. CERN has started a Design Study of an ERL Test Facility with the purpose of 1) studying the ERL principle, its specific beam dynamics and operational issues, as relevant for LHeC, 2) providing a test bed for superconducting cavity modules, cryogenics and integration, 3) studying beam induced quenches in superconducting magnets and protection methods, 4) providing test beams for detector R&D and other applications. It will be complementary to existing or planned facilities and is fostering international collaboration. The operating frequency of 802 MHz was chosen for performance and for optimum synergy with SPS and LHC; the design of the cryomodule has started. The ERL Test Facility can be constructed in stages from initially 150 MeV to ultimately 1 GeV in 3 passes, with beam currents of up to 8...

  15. Long Duration Head-Down Tilt Bed Rest Studies: Safety Considerations Regarding Vision Health

    Science.gov (United States)

    Cromwell, Ronita L.; Zanello, S. B.; Yarbough, P. O.; Ploutz-Snyder, Robert; Taibbi, G.; Vizzeri, G.

    2012-01-01

    Visual symptoms reported in astronauts returning from long duration missions in low Earth orbit, including hyperopic shift, choroidal folds, globe flattening and papilledema, are thought to be related to fluid shifts within the body due to microgravity exposure. Because of this possible relation to fluid shifts, safety considerations have been raised regarding the ocular health of head-down tilt (HDT) bed rest subjects. HDT is a widely used ground ]based analog that simulates physiological changes of spaceflight, including fluid shifts. Thus, vision monitoring has been performed in bed rest subjects in order to evaluate the safety of HDT with respect to vision health. Here we report ocular outcomes in 9 healthy subjects (age range: 27-48 years; Male/Female ratio: 8/1) completing bed rest Campaign 11, an integrated, multidisciplinary 70-day 6 degrees HDT bed rest study. Vision examinations were performed on a weekly basis, and consisted of office-based (2 pre- and 2 post-bed rest) and in-bed testing. The experimental design was a repeated measures design, with measurements for both eyes taken for each subject at each planned time point. Findings for the following tests were all reported as normal in each testing session for every subject: modified Amsler grid, red dot test, confrontational visual fields, color vision and fundus photography. Overall, no statistically significant differences were observed for any of the measures, except for both near and far visual acuity, which increased during the course of the study. This difference is not considered clinically relevant as may result from the effect of learning. Intraocular pressure results suggest a small increase at the beginning of the bed rest phase (p=0.059) and lesser increase at post-bed rest with respect to baseline (p=0.046). These preliminary results provide the basis for further analyses that will include correlations between intraocular pressure change pre- and post-bed rest, and optical coherence

  16. Thermal design of a metal hydride storage bed, permitting tritium accountancy to 0.1% resolution and repeatability

    International Nuclear Information System (INIS)

    Hemmerich, J.L.

    1995-01-01

    Tritium storage beds at the International Thermonuclear Experimental Reactor are likely to use uranium as a getter material with a total inventory of 150 g T 2 at 75% stoichiometric composition of UT 3 . We propose a storage bed design directly extrapolated from the Joint European Torus uranium beds, which already have a 238 U inventory of 4.284 kg. Three alternative approaches to implement calorimetry for in situ tritium inventory accounting are discussed. The favored solution uses a microporous thermal insulation operating in a hydrogen atmosphere. This design is shown to meet all operational and safety requirements. The accuracy of calorimetric assay to ±0.1 requires only the measurement of a temperature difference to ±0.1 K and stabilization of the ambient reference temperature of 300 to ±0.1 K. 9 refs., 2 figs

  17. Experimental and numerical validation of a two-region-designed pebble bed reactor with dynamic core

    International Nuclear Information System (INIS)

    Jiang, S.Y.; Yang, X.T.; Tang, Z.W.; Wang, W.J.; Tu, J.Y.; Liu, Z.Y.; Li, J.

    2012-01-01

    Highlights: ► The experimental installation has been built to investigate the pebble flow. ► The feasibility of two-region pebble bed reactor has been verified. ► The pebble flow is more uniform in a taller vessel than that in a lower vessel. ► Larger base cone angle will decrease the scale of the stagnant zone. - Abstract: The pebble flow is the principal issue for the design of the pebble bed reactor. In order to verify the feasibility of a two-region-designed pebble bed reactor, the experimental installation with a taller vessel has been built, which is proportional to the real pebble bed reactor. With the aid of the experimental installation, the stable establishment and maintenance of the two-region arrangement has been verified, at the same time, the applicability of the DEM program has been also validated. Research results show: (1) The pebble's bouncing on the free surface is an important factor for the mixing of the different colored pebbles. (2) Through the guide plates installed in the top of the pebble packing, the size of the mixing zone can be reduced from 6–7 times to 3–4 times the pebble diameter. (3) The relationship between the width of the central region and the ratio of loading pebbles is approximately linear in the taller vessel. (4) The heighten part of the pebble packing can improve the uniformity of the flowing in the lower. (5) To increase the base cone angle can decrease the scale of the stagnant zone. All of these conclusions are meaningful to the design of the real pebble reactor.

  18. Thermal-hydraulic considerations for particle bed reactors

    Science.gov (United States)

    Benenati, R.; Araj, K. J.; Horn, F.

    In the design of particle bed reactor (PBR) cores, consideration must be given to the gas coolant channels and their configuration. Neutronics analysis provides the relative volume fractions of the component materials, but these must be arranged in such a manner as to allow proper cooling of all components by the gas flow at relatively low pressure drops. The thermal hydraulic aspects of this problem are addressed. A description of the computer model used in the analysis of the steady state condition is also included. Blowdown tests on hot particle bed fuel elements were carried out and are described.

  19. Fluid-bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, G.; Schoebotham, N.

    1981-02-01

    In Energy Equipment Company's two-stage fluidized bed system, partial combustion in a fluidized bed is followed by burn-off of the generated gases above the bed. The system can be retrofitted to existing boilers, and can burn small, high ash coal efficiently. It has advantages when used as a hot gas generator for process drying. Tests on a boiler at a Cadbury Schweppes plant are reported.

  20. Optimized core design and fuel management of a pebble-bed type nuclear reactor

    NARCIS (Netherlands)

    Boer, B.

    2009-01-01

    The core design of a pebble-bed type Very High Temperature Reactor (VHTR) is optimized, aiming for an increase of the coolant outlet temperature to 1000 C, while retaining its inherent safety features. The VHTR has been selected by the international Generation IV research initiative as one of the

  1. A room of one's own--Being cared for in a hospital with a single-bed room design.

    Science.gov (United States)

    Persson, Eva; Anderberg, Patrice; Ekwall, Anna Kristensson

    2015-06-01

    To illuminate patients' experiences of being hospitalised in a hospital with a single-bed room design. Many patients seem to prefer single-bed hospital rooms. However, studies have also shown that patients do see the advantages of multiple-bed rooms. Interviews were conducted with 16 inpatients from a surgical ward in a hospital building with a single-bed room design. A hermeneutical-phenomenological approach guided by van Manen's four life-world existentials was used to analyse the interviews. The essential meaning was that patients felt secure because they could create a personal environment without disruptive elements. The room was private, and this implied feelings of homeliness, which allowed patients to focus on themselves and was thought to facilitate the recovery process. The patients preferred staying in their room, and the relationship with the personnel was central. Feelings of loneliness and isolation could occur and could be frightening. Being hospitalised in a single-bed room meant balancing between feeling secure and feeling insecure. The following four themes emerged: A homely environment, The need for company and security, Time as unpredictable and involving waiting and Focus on healing the body. Patients experienced that a single-bed room allowed them to focus on their recovery, have visitors without disturbing others and create a feeling of homeliness. However, mobilisation is not a natural part of the recovery process when patients have all they need in their rooms. The patients' need for social interaction and confirmation was not satisfied without effort and planning on the part of staff. © 2014 Nordic College of Caring Science.

  2. Hybrid Molten Bed Gasifier for High Hydrogen Syngas Production

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David [Gas Technology Institute, Des Plaines, IL (United States)

    2017-05-23

    The techno-economic analyses of the hybrid molten bed gasification technology and laboratory testing of the HMB process were carried out in this project by the Gas Technology Institute and partner Nexant, Inc. under contract with the US Department of Energy’s National Energy Technology Laboratory. This report includes the results of two complete IGCC and Fischer-Tropsch TEA analyses comparing HMB gasification with the Shell slagging gasification process as a base case. Also included are the results of the laboratory simulation tests of the HMB process using Illinois #6 coal fed along with natural gas, two different syngases, and steam. Work in this 18-month project was carried out in three main Tasks. Task 2 was completed first and involved modeling, mass and energy balances, and gasification process design. The results of this work were provided to Nexant as input to the TEA IGCC and FT configurations studied in detail in Task 3. The results of Task 2 were also used to guide the design of the laboratory-scale testing of the HMB concept in the submerged combustion melting test facility in GTI’s industrial combustion laboratory. All project work was completed on time and budget. A project close-out meeting reviewing project results was conducted on April 1, 2015 at GTI in Des Plaines, IL. The hybrid molten bed gasification process techno-economic analyses found that the HMB process is both technically and economically attractive compared with the Shell entrained flow gasification process. In IGCC configuration, HMB gasification provides both efficiency and cost benefits. In Fischer-Tropsch configuration, HMB shows small benefits, primarily because even at current low natural gas prices, natural gas is more expensive than coal on an energy cost basis. HMB gasification was found in the TEA to improve the overall IGCC economics as compared to the coal only Shell gasification process. Operationally, the HMB process proved to be robust and easy to operate. The burner

  3. Trickle-bed root culture bioreactor design and scale-up: growth, fluid-dynamics, and oxygen mass transfer.

    Science.gov (United States)

    Ramakrishnan, Divakar; Curtis, Wayne R

    2004-10-20

    Trickle-bed root culture reactors are shown to achieve tissue concentrations as high as 36 g DW/L (752 g FW/L) at a scale of 14 L. Root growth rate in a 1.6-L reactor configuration with improved operational conditions is shown to be indistinguishable from the laboratory-scale benchmark, the shaker flask (mu=0.33 day(-1)). These results demonstrate that trickle-bed reactor systems can sustain tissue concentrations, growth rates and volumetric biomass productivities substantially higher than other reported bioreactor configurations. Mass transfer and fluid dynamics are characterized in trickle-bed root reactors to identify appropriate operating conditions and scale-up criteria. Root tissue respiration goes through a minimum with increasing liquid flow, which is qualitatively consistent with traditional trickle-bed performance. However, liquid hold-up is much higher than traditional trickle-beds and alternative correlations based on liquid hold-up per unit tissue mass are required to account for large changes in biomass volume fraction. Bioreactor characterization is sufficient to carry out preliminary design calculations that indicate scale-up feasibility to at least 10,000 liters.

  4. Limestone fragmentation and attrition during fluidized bed oxyfiring

    Energy Technology Data Exchange (ETDEWEB)

    Fabrizio Scala; Piero Salatino [Istituto di Ricerche sulla Combustione - CNR, Napoli (Italy)

    2010-04-15

    Attrition/fragmentation of limestone under simulated fluidized bed oxyfiring conditions was investigated by means of an experimental protocol that had been previously developed for characterization of attrition/fragmentation of sorbents in air-blown atmospheric fluidized bed combustors. The protocol was based on the use of different and mutually complementary techniques. The extent and pattern of attrition by surface wear in the dense phase of a fluidized bed were assessed in experiments carried out with a bench scale fluidized bed combustor under simulated oxyfiring conditions. Sorbent samples generated during simulated oxyfiring tests were further characterized from the standpoint of fragmentation upon high velocity impact by means of a purposely designed particle impactor. Results showed that under calcination-hindered conditions attrition and fragmentation patterns are much different from those occurring under air-blown atmospheric combustion conditions. Noteworthy, attrition/fragmentation enhanced particle sulfation by continuously regenerating the exposed particle surface. 13 refs., 8 figs.

  5. Lagrangian Approach to Study Catalytic Fluidized Bed Reactors

    Science.gov (United States)

    Madi, Hossein; Hossein Madi Team; Marcelo Kaufman Rechulski Collaboration; Christian Ludwig Collaboration; Tilman Schildhauer Collaboration

    2013-03-01

    Lagrangian approach of fluidized bed reactors is a method, which simulates the movement of catalyst particles (caused by the fluidization) by changing the gas composition around them. Application of such an investigation is in the analysis of the state of catalysts and surface reactions under quasi-operando conditions. The hydrodynamics of catalyst particles within a fluidized bed reactor was studied to improve a Lagrangian approach. A fluidized bed methanation employed in the production of Synthetic Natural Gas from wood was chosen as the case study. The Lagrangian perspective was modified and improved to include different particle circulation patterns, which were investigated through this study. Experiments were designed to evaluate the concepts of the model. The results indicate that the setup is able to perform the designed experiments and a good agreement between the simulation and the experimental results were observed. It has been shown that fluidized bed reactors, as opposed to fixed beds, can be used to avoid the deactivation of the methanation catalyst due to carbon deposits. Carbon deposition on the catalysts tested with the Lagrangian approach was investigated by temperature programmed oxidation (TPO) analysis of ex-situ catalyst samples. This investigation was done to identify the effects of particles velocity and their circulation patterns on the amount and type of deposited carbon on the catalyst surface. Ecole Polytechnique Federale de Lausanne(EPFL), Paul Scherrer Institute (PSI)

  6. In-pile test of Li 2TiO 3 pebble bed with neutron pulse operation

    Science.gov (United States)

    Tsuchiya, K.; Nakamichi, M.; Kikukawa, A.; Nagao, Y.; Enoeda, M.; Osaki, T.; Ioki, K.; Kawamura, H.

    2002-12-01

    Lithium titanate (Li 2TiO 3) is one of the candidate materials as tritium breeder in the breeding blanket of fusion reactors, and it is necessary to show the tritium release behavior of Li 2TiO 3 pebble beds. Therefore, a blanket in-pile mockup was developed and in situ tritium release experiments with the Li 2TiO 3 pebble bed were carried out in the Japan Materials Testing Reactor. In this study, the relationship between tritium release behavior from Li 2TiO 3 pebble beds and effects of various parameters were evaluated. The ( R/ G) ratio of tritium release ( R) and tritium generation ( G) was saturated when the temperature at the outside edge of the Li 2TiO 3 pebble bed became 300 °C. The tritium release amount increased cycle by cycle and saturated after about 20 pulse operations.

  7. Conceptual designs of pressurized fluidized bed and pulverized coal fired power plants

    International Nuclear Information System (INIS)

    Doss, H.S.; Bezella, W.A.; Hamm, J.R.; Pietruszkiewicz, J.

    1984-01-01

    This paper presents the major technical and economic characteristics of steam and air-cooled pressurized fluidized bed (PFB) power plant concepts, along with the characteristics of a pulverized coal fired power plant equipped with an adipic acid enhanced wet-limestone flue gas desulfurization system. Conceptual designs for the three plants were prepared to satisfy a set of common groundrules developed for the study. Grassroots plants, located on a generic plant site were assumed. The designs incorporate technologies projected to be commercial in the 1990 time frame. Power outputs, heat rates, and costs are presented

  8. Thermo-hydrodynamic design of fluidized bed combustors estimating metal wastage

    CERN Document Server

    Lyczkowski, Robert W; Bouillard, Jacques X; Folga, Stephen M

    2012-01-01

    Thermo-Hydrodynamic Design of Fluidized Bed Combustors: Estimating Metal Wastage is a unique volume that finds that the most sensitive parameters affecting metal wastage are superficial fluidizing velocity, particle diameter, and particle sphericity.  Gross consistencies between disparate data sources using different techniques were found when the erosion rates are compared on the same basis using the concept of renormalization.  The simplified mechanistic models and correlations, when validated, can be used to renormalize any experimental data so they can be compared on a consistent basis using a master equation.

  9. Model Test Bed for Evaluating Wave Models and Best Practices for Resource Assessment and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Neary, Vincent Sinclair [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies; Yang, Zhaoqing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Coastal Sciences Division; Wang, Taiping [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Coastal Sciences Division; Gunawan, Budi [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies; Dallman, Ann Renee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies

    2016-03-01

    A wave model test bed is established to benchmark, test and evaluate spectral wave models and modeling methodologies (i.e., best practices) for predicting the wave energy resource parameters recommended by the International Electrotechnical Commission, IEC TS 62600-101Ed. 1.0 ©2015. Among other benefits, the model test bed can be used to investigate the suitability of different models, specifically what source terms should be included in spectral wave models under different wave climate conditions and for different classes of resource assessment. The overarching goal is to use these investigations to provide industry guidance for model selection and modeling best practices depending on the wave site conditions and desired class of resource assessment. Modeling best practices are reviewed, and limitations and knowledge gaps in predicting wave energy resource parameters are identified.

  10. Fluid bed solids heater. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Preuit, L. C.

    1980-01-01

    A solids heater which operates at up to 2000 F was designed, fabricated, installed and operated through checkout at the Morgantown Energy Technology Center at Morgantown, West Virginia. The system, designated the 2000 F Fluid Bed Solids Heater (FBSH) uses a fluidized bed to heat limestone to 600 F and aluminium oxide or silicon carbide to 2000 F and discharges heated solids upon demand. The FBSH with added valve handling and pressurization equipment is known as the Valve Hot Solids Test Unit and is intended for use by the US Department of Energy for testing of valves for severe service applications in coal conversion and utilization processes. The FBSH as designed and supplied by Combustion Power Company includes process equipment, controls, the enclosing building and other associated equipment. In the 600 F range of operation it can circulate limestone through two valve test trains simultaneously on a continuous basis. Only one valve test train is used for 2000 F solids and operation in that range is also continuous. Limestone, crushed to minus 5/16 size, is heated, discharged, and recycled at a maximum average rate of 250 lb/min while aluminum oxide or silicon carbide, No. 8 grit, is circulated at rates up to 167 lb/min. The FBSH control system is designed for automatic operation, and capability is included for external computerized data acquisition and/or supervisory control. An operating and maintenance manual and as-built drawings have been submitted. This report describes the FBSH equipment, its design basis, and its operation. It has been prepared and submitted in fulfillment of Contract Number DIAC05-77ET10499.

  11. Design and control of one precise tracking simulation bed for Chinese 20/30 meter optic/infrared telescope

    Science.gov (United States)

    Ren, Changzhi; Li, Xiaoyan; Song, Xiaoli; Niu, Yong; Li, Aihua; Zhang, Zhenchao

    2012-09-01

    Direct drive technology is the key to solute future 30-m and larger telescope motion system to guarantee a very high tracking accuracy, in spite of unbalanced and sudden loads such as wind gusts and in spite of a structure that, because of its size, can not be infinitely stiff. However, this requires the design and realization of unusually large torque motor that the torque slew rate must be extremely steep too. A conventional torque motor design appears inadequate. This paper explores one redundant unit permanent magnet synchronous motor and its simulation bed for 30-m class telescope. Because its drive system is one high integrated electromechanical system, one complexly electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. This paper discusses the design and control of the precise tracking simulation bed in detail.

  12. Design report on SCDAP/RELAP5 model improvements - debris bed and molten pool behavior

    International Nuclear Information System (INIS)

    Allison, C.M.; Rempe, J.L.; Chavez, S.A.

    1994-11-01

    The SCDAP/RELAP5/MOD3 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and in combination with VICTORIA, fission product release and transport during severe accidents. Improvements for existing debris bed and molten pool models in the SCDAP/RELAP5/MOD3.1 code are described in this report. Model improvements to address (a) debris bed formation, heating, and melting; (b) molten pool formation and growth; and (c) molten pool crust failure are discussed. Relevant data, existing models, proposed modeling changes, and the anticipated impact of the changes are discussed. Recommendations for the assessment of improved models are provided

  13. Tritium processing tests for the validation of upgraded PERMCAT mechanical design

    Energy Technology Data Exchange (ETDEWEB)

    Demange, D.; Glugla, M.; Guenther, K.; Le, T. L.; Simon, K. H.; Wagner, R.; Welte, S. [Forschungszentrum Karlsruhe GmbH, Institue for Technical Physics, Tritium Laboratory Karlsruhe, P.O Box 36 40, D-76021 Karlsruhe (Germany)

    2008-07-15

    The PERMCAT process, chosen for the final clean-up stage of the Tritium Exhaust Processing system in ITER, directly combines a Pd/Ag membrane and a catalyst bed for the detritiation of gaseous mixtures containing molecular and chemically bound tritium. Upgraded PERMCAT mechanical designs have been proposed to both increase the robustness and simplify the design of the reactor. One uses a special corrugated Pd/Ag membrane able to withstand change in length of the membrane during both normal operation and in the case of off-normal events. Based on this design, an upgraded PERMCAT reactor has been produced at FZK and successfully tested at TLK with ITER relevant tritiated gaseous mixtures using the CAPER facility. (authors)

  14. Tritium processing tests for the validation of upgraded PERMCAT mechanical design

    International Nuclear Information System (INIS)

    Demange, D.; Glugla, M.; Guenther, K.; Le, T. L.; Simon, K. H.; Wagner, R.; Welte, S.

    2008-01-01

    The PERMCAT process, chosen for the final clean-up stage of the Tritium Exhaust Processing system in ITER, directly combines a Pd/Ag membrane and a catalyst bed for the detritiation of gaseous mixtures containing molecular and chemically bound tritium. Upgraded PERMCAT mechanical designs have been proposed to both increase the robustness and simplify the design of the reactor. One uses a special corrugated Pd/Ag membrane able to withstand change in length of the membrane during both normal operation and in the case of off-normal events. Based on this design, an upgraded PERMCAT reactor has been produced at FZK and successfully tested at TLK with ITER relevant tritiated gaseous mixtures using the CAPER facility. (authors)

  15. Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems

    International Nuclear Information System (INIS)

    Soelberg, Nick; Enneking, Joe

    2011-01-01

    Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (radioactive and hazardous) wastes. Test programs performed in recent years have shown that mercury in off-gas streams from processes that treat radioactive wastes can be controlled using fixed beds of activated sulfur-impregnated carbon, to levels low enough to comply with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. Carbon bed hot spots or fires have occurred several times during these tests, and also during a remediation of tanks that contained mixed waste. Hot spots occur when localized areas in a carbon bed become heated to temperatures where oxidation occurs. This heating typically occurs due to heat of absorption of gas species onto the carbon, but it can also be caused through external means such as external heaters used to heat the carbon bed vessel. Hot spots, if not promptly mitigated, can grow into bed fires. Carbon bed hot spots and fires must be avoided in processes that treat radioactive and mixed waste. Hot spots are detected by (a) monitoring in-bed and bed outlet gas temperatures, and (b) more important, monitoring of bed outlet gas CO concentrations. Hot spots are mitigated by (a) designing for appropriate in-bed gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) appropriate monitoring and control of gas and bed temperatures and compositions, and (c) prompt implementation of corrective actions if bed hot spots are detected. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from.

  16. Development of research reactor simulator and its application to dynamic test-bed

    International Nuclear Information System (INIS)

    Kwon, Kee-Choon; Baang, Dane; Park, Jae-Chang; Lee, Seung-Wook; Bae, Sung Won

    2014-01-01

    We developed a real-time simulator for 'High-flux Advanced Neutron Application ReactOr (HANARO), and the Jordan Research and Training Reactor (JRTR). The main purpose of this simulator is operator training, but we modified this simulator into a dynamic test-bed (DTB) to test the functions and dynamic control performance of reactor regulating system (RRS) in HANARO or JRTR before installation. The simulator hardware consists of a host computer, 6 operator stations, a network switch, and a large display panel. The software includes a mathematical model that implements plant dynamics in real-time, an instructor station module that manages user instructions, and a human machine interface module. The developed research reactor simulators are installed in the Korea Atomic Energy Research Institute nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by actual RRS cabinet, and was interfaced using a hard-wired and network-based interface. RRS cabinet generates control signals for reactor power control based on the various feedback signals from DTB, and the DTB runs plant dynamics based on the RRS control signals. Thus the Hardware-In-the-Loop Simulation between RRS and the emulated plant (DTB) has been implemented and tested in this configuration. The test result shows that the developed DTB and actual RRS cabinet works together simultaneously resulting in quite good dynamic control performances. (author)

  17. Chemical looping reactor system design double loop circulating fluidized bed (DLCFB)

    Energy Technology Data Exchange (ETDEWEB)

    Bischi, Aldo

    2012-05-15

    can be used for the hot rig design debugging and it is at the same time the hydrodynamic small scale model of a ten times larger industrial application. The adopted scaling strategy and design brought to the construction of one of the world biggest and more complex fluidized bed cold flow model reactor systems. The air and fuel reactor have a height of 5 m and a diameter of respectively 0.230 and 0.144 m. The selected particles are fine and heavy being classifiable as high density Geldart A; there is almost no published literature regarding those particles utilization in circulating fluidized beds. Extensive test campaigns have been performed to hydrodynamically validate the proposed designs. It was possible to understand and evaluate the operational window, the sensitivity to the input parameters and the key design details performance. Control strategies were qualitatively developed. The presented double loop architecture design showed good stability and flexibility at the same time, so that can also suit the requirements of other chemical processes based on two complementary reactions taking place simultaneously and continuously.(Author)

  18. Conceptual design of a fluidized bed nuclear reactor : Statics, dynamics and safety-related aspects

    NARCIS (Netherlands)

    Agung, A.

    2007-01-01

    In this thesis a conceptual design of an innovative high temperature reactor based on the fluidization principle (FLUBER) is proposed. The reactor should satisfy the following requirements: (a) modular and low power, (b)) large shutdown margin, (c) able to produce power when the bed of particles

  19. The characteristics of bed agglomeration during fluidized bed combustion of eucalyptus bark

    International Nuclear Information System (INIS)

    Chaivatamaset, Pawin; Tia, Suvit

    2015-01-01

    The bed agglomeration behaviors were investigated experimentally when eucalyptus bark was burning tested in a laboratory scale fluidized bed reactor. The focuses of this work were the influences of operating conditions and bed materials on the bed agglomeration tendency and the elucidation in the behaviors of fuel inorganic elements and the governing mode of the agglomeration. It was found that the defluidization caused by the bed agglomeration was clearly detectable from the decrease in measured bed pressure. The growth of bed particle and accumulation of agglomerates during combustion provided the partial to complete defluidization. The defluidization was promoted by the increase of bed temperature and bed particle size, and the decrease of fluidizing air velocity. The SEM-EDS analyses revealed that the bed agglomeration was mainly attributed to the formation of potassium silicate compounds as liquid phase during the combustion. This was initiated by the chemical reaction between the bed particle and the released ash constituents. In this study, the inorganic migration from fuel particle to bed particle was likely dominated by the condensation/reaction. The thermodynamic examination by ternary phase diagram analysis corroborated that the liquid phase formation of the ash derived materials controlled the agglomeration. The alumina sand prevented the bed agglomeration since it was inactive in the formation of viscous molten substances during combustion at the observed temperatures. - Highlights: • The behaviors of bed agglomeration were studied during the fluidized bed combustion of eucalyptus bark. • The increase in bed temperature and sand size, and the decrease of air velocity promoted bed defluidization. • The formation of molten potassium silicate compounds conduced to the bed agglomeration. • Condensation/reaction was the dominant inorganic migration mechanism from fuel particle to bed particle. • The alumina sand prevented effectively the bed

  20. Fluidized bed steam reformed mineral waste form performance testing to support Hanford Supplemental Low Activity Waste Immobilization Technology Selection

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pierce, E. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Herman, C. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brown, C. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, N. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Neeway, J. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Valenta, M. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, G. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Swanberg, D. J. [Washington River Protection Solutions (WRPS), Richland, WA (United States); Robbins, R. A. [Washington River Protection Solutions (WRPS), Richland, WA (United States); Thompson, L. E. [Washington River Protection Solutions (WRPS), Richland, WA (United States)

    2015-10-01

    This report describes the benchscale testing with simulant and radioactive Hanford Tank Blends, mineral product characterization and testing, and monolith testing and characterization. These projects were funded by DOE EM-31 Technology Development & Deployment (TDD) Program Technical Task Plan WP-5.2.1-2010-001 and are entitled “Fluidized Bed Steam Reformer Low-Level Waste Form Qualification”, Inter-Entity Work Order (IEWO) M0SRV00054 with Washington River Protection Solutions (WRPS) entitled “Fluidized Bed Steam Reforming Treatability Studies Using Savannah River Site (SRS) Low Activity Waste and Hanford Low Activity Waste Tank Samples”, and IEWO M0SRV00080, “Fluidized Bed Steam Reforming Waste Form Qualification Testing Using SRS Low Activity Waste and Hanford Low Activity Waste Tank Samples”. This was a multi-organizational program that included Savannah River National Laboratory (SRNL), THOR® Treatment Technologies (TTT), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Office of River Protection (ORP), and Washington River Protection Solutions (WRPS). The SRNL testing of the non-radioactive pilot-scale Fluidized Bed Steam Reformer (FBSR) products made by TTT, subsequent SRNL monolith formulation and testing and studies of these products, and SRNL Waste Treatment Plant Secondary Waste (WTP-SW) radioactive campaign were funded by DOE Advanced Remediation Technologies (ART) Phase 2 Project in connection with a Work-For-Others (WFO) between SRNL and TTT.

  1. Environmental protection stability of river bed and banks using convex, concave, and linear bed sills.

    Science.gov (United States)

    Keshavarzi, Alireza; Noori, Lila Khaje

    2010-12-01

    River bed scourings are a major environmental problem for fish and aquatic habitat resources. In this study, to prevent river bed and banks from scouring, different types of bed sills including convex, concave and linear patterns were installed in a movable channel bed in a laboratory flume. The bed sills were tested with nine different arrangements and under different flow conditions. To find the most effective bed sill pattern, the scouring depth was measured downstream of the bed sill for a long experimental duration. The scour depth was measured at the middle and at the end of each experimental test for different ratios of the arch radius to the channel width [r/w]. The experimental results indicated that the convex pattern with r/w=0.35 produced minimum bed scouring depth at the center line whereas the concave pattern with r/w=0.23 produced the minimum scour depth at the wall banks. Therefore, the convex pattern was the most effective configuration for prevention of scouring at the center line of the river while the concave pattern was very effective to prevent scouring at the river banks. These findings can be suggested to be used in practical applications.

  2. Rocky Flats Plant fluidized-bed incinerator

    International Nuclear Information System (INIS)

    Meile, L.J.; Meyer, F.G.; Johnson, A.J.; Ziegler, D.L.

    1982-01-01

    Laboratory and pilot-scale testing of a fluidized-bed incineration process for radioactive wastes led to the installation of an 82-kg/hr demonstration unit at Rocky Flats Plant in 1978. Design philosophy and criteria were formulated to fulfill the needs and objectives of an improved radwaste-incineration system. Unique process concepts include low-temperature (550 0 C), flameless, fluidized-bed combustion and catalytic afterburning; in-situ neutralization of acid gases; and dry off-gas cleanup. Detailed descriptions of the process and equipment are presented along with a summary of the equipment and process performance during a 2-1/2 year operational-testing period. Equipment modifications made during the test period are described. Operating personnel requirements for solid-waste burning are shown to be greater than those required for liquid-waste incineration; differences are discussed. Process-utility and raw-materials consumption rates for full-capacity operation are presented and explained. Improvements in equipment and operating procedures are recommended for any future installations. Process flow diagrams, an area floor plan, a process-control-system schematic, and equipment sketches are included

  3. Fluidized Bed Reactor as Solid State Fermenter

    Directory of Open Access Journals (Sweden)

    Krishnaiah, K.

    2005-01-01

    Full Text Available Various reactors such as tray, packed bed, rotating drum can be used for solid-state fermentation. In this paper the possibility of fluidized bed reactor as solid-state fermenter is considered. The design parameters, which affect the performances are identified and discussed. This information, in general can be used in the design and the development of an efficient fluidized bed solid-state fermenter. However, the objective here is to develop fluidized bed solid-state fermenter for palm kernel cake conversion into enriched animal and poultry feed.

  4. Computational and experimental prediction of dust production in pebble bed reactors, Part II

    Energy Technology Data Exchange (ETDEWEB)

    Mie Hiruta; Gannon Johnson; Maziar Rostamian; Gabriel P. Potirniche; Abderrafi M. Ougouag; Massimo Bertino; Louis Franzel; Akira Tokuhiro

    2013-10-01

    This paper is the continuation of Part I, which describes the high temperature and high pressure helium environment wear tests of graphite–graphite in frictional contact. In the present work, it has been attempted to simulate a Pebble Bed Reactor core environment as compared to Part I. The experimental apparatus, which is a custom-designed tribometer, is capable of performing wear tests at PBR relevant higher temperatures and pressures under a helium environment. This environment facilitates prediction of wear mass loss of graphite as dust particulates from the pebble bed. The experimental results of high temperature helium environment are used to anticipate the amount of wear mass produced in a pebble bed nuclear reactor.

  5. Aerosol sampling of an experimental fluidized bed coal combustor

    International Nuclear Information System (INIS)

    Newton, G.J.; Peele, E.R.; Carpenter, R.L.; Yeh, H.C.

    1977-01-01

    Fluidized bed combustion of coal, lignite or other materials has a potential for widespread use in central electric generating stations in the near future. This technology may allow widespread use of low-grade and/or high sulfur fuels due to its high energy utilization at low combustion temperature and its ability to meet emission criteria by using limestone bed material. Particulate and gaseous products resulting from fuel combustion and fluidization of bed material are discharged and proceed out the exhaust clean-up system. Sampling philosophy, methodology and equipment used to obtain aerosol samples from the exhaust system of the 18-inch fluidized bed combustor (FBC) at the Morgantown Energy Research Center (MERC) are described. Identification of sampling sites led to design of an aerosol sampling train which allowed a known quantity of the effluent streams to be sampled. Depending on the position, a 15 to 25 l/min sample is extracted from the duct, immediately diluted and transferred to a sampling/aging chamber. Transmission and scanning electron microscope samples, two types of cascade impactor samples, vapor-phase and particulate-phase organic samples, spiral duct aerosol centrifuge samples, optical size measurements and filter samples were obtained. Samples are undergoing physical, chemical and biological tests to help establish human health risk estimates for fluidized bed coal combustion and to provide information for use in design and evaluation of control technologies

  6. Real-time remote diagnostic monitoring test-bed in JET

    International Nuclear Information System (INIS)

    Castro, R.; Kneupner, K.; Vega, J.; De Arcas, G.; Lopez, J.M.; Purahoo, K.; Murari, A.; Fonseca, A.; Pereira, A.; Portas, A.

    2010-01-01

    Based on the remote experimentation concept oriented to long pulse shots, a test-bed system has been implemented in JET. Its main functionality is the real-time monitoring, on remote, of a reflectometer diagnostic, to visualize different data outputs and status information. The architecture of the system is formed by: the data generator components, the data distribution system, an access control service, and the client applications. In the test-bed there is one data generator, which is the acquisition equipment associated with the reflectometer diagnostic that generates data and status information. The data distribution system has been implemented using a publishing-subscribing technology that receives data from data generators and redistributes them to client applications. And finally, for monitoring, a client application based on JAVA Web Start technology has been used. There are three interesting results from this project. The first one is the analysis of different aspects (data formats, data frame rate, data resolution, etc) related with remote real-time diagnostic monitoring oriented to long pulse experiments. The second one is the definition and implementation of an architecture, flexible enough to be applied to different types of data generated from other diagnostics, and that fits with remote access requirements. Finally, the third result is a secure system, taking into account internal networks and firewalls aspects of JET, and securing the access from remote users. For this last issue, PAPI technology has been used, enabling access control based on user attributes, enabling mobile users to monitor diagnostics in real-time, and enabling the integration of this service into the EFDA Federation (Castro et al., 2008 ).

  7. Real-time remote diagnostic monitoring test-bed in JET

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R., E-mail: rodrigo.castro@ciemat.e [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Kneupner, K. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); De Arcas, G.; Lopez, J.M. [Universidad Politecnica de Madrid, Grupo I2A2, Madrid (Spain); Purahoo, K. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Murari, A. [Associazione EURATOM-ENEA per la Fusione, Consorzio RFX, 4-35127 Padova (Italy); Fonseca, A. [Associacao EURATOM/IST, Lisbon (Portugal); Pereira, A.; Portas, A. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain)

    2010-07-15

    Based on the remote experimentation concept oriented to long pulse shots, a test-bed system has been implemented in JET. Its main functionality is the real-time monitoring, on remote, of a reflectometer diagnostic, to visualize different data outputs and status information. The architecture of the system is formed by: the data generator components, the data distribution system, an access control service, and the client applications. In the test-bed there is one data generator, which is the acquisition equipment associated with the reflectometer diagnostic that generates data and status information. The data distribution system has been implemented using a publishing-subscribing technology that receives data from data generators and redistributes them to client applications. And finally, for monitoring, a client application based on JAVA Web Start technology has been used. There are three interesting results from this project. The first one is the analysis of different aspects (data formats, data frame rate, data resolution, etc) related with remote real-time diagnostic monitoring oriented to long pulse experiments. The second one is the definition and implementation of an architecture, flexible enough to be applied to different types of data generated from other diagnostics, and that fits with remote access requirements. Finally, the third result is a secure system, taking into account internal networks and firewalls aspects of JET, and securing the access from remote users. For this last issue, PAPI technology has been used, enabling access control based on user attributes, enabling mobile users to monitor diagnostics in real-time, and enabling the integration of this service into the EFDA Federation (Castro et al., 2008 ).

  8. Pregnancy does not affect HIV incidence test results obtained using the BED capture enzyme immunoassay or an antibody avidity assay.

    Directory of Open Access Journals (Sweden)

    Oliver Laeyendecker

    2010-10-01

    Full Text Available Accurate incidence estimates are needed for surveillance of the HIV epidemic. HIV surveillance occurs at maternal-child health clinics, but it is not known if pregnancy affects HIV incidence testing.We used the BED capture immunoassay (BED and an antibody avidity assay to test longitudinal samples from 51 HIV-infected Ugandan women infected with subtype A, C, D and intersubtype recombinant HIV who were enrolled in the HIVNET 012 trial (37 baseline samples collected near the time of delivery and 135 follow-up samples collected 3, 4 or 5 years later. Nineteen of 51 women were also pregnant at the time of one or more of the follow-up visits. The BED assay was performed according to the manufacturer's instructions. The avidity assay was performed using a Genetic Systems HIV-1/HIV-2 + O EIA using 0.1M diethylamine as the chaotropic agent.During the HIVNET 012 follow-up study, there was no difference in normalized optical density values (OD-n obtained with the BED assay or in the avidity test results (% when women were pregnant (n = 20 results compared to those obtained when women were not pregnant (n = 115; for BED: p = 0.9, generalized estimating equations model; for avidity: p = 0.7, Wilcoxon rank sum. In addition, BED and avidity results were almost exactly the same in longitudinal samples from the 18 women who were pregnant at only one study visit during the follow-up study (p = 0.6, paired t-test.These results from 51 Ugandan women suggest that any changes in the antibody response to HIV infection that occur during pregnancy are not sufficient to alter results obtained with the BED and avidity assays. Confirmation with larger studies and with other HIV subtypes is needed.

  9. Technical notes for the conceptual design for an atmospheric fluidized-bed direct combustion power generating plant. [570 MWe plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    The design, arrangement, thermodynamics, and economics of a 592 MW(e) (nominal gross) electric power generating plant equipped with a Babcock and Wilcox Company (B and W) atmospheric fluidized bed (AFB) boiler are described. Information is included on capital and operating costs, process systems, electrical systems, control and instrumentation, and environmental systems. This document represents a portion of an overall report describing the conceptual designs of two atmospheric fluidized bed boilers and balance of plants for the generation of electric power and the analysis and comparison of these conceptual designs to a conventional pulverized coal-fired electric power generation plant equipped with a wet limestone flue gas desulfurization system.

  10. Technical notes for the conceptual design for an atmospheric fluidized-bed direct combustion power generating plant. [570 MWe plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    The design, arrangement, thermodynamics, and economics of a 578 MW(e) (nominal gross) electric power generating plant equipped with a Foster Wheeler Energy Corporation (FWEC) atmospheric fluidized bed (AFB) boiler are described. Information is included on capital and operating costs, process systems, electrical systems, control and instrumentation, and environmental systems. This document represents a portion of an overall report describing the conceptual designs of two atmospheric fluidized bed boilers and balance of plants for the generation of electric power and the analysis and comparison of these conceptual designs to a conventional pulverized coal-fired electric power generation plant equipped with a wet limestone flue gas desulfurization system.

  11. In Situ Decommissioning Sensor Network, Meso-Scale Test Bed - Phase 3 Fluid Injection Test Summary Report

    International Nuclear Information System (INIS)

    Serrato, M. G.

    2013-01-01

    The DOE Office of Environmental management (DOE EM) faces the challenge of decommissioning thousands of excess nuclear facilities, many of which are highly contaminated. A number of these excess facilities are massive and robust concrete structures that are suitable for isolating the contained contamination for hundreds of years, and a permanent decommissioning end state option for these facilities is in situ decommissioning (ISD). The ISD option is feasible for a limited, but meaningfull number of DOE contaminated facilities for which there is substantial incremental environmental, safety, and cost benefits versus alternate actions to demolish and excavate the entire facility and transport the rubble to a radioactive waste landfill. A general description of an ISD project encompasses an entombed facility; in some cases limited to the blow-grade portion of a facility. However, monitoring of the ISD structures is needed to demonstrate that the building retains its structural integrity and the contaminants remain entombed within the grout stabilization matrix. The DOE EM Office of Deactivation and Decommissioning and Facility Engineering (EM-13) Program Goal is to develop a monitoring system to demonstrate long-term performance of closed nuclear facilities using the ISD approach. The Savannah River National Laboratory (SRNL) has designed and implemented the In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) to address the feasibility of deploying a long-term monitoring system into an ISD closed nuclear facility. The ISDSN-MSTB goal is to demonstrate the feasibility of installing and operating a remote sensor network to assess cementitious material durability, moisture-fluid flow through the cementitious material, and resulting transport potential for contaminate mobility in a decommissioned closed nuclear facility. The original ISDSN-MSTB installation and remote sensor network operation was demonstrated in FY 2011-12 at the ISDSN-MSTB test cube

  12. In Situ Decommissioning Sensor Network, Meso-Scale Test Bed - Phase 3 Fluid Injection Test Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Serrato, M. G.

    2013-09-27

    The DOE Office of Environmental management (DOE EM) faces the challenge of decommissioning thousands of excess nuclear facilities, many of which are highly contaminated. A number of these excess facilities are massive and robust concrete structures that are suitable for isolating the contained contamination for hundreds of years, and a permanent decommissioning end state option for these facilities is in situ decommissioning (ISD). The ISD option is feasible for a limited, but meaningfull number of DOE contaminated facilities for which there is substantial incremental environmental, safety, and cost benefits versus alternate actions to demolish and excavate the entire facility and transport the rubble to a radioactive waste landfill. A general description of an ISD project encompasses an entombed facility; in some cases limited to the blow-grade portion of a facility. However, monitoring of the ISD structures is needed to demonstrate that the building retains its structural integrity and the contaminants remain entombed within the grout stabilization matrix. The DOE EM Office of Deactivation and Decommissioning and Facility Engineering (EM-13) Program Goal is to develop a monitoring system to demonstrate long-term performance of closed nuclear facilities using the ISD approach. The Savannah River National Laboratory (SRNL) has designed and implemented the In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) to address the feasibility of deploying a long-term monitoring system into an ISD closed nuclear facility. The ISDSN-MSTB goal is to demonstrate the feasibility of installing and operating a remote sensor network to assess cementitious material durability, moisture-fluid flow through the cementitious material, and resulting transport potential for contaminate mobility in a decommissioned closed nuclear facility. The original ISDSN-MSTB installation and remote sensor network operation was demonstrated in FY 2011-12 at the ISDSN-MSTB test cube

  13. Small propulsion reactor design based on particle bed reactor concept

    International Nuclear Information System (INIS)

    Ludewig, H.; Lazareth, O.; Mughabghab, S.; Perkins, K.; Powell, J.R.

    1989-01-01

    In this paper Particle Bed Reactor (PBR) designs are discussed which use 233 U and /sup 242m/Am as fissile materials. A constant total power of 100MW is assumed for all reactors in this study. Three broad aspects of these reactors is discussed. First, possible reactor designs are developed, second physics calculations are outlined and discussed and third mass estimates of the various candidates reactors are made. It is concluded that reactors with a specific mass of 1 kg/MW can be envisioned of 233 U is used and approximately a quarter of this value can be achieved if /sup 242m/Am is used. If this power level is increased by increasing the power density lower specific mass values are achievable. The limit will be determined by uncertainties in the thermal-hydraulic analysis. 5 refs., 5 figs., 6 tabs

  14. ICU architectural design affects the delirium prevalence: a comparison between single-bed and multibed rooms*.

    Science.gov (United States)

    Caruso, Pedro; Guardian, Lilian; Tiengo, Tatiane; Dos Santos, Lucio Souza; Junior, Pedro Medeiros

    2014-10-01

    Delirium risk factors are related to the patients' acute and chronic clinical condition, treatment, and environment. The environmental risk factors are essentially determined by the ICU architectural design. Although there are countless architectural variations among the ICUs, all can be classified as single- or multibed rooms. Our objectives were to compare the ICU delirium prevalence and characteristics (coma/delirium-free days, first day in delirium, and delirium motoric subtypes) of critically ill patients admitted in single- or multibed rooms. Retrospective. ICU of a teaching oncologic hospital with 31 beds. Twenty-three beds distributed in one multibed room with 13 beds and other with 10 beds. Eight beds distributed in single-bed rooms. All adult patients admitted from February to November 2011. None. We evaluated 1,587 patients and included 1,253 patients. Patients' characteristics at ICU admission and their outcomes along the ICU stay were not different between patients admitted in single- or multibed rooms. One hundred sixty-three patients (13.0%) had delirium, and the prevalence was significantly lower in patients admitted in single-bed rooms (6.8% × 15.1%; p < 0.01). This lower prevalence occurred in patients admitted due to a medical (11.0% × 25.6%; p < 0.01) or postoperative (5.0% × 11.4%; p < 0.01) reason. However, the coma/delirium-free days, the first day in delirium, and the delirium motoric subtypes were not different between the single- and multibed rooms. The risk factors associated with delirium were admission in multibed rooms (odds ratio, 4.03; 95% CI, 2.13-7.62), older age, ICU-acquired infection, and higher Simplified Acute Physiology Score 3 and Sequential Organ Failure Assessment score. Critically ill patients admitted in single-bed rooms have a lower prevalence of delirium than those admitted in multibed rooms. However, coma/delirium-free days, first day in delirium, and motoric subtypes were not different.

  15. Design of a power conversion system for an indirect cycle, helium cooled pebble bed reactor system

    International Nuclear Information System (INIS)

    Wang, C.; Ballinger, R.G.; Stahle, P.W.; Demetri, E.; Koronowski, M.

    2002-01-01

    A design is presented for the turbomachinery for an indirect cycle, closed, helium cooled modular pebble bed reactor system. The design makes use of current technology and will operate with an overall efficiency of 45%. The design uses an intermediate heat exchanger which isolated the reactor cycle from the turbomachinery. This design excludes radioactive fission products from the turbomachinery. This minimizes the probability of an air ingress accident and greatly simplifies maintenance. (author)

  16. Evaluation of a clay-based acidic bedding conditioner for dairy cattle bedding.

    Science.gov (United States)

    Proietto, R L; Hinckley, L S; Fox, L K; Andrew, S M

    2013-02-01

    This study investigated the effects of a clay-based acidic bedding conditioner on sawdust bedding pH, dry matter (DM), environmental pathogen counts, and environmental bacterial counts on teat ends of lactating dairy cows. Sixteen lactating Holstein cows were paired based on parity, days in milk, milk yield, and milk somatic cell count, and were negative for the presence of an intramammary pathogen. Within each pair, cows were randomly assigned to 1 of 2 treatments with 3-wk periods in a crossover design. Treatment groups consisted of 9 freestalls per group bedded with either untreated sawdust or sawdust with a clay-based acidic bedding conditioner, added at 3- to 4-d intervals over each 21-d period. Bedding and teat ends were aseptically sampled on d 0, 1, 2, 7, 14, and 21 for determination of environmental bacterial counts. At the same time points, bedding was sampled for DM and pH determination. The bacteria identified in the bedding material were total gram-negative bacteria, Streptococcus spp., and coliform bacteria. The bacteria identified on the teat ends were Streptococcus spp., coliform bacteria, and Klebsiella spp. Teat end score, milk somatic cell count, and intramammary pathogen presence were measured weekly. Bedding and teat cleanliness, environmental high and low temperatures, and dew point data were collected daily. The bedding conditioner reduced the pH, but not the DM, of the sawdust bedding compared with untreated sawdust. Overall environmental bacterial counts in bedding were lower for treated sawdust. Total bacterial counts in bedding and on teat ends increased with time over both periods. Compared with untreated sawdust, the treated bedding had lower counts of total gram-negative bacteria and streptococci, but not coliform counts. Teat end bacterial counts were lower for cows bedded on treated sawdust for streptococci, coliforms, and Klebsiella spp. compared with cows bedded on untreated sawdust. The clay-based acidic bedding conditioner

  17. DNA-induced inter-particle cross-linking during expanded bed adsorption chromatography - Impact on future support design

    DEFF Research Database (Denmark)

    Theodossiou, Irini; Thomas, Owen R. T.

    2002-01-01

    (M(r)similar to50 000) and the other with long dextran (M(r)similar to500000) chains weakly derivatised with DEAE. However, the ability of the surfaces of these two matrices to bring about bed contraction, was strikingly different. The highly charged surface afforded by coupling of polyethyleneimine...... exhibited a three-fold higher tendency to interact with neighbouring particles in the presence of DNA than that of the dextran DEAE support. The implications of these findings on the design of future expanded bed materials for separation of both proteins and nucleic acids are discussed....

  18. CAREM 25: Design of resin bed for purification and boron removal systems

    International Nuclear Information System (INIS)

    Chocron, Mauricio; Iglesias, Alberto M.; Jimenez Rebagliati, Raul; Raffo Calderon, Maria C.; La Gamma, Ana M.

    2000-01-01

    The purification of the water the primary coolant of a water cooled nuclear reactor as well as the water of many auxiliary systems is controlled by the use of ion exchange resins. In the present paper, the resin beds for three different systems are specified: the purification and control volume system, the suppression pool water and the spent fuel pool water for the reactor CAREM-25. In all cases the dimensioning calculations have been done taking in consideration the amount of contaminants and corrosion products generated under normal operation or post-accident. Also, the results have been contrasted with the experience of the nuclear power plants in operation in Argentina, international design criteria and international standards. For the primary coolant, the boron-removal beds have been sized and an estimation of the maximum dose received by the resins have been calculated. It have been found that the result is well below the damaging threshold reported in the literature. (author)

  19. DARPA Antibody Technology Program. Standardized Test Bed for Antibody Characterization: Characterization of an MS2 ScFv Antibody Produced by Illumina

    Science.gov (United States)

    2016-08-01

    ECBC-TR-1395 DARPA ANTIBODY TECHNOLOGY PROGRAM STANDARDIZED TEST BED FOR... ANTIBODY CHARACTERIZATION: CHARACTERIZATION OF AN MS2 SCFV ANTIBODY PRODUCED BY ILLUMINA Patricia E. Buckley Alena M. Calm Heather Welsh Roy...4. TITLE AND SUBTITLE DARPA Antibody Technology Program Standardized Test Bed for Antibody Characterization: Characterization of an MS2 ScFv

  20. Optimized Core Design and Fuel Management of a Pebble-Bed Type Nuclear Reactor

    International Nuclear Information System (INIS)

    Boer, Brian

    2007-01-01

    The Very High Temperature Reactor (VHTR) has been selected by the international Generation IV research initiative as one of the six most promising nuclear reactor concepts that are expected to enter service in the second half of the 21st century. The VHTR is characterized by a high plant efficiency and a high fuel discharge burnup level. More specifically, the (pebble-bed type) High Temperature Reactor (HTR) is known for its inherently safe characteristics, coming from a negative temperature reactivity feedback, a low power density and a large thermal inertia of the core. The core of a pebble-bed reactor consists of graphite spheres (pebbles) that form a randomly packed porous bed, which is cooled by high pressure helium. The pebbles contain thousands of fuel particles, which are coated with several pyrocarbon and silicon carbon layers that are designed to contain the fission products that are formed during operation of the reactor. The inherent safety concept has been demonstrated in small pebble-bed reactors in practice, but an increase in the reactor size and power is required for cost-effective power production. An increase of the power density in order to increase the helium coolant outlet temperature is attractive with regard to the efficiency and possible process heat applications. However, this increase leads in general to higher fuel temperatures, which could lead to a consequent increase of the fuel coating failure probability. This thesis deals with the pebble-bed type VHTR that aims at an increased coolant outlet temperature of 1000 degrees C and beyond. For the simulation of the neutronic and thermal-hydraulic behavior of the reactor the DALTON-THERMIX coupled code system has been developed and has been validated against experiments performed in the AVR and HTR-10 reactors. An analysis of the 400 MWth Pebble Bed Modular Reactor (PBMR) design shows that the inherent safety concept that has been demonstrated in practice in the smaller AVR and HTR-10

  1. Design and development of an intelligent nursing bed - a pilot project of "joint assignment".

    Science.gov (United States)

    Jiehui Jiang; Tingwei Liu; Yuting Zhang; Yu Song; Mi Zhou; Xiaosong Zheng; Zhuangzhi Yan

    2017-07-01

    The "joint assignment" is a creative bachelor education project for Biomedical Engineering (BME) in Shanghai University (SHU), China. The objective of this project is to improve students' capabilities in design thinking and teamwork through practices in the process of the design and development of complex medical product. As the first step, a pilot project "design and development of intelligent nursing bed" was set up in May 2015. This paper describes details of how project organization and management, various teaching methods and scientific evaluation approaches were achieved in this pilot project. For example, a method containing one main line and four branches is taken to manage the project and "prototyping model" was used as the main research approach. As a result a multi-win situation was achieved. The results showed, firstly, 62 bachelor students including 16 BME students were well trained. They improved themselves in use of practical tools, communication skills and scientific writing; Secondly, commercial companies received a nice product design on intelligent nursing bed, and have been working on industrializing it; Thirdly, the university and associated schools obtained an excellent practical education experience to supplement traditional class education; Fourthly and most importantly, requirements from end-users will be met. The results also showed that the "joint assignment" task could become a significant component in BME bachelor education.

  2. Performance of a full-scale ITER metal hydride storage bed in comparison with requirements

    International Nuclear Information System (INIS)

    Beloglazov, S.; Glugla, M.; Fanghaenel, E.; Perevezentsev, A.; Wagner, R.

    2008-01-01

    The storage of hydrogen isotopes as metal hydride is the technique chosen for the ITER Tritium Plant Storage and Delivery System (SDS). A prototype storage bed of a full-scale has been designed, manufactured and intensively tested at the Tritium Laboratory, addressing main performance parameters specified for the ITER application. The main requirements for the hydrogen storage bed are a strict physical limitation of the tritium storage capacity (currently 70 g T 2 ), a high supply flow rate of hydrogen isotopes, in-situ calorimetry capabilities with an accuracy of 1 g and a fully tritium compatible design. The pressure composition isotherm of the ZrCo hydrogen system, as a reference material for ITER, is characterised by significant slope. As a result technical implementation of the ZrCo hydride bed in the SDS system requires further considerations. The paper presents the experience from the operation of ZrCo getter bed including loading/de-loading operation, calorimetric loop performance, and active gas cooling of the bed for fast absorption operation. The implications of hydride material characteristics on the SDS system configuration and design are discussed. (authors)

  3. New proposition on performance evaluation of hydrophobic Pt catalyst packed in trickle bed

    International Nuclear Information System (INIS)

    Shimizu, Masami; Kitamoto, Asashi; Takashima, Yoichi.

    1983-01-01

    On the evaluation of the performance of the hydrophobic Pt catalyst packed in the trickle-bed test column, the conventionally defined (Ksub(y)a) and the newly defined (Ksub(f))sub (G) are compared with each other as a measure of the overall D-transfer coefficient. The value of (Ksub(y)a) varies in a wide range in accordance with the length of the test column. On the other hand (Ksub(f))sub (G sub (l = L)) has a finite value in the test column longer than about 0.5 m. By considering the values of ksub(g) and ksub(l) which are the constituents of (Ksub(f))sub (G), it is possible to improve the hydrophobic Pt catalyst trickle bed and to design the H 2 /H 2 O-isotopic exchange trickle-bed column packed with this catalyst. (author)

  4. Literature review for Texas Department of Transportation Research Project 0-4695: Guidance for design in areas of extreme bed-load mobility, Edwards Plateau, Texas

    Science.gov (United States)

    Heitmuller, Franklin T.; Asquith, William H.; Fang, Xing; Thompson, David B.; Wang, Keh-Han

    2005-01-01

    A review of the literature addressing sediment transport in gravel-bed river systems and structures designed to control bed-load mobility is provided as part of Texas Department of Transportation research project 0–4695: Guidance for Design in Areas of Extreme Bed-Load Mobility. The study area comprises the western half of the Edwards Plateau in central Texas. Three primary foci of the literature review are journal articles, edited volumes, and government publications. Major themes within the body of literature include deterministic sediment transport theory and equations, development of methods to measure and analyze fluvial sediment, applications and development of theory in natural channels and flume experiments, and recommendations for river management and structural design. The literature review provides an outline and foundation for the research project to characterize extreme bed-load mobility in rivers and streams across the study area. The literature review also provides a basis upon which potential modifications to low-water stream-crossing design in the study area can be made.

  5. Body Unloading Associated with Space Flight and Bed-rest Impacts Functional Performance

    Science.gov (United States)

    Bloomberg, J. J.; Ballard, K. L.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.; hide

    2014-01-01

    The goal of the Functional Task Test study is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We are currently conducting studies on both ISS crewmembers and on subjects experiencing 70 days of 6 degrees head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. This allows us to parse out the contribution of the body unloading component on functional performance. In this on-going study both ISS crewmembers and bed-rest subjects were tested using an interdisciplinary protocol that evaluated functional performance and related physiological changes before and after 6 months in space and 70 days of 6? head-down bed-rest, respectively. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall, and object translation tasks. Crewmembers were tested three times before flight, and on 1, 6 and 30 days after landing. Bed-rest subjects were tested three times before bed-rest and immediately after getting up from bed-rest as well as 1, 6 and 12 days after reambulation. A comparison of bed-rest and space flight data showed a significant concordance in performance changes across all functional tests. Tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with

  6. Test bed for real-time image acquisition and processing systems based on FlexRIO, CameraLink, and EPICS

    International Nuclear Information System (INIS)

    Barrera, E.; Ruiz, M.; Sanz, D.; Vega, J.; Castro, R.; Juárez, E.; Salvador, R.

    2014-01-01

    Highlights: • The test bed allows for the validation of real-time image processing techniques. • Offers FPGA (FlexRIO) image processing that does not require CPU intervention. • Is fully compatible with the architecture of the ITER Fast Controllers. • Provides flexibility and easy integration in distributed experiments based on EPICS. - Abstract: Image diagnostics are becoming standard ones in nuclear fusion. At present, images are typically analyzed off-line. However, real-time processing is occasionally required (for instance, hot-spot detection or pattern recognition tasks), which will be the objective for the next generation of fusion devices. In this paper, a test bed for image generation, acquisition, and real-time processing is presented. The proposed solution is built using a Camera Link simulator, a Camera Link frame-grabber, a PXIe chassis, and offers software interface with EPICS. The Camera Link simulator (PCIe card PCIe8 DVa C-Link from Engineering Design Team) generates simulated image data (for example, from video-movies stored in fusion databases) using a Camera Link interface to mimic the frame sequences produced with diagnostic cameras. The Camera Link frame-grabber (FlexRIO Solution from National Instruments) includes a field programmable gate array (FPGA) for image acquisition using a Camera Link interface; the FPGA allows for the codification of ad-hoc image processing algorithms using LabVIEW/FPGA software. The frame grabber is integrated in a PXIe chassis with system architecture similar to that of the ITER Fast Controllers, and the frame grabber provides a software interface with EPICS to program all of its functionalities, capture the images, and perform the required image processing. The use of these four elements allows for the implementation of a test bed system that permits the development and validation of real-time image processing techniques in an architecture that is fully compatible with that of the ITER Fast Controllers

  7. Suspended-Bed Reactor preliminary design, 233U--232Th cycle. Final report (revised)

    International Nuclear Information System (INIS)

    Karam, R.A.; Alapour, A.; Lee, C.C.

    1977-11-01

    The preliminary design Suspended-Bed Reactor is described. Coated particles about 2 mm in diameter are used as the fuel. The coatings consist of three layers: (1) low density pyrolytic graphite, 70 μ thick, (2) silicon carbide pressure vessel, 30 μ thick, and (3) ZrC layer, 50 μ thick, to protect the pressure vessel from moisture and oxygen. The fuel kernel can be either uranium-thorium dicarbide or metal. The coated particles are suspended by helium gas (coolant) in a cluster of pressurized tubes. The upward flow of helium fluidizes the coated particles. As the flow rate increases, the bed of particles is lifted upward to the core section. The particles are restrained at the upper end of the core by a suitable screen. The overall particle density in the core is just enough for criticality condition. Should the helium flow cease, the bed in the core section will collapse, and the particles will flow downward into the section where the increased physical spacings among the tubes brings about a safe shutdown. By immersing this section of the tubes in a large graphite block to serve as a heat sink, dissipation of decay heat becomes manageable. This eliminates the need for emergency core cooling systems

  8. Test-bed for the remote health monitoring system for bridge structures using FBG sensors

    Science.gov (United States)

    Lee, Chin-Hyung; Park, Ki-Tae; Joo, Bong-Chul; Hwang, Yoon-Koog

    2009-05-01

    This paper reports on test-bed for the long-term health monitoring system for bridge structures employing fiber Bragg grating (FBG) sensors, which is remotely accessible via the web, to provide real-time quantitative information on a bridge's response to live loading and environmental changes, and fast prediction of the structure's integrity. The sensors are attached on several locations of the structure and connected to a data acquisition system permanently installed onsite. The system can be accessed through remote communication using an optical cable network, through which the evaluation of the bridge behavior under live loading can be allowed at place far away from the field. Live structural data are transmitted continuously to the server computer at the central office. The server computer is connected securely to the internet, where data can be retrieved, processed and stored for the remote web-based health monitoring. Test-bed revealed that the remote health monitoring technology will enable practical, cost-effective, and reliable condition assessment and maintenance of bridge structures.

  9. Design and development of fluidized bed reactor system for production of trichlorosilane as a precursor for high purity silicon

    International Nuclear Information System (INIS)

    Kumar, Rajesh; Mohan, Sadhana; Bhanja, K.; Nayak, S.; Bhattacharya, S.K.

    2009-01-01

    Trichlorosilane is widely used as precursor material for production of high purity silicon. It is mainly produced by reaction of metallurgical grade silicon with anhydrous HCl gas in a fluidized bed reactor. To develop this process on commercial scale a pilot size fluidized bed reactor system was designed and developed and successfully operated. This paper discusses the critical issues related to these activities. (author)

  10. Hydrodynamics of a hybrid circulating fluidized bed reactor with a partitioned loop seal system

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Dal-Hee; Moon, Jong-Ho; Jin, Gyoung Tae; Shun, Dowon [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Yun, Minyoung; Park, Chan Seung; Norbeck, Joseph M. [University of California, Riverside (United States)

    2015-07-15

    A circulating fluidized bed (CFB) with a hybrid design has been developed and optimized for steam hydrogasification. The hybrid CFB is composed of a bubbling fluidized bed (BFB) type combustor and a fast fluidized bed (FB) type gasifier. Char is burnt in the combustor and the generated heat is supplied to the gasifier along with the bed materials. Two different types of fluidized beds are connected to each other with a newly developed partitioned loop seal to avoid direct contact between two separate gas streams flowing in each fluidized bed. Gas mixing tests were carried out with Air and Argon in a cold model hybrid CFB to test the loop seal efficiency. Increase in solid inventory in the loop seal can improve the gas separation efficiency. It can be realized at higher gas velocity in fast bed and with higher solid inventory in the loop seal system. In addition, bed hydrodynamics was investigated with varying gas flow conditions and particle sizes in order to obtain a full understanding of changes of solid holdup in the FB. The solid holdup in the FB increased with increasing gas velocity in the BFB. Conversely, increase in gas velocity in the FB contributed to reducing the solid holdup in the FB. It was observed that changing the particle size of bed material does not have a big impact on hydrodynamic parameters.

  11. Hydrodynamics of a hybrid circulating fluidized bed reactor with a partitioned loop seal system

    International Nuclear Information System (INIS)

    Bae, Dal-Hee; Moon, Jong-Ho; Jin, Gyoung Tae; Shun, Dowon; Yun, Minyoung; Park, Chan Seung; Norbeck, Joseph M.

    2015-01-01

    A circulating fluidized bed (CFB) with a hybrid design has been developed and optimized for steam hydrogasification. The hybrid CFB is composed of a bubbling fluidized bed (BFB) type combustor and a fast fluidized bed (FB) type gasifier. Char is burnt in the combustor and the generated heat is supplied to the gasifier along with the bed materials. Two different types of fluidized beds are connected to each other with a newly developed partitioned loop seal to avoid direct contact between two separate gas streams flowing in each fluidized bed. Gas mixing tests were carried out with Air and Argon in a cold model hybrid CFB to test the loop seal efficiency. Increase in solid inventory in the loop seal can improve the gas separation efficiency. It can be realized at higher gas velocity in fast bed and with higher solid inventory in the loop seal system. In addition, bed hydrodynamics was investigated with varying gas flow conditions and particle sizes in order to obtain a full understanding of changes of solid holdup in the FB. The solid holdup in the FB increased with increasing gas velocity in the BFB. Conversely, increase in gas velocity in the FB contributed to reducing the solid holdup in the FB. It was observed that changing the particle size of bed material does not have a big impact on hydrodynamic parameters

  12. Experimental investigation on feasibility of two-region-designed pebble-bed high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Yang Xingtuan; Hu Wenping; Jiang Shengyao

    2009-01-01

    Phenomenological experiments were performed on a 2-dimensional scaled model of the two-region designed pebble-bed high-temperature gas-cooled reactor core consisting of the distinct fuel pebble region and graphite pebble region. Issues with respect to the feasibility of the two-region design, including the establishment of the two-region arrangement, the mixing zone between the two regions, and the stagnant zone existence, were investigated. Three equilibrium conditions were proposed to evaluate the stable two-region arrangement formation. The general characteristics of the flow of the pebble bed were analyzed on basis of the observed phenomenon. It was found that a stable two-region arrangement was formed under the experimental conditions: the pebbles' motion was to some extent random but also confined by the neighbors of pebbles so that the mixing zone is constrained to a reasonable size. Guide plates utilized to improve mixing are proved to be effective without noticeable effect on the two-region arrangement features. Stagnant zones were observed under the experimental conditions and they were expected to be avoided by improving the design of the experimental setup. (author)

  13. Retrofit design of rice husk feeding system in the production of amorphous silica ash in a pilot scale fluidized bed combustor

    International Nuclear Information System (INIS)

    Abdul, A.; Rozainee, M.; Anwar, J.; Wan Alwi, R.S.

    2010-01-01

    Full text: Rice husk is among the most important recovery resources for silica that is produced annually in huge quantities in many countries such as Malaysia which produces 2.38 (MT) of rice paddy. Rice husks accounts for 14-35 % of the weight of the paddy harvested, depending on the paddy variety and because of its abundance it poses serious environmental problems in the rice producing countries. Therefore, the thermo-chemical conversion of rice husks to useful silica ash by fluidized bed combustion is the proven and cost-effective technology for converting the renewable waste husks by making commercial use of this rice husk ash because of its self sustaining ability. However, feeding of rice husk into the reactor bed has become a difficult problem hindering the production of amorphous silica. This is due to the poor penetration and low bulk density as well as the flaky, abrasive and joined nature of rice husk. Most of the researches into fluidized bed combustion are on laboratory or bench scale and none had discussed pilot scale combustion of rice husk into amorphous silica. A recent attempt to solve this feeding problem from an experimental investigation in a bench-scale culminates into a pilot-scale fluidized bed combustor designed with a combined screw conveyor and an inclined pneumatic feeding by direct injection, yet the problem persists. This paper presents a retrofit design of the existing 0.5 m internal diameter pilot scale fluidized bed combustor by the use of combined screw feeding system. It is envisaged that at the end of the experimental investigation the retrofit design will address the problem associated with rice husk feeding in bubbling fluidized bed combustors. (author)

  14. A Method to Derive Monitoring Variables for a Cyber Security Test-bed of I and C System

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kyung Soo; Song, Jae Gu; Lee, Joung Woon; Lee, Cheol Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In the IT field, monitoring techniques have been developed to protect the systems connected by networks from cyber attacks and incidents. For the development of monitoring systems for I and C cyber security, it is necessary to review the monitoring systems in the IT field and derive cyber security-related monitoring variables among the proprietary operating information about the I and C systems. Tests for the development and application of these monitoring systems may cause adverse effects on the I and C systems. To analyze influences on the system and safely intended variables, the construction of an I and C system Test-bed should be preceded. This article proposes a method of deriving variables that should be monitored through a monitoring system for cyber security as a part of I and C Test-bed. The surveillance features and the monitored variables of NMS(Network Management System), a monitoring technique in the IT field, were reviewed in section 2. In Section 3, the monitoring variables for an I and C cyber security were derived by the of NMS and the investigation for information used for hacking techniques that can be practiced against I and C systems. The monitoring variables of NMS in the IT field and the information about the malicious behaviors used for hacking were derived as expected variables to be monitored for an I and C cyber security research. The derived monitoring variables were classified into the five functions of NMS for efficient management. For the cyber security of I and C systems, the vulnerabilities should be understood through a penetration test etc. and an assessment of influences on the actual system should be carried out. Thus, constructing a test-bed of I and C systems is necessary for the safety system in operation. In the future, it will be necessary to develop a logging and monitoring system for studies on the vulnerabilities of I and C systems with test-beds.

  15. A Method to Derive Monitoring Variables for a Cyber Security Test-bed of I and C System

    International Nuclear Information System (INIS)

    Han, Kyung Soo; Song, Jae Gu; Lee, Joung Woon; Lee, Cheol Kwon

    2013-01-01

    In the IT field, monitoring techniques have been developed to protect the systems connected by networks from cyber attacks and incidents. For the development of monitoring systems for I and C cyber security, it is necessary to review the monitoring systems in the IT field and derive cyber security-related monitoring variables among the proprietary operating information about the I and C systems. Tests for the development and application of these monitoring systems may cause adverse effects on the I and C systems. To analyze influences on the system and safely intended variables, the construction of an I and C system Test-bed should be preceded. This article proposes a method of deriving variables that should be monitored through a monitoring system for cyber security as a part of I and C Test-bed. The surveillance features and the monitored variables of NMS(Network Management System), a monitoring technique in the IT field, were reviewed in section 2. In Section 3, the monitoring variables for an I and C cyber security were derived by the of NMS and the investigation for information used for hacking techniques that can be practiced against I and C systems. The monitoring variables of NMS in the IT field and the information about the malicious behaviors used for hacking were derived as expected variables to be monitored for an I and C cyber security research. The derived monitoring variables were classified into the five functions of NMS for efficient management. For the cyber security of I and C systems, the vulnerabilities should be understood through a penetration test etc. and an assessment of influences on the actual system should be carried out. Thus, constructing a test-bed of I and C systems is necessary for the safety system in operation. In the future, it will be necessary to develop a logging and monitoring system for studies on the vulnerabilities of I and C systems with test-beds

  16. Particle Bed Reactor scaling relationships

    International Nuclear Information System (INIS)

    Slovik, G.; Araj, K.; Horn, F.L.; Ludewig, H.; Benenati, R.

    1987-01-01

    Scaling relationships for Particle Bed Reactors (PBRs) are discussed. The particular applications are short duration systems, i.e., for propulsion or burst power. Particle Bed Reactors can use a wide selection of different moderators and reflectors and be designed for such a wide range of power and bed power densities. Additional design considerations include the effect of varying the number of fuel elements, outlet Mach number in hot gas channel, etc. All of these variables and options result in a wide range of reactor weights and performance. Extremely light weight reactors (approximately 1 kg/MW) are possible with the appropriate choice of moderator/reflector and power density. Such systems are very attractive for propulsion systems where parasitic weight has to be minimized

  17. HIV incidence in rural South Africa: comparison of estimates from longitudinal surveillance and cross-sectional cBED assay testing.

    Directory of Open Access Journals (Sweden)

    Till Bärnighausen

    Full Text Available The BED IgG-Capture Enzyme Immunoassay (cBED assay, a test of recent HIV infection, has been used to estimate HIV incidence in cross-sectional HIV surveys. However, there has been concern that the assay overestimates HIV incidence to an unknown extent because it falsely classifies some individuals with non-recent HIV infections as recently infected. We used data from a longitudinal HIV surveillance in rural South Africa to measure the fraction of people with non-recent HIV infection who are falsely classified as recently HIV-infected by the cBED assay (the long-term false-positive ratio (FPR and compared cBED assay-based HIV incidence estimates to longitudinally measured HIV incidence.We measured the long-term FPR in individuals with two positive HIV tests (in the HIV surveillance, 2003-2006 more than 306 days apart (sample size n = 1,065. We implemented four different formulae to calculate HIV incidence using cBED assay testing (n = 11,755 and obtained confidence intervals (CIs by directly calculating the central 95(th percentile of incidence values. We observed 4,869 individuals over 7,685 person-years for longitudinal HIV incidence estimation. The long-term FPR was 0.0169 (95% CI 0.0100-0.0266. Using this FPR, the cross-sectional cBED-based HIV incidence estimates (per 100 people per year varied between 3.03 (95% CI 2.44-3.63 and 3.19 (95% CI 2.57-3.82, depending on the incidence formula. Using a long-term FPR of 0.0560 based on previous studies, HIV incidence estimates varied between 0.65 (95% CI 0.00-1.32 and 0.71 (95% CI 0.00-1.43. The longitudinally measured HIV incidence was 3.09 per 100 people per year (95% CI 2.69-3.52, after adjustment to the sex-age distribution of the sample used in cBED assay-based estimation.In a rural community in South Africa with high HIV prevalence, the long-term FPR of the cBED assay is substantially lower than previous estimates. The cBED assay performs well in HIV incidence estimation if the locally

  18. Test-bed Assessment of Communication Technologies for a Power-Balancing Controller

    DEFF Research Database (Denmark)

    Findrik, Mislav; Pedersen, Rasmus; Hasenleithner, Eduard

    2016-01-01

    and control. In this paper, we present a Smart Grid test-bed that integrates various communication technologies and deploys a power balancing controller for LV grids. Control performance of the introduced power balancing controller is subsequently investigated and its robustness to communication network cross......Due to growing need for sustainable energy, increasing number of different renewable energy resources are being connected into distribution grids. In order to efficiently manage a decentralized power generation units, the smart grid will rely on communication networks for information exchange...

  19. In-pile test of Li{sub 2}TiO{sub 3} pebble bed with neutron pulse operation

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, K. E-mail: tsuchiya@oarai.jaeri.go.jp; Nakamichi, M.; Kikukawa, A.; Nagao, Y.; Enoeda, M.; Osaki, T.; Ioki, K.; Kawamura, H

    2002-12-01

    Lithium titanate (Li{sub 2}TiO{sub 3}) is one of the candidate materials as tritium breeder in the breeding blanket of fusion reactors, and it is necessary to show the tritium release behavior of Li{sub 2}TiO{sub 3} pebble beds. Therefore, a blanket in-pile mockup was developed and in situ tritium release experiments with the Li{sub 2}TiO{sub 3} pebble bed were carried out in the Japan Materials Testing Reactor. In this study, the relationship between tritium release behavior from Li{sub 2}TiO{sub 3} pebble beds and effects of various parameters were evaluated. The (R/G) ratio of tritium release (R) and tritium generation (G) was saturated when the temperature at the outside edge of the Li{sub 2}TiO{sub 3} pebble bed became 300 deg. C. The tritium release amount increased cycle by cycle and saturated after about 20 pulse operations.

  20. Strain gauge validation experiments for the Sandia 34-meter VAWT (Vertical Axis Wind Turbine) test bed

    Science.gov (United States)

    Sutherland, Herbert J.

    1988-08-01

    Sandia National Laboratories has erected a research oriented, 34- meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas. This machine, designated the Sandia 34-m VAWT Test Bed, is equipped with a large array of strain gauges that have been placed at critical positions about the blades. This manuscript details a series of four-point bend experiments that were conducted to validate the output of the blade strain gauge circuits. The output of a particular gauge circuit is validated by comparing its output to equivalent gauge circuits (in this stress state) and to theoretical predictions. With only a few exceptions, the difference between measured and predicted strain values for a gauge circuit was found to be of the order of the estimated repeatability for the measurement system.

  1. Dual Testing Algorithm of BED-CEIA and AxSYM Avidity Index Assays Performs Best in Identifying Recent HIV Infection in a Sample of Rwandan Sex Workers

    NARCIS (Netherlands)

    Braunstein, Sarah L.; Nash, Denis; Kim, Andrea A.; Ford, Ken; Mwambarangwe, Lambert; Ingabire, Chantal M.; Vyankandondera, Joseph; van de Wijgert, Janneke H. H. M.

    2011-01-01

    To assess the performance of BED-CEIA (BED) and AxSYM Avidity Index (Ax-AI) assays in estimating HIV incidence among female sex workers (FSW) in Kigali, Rwanda. Eight hundred FSW of unknown HIV status were HIV tested; HIV-positive women had BED and Ax-AI testing at baseline and ≥12 months later to

  2. Fluidized bed dry dense medium coal beneficiation

    CSIR Research Space (South Africa)

    North, Brian C

    2017-10-01

    Full Text Available medium beneficiation using a fluidized bed was investigated. Bed materials of sand, magnetite and ilmenite were used in a laboratory sized cylindrical fluidized bed. The materials were individually tested, as were mixes of sand and heavy minerals. Coal...

  3. Fixed-bed gasifier and cleanup system engineering summary report through Test Run No. 100

    Energy Technology Data Exchange (ETDEWEB)

    Pater, K. Jr.; Headley, L.; Kovach, J.; Stopek, D.

    1984-06-01

    The state-of-the-art of high-pressure, fixed-bed gasification has been advanced by the many refinements developed over the last 5 years. A novel full-flow gas cleanup system has been installed and tested to clean coal-derived gases. This report summarizes the results of tests conducted on the gasifier and cleanup system from its inception through 1982. Selected process summary data are presented along with results from complementary programs in the areas of environmental research, process simulation, analytical methods development, and component testing. 20 references, 32 figures, 42 tables.

  4. Separate effects tests to determine the thermal dispersion in structured pebble beds in the PBMR HPTU test facility

    Energy Technology Data Exchange (ETDEWEB)

    Toit, C.G. du, E-mail: jat.dutoit@nwu.ac.za; Rousseau, P.G.; Kgame, T.L.

    2014-05-01

    Thermal-fluid simulations are used extensively to predict the maximum fuel temperatures, flows, pressure drops and thermal capacitance of pebble bed gas cooled reactors in support of the reactor safety case. The PBMR company developed the HTTF test facility in cooperation with M-Tech Industrial (Pty) Ltd. and the North-West University in South Africa to conduct comprehensive separate effects tests as well as integrated effects tests to study the different thermal-fluid phenomena. This paper describes the separate effects tests that were conducted to determine the effect of the porous structure on the fluid effective thermal conductivity due to the thermal dispersion. It also presents the methodology applied in the data analysis to derive the resultant values of the effective thermal conductivity and its associated uncertainty.

  5. Alternatives for metal hydride storage bed heating and cooling

    International Nuclear Information System (INIS)

    Fisher, I.A.; Ramirez, F.B.; Koonce, J.E.; Ward, D.E.; Heung, L.K.; Weimer, M.; Berkebile, W.; French, S.T.

    1991-01-01

    The reaction of hydrogen isotopes with the storage bed hydride material is exothermic during absorption and endothermic during desorption. Therefore, storage bed operation requires a cooling system to remove heat during absorption, and a heating system to add the heat needed for desorption. Three storage bed designs and their associated methods of heating and cooling and accountability are presented within. The first design is the current RTF (Replacement Tritium Facility) nitrogen heating and cooling system. The second design uses natural convection cooling with ambient glove box nitrogen and electrical resistance for heating. This design is referred to as the Naturally Cooled/Electrically Heated (NCEH) design. The third design uses forced convection cooling with ambient glove box nitrogen and electrical resistance for heating. The design is referred to as the Forced Convection Cooled/Electrically Heated (FCCEH) design. In this report the operation, storage bed design, and equipment required for heating, cooling, and accountability of each design are described. The advantages and disadvantages of each design are listed and discussed. Based on the information presented within, it is recommended that the NCEH design be selected for further development

  6. A new method to quantify fluidized bed agglomeration in the combustion of biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, M. [Umeaa Univ. (Sweden). Dept. of Chemistry

    1997-12-31

    The present licentiate thesis is a summary and discussion of four papers, dealing with the development, evaluation and use of a new method to quantify bed agglomeration tendencies for biomass fuels. An increased utilization of biomass related fuels has many environmental benefits, but also requires careful studies of potential new problems associated with these fuels such as bed agglomeration/defluidization during combustion and gasification in fluidized beds. From a thorough literature survey, no suitable methods to determine bed agglomeration tendencies of different fuels, fuel combinations or fuels with additives appeared to be available. It therefore seemed of considerable interest to develop a new method for the quantification of fluidized bed agglomeration tendencies for different fuels. A bench scale fluidized bed reactor (5 kW), specially designed to obtain a homogeneous isothermal bed temperature, is used. The method is based on controlled increase of the bed temperature by applying external heat to the primary air and to the bed section walls. The initial agglomeration temperature is determined by on- or off-line principal component analysis of the variations in measured bed temperatures and differential pressures. Samples of ash and bed material for evaluation of agglomeration mechanisms may also be collected throughout the operation. To determine potential effects of all the process related variables on the determined fuel specific bed agglomeration temperature, an extensive sensitivity analysis was performed according to a statistical experimental design. The results showed that the process variables had only relatively small effects on the agglomeration temperature, which could be determined to 899 deg C with a reproducibility of {+-} 5 deg C (STD). The inaccuracy was determined to be {+-} 30 deg C (STD). The method was also used to study the mechanism of both bed agglomeration using two biomass fuels and prevention of bed agglomeration by co

  7. Design, Development and Hotfire Testing of Monolithic Copper and Bimetallic Additively Manufactured Combustion Chambers

    Science.gov (United States)

    Gradl, Paul; Barnett, Greg; Brandsmeier, Will; Greene, Sandy Elam; Protz, Chris

    2016-01-01

    NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM) otherwise commonly referred to as additive manufacturing. The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for the GRCop-84 copper-alloy commensurate with powder bed additive manufacturing, evaluate bimetallic deposition and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. As a direct spin off of this program, NASA is working with industry partners to further develop the printing process for the GRCop-84 material in addition to the C-18150 (CuCrZr) material. To advance the process further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic additively manufactured chambers. A 1.2k sized thrust-chamber was designed and developed to compare the printing process of the GRCop-84 and C-18150 SLM materials. A series of similar MCC liners also completed development with an Inconel 625 jacket bonded to the GRcop-84 liner evaluating direct metal deposition (DMD) laser and arc-based techniques. This paper describes the design, development, manufacturing and testing of these combustion chambers and associated lessons learned throughout the design and development process.

  8. Improvement of non destructive infrared test bed SATIR for examination of actively cooled tungsten armour Plasma Facing Components

    Energy Technology Data Exchange (ETDEWEB)

    Vignal, N., E-mail: nicolas.vignal@cea.fr; Desgranges, C.; Cantone, V.; Richou, M.; Courtois, X.; Missirlian, M.; Magaud, Ph.

    2013-10-15

    Highlights: • Non destructive infrared techniques for control ITER like PFCs. • Reflective surface such as W induce a measurement temperature error. • Numerical data processing by evaluation of the local emissivity. • SATIR test bed can control metallic surface with low and variable emissivity. -- Abstract: For steady state (magnetic) thermonuclear fusion devices which need large power exhaust capability and have to withstand heat fluxes in the range 10–20 MW m{sup −2}, advanced Plasma Facing Components (PFCs) have been developed. The importance of PFCs for operating tokamaks requests to verify their manufacturing quality before mounting. SATIR is an IR test bed validated and recognized as a reliable and suitable tool to detect cooling defaults on PFCs with CFC armour material. Current tokamak developments implement metallic armour materials for first wall and divertor; their low emissivity causes several difficulties for infrared thermography control. We present SATIR infrared thermography test bed improvements for W monoblocks components without defect and with calibrated defects. These results are compared to ultrasonic inspection. This study demonstrates that SATIR method is fully usable for PFCs with low emissivity armour material.

  9. Improvement of non destructive infrared test bed SATIR for examination of actively cooled tungsten armour Plasma Facing Components

    International Nuclear Information System (INIS)

    Vignal, N.; Desgranges, C.; Cantone, V.; Richou, M.; Courtois, X.; Missirlian, M.; Magaud, Ph.

    2013-01-01

    Highlights: • Non destructive infrared techniques for control ITER like PFCs. • Reflective surface such as W induce a measurement temperature error. • Numerical data processing by evaluation of the local emissivity. • SATIR test bed can control metallic surface with low and variable emissivity. -- Abstract: For steady state (magnetic) thermonuclear fusion devices which need large power exhaust capability and have to withstand heat fluxes in the range 10–20 MW m −2 , advanced Plasma Facing Components (PFCs) have been developed. The importance of PFCs for operating tokamaks requests to verify their manufacturing quality before mounting. SATIR is an IR test bed validated and recognized as a reliable and suitable tool to detect cooling defaults on PFCs with CFC armour material. Current tokamak developments implement metallic armour materials for first wall and divertor; their low emissivity causes several difficulties for infrared thermography control. We present SATIR infrared thermography test bed improvements for W monoblocks components without defect and with calibrated defects. These results are compared to ultrasonic inspection. This study demonstrates that SATIR method is fully usable for PFCs with low emissivity armour material

  10. Literature Review for Texas Department of Transportation Research Project 0-4695: Guidance for Design in Areas of Extreme Bed-Load Mobility, Edwards Plateau, Texas

    National Research Council Canada - National Science Library

    Heitmuller, Franklin T; Asquith, William H; Fang, Xing; Thompson, David B; Wang, Keh-Han

    2005-01-01

    A review of the literature addressing sediment transport in gravel-bed river systems and structures designed to control bed-load mobility is provided as part of Texas Department of Transportation research project 0-4695...

  11. Real-Time Remote Diagnostic Monitoring Test-bed in JET

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R. [Asociation Euratom/CIEMAT para Fusion, Madrid (Spain); Kneupner, K.; Purahoo, K. [EURATOM/UKAEA Fusion Association, Abingdon (United Kingdom); Vega, J.; Pereira, A.; Portas, A. [Association EuratomCIEMAT para Fusion, Madrid (Spain); De Arcas, G.; Lopez, J.M. [Universidad Politecnica de Madrid (Spain); Murari, A. [Consorzio RFX, Padova (Italy); Fonseca, A. [Associacao URATOM/IST, Lisboa (Portugal); Contributors, J.E. [JET-EFDA, Abingdon (United Kingdom)

    2009-07-01

    Based on the remote experimentation concept oriented to long pulse shots, a test-bed system has been implemented in JET. It integrates 2 functionalities. The first one is the real-time monitoring, on remote, of a reflectometer diagnostic, to visualize different data outputs and status information. The second one is the integration of dotJET (Diagnostic Overview Tool for JET), which internally provides at JET an overview about the current diagnostic systems state, in order to monitor, on remote, JET diagnostics status. The architecture of the system is formed by: the data generator components, the data distribution system, an access control service, and the client applications. In the test-bed there are two data generators: the acquisition equipment associated with the reflectometer diagnostic that generates data and status information, and dotJET server that centralize the access to the status information of JET diagnostics. The data distribution system has been implemented using a publishing-subscribing technology that receives data from data generators and redistributes them to client applications. And finally, for monitoring, a client application based on Java Web Start technology, and a dotJET client application have been used. There are 3 interesting results from this project. The first one is the analysis of different aspects (data formats, data frame rate, data resolution, etc) related with remote real-time diagnostic monitoring oriented to long pulse experiments. The second one is the definition and implementation of a flexible enough architecture, to be applied to different types of data generated from other diagnostics, and that fits with remote access requirements; and the third one is to have achieved a secure system, taking into account internal networks and firewalls aspects in JET, and securing the access from remote users. For this last issue, PAPI technology has been used, enabling access control based on user attributes, enabling mobile users to

  12. Development of an Indoor Location Based Service Test Bed and Geographic Information System with a Wireless Sensor Network

    Science.gov (United States)

    Jan, Shau-Shiun; Hsu, Li-Ta; Tsai, Wen-Ming

    2010-01-01

    In order to provide the seamless navigation and positioning services for indoor environments, an indoor location based service (LBS) test bed is developed to integrate the indoor positioning system and the indoor three-dimensional (3D) geographic information system (GIS). A wireless sensor network (WSN) is used in the developed indoor positioning system. Considering the power consumption, in this paper the ZigBee radio is used as the wireless protocol, and the received signal strength (RSS) fingerprinting positioning method is applied as the primary indoor positioning algorithm. The matching processes of the user location include the nearest neighbor (NN) algorithm, the K-weighted nearest neighbors (KWNN) algorithm, and the probabilistic approach. To enhance the positioning accuracy for the dynamic user, the particle filter is used to improve the positioning performance. As part of this research, a 3D indoor GIS is developed to be used with the indoor positioning system. This involved using the computer-aided design (CAD) software and the virtual reality markup language (VRML) to implement a prototype indoor LBS test bed. Thus, a rapid and practical procedure for constructing a 3D indoor GIS is proposed, and this GIS is easy to update and maintenance for users. The building of the Department of Aeronautics and Astronautics at National Cheng Kung University in Taiwan is used as an example to assess the performance of various algorithms for the indoor positioning system. PMID:22319282

  13. Development of an Indoor Location Based Service Test Bed and Geographic Information System with a Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Shau-Shiun Jan

    2010-03-01

    Full Text Available In order to provide the seamless navigation and positioning services for indoor environments, an indoor location based service (LBS test bed is developed to integrate the indoor positioning system and the indoor three-dimensional (3D geographic information system (GIS. A wireless sensor network (WSN is used in the developed indoor positioning system. Considering the power consumption, in this paper the ZigBee radio is used as the wireless protocol, and the received signal strength (RSS fingerprinting positioning method is applied as the primary indoor positioning algorithm. The matching processes of the user location include the nearest neighbor (NN algorithm, the K-weighted nearest neighbors (KWNN algorithm, and the probabilistic approach. To enhance the positioning accuracy for the dynamic user, the particle filter is used to improve the positioning performance. As part of this research, a 3D indoor GIS is developed to be used with the indoor positioning system. This involved using the computer-aided design (CAD software and the virtual reality markup language (VRML to implement a prototype indoor LBS test bed. Thus, a rapid and practical procedure for constructing a 3D indoor GIS is proposed, and this GIS is easy to update and maintenance for users. The building of the Department of Aeronautics and Astronautics at National Cheng Kung University in Taiwan is used as an example to assess the performance of various algorithms for the indoor positioning system.

  14. Borehole-inclusion stressmeter measurements in bedded salt

    International Nuclear Information System (INIS)

    Cook, C.W.; Ames, E.S.

    1980-07-01

    Sandia purchased borehole-inclusion stressmeters from a commercial supplier to measure in situ stress changes in bedded salt. However, the supplied stressmeters were difficult to set in place and gave erratic results in bedded salt. These problems were overcome with a new extended platen design. Also a straingaged transducer was designed which can be read with a conventional data logger. Due to the nonlinear behavior of bedded salt under uniaxial loading, a new empirical calibration scheme was devised. In essence, the stressmeters are calibrated as force transducers and this calibration curve is then used to determine the relationship between uniaxial stress changes in bedded salt and the gage's output. The stressmeter and calibration procedures have been applied under mine conditions and produced viable results. Future work will involve finite element analysis to calculate the observed behavior of the stressmeters. The response of the stressmeters in bedded salt is neither that of a true stressmeter or of a true strainmeter. However, repeatable calibrations make the gages very useful

  15. Dryout heat flux experiments with deep heterogeneous particle bed

    International Nuclear Information System (INIS)

    Lindholm, I.; Holmstroem, S.; Miettinen, J.; Lestinen, V.; Hyvaerinen, J.; Pankakoski, P.; Sjoevall, H.

    2006-01-01

    A test facility has been constructed at Technical Research Centre of Finland (VTT) to simulate as accurately as possible the ex-vessel core particle bed in the conditions of Olkiluoto nuclear power plant. The STYX particle bed reproduces the anticipated depth of the bed and the size range of particles having irregular shape. The bed is immersed in water, creating top flooding conditions, and internally heated by an array of electrical resistance heating elements. Dryout tests have been successfully conducted at 0.1-0.7 MPa pressure for both uniformly mixed and stratified bed geometries. In all tests, including the stratified ones, the dry zone first formed near the bottom of the bed. The measured dryout heat fluxes increased with increasing pressure, from 232 kW/m 2 at near atmospheric pressure to 451 kW/m 2 at 0.7 MPa pressure. The data show some scatter even for the uniform bed. The tests with the stratified bed indicate a clear reduction of critical power due to the presence of a layer of small particles on top of the uniform bed. Comparison of data with various critical power (dryout heat flux) correlations for porous media shows that the most important parameter in the models is the effective particle diameter. Adiabatic debris bed flow resistance measurements were conducted to determine the most representative particle diameter. This diameter is close, but not equal, to the particle number-weighted average diameter of the bed material. With it, uniform bed data can be calculated to within an accuracy of 3-28% using Lipinski's 0-D model. In the stratified bed experiments, it appears that the top layer was partially fluidized, hence the measured critical power was significantly higher than calculated. Future experiments are being planned with denser top layer material to eliminate non-prototypic fluidization

  16. Comparison of correlations for heat transfer in sphere-pac beds

    International Nuclear Information System (INIS)

    Fundamenski, W.R.; Gierszewski, P.J.

    1991-08-01

    The design of a tritium breeding blanket for a fusion reactor requires the knowledge of heat transfer within the blanket. In this paper three models for effective bed heat transfer are compared against the experimental database in order to choose a reference correlation to be used in blanket design. Two parameters are used to describe heat transfer in a packed bed: effective thermal conductivity of the bed, and a heat transfer coefficient at the bed-solid interface

  17. Vestibular and Somatosensory Covergence in Postural Equilibrium Control: Insights from Spaceflight and Bed Rest Studies

    Science.gov (United States)

    Mulavara, A. P.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Peters, B. T.; Phillips, T.; Platts, S. H.; hide

    2014-01-01

    resulting from prolonged bed-rest impacts functional performance particularly for tests with a greater requirement for postural equilibrium control. These changes in functional performance were paralleled by similar decrement in tests designed to specifically assess postural equilibrium and dynamic gait control. These results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. These data also support the concept that space flight may cause central adaptation of converging body-load somatosensory and vestibular input during gravitational transitions.

  18. The Performance of Rotary Magnetic Refrigerators with Layered Beds of LaFeSiH(Magnetic Cooling)

    OpenAIRE

    Steven, JACOBS; Steven, RUSSEK; Jon, AURINGER; Andre, BOEDER; Jeremy, CHELL; Lenny, KOMOROWSKI; John, LEONARD; Carl, ZIMM; Astronautics Technology Center; Astronautics Corporation; Astronautics Technology Center; Astronautics Technology Center; Astronautics Technology Center; Astronautics Technology Center; Astronautics Technology Center

    2013-01-01

    Astronautics Corporation has designed, constructed, and extensively tested two generations of magnetic refrigerators employing a rotary magnet-fixed bed architecture. This paper reviews and summarizes the performance of these prototypes. In particular, the testing on the 1st-generation prototype demonstrates the significant performance advantage associated with the use of layered beds of LaFeSiH, a magnetocaloric material with a sharp, first-order transition and a readily adjustable Curie tem...

  19. Combustion of peanut shells in a cone-shaped bubbling fluidized-bed combustor using alumina as the bed material

    International Nuclear Information System (INIS)

    Arromdee, Porametr; Kuprianov, Vladimir I.

    2012-01-01

    Highlights: ► We propose burning of peanut shells in a conical fluidized bed using alumina sand. ► We examine hydrodynamic, combustion and emission characteristics of the reactor. ► High, over 99%, combustion efficiency is achievable. ► Emissions of CO and NO from the combustor meet the national emission limits. ► Composition of the bed material undergoes significant changes during the combustion. -- Abstract: This paper reports experimental studies on burning peanut shells in the conical fluidized-bed combustor using alumina sand as the fluidizing agent. Prior to combustion tests, hydrodynamic regimes and characteristics of a conical alumina–biomass bed were investigated under cold-state conditions for variable percentage of peanut shells in the mixture and static bed height. With selected particle sizes (300–500 μm) and static bed height (30 cm), alumina ensured bubbling fluidization regime of the bed at operating conditions specified for firing biomass. Combustion tests were performed at 60 kg/h and 45 kg/h fuel feed rates, while ranging excess air from 20% to 80% at a fixed combustor load. Temperature and gas concentrations (O 2 , CO, C x H y as CH 4 , and NO) were measured along radial and axial directions inside the reactor as well as at stack in order to characterize combustion and emission performance of the combustor for the ranges of operating conditions. For firing 60 kg/h peanut shells, excess air of 40% can be selected as an appropriate value ensuring high, about 99%, combustion efficiency and rather low emissions of CO and NO: 520 ppm and 125 ppm, respectively (both on a dry basis and at 6% O 2 ). With reducing combustor load, the combustion efficiency and emission characteristics were improved to a little extent. No evidence of bed agglomeration was found during 30-h combustion tests on this conical fluidized-bed combustor using alumina sand as the bed material. However, the timescale effect on the composition of the bed material was

  20. Designing, Implementing and Documenting the Atlas Networking Test-bed.

    CERN Document Server

    Martinsen, Hans Åge

    The A Toroidal LHC ApparatuS (Atlas) experiment at the Large Hadron Colider (LHC) in European Organization for Nuclear Research (CERN), Geneva is a production environment. To develop new architectures, test new equipment and evaluate new technologies a well supported test bench is needed. A new one is now being commissioned and I will take a leading role in its development, commissioning and operation. This thesis will cover the requirements, the implementation, the documentation and the approach to the different challenges in implementing the testbed. I will be joining the project in the early stages and start by following the work that my colleagues are doing and then, as I get a better understanding, more responsibility will be given to me. To be able to suggest and implement solutions I will have to understand what the requirements are and how to achieve these requirements with the given resources.

  1. Engineering test facility

    International Nuclear Information System (INIS)

    Steiner, D.; Becraft, W.R.; Sager, P.H.

    1981-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test-bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This paper described the design status of the ETF

  2. Response of bed mobility to sediment supply in natural gravel bed channels: A detailed examination and evaluation of mobility parameters

    Science.gov (United States)

    T. E. Lisle; J. M. Nelson; B. L. Barkett; J. Pitlick; M. A. Madej

    1998-01-01

    Recent laboratory experiments have shown that bed mobility in gravel bed channels responds to changes in sediment supply, but detailed examinations of this adjustment in natural channels have been lacking, and practical methodologies to measure bed mobility have not been tested. We examined six gravel-bed, alternate-bar channels which have a wide range in annual...

  3. Uranium bed oxidation vacuum process system

    International Nuclear Information System (INIS)

    McLeland, H.L.

    1977-01-01

    Deuterium and tritium gases are occluded in uranium powder for release into neutron generator tubes. The uranium powder is contained in stainless steel bottles, termed ''beds.'' If these beds become damaged, the gases must be removed and the uranium oxidized in order not to be flammable before shipment to ERDA disposal grounds. This paper describes the system and methods designed for the controlled degassing and oxidation process. The system utilizes sputter-ion, cryo-sorption and bellows pumps for removing the gases from the heated source bed. Removing the tritium gas is complicated by the shielding effect of helium-3, a byproduct of tritium decay. This effect is minimized by incremental pressure changes, or ''batch'' processing. To prevent runaway exothermic reaction, oxidation of the uranium bed is also done incrementally, or by ''batch'' processing, rather than by continuous flow. The paper discusses in detail the helium-3 shielding effect, leak checks that must be made during processing, bed oxidation, degree of gas depletion, purity of gases sorbed from beds, radioactivity of beds, bed disposal and system renovation

  4. Development of pressurized internally circulating fluidized bed combustion technology; Kaatsu naibu junkan ryudosho boiler no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, I [Center for Coal Utilization, Japan, Tokyo (Japan); Nagato, S; Toyoda, S [Ebara Corp., Tokyo (Japan)

    1996-09-01

    The paper introduced support research on element technology needed for the design of hot models of the pressurized internally circulating fluidized bed combustion boiler in fiscal 1995 and specifications for testing facilities of 4MWt hot models after finishing the basic plan. The support research was conduced as follows: (a) In the test for analysis of cold model fluidization, it was confirmed that each characteristic value of hot models is higher than the target value. Further, calculation parameters required for computer simulation were measured and data on the design of air diffusion nozzle for 1 chamber wind box were sampled. (b) In the CWP conveyance characteristic survey, it was confirmed that it is possible to produce CWP having favorable properties. It was also confirmed that favorable conveyability can be maintained even if the piping size was reduced down to 25A. (c) In the gas pressure reducing test, basic data required for the design of gas pressure reducing equipment were sampled. Specifications for the fluidized bed combustion boiler of hot models are as follows: evaporation amount: 3070kg/h, steam pressure: 1.77MPa, fuel supply amount: 600kg-coal/h, boiler body: cylinder shape water tube internally circulating fluidized bed combustion boiler. 4 refs., 4 figs.

  5. Coral-based Proxy Records of Ocean Acidification: A Pilot Study at the Puerto Rico Test-bed Site

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral cores collected nearby the Atlantic Ocean Acidification Test-bed (AOAT) at La Parguera, Puerto Rico were used to characterize the relationship between...

  6. Agglomeration of bed material: Influence on efficiency of biofuel fluidized bed boiler

    Directory of Open Access Journals (Sweden)

    Ryabov Georgy A.

    2003-01-01

    Full Text Available The successful design and operation of a fluidized bed combustor requires the ability to control and mitigate ash-related problems. The main ash-related problem of biomass filing boiler is agglomeration. The fluidized bed boiler with steam capacity of 66 t/h (4 MPa, 440 °C was started up at the Arkhangelsk Paper-Pi dp-Plant in 2001. This boiler was manufactured by the Russian companies "Energosofin" and "Belenergomash" and installed instead of the existing boiler with mechanical grate. Some constructional elements and steam drum of existing boiler remained unchanged. The primary air fan was installed past the common air fan, which supply part of the air into 24 secondary airports. First operating period shows that the bed material is expanded and then operator should increase the primary air rate, and the boiler efficiency dramatically decreases. Tills paper presents some results of our investigations of fuel, bed and fly ash chemical compositions and other characteristics. Special experiments were carried out to optimize the bed drain flow rate. The influence of secondly air supply improvement on mixing with the main flow and boiler efficiency are given.

  7. Review on Biomass Torrefaction Process and Product Properties and Design of Moving Bed Torrefaction System Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Christopher T. Wright; Shahab Sokhansanj

    2011-08-01

    A Review on Torrefaction Process and Design of Moving Bed Torrefaction System for Biomass Processing Jaya Shankar Tumuluru1, Shahab Sokhansanj2 and Christopher T. Wright1 Idaho National Laboratory Biofuels and Renewable Energy Technologies Department Idaho Falls, Idaho 83415 Oak Ridge National Laboratory Bioenergy Resource and Engineering Systems Group Oak Ridge, TN 37831 Abstract Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-230 C and 270-280 C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. There is a lack of literature on the design aspects of torrefaction reactor and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes (a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and (b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed torrefier for different capacities ranging from 25-1000 kg/hr, designing the heat loads and gas flow rates, and

  8. Pulsed atmospheric fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  9. Design and research on the measurement platform of the effective thermal conductivity for Li{sub 4}SiO{sub 4} and Li{sub 2}TiO{sub 3} pebble bed

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuanjie, E-mail: yuanjli@ustc.edu.cn; Yang, Wanli; Jin, Cheng; Zhao, Pinghui; Chen, Hongli

    2015-10-15

    China is carrying out the conceptual design of Chinese Fusion Engineering Testing Reactor (CFETR), and the Helium Cooled Pebble Bed (HCPB) blanket concept is one of the main choices for tritium production. Li{sub 4}SiO{sub 4} and Li{sub 2}TiO{sub 3} are the candidate breeder materials for the HCPB blanket concept. In the HCPB blanket, breeding pebbles with the diameter range of 0.6–1.2 mm are placed between two plates and the bed shall be cooled. Accordingly, effective thermal conductivity of pebble beds needs to be determined for the heat transfer calculation. Measurements of the heat transfer parameters of Li{sub 4}SiO{sub 4} and Li{sub 2}TiO{sub 3} pebble beds are being performed at the University of Science and Technology of China (USTC). Two measurement methods are being used. One is the steady state method with the use of thermocouples to measure the temperature distribution of the pebble bed. Another is transient thermal probe method using the temperature variation of the thermal probe and Monte Carlo inversion method to calculate the heat transfer parameters of the pebble bed. This paper will report on the progress of these measurement platforms.

  10. Pilot-scale fluidized-bed combustor testing cofiring animal-tissue biomass with coal as a carcass disposal option

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Miller; Sharon Falcone Miller; Elizabeth M. Fedorowicz; David W. Harlan; Linda A. Detwiler; Michelle L. Rossman [Pennsylvania State University, University Park, PA (United States). Energy Institute

    2006-10-15

    This study was performed to demonstrate the technical viability of cofiring animal-tissue biomass (ATB) in a coal-fired fluidized-bed combustor (FBC) as an option for disposing of specified risk materials (SRMs) and carcasses. The purpose of this study was to assess the technical issues of feeding/combusting ATB and not to investigate prion deactivation/pathogen destruction. Overall, the project successfully demonstrated that carcasses and SRMs can be cofired with coal in a bubbling FBC. Feeding ATB into the FBC did, however, present several challenges. Specifically, handling/feeding issues resulting from the small scale of the equipment and the extremely heterogeneous nature of the ATB were encountered during the testing. Feeder modifications and an overbed firing system were necessary. Through statistical analysis, it was shown that the ATB feed location had a greater effect on CO emissions, which were used as an indication of combustion performance, than the fuel type due to the feeding difficulties. Baseline coal tests and tests cofiring ATB into the bed were statistically indistinguishable. Fuel feeding issues would not be expected at the full scale since full-scale units routinely handle low-quality fuels. In a full-scale unit, the disproportionate ratio of feed line size to unit diameter would be eliminated thereby eliminating feed slugging. Also, the ATB would either be injected into the bed, thereby ensuring uniform mixing and complete combustion, or be injected directly above the bed with overfire air ports used to ensure complete combustion. Therefore, it is anticipated that a demonstration at the full scale, which is the next activity in demonstrating this concept, should be successful. As the statistical analysis shows, emissions cofiring ATB with coal would be expected to be similar to that when firing coal only. 14 refs., 5 figs., 6 tabs.

  11. An examination of vehicles at the brake-chassis test bed in the range of the partial engine load

    Directory of Open Access Journals (Sweden)

    Paweł MARZEC

    2017-06-01

    Full Text Available The performance of a ZI engine is presented in the paper, as well as a project involving a device for applying a partial load in the performed examinations of a brakechassis test bed. The device was prepared for an Opel Astra and enabled the determination of exterior characteristics of the engine for different values of the engine load. The indicating pressure sensor and the angle marker on the crankshaft allowed for the recording of the indicating pressure obtained at different values of the load. The analysis of heat evolution in the process of burning, based on the registered results of the measurements at the brake-chassis test bed, has also been included in the presentation.

  12. Continuous cleaning of heat exchanger with recirculating fluidized bed

    International Nuclear Information System (INIS)

    St Kollbach, J.; Dahm, W.; Rautenbach, R.

    1987-01-01

    Fluidized bed heat exchangers for liquids have been studied in the United States, the Netherlands, and the Federal Republic of Germany. Between 1965 and 1970, fluidized bed heat exchangers were developed in the United States as brine heaters in seawater desalination. Furthermore, their potential in the utilization of geothermal energy was tested between 1975 and 1980. In the Netherlands, fluidized bed heat exchangers have been developed since 1973 for brine heating and heat recovery in multistage flash evaporators for seawater desalination and, since about 1980, for applications in the process industry. The authors became interested in fluidized bed heat exchangers first in 1978 in connection with wastewater evaporation. The authors emphasize that the results of all these groups were in basic agreement. They can be summarized as follows: 1. The fluidized bed will in many cases maintain totally clean surfaces and neither scaling nor fouling will occur. In cases where even a fluidized bed cannot completely prevent scaling or fouling, the thickness of the layer is controlled. In these cases stable operation maintaining acceptable overall heat transfer coefficients is possible without cleaning. 2. There are always excellent heat transfer coefficients as low superficial velocities of less than ν < 0.5 m/s. 3. The pressure losses are comparable with those in normal heat exchangers since fluidized bed heat exchangers are mostly operated at low superficial velocities. 4. Feed flow may be varied between 50 and 150% or more of the design feed flow. 5. Erosion is negligible. 6. Fluidized bed particles can be manufactured from all sorts of chemically and mechanically resistant materials, such as sand, glass, ceramics, and metals

  13. Fluidized-bed reactors processes and operating conditions

    CERN Document Server

    Yates, John G

    2016-01-01

    The fluidized-bed reactor is the centerpiece of industrial fluidization processes. This book focuses on the design and operation of fluidized beds in many different industrial processes, emphasizing the rationale for choosing fluidized beds for each particular process. The book starts with a brief history of fluidization from its inception in the 1940’s. The authors present both the fluid dynamics of gas-solid fluidized beds and the extensive experimental studies of operating systems and they set them in the context of operating processes that use fluid-bed reactors. Chemical engineering students and postdocs as well as practicing engineers will find great interest in this book.

  14. Industrial Scale Synthesis of Carbon Nanotubes Via Fluidized Bed Chemical Vapor Deposition: A Senior Design Project

    Science.gov (United States)

    Smith, York R.; Fuchs, Alan; Meyyappan, M.

    2010-01-01

    Senior year chemical engineering students designed a process to produce 10 000 tonnes per annum of single wall carbon nanotubes (SWNT) and also conducted bench-top experiments to synthesize SWNTs via fluidized bed chemical vapor deposition techniques. This was an excellent pedagogical experience because it related to the type of real world design…

  15. Reactor design and operation strategies for a large-scale packed-bed CLC power plant with coal syngas

    NARCIS (Netherlands)

    Spallina, V.; Chiesa, P.; Martelli, E; Gallucci, F.; Romano, M.C.; Lozza, G.; Sint Annaland, van M.

    2015-01-01

    This paper deals with the design and operation strategies of dynamically operated packed-bed reactors (PBRs) of a chemical looping combustion (CLC) system included in an integrated gasification combined cycle (IGCC) for electric power generation with low CO2 emission from coal. The CLC reactors,

  16. Waste isolation facility description: bedded salt

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-01

    The waste isolation facility is designed to receive and store three basic types of solidified wastes: high-level wastes, intermediate level high-gamma transuranic waste, and low-gamma transuranic wastes. The facility under consideration in this report is designed for bedded salt at a depth of approximately 1800 ft. The present design for the facility includes an area which would be used initially as a pilot facility to test the viability of the concept, and a larger facility which would constitute the final storage area. The total storage area in the pilot facility is planned to be 77 acres and in the fuel facility 1601 acres. Other areas for shaft operations and access would raise the overall size of the total facility to slightly less than 2,000 acres. The following subjects are discussed in detail: surface facilities, shaft design and characteristics, design and construction of the underground waste isolation facility, ventilation systems, and design requirements and criteria. (LK)

  17. Waste isolation facility description: bedded salt

    International Nuclear Information System (INIS)

    1976-09-01

    The waste isolation facility is designed to receive and store three basic types of solidified wastes: high-level wastes, intermediate level high-gamma transuranic waste, and low-gamma transuranic wastes. The facility under consideration in this report is designed for bedded salt at a depth of approximately 1800 ft. The present design for the facility includes an area which would be used initially as a pilot facility to test the viability of the concept, and a larger facility which would constitute the final storage area. The total storage area in the pilot facility is planned to be 77 acres and in the fuel facility 1601 acres. Other areas for shaft operations and access would raise the overall size of the total facility to slightly less than 2,000 acres. The following subjects are discussed in detail: surface facilities, shaft design and characteristics, design and construction of the underground waste isolation facility, ventilation systems, and design requirements and criteria

  18. A 350 MW HTR with an annular pebble bed core

    International Nuclear Information System (INIS)

    Wang Dazhong; Jiang Zhiqiang; Gao Zuying; Xu Yuanhui

    1992-12-01

    A conceptual design of HTR-module with an annular pebble bed core was proposed. This design can increase the unit power capacity of HTR-Module from 200 MWt to 350 MWt while it can keep the inherent safety characteristics of modular reactor. The preliminary safety analysis results for 350 MW HTR are given. In order to solve the problem of uneven helium outlet temperature distribution a gas flow mixing structure at bottom of core was designed. The experiment results of a gas mixing simulation test rig show that the mixing function can satisfy the design requirements

  19. Design and optimization of a fixed - bed reactor for hydrogen production via bio-ethanol steam reforming

    International Nuclear Information System (INIS)

    Maria A Goula; Olga A Bereketidou; Costas G Economopoulos; Olga A Bereketidou; Costas G Economopoulos

    2006-01-01

    Global climate changes caused by CO 2 emissions are currently debated around the world. Renewable sources of energy are being sought as alternatives to replace fossil fuels. Hydrogen is theoretically the best fuel, environmentally friendly and its combustion reaction leads only to the production of water. Bio-ethanol has been proven to be effective in the production of hydrogen via steam reforming reaction. In this research the steam reforming reaction of bio-ethanol is studied at low temperatures over 15,3 % Ni/La 2 O 3 catalyst. The reaction and kinetic analysis takes place in a fixed - bed reactor in 130 - 250 C in atmospheric pressure. This study lays emphasis on the design and the optimization of the fixed - bed reactor, including the total volume of the reactor, the number and length of the tubes and the degree of ethanol conversion. Finally, it is represented an approach of the total cost of the reactor, according to the design characteristics and the materials that can be used for its construction. (authors)

  20. Follow on Research for Multi-Utility Technology Test Bed Aircraft at NASA Dryden Flight Research Center (FY13 Progress Report)

    Science.gov (United States)

    Pak, Chan-Gi

    2013-01-01

    Modern aircraft employ a significant fraction of their weight in composite materials to reduce weight and improve performance. Aircraft aeroservoelastic models are typically characterized by significant levels of model parameter uncertainty due to the composite manufacturing process. Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of Multi Utility Technology Test-bed (MUTT) aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of MUTT aircraft. The ground vibration test-validated structural dynamic finite element model of the MUTT aircraft is created in this study. The structural dynamic finite element model of MUTT aircraft is improved using the in-house Multi-disciplinary Design, Analysis, and Optimization tool. In this study, two different weight configurations of MUTT aircraft have been improved simultaneously in a single model tuning procedure.

  1. Bed rest reduces metabolic protein content and abolishes exercise-induced mRNA responses in human skeletal muscle

    DEFF Research Database (Denmark)

    Jørgensen, Stine Ringholm; Biensø, Rasmus S; Kiilerich, Kristian

    2011-01-01

    Background: The aim was to test the hypothesis that one week of bed rest will reduce mitochondrial number and expression and activity of oxidative proteins in human skeletal muscle, but that exercise-induced intracellular signaling as well as mRNA and microRNA (miR) responses are maintained after......-legged knee extensor exercise performed before and after bed rest. Results: Maximal oxygen uptake decreased 5% and exercise endurance decreased non-significantly 25% by bed rest. Bed rest reduced skeletal muscle mitochondrial DNA/nuclear DNA content 15%, hexokinase II and sirtuin 1 protein content ~45%, 3...... bed rest. Research Design and Methods: Twelve young, healthy, male subjects completed 7 days of bed rest with vastus lateralis muscle biopsies taken before and after bed rest. In addition, muscle biopsies were obtained from 6 of the subjects prior to, immediately after and 3h after 45 min one...

  2. The engineering test facility

    International Nuclear Information System (INIS)

    Steiner, D.; Becraft, W.R.; Sager, P.H.

    1981-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test-bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This paper describes the design status of the ETF. (orig.)

  3. Design and development of cryo-module test system for 1.3 GHz LCLS-II cryomodule

    International Nuclear Information System (INIS)

    Khunt, A.C.S.; Anupam Kumar Sinha, B.; Aravind, T.C.; Mishra, D.V.K.; Sinha, E.A.K.; Mukesh Goyal, F.; Tejas Rane, G.

    2015-01-01

    Cryomodule Test System (CMTS) is a major cryogenic system designed and developed at Centre for Design and Manufacture (CDM), BARC under Indian Institutions and Fermi Lab Collaboration (IIFC). It is necessary test bed to measure the performance of superconducting RF cavities in Cryomodule. CMTS is required to test 1.3 GHz LCLS-II Cryomodule for Stanford Linear Accelerator Centre (SLAC), USA. Feed Cap and End Cap sub systems of Cryomodule Test System (CMTS) is designed and developed at CDM, BARC. Feed cap and End cap are 2K liquid helium distribution system for LCLS-II RF Cavity Bath and insulated by intermediate radiation shields maintained at 5K and 40K and Multilayer Insulation. The whole distribution system is enclosed in horizontal vacuum shells of approximately 1100 mm in diameter and 3000 mm in total length. This development was very challenging as many design considerations and decisions for 2K cryogenic requirements have been made and implemented. Also intricate mounting of ceramic sensors both internally and externally (surface mounted) for very low temperature measurements, low temperature epoxy bonding and multi-layer insulation wrapping were successfully completed. (author)

  4. Effect of particle stratification on debris-bed dryout

    International Nuclear Information System (INIS)

    Gabor, J.D.; Cassulo, J.C.; Pederson, D.R.

    1982-01-01

    Significant work has been performed on debris-bed dryout on beds of either uniformly sized particles or particles of a wide size range which are well mixed. This work has provided an understanding of the mechanisms of dryout and an empirical basis for containment analysis. However, the debris bed resulting from a HCDA would not consist of uniformly sized particles and for certain scenarios the bed could be stratified rather than well mixed. Tests have been conducted on the effect of particle size distribution on dryout and concluded that not only is the mean particle size an important parameter but also the standard deviation of the distribution and change in porosity. The D6 in-pile test at Sandia with a 114-mm deep stratified bed resulted in a reduced dryout heat flux compared to a uniformly mixed bed. Because of the many questions concerning the dryout behavior of stratified beds of wide size distribution out-of-pile experiments in which metal particles in water pools are inductively heated were initiated at Argonne

  5. On the hyperporous non-linear elasticity model for fusion-relevant pebble beds

    International Nuclear Information System (INIS)

    Di Maio, P.A.; Giammusso, R.; Vella, G.

    2010-01-01

    Packed pebble beds are particular granular systems composed of a large amount of small particles, arranged in irregular lattices and surrounded by a gas filling interstitial spaces. Due to their heterogeneous structure, pebble beds have non-linear and strongly coupled thermal and mechanical behaviours whose constitutive models seem limited, being not suitable for fusion-relevant design-oriented applications. Within the framework of the modelling activities promoted for the lithiated ceramics and beryllium pebble beds foreseen in the Helium-Cooled Pebble Bed breeding blanket concept of DEMO, at the Department of Nuclear Engineering of the University of Palermo (DIN) a thermo-mechanical constitutive model has been set-up assuming that pebble beds can be considered as continuous, homogeneous and isotropic media. The present paper deals with the DIN non-linear elasticity constitutive model, based on the assumption that during the reversible straining of a pebble bed its effective logarithmic bulk modulus depends on the equivalent pressure according to a modified power law and its effective Poisson modulus remains constant. In these hypotheses the functional dependence of the effective tangential and secant bed deformation moduli on either the equivalent pressure or the volumetric strain have been derived in a closed analytical form. A procedure has been, then, defined to assess the model parameters for a given pebble bed from its oedometric test results and it has been applied to both polydisperse lithium orthosilicate and single size beryllium pebble beds.

  6. Design Driven Testing Test Smarter, Not Harder

    CERN Document Server

    Stephens, M

    2010-01-01

    The groundbreaking book Design Driven Testing brings sanity back to the software development process by flipping around the concept of Test Driven Development (TDD) - restoring the concept of using testing to verify a design instead of pretending that unit tests are a replacement for design. Anyone who feels that TDD is "Too Damn Difficult" will appreciate this book. Design Driven Testing shows that, by combining a forward-thinking development process with cutting-edge automation, testing can be a finely targeted, business-driven, rewarding effort. In other words, you'll learn how to test

  7. Advanced modularity design for the MIT pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kadak, Andrew C. [Department of Nuclear Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 24-202 Cambridge, MA 02139-4307 (United States)]. E-mail: kadak@mit.edu; Berte, Marc V. [Department of Nuclear Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 24-202 Cambridge, MA 02139-4307 (United States)]. E-mail: mvberte@yahoo.com

    2006-03-15

    The future of all reactors will depend on whether they can be economically built and operated. One of the major impediments to new nuclear construction is the capital cost due in large part to the length of construction time and complexity of the plant. Pebble bed reactors offer the opportunity to reduce the complexity of the plant because the number of safety systems required is significantly reduced due to the inherent safety of the technology. However, because of its small size, the capital cost per kilowatt is likely to be large if traditional construction approaches are followed. This strongly suggests the need for innovative construction concepts to reduce the construction time and cost. MIT has proposed a modularity approach in which the plant is pre-built in space-frame type modules which are built in factories. These space frames would contain all the equipment contained in a given volume. Once equipment in the space frame is installed, the space frame would then be shipped to the site and assembled 'lego-style.' Studies presently underway have demonstrated the feasibility of the concept. Thermal stress analysis has been performed and an integrated design with the space frames has been developed. It is expected that this modularity approach will significantly shorten construction time and expense. This paper proposes a concept for further development, not a final design for the entire plant.

  8. Advanced modularity design for the MIT pebble bed reactor

    International Nuclear Information System (INIS)

    Kadak, Andrew C.; Berte, Marc V.

    2006-01-01

    The future of all reactors will depend on whether they can be economically built and operated. One of the major impediments to new nuclear construction is the capital cost due in large part to the length of construction time and complexity of the plant. Pebble bed reactors offer the opportunity to reduce the complexity of the plant because the number of safety systems required is significantly reduced due to the inherent safety of the technology. However, because of its small size, the capital cost per kilowatt is likely to be large if traditional construction approaches are followed. This strongly suggests the need for innovative construction concepts to reduce the construction time and cost. MIT has proposed a modularity approach in which the plant is pre-built in space-frame type modules which are built in factories. These space frames would contain all the equipment contained in a given volume. Once equipment in the space frame is installed, the space frame would then be shipped to the site and assembled 'lego-style.' Studies presently underway have demonstrated the feasibility of the concept. Thermal stress analysis has been performed and an integrated design with the space frames has been developed. It is expected that this modularity approach will significantly shorten construction time and expense. This paper proposes a concept for further development, not a final design for the entire plant

  9. Experimental study of gas–liquid two-phase flow through packed bed under natural circulation conditions

    International Nuclear Information System (INIS)

    Chen, Shao-Wen; Miwa, Shuichiro; Griffiths, Matt

    2016-01-01

    Dry-out phenomena in packed beds or porous media may cause a significant digression of cooling/reaction performance in heat transfer/chemical reactor systems. One of the phenomena responsible for the dry-out in packed beds is known as the counter-current flow limitation (CCFL). In order to investigate the CCFL phenomena induced by gas–liquid two-phase flow in packed beds inside a pool, a natural circulation packed bed test facility was designed and constructed. A total of 27 experimental conditions covering various packing media sizes (sphere diameters: 3.0, 6.4 and 9.5 mm), packed bed heights (15, 35 and 50 cm) and water level heights (1.0, 1.5 and 2.0 m) were tested to examine the CCFL criteria with adiabatic air–water two-phase flow under natural circulation conditions. Both CCFL and flow reversal phenomena were observed, and the experimental data including instantaneous and time-averaged void fraction, differential pressure and superficial gas–liquid velocities were collected. The CCFL criteria were determined when periodical oscillations of void fraction and differential pressure appear. In addition, the Wallis correlation for CCFL was utilized for data analysis, and the Wallis coefficient, C, was determined experimentally from the packed bed CCFL tests. Compared to the existing data-sets in literature, the higher C values obtained in the present experiment suggest a possibly higher dry-out heat flux for natural circulation debris systems, which may be due to the water supply from both top and bottom surfaces of the packed beds. Considering the effects of bed height and hydraulic diameter of the packing media, a newly developed model for the Wallis coefficient, C, under natural circulation CCFL is presented. The present model can predict the experimental data with an averaged absolute error of ±7.9%. (author)

  10. Using multiple bed load measurements: Toward the identification of bed dilation and contraction in gravel-bed rivers

    Science.gov (United States)

    Marquis, G. A.; Roy, A. G.

    2012-02-01

    This study examines bed load transport processes in a small gravel-bed river (Béard Creek, Québec) using three complementary methods: bed elevation changes between successive floods, bed activity surveys using tags inserted into the bed, and bed load transport rates from bed load traps. The analysis of 20 flood events capable of mobilizing bed material led to the identification of divergent results among the methods. In particular, bed elevation changes were not consistent with the bed activity surveys. In many cases, bed elevation changes were significant (1 to 2 times the D50) even if the bed surface had not been activated during the flood, leading to the identification of processes of bed dilation and contraction that occurred over 10% to 40% of the bed surface. These dynamics of the river bed prevent accurate derivation of bed load transport rates from topographic changes, especially for low magnitude floods. This paper discusses the mechanisms that could explain the dilation and contraction of particles within the bed and their implications in fluvial dynamics. Bed contraction seems to be the result of the winnowing of the fine sediments under very low gravel transport. Bed dilation seems to occur on patches of the bed at the threshold of motion where various processes such as fine sediment infiltration lead to the maintenance of a larger sediment framework volume. Both processes are also influenced by flood history and the initial local bed state and in turn may have a significant impact on sediment transport and morphological changes in gravel-bed rivers.

  11. PULSE COMBUSTOR DESIGN QUALIFICATION TEST AND CLEAN COAL FEEDSTOCK TEST - VOLUME I AND VOLUME II

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-02-08

    For this Cooperative Agreement, the pulse heater module is the technology envelope for an indirectly heated steam reformer. The field of use of the steam reformer pursuant to this Cooperative Agreement with DOE is for the processing of sub-bituminous coals and lignite. The main focus is the mild gasification of such coals for the generation of both fuel gas and char--for the steel industry is the main focus. An alternate market application for the substitution of metallurgical coke is also presented. This project was devoted to qualification of a 253-tube pulse heater module. This module was designed, fabricated, installed, instrumented and tested in a fluidized bed test facility. Several test campaigns were conducted. This larger heater is a 3.5 times scale-up of the previous pulse heaters that had 72 tubes each. The smaller heater has been part of previous pilot field testing of the steam reformer at New Bern, North Carolina. The project also included collection and reduction of mild gasification process data from operation of the process development unit (PDU). The operation of the PDU was aimed at conditions required to produce char (and gas) for the Northshore Steel Operations. Northshore Steel supplied the coal for the process unit tests.

  12. Bed-load transportmeter for find sand "Sphinx"

    NARCIS (Netherlands)

    Vinckers, J.B.; Bijker, E.W.; Schijf, J.B.

    1953-01-01

    A new bed-load transportmeter has been designed particularly for very fine bed material (below 400 micron). The basic conception is the same as for the so-called Delft-bottle used for measuring transport by turbulent suspension. The instrument is of the flow-through type. The flow enters through a

  13. ITER: a technology test bed for a fusion reactor

    International Nuclear Information System (INIS)

    Huguet, M.; Green, B.J.

    1996-01-01

    The ITER Project aims to establish nuclear fusion as an energy source that has potential safety and environmental advantages, and to develop the technologies required for a fusion reactor. ITER is a collaborative project between the European Union, Japan, the Russian Federation and the United States of America. During the current phase of the Project, an R and D programme of about 850 million dollars is underway to develop the technologies required for ITER. This technological effort should culminate in the construction of the components and systems of the ITER machine and its auxiliaries. The main areas of technological development include the first wall and divertor technology, the blanket technology and tritium breeding, superconducting magnet technology, pulsed power technology and remote handling. ITER is a test bed and an essential step to establish the technology of future fusion reactors. Many of the ITER technologies are of potential interest to other fields and their development is expected to benefit the industries involved. (author)

  14. DURABILITY TESTING OF FLUIDIZED BED STEAM REFORMER (FBSR) WASTE FORMS

    International Nuclear Information System (INIS)

    Jantzen, C

    2006-01-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium aqueous radioactive wastes. The addition of clay and a catalyst as co-reactants converts high sodium aqueous low activity wastes (LAW) such as those existing at the Hanford and Idaho DOE sites to a granular ''mineralized'' waste form that may be made into a monolith form if necessary. Simulant Hanford and Idaho high sodium wastes were processed in a pilot scale FBSR at Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium-bearing waste (SBW). The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The durability of the FBSR waste form products was tested in order to compare the measured durability to previous FBSR waste form testing on Hanford Envelope C waste forms that were made by THOR Treatment Technologies (TTT) and to compare the FBSR durability to vitreous LAW waste forms, specifically the Hanford low activity waste (LAW) glass known as the Low-activity Reference Material (LRM). The durability of the FBSR waste form is comparable to that of the LRM glass for the test responses studied

  15. COOLOCE debris bed experiments and simulations investigating the coolability of cylindrical beds with different materials and flow modes

    Energy Technology Data Exchange (ETDEWEB)

    Takasuo, E.; Kinnunen, T.; Holmstroem, S.; Lehtikuusi, T. [VTT Technical Research Centre of Finland (Finland)

    2013-07-15

    The COOLOCE experiments aim at investigating the coolability of debris beds of different geometries, flow modes and materials. A debris bed may be formed of solidified corium as a result of a severe accident in a nuclear power reactor. The COOLOCE-8 test series consisted of experiments with a top-flooded test bed with irregular gravel as the simulant material. The objective was to produce comparison data useful in estimating the effects of different particle materials and the possible effect of the test arrangement on the results. It was found that the dryout heat flux (DHF) measured for the gravel was lower compared to previous experiments with spherical beads, and somewhat lower compared to the early STYX experiments. The difference between the beads and gravel is at least partially explained by the smaller average size of the gravel particles. The COOLOCE-9 test series included scoping experiments examining the effect of subcooling of the water pool in which the debris bed is immersed. The experiments with initially subcooled pool suggest that the subcooling may increase DHF and increase coolability. The aim of the COOLOCE-10 experiments was to investigate the effect of lateral flooding on the DHF a cylindrical test bed. The top of the test cylinder and its sidewall were open to water infiltration. It was found that the DHF is increased compared to a top-flooded cylinder by more than 50%. This suggests that coolability is notably improved. 2D simulations of the top-flooded test beds have been run with the MEWA code. Prior to the simulations, the effective particle diameter for the spherical beads and the irregular gravel was estimated by single-phase pressure loss measurements performed at KTH in Sweden. Parameter variations were done for particle size and porosity used as input in the models. It was found that with the measured effective particle diameter and porosity, the simulation models predict DHF with a relatively good accuracy in the case of spherical

  16. A mathematical model for supplying air-cooling for a building using a packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Marewo, G.T. [Zimbabwe Univ., Mathematics Dept., Harare (Zimbabwe); Henwood, D.J. [School of Computing and Mathematical Sciences, Brighton (United Kingdom)

    2006-01-15

    The cooling system at the Harare International School uses a packed bed system for storing the coldness of the night-time to be used later for day-time air-conditioning. A two-phase mathematical model is described for the packed bed which includes heat dispersion in the fluid, and heat loss to the environment. This is in contrast to other studies, where at least one of these terms is neglected to simplify the mathematical model. A numerical method for obtaining a solution is proposed and implemented. Using measured inlet temperatures, the measured and predicted outlet temperatures of the bed show good trend agreement. The differences in detail are examined through sensitivity analyses for both the heat convection transfer and air velocity. It is apparent that adjusting these parameters can increase the agreement between the predicted and measured data. A parametric study for heat storage with various materials and bed sizes is given, which indicates how the code may be used as a tool for improving design and operational parameters. Practical application: A mathematical model of a packed bed is described; the bed is made up of fluid flowing over solid material with heat interchange between the two. The solid material is idealized as spheres and the fluid temperature is assumed uniform in a cross-section of the bed. The model includes heat interchange between the bed and its surrounding environment and allows for time varying fluid velocity. The input data is the inlet temperature to the bed, which may be measured. The comparison with measured data may be helpful to anyone attempting to develop and test a similar model. The sensitivity tests give an understanding of the significance of some of the parameters involved. The Appendix gives a mathematical statement of the problem and an outline of an approach to developing computer code for a numerical solution. (Author)

  17. Test design requirements: Thermal conductivity probe testing

    International Nuclear Information System (INIS)

    Heath, R.E.

    1985-01-01

    This document establishes the test design requirements for development of a thermal conductivity probe test. The thermal conductivity probe determines in situ thermal conductivity using a line source transient heat conduction analysis. This document presents the rationale for thermal conductivity measurement using a thermal conductivity probe. A general test description is included. Support requirements along with design constraints are detailed to allow simple design of the thermal conductivity probe and test. The schedule and delivery requirements of the responsible test designer are also included. 7 refs., 1 fig

  18. Preferences of group-housed female mice regarding structure of softwood bedding.

    Science.gov (United States)

    Kirchner, J; Hackbarth, H; Stelzer, H D; Tsai, P-P

    2012-04-01

    Bedding influences various parameters in the housing of laboratory mice, such as health, physiology and behaviour (often considered as being integral parts of welfare). Notwithstanding existent studies about bedding preferences of individually tested mice, data about group-housed mice are still lacking. The aim of this study was to find out the structure preference for softwood bedding of group-housed mice. One hundred and eight 8-week-old female mice (C57BL6/JOlaHsd and BALB/cOlaHsd) were housed in groups of three and were given one-week free access to two different bedding structures at a time. In three test combinations, softwood shaving bedding was tested versus softwood chip bedding products of three different particle sizes (fine/medium/coarse-grained). The preference test was performed in a DoubleCage system composed of two Makrolon type IIL cages, connected by a perspex tunnel. This validated system was able to detect the crossings of each individual animal with correct crossing time and direction. On the basis of these data, dwelling times on the particular bedding structures were statistically analysed as a parameter for bedding preferences. In all three test combinations, a highly significant shaving preference was detected. On average, mice spent 70% of their dwelling time on the shavings. This preference was more explicit during the light period and in C57BL/6J mice. The relative ranking of the bedding structures was: shavings > coarse-grained chips > medium chips = fine chips. By means of these results, a shaving structure as bedding can be recommended for laboratory mice, whereas fine chip structures should be avoided.

  19. Fluidization bed coating of copper bars with epoxy powder

    OpenAIRE

    Soh, Chiaw Min

    2014-01-01

    Fluidized bed coating (FBC) is a process where preheated material is dipped into a flowing liquid bed of powder. Although FBC has existed for more than half a century, however there is little knowledge about the fluidized bed design that gives excellent fluidization quality as well as reducing powder entrainment. The objectives of this thesis are to investigate the effect of two different types of distributor with different pressure drop on powder coating, hydrodynamics of fluidized bed coati...

  20. CFD Simulation and Experimental Analyses of a Copper Wire Woven Heat Exchanger Design to Improve Heat Transfer and Reduce the Size of Adsorption Beds

    Directory of Open Access Journals (Sweden)

    John White

    2016-02-01

    Full Text Available The chief objective of this study is the proposal design and CFD simulation of a new compacted copper wire woven fin heat exchanger and silica gel adsorbent bed used as part of an adsorption refrigeration system. This type of heat exchanger design has a large surface area because of the wire woven fin design. It is estimated that this will help improve the coefficient of performance (COP of the adsorption phase and increase the heat transfer in this system arrangement. To study the heat transfer between the fins and porous adsorbent reactor bed, two experiments were carried out and matched to computational fluid dynamics (CFD results.

  1. Fluid flow with heat transfer in a fix-bed

    International Nuclear Information System (INIS)

    Gasparetto, C.A.

    1982-01-01

    Tests with two different fluids, water and air, flowing in a bed with irregular particles of silica were done. The bed was confined inside a tube, which was heated by an external jacket. The bed is characterized by permeability and porosity. The tests showed a wall effect face to the relation between the tube diameter and the medium dimension of the particles. The results are presented as a relation between Nusselt number / Peclet number. (E.G.) [pt

  2. On partial fluidization in rotating fluidized beds

    International Nuclear Information System (INIS)

    Kao, J.; Pfeffer, R.; Tardos, G.I.

    1987-01-01

    In a rotating fluidized bed, unlike in a conventional fluidized bed, the granules are fluidized layer by layer from the (inner) free surface outward at increasing radius as the gas velocity is increased. This is a very significant and interesting phenomenon and is extremely important in the design of these fluidized beds. The phenomenon was first suggested in a theoretical analysis and recently verified experimentally in the authors' laboratory. However, in the first paper, the equations presented are too cumbersome and the influence of bed thickness is not clearly stated. In this note the authors present simplified equations, based on that paper, for the pressure drop and the minimum fluidizing velocities in a rotating fluidized bed. Experimental data are also shown and compared with the theoretical model, and the effect of bed thickness is shown. Furthermore, an explanation for the observation of a maximum in the pressure drop vs. velocity curve instead of the plateau derived by Chen is proposed

  3. Proposed new ultrasonic test bed

    International Nuclear Information System (INIS)

    Maxfield, B.W.

    1978-01-01

    Within the last four or five years, a great deal of progress has been made both here and in a number of other laboratories in developing techniques that will enable considerably more information to be obtained from the ultrasonic examination of an object. Some of these recent developments relate to information contained within the diffracted beam which does not return along the incident path. An ultrasonic examination based upon an evaluation of diffracted energy must use at least two transducers, one for transmission and the other for reception. Current indications are that even more reliable test results will be achieved using a receiving transducer that can scan a significant portion of the diffracted field including that portion which is back-reflected. In general, this scan can be interpreted most accurately if it follows a path related to the surface shape. If more than one region within the object is to be interrogated, then the transmitting transducer must also be scanned, again along a path related to the surface shape. The large quantity of information obtained as the result of such an examination must be subjected to sophisticated computer analysis in order to be displayed in a meaningful and intelligible manner. Although one motivation for building such an instrument is to explore new ultrasonic test procedures that are evolving from current laboratory research, this is neither the sole motivation nor the only use for this instrument. Such a mechanical and electronic device would permit conventional ultrasonic tests to be performed on parts of complex geometry without the expensive and time-consuming special fixturing that is currently required. May possible test geometries could be explored in practice prior to the construction of a specialized test apparatus. Hence, it would be necessary to design much, if any, flexibility into the special test apparatus

  4. Similitude study of a moving bed granular filter

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Brown; Huawei Shi; Gerald Colver; Saw-Choon Soo [Iowa State University, IA (United States)

    2003-12-10

    The goal of this study was to evaluate the performance of a moving bed granular filter designed for hot gas clean up. This study used similitude theory to devise experiments that were conducted at near-ambient conditions while simulating the performance of filters operated at elevated temperatures and pressures (850{sup o}C and 1000 kPa). These experiments revealed that the proposed moving bed granular filter can operate at high collection efficiencies, typically exceeding 99%, and low pressure drops without the need for periodic regeneration through the use of a continuous flow of fresh granular filter media in the filter. In addition, important design constraints were discovered for the successful operation of the proposed moving bed granular filter.

  5. Permeability of granular beds emplaced in vertical drill holes

    International Nuclear Information System (INIS)

    Griffiths, S.K.; Morrison, F.A. Jr.

    1979-01-01

    To determine the permeabilities of granular materials emplaced in vertical drill holes used for underground nuclear tests, an experiment at the USDOE Nevada Test Site (NTS) was conducted. As the hole is being filled, falling material increases pressure above and within the granular beds beneath. When the filling operation starts or stops, a transient pressure response occurs within the beds; measurements of this response in beds of various compositions were made. The permeabilities after emplacement were found by matching analytical predictions of the response to these data. This information is useful in assuring the containment of nuclear tests conducted in such drill holes

  6. Oak Ridge Toxic Substances Control Act (TSCA) Incinerator test bed for continuous emissions monitoring systems (CEMS)

    International Nuclear Information System (INIS)

    Gibson, L.V. Jr.

    1997-01-01

    The Toxic Substances Control Act (TSCA) Incinerator, located on the K-25 Site at Oak Ridge, Tennessee, continues to be the only operational incinerator in the country that can process hazardous and radioactively contaminated polychlorinated biphenyl (PCB) waste. During 1996, the US Department of Energy (DOE) Environmental Management Office of Science and Technology (EM-50) and Lockheed Martin Energy Systems established a continuous emissions monitoring systems (CEMS) test bed and began conducting evaluations of CEMS under development to measure contaminants from waste combustion and thermal treatment stacks. The program was envisioned to promote CEMS technologies meeting requirements of the recently issued Proposed Standards for Hazardous Waste Combustors as well as monitoring technologies that will allay public concerns about mixed waste thermal treatment and accelerate the development of innovative treatment technologies. Fully developed CEMS, as well as innovative continuous or semi-continuous sampling systems not yet interfaced with a pollutant analyzer, were considered as candidates for testing and evaluation. Complementary to other Environmental Protection Agency and DOE sponsored CEMS testing and within compliant operating conditions of the TSCA Incinerator, prioritization was given to multiple metals monitors also having potential to measure radionuclides associated with particulate emissions. In August 1996, developers of two multiple metals monitors participated in field activities at the incinerator and a commercially available radionuclide particulate monitor was acquired for modification and testing planned in 1997. This paper describes the CEMS test bed infrastructure and summarizes completed and planned activities

  7. Helicopter Field Testing of NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) System fully Integrated with the Morpheus Vertical Test Bed Avionics

    Science.gov (United States)

    Epp, Chirold D.; Robertson, Edward A.; Ruthishauser, David K.

    2013-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project was chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with real-time terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. The ALHAT System must be capable of identifying and avoiding surface hazards to enable a safe and accurate landing to within tens of meters of designated and certified landing sites anywhere on a planetary surface under any lighting conditions. This is accomplished with the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN). The NASA plan for the ALHAT technology is to perform the TRL6 closed loop demonstration on the Morpheus Vertical Test Bed (VTB). The first Morpheus vehicle was lost in August of 2012 during free-flight testing at Kennedy Space Center (KSC), so the decision was made to perform a helicopter test of the integrated ALHAT System with the Morpheus avionics over the ALHAT planetary hazard field at KSC. The KSC helicopter tests included flight profiles approximating planetary approaches, with the entire ALHAT system interfaced with all appropriate Morpheus subsystems and operated in real-time. During these helicopter flights, the ALHAT system imaged the simulated lunar terrain constructed in FY2012 to support ALHAT/Morpheus testing at KSC. To the best of our knowledge, this represents the highest fidelity testing of a system of this kind to date. During this helicopter testing, two new Morpheus landers were under construction at the Johnson Space Center to support the objective of an integrated ALHAT/Morpheus free-flight demonstration. This paper provides an overview of this helicopter flight test activity, including results and lessons learned, and also provides an overview of recent integrated testing of ALHAT on the second

  8. Design and Development Comparison of Rapid Cycle Amine 1.0, 2.0, and 3.0

    Science.gov (United States)

    Chullen, Cinda; Campbell, Colin; Papale, William; Murray, Sean; Wichowski, Robert; Conger, Bruce; McMillin, Summer

    2016-01-01

    The development of the Rapid Cycle Amine (RCA) swing-bed technology for carbon dioxide (CO2) removal has been in progress since favorable results were published in 1996. Shortly thereafter, a prototype was designed, developed, and tested successfully and delivered to Johnson Space Center in 1999. An improved prototype (RCA 1.0) was delivered to NASA in 2006 and sized for the extravehicular activity (EVA). The RCA swing-bed technology is a regenerative system which employs two alternating solid-amine sorbent beds to remove CO2 and water. The two-bed design employs a chemisorption process whereby the beds alternate between adsorption and desorption. This process provides for an efficient RCA operation that enables one bed to be in adsorb (uptake) mode, while the other is in the desorb (regeneration) mode. The RCA has progressed through several iterations of technology readiness levels. Test articles have now been designed, developed, and tested for the advanced space suit portable life support system (PLSS) including RCA 1.0, RCA 2.0, and RCA 3.0. The RCA 3.0 was the most recent RCA fabrication and was delivered to NASA-JSC in June 2015. The RCA 1.0 test article was designed with a pneumatically actuated linear motion spool valve. The RCA 2.0 and 3.0 test articles were designed with a valve assembly which allows for switching between uptake and regeneration modes while minimizing gas volume losses to the vacuum source. RCA 2.0 and 3.0 also include an embedded controller design to control RCA operation and provide the capability of interfacing with various sensors and other ventilation loop components. The RCA technology is low power, small, and has fulfilled all test requirements levied upon the technology during development testing thus far. This paper will provide an overview of the design and development of RCA 1.0, 2.0 and 3.0 including detail differences between the design specifications of each. Nomenclature.

  9. Effect of bedding control on amount of house dust mite allergens, asthma symptoms, and peak expiratory flow rate.

    Science.gov (United States)

    Lee, Inn-Sook

    2003-04-30

    This quasi-experimental study was designed to investigate the effect of bedding control on the amount of house dust mite (HDM) allergens, asthma symptoms, and peak expiratory flow rate (PEFR) in asthmatics sensitive to HDMs. The subjects in the study were drawn from patients receiving treatment at the allergy clinics of three university-affiliated hospitals in Seoul. Forty-two patients without prior practice of the bedding control used in this study were selected. They commonly showed bronchial asthma caused by HDMs, and exhibited strong positive points (more than 3 points) in skin prick test (D. farinae, D. pteronyssinus), and positive response in both fluoro-allergosorbent test (FAST), and PC20 methacholine test. Of the subjects, alternatively, 22 were assigned to the experimental group and 20 to control group. Bedding control consisted of the use of outer cotton covers, boiling them for 10 minutes fortnightly, and disinfecting bedding by sunlight fortnightly. The experimental group was under bedding control for 4 weeks. The data were collected from October 2000 to January 2001. The results were as follows: 1. After bedding control, the total amount of HDM allergens decreased significantly in the experimental group. However there was no significant difference in the decrease of the amount of HDM allergens between the two groups. 2. Of the asthma symptoms, there was significant difference only in the decrease of the frequency of dyspnea, and in the increase of sleeping disturbance between the two groups after bedding control. 3. After bedding control, PEFR increased in the experimental group whereas it decreased in the control group. However, neither change was significant. The above findings indicate that bedding control improved several asthma symptoms in asthmatics sensitive to HDMs. Accordingly, we suggest that bedding control is adopted as a useful nursing intervention in the field.

  10. Bacillus cereus in free-stall bedding.

    Science.gov (United States)

    Magnusson, M; Svensson, B; Kolstrup, C; Christiansson, A

    2007-12-01

    To increase the understanding of how different factors affect the bacterial growth in deep sawdust beds for dairy cattle, the microbiological status of Bacillus cereus and coliforms in deep sawdust-bedded free stalls was investigated over two 14-d periods on one farm. High counts of B. cereus and coliforms were found in the entire beds. On average, 4.1 log(10) B. cereus spores, 5.5 log(10) B. cereus, and 6.7 log(10) coliforms per gram of bedding could be found in the upper layers of the sawdust likely to be in contact with the cows' udders. The highest counts of B. cereus spores, B. cereus, and coliforms were found in the bedding before fresh bedding was added, and the lowest immediately afterwards. Different factors of importance for the growth of B. cereus in the bedding material were explored in laboratory tests. These were found to be the type of bedding, pH, and the type and availability of nutrients. Alternative bedding material such as peat and mixtures of peat and sawdust inhibited the bacterial growth of B. cereus. The extent of growth of B. cereus in the sawdust was increased in a dose-dependent manner by the availability of feces. Urine added to different bedding material raised the pH and also led to bacterial growth of B. cereus in the peat. In sawdust, a dry matter content greater than 70% was needed to lower the water activity to 0.95, which is needed to inhibit the growth of B. cereus. In an attempt to reduce the bacterial growth of B. cereus and coliforms in deep sawdust beds on the farm, the effect of giving bedding daily or a full replacement of the beds was studied. The spore count of B. cereus in the back part of the free stalls before fresh bedding was added was 0.9 log units lower in stalls given daily bedding than in stalls given bedding twice weekly. No effect on coliform counts was found. Replacement of the entire sawdust bedding had an effect for a short period, but by 1 to 2 mo after replacement, the counts of B. cereus spores in the

  11. Combustion of gases released from peat or biomass in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, R. [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1996-12-01

    Temperature and gas concentration experiments have been conducted to determine at what temperature carbon monoxide, methane and propane begin to react within the particulate phase of a bubbling fluidized bed. The fluidized bed reactor used in these experiments was a stainless-steel tube with an internal diameter of 50 mm surrounded by an electric heater. Two different natural quartz sands were used (d{sub p} =0.35 mm and 0.6 mm). The bed height used varied between 100 and 260 mm (in unfluidized state). A porous plate distributor, made of kaowool, was used to avoid jets appearing at the distributor. The bed was operated at incipient fluidization (u = 5.9-9 cm/s). The bed temperatures used ranged from 600 deg C to 850 deg C. It was found that carbon monoxide, methane and propane react inside a fluidized bed, but often other conditions than temperature have a considerable effect on the rate of the reaction. The critical temperature was found to be 650 deg C for propane and carbon monoxide and 700 deg C for methane. With under-stoichiometric mixture of carbon monoxide and air the heat release can be over 2.5 MW/m{sup 3} when bed temperature is 650 deg C. According to these experiments it is obvious that the reaction mechanism for carbon monoxide oxidation inside a fluidized bed differs greatly from that of gas phase only. The results of our more than 1300 test runs show clearly the varying effects of the different bed materials. Even with the same bed material totally different results can be obtained. In order to elucidate the possible changes of particle surface, microscopic and porosimetric studies was conducted with both fresh bed particles and used bed particles. Also the effect of commonly used ingredients, like limestone and dolomite, was tested. A global model for carbon monoxide oxidation inside a fluidized bed was introduced. The model was tested against measured data from the laboratory-scale fluidized bed test rig. (Abstract Truncated)

  12. Estimating ICU bed capacity using discrete event simulation.

    Science.gov (United States)

    Zhu, Zhecheng; Hen, Bee Hoon; Teow, Kiok Liang

    2012-01-01

    The intensive care unit (ICU) in a hospital caters for critically ill patients. The number of the ICU beds has a direct impact on many aspects of hospital performance. Lack of the ICU beds may cause ambulance diversion and surgery cancellation, while an excess of ICU beds may cause a waste of resources. This paper aims to develop a discrete event simulation (DES) model to help the healthcare service providers determine the proper ICU bed capacity which strikes the balance between service level and cost effectiveness. The DES model is developed to reflect the complex patient flow of the ICU system. Actual operational data, including emergency arrivals, elective arrivals and length of stay, are directly fed into the DES model to capture the variations in the system. The DES model is validated by open box test and black box test. The validated model is used to test two what-if scenarios which the healthcare service providers are interested in: the proper number of the ICU beds in service to meet the target rejection rate and the extra ICU beds in service needed to meet the demand growth. A 12-month period of actual operational data was collected from an ICU department with 13 ICU beds in service. Comparison between the simulation results and the actual situation shows that the DES model accurately captures the variations in the system, and the DES model is flexible to simulate various what-if scenarios. DES helps the healthcare service providers describe the current situation, and simulate the what-if scenarios for future planning.

  13. Schematic designs for penetration seals for a reference repository in bedded salt

    International Nuclear Information System (INIS)

    Kelsall, P.C.; Case, J.B.; Meyer, D.; Coons, W.E.

    1982-11-01

    The isolation of radioactive wastes in geologic repositories requires that man-made penetrations such as shafts, tunnels, or boreholes are adequately sealed. This report describes schematic seal designs for a repository in bedded salt referenced to the straitigraphy of southeastern New Mexico. The designs are presented for extensive peer review and will be updated as site-specific conceptual designs when a site for a repository in salt has been selected. The principal material used in the seal system is crushed salt obtained from excavating the repository. It is anticipated that crushed salt will consolidate as the repository rooms creep close to the degree that mechanical and hydrologic properties will eventually match those of undisturbed, intact salt. For southeastern New Mexico salt, analyses indicate that this process will require approximately 1000 years for a seal located at the base of one of the repository shafts (where there is little increase in temperature due to waste emplacement) and approximately 400 years for a seal located in an access tunnel within the repository. Bulkheads composed of contrete or salt bricks are also included in the seal system as components which will have low permeability during the period required for salt consolidation

  14. Recent advances in fluidized bed drying

    Science.gov (United States)

    Haron, N. S.; Zakaria, J. H.; Mohideen Batcha, M. F.

    2017-09-01

    Fluidized bed drying are very well known to yield high heat and mass transfer and hence adopted to many industrial drying processes particularly agricultural products. In this paper, recent advances in fluidized bed drying were reviewed and focus is given to the drying related to the usage of Computational Fluid Dynamics (CFD). It can be seen that usage of modern computational tools such as CFD helps to optimize the fluidized bed dryer design and operation for lower energy consumption and thus better thermal efficiency. Among agricultural products that were reviewed in this paper were oil palm frond, wheat grains, olive pomace, coconut, pepper corn and millet.

  15. The Effect of Bedding Structure on Mechanical Property of Coal

    Directory of Open Access Journals (Sweden)

    Zetian Zhang

    2014-01-01

    Full Text Available The mechanical property of coal, influencing mining activity considerably, is significantly determined by the natural fracture distributed within coal mass. In order to study the effecting mechanism of bedding structure on mechanical property of coal, a series of uniaxial compression tests and mesoscopic tests have been conducted. The experimental results show that the distribution characteristic of calcite particles, which significantly influences the growth of cracks and the macroscopic mechanical properties of coal, is obviously affected by the bedding structure. Specifically, the uniaxial compression strength of coal sample is mainly controlled by bedding structure, and the average peak stress of specimens with axes perpendicular to the bedding planes is 20.00 MPa, which is 2.88 times the average amount of parallel ones. The test results also show a close relationship between the bedding structure and the whole deformation process under uniaxial loading.

  16. Development and application of an actively controlled hybrid proton exchange membrane fuel cell - Lithium-ion battery laboratory test-bed based on off-the-shelf components

    Energy Technology Data Exchange (ETDEWEB)

    Yufit, V.; Brandon, N.P. [Dept. Earth Science and Engineering, Imperial College, London SW7 2AZ (United Kingdom)

    2011-01-15

    The use of commercially available components enables rapid prototyping and assembling of laboratory scale hybrid test-bed systems, which can be used to evaluate new hybrid configurations. The development of such a test-bed using an off-the-shelf PEM fuel cell, lithium-ion battery and DC/DC converter is presented here, and its application to a hybrid configuration appropriate for an unmanned underwater vehicle is explored. A control algorithm was implemented to regulate the power share between the fuel cell and the battery with a graphical interface to control, record and analyze the electrochemical and thermal parameters of the system. The results demonstrate the applicability of the test-bed and control algorithm for this application, and provide data on the dynamic electrical and thermal behaviour of the hybrid system. (author)

  17. Considerations on a PAHR test facility

    International Nuclear Information System (INIS)

    Boenisch, G.; Groetzbach, G.; Heinzel, V.; Kleefeld, K.; Kuechle, M.; Mueller, R.A.; Royl, P.; Schramm, K.; Smidt, D.; Werle, H.

    1976-01-01

    On the basis of a hypothetical core disruptive accident (HCDA) analysis the phenomena of the post accident phase are first identified which require experimental investigations and can only be studied in pile. Then the experimental requests for both debris bed and molten fuel pool studies are specified and grouped into three categories. For two of the categories the requests can be satisfied with loop experiments in thermal reactors. For the third category a 70 cm diameter test bed is needed and here the proposal is to use a flat core fast reactor with the test bed located below the core heated by axial leakage neutrons. Finally a conceptual design for such a reactor is presented where the test bed is loaded into an ex-vessel device and is removable on a carriage to a hot cell building. Maintenance and safety problems are briefly discussed and alternative solutions are mentioned

  18. PULSE COMBUSTOR DESIGN QUALIFICATION TEST AND CLEAN COAL FEEDSTOCK TEST - VOLUME I AND VOLUME II; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2002-01-01

    For this Cooperative Agreement, the pulse heater module is the technology envelope for an indirectly heated steam reformer. The field of use of the steam reformer pursuant to this Cooperative Agreement with DOE is for the processing of sub-bituminous coals and lignite. The main focus is the mild gasification of such coals for the generation of both fuel gas and char-for the steel industry is the main focus. An alternate market application for the substitution of metallurgical coke is also presented. This project was devoted to qualification of a 253-tube pulse heater module. This module was designed, fabricated, installed, instrumented and tested in a fluidized bed test facility. Several test campaigns were conducted. This larger heater is a 3.5 times scale-up of the previous pulse heaters that had 72 tubes each. The smaller heater has been part of previous pilot field testing of the steam reformer at New Bern, North Carolina. The project also included collection and reduction of mild gasification process data from operation of the process development unit (PDU). The operation of the PDU was aimed at conditions required to produce char (and gas) for the Northshore Steel Operations. Northshore Steel supplied the coal for the process unit tests

  19. Co-Simulation of Building Energy and Control Systems with the Building Controls Virtual Test Bed

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2010-08-22

    This article describes the implementation of the Building Controls Virtual Test Bed (BCVTB). The BCVTB is a software environment that allows connecting different simulation programs to exchange data during the time integration, and that allows conducting hardware in the loop simulation. The software architecture is a modular design based on Ptolemy II, a software environment for design and analysis of heterogeneous systems. Ptolemy II provides a graphical model building environment, synchronizes the exchanged data and visualizes the system evolution during run-time. The BCVTB provides additions to Ptolemy II that allow the run-time coupling of different simulation programs for data exchange, including EnergyPlus, MATLAB, Simulink and the Modelica modelling and simulation environment Dymola. The additions also allow executing system commands, such as a script that executes a Radiance simulation. In this article, the software architecture is presented and the mathematical model used to implement the co-simulation is discussed. The simulation program interface that the BCVTB provides is explained. The article concludes by presenting applications in which different state of the art simulation programs are linked for run-time data exchange. This link allows the use of the simulation program that is best suited for the particular problem to model building heat transfer, HVAC system dynamics and control algorithms, and to compute a solution to the coupled problem using co-simulation.

  20. Planar air-bearing microgravity simulators: Review of applications, existing solutions and design parameters

    Science.gov (United States)

    Rybus, Tomasz; Seweryn, Karol

    2016-03-01

    All devices designed to be used in space must be thoroughly tested in relevant conditions. For several classes of devices the reduced gravity conditions are the key factor. In early stages of development and later due to financial reasons, the tests need to be done on Earth. However, in Earth conditions it is impossible to obtain a different gravity field independent on all linear and rotational spatial coordinates. Therefore, various test-bed systems are used, with their design driven by the device's specific needs. One of such test-beds are planar air-bearing microgravity simulators. In such an approach, the tested objects (e.g., manipulators intended for on-orbit operations or vehicles simulating satellites in a close formation flight) are mounted on planar air-bearings that allow almost frictionless motion on a flat surface, thus simulating microgravity conditions in two dimensions. In this paper we present a comprehensive review of research activities related to planar air-bearing microgravity simulators, demonstrating achievements of the most active research groups and describing newest trends and ideas, such as tests of landing gears for low-g bodies. Major design parameters of air-bearing test-beds are also reviewed and a list of notable existing test-beds is presented.

  1. Comparison of the Effects of Fluidized-Bed and Fixed-Bed Reactors in Microwave-Assisted Catalytic Decomposition of TCE by Hydrogen

    Directory of Open Access Journals (Sweden)

    Lili Ren

    2012-01-01

    Full Text Available Trichloroethylene (TCE decomposition by hydrogen with microwave heating under different reaction systems was investigated. The activities of a series of catalysts for microwave-assisted TCE hydrodechlorination were tested through the fixed-bed and the fluidized-bed reactor systems. This study found that the different reaction system is suitable for different catalyst type. And there is an interactive relationship between the catalyst type and the reaction bed type.

  2. Model for the Evolving Bed Surface around an Offshore Monopile

    DEFF Research Database (Denmark)

    Hartvig, Peres Akrawi

    2012-01-01

    This paper presents a model for the bed surface around an offshore monopile. The model has been designed from measured laboratory bed surfaces and is shown to reproduce these satisfactorily for both scouring and backfilling. The local rate of the bed elevation is assumed to satisfy a certain...... general parametrized surface. The model also accounts for sliding of sediment particles when the angle of the local bed slope exceeds the angle of repose....

  3. Preliminary Flight Results of the Microelectronics and Photonics Test Bed: NASA DR1773 Fiber Optic Data Bus Experiment

    Science.gov (United States)

    Jackson, George L.; LaBel, Kenneth A.; Marshall, Cheryl; Barth, Janet; Seidleck, Christina; Marshall, Paul

    1998-01-01

    NASA Goddard Spare Flight Center's (GSFC) Dual Rate 1773 (DR1773) Experiment on the Microelectronic and Photonic Test Bed (MPTB) has provided valuable information on the performance of the AS 1773 fiber optic data bus in the space radiation environment. Correlation of preliminary experiment data to ground based radiation test results show the AS 1773 bus is employable in future spacecraft applications requiring radiation tolerant communication links.

  4. Feasibility study - Lowered bed temperature in Fluidised Bed boilers for waste; Foerstudie - Saenkt baeddtemperatur i FB-pannor foer avfallsfoerbraenning

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Fredrik

    2009-01-15

    Waste incineration generally serves two purposes; 1) dispose of waste and 2) generation of heat and power. In the process of power production from waste fuels, the steam temperatures in super heaters are generally limited by the severe fouling and corrosion that occurs at elevated material temperatures, caused by high concentrations of alkali metals and chloride in the flue gas and fly ash. The overall aim of a continuation of present project is to determine if a reduced temperature of the bed zone in a fluidized bed waste incinerator reduces the amount of alkali chlorides in the flue gas. If so, a reduced bed temperature might enable increased steam temperature in super heaters, or, at unchanged steam temperature, improve the lifespan of the super heaters. The results from the project are of interest for plant owners wishing to improve performance of existing plants. The results may also be used to modify the design of future plants by boiler manufacturers. The aim of present pre-study was to determine how far the bed temperature can be reduced in a waste fired fluidized bed boiler in Boraas while maintaining a stable operation with sufficient combustion temperature in the freeboard to fulfil the directives of waste incineration. A continuation of the project will be based on the results from present study. The work is based on experiments at the test boiler. During the present study, no other measurements were performed apart from some sampling of bed material and ashes at different modes of operation. The experiments show that it is possible to alter the air and recycled flue gas in such a manner that the bed temperature is reduced from about 870 deg C to 700 deg C at 100% load and normal fuel mixture, while fulfilling the directive of 850 deg C at 2 seconds. Within normal variations of the fuel properties, however, the bed temperature increases to somewhat above 700 deg C if the fuel turns dry, while it falls below 650 deg C when the fuel turns wet. With

  5. Pulsed atmospheric fluidized bed combustion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  6. A test bed for investigating and evaluating the use of biometric-encoded driver licenses and their impact on law enforcement

    Science.gov (United States)

    Messner, Richard A.; Hludik, Frank; Crowley, Todd A.; Vidacic, Dragan; Stetson, Barrett; Nadel, Lawrence D.; Nichols, Linda J.; Harris, Carol

    2004-08-01

    This paper describes the results of a collaborative effort between the University of New Hampshire (UNH) and the Mitretek Systems (MTS) Center for Criminal Justice Technology (CCJT). Mitretek conducted an investigation into the impact of anticipated biometrically encoded driver licenses (DLs) on law enforcement. As part of this activity, Mitretek teamed with UNH to leverage the results of UNH's Project54 and develop a pilot Driver License Interoperability Test Bed to explore both implementation and operational aspects associated with reading and authenticating biometrically encoded DLs in law enforcement scenarios. The test bed enables the exploration of new methods, techniques (both hardware and software), and standards in a structured fashion. Spearheaded by the American Association of Motor Vehicle Administrators (AAMVA) and the International Committee for Information Technology Standards Technical Group M1 (INCITS-M1) initiatives, standards involving both DLs and biometrics, respectively, are evolving at a rapid pace. In order to ensure that the proposed standards will provide for interstate interoperability and proper functionality for the law enforcement community, it is critical to investigate the implementation and deployment issues surrounding biometrically encoded DLs. The test bed described in this paper addresses this and will provide valuable feedback to the standards organizations, the states, and law enforcement officials with respect to implementation and functional issues that are exposed through exploration of actual test systems. The knowledge gained was incorporated into a report prepared by MTS to describe the anticipated impact of biometrically encoded DLs on law enforcement practice.

  7. The Global Modeling Test Bed - Building a New National Capability for Advancing Operational Global Modeling in the United States.

    Science.gov (United States)

    Toepfer, F.; Cortinas, J. V., Jr.; Kuo, W.; Tallapragada, V.; Stajner, I.; Nance, L. B.; Kelleher, K. E.; Firl, G.; Bernardet, L.

    2017-12-01

    NOAA develops, operates, and maintains an operational global modeling capability for weather, sub seasonal and seasonal prediction for the protection of life and property and fostering the US economy. In order to substantially improve the overall performance and accelerate advancements of the operational modeling suite, NOAA is partnering with NCAR to design and build the Global Modeling Test Bed (GMTB). The GMTB has been established to provide a platform and a capability for researchers to contribute to the advancement primarily through the development of physical parameterizations needed to improve operational NWP. The strategy to achieve this goal relies on effectively leveraging global expertise through a modern collaborative software development framework. This framework consists of a repository of vetted and supported physical parameterizations known as the Common Community Physics Package (CCPP), a common well-documented interface known as the Interoperable Physics Driver (IPD) for combining schemes into suites and for their configuration and connection to dynamic cores, and an open evidence-based governance process for managing the development and evolution of CCPP. In addition, a physics test harness designed to work within this framework has been established in order to facilitate easier like-to-like comparison of physics advancements. This paper will present an overview of the design of the CCPP and test platform. Additionally, an overview of potential new opportunities of how physics developers can engage in the process, from implementing code for CCPP/IPD compliance to testing their development within an operational-like software environment, will be presented. In addition, insight will be given as to how development gets elevated to CPPP-supported status, the pre-cursor to broad availability and use within operational NWP. An overview of how the GMTB can be expanded to support other global or regional modeling capabilities will also be presented.

  8. Detailed design of the RF source for the 1 MV neutral beam test facility

    International Nuclear Information System (INIS)

    Marcuzzi, D.; Palma, M. Dalla; Pavei, M.; Heinemann, B.; Kraus, W.; Riedl, R.

    2009-01-01

    In the framework of the EU activities for the development of the Neutral Beam Injector for ITER, the detailed design of the Radio Frequency (RF) driven negative ion source to be installed in the 1 MV ITER Neutral Beam Test Facility (NBTF) has been carried out. Results coming from ongoing R and D on IPP test beds [A. Staebler et al., Development of a RF-Driven Ion Source for the ITER NBI System, this conference] and the design of the new ELISE facility [B. Heinemann et al., Design of the Half-Size ITER Neutral Beam Source Test Facility ELISE, this conference] brought several modifications to the solution based on the previous design. An assessment was carried out regarding the Back-Streaming positive Ions (BSI+) that impinge on the back plates of the ion source and cause high and localized heat loads. This led to the redesign of most heated components to increase cooling, and to different choices for the plasma facing materials to reduce the effects of sputtering. The design of the electric circuit, gas supply and the other auxiliary systems has been optimized. Integration with other components of the beam source has been revised, with regards to the interfaces with the supporting structure, the plasma grid and the flexible connections. In the paper the design will be presented in detail, as well as the results of the analyses performed for the thermo-mechanical verification of the components.

  9. Operational experience with the JET beryllium evaporators in the J1W test bed

    International Nuclear Information System (INIS)

    Peacock, A.T.; Dietz, K.J.; Israel, G.; Jensen, H.S.; Johnson, A.; Pick, M.A.; Saibene, G.; Sartori, R.

    1989-01-01

    Four beryllium evaporators were fitted onto the JET vessel during March 1989. These evaporators are planned to give the first introduction of beryllium into the JET machine to study the effect of using beryllium as a first wall material. Over 200 hours operational experience with such an evaporator had been gained on a test bed facility in which the evaporation rate, radial evaporant distribution and head operating temperature had been determined. The results obtained on this facility with two different heat materials, sintered S-65B and vacuum cast beryllium are described. The test vessel has also been used to conduct beryllium wall pumping experiments using the ''Langmuir effect''. The initial results of these experiments will be described. (author)

  10. Pulsed atmospheric fluidized-bed combustor development

    International Nuclear Information System (INIS)

    1992-05-01

    Pulsed atmospheric fluidized-bed combustion (PAFBC) is a unique and innovative coal-fueled technology that has the potential to meet these conditions and provide heat and/or process steam to small industrial, commercial, institutional and residential complexes. The potential of Pulse Atmospheric Fluidized Bed Combustion (PAFBC) technology has been amply demonstrated under the sponsorship of a previous DOE/METC contract (DE-AC21-88MC25069). The environmental performance of a coal-fired laboratory-scale system (1.5 million British Thermal Units per hour) (MMBtu/hr) significantly surpassed that of conventional bubbling and circulating fluidized-bed combustion units (see Table 1 for performance comparison). Prompted by these encouraging results in combustion, sulfur capture, emissions control, and enhanced heat transfer, Island Creek Coal Company (ICC) and Baltimore Thermal Energy Corporation expressed interest in the technology and offered to participate by providing host sites for field testing. EA's have been submitted independently for each of these field test sites. This submission addresses the preliminary testing of the PAFBC unit at Manufacturing and Technology Conversion International's (MTCI) Baltimore, MD facility

  11. Dispersion of Bed Load Particles

    OpenAIRE

    SAWAI, Kenji

    1987-01-01

    The motion of bed load particles is so irregular that they disperse remarkably with time.In this study, some flume tests using painted tracer particles were carried out, in which thedispersive property of tracers changed variously with sediment feed rate.In analysing this process, a stochastic simulation model is proposed where it is discussedabout the degree of exposure of individual particle near the bed surface and about the variationof its pick up rate. The exponential distribution of ste...

  12. Space-Based Reconfigurable Software Defined Radio Test Bed Aboard International Space Station

    Science.gov (United States)

    Reinhart, Richard C.; Lux, James P.

    2014-01-01

    The National Aeronautical and Space Administration (NASA) recently launched a new software defined radio research test bed to the International Space Station. The test bed, sponsored by the Space Communications and Navigation (SCaN) Office within NASA is referred to as the SCaN Testbed. The SCaN Testbed is a highly capable communications system, composed of three software defined radios, integrated into a flight system, and mounted to the truss of the International Space Station. Software defined radios offer the future promise of in-flight reconfigurability, autonomy, and eventually cognitive operation. The adoption of software defined radios offers space missions a new way to develop and operate space transceivers for communications and navigation. Reconfigurable or software defined radios with communications and navigation functions implemented in software or VHDL (Very High Speed Hardware Description Language) provide the capability to change the functionality of the radio during development or after launch. The ability to change the operating characteristics of a radio through software once deployed to space offers the flexibility to adapt to new science opportunities, recover from anomalies within the science payload or communication system, and potentially reduce development cost and risk by adapting generic space platforms to meet specific mission requirements. The software defined radios on the SCaN Testbed are each compliant to NASA's Space Telecommunications Radio System (STRS) Architecture. The STRS Architecture is an open, non-proprietary architecture that defines interfaces for the connections between radio components. It provides an operating environment to abstract the communication waveform application from the underlying platform specific hardware such as digital-to-analog converters, analog-to-digital converters, oscillators, RF attenuators, automatic gain control circuits, FPGAs, general-purpose processors, etc. and the interconnections among

  13. Processing test of an upgraded mechanical design for PERMCAT reactor

    International Nuclear Information System (INIS)

    Borgognoni, Fabio; Demange, David; Doerr, Lothar; Tosti, Silvano; Welte, Stefan

    2010-01-01

    The PERMCAT membrane reactor is a coaxial combination of a Pd/Ag permeator membrane and a catalyst bed. This device has been proposed for processing fusion reactor plasma exhaust gas. A stream containing tritium (up to 1% of tritium in different chemical forms such as water, methane or molecular hydrogen) is decontaminated in the PERMCAT by counter-current isotopic swamping with protium. Different mechanical designs of the membrane reactor have been proposed to improve robustness and lifetime. The ENEA membrane reactor uses a permeator tube with a length of about 500 mm produced via cold-rolling and diffusion welding of Pd/Ag thin foils: two stainless steel pre-tensioned bellows have been applied to the Pd/Ag tube in order to avoid any significant compressive and bending stresses due to the permeator tube elongation consequent to the hydrogen uptake. An experimental test campaign has been performed using this reactor in order to assess the influence of different operating parameters and to evaluate the overall performance (decontamination factor). Tests have been carried out on two reactor prototypes: a defect-free membrane with complete (infinite) hydrogen selectivity and not perm-selective membrane. In this last case, the study has been aimed at verifying the behaviour of the PERMCAT devices under non-normal (accidental) conditions in the view of providing information for future safety analysis. The paper will present the specific mechanical design and the experimental results of tests based on isotopic exchange between H 2 O and D 2 .

  14. Femoral Test Bed for Impedance Controlled Surgical Instrumentation

    Directory of Open Access Journals (Sweden)

    Christian Brendle

    2012-01-01

    Full Text Available The risk for patients during the standard procedure of revision of cemented artificial hip joints is unsatisfactorily highdue to its high level of invasiveness and limited access to the operative field. To reduce this risk we are developing anImpedance Controlled Surgical Instrumentation (ICOS system, which aims to establish real-time control during a BoneCement (BC milling process. For this, the relationship between the thickness of the BC and its frequency-dependentelectrical impedance is used to estimate the residual BC thickness. The aim is to avoid unintended cutting of boneby detecting the passage of the BC/bone boundary layer by the milling head. In a second step, an estimation of theresidual BC thickness will be used to improve process control. As a first step towards demonstrating the feasibility ofour approach, presented here are experimental studies to characterize the BC permittivity and to describe the process indetail. The results show that the permittivity properties of BC are dominated by its polymethyl methacrylate (PMMAfraction. Thus, PMMA can be used as a substitute for future experiments. Furthermore, a Femoral Test Bed (FTB wasdesigned. Using this setup we show it is feasible to accurately distinguish between slightly different thicknesses of BC.

  15. Bed-To-Wall Heat Transfer in a Supercritical Circulating Fluidised Bed Boiler

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur

    2014-06-01

    Full Text Available The purpose of this work is to find a correlation for heat transfer to walls in a 1296 t/h supercritical circulating fluidised bed (CFB boiler. The effect of bed-to-wall heat transfer coefficient in a long active heat transfer surface was discussed, excluding the radiation component. Experiments for four different unit loads (i.e. 100% MCR, 80% MCR, 60% MCR and 40% MCR were conducted at a constant excess air ratio and high level of bed pressure (ca. 6 kPa in each test run. The empirical correlation of the heat transfer coefficient in a large-scale CFB boiler was mainly determined by two key operating parameters, suspension density and bed temperature. Furthermore, data processing was used in order to develop empirical correlation ranges between 3.05 to 5.35 m·s-1 for gas superficial velocity, 0.25 to 0.51 for the ratio of the secondary to the primary air, 1028 to 1137K for bed temperature inside the furnace chamber of a commercial CFB boiler, and 1.20 to 553 kg·m-3 for suspension density. The suspension density was specified on the base of pressure measurements inside the boiler’s combustion chamber using pressure sensors. Pressure measurements were collected at the measuring ports situated on the front wall of the combustion chamber. The obtained correlation of the heat transfer coefficient is in agreement with the data obtained from typical industrial CFB boilers.

  16. System engineering approach in the EU Test Blanket Systems Design Integration

    International Nuclear Information System (INIS)

    Panayotov, D.; Sardain, P.; Boccaccini, L.V.; Salavy, J.-F.; Cismondi, F.; Jourd'Heuil, L.

    2011-01-01

    The complexity of the Test Blanket Systems demands diverse and comprehensive integration activities. Test Blanket Modules - Consortia of Associates (TBM-CA) applies the system engineering methods in all stages of the Test Blanket System (TBS) design integration. Completed so far integration engineering tasks cover among others status and initial set of TBS operating parameters; list of codes, standards and regulations related to TBS; planning of the TBS interfaces and baseline documentation. Most of the attention is devoted to the establishment the Helium-Cooled Lithium Lead (HCLL) and Helium-Cooled Pebble Bed Lead (HCPB) TBS configuration baseline, TBS break down into sub-systems, identification, definition and management of the internal and external interfaces, development of the TBS plant break down structure (PBS), establishment and management of the required TBS baseline documentation infrastructure. Break down of the TBS into sub-systems that is crucial for the further design and interfaces' management has been selected considering several options and using specific evaluation criteria. Process of the TBS interfaces management covers the planning, definition and description, verification and review, non-conformances and deviations, and modification and improvement processes. Process of interfaces review is developed, identifying the actors, input, activities and output of the review. Finally the relations and interactions of system engineering processes with TBM configuration management and TBM-CA Quality Management System are discussed.

  17. Experimental and theoretical study of large scale debris bed reflood in the PEARL facility

    Energy Technology Data Exchange (ETDEWEB)

    Chikhi, Nourdine, E-mail: nourdine.chikhi@irsn.fr; Fichot, F.

    2017-02-15

    Highlights: • Five reflooding tests have been carried out with an experimental bed, 500 mm in height and 500 mm in diameter, made of 4 mm stainless steel balls. • For the first time, such a large bed was heated practically homogenously. • The quench front velocity was determined according to thermocouple measurements inside the bed. • An analytical model, assuming a quasi-steady progression of the quench front, allows to predict the conversion ratio in most cases. • It appears that the efficiency of cooling can be increased only up to a certain limit when increasing the inlet water flow rate. - Abstract: During a severe accident in a nuclear power plant, the degradation of fuel rods and melting of materials lead to the accumulation of core materials, which are commonly, called “debris beds”. To stop core degradation and avoid the reactor vessel rupture, the main accident management procedure consists in injecting water. In the case of debris bed, the reflooding models used for Loss of Coolant Accident are not applicable. The IRSN has launched an experimental program on debris bed reflooding to develop new models and to validate severe accident codes. The PEARL facility has been designed to perform, for the first time, the reflooding of large scale debris bed (Ø540 mm, h = 500 mm and 500 kg of steel debris) in a pressurized containment. The bed is heated by means of an induction system. A specific instrumentation has been developed to measure the debris bed temperature, pressure drop inside the bed and the steam flow rate during the reflooding. In this paper, the results of the first integral reflooding tests performed in the PEARL facility at atmospheric pressure up to 700 °C are presented. Focus is made on the quench front propagation and on the steam flow rate during reflooding. The effect of water injection flow rate, debris initial temperature and residual power are also discussed. Finally, an analytical model providing the steam flow rate and

  18. Automated and connected vehicle (AV/CV) test bed to improve transit, bicycle, and pedestrian safety : concept of operations plan.

    Science.gov (United States)

    2017-02-01

    This document presents the Concept of Operations (ConOps) Plan for the Automated and Connected Vehicle (AV/CV) Test Bed to Improve Transit, Bicycle, and Pedestrian Safety. As illustrated in Figure 1, the plan presents the overarching vision and goals...

  19. Comparison of Ocular Outcomes in Two 14-Day Bed Rest Studies

    Science.gov (United States)

    Cromwell, R. L.; Zanello, S. B.; Yarbough, P. O.; Taibbi, G.; Vizzeri, G.

    2011-01-01

    Reports of astronauts visual changes raised concern about ocular health during long-duration spaceflight. Some of these findings included hyperopic shifts, choroidal folds, optic disc edema, retinal nerve fiber layer (RNFL) thickening, and cotton wool spots. While the etiology remains unknown, hypotheses speculate that hypertension in the brain caused by cephalad fluid shifts during spaceflight is a possible mechanism for these ocular changes. Head-down tilt (HDT) bed rest is a spaceflight analog that induces cephalad fluid shifts. In addition, previous studies of the HDT position demonstrated body fluid shifts associated with changes in intraocular pressure (IOP). For these reasons, vision monitoring of HDT bed rest subjects was implemented for NASA bed rest studies. Subjects selected for these studies were healthy adults (14 males and 5 females). Average age was 37.5 plus or minus 9.1 years, weight was 77.4 plus or minus 11.3 Kg, and height was 173.4 plus or minus 7.2 14 cm. Controlled conditions followed for all NASA bed rest studies were implemented. These conditions included factors such as eating a standardized diet, maintaining a strict sleep wake cycle, and remaining in bed for 24 hours each day. In one study, subjects maintained a horizontal (0 degree) position while in bed and were exercised six days per week with an integrated resistance and aerobic training (iRAT) program. In the other study, subjects were placed at 6 degrees HDT while in bed and did not engage in exercise. All subjects underwent pre- and post bed rest vision testing. While the battery of vision tests for each study was not identical, measures common to both studies will be presented. These measures included IOP and measures that provided an indication of optic disc swelling as derived from optical coherence tomography (OCT) testing: average retinal nerve fiber layer (RNFL) thickness (millimeters), disc area (square millimeters), rim area (square millimters), and average cup to disc (C

  20. OPSAID Initial Design and Testing Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, Steven A.; Stamp, Jason Edwin [Sandia National Laboratories, Albuquerque, NM; Chavez, Adrian R. [Sandia National Laboratories, Albuquerque, NM

    2007-11-01

    Process Control System (PCS) security is critical to our national security. Yet, there are a number of technological, economic, and educational impediments to PCS owners implementing effective security on their systems. OPSAID (Open PCS Security Architecture for Interoperable Design), a project sponsored by the US Department of Energy's Office of Electricity Delivery and Reliability, aims to address this issue through developing and testing an open source architecture for PCS security. Sandia National Laboratories, along with a team of PCS vendors and owners, have developed and tested this PCS security architecture. This report describes their progress to date.2 AcknowledgementsThe authors acknowledge and thank their colleagues for their assistance with the OPSAID project.Sandia National Laboratories: Alex Berry, Charles Perine, Regis Cassidy, Bryan Richardson, Laurence PhillipsTeumim Technical, LLC: Dave TeumimIn addition, the authors are greatly indebted to the invaluable help of the members of the OPSAID Core Team. Their assistance has been critical to the success and industry acceptance of the OPSAID project.Schweitzer Engineering Laboratory: Rhett Smith, Ryan Bradetich, Dennis GammelTelTone: Ori Artman Entergy: Dave Norton, Leonard Chamberlin, Mark AllenThe authors would like to acknowledge that the work that produced the results presented in this paper was funded by the U.S. Department of Energy/Office of Electricity Delivery and Energy Reliability (DOE/OE) as part of the National SCADA Test Bed (NSTB) Program. Executive SummaryProcess control systems (PCS) are very important for critical infrastructure and manufacturing operations, yet cyber security technology in PCS is generally poor. The OPSAID (Open PCS (Process Control System) Security Architecture for Interoperable Design) program is intended to address these security shortcomings by accelerating the availability and deployment of comprehensive security technology for PCS, both for existing PCS

  1. Theoretical and Experimental Substantiation for Applicability of a Damping Layer in a Foundation Slab Placed on Soil Bed

    Directory of Open Access Journals (Sweden)

    Kiselev Nikita

    2016-01-01

    Full Text Available Authors present the results of studies of innovative foundation structure. The idea of how to increase the operational quality of foundations and reduce the costs due to rational loading of the soil bed is numerically simulated. It is shown that the bending moment in the foundation slab depends on uneven settlements of the soil bed. It is proposed to stabilize the deformable soil bed by the damping layer placed under the slab footing in the zones with minor settlements. Considered is the concept of the damping layer in the foundation slab placed on the soil bed (DLS. The in-situ test for DLS-clayey bed interaction is described. Given are the results obtained after the experiments for DLS performance. The result of DLS implementation in designing the foundation of the 22-storeyed block of flats is considered. The expediency of DLS in comparison to standard foundations is presented.

  2. Slow drilling speeds for single-drill implant bed preparation. Experimental in vitro study.

    Science.gov (United States)

    Delgado-Ruiz, R A; Velasco Ortega, E; Romanos, G E; Gerhke, S; Newen, I; Calvo-Guirado, J L

    2018-01-01

    To evaluate the real-time bone temperature changes during the preparation of the implant bed with a single-drill protocol with different drill designs and different slow drilling speeds in artificial type IV bone. For this experimental in vitro study, 600 implant bed preparations were performed in 10 bovine bone disks using three test slow drilling speeds (50/150/300 rpm) and a control drilling speed (1200 rpm). The temperature at crestal and apical areas and time variations produced during drilling with three different drill designs with similar diameter and length but different geometry were recorded with real-life thermographic analysis. Statistical analysis was performed by two-way analysis of variance. Multiple comparisons of temperatures and time with the different drill designs and speeds were performed with the Tukey's test. T Max values for the control drilling speed with all the drill designs (D1 + 1200; D2 + 1200; D3 + 1200) were higher compared to those for the controls for 11 ± 1.32 °C (p drilling at 50 rpm resulted in the lowest temperature increment (22.11 ± 0.8 °C) compared to the other slow drilling speeds of 150 (24.752 ± 1.1 °C) and 300 rpm (25.977 ± 1.2 °C) (p drilling speeds compared to that for the control drilling speed. Slow drilling speeds required significantly more time to finish the preparation of the implant bed shown as follows: 50 rpm > 150 rpm > 300 rpm > control (p drill protocol with slow drilling speeds (50, 150, and 300 rpm) without irrigation in type IV bone increases the temperature at the coronal and apical levels but is below the critical threshold of 47 °C. The drill design in single-drill protocols using slow speeds (50, 150, and 300 rpm) does not have an influence on the thermal variations. The time to accomplish the implant bed preparation with a single-drill protocol in type IV bone is influenced by the drilling speed and not by the drill design. As the speed decreases, then

  3. Countermeasures and Functional Testing in Head-Down Tilt Bed Rest (CFT 70)

    Science.gov (United States)

    Cromwell, Ronita L.

    2013-01-01

    This 70-day bed rest campaign was comprised of 6 integrated studies and conducted at the NASA Flight Analogs Research Unit (FARU). The FARU is located at the University of Texas Medical Branch, Galveston, Texas and is a satellite unit of the Institute for Translational Sciences - Clinical Research Center. This presentation will describe the FARU, discuss the utility of the bed rest platform for use in these studies, and introduce the studies that participated in the CFT 70 bed rest campaign. Information in this presentation will serve as the background for subsequent talks from each individual study. Individual study presentations will discuss preliminary results from completed subjects. Studies included in CFT70 were: ? Physiological Factors Contributing to Post Flight Changes in Functional Performance. J. Bloomberg, NASA ? Integrated Resistance and Aerobic Training Study. L. Ploutz-Snyder, USRA ? Testosterone Supplementation as a Countermeasure Against Musculoskeletal losses during Space Exploration. R. Urban, University of Texas Medical Branch ? Effects of Retronasal Smelling, Variety and Choice on Appetite & Satiety. J. Hunter, Cornell University ? AD ASTRA: Automated Detection of Attitudes and States through Transaction Recordings Analysis. C. Miller, Smart Information Flow Technologies, LLC ? Bed Rest as a Spaceflight Analog to Study Neuro-cognitive Changes: Extent, Longevity, and Neural Bases. R. Seidler, University of Michigan

  4. The efficacy of permethrin-treated bed nets on child mortality and morbidity in western Kenya II. Study design and methods

    NARCIS (Netherlands)

    Phillips-Howard, Penelope A.; ter Kuile, Feiko O.; Nahlen, Bernard L.; Alaii, Jane A.; Gimnig, John E.; Kolczak, Margarette S.; Terlouw, Dianne J.; Kariuki, Simon K.; Shi, Ya Ping; Kachur, S. Patrick; Hightower, Allen W.; Vulule, John M.; Hawley, William A.

    2003-01-01

    This paper describes the study design and methods used in a large community-based, group-randomized, controlled trial of permethrin-treated bed nets (ITNs) in an area with intense, perennial malaria transmission in western Kenya conducted between 1996 and 1999. A multi-disciplinary framework was

  5. Experimental Test Rig for Optimal Control of Flexible Space Robotic Arms

    Science.gov (United States)

    2016-12-01

    the test bed design. A single link arm with a torsional, helical spring at the base was finalized to investigate the effects of coupling due to...test bed design. A single link arm with a torsional, helical spring at the base was finalized to investigate the effects of coupling due to movement...Source: [4]. A challenge with space systems is that it costs a lot of money to put a satellite or spacecraft into space. Estimates to send one kilogram

  6. Forces on stationary particles in near-bed turbulent flows

    Science.gov (United States)

    Schmeeckle, Mark W.; Nelson, Jonathan M.; Shreve, Ronald L.

    2007-06-01

    In natural flows, bed sediment particles are entrained and moved by the fluctuating forces, such as lift and drag, exerted by the overlying flow on the particles. To develop a better understanding of these forces and the relation of the forces to the local flow, the downstream and vertical components of force on near-bed fixed particles and of fluid velocity above or in front of them were measured synchronously at turbulence-resolving frequencies (200 or 500 Hz) in a laboratory flume. Measurements were made for a spherical test particle fixed at various heights above a smooth bed, above a smooth bed downstream of a downstream-facing step, and in a gravel bed of similarly sized particles as well as for a cubical test particle and 7 natural particles above a smooth bed. Horizontal force was well correlated with downstream velocity and not correlated with vertical velocity or vertical momentum flux. The standard drag formula worked well to predict the horizontal force, but the required value of the drag coefficient was significantly higher than generally used to model bed load motion. For the spheres, cubes, and natural particles, average drag coefficients were found to be 0.76, 1.36, and 0.91, respectively. For comparison, the drag coefficient for a sphere settling in still water at similar particle Reynolds numbers is only about 0.4. The variability of the horizontal force relative to its mean was strongly increased by the presence of the step and the gravel bed. Peak deviations were about 30% of the mean force for the sphere over the smooth bed, about twice the mean with the step, and 4 times it for the sphere protruding roughly half its diameter above the gravel bed. Vertical force correlated poorly with downstream velocity, vertical velocity, and vertical momentum flux whether measured over or ahead of the test particle. Typical formulas for shear-induced lift based on Bernoulli's principle poorly predict the vertical forces on near-bed particles. The

  7. A quality by design study applied to an industrial pharmaceutical fluid bed granulation.

    Science.gov (United States)

    Lourenço, Vera; Lochmann, Dirk; Reich, Gabriele; Menezes, José C; Herdling, Thorsten; Schewitz, Jens

    2012-06-01

    The pharmaceutical industry is encouraged within Quality by Design (QbD) to apply science-based manufacturing principles to assure quality not only of new but also of existing processes. This paper presents how QbD principles can be applied to an existing industrial pharmaceutical fluid bed granulation (FBG) process. A three-step approach is presented as follows: (1) implementation of Process Analytical Technology (PAT) monitoring tools at the industrial scale process, combined with multivariate data analysis (MVDA) of process and PAT data to increase the process knowledge; (2) execution of scaled-down designed experiments at a pilot scale, with adequate PAT monitoring tools, to investigate the process response to intended changes in Critical Process Parameters (CPPs); and finally (3) the definition of a process Design Space (DS) linking CPPs to Critical to Quality Attributes (CQAs), within which product quality is ensured by design, and after scale-up enabling its use at the industrial process scale. The proposed approach was developed for an existing industrial process. Through enhanced process knowledge established a significant reduction in product CQAs, variability already within quality specifications ranges was achieved by a better choice of CPPs values. The results of such step-wise development and implementation are described. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Fluidized bed selective pyrolysis of coal

    Science.gov (United States)

    Shang, Jer Y.; Cha, Chang Y.; Merriam, Norman W.

    1992-01-01

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.

  9. Sensors, Cyberinfrastructure, and Examination of Hydrologic and Hydrochemical Response in the Little Bear River Observatory Test Bed

    Science.gov (United States)

    Horsburgh, J. S.; Stevens, D. K.; Tarboton, D. G.; Mesner, N. O.; Spackman Jones, A.

    2008-12-01

    The Little Bear River environmental observatory test bed is one of 11 test bed projects that are focused on developing techniques and technologies for environmental observatories ranging from innovative application of environmental sensors to publishing observations data in common formats that can be accessed by investigators nationwide. Specific objectives of the Little Bear test bed include the estimation of water quality constituent fluxes from surrogate data, relation of fluxes to watershed attributes and management practices, examination of high frequency hydrologic and hydrochemical responses, and development of cyberinfrastructure that supports these analyses and publication of the data. We have installed high frequency water quality and discharge monitoring instrumentation at seven locations in the Little Bear, along with two continuous weather stations. Cyberinfrastructure that has been implemented includes the sensors, a telemetry system that transmits data from the field to a central location, a central observations database, software that automates the ingestion of these data into the database so they are available in near real time, and software tools for screening and quality control of the raw data. We have implemented a CUAHSI Hydrologic Information System (HIS) Server that includes an instance of the Observations Data Model (ODM) relational database that stores the data, web services that provide programmatic data access over the Internet using WaterML, the Data Access System for Hydrology (DASH) that provides an Internet map based interface for data access, and the Time Series Analyst that provides Internet-based plotting and summary functionality. The high frequency data have illustrated the dynamic nature of hydrologic and hydrochemical response in the Little Bear as well as the importance of sampling frequency on estimation of constituent fluxes. Annual estimates of total phosphorus and total suspended solids loads vary over orders of magnitude

  10. FBR and RBR particle bed space reactors

    International Nuclear Information System (INIS)

    Powell, J.R.; Botts, T.E.

    1983-01-01

    Compact, high-performance nuclear reactor designs based on High-Temperature Gas Reactors (HTGRs) particulate fuel are investigated. The large surface area available with the small-diameter (approx. 500 microns) particulate fuel allows very high power densities (MW's/liter), small temperature differences between fuel and coolant (approx. 10 0 K), high coolant-outlet temperatures (1500 to 3000 0 K, depending on design), and fast reactor startup (approx. 2 to 3 seconds). Two reactor concepts are developed - the Fixed Bed Reactor (FBR), where the fuel particles are packed into a thin annular bed between two porous cylindrical drums, and the Rotating Bed Reactor (RBR), where the fuel particles are held inside a cold rotating (typically approx. 500 rpm) porous cylindrical drum. The FBR can operate steady-state in the closed-cycle He-cooled mode or in the open-cycle H 2 -cooled mode. The RBR will operate only in the open-cycle H 2 -cooled mode

  11. Conceptual design of retrieval systems for emplaced transuranic waste containers in a salt bed depository. Final report

    International Nuclear Information System (INIS)

    Fogleman, S.F.

    1980-04-01

    The US Department of Energy and the Nuclear Regulatory Commission have jurisdiction over the nuclear waste management program. Design studies were previously made of proposed repository site configurations for the receiving, processing, and storage of nuclear wastes. However, these studies did not provide operational designs that were suitable for highly reliable TRU retrieval in the deep geologic salt environment for the required 60-year period. The purpose of this report is to develop a conceptual design of a baseline retrieval system for emplaced transuranic waste containers in a salt bed depository. The conceptual design is to serve as a working model for the analysis of the performance available from the current state-of-the-art equipment and systems. Suggested regulations would be based upon the results of the performance analyses

  12. Physiological and Functional Alterations after Spaceflight and Bed Rest.

    Science.gov (United States)

    Mulavara, Ajitkumar P; Peters, Brian T; Miller, Chris A; Kofman, Igor S; Reschke, Millard F; Taylor, Laura C; Lawrence, Emily L; Wood, Scott J; Laurie, Steven S; Lee, Stuart M C; Buxton, Roxanne E; May-Phillips, Tiffany R; Stenger, Michael B; Ploutz-Snyder, Lori L; Ryder, Jeffrey W; Feiveson, Alan H; Bloomberg, Jacob J

    2018-04-03

    Exposure to microgravity causes alterations in multiple physiological systems, potentially impacting the ability of astronauts to perform critical mission tasks. The goal of this study was to determine the effects of spaceflight on functional task performance and to identify the key physiological factors contributing to their deficits. A test battery comprised of 7 functional tests and 15 physiological measures was used to investigate the sensorimotor, cardiovascular and neuromuscular adaptations to spaceflight. Astronauts were tested before and after 6-month spaceflights. Subjects were also tested before and after 70 days of 6° head-down bed rest, a spaceflight analog, to examine the role of axial body unloading on the spaceflight results. These subjects included Control and Exercise groups to examine the effects of exercise during bed rest. Spaceflight subjects showed the greatest decrement in performance during functional tasks that required the greatest demand for dynamic control of postural equilibrium which was paralleled by similar decrements in sensorimotor tests that assessed postural and dynamic gait control. Other changes included reduced lower limb muscle performance and increased heart rate to maintain blood pressure. Exercise performed during bed rest prevented detrimental change in neuromuscular and cardiovascular function, however, both bed rest groups experienced functional and balance deficits similar to spaceflight subjects. Bed rest data indicates that body support unloading experienced during spaceflight contributes to postflight postural control dysfunction. Further, the bed rest results in the Exercise group of subjects confirm that resistance and aerobic exercises performed during spaceflight can play an integral role in maintaining neuromuscular and cardiovascular function, which can help in reducing decrements in functional performance. These results indicate that a countermeasure to mitigate postflight postural control dysfunction is

  13. Conversion of metallurgical coke and coal using a Coal Direct Chemical Looping (CDCL) moving bed reactor

    International Nuclear Information System (INIS)

    Luo, Siwei; Bayham, Samuel; Zeng, Liang; McGiveron, Omar; Chung, Elena; Majumder, Ankita; Fan, Liang-Shih

    2014-01-01

    Highlights: • Accumulated more than 300 operation hours were accomplished for the moving bed reducer reactor. • Different reactor operation variables were investigated with optimal conditions identified. • High conversions of sub-bituminous coal and bituminous coal were achieved without flow problems. • Co-current and counter-current contact modes were tested and their applicability was discussed. - Abstract: The CLC process has the potential to be a transformative commercial technology for a carbon-constrained economy. The Ohio State University Coal Direct Chemical Looping (CDCL) process directly converts coal, eliminating the need for a coal gasifier oran air separation unit (ASU). Compared to other solid-fuel CLC processes, the CDCL process is unique in that it consists of a countercurrent moving bed reducer reactor. In the proposed process, coal is injected into the middle of the moving bed, whereby the coal quickly heats up and devolatilizes, splitting the reactor roughly into two sections with no axial mixing. The top section consists of gaseous fuel produced from the coal volatiles, and the bottom section consists of the coal char mixed with the oxygen carrier. A bench-scale moving bed reactor was used to study the coal conversion with CO 2 as the enhancing gas. Initial tests using metallurgical cokefines as feedstock were conducted to test the effects of operational variables in the bottom section of the moving bed reducer, e.g., reactor temperature, oxygen carrier to char ratio, enhancer gas CO 2 flow rate, and oxygen carrier flow rates. Experiments directly using coal as the feedstock were subsequently carried out based on these test results. Powder River Basin (PRB) coal and Illinois #6 coal were tested as representative sub-bituminous and bituminous coals, respectively. Nearly complete coal conversion was achieved using composite iron oxide particles as the oxygen carriers without any flow problems. The operational results demonstrated that a

  14. Some performance characteristics of a fluidized bed heat recovery unit

    International Nuclear Information System (INIS)

    Militzer, J.; Basu, P.; Adaikkappan, N.

    1985-01-01

    The advantages of using fluidized bed heat recovery units with diesel engines are well documented. Two of those are: significantly less tube fouling and heat transfer coefficient four to five time higher than that of conventional shell and tube heat exchangers. The high concentration of soot in the exhaust gases of diesel engines make fouling a major concern in design of any kind of heat recovery unit. In the experiment a conventional fluidized bed heat exchanger was connected to the exhaust of a diesel engine mounted on a dynamometer. With this arrangement it was possible to test the heat recovery unit under a wide range of operating conditions. The main objective of this experiment was the determination of the performance characteristics of the heat recovery unit, especially with reference to its heat transfer and fouling characteristics. (author)

  15. Gas Reactor International Cooperative program. Pebble bed reactor plant: screening evaluation. Volume 2. Conceptual balance of plant design

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    This report consists of three volumes which describe the design concepts and screening evaluation for a 3000 MW(t) Pebble Bed Reactor Multiplex Plant (PBR-MX). The Multiplex plant produces both electricity and transportable chemical energy via the thermochemical pipeline (TCP). The evaluation was limited to a direct cycle plant which has the steam generators and steam reformers in the primary circuit. This volume describes the conceptual balance-of-plant (BOP) design and was prepared by United Engineers and Constructors, Inc. of Philadelphia, Pennsylvania. The major emphasis of the BOP study was a preliminary design of an overall plant to provide a basis for future studies.

  16. Gas Reactor International Cooperative program. Pebble bed reactor plant: screening evaluation. Volume 2. Conceptual balance of plant design

    International Nuclear Information System (INIS)

    1979-11-01

    This report consists of three volumes which describe the design concepts and screening evaluation for a 3000 MW(t) Pebble Bed Reactor Multiplex Plant (PBR-MX). The Multiplex plant produces both electricity and transportable chemical energy via the thermochemical pipeline (TCP). The evaluation was limited to a direct cycle plant which has the steam generators and steam reformers in the primary circuit. This volume describes the conceptual balance-of-plant (BOP) design and was prepared by United Engineers and Constructors, Inc. of Philadelphia, Pennsylvania. The major emphasis of the BOP study was a preliminary design of an overall plant to provide a basis for future studies

  17. Fluidised bed heat exchangers

    International Nuclear Information System (INIS)

    Elliott, D.E.; Healey, E.M.; Roberts, A.G.

    1974-01-01

    Problems that have arisen during the initial stages of development of fluidised bed boilers in which heat transfer surfaces are immersed in fluidised solids are discussed. The very high heat transfer coefficients that are obtained under these conditions can be exploited to reduce the total heat transfer surface to a fraction of that in normal boilers. However, with the high heat flux levels involved, tube stressing becomes more important and it is advantageous to use smaller diameter tubes. One of the initial problems was that the pumping power absorbed by the fluidised bed appeared to be high. The relative influence of the fluidising velocity (and the corresponding bed area), tube diameter, tube spacing, heat transfer coefficient and bed temperature on pumping power and overall cost was determined. This showed the importance of close tube packing and research was undertaken to see if this would adversely affect the heat transfer coefficient. Pressure operation also reduces the pumping power. Fouling and corrosion tests in beds burning coal suggest that higher temperatures could be reached reliably and cost studies show that, provided the better refractory metals are used, the cost of achieving higher temperatures is not unduly high. It now remains to demonstrate at large scale that the proposed systems are viable and that the methods incorporated to overcome start up and part lead running problems are satisfactory. The promising role of these heat transfer techniques in other applications is briefly discussed

  18. Bed Bugs

    Science.gov (United States)

    Prevent, identify, and treat bed bug infestations using EPA’s step-by-step guides, based on IPM principles. Find pesticides approved for bed bug control, check out the information clearinghouse, and dispel bed bug myths.

  19. Bridge Failure Due to Inadequate Design of Bed Protection

    Science.gov (United States)

    Gupta, Yogita; Kaur, Suneet; Dindorkar, Nitin

    2017-12-01

    The shallow foundation is generally provided on non-erodible strata or where scour depth is less. It is also preferable for low perennial flow or standing water condition. In the present case study shallow foundation is adopted for box type bridge. The total length of the bridge is 132.98 m, consisting of eight unit of RCC box. Each unit is composed of three cell box. The bottom slab of box unit is acted as raft foundation, founded 500 mm below ground level. River bed protection work is provided on both upstream and downstream side along the whole length of the bridge as it is founded above scour level. The bridge collapsed during the monsoon just after two years of service. The present paper explains the cause of failure. This study on failure of the bridge illustrates the importance of bridge inspection before and after monsoon period and importance of the timely maintenance. Standard specifications of Indian Road Congress for the river bed protection work are also included.

  20. Quality risk management of top spray fluidized bed process for antihypertensive drug formulation with control strategy engendered by Box-behnken experimental design space.

    Science.gov (United States)

    Mukharya, Amit; Patel, Paresh U; Shenoy, Dinesh; Chaudhary, Shivang

    2013-01-01

    Lacidipine (LCDP) is a very low soluble and highly biovariable calcium channel blocker used in the treatment of hypertension. To increase its apparent solubility and to reduce its biovariability, solid dispersion fluid bed processing technology was explored, as it produces highly dispersible granules with a characteristic porous structure that enhances dispersibility, wettability, blend uniformity (by dissolving and spraying a solution of actives), flow ability and compressibility of granules for tableting and reducing variability by uniform drug-binder solution distribution on carrier molecules. Main object of this quality risk management (QRM) study is to provide a sophisticated "robust and rugged" Fluidized Bed Process (FBP) for the preparation of LCDP tablets with desired quality (stability) and performance (dissolution) by quality by design (QbD) concept. THIS STUDY IS PRINCIPALLY FOCUSING ON THOROUGH MECHANISTIC UNDERSTANDING OF THE FBP BY WHICH IT IS DEVELOPED AND SCALED UP WITH A KNOWLEDGE OF THE CRITICAL RISKS INVOLVED IN MANUFACTURING PROCESS ANALYZED BY RISK ASSESSMENT TOOLS LIKE: Qualitative Initial Risk-based Matrix Analysis (IRMA) and Quantitative Failure Mode Effective Analysis (FMEA) to identify and rank parameters with potential to have an impact on In Process/Finished Product Critical Quality Attributes (IP/FP CQAs). These Critical Process Parameters (CPPs) were further refined by DoE and MVDA to develop design space with Real Time Release Testing (RTRT) that leads to implementation of a control strategy to achieve consistent finished product quality at lab scale itself to prevent possible product failure at larger manufacturing scale.

  1. Gypsum as a bedding source for broiler chickens

    Science.gov (United States)

    Three trials examined the feasibility of flue gas desulfurization gypsum as a bedding material for raising broilers. Gypsum was used alone, under or on top of pine shavings and pine bark. Test materials were placed as bedding in pens to simulate commercial broiler production through three growout cy...

  2. Design and assembling of a moving bed column to operate with ion exchange resin

    International Nuclear Information System (INIS)

    Franca Junior, J.M.; Abrao, A.

    1976-01-01

    A new moving bed column specially designed to operate with ion exchange resins in such peculiar situations where there is gas evolution is reported. The second part reports the use of the column in the preparation of nuclear grade ammonium uranyl tricarbonate (AUTC), from crude uranyl nitrate solution. Uranium-VI is binded into a strong cationic ion exchanger and then eluted with (NH 4 ) 2 CO 3 . The final product is crystallized from the eluate by simply cooling down the temperature to 5 0 or by addition of ethanol. Loading of resin with uranyl ion, its elution with ammonium carbonate and the crystallization of AUTC is described [pt

  3. Modeling and fuzzy control of the engine coolant conditioning system in an IC engine test bed

    International Nuclear Information System (INIS)

    Mohtasebi, Seyed Saeid; Shirazi, Farzad A.; Javaheri, Ahmad; Nava, Ghodrat Hamze

    2010-01-01

    Mechanical and thermodynamical performance of internal combustion engines is significantly affected by the engine working temperature. In an engine test bed, the internal combustion engines are tested in different operating conditions using a dynamometer. It is required that the engine temperature be controlled precisely, particularly in transient states. This precise control can be achieved by an engine coolant conditioning system mainly consisting of a heat exchanger, a control valve, and a controller. In this study, constitutive equations of the system are derived first. These differential equations show the second- order nonlinear time-varying dynamics of the system. The model is validated with the experimental data providing satisfactory results. After presenting the dynamic equations of the system, a fuzzy controller is designed based on our prior knowledge of the system. The fuzzy rules and the membership functions are derived by a trial and error and heuristic method. Because of the nonlinear nature of the system the fuzzy rules are set to satisfy the requirements of the temperature control for different operating conditions of the engine. The performance of the fuzzy controller is compared with a PI one for different transient conditions. The results of the simulation show the better performance of the fuzzy controller. The main advantages of the fuzzy controller are the shorter settling time, smaller overshoot, and improved performance especially in the transient states of the system

  4. MIT pebble bed reactor project

    Energy Technology Data Exchange (ETDEWEB)

    Kadak, Andrew C. [Massachusetts Institute of Technology, Cambridge (United States)

    2007-03-15

    The conceptual design of the MIT modular pebble bed reactor is described. This reactor plant is a 250 Mwth, 120 Mwe indirect cycle plant that is designed to be deployed in the near term using demonstrated helium system components. The primary system is a conventional pebble bed reactor with a dynamic central column with an outlet temperature of 900 C providing helium to an intermediate helium to helium heat exchanger (IHX). The outlet of the IHX is input to a three shaft horizontal Brayton Cycle power conversion system. The design constraint used in sizing the plant is based on a factory modularity principle which allows the plant to be assembled 'Lego' style instead of constructed piece by piece. This principle employs space frames which contain the power conversion system that permits the Lego-like modules to be shipped by truck or train to sites. This paper also describes the research that has been conducted at MIT since 1998 on fuel modeling, silver leakage from coated fuel particles, dynamic simulation, MCNP reactor physics modeling and air ingress analysis.

  5. MIT pebble bed reactor project

    International Nuclear Information System (INIS)

    Kadak, Andrew C.

    2007-01-01

    The conceptual design of the MIT modular pebble bed reactor is described. This reactor plant is a 250 Mwth, 120 Mwe indirect cycle plant that is designed to be deployed in the near term using demonstrated helium system components. The primary system is a conventional pebble bed reactor with a dynamic central column with an outlet temperature of 900 C providing helium to an intermediate helium to helium heat exchanger (IHX). The outlet of the IHX is input to a three shaft horizontal Brayton Cycle power conversion system. The design constraint used in sizing the plant is based on a factory modularity principle which allows the plant to be assembled 'Lego' style instead of constructed piece by piece. This principle employs space frames which contain the power conversion system that permits the Lego-like modules to be shipped by truck or train to sites. This paper also describes the research that has been conducted at MIT since 1998 on fuel modeling, silver leakage from coated fuel particles, dynamic simulation, MCNP reactor physics modeling and air ingress analysis

  6. Drying of materials in fluidized bed: mathematical modeling

    International Nuclear Information System (INIS)

    Wildhagen, Gloria Regina S.; Silva, Eder F.; Calcada, Luis A.; Massarani, Giulio

    2000-01-01

    A three phase mathematical model for drying process in a fluidized bed was established. This model representing a bubble, interstitial gas and solid phase was based on principles of mass and energy conservation and on empirical relations for heat and mass transfer between phases. A fluidized bed dryer was built to test the results of proposed model with those obtained by experiments using alumina particles as a bed charge. A good agreement between the numerical and the experimental results were observed(author)

  7. Improvement of Combustion Characteristics in Fluidized Bed

    International Nuclear Information System (INIS)

    Mohamed, H.S.; El Sourougy, M.R.; Faik, M.

    2009-01-01

    The present investigation is directed towards the experimental study of the effect of a new design of the bed temperature on the overall thermal efficiency and heat transfer by conduction, convection and radiation in gaseous fuel-fluidized bed combustion system. The experiments are performed on a water-cooled fluidized bed model furnace with cylindrical cross-section of 0.25 m diameter and its height is 0.60 m. the fluidising medium used is sand particles with average diameter 1.5 mm. The bed temperature is varied between 700 degree C and 1100 degree C. Measurements f carbon dioxide, carbon monoxide and oxygen concentrations are carried out by using water-cooled sampling probe, and infrared and paramagnetic analyzers. The results obtained show that the bed temperature, the total heat transfer to the wall and the bed combustion efficiency increase with the decrease of the air-fuel ratio. It is also found that 91% of the total heat transfer is in the fluidising part of the bed and most of this heat is transferred by convection from hot sand particles to the wall. Two empirical formulae for the calculation of the wall heat transfer coefficient and the particle convective heat transfer coefficient are proposed. A verification of the proposed empirical formulae is made by comparing the calculated values with the experimental results.

  8. Effects of two hospital bed design features on physical demands and usability during brake engagement and patient transportation: a repeated measures experimental study.

    Science.gov (United States)

    Kim, Sunwook; Barker, Linsey M; Jia, Bochen; Agnew, Michael J; Nussbaum, Maury A

    2009-03-01

    Work-related musculoskeletal disorders (WMSDs) are prevalent among healthcare workers worldwide. While existing research has focused on patient-handling techniques during activities which require direct patient contact (e.g., patient transfer), nursing tasks also involve other patient-handling activities, such as engaging bed brakes and transporting patients in beds, which could render healthcare workers at risk of developing WMSDs. Effectiveness of hospital bed design features (brake pedal location and steering-assistance) was evaluated in terms of physical demands and usability during brake engagement and patient transportation tasks. Two laboratory-based studies were conducted. In simulated brake engagement tasks, three brake pedal locations (head-end vs. foot-end vs. side of a bed) and two hands conditions (hands-free vs. hands-occupied) were manipulated. Additionally, both in-room and corridor patient transportation tasks were simulated, in which activation of steering-assistance features (5th wheel and/or front wheel caster lock) and two patient masses were manipulated. Nine novice participants were recruited from the local student population and community for each study. During brake engagement, trunk flexion angle, task completion time, and questionnaires were used to quantify postural comfort and usability. For patient transportation, dependent measures were hand forces and questionnaire responses. Brake pedal locations and steering-assistance features in hospital beds had significant effects on physical demands and usability during brake engagement and patient transportation tasks. Specifically, a brake pedal at the head-end of a bed increased trunk flexion by 74-224% and completion time by 53-74%, compared to other pedal locations. Participants reported greater overall perceived difficulty and less postural comfort with the brake pedal at the head-end. During in-room transportation, participants generally reported "Neither Low nor High" physical demands

  9. Processing test of an upgraded mechanical design for PERMCAT reactor

    Energy Technology Data Exchange (ETDEWEB)

    Borgognoni, Fabio, E-mail: fabio.borgognoni@enea.i [Associazione ENEA-Euratom sulla Fusione, C.R. ENEA Frascati, Via E. Fermi 45, Frascati, Roma I-00044 (Italy); Demange, David; Doerr, Lothar [Forschungszentrum Karlsruhe GmbH, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Postfach 3640, D-76021 Karlsruhe (Germany); Tosti, Silvano [Associazione ENEA-Euratom sulla Fusione, C.R. ENEA Frascati, Via E. Fermi 45, Frascati, Roma I-00044 (Italy); Welte, Stefan [Forschungszentrum Karlsruhe GmbH, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Postfach 3640, D-76021 Karlsruhe (Germany)

    2010-12-15

    The PERMCAT membrane reactor is a coaxial combination of a Pd/Ag permeator membrane and a catalyst bed. This device has been proposed for processing fusion reactor plasma exhaust gas. A stream containing tritium (up to 1% of tritium in different chemical forms such as water, methane or molecular hydrogen) is decontaminated in the PERMCAT by counter-current isotopic swamping with protium. Different mechanical designs of the membrane reactor have been proposed to improve robustness and lifetime. The ENEA membrane reactor uses a permeator tube with a length of about 500 mm produced via cold-rolling and diffusion welding of Pd/Ag thin foils: two stainless steel pre-tensioned bellows have been applied to the Pd/Ag tube in order to avoid any significant compressive and bending stresses due to the permeator tube elongation consequent to the hydrogen uptake. An experimental test campaign has been performed using this reactor in order to assess the influence of different operating parameters and to evaluate the overall performance (decontamination factor). Tests have been carried out on two reactor prototypes: a defect-free membrane with complete (infinite) hydrogen selectivity and not perm-selective membrane. In this last case, the study has been aimed at verifying the behaviour of the PERMCAT devices under non-normal (accidental) conditions in the view of providing information for future safety analysis. The paper will present the specific mechanical design and the experimental results of tests based on isotopic exchange between H{sub 2}O and D{sub 2}.

  10. Hydrodynamics of multi-phase packed bed micro-reactors

    NARCIS (Netherlands)

    Márquez Luzardo, N.M.

    2010-01-01

    Why to use packed bed micro-reactors for catalyst testing? Miniaturized packed bed reactors have a large surface-to-volume ratio at the reactor and particle level that favors the heat- and mass-transfer processes at all scales (intra-particle, inter-phase and inter-particle or reactor level). If the

  11. Modeling of Seepage Losses in Sewage Sludge Drying Bed ...

    African Journals Online (AJOL)

    This research was carried out to develop a model governing seepage losses in sewage sludge drying bed. The model will assist in the design of sludge drying beds for effective management of wastes derived from households' septic systems. In the experiment conducted this study, 125kg of sewage sludge, 90.7% moisture ...

  12. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2004-10-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2004 through September 30, 2004. The following tasks have been completed. First, renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have started. Second, the design if the component parts of the CFBC system have been reviewed and finalized so that the drawings may be released to the manufacturers during the next quarter. Third, the experiments for solid waste (chicken litter) incineration have been conducted using a Thermogravimetric Analyzer (TGA). This is in preparation for testing in the simulated fluidized-bed combustor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

  13. A uranium bed with ceramic body for tritium storage

    Energy Technology Data Exchange (ETDEWEB)

    Khapov, A.S.; Grishechkin, S.K.; Kiselev, V.G. [' All Russia Research Institute of Automatics' - FSUE VNIIA, Moscow (Russian Federation)

    2015-03-15

    It is widely recognized that ceramic coatings provide an attractive solution to lower tritium permeation in structural materials. Alumina based ceramic coatings have the highest permeation reduction factor for hydrogen. For this reason an attempt was made to apply crack-free low porous ceramics as a structural material of a bed body for tritium storage in a setup used for hydrogenating neutron tube targets at VNIIA. The present article introduces the design of the bed. This bed possesses essentially a lower hydrogen permeation factor than traditionally beds with stainless steel body. Bed heating in order to recover hydrogen from the bed is suggested to be implemented by high frequency induction means. Inductive heating allows decreasing the time necessary for tritium release from the bed as well as power consumption. Both of these factors mean less thermal power release into glove box where a setup for tritium handling is installed and thus causes fewer problems with pressure regulations inside the glove box. Inductive heating allows raising tritium sorbent material temperature up to melting point. The latter allows achieving nearly full tritium recovery.

  14. Study of Co-Current and Counter-Current Gas-Liquid Two-Phase Flow Through Packed Bed in Microgravity

    Science.gov (United States)

    Revankar, Shripad T.

    2002-11-01

    project spans for four years. The first two years are devoted to ground based flight definition experimental and modeling program. During the next two years microgravity flight tests are carried out using the ground-based parabolic flight research aircraft. The experimental program consists of a design of a packed bed loop using a scaling analysis, performing experiments for various parameters: bed diameter, packing size, liquid surface tension, and liquid viscosity. Figure 1 shows the schematic of the test loop. A packed bed sections of 15 cm diameter and 10 cm diameter are designed with sphere packing particles of diameter, 6 mm and 3 mm. The fluid combination used are : 1)water, air, (2) alcohol-water mixture (50%, 80% methanol) and air, and (3) glycerol-water mixture and air (50%, and 64% glycerol weight percent). The loop is instrumented to provide detailed measurement at pore and bed level parameters.

  15. Mathematical modelling of fluidized bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Werther, J [BASF A.G., Ludwigshafen am Rhein (Germany, F.R.)

    1978-11-01

    Among the many fluidized bed models to be found in the literature, the two-phase model originally proposed by May has proved most suitable for accomodation of recent advances in flow mechanics: this model resolves the gas/solids fluidized bed into a bubble phase and a suspension phase surrounding the bubbles. Its limitation to slow reactions is a disadvantage. On the basis of the analogy between fluidized beds and gas/liquid systems, a general two-phase model that is valid for fast reactions has therefore been developed and its validity is confirmed by comparison with the experimental results obtained by others. The model describes mass transfer across the phase interface with the aid of the film theory known from gas/liquid reactor technology, and the reaction occurring in the suspension phase as a pseudo-homogeneous reaction. Since the dependence of the performance of fluidized bed reactors upon geometry is accounted for, the model can also be used for scale-up calculations. Its use is illustrated with the aid of design diagrams.

  16. Experimental measurement of effective thermal conductivity of packed lithium-titanate pebble bed

    International Nuclear Information System (INIS)

    Mandal, D.; Sathiyamoorthy, D.; Vinjamur, M.

    2012-01-01

    Lithium titanate is a promising solid breeder material for the fusion reactor blanket. Packed lithium titanate pebble bed is considered for the blanket. The thermal energy; that will be produced in the bed during breeding and the radiated heat from the reactor core absorbed must be removed. So, the experimental thermal property data are important for the blanket design. In past, a significant amount of works were conducted to determine the effective thermal conductivity of packed solid breeder pebble bed, in helium atmosphere, but no flow of gas was considered. With increase in gas flow rate, effective thermal conductivity of pebble bed increases. Particle size and void fraction also affect the thermal properties of the bed significantly. An experimental facility with external heat source was designed and installed. Experiments were carried out with lithium-titanate pebbles of different sizes at variable gas flow rates and at different bed wall temperature. It was observed that effective thermal conductivity of pebble bed is a function of particle Reynolds number and temperature. From the experimental data two correlations have been developed to estimate the effective thermal conductivity of packed lithium-titanate pebble bed for different particle Reynolds number and at different temperatures. The experimental details and results are discussed in this paper.

  17. The Safety of Hospital Beds: Ingress, Egress, and In-Bed Mobility.

    Science.gov (United States)

    Morse, Janice M; Gervais, Pierre; Pooler, Charlotte; Merryweather, Andrew; Doig, Alexa K; Bloswick, Donald

    2015-01-01

    To explore the safety of the standard and the low hospital bed, we report on a microanalysis of 15 patients' ability to ingress, move about the bed, and egress. The 15 participants were purposefully selected with various disabilities. Bed conditions were randomized with side rails up or down and one low bed with side rails down. We explored the patients' use of the side rails, bed height, ability to lift their legs onto the mattress, and ability to turn, egress, and walk back to the chair. The standard bed was too high for some participants, both for ingress and egress. Side rails were used by most participants when entering, turning in bed, and exiting. We recommend that side rails be reconsidered as a means to facilitate in-bed movement, ingress, and egress. Furthermore, single deck height settings for all patients are not optimal. Low beds as a safety measure must be re-evaluated.

  18. Biodegradation of 4-bromophenol by Arthrobacter chlorophenolicus A6T in a newly designed packed bed reactor.

    Science.gov (United States)

    Sahoo, Naresh Kumar; Ghosh, Pranab Kumar; Pakshirajan, Kannan

    2013-02-01

    Bromophenol is listed as a priority pollutant by the U.S. EPA. However, there has been no report on the removal of bromophenol in any biological system that is operated in a continuous mode. The efficiency of Arthrobacter chlorophenolicus A6(T) on the biodegradation of 4-bromophenol (4-BP) in a newly designed packed bed reactor (PBR) was evaluated with different influent 4-BP concentrations between 400 mg l(-1) and 1200 mg l(-1) and hydraulic retention times (HRTs) between 24 h and 7.5 h. The response of the PBR to 4-BP shock loadings was also tested, and the bioreactor was found to adequately handle these shock loadings. The percentage of effluent toxicity in the PBR was tested using mixed microbial consortia as the test species; this experiment was performed using a 4-BP influent concentration of 1200 mg l(-1) and HRTs between 24 h and 7.5 h. A maximal 98% effluent toxicity removal was achieved when the PBR was operated at an HRT of 24 h. In the present study, 4-BP was used as the sole source of carbon and energy, and the complete removal of 4-BP was achieved with 4-BP loading rates of up to 2277 mg l(-1) day(-1). Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Fluid bed dryer and Aeropep solidification system

    International Nuclear Information System (INIS)

    1975-01-01

    Performance measurements were made on the model of the Fluidized-bed Calciner developed by Aerojet Liquid Rocket Co. The measurements were made over the period August 11-19, 1975, at the Sacramento location of the calciner. The purpose of the tests was to evaluate the performance of the ALRC Fluidized Bed Concentrator for the processing of simulated waste containing realistic concentrations and chemical forms of radioiodine. (auth)

  20. Stress analysis of hydride bed vessels used for tritium storage

    International Nuclear Information System (INIS)

    McKillip, S.T.; Bannister, C.E.; Clark, E.A.

    1991-01-01

    A prototype hydride storage bed, using LaNi 4.25 Al 0.75 as the storage material, was fitted with strain gages to measure strains occurring in the stainless steel bed vessel caused by expansion of the storage powder upon uptake of hydrogen. The strain remained low in the bed as hydrogen was added, up to a bed loading of about 0.5 hydrogen to metal atom ratio (H/M). The strain then increased with increasing hydrogen loading (∼ 0.8 H/M). Different locations exhibited greatly different levels of maximum strain. In no case was the design stress of the vessel exceeded

  1. International Space Station Sustaining Engineering: A Ground-Based Test Bed for Evaluating Integrated Environmental Control and Life Support System and Internal Thermal Control System Flight Performance

    Science.gov (United States)

    Ray, Charles D.; Perry, Jay L.; Callahan, David M.

    2000-01-01

    As the International Space Station's (ISS) various habitable modules are placed in service on orbit, the need to provide for sustaining engineering becomes increasingly important to ensure the proper function of critical onboard systems. Chief among these are the Environmental Control and Life Support System (ECLSS) and the Internal Thermal Control System (ITCS). Without either, life onboard the ISS would prove difficult or nearly impossible. For this reason, a ground-based ECLSS/ITCS hardware performance simulation capability has been developed at NASA's Marshall Space Flight Center. The ECLSS/ITCS Sustaining Engineering Test Bed will be used to assist the ISS Program in resolving hardware anomalies and performing periodic performance assessments. The ISS flight configuration being simulated by the test bed is described as well as ongoing activities related to its preparation for supporting ISS Mission 5A. Growth options for the test facility are presented whereby the current facility may be upgraded to enhance its capability for supporting future station operation well beyond Mission 5A. Test bed capabilities for demonstrating technology improvements of ECLSS hardware are also described.

  2. Performance analysis and pilot plant test results for the Komorany fluidized bed retrofit project

    Energy Technology Data Exchange (ETDEWEB)

    Snow, G.C. [POWER International, Inc., Coeur d`Alene, ID (United States)

    1995-12-01

    Detailed heat and mass balance calculations and emission performance projections are presented for an atmospheric fluidized bed boiler bottom retrofit at the 927 MWt (steam output) Komorany power station and district heating plant in the Czech Republic. Each of the ten existing boilers are traveling grate stoker units firing a local, low-rank brown coal. This fuel, considered to be representative of much of the coal deposits in Central Europe, is characterized by an average gross calorific value of 10.5 MJ/kg (4,530 Btu/lb), an average dry basis ash content of 47 %, and a maximum dry basis sulfur content of 1.8 % (3.4 % on a dry, ash free basis). The same fuel supply, together with limestone supplied from the region will be utilized in the retrofit fluidized bed boilers. The primary objectives of this retrofit program are, (1) reduce emissions to a level at or below the new Czech Clean Air Act, and (2) restore plant capacity to the original specification. As a result of the AFBC retrofit and plant upgrade, the particulate matter emissions will be reduced by over 98 percent, SO{sub 2} emissions will be reduced by 88 percent, and NO{sub x} emissions will be reduced by 38 percent compared to the present grate-fired configuration. The decrease in SO{sub 2} emissions resulting from the fluidized bed retrofit was initially predicted based on fuel sulfur content, including the distribution among organic, pyritic, and sulfate forms; the ash alkalinity; and the estimated limestone calcium utilization efficiency. The methodology and the results of this prediction were confirmed and extended by pilot scale combustion trials at a 1.0 MWt (fuel input), variable configuration test facility in France.

  3. Test design requirements: Canister-scale heater test

    International Nuclear Information System (INIS)

    Schauer, M.I.; Craig, P.A.; Stickney, R.G.

    1986-03-01

    This document establishes the Test Design Requirements for the design of a canister scale heater test to be performed in the Exploratory Shaft test facility. The purpose of the test is to obtain thermomechanical rock mass response data for use in validation of the numerical models. The canister scale heater test is a full scale simulation of a high-level nuclear waste container in a prototypic emplacement borehole. Electric heaters are used to simulate the heat loads expected in an actual waste container. This document presents an overview of the test including objectives and justification for the test. A description of the test as it is presently envisioned is included. Discussions on Quality Assurance and Safety are also included in the document. 12 refs., 1 fig

  4. Contact-Free Support Structures for Part Overhangs in Powder-Bed Metal Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Kenneth Cooper

    2017-12-01

    Full Text Available This study investigates the feasibility of a novel concept, contact-free support structures, for part overhangs in powder-bed metal additive manufacturing. The intent is to develop alternative support designs that require no or little post-processing, and yet, maintain effectiveness in minimizing overhang distortions. The idea is to build, simultaneously during part fabrications, a heat sink (called “heat support”, underneath an overhang to alter adverse thermal behaviors. Thermomechanical modeling and simulations using finite element analysis were applied to numerically research the heat support effect on overhang distortions. Experimentally, a powder-bed electron beam additive manufacturing system was utilized to fabricate heat support designs and examine their functions. The results prove the concept and demonstrate the effectiveness of contact-free heat supports. Moreover, the method was tested with different heat support parameters and applied to various overhang geometries. It is concluded that the heat support proposed has the potential to be implemented in industrial applications.

  5. Thermal-hydraulic modeling of porous bed reactors

    International Nuclear Information System (INIS)

    Araj, K.J.; Nourbakhsh, H.P.

    1987-01-01

    Optimum design of nuclear reactor cores requires an iterative approach between the thermal-hydraulic, neutronic, and operational analysis. This paper will concentrate on the thermal-hydraulic behavior of a hydrogen-cooled small particle bed reactor (PBR). The PBR core modeled here consists of a hexagonal array of fuel elements embedded in a moderator matrix. The fuel elements are annular packed beds of fuel particles held between two porous cylindrical frits. These particles, 500 to 600 μm in diameter, have a uranium carbide core, which is coated by two layers of graphite and an outer coating of zirconium carbide. Coolant flows, radially inward, from the cold frit through the packed bed and hot frit and axially out the channel, formed by the hot frit to a common plenum. A fast running one-dimensional lumped-parameter steady-state code (FTHP) was developed to evaluate the effects of design changes in fuel assembly and power distribution. Another objective for the code was to investigate various methods of coolant control to minimize hot channel effects and maximize outlet temperatures

  6. Organic molecule fluorescence as an experimental test-bed for quantum jumps in thermodynamics.

    Science.gov (United States)

    Browne, Cormac; Farrow, Tristan; Dahlsten, Oscar C O; Taylor, Robert A; Vlatko, Vedral

    2017-08-01

    We demonstrate with an experiment how molecules are a natural test bed for probing fundamental quantum thermodynamics. Single-molecule spectroscopy has undergone transformative change in the past decade with the advent of techniques permitting individual molecules to be distinguished and probed. We demonstrate that the quantum Jarzynski equality for heat is satisfied in this set-up by considering the time-resolved emission spectrum of organic molecules as arising from quantum jumps between states. This relates the heat dissipated into the environment to the free energy difference between the initial and final state. We demonstrate also how utilizing the quantum Jarzynski equality allows for the detection of energy shifts within a molecule, beyond the relative shift.

  7. Numerical modelling for the effective thermal conductivity of lithium meta titanate pebble bed with different packing structures

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, Maulik, E-mail: maulikpanchal@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India); Chaudhuri, Paritosh [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India); Van Lew, Jon T; Ying, Alice [UCLA, MAE Department, Los Angeles, CA 90095-1597 (United States)

    2016-11-15

    Highlights: • The effective thermal conductivity (k{sub eff}) of lithium meta-titanate (Li{sub 2}TiO{sub 3}) pebble beds is an important parameter for the design and analysis of TBM in ITER. • The k{sub eff} of Li{sub 2}TiO{sub 3} pebble beds under stagnant helium gas have been determined numerically using different uniform packing structures and random close packing (RCP) structures. • k{sub eff} of Li{sub 2}TiO{sub 3} pebble beds with different packing fractions have been reported as function of temperature; k{sub eff} of the RCP Li{sub 2}TiO{sub 3} pebble bed is compared with reported experimental results. • The numerically-determined k{sub eff} of the RCP Li{sub 2}TiO{sub 3} pebble bed agrees reasonably well with the experimental data and Zehner-Schlunder correlation. - Abstract: The effective thermal conductivity (k{sub eff}) of lithium meta-titanate (Li{sub 2}TiO{sub 3}) pebble beds is an important parameter for the design and analysis of IN LLCB TBM (Indian Lead Lithium Ceramic Breeder Test Blanket Module). The k{sub eff} of Li{sub 2}TiO{sub 3} pebble beds under stagnant helium gas have been determined numerically using different uniform packing structures and random close packing (RCP) structures. The uniform packing structures of Li{sub 2}TiO{sub 3} pebble bed are modelled by using the simple cubic, body centered cubic and face centered cubic arrangement. The packing structure of the RCP bed of Li{sub 2}TiO{sub 3} pebbles is generated with the discrete element method (DEM) code. k{sub eff} of Li{sub 2}TiO{sub 3} pebble beds with different packing fractions have been reported as function of temperature; k{sub eff} of the RCP Li{sub 2}TiO{sub 3} pebble bed is compared with reported experimental results from literature. The numerically determined k{sub eff} of the Li{sub 2}TiO{sub 3} pebble bed agrees reasonably well with the experimental data.

  8. Advances in fluidized bed technologies

    International Nuclear Information System (INIS)

    Mutanen, K.

    1992-01-01

    Atmospheric fluidized bed combustion (AFBC) has advanced into industrial cogeneration and utility-scale electric generation. During the 1980's AFBC became the dominant technology in the United States for power generation systems fired with solid fuels. Development of pressurized fluidized bed combustion/gasification (PFB/G) has grown rapidly from small bench-scale rigs to large pilot and demonstration plants. AFBC as large as 160 MWe in capacity are now in operation, while pressurized combustion systems generating 80 MWe have started up two years ago. The major driving forces behind development of fluidized bed technologies are all the time strictening emission control regulations, need for fuel flexibility, repowering of older power plants and need for higher efficiency in electricity generation. Independent power producers (IPP) and cogenerators were the first ones in the United States who accepted AFBC for wide commercial use. Their role will be dominant in the markets of the 1990's also. Developers of AFBC systems are working on designs that reduce investment costs, decrease emissions and offer even higher reliability and availability in utility-scale applications while developers of PFBC/G work on designs that increase plant efficiencies, allow modular construction, decrease emissions further and reduce the cost of generating power. This paper presents technological background, commercial status, boiler performance, emissions and future developments for both AFBC and PFBC/G systems

  9. Petechiae: reproducible pattern of distribution and increased appearance after bed rest.

    Science.gov (United States)

    Ganse, Bergita; Limper, Ulrich; Bühlmeier, Judith; Rittweger, Jörn

    2013-08-01

    Exposure to acceleration can cause petechial hemorrhages, called G measles. Petechiae usually start to develop between 5 and 9 G with a high interindividual variance. Centrifuge training delays the onset to higher G levels. One might expect onset at lower G levels after bed rest; however, there is no evidence in the literature. A case of petechiae formation after bed rest is presented here. Orthostatic tolerance was tested using a tilt table and lower body negative pressure before and after bed rest in both campaigns of a 2 x 21-d bed rest study with 6 degrees head-down tilt. A 42-yr-old male Caucasian without any history of thrombosis, venous disease, hemorrhage, or petechiae, and with a negative thrombophilia screening, took part in the bed rest study as 1 out of 10 subjects. He was the only one to develop petechiae during the orthostatic tests after, but not before, bed rest in both campaigns. Petechiae were distributed throughout the lower legs and most pronounced at the shin in a stocking-like fashion, surprisingly reoccurring in an identical pattern of distribution. Petechiae appeared slowly over minutes during hyperemia. This case indicates that prolonged bed rest decreases the threshold for petechiae formation. A reproducible distribution pattern suggests that factors predisposing to petechiae formation keep their local distribution over time (possibly due to local vessel structures). Mechanisms of adaptation and interindividual variance are unclear. Findings are of clinical relevance as such cases might occur after prolonged bed rest in patients without need of expensive testing.

  10. On the heat transfer in packed beds

    International Nuclear Information System (INIS)

    Sordon, G.

    1988-09-01

    The design of a fusion reactor blanket concept based on a bed of lithium containing ceramic pebbles or a mixture of ceramic and beryllium pebbles demands the knowledge of the effective thermal conductivity of pebble beds, including beds formed by a binary mixture of high conducting metallic pebbles and poorly conducting pebbles. In this work, binary mixtures of spheres of same diameter and different conductivities as well as beds formed by one type of spheres were investigated. The experimental apparatus consists of a stainless steel cylinder with a heating rod along the symmetry axis. Experiments with stagnant and flowing gas were performed. The pebbles were of Al 2 O 3 (diameter = 1, 2, 4 mm), of Li 4 SO 4 (diameter = 0.5 mm) of Al (diameter = 2 mm) and of steel (diameter = 2, 4 mm). Experimental values of the thermal conductivity and of the wall heat transfer coefficient are compared with the predicted ones. Modifications of already existing models were suggested. (orig.) [de

  11. Woodpecker-inspired shock isolation by microgranular bed

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang-Hee [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Roh, Jin-Eep; Kim, Ki Lyug, E-mail: shyoon@me.berkeley.ed [Agency for Defense Development, Yuseong PO Box 35, Daejeon 305-600 (Korea, Republic of)

    2009-02-07

    This paper presents a woodpecker-inspired shock isolation (SI) using a microgranular bed to protect micromachined electronic devices (MEDs) for high-g military applications where mechanical excitations reach up to tens of thousands of gs and several hundreds of kHz. The shock isolating phenomenon in the microgranular bed within a metal housing, biomimetically inspired from a spongy bone within a skull of the woodpecker, controls unwanted high-frequency mechanical excitations so that their adverse effects on the embedded MEDs are kept within acceptable limit. The microgranular bed composed of close-packed microglass beads reduces the mechanical excitations transmitted to the MEDs through kinetic energy absorption. Two kinds of tests, a laboratory test and a 60 mm air-gun test, have been made. The laboratory test using a vibration exciter up to 25 kHz has demonstrated that the cut-off frequency (2.2-15.8 kHz) and roll-off steepness (-155.0 to -78.7 dB decade{sup -1}) are inversely proportional to the diameter of the close-packed microglass beads (68-875 {mu}m), whereas the vibration absorptivity (0.23-0.87) is proportional. The 60 mm air-gun test under high-g environments of up to 60 000 g has verified that the woodpecker-inspired SI is superior in improving the shock survivability of the MEDs to the conventional one using hard resin.

  12. Development of bed-furrow intervention in punjab, pakistan

    International Nuclear Information System (INIS)

    Latif, A.

    2015-01-01

    The successful implementation of bed- furrow, a resource conservation intervention (RCI), for rice-wheat cropping system has become the prime goal for researchers and cultivators by developing bed- seeded crops in South Asia. The paper reviews the output, need, methods, merits, demerits and constraints for adopting bed-furrow RCI in Pakistan. The potential of this intervention and the issues of adopting permanent raised beds have also explored in the study. The application of Bed-furrow is only limited to few hectares for field demonstrations and research in Pakistan. The findings of research reveal substantial enhancement in output and profitability by including residue straw mulching on bed-furrow. The strategies that enhance the adoption, merits and output of bed- furrow for Pakistan in particular are as follows: i) selection of rice germ-plasm in aerobic circumstances gives improved output, ii) Provision of accurate and efficient seed and fertilizer at economical cost by improving the design etc. of four wheel tractors, iii) The scope and use of bed-furrow should be further enhanced by taking onboard all the state holders including farmers, agronomist, engineers, machine operators and manufacturers. Data collection and monitoring should be properly carried out for its sustainable usage within the region of South Asia and iv) to enhance the areas of farms where bed-furrow is suitable for their growing cops, soil and topographic conditions, thus offers economic profit and output/productivity. The participation and consultation of all the stake holders including farmers, researchers, equipment operator is utmost important to manage hurdles for acquiring potential benefits, productivity and sustainability of bed- furrow intervention. (author)

  13. Particle bed reactor nuclear rocket concept

    International Nuclear Information System (INIS)

    Ludewig, H.

    1991-01-01

    The particle bed reactor nuclear rocket concept consists of fuel particles (in this case (U,Zr)C with an outer coat of zirconium carbide). These particles are packed in an annular bed surrounded by two frits (porous tubes) forming a fuel element; the outer one being a cold frit, the inner one being a hot frit. The fuel element are cooled by hydrogen passing in through the moderator. These elements are assembled in a reactor assembly in a hexagonal pattern. The reactor can be either reflected or not, depending on the design, and either 19 or 37 elements, are used. Propellant enters in the top, passes through the moderator fuel element and out through the nozzle. Beryllium used for the moderator in this particular design to withstand the high radiation exposure implied by the long run times

  14. Biodenitrification of gaseous diffusion plant aqueous wastes: stirred bed reactor

    International Nuclear Information System (INIS)

    Holland, M.E.

    1980-01-01

    Approximately 30 kilograms of nitrates per day are discarded in the raffinates (acid wastes) of the Portsmouth Gaseous Diffusion Plant's X-705 Uranium Recovery and Decontamination Facility. A biodenitrification process employing continuous-flow, stirred-bed reactors has been successfully used to remove nitrates from similar acid wastes at the Oak Ridge Y-12 Plant. Laboratory studies have been made at Portsmouth to characterize the X-705 raffinates and to test the stirred-bed biodenitrification process on such raffinates. Raffinates which had been previously characterized were pumped through continuous-flow, stirred-bed, laboratory-scale reactors. Tests were conducted over a period of 146 days and involved variations in composition, mixing requirements, and the fate of several metal ions in the raffinates. Tests results show that 20 weight percent nitrates were reduced to a target nitrate effluent concentration of 100 μg/ml with a 99.64 percent efficiency. However, the average denitrification rate achieved was only 33% of that demonstrated with the Y-12 stirred-bed system. These low rates were probably due to the toxic effects of heavy metal ions on the denitrifying bacteria. Also, most of the uranium in the raffinate feed remained in the biomass and calcite, which collected in the reactor. This could cause criticality problems. For these reasons, it was decided not to make use of the stirred-bed bioreactor at Portsmouth. Instead, the biodenitrification installation now planned will use fluidized bed columns whose performance will be the subject of a subsequent report

  15. A note on acoustic measurements of turbulence, suspended sediment, and bed forms in mobile bed experiments

    Science.gov (United States)

    One of the challenges of hydraulic experimentation is designing experiments that are complex enough to capture relevant processes while retaining the simplicity necessary for useful, accurate measurements. The intricacy of the interactions between turbulent flows and mobile beds in rivers and stream...

  16. Designing and testing prototypes

    NARCIS (Netherlands)

    Vereijken, P.; Wijnands, F.; Stol, W.

    1995-01-01

    This second progress report focuses on designing a theoretical prototype by linking parameters to methods and designing the methods in this context until they are ready for initial testing. The report focuses also on testing and improving the prototype in general and the methods in particular until

  17. Hydroponics Database and Handbook for the Advanced Life Support Test Bed

    Science.gov (United States)

    Nash, Allen J.

    1999-01-01

    During the summer 1998, I did student assistance to Dr. Daniel J. Barta, chief plant growth expert at Johnson Space Center - NASA. We established the preliminary stages of a hydroponic crop growth database for the Advanced Life Support Systems Integration Test Bed, otherwise referred to as BIO-Plex (Biological Planetary Life Support Systems Test Complex). The database summarizes information from published technical papers by plant growth experts, and it includes bibliographical, environmental and harvest information based on plant growth under varying environmental conditions. I collected 84 lettuce entries, 14 soybean, 49 sweet potato, 16 wheat, 237 white potato, and 26 mix crop entries. The list will grow with the publication of new research. This database will be integrated with a search and systems analysis computer program that will cross-reference multiple parameters to determine optimum edible yield under varying parameters. Also, we have made preliminary effort to put together a crop handbook for BIO-Plex plant growth management. It will be a collection of information obtained from experts who provided recommendations on a particular crop's growing conditions. It includes bibliographic, environmental, nutrient solution, potential yield, harvest nutritional, and propagation procedure information. This handbook will stand as the baseline growth conditions for the first set of experiments in the BIO-Plex facility.

  18. Endotoxin, coliform, and dust levels in various types of rodent bedding.

    Science.gov (United States)

    Whiteside, Tanya E; Thigpen, Julius E; Kissling, Grace E; Grant, Mary G; Forsythe, Diane

    2010-03-01

    Endotoxins in grain dust, household dust, and animal bedding may induce respiratory symptoms in rodents and humans. We assayed the endotoxin, coliform, and dust levels in 20 types of rodent bedding. Endotoxin concentrations were measured by using a commercial test kit, coliform counts were determined by using conventional microbiologic procedures, and dust content was evaluated by using a rotating-tapping shaker. Paper bedding types contained significantly less endotoxin than did other bedding types; the highest levels of endotoxin were detected in hardwood and corncob beddings. The range of endotoxin content for each bedding type was: corncob bedding, 1913 to 4504 endotoxin units per gram (EU/g); hardwood bedding, 3121 to 5401 EU/g; corncob-paper mixed bedding, 1586 to 2416 EU/g; and paper bedding, less than 5 to 105 EU/g. Coliform counts varied from less than 10 to 7591 cfu/g in corncob beddings, 90 to 4010 cfu/g in corncob-paper mixed beddings, less than 10 to 137 cfu/g in hardwood beddings, and less than 10 cfu/g in paper beddings. Average dust content was less than 0.15% in all commercial bedding types. We conclude that paper bedding is the optimal bedding type for conducting LPS inhalation studies and that rodent bedding containing high levels of endotoxin may alter the results of respiratory and immunologic studies in rodents.

  19. Effects of bedding quality on lying behavior of dairy cows.

    Science.gov (United States)

    Fregonesi, J A; Veira, D M; von Keyserlingk, M A G; Weary, D M

    2007-12-01

    Cows prefer to spend more time lying down in free stalls with more bedding, but no research to date has addressed the effects of bedding quality. Bedding in stalls often becomes wet either from exposure to the elements or from feces and urine. The aim of this study was to test the effect of wet bedding on stall preference and use. Four groups of 6 nonlactating Holstein cows were housed in free stalls bedded daily with approximately 0.1 m of fresh sawdust. Following a 5-d adaptation period, each group of cows was tested sequentially with access to stalls with either dry or wet sawdust bedding (86.4 +/- 2.1 vs. 26.5 +/- 2.1% dry matter), each for 2 d. These no-choice phases were followed by a 2-d free-choice phase during which cows had simultaneous access to stalls containing either wet or dry bedding. Stall usage was assessed by using 24-h video recordings scanned at 10-min intervals, and responses were analyzed by using a mixed model, with group (n = 4) as the observational unit. The minimum and maximum environmental temperatures during the experiment were 3.4 +/- 2.2 and 6.8 +/- 2.5 degrees C, respectively. When cows had access only to stalls with wet bedding, they spent 8.8 +/- 0.8 h/d lying down, which increased to 13.8 +/- 0.8 h/d when stalls with dry bedding were provided. Cows spent more time standing with their front 2 hooves in the stall when provided with wet vs. dry bedding (92 +/- 10 vs. 32 +/- 10 min/d). During the free-choice phase, all cows spent more time lying down in the dry stalls, spending 12.5 +/- 0.3 h/d in the dry stalls vs. 0.9 +/- 0.3 h/ d in stalls with wet bedding. In conclusion, dairy cows show a clear preference for a dry lying surface, and they spend much more time standing outside the stall when only wet bedding is available.

  20. Thermal stability in a newly designed columnar-conical fluidized bed for combustion of rice husk

    Energy Technology Data Exchange (ETDEWEB)

    Rozainee, M.; Salema, A.A.; Ngo, S.P.; Chye, G.B. [Malaysian Technological Univ., Johor Bahru (Malaysia). Dept. of Chemical Engineering

    2006-07-01

    The effects of fluidizing and liquid propane gas (LPG) flow rates on thermal stability of a fluidized bed were examined. The aim of the study was to hybridize a columnar and conical fluidized bed (CCFB) in order to encourage the combustion of low-calorific fuels such as rice husks. Experiments were conducted to examine the thermal stability of the CCFB. Premixed primary air and liquid propane gas (LPG) was fed into the bed in order to verify its thermal stability. Temperature profiles of the combustor and bed were measured. The impact of the fluidizing velocity and LPG flow rate on the temperature profile was examined in order to analyze the influence of the fluidizing velocity and LPG rate on combustion rates. Results of the study showed that the combustion of the CCFB was sustained at a fluidizing velocity of 1.5 U{sub mf} and at an LPG flow rate of 8 liters per minute. Results of the study showed that fluidizing velocity played an important role on the thermal stability of the bed. It was concluded that the thermal stability of the combustor is sufficient for the CCFB. 13 refs., 2 tabs., 5 figs.

  1. Formal Functional Test Designs: Bridging the Gap Between Test Requirements and Test Specifications

    Science.gov (United States)

    Hops, Jonathan

    1993-01-01

    This presentation describes the testing life cycle, the purpose of the test design phase, and test design methods and gives an example application. Also included is a description of Test Representation Language (TRL), a summary of the language, and an example of an application of TRL. A sample test requirement and sample test design are included.

  2. Definition study of a Variable Cycle Experimental Engine (VCEE) and associated test program and test plan

    Science.gov (United States)

    Allan, R. D.

    1978-01-01

    The Definition Study of a Variable Cycle Experimental Engine (VCEE) and Associated Test Program and Test Plan, was initiated to identify the most cost effective program for a follow-on to the AST Test Bed Program. The VCEE Study defined various subscale VCE's based on different available core engine components, and a full scale VCEE utilizing current technology. The cycles were selected, preliminary design accomplished and program plans and engineering costs developed for several program options. In addition to the VCEE program plans and options, a limited effort was applied to identifying programs that could logically be accomplished on the AST Test Bed Program VCE to extend the usefulness of this test hardware. Component programs were provided that could be accomplished prior to the start of a VCEE program.

  3. Method of online cleanliness control for upward-facing transport mirrors in integration test bed

    International Nuclear Information System (INIS)

    Zhao Longbiao; Qin Lang; Zhou Guorui; Ye Yayun; Zhang Chuanchao; Miao Xinxiang; Wang Hongbin; Yuan Xiaodong; Wang Xiaohong; Cheng Xiaofeng

    2013-01-01

    An online cleanliness control method based on the online monitoring system was developed for controlling the particle pollution and damage of upward-facing transport mirrors in the integration test bed. By building up gas knife system, the online cleanliness processing was effectively achieved for the particle pollution on the mirror surface. By using the gas screen, the cleanliness of the mirror surface was effectively online maintained. The image processing system was applied to assessing the effect of online cleanliness processing. The experimental results indicate that the particle pollution was reduced by the gas knife and the gas screen was useful to avoid the settlement of particle pollution. (authors)

  4. Wave interaction with large roughness elements on an impermeable sloping bed

    DEFF Research Database (Denmark)

    Jensen, Bjarne; Christensen, Erik Damgaard; Sumer, B. Mutlu

    2012-01-01

    The present paper presents the results of an experimental and numerical investigation of the flow between large roughness elements on a steep sloping impermeable bed during wave action. The setup is designed to resemble a breakwater structure. The work is part of a study where the focus is on the......The present paper presents the results of an experimental and numerical investigation of the flow between large roughness elements on a steep sloping impermeable bed during wave action. The setup is designed to resemble a breakwater structure. The work is part of a study where the focus...... is on the details in the porous core flow and the armour layer flow i.e. the interaction between the two flow domains and the effect on the armour layer stability. In order to isolate the processes involved with the flow in the porous core the investigations are first carried out with a completely impermeable bed...... and successively repeated with a porous bed. In this paper the focus is on the impermeable bed. Results are obtained experimentally for flow and turbulence between the roughness elements on the sloping bed. Numerical simulations have reproduced the experimental results with good agreements and can hereby add more...

  5. Measurement of thermal expansion for a Li2TiO3 pebble bed

    International Nuclear Information System (INIS)

    Hisashi Tanigawa; Mikio Enoeda; Masato Akiba

    2006-01-01

    In the current design of the blanket with ceramic breeders, pebbles of breeding materials are packed into a container and used as a pebble bed. Thermal and mechanical conditions externally loaded on the bed affect thermal and mechanical properties of the bed. It is necessary to analyze thermo-mechanical properties of the bed under controlled thermal and mechanical conditions. In the present paper, thermal expansion of a Li 2 TiO 3 pebble bed was investigated. Our apparatus consists of a tensile test-apparatus and a measurement chamber. Pebbles of Li 2 TiO 3 with 2 mm diameter were used. They were packed into a container made of alumina. At first, thermal expansion of the apparatus was calibrated because the measured deformation included thermal expansions of the load rods and the container. Instead of the pebble bed, a column made of copper was installed and thermal expansion of the system was measured for the calibration. Taking into account the estimated thermal expansion of the column, thermal expansion of the rods and the container could be analyzed. Based on the correction, thermal expansion of the pebble bed was measured under compression of 0.1 MPa. Temperature of the bed was regulated from room temperature to 973 K. From the measured expansion of the bed, average thermal expansion coefficient was estimated. For the beds with different packing factors ranging from 65.5 to 68.5 %, thermal expansion coefficients were 1.4 ± 0. 10-5 K -1 . In the first measurement of the beds without pre-loading, expansion coefficients were larger for the cooling process than heating. When the beds were successively heated and cooled, the difference decreased. This means that relocation of the pebbles arises in the first heat treatment and progress of compaction is larger in the cooling process than heating. After a few heat treatments, packing states of the beds reach stable and expansion coefficients for both heat and cooling processes are close. In the case of the beds that

  6. Oxy-fuel combustion on circulating fluidized bed. Chapter 5

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, E.J. [Canmet, Natural Resources Canada (Canada); Hack, H. [Foster Wheeler North America Corporation (United States)

    2011-07-01

    This paper explores the developments and field tests carried out with oxy-fuel fluidized bed combustion. This method has the advantage over the other options of emitting a pure stream of CO2 which thus does not need to be concentrated to be liquefied, transported and stored. In addition, pilot scale tests have shown that oxy-fired circulating fluidized bed combustion (CFBC) results in low emission and fuel flexibility. This paper highlighted that oxy-fired CFBC might be a good option for CCS but tests performed so far have been on a small scale. To confirm the promising results of pilot tests, demonstration projects are underway and are presented herein.

  7. An Airborne Parachute Compartment Test Bed for the Orion Parachute Test Program

    Science.gov (United States)

    Moore, James W.; Romero, Leah M.

    2013-01-01

    The test program developing parachutes for the Orion/MPCV includes drop tests with parachutes deployed from an Orion-like parachute compartment at a wide range of dynamic pressures. Aircraft and altitude constraints precluded the use of an Orion boilerplate capsule for several test points. Therefore, a dart-shaped test vehicle with a hi-fidelity mock-up of the Orion parachute compartment has been developed. The available aircraft options imposed constraints on the test vehicle development and concept of operations. Delivery of this test vehicle to the desired velocity, altitude, and orientation required for the test is a di cult problem involving multiple engineering disciplines. This paper describes the development of the test technique. The engineering challenges include extraction from an aircraft, reposition of the extraction parachute, and mid-air separation of two vehicles, neither of which has an active attitude control system. The desired separation behavior is achieved by precisely controlling the release point using on-board monitoring of the motion. The design of the test vehicle is also described. The trajectory simulations and other analyses used to develop this technique and predict the behavior of the test vehicle are reviewed in detail. The application of the technique on several successful drop tests is summarized.

  8. Estimation of the detection limit of an experimental model of tritium storage bed designed for 'in-situ' accountability

    International Nuclear Information System (INIS)

    Bulubasa, Gheorghe; Bidica, Nicolae; Stefanescu, Ioan; Bucur, Ciprian; Deaconu, Mariea

    2009-01-01

    During the water detritiation process most of the tritium inventory is transferred from water into the gaseous phase, then it is further enriched and finally extracted and safely stored. The control of tritium inventory is an acute issue from several points of view: - Financially - tritium is an expensive material; - Safeguard - tritium is considered as nuclear material of strategic importance; - Safety - tritium is a radioactive material: requirements for documented safety analysis report (to ensure strict limits on the total tritium allowed) and for evaluation of accident consequences associated with that inventory. Large amounts of tritium can be stored, in a very safely manner, as metal tritides. A bench-scale experiment of a tritium storage bed with integrated system for in-situ tritium inventory accountancy was designed and developed at ICSI Rm. Valcea. The calibration curve and the detection limit for this experimental model of tritium storage bed were determined. The experimental results are presented in this paper. (authors)

  9. Testing of downstream catalysts for tar destruction with a guard bed in a fluidised bed biomass gasifier at pilot plant scale

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M.P.; Frances, E.; Campos, I.J.; Martin, J.A.; Gil, J. [Saragossa Univ. (Spain). Dept. of Chemistry and Environment Engineering; Corella, J. [Complutense Univ. of Madrid (Spain). Dept. of Chemical Engineering

    1996-12-31

    A new pilot plant for advanced gasification of biomass in a fast fluidised bed is now fully operative at University of Saragossa, Spain. It is a `3rd generation` pilot plant. It has been built up after having used two previous pilot plants for biomass gasification. The main characteristic of this pilot plant is that it has two catalytic reactors connected in series, downstream the biomass gasifier. Such reactors, of 4 cm i.d., are placed in a slip stream in a by-pass from the main gasifier exit gas. The gasification is made at atmospheric pressure, with flow rates of 3-50 kg/in, using steam + O{sub 2} mixtures as the gasifying agent. Several commercial Ni steam-reforming catalyst are being tested under a realistic raw gas composition. Tar eliminations or destructions higher than 99 % are easily achieved. (orig.) 2 refs.

  10. Testing of downstream catalysts for tar destruction with a guard bed in a fluidised bed biomass gasifier at pilot plant scale

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M P; Frances, E; Campos, I J; Martin, J A; Gil, J [Saragossa Univ. (Spain). Dept. of Chemistry and Environment Engineering; Corella, J [Complutense Univ. of Madrid (Spain). Dept. of Chemical Engineering

    1997-12-31

    A new pilot plant for advanced gasification of biomass in a fast fluidised bed is now fully operative at University of Saragossa, Spain. It is a `3rd generation` pilot plant. It has been built up after having used two previous pilot plants for biomass gasification. The main characteristic of this pilot plant is that it has two catalytic reactors connected in series, downstream the biomass gasifier. Such reactors, of 4 cm i.d., are placed in a slip stream in a by-pass from the main gasifier exit gas. The gasification is made at atmospheric pressure, with flow rates of 3-50 kg/in, using steam + O{sub 2} mixtures as the gasifying agent. Several commercial Ni steam-reforming catalyst are being tested under a realistic raw gas composition. Tar eliminations or destructions higher than 99 % are easily achieved. (orig.) 2 refs.

  11. Pebble bed modular reactor safeguards: developing new approaches and implementing safeguards by design

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Brian David [Los Alamos National Laboratory; Beddingfield, David H [Los Alamos National Laboratory; Durst, Philip [INL; Bean, Robert [INL

    2010-01-01

    The design of the Pebble Bed Modular Reactor (PBMR) does not fit or seem appropriate to the IAEA safeguards approach under the categories of light water reactor (LWR), on-load refueled reactor (OLR, i.e. CANDU), or Other (prismatic HTGR) because the fuel is in a bulk form, rather than discrete items. Because the nuclear fuel is a collection of nuclear material inserted in tennis-ball sized spheres containing structural and moderating material and a PBMR core will contain a bulk load on the order of 500,000 spheres, it could be classified as a 'Bulk-Fuel Reactor.' Hence, the IAEA should develop unique safeguards criteria. In a multi-lab DOE study, it was found that an optimized blend of: (i) developing techniques to verify the plutonium content in spent fuel pebbles, (ii) improving burn-up computer codes for PBMR spent fuel to provide better understanding of the core and spent fuel makeup, and (iii) utilizing bulk verification techniques for PBMR spent fuel storage bins should be combined with the historic IAEA and South African approaches of containment and surveillance to verify and maintain continuity of knowledge of PBMR fuel. For all of these techniques to work the design of the reactor will need to accommodate safeguards and material accountancy measures to a far greater extent than has thus far been the case. The implementation of Safeguards-by-Design as the PBMR design progresses provides an approach to meets these safeguards and accountancy needs.

  12. Gasification of sawdust in pressurised internally circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Maartensson, R.; Lindblom, M. [Lund Univ. (Sweden). Dept. of Chemical Engineering

    1996-12-31

    A test plant for pressurised gasification of biofuels in a internally circulating fluidized bed has been built at the department of Chemical Engineering II at the University of Lund. The design performance is set to maximum 20 bar and 1 050 deg C at a thermal input of 100 kW or a maximum fuel input of 18 kg/in. The primary task is to study pressurised gasification of biofuels in relation to process requirements of the IGCC concept (integrated gasification combined cycle processes), which includes studies in different areas of hot gas clean-up in reducing atmosphere for gas turbine applications. (orig.)

  13. Gasification of sawdust in pressurised internally circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Maartensson, R; Lindblom, M [Lund Univ. (Sweden). Dept. of Chemical Engineering

    1997-12-31

    A test plant for pressurised gasification of biofuels in a internally circulating fluidized bed has been built at the department of Chemical Engineering II at the University of Lund. The design performance is set to maximum 20 bar and 1 050 deg C at a thermal input of 100 kW or a maximum fuel input of 18 kg/in. The primary task is to study pressurised gasification of biofuels in relation to process requirements of the IGCC concept (integrated gasification combined cycle processes), which includes studies in different areas of hot gas clean-up in reducing atmosphere for gas turbine applications. (orig.)

  14. The International Space Station: A Low-Earth Orbit (LEO) Test Bed for Advancements in Space and Environmental Medicine

    Science.gov (United States)

    Ruttley, Tara M.; Robinson, Julie A.

    2010-01-01

    Ground-based space analog projects such as the NASA Extreme Environment Mission Operations (NEEMO) can be valuable test beds for evaluation of experimental design and hardware feasibility before actually being implemented on orbit. The International Space Station (ISS) is an closed-system laboratory that orbits 240 miles above the Earth, and is the ultimate extreme environment. Its inhabitants spend hours performing research that spans from fluid physics to human physiology, yielding results that have implications for Earth-based improvements in medicine and health, as well as those that will help facilitate the mitigation of risks to the human body associated with exploration-class space missions. ISS health and medical experiments focus on pre-flight and in-flight prevention, in-flight treatment, and postflight recovery of health problems associated with space flight. Such experiments include those on enhanced medical monitoring, bone and muscle loss prevention, cardiovascular health, immunology, radiation and behavior. Lessons learned from ISS experiments may not only be applicable to other extreme environments that face similar capability limitations, but also serve to enhance standards of care for everyday use on Earth.

  15. Thermal-hydraulic modeling of porous bed reactors

    International Nuclear Information System (INIS)

    Araj, K.J.; Nourbakhsh, H.P.

    1987-01-01

    Optimum design of nuclear reactor core requires an iterative approach between the thermal-hydraulic, neutronic and operational analysis. This paper concentrates on the thermal-hydraulic behavior of a hydrogen cooled, small particle bed reactor (PBR). The PBR core, modeled here, consists of a hexagonal array of fuel elements embedded in a moderator matrix. The fuel elements are annular packed beds of fuel particles held between two porous cylindrical frits. These particles, 500 to 600 μm in diameter, have a uranium carbide core, which is coated by two layers of graphite and an outer coating of zirconium carbide. Coolant flow, radially inward, from the cold frit through the packed bed and hot frit and axially out the channel, formed by the hot frit, to a common plenum. 5 refs., 1 fig., 2 tabs

  16. Verification of LRFD Bridge Design and Analysis Software for INDOT

    OpenAIRE

    Varma, Amit H.; Seo, Jungil

    2009-01-01

    NCHRP Process 12-50 was implemented to evaluate and verify composite steel I-girder bridge design software used commonly in Indiana. A test-bed of twenty one bridges was developed with the guidance from an Indiana Department of Transportation appointed research advisory panel (RAP). The test-bed included five simple-span and sixteen multi-span bridge superstructures. More than 80 parameters were required to define a bridge and they include bridge span, girder spacing, number of beams, section...

  17. Quality of Service Control Based on Virtual Private Network Services in a Wide Area Gigabit Ethernet Optical Test Bed

    Science.gov (United States)

    Rea, Luca; Pompei, Sergio; Valenti, Alessandro; Matera, Francesco; Zema, Cristiano; Settembre, Marina

    We report an experimental investigation about the Virtual Private LAN Service technique to guarantee the quality of service in the metro/core network and also in the presence of access bandwidth bottleneck. We also show how the virtual private network can be set up for answering to a user request in a very fast way. The tests were performed in a GMPLS test bed with GbE core routers linked with long (tens of kilometers) GbE G.652 fiber links.

  18. Human Exploration System Test-Bed for Integration and Advancement (HESTIA) Support of Future NASA Deep-Space Missions

    Science.gov (United States)

    Marmolejo, Jose; Ewert, Michael

    2016-01-01

    The Engineering Directorate at the NASA - Johnson Space Center is outfitting a 20-Foot diameter hypobaric chamber in Building 7 to support future deep-space Environmental Control & Life Support System (ECLSS) research as part of the Human Exploration System Test-bed for Integration and Advancement (HESTIA) Project. This human-rated chamber is the only NASA facility that has the unique experience, chamber geometry, infrastructure, and support systems capable of conducting this research. The chamber was used to support Gemini, Apollo, and SkyLab Missions. More recently, it was used to conduct 30-, 60-, and 90-day human ECLSS closed-loop testing in the 1990s to support the International Space Station and life support technology development. NASA studies show that both planetary surface and deep-space transit crew habitats will be 3-4 story cylindrical structures driven by human occupancy volumetric needs and launch vehicle constraints. The HESTIA facility offers a 3-story, 20-foot diameter habitat consistent with the studies' recommendations. HESTIA operations follow stringent processes by a certified test team that including human testing. Project management, analysis, design, acquisition, fabrication, assembly and certification of facility build-ups are available to support this research. HESTIA offers close proximity to key stakeholders including astronauts, Human Research Program (who direct space human research for the agency), Mission Operations, Safety & Mission Assurance, and Engineering Directorate. The HESTIA chamber can operate at reduced pressure and elevated oxygen environments including those proposed for deep-space exploration. Data acquisition, power, fluids and other facility resources are available to support a wide range of research. Recently completed HESTIA research consisted of unmanned testing of ECLSS technologies. Eventually, the HESTIA research will include humans for extended durations at reduced pressure and elevated oxygen to demonstrate

  19. Geomechanics of bedded salt

    International Nuclear Information System (INIS)

    Serata, S.; Milnor, S.W.

    1979-01-01

    Creep data from the literature search is reinterpreted by SGI, resulting in a better understanding of the temperature and stress state dependence of the octahedral creep rate and the octahedral shear strength. The concept of a transition strength between the elastic and the plastic states is in agreement with the data. The elastic and rheological properties of salt are described, and a set of constitutive equations is presented. The dependence of material properties on parameters such as temperature is considered. Findings on the permeability of salt are summarized, and the in-situ behavior of openings in bedded salt is described based on extensive engineering experience. A stress measuring system utilizing a finite element computer code is discussed. Geological factors affecting the stability of salt openings are considered, and the Stress Control Technique for designing stable openings in bedded salt formations is explained

  20. Gradient Compression Stockings may Prevent Recovery after Bed Rest Deconditioning

    Science.gov (United States)

    Stenger, Michael B.; Lee, Stuart M.; Westby, Christian M.; Willig, Michael C.; Platts, Steven H.

    2011-01-01

    Introduction: Astronauts continue to wear a compression garment during and immediately after landing to prevent orthostatic intolerance (OI). We recently developed a custom-fitted, 3-piece garment that consists of thigh-high stockings with biker-style shorts that provides continuous, gradient compression: 55 mmHg at the ankle that decreases to approximately 20 mmHg at the top of the leg and 15 mmHg over the abdomen. This garment has been shown to be effective in preventing symptoms of OI during a short stand test after Space Shuttle missions, but symptoms may persist for several days after a long-duration mission in some astronauts. The purpose of this study was to confirm the effectiveness of wearing these elastic, gradient compression garments during orthostatic testing after 2 weeks of 6 degree head-down tilt bed rest as a model of spaceflight and to determine whether they would impact recovery after bed rest. Methods: Eight (5 treatment, 3 control) of 16 subjects have completed this study to-date. All subjects wore the 3-piece garment from waking until tilt testing (3 h) as a simulation of the timeline for astronauts on landing day (BR+0). Control subjects removed the garment after the tilt test. Treatment subjects wore the garment for the remainder of the day and wore lower compression thigh-high only garments on the day after bed rest (BR+1). Blood pressure, heart rate, and stroke volume responses to a 15-min 80 degree head-up tilt test were determined before 2 weeks of 6 degree head-down tilt, and on BR+0 and BR+1. Plasma volume (PV) was measured before each of these test sessions. Data are mean SE. Results: Compression garments prevented signs of OI on BR+0; all subjects in both groups completed the full 15-min test. Heart rate responses to tilt were lower on BR+0 than all other test days. Control subjects demonstrated a marginal PV decrease after bed rest, but showed typical recovery the day after bed rest (BR+0: 2.32 plus or minus 0.15 L to BR+1: 2

  1. Numerical modeling of straw combustion in a fixed bed

    DEFF Research Database (Denmark)

    Zhou, Haosheng; Jensen, Anker; Glarborg, Peter

    2005-01-01

    . The straw combustion processes include moisture evaporation, straw pyrolysis, gas combustion, and char combustion. The model provides detailed information of the structure of the ignition flame front. Simulated gas species concentrations at the bed surface, ignition flame front rate, and bed temperature......Straw is being used as main renewable energy source in grate boilers in Denmark. For optimizing operating conditions and design parameters, a one-dimensional unsteady heterogeneous mathematical model has been developed and experiments have been carried out for straw combustion in a fixed bed...... are in good agreement with measurements at different operating conditions such as primary air-flow rate, pre-heating of the primary air, oxygen concentration, moisture content in straw, and bulk density of the straw in the fixed bed. A parametric study indicates that the effective heat conductivity, straw...

  2. Hydraulic fracturing tests in anhydrite interbeds in the WIPP, Marker Beds 139 and 140

    Energy Technology Data Exchange (ETDEWEB)

    Howard, C L [RE/SPEC Inc., Albuquerque, NM (United States); Wawersik, W. R.; Carlson, L. V.; Henfling, J. A.; Borns, D. J.; Beauheim, R. L.; Roberts, R. M.

    1997-05-01

    Hydraulic fracturing tests were integrated with hydrologic tests to estimate the conditions under which gas pressure in the disposal rooms in the Waste Isolation Pilot Plant, Carlsbad, NM (WIPP) will initiate and advance fracturing in nearby anhydrite interbeds. The measurements were made in two marker beds in the Salado formation, MB139 and MB140, to explore the consequences of existing excavations for the extrapolation of results to undisturbed ground. The interpretation of these measurements is based on the pressure-time records in two injection boreholes and several nearby hydrologic observation holes. Data interpretations were aided by post-test borehole video surveys of fracture traces that were made visible by ultraviolet illumination of fluorescent dye in the hydraulic fracturing fluid. The conclusions of this report relate to the upper- and lower-bound gas pressures in the WIPP, the paths of hydraulically and gas-driven fractures in MB139 and MB140, the stress states in MB139 and MB140, and the probable in situ stress states in these interbeds in undisturbed ground far away from the WIPP.

  3. Fluidised bed combustion: a new route to power and heat from coal

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, H D [Bergbau-Forschung G.m.b.H., Essen (Germany, F.R.)

    1978-02-01

    The functioning of fluidized-bed firings and their advantages with regard to SO/sub 2/ emissions are described. The principle of design of a fluidized-bed boiler and a gas/steam turbine power plant with fluidized-bed firing under pressure is outlined. The application and their economics in heat and power generation and marketing potential of fluidized-bed firings and their economics in heat and power generation is pointed out. The construction of waste-fired incinerators has already become possible, but there is still a lot of development work to be done until fluidized-bed firings can be used in central heatings, combined-cycle power plants, and large power plants.

  4. Coolability of volumetrically heated particle beds

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Muhammad

    2017-03-22

    In case of a severe nuclear reactor accident, with loss of coolant, a particle bed may be formed from the fragmentation of the molten core in the residual water at different stages of the accident. To avoid further propagation of the accident and maintain the integrity of the reactor pressure vessel, the decay heat of the particle bed must be removed. To better understand the various thermo-hydraulic processes within such heat-generating particle beds, the existing DEBRIS test facility at IKE has been modified to be able to perform novel boiling, dryout and quenching experiments. The essential experimental data includes the pressure gradients measured by 8 differential pressure transducers along the bed height as a function of liquid and vapour superficial velocities, the determination of local dryout heat fluxes for different system pressures as well as the local temperature distribution measured by a set of 51 thermocouples installed inside the particle bed. The experiments were carried out for two different particle beds: a polydispersed particle bed which consisted of stainless steel balls (2 mm, 3 mm and 6 mm diameters) and an irregular particle bed which consisted of a mixture of steel balls (3 mm and 6 mm) and irregularly shaped Al{sub 2}O{sub 3} particles. Additionally, all experiments were carried out for different flow conditions, such as the reference case of passive 1D top-flooding, 1D bottom flooding (driven by external pumps and different downcomer configurations) and 2D top-/bottom-/lateral flooding with a perforated downcomer. In this work, it has been observed that for both particle beds with downcomer configurations an open downcomer leads to the best coolability (dryout heat flux = 1560 kW/m{sup 2}, polydispersed particle bed, psys = 1 bar) of the particle bed, mainly due to bottom-flow with enhanced natural convection. It has also been shown that a potential lateral flow via a perforation of the downcomer does not bring any further improvements

  5. Coolability of volumetrically heated particle beds

    International Nuclear Information System (INIS)

    Rashid, Muhammad

    2017-01-01

    In case of a severe nuclear reactor accident, with loss of coolant, a particle bed may be formed from the fragmentation of the molten core in the residual water at different stages of the accident. To avoid further propagation of the accident and maintain the integrity of the reactor pressure vessel, the decay heat of the particle bed must be removed. To better understand the various thermo-hydraulic processes within such heat-generating particle beds, the existing DEBRIS test facility at IKE has been modified to be able to perform novel boiling, dryout and quenching experiments. The essential experimental data includes the pressure gradients measured by 8 differential pressure transducers along the bed height as a function of liquid and vapour superficial velocities, the determination of local dryout heat fluxes for different system pressures as well as the local temperature distribution measured by a set of 51 thermocouples installed inside the particle bed. The experiments were carried out for two different particle beds: a polydispersed particle bed which consisted of stainless steel balls (2 mm, 3 mm and 6 mm diameters) and an irregular particle bed which consisted of a mixture of steel balls (3 mm and 6 mm) and irregularly shaped Al 2 O 3 particles. Additionally, all experiments were carried out for different flow conditions, such as the reference case of passive 1D top-flooding, 1D bottom flooding (driven by external pumps and different downcomer configurations) and 2D top-/bottom-/lateral flooding with a perforated downcomer. In this work, it has been observed that for both particle beds with downcomer configurations an open downcomer leads to the best coolability (dryout heat flux = 1560 kW/m 2 , polydispersed particle bed, psys = 1 bar) of the particle bed, mainly due to bottom-flow with enhanced natural convection. It has also been shown that a potential lateral flow via a perforation of the downcomer does not bring any further improvements in

  6. Coevolution of bed surface patchiness and channel morphology: 2. Numerical experiments

    Science.gov (United States)

    Nelson, Peter A.; McDonald, Richard R.; Nelson, Jonathan M.; Dietrich, William E.

    2015-01-01

    In gravel bed rivers, bed topography and the bed surface grain size distribution evolve simultaneously, but it is not clear how feedbacks between topography and grain sorting affect channel morphology. In this, the second of a pair of papers examining interactions between bed topography and bed surface sorting in gravel bed rivers, we use a two-dimensional morphodynamic model to perform numerical experiments designed to explore the coevolution of both free and forced bars and bed surface patches. Model runs were carried out on a computational grid simulating a 200 m long, 2.75 m wide, straight, rectangular channel, with an initially flat bed at a slope of 0.0137. Over five numerical experiments, we varied (a) whether an obstruction was present, (b) whether the sediment was a gravel mixture or a single size, and (c) whether the bed surface grain size feeds back on the hydraulic roughness field. Experiments with channel obstructions developed a train of alternate bars that became stationary and were connected to the obstruction. Freely migrating alternate bars formed in the experiments without channel obstructions. Simulations incorporating roughness feedbacks between the bed surface and flow field produced flatter, broader, and longer bars than simulations using constant roughness or uniform sediment. Our findings suggest that patches are not simply a by-product of bed topography, but they interact with the evolving bed and influence morphologic evolution.

  7. Analysis of wall-packed-bed thermal interactions

    International Nuclear Information System (INIS)

    Gorbis, Z.R.; Tillack, M.S.; Tehranian, F.; Abdou, M.A.

    1995-01-01

    One of the major issues remaining for ceramic breeder blankets involves uncertainties in heat transfer and thermomechanical interactions within the breeder and multiplier regions. Particle bed forms are considered in many reactor blanket designs for both the breeder and Be multiplier. The effective thermal conductivity of beds and the wall-bed thermal conductance are still not adequately characterized, particularly under the influence of mechanical stresses. The problem is particularly serious for the wall conductance between Be and its cladding, where the uncertainty can be greater than 50%. In this work, we describe a new model for the wall-bed conductance that treats the near-wall region as a finite-width zone. The model includes an estimate of the region porosity based on the number of contact points, and the contact area for smooth surfaces. It solves the heat conduction in a near-wall unit cell. The model is verified with existing data and used to predict the range of wall conductances expected in future simulation experiments and in reactor applications. (orig.)

  8. Fusion energy for alternate applications: the design of a high temperature falling bed as a long-lived blanket

    International Nuclear Information System (INIS)

    Harkness, S.D.; Stevens, H.C.; Hall, M.M.; Gohar, M.Y.A.; de Paz, J.F.

    1979-01-01

    The high temperature falling bed conceptual design work has consisted of a coordinated effort in neutronics, materials science, thermal hydraulics and mechanical design. The neutronics work has been based on a one-dimensional transport analysis and has been used to scope the implication of blanket dimensions, breeding materials, ceramic pebble material and coolant choice on both tritium breeding capabilities and energy deposition into the high temperature region of the blanket. The materials science effort has concentrated on defining the selection of a particular ceramic material. The thermal hydraulic analysis has been concerned with sizing the heat transfer system and defining the temperature gradients in the high temperature blanket. The mechanical design work has evaluated how such a system might be constructed from the point of view of maintainability and structural support

  9. Tracking channel bed resiliency in forested mountain catchments using high temporal resolution channel bed movement

    Science.gov (United States)

    Martin, Sarah E.; Conklin, Martha H.

    2018-01-01

    This study uses continuous-recording load cell pressure sensors in four, high-elevation (1500-1800 m), Sierra Nevada headwater streams to collect high-temporal-resolution, bedload-movement data for investigating the channel bed movement patterns within these streams for water years 2012-2014. Data show an annual pattern where channel bed material in the thalweg starts to build up in early fall, peaks around peak snow melt, and scours back to baseline levels during hydrograph drawdown and base flow. This pattern is punctuated by disturbance and recovery of channel bed material associated with short-term storm events. A conceptual model, linking sediment sources at the channel margins to patterns of channel bed fill and scour in the thalweg, is proposed building on the results of Martin et al. (2014). The material in the thalweg represents a balance between sediment supply from the channel margins and sporadic, conveyor-belt-like downstream transport in the thalweg. The conceptual model highlights not only the importance of production and transport rates but also that seasonal connectedness between the margins and thalweg is a key sediment control, determining the accumulation rate of sediment stores at the margins and the redistribution of sediment from margins to thalweg that feeds the conveyor belt. Disturbance and recovery cycles are observed at multiple temporal scales; but long term, the channel beds are stable, suggesting that the beds act as short-term storage for sediment but are in equilibrium interannually. The feasibility of use for these sensors in forested mountain stream environments is tested. Despite a high failure rate (50%), load cell pressure sensors show potential for high-temporal-resolution bedload measurements, allowing for the collection of channel bed movement data to move beyond time-integrated change measurements - where many of the subtleties of bedload movement patterns may be missed - to continuous and/or real-time measurements. This

  10. Displacement Damage Effects in Solar Cells: Mining Damage From the Microelectronics and Photonics Test Bed Space Experiment

    Science.gov (United States)

    Hardage, Donna (Technical Monitor); Walters, R. J.; Morton, T. L.; Messenger, S. R.

    2004-01-01

    The objective is to develop an improved space solar cell radiation response analysis capability and to produce a computer modeling tool which implements the analysis. This was accomplished through analysis of solar cell flight data taken on the Microelectronics and Photonics Test Bed experiment. This effort specifically addresses issues related to rapid technological change in the area of solar cells for space applications in order to enhance system performance, decrease risk, and reduce cost for future missions.

  11. A randomized, double-blind, crossover comparison of novel continuous bed motion versus traditional bed position whole-body PET/CT imaging

    International Nuclear Information System (INIS)

    Schatka, Imke; Weiberg, Desiree; Reichelt, Stephanie; Owsianski-Hille, Nicole; Derlin, Thorsten; Berding, Georg; Bengel, Frank M.

    2016-01-01

    Continuous bed motion has recently been introduced for whole-body PET/CT, and represents a paradigm shift towards individualized and flexible acquisition without the limitations of bed position-based planning. Increased patient comfort due to lack of abrupt table position changes may be another albeit still unproven advantage. For robust clinical implementation, image quality and quantitative accuracy should at least be equal to the prior standard of bed position-based step-and-shoot imaging. The study included 68 consecutive patients referred for whole-body PET/CT for various malignancies. The patients underwent traditional step-and-shoot and novel continuous bed motion acquisition in the same session in a randomized crossover design. The patients and two independent observers were blinded to the sequence of scan techniques. Patient comfort/satisfaction was examined using a standardized questionnaire. SUVs were compared for reference tissue (liver, muscle) and tumour lesions. PET image quality and misalignment with CT images were evaluated on a scale of 1 - 4. Patients preferred continuous bed motion over step-and-shoot (P = 0.0001). It was considered to be more relaxing (38 % vs. 8 %), quieter (34 % vs. 8 %), and more fluid (64 % vs. 8 %). Image quality, SUV and CT misalignment did not differ between the techniques. Continuous bed motion resulted in better end-plane image quality (P < 0.0001). Regardless of the technique, second examinations had significantly higher tumour lesion SUVmax values (P = 0.0002), and a higher CT misalignment score (P = 0.0017). Oncological PET/CT with continuous bed motion enhances patient comfort and is associated with image quality at least comparable to that with traditional bed position-based step-and-shoot acquisition. (orig.)

  12. A randomized, double-blind, crossover comparison of novel continuous bed motion versus traditional bed position whole-body PET/CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Schatka, Imke [Hannover Medical School, Department of Nuclear Medicine, Hannover (Germany); Charite, Department of Nuclear Medicine, Berlin (Germany); Weiberg, Desiree; Reichelt, Stephanie; Owsianski-Hille, Nicole; Derlin, Thorsten; Berding, Georg; Bengel, Frank M. [Hannover Medical School, Department of Nuclear Medicine, Hannover (Germany)

    2016-04-15

    Continuous bed motion has recently been introduced for whole-body PET/CT, and represents a paradigm shift towards individualized and flexible acquisition without the limitations of bed position-based planning. Increased patient comfort due to lack of abrupt table position changes may be another albeit still unproven advantage. For robust clinical implementation, image quality and quantitative accuracy should at least be equal to the prior standard of bed position-based step-and-shoot imaging. The study included 68 consecutive patients referred for whole-body PET/CT for various malignancies. The patients underwent traditional step-and-shoot and novel continuous bed motion acquisition in the same session in a randomized crossover design. The patients and two independent observers were blinded to the sequence of scan techniques. Patient comfort/satisfaction was examined using a standardized questionnaire. SUVs were compared for reference tissue (liver, muscle) and tumour lesions. PET image quality and misalignment with CT images were evaluated on a scale of 1 - 4. Patients preferred continuous bed motion over step-and-shoot (P = 0.0001). It was considered to be more relaxing (38 % vs. 8 %), quieter (34 % vs. 8 %), and more fluid (64 % vs. 8 %). Image quality, SUV and CT misalignment did not differ between the techniques. Continuous bed motion resulted in better end-plane image quality (P < 0.0001). Regardless of the technique, second examinations had significantly higher tumour lesion SUVmax values (P = 0.0002), and a higher CT misalignment score (P = 0.0017). Oncological PET/CT with continuous bed motion enhances patient comfort and is associated with image quality at least comparable to that with traditional bed position-based step-and-shoot acquisition. (orig.)

  13. A two-parameter preliminary optimization study for a fluidized-bed boiler through a comprehensive mathematical simulator

    Energy Technology Data Exchange (ETDEWEB)

    Rabi, Jose A.; Souza-Santos, Marcio L. de [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mails: jrabi@fem.unicamp.br; dss@fem.unicamp.br

    2000-07-01

    Modeling and simulation of fluidized-bed equipment have demonstrated their importance as a tool for design and optimization of industrial equipment. Accordingly, this work carries on an optimization study of a fluidized-bed boiler with the aid of a comprehensive mathematical simulator. The configuration data of the boiler are based on a particular Babcock and Wilcox Co. (USA) test unit. Due to their importance, the number of tubes in the bed section and the air excess are chosen as the parameters upon which the optimization study is based. On their turn, the fixed-carbon conversion factor and the boiler efficiency are chosen as two distinct optimization objectives. The results from both preliminary searches are compared. The present work is intended to be just a study on possible routes for future optimization of larger boilers. Nonetheless, the present discussion might give some insight on the equipment behavior. (author)

  14. Genetic Algorithm Design And Testing of a Random Element 3-D 2.4 Ghz Phased Array Transmit Antenna Constructed of Commercial Rf Microchips

    National Research Council Canada - National Science Library

    Esswein, Lance

    2003-01-01

    ..., development and evaluation of a test-bed array. The test-bed array was constructed of commercially available components, including a unique and innovative application of a quadrature modulator microchip used in commercial communications applications...

  15. Multiagency Urban Search Experiment Detector and Algorithm Test Bed

    Science.gov (United States)

    Nicholson, Andrew D.; Garishvili, Irakli; Peplow, Douglas E.; Archer, Daniel E.; Ray, William R.; Swinney, Mathew W.; Willis, Michael J.; Davidson, Gregory G.; Cleveland, Steven L.; Patton, Bruce W.; Hornback, Donald E.; Peltz, James J.; McLean, M. S. Lance; Plionis, Alexander A.; Quiter, Brian J.; Bandstra, Mark S.

    2017-07-01

    In order to provide benchmark data sets for radiation detector and algorithm development, a particle transport test bed has been created using experimental data as model input and validation. A detailed radiation measurement campaign at the Combined Arms Collective Training Facility in Fort Indiantown Gap, PA (FTIG), USA, provides sample background radiation levels for a variety of materials present at the site (including cinder block, gravel, asphalt, and soil) using long dwell high-purity germanium (HPGe) measurements. In addition, detailed light detection and ranging data and ground-truth measurements inform model geometry. This paper describes the collected data and the application of these data to create background and injected source synthetic data for an arbitrary gamma-ray detection system using particle transport model detector response calculations and statistical sampling. In the methodology presented here, HPGe measurements inform model source terms while detector response calculations are validated via long dwell measurements using 2"×4"×16" NaI(Tl) detectors at a variety of measurement points. A collection of responses, along with sampling methods and interpolation, can be used to create data sets to gauge radiation detector and algorithm (including detection, identification, and localization) performance under a variety of scenarios. Data collected at the FTIG site are available for query, filtering, visualization, and download at muse.lbl.gov.

  16. Model-based design of a pilot-scale simulated moving bed for purification of citric acid from fermentation broth.

    Science.gov (United States)

    Wu, Jinglan; Peng, Qijun; Arlt, Wolfgang; Minceva, Mirjana

    2009-12-11

    One of the conventional processes used for the recovery of citric acid from its fermentation broth is environmentally harmful and cost intensive. In this work an innovative benign process, which comprises simulated moving bed (SMB) technology and use of a tailor-made tertiary poly(4-vinylpyridine) (PVP) resin as a stationary phase is proposed. This paper focuses on a model-based design of the operation conditions for an existing pilot-scale SMB plant. The SMB unit is modeled on the basis of experimentally determined hydrodynamics, thermodynamics and mass transfer characteristics in a single chromatographic column. Three mathematical models are applied and validated for the prediction of the experimentally attained breakthrough and elution profiles of citric acid and the main impurity component (glucose). The transport dispersive model was selected for the SMB simulation and design studies, since it gives a satisfactory prediction of the elution profiles within acceptable computational time. The equivalent true moving bed (TMB) and SMB models give a good prediction of the experimentally attained SMB separation performances, obtained with a real clarified and concentrated fermentation broth as a feed mixture. The SMB separation requirements are set to at least 99.8% citric acid purity and 90% citric acid recovery in the extract stream. The complete regeneration in sections 1 and 4 is unnecessary. Therefore the net flow rates in all four SMB sections have been considered in the unit design. The influences of the operating conditions (the flow rate in each section, switching time and unit configuration) on the SMB performances were investigated systematically. The resulting SMB design provides 99.8% citric acid purity and 97.2% citric acid recovery in the extract. In addition the citric acid concentration in the extract is a half of its concentration in the pretreated fermentation broth (feed).

  17. Tests with blast furnace slag as bed material in a 12 MW waste fired BFB boiler; Fullskalefoersoek med Hyttsand som baeddmaterial i 12 MW avfallseldad BFB-panna

    Energy Technology Data Exchange (ETDEWEB)

    Eklund, Anders; Oehman, Marcus

    2004-11-01

    A full-scale trial has been performed at Saeverstaverket twin 12 MWth BFB boilers in Bollnaes using Hyttsand (a proprietary blast furnace slag) as bed material. The purpose has been to investigate if Hyttsand can be used as bed material in FB boilers for difficult types of fuels. Used fuel has been municipal waste, recovered wood fuel and different types of bio fuels. The test period was 19 days and nearly 100 tons of Hyttsand was used. The most important conclusions are: Good fluidisation can be achieved with Hyttsand as bed material. Hyttsand can fluidise without any changes in boiler settings. Hyttsand can also be mixed with Baskarpsand (a natural sand with over 90% SiO{sub 2}) and used as bed material without any negative changes to the boiler performance. Bed material make-up rate is reduced with up to 30 % when using Hyttsand compared to using Baskarpsand. Other conclusions are: Bed temperature increased slightly and bed temperature deviation decreased. Emissions was in general not affected, however emissions of SO{sub 2} increased slightly. More deposit containing more sulphur was formed on superheater surfaces when using Hyttsand. The increased amount of sulphur when using Hyttsand could be an effect of higher content of sulphur in the fuel or, which is more likely, that sulphur is released from Hyttsand and forms gaseous sulphurous gases. No significant change in produced amounts of fly-, cyclone- or bottom ash. Hyttsand and Baskarpsand had both similar coatings on their particles and similar agglomeration tendencies. There have been some start-up problems during the trials, including two more severe boiler disturbances, but most of these disturbances can be explained and avoided in the future. Previous investigations in laboratory scale using Hyttsand as bed material when firing different bio fuels have shown the advantage of Hyttsand with its higher resistance against a chemical reaction with alkali in the fuel ash compared to conventional bed materials

  18. Forced Convection Heat Transfer of a sphere in Packed Bed Arrangement

    International Nuclear Information System (INIS)

    Lee, Dong-Young; Chung, Bum-Jin

    2016-01-01

    This paper analysis and discuss the forced convective heat transfer from heated single sphere, which is buried in unheated packed bed, depending on Re d with porosity. The present work determines the test matrix for the packed bed experiment. And this study discuss difference of heat transfer according to the location of heated sphere and compared heated bed with heated sphere in packed bed and compared FCC (Face Centered Cubic), HCP (Hexagonal Closed Packed) structured packed bed with random packed. This paper is to discuss and make the plan to experiment the heat transfer for depending on location of heated single sphere in unheated packed bed, to compare single sphere in packed bed with heated packed bed and to compare the structured packed bed with random packed bed. The Nu d increase as heated single sphere is close to the wall and bottom because of increasing porosity and enhancing eddy motion respectively. The existing experiment of heated sphere in packed bed do not consider the preheating effect which decrease heat transfer on downstream. The heat transfer rate of structured packed bed is different from random packed bed because of unsteady flow in random packed bed. In this study, mass transfer experiments will replace heat transfer experiments based on analogy concept. An electroplating system is adopted using limiting current technique

  19. Forced Convection Heat Transfer of a sphere in Packed Bed Arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Young; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    This paper analysis and discuss the forced convective heat transfer from heated single sphere, which is buried in unheated packed bed, depending on Re{sub d} with porosity. The present work determines the test matrix for the packed bed experiment. And this study discuss difference of heat transfer according to the location of heated sphere and compared heated bed with heated sphere in packed bed and compared FCC (Face Centered Cubic), HCP (Hexagonal Closed Packed) structured packed bed with random packed. This paper is to discuss and make the plan to experiment the heat transfer for depending on location of heated single sphere in unheated packed bed, to compare single sphere in packed bed with heated packed bed and to compare the structured packed bed with random packed bed. The Nu{sub d} increase as heated single sphere is close to the wall and bottom because of increasing porosity and enhancing eddy motion respectively. The existing experiment of heated sphere in packed bed do not consider the preheating effect which decrease heat transfer on downstream. The heat transfer rate of structured packed bed is different from random packed bed because of unsteady flow in random packed bed. In this study, mass transfer experiments will replace heat transfer experiments based on analogy concept. An electroplating system is adopted using limiting current technique.

  20. Exercise countermeasures for bed-rest deconditioning

    Science.gov (United States)

    Greenleaf, John (Editor)

    1993-01-01

    The purpose for this 30-day bed rest study was to investigate the effects of short-term, high intensity isotonic and isokinetic exercise training on maintenance of working capacity (peak oxygen uptake), muscular strength and endurance, and on orthostatic tolerance, posture and gait. Other data were collected on muscle atrophy, bone mineralization and density, endocrine analyses concerning vasoactivity and fluid-electrolyte balance, muscle intermediary metabolism, and on performance and mood of the subjects. It was concluded that: The subjects maintained a relatively stable mood, high morale, and high esprit de corps throughout the study. Performance improved in nearly all tests in almost all the subjects. Isotonic training, as opposed to isokinetic exercise training, was associated more with decreasing levels of psychological tension, concentration, and motivation; and improvement in the quality of sleep. Working capacity (peak oxygen uptake) was maintained during bed rest with isotonic exercise training; it was not maintained with isokinetic or no exercise training. In general, there was no significant decrease in strength or endurance of arm or leg muscles during bed rest, in spite of some reduction in muscle size (atrophy) of some leg muscles. There was no effect of isotonic exercise training on orthostasis, since tilt-table tolerance was reduced similarly in all three groups following bed rest. Bed rest resulted in significant decreases of postural stability and self-selected step length, stride length, and walking velocity, which were not influenced by either exercise training regimen. Most pre-bed rest responses were restored by the fourth day of recovery.

  1. Formation of accessory mineral bed layers during erosion of bentonite buffer material

    International Nuclear Information System (INIS)

    Schatz, Timothy; Kanerva, Noora

    2012-01-01

    (kaolin, quartz sand, chromatographic silica). The resulting mixtures were compacted into dense sample tablets with effective montmorillonite dry densities between 1.4 to 1.6 g/cm 3 . The fracture erosion tests were performed using a Grimsel groundwater simulant (relative to Na + and Ca 2+ concentration only) contact solution at an average flow rate of 0.09 ml/min through the system. In colloid filtration theories, the filter bed is modelled as an assemblage of single or unit collectors having a known geometry. According to Richards [2010], the particle size distribution of the accessory minerals in MX-80 bentonite consists of particles with sizes less than 30 μm. Of the additive materials used in this study, the kaolin material consists of particles with sizes less than 20 μm showing a peak size of 6 μm, the chromatographic silica consists of particles with sizes narrowly distributed between 10 to 14 μm, and the sand consists of particles with sizes between 160 to 550 μm at a peak size of 280 μm. The tests were designed to lead to the development of erosive conditions (i.e., sodium montmorillonite against a dilute solution) and, in every case, the formation of an accessory mineral bed layer near the extrusion/erosion interface was observed. Moreover, these layers grew progressively in thickness over the course of the tests. These results provide evidence that, following erosive loss of colloidal montmorillonite through contact with dilute groundwater at a transmissive fracture interface, accessory phases (within bentonite) remain behind and form bed layers

  2. Characterization of biofilm in 200W fluidized bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Michelle H. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Saurey, Sabrina D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Lee, Brady D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Parker, Kent E. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Eisenhauer, Emalee E. R. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Cordova, Elsa A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Golovich, Elizabeth C. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2014-09-29

    Contaminated groundwater beneath the 200 West Area at the Hanford Site in Southeast Washington is currently being treated using a pump and treat system to remove organics, inorganics, radionuclides, and metals. A granular activated carbon-based fluidized bed reactor (FBR) has been added to remove nitrate, hexavalent chromium and carbon tetrachloride. Initial analytical results indicated the microorganisms effectively reduced many of the contaminants to less than cleanup levels. However shortly thereafter operational upsets of the FBR include carbon carry over, over production of microbial extracellular polymeric substance (biofilm) materials, and over production of hydrogen sulfide. As a result detailed investigations were undertaken to understand the functional diversity and activity of the microbial community present in the FBR over time. Molecular analyses including terminal restriction fragment length polymorphism analysis, quantitative polymerase chain reaction and fluorescent in situ hybridization analyses were performed on the microbial community extracted from the biofilm within the bed and from the inoculum, to determine functional dynamics of the FBR bed over time and following operational changes. Findings from these analyses indicated: 1) the microbial community within the bed was completely different than community used for inoculation, and was likely from the groundwater; 2) analyses early in the testing showed an FBR community dominated by a few Curvibacter and Flavobacterium species; 3) the final sample taken indicated that the microbial community in the FBR bed had become more diverse; and 4) qPCR analyses indicated that bacteria involved in nitrogen cycling, including denitrifiers and anaerobic ammonia oxidizing bacteria, were dominant in the bed. These results indicate that molecular tools can be powerful for determining functional diversity within FBR type reactors. Coupled with micronutrient, influent and effluent chemistry

  3. Development and clinical application of a computer-aided real-time feedback system for detecting in-bed physical activities.

    Science.gov (United States)

    Lu, Liang-Hsuan; Chiang, Shang-Lin; Wei, Shun-Hwa; Lin, Chueh-Ho; Sung, Wen-Hsu

    2017-08-01

    Being bedridden long-term can cause deterioration in patients' physiological function and performance, limiting daily activities and increasing the incidence of falls and other accidental injuries. Little research has been carried out in designing effective detecting systems to monitor the posture and status of bedridden patients and to provide accurate real-time feedback on posture. The purposes of this research were to develop a computer-aided system for real-time detection of physical activities in bed and to validate the system's validity and test-retest reliability in determining eight postures: motion leftward/rightward, turning over leftward/rightward, getting up leftward/rightward, and getting off the bed leftward/rightward. The in-bed physical activity detecting system consists mainly of a clinical sickbed, signal amplifier, a data acquisition (DAQ) system, and operating software for computing and determining postural changes associated with four load cell sensing components. Thirty healthy subjects (15 males and 15 females, mean age = 27.8 ± 5.3 years) participated in the study. All subjects were asked to execute eight in-bed activities in a random order and to participate in an evaluation of the test-retest reliability of the results 14 days later. Spearman's rank correlation coefficient was used to compare the system's determinations of postural states with researchers' recordings of postural changes. The test-retest reliability of the system's ability to determine postures was analyzed using the interclass correlation coefficient ICC(3,1). The system was found to exhibit high validity and accuracy (r = 0.928, p system was particularly accurate in detecting motion rightward (90%), turning over leftward (83%), sitting up leftward or rightward (87-93%), and getting off the bed (100%). The test-retest reliability ICC(3,1) value was 0.968 (p system developed in this study exhibits satisfactory validity and reliability in detecting changes in-bed

  4. Errors in 'BED'-derived estimates of HIV incidence will vary by place, time and age.

    Directory of Open Access Journals (Sweden)

    Timothy B Hallett

    2009-05-01

    Full Text Available The BED Capture Enzyme Immunoassay, believed to distinguish recent HIV infections, is being used to estimate HIV incidence, although an important property of the test--how specificity changes with time since infection--has not been not measured.We construct hypothetical scenarios for the performance of BED test, consistent with current knowledge, and explore how this could influence errors in BED estimates of incidence using a mathematical model of six African countries. The model is also used to determine the conditions and the sample sizes required for the BED test to reliably detect trends in HIV incidence.If the chance of misclassification by BED increases with time since infection, the overall proportion of individuals misclassified could vary widely between countries, over time, and across age-groups, in a manner determined by the historic course of the epidemic and the age-pattern of incidence. Under some circumstances, changes in BED estimates over time can approximately track actual changes in incidence, but large sample sizes (50,000+ will be required for recorded changes to be statistically significant.The relationship between BED test specificity and time since infection has not been fully measured, but, if it decreases, errors in estimates of incidence could vary by place, time and age-group. This means that post-assay adjustment procedures using parameters from different populations or at different times may not be valid. Further research is urgently needed into the properties of the BED test, and the rate of misclassification in a wide range of populations.

  5. Experimental study of fluidized bed agglomeration of acerola powder

    Directory of Open Access Journals (Sweden)

    G. C. Dacanal

    2008-03-01

    Full Text Available The aim of this work was to study the main effects of acerola powder on fluidized bed agglomeration. A 2(4-1 fractional factoring design was used to evaluate the main operating conditions (fluidizing air temperature, fluidizing air velocity, atomizing air flow and height of nozzle in the bed. The mechanical and physicochemical product changes were determined by analysis of particle diameter, moisture content, wetting time and bed porosity. The particle enlargement by agglomeration occurred when the relative humidity in the bed increased and, thus, the moisture of the product increased. However, the excessive increase in relative humidity resulted in a decrease in yield, caused by caking and product incrustation. The consolidation of small granules resulted in an increase in the instant properties, decreasing the wetting time and increasing the solubility in a short period of agitation.

  6. Preliminary design study of pebble bed reactor HTR-PM base using once-through-then-out fuel recirculation

    International Nuclear Information System (INIS)

    Topan Setiadipura; Jupiter S Pane; Zuhair

    2016-01-01

    Pebble Bed Reactor (PBR) is one of the advanced reactor type implementing strong passive safety feature. In this type of design has the potential to do a cogeneration useful for the treatment of various minerals in various islands in Indonesia. The operation of the PBR can be simplified by implementing once-through-then-out (OTTO) fuel recirculation scheme in which pebble fuel only pass the core once time. The purpose of this research is to understand quantitative influence of the changing of fuel element recirculation on the PBR core performance and to find preliminary optimization design of PBR type reactor with OTTO recirculation scheme. PEBBED software was used to find PBR equilibrium core. The calculation result gives quantitative data on the impact of implementing a different fuel recirculation, especially using OTTO scheme. Furthermore, an early optimized PBR design based on HTR-PM using OTTO scheme was obtained where the power must be downgraded into 115 MWt in order to preserve the safety feature. The simplicity of the reactor operation and the reduction of reactor component with OTTO scheme still make this early optimized design an interesting alternative design, despite its power reduction from the reference design. (author)

  7. Simulation of volumetrically heated pebble beds in solid breeding blankets for fusion reactors. Modelling, experimental validation and sensitivity studies

    International Nuclear Information System (INIS)

    Hernandez Gonzalez, Francisco Alberto

    2016-01-01

    The Breeder Units contains pebble beds of lithium orthosilicate (Li_4SiO_4) as tritium breeder material and beryllium as neutron multiplier. In this dissertation a closed validation strategy for the thermo-mechanical validation of the Breeder Units has been developed. This strategy is based on the development of dedicated testing and modeling tools, which are needed for the qualification of the thermo-mechanical functionality of these components in an out-of-pile experimental campaign. The neutron flux in the Breeder Units induces a nonhomogeneous volumetric heating in the pebble beds that must be mimicked in an out-of-pile experiment with an external heating system minimizing the intrusion in the pebble beds. Therefore, a heater system that simulates this volumetric heating has been developed. This heater system is based on ohmic heating and linear heater elements, which approximates the point heat sources of the granular material by linear sources. These linear sources represent ''linear pebbles'' in discrete locations close enough to relatively reproduce the thermal gradients occurring in the functional materials. The heater concept has been developed for the Li_4SiO_4 and it is based on a hexagonal matrix arrangement of linear and parallel heater elements of diameter 1 mm separated by 7 mm. A set of uniformly distributed thermocouples in the transversal and longitudinal direction in the pebble bed midplane allows a 2D temperature reconstruction of that measurement plane by means of biharmonic spline interpolation. This heating system has been implemented in a relevant Breeder Unit region and its proof-of-concept has been tested in a PRE-test Mock-Up eXperiment (PREMUX) that has been designed and constructed in the frame of this dissertation. The packing factor of the pebble bed with and without the heating system does not show significant differences, giving an indirect evidence of the low intrusion of the system. Such low intrusion has been confirmed by in

  8. Simulation of volumetrically heated pebble beds in solid breeding blankets for fusion reactors. Modelling, experimental validation and sensitivity studies

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Gonzalez, Francisco Alberto

    2016-10-14

    The Breeder Units contains pebble beds of lithium orthosilicate (Li{sub 4}SiO{sub 4}) as tritium breeder material and beryllium as neutron multiplier. In this dissertation a closed validation strategy for the thermo-mechanical validation of the Breeder Units has been developed. This strategy is based on the development of dedicated testing and modeling tools, which are needed for the qualification of the thermo-mechanical functionality of these components in an out-of-pile experimental campaign. The neutron flux in the Breeder Units induces a nonhomogeneous volumetric heating in the pebble beds that must be mimicked in an out-of-pile experiment with an external heating system minimizing the intrusion in the pebble beds. Therefore, a heater system that simulates this volumetric heating has been developed. This heater system is based on ohmic heating and linear heater elements, which approximates the point heat sources of the granular material by linear sources. These linear sources represent ''linear pebbles'' in discrete locations close enough to relatively reproduce the thermal gradients occurring in the functional materials. The heater concept has been developed for the Li{sub 4}SiO{sub 4} and it is based on a hexagonal matrix arrangement of linear and parallel heater elements of diameter 1 mm separated by 7 mm. A set of uniformly distributed thermocouples in the transversal and longitudinal direction in the pebble bed midplane allows a 2D temperature reconstruction of that measurement plane by means of biharmonic spline interpolation. This heating system has been implemented in a relevant Breeder Unit region and its proof-of-concept has been tested in a PRE-test Mock-Up eXperiment (PREMUX) that has been designed and constructed in the frame of this dissertation. The packing factor of the pebble bed with and without the heating system does not show significant differences, giving an indirect evidence of the low intrusion of the system. Such

  9. Design and R and D activities on ceramic breeder blanket for fusion experimental reactors in JAERI

    International Nuclear Information System (INIS)

    Kurasawa, T.; Takatsu, H.; Sato, S.; Nakahira, M.; Furuya, K.; Hashimoto, T.; Kawamura, H.; Kuroda, T.; Tsunematsu, T.; Seki, M.

    1995-01-01

    Design and R and D activities on ceramic breeder blanket of a fusion experimental reactor have been progressed in JAERI. A layered pebble bed type ceramic breeder blanket with water cooling is a prime candidate concept. Design activities have been concentrated on improvement of the design by conducting detailed analyses and also by fabrication procedure consideration based on the current technologies. A wide variety of R and Ds have also been conducted in accordance with the design activities. Development of fabrication technology of the blanket box structure and its mechanical testing, elementary testing on thermal performances of the pebble bed, and engineering-oriented material tests of breeder and beryllium pebbles are the main achievements during the last two years. (orig.)

  10. MARKETING MIX BY BED OCCUPANCY RATIO (BOR

    Directory of Open Access Journals (Sweden)

    Abdul Muhith

    2017-04-01

    Full Text Available Introduction: Bed Occupancy Ratio (BOR in RSI Arafah Mojosari during the last three years are at under ideal rate and the lowest of the three existing hospitals in the area of Mojosari. The purpose of this study was to determine the relationship marketing mix with Bed Occupancy Ratio in RSI Arafah Mojosari. Methods: This research uses analytic methods with crossectional approach. Variables in the study is marketing mix and Bed Occupancy Ratio (BOR. The population in this study were all patients hospitalized in the RSI Arafah Mojosari. Samples amounted 44 respondents taken by the Stratified random sampling technique. Data were collected using the questionnaire and analyzed using Fisher's Exact test. Result: The results obtained more than 50% of respondents (59.1% rate well against the marketing mix is developed by the hospital management and the majority of respondents (79.5% are in the treatment room that has a number BOR is not ideal. Fisher Exact test test results obtained probabililty value=0.02<0.05 so that H0 is rejected, which means there is a relationship marketing mix with the Bed Occupancy Ratio in RSI Arafah Mojosari. Discussion: Hospitals which able to develop the marketing mix very well, can attract consumers to use inpatient services at the hospital, with that BOR value will increase as the increased use of inpatient services. Hospital management must be able to formulate a good marketing mix strategy that hospital marketing objectives can be achieved. Conformity between service quality and service rates must be addressed, otherwise it extent of media promotions can attract patients to inpatient services.

  11. Fluidized-bed design for ICF reactor blankets using solid-lithium compounds

    International Nuclear Information System (INIS)

    Sucov, E.W.; Malick, F.S.; Green, L.; Hall, B.O.

    1983-01-01

    A fluidized-bed concept for blankets of dry or wetted first-wall ICF reactors using solid-lithium compounds is described. The reaction chamber is a right cylinder, 32 m high and 20 m in diameter; the blanket is composed of 36 steel tanks, 32 m high, which carry the sintered Li 2 O particles in the fluidizing helium gas. Each tank has a radial thickness of 2 m which generates a tritium breeding ration (TBR) of 1.27 and absorbs over 98% of the neutron energy; reducing the thickness to 1.2 m produces a TBR of 1.2 and energy absorption of 97% which satisfy the design goals. Calculations of tritium diffusion through the grains and heat removal from the grains showed that neither could be removed by the carrier gas; tritium and heat are therefore removed by removing the grains themselves by varying the helium flow rate. The particles are continuously fed into the bottom of the tanks at 300 0 C and removed at the top at 475 0 C. Tritium and heat extraction are easily and conveniently done outside the reactor

  12. Impacts of bedding directions of shale gas reservoirs on hydraulically induced crack propagation

    Directory of Open Access Journals (Sweden)

    Keming Sun

    2016-03-01

    Full Text Available Shale gas reservoirs are different from conventional ones in terms of their bedding architectures, so their hydraulic fracturing rules are somewhat different. In this paper, shale hydraulic fracturing tests were carried out by using the triaxial hydraulic fracturing test system to identify the effects of natural bedding directions on the crack propagation in the process of hydraulic fracturing. Then, the fracture initiation criterion of hydraulic fracturing was prepared using the extended finite element method. On this basis, a 3D hydraulic fracturing computation model was established for shale gas reservoirs. And finally, a series of studies were performed about the effects of bedding directions on the crack propagation created by hydraulic fracturing in shale reservoirs. It is shown that the propagation rules of hydraulically induced fractures in shale gas reservoirs are jointly controlled by the in-situ stress and the bedding plane architecture and strength, with the bedding direction as the main factor controlling the crack propagation directions. If the normal tensile stress of bedding surface reaches its tensile strength after the fracturing, cracks will propagate along the bedding direction, and otherwise vertical to the minimum in-situ stress direction. With the propagating of cracks along bedding surfaces, the included angle between the bedding normal direction and the minimum in-situ stress direction increases, the fracture initiation and propagation pressures increase and the crack areas decrease. Generally, cracks propagate in the form of non-plane ellipsoids. With the injection of fracturing fluids, crack areas and total formation filtration increase and crack propagation velocity decreases. The test results agree well with the calculated crack propagation rules, which demonstrate the validity of the above-mentioned model.

  13. Powder bed charging during electron-beam additive manufacturing

    International Nuclear Information System (INIS)

    Cordero, Zachary C.; Meyer, Harry M.; Nandwana, Peeyush; Dehoff, Ryan R.

    2017-01-01

    Electrons injected into the build envelope during powder bed electron-beam additive manufacturing can accumulate on the irradiated particles and cause them to repel each other. Under certain conditions, these electrostatic forces can grow so large that they drive the particles out of the build envelope in a process known as “smoking”. In the present work, we investigate the causes of powder bed charging and smoking during electron-beam additive manufacturing. In the first part of the paper, we characterize the surface chemistry of a common feedstock material—gas-atomized Ti-6Al-4V powder—and find that a thick, electrically insulating oxide overlayer encapsulates the particles. Based on these experimental results, we then formulate an analytical model of powder bed charging in which each particle is approximated as a capacitor, where the particle and its substrate are the electrodes and the oxide overlayer is the dielectric. Using this model, we estimate the charge distribution in the powder bed, the electrostatic forces acting on the particles, and the conditions under which the powder bed will smoke. It is found that the electrical resistivity of the oxide overlayer strongly influences the charging behavior of the powder bed and that a high resistivity promotes charge accumulation and consequent smoking. This analysis suggests new quality control and process design measures that can help suppress smoking.

  14. Models comparative study for heat storage in fixed beds; Estudo comparativo de modelos para armazenamento de calor em leitos fixos

    Energy Technology Data Exchange (ETDEWEB)

    Stuginski, Junior, Rubens

    1991-07-01

    This work presents comparative results of a numerical investigation of four possible models for the prediction of thermal performance of fixed bed storage units and their thermal design. These models includes Schumann's model, the radial dispersion model, a model that include both axial heat conduction in the fluid phase and admits thermal gradient in the solids particles and finally a two dimensional single phase model. For each of these models a computer code was written and tested to evaluate the computing time of same data and analyze any other computational problems. The tests of thermal performance included particle size, porosity, particle material, flow rate, inlet temperature and heat losses form tank walls and extremities. Dynamics behaviour of the storage units due to transient variation in either flow rate or inlet temperature was also investigated. The results presented include temperature gradients, pressure drop and heat storage. The results obtained are very useful for analysis and design of fixed bed storage units. (author)

  15. Beam instrumentation for an ISOL test stand

    International Nuclear Information System (INIS)

    Mackenzie, G.H.; Dombsky, M.; Rawnsley, W.; Stanford, G.; Yin, Y.; Novikov, A.

    1995-09-01

    TRIUMF is constructing a test bed for the first stages of the proposed TISAC accelerated radioactive beam facility. The authors will present the requirements for the diagnostic system for this test stand and describe the design and development work underway. Scintillators, beamstops and a Faraday Cup have been tested using stable, mass analyzed, 12 keV beams of ions from mass 14 to 132. The design of a linear drive, with 10 microm resolution, for scanning wires and slits has begun

  16. Beam instrumentation for an ISOL test stand

    International Nuclear Information System (INIS)

    Mackenzie, G.H.; Dombsky, M.; Rawnsley, W.; Stanford, G.; Yin, Y.; Novikov, A.

    1995-09-01

    TRIUMF is constructing a test bed for the first stages of the proposed TISAC accelerated radioactive beam facility. We will present the requirements for the diagnostic system for this test stand and describe the design and development work underway. Scintillators, beamstops and Faraday Cup have been tested using stable, mass analyzed, 12 keV beams of ions from mass 14 to 132. The design of a linear drive, with 10 μm resolution, for scanning wires and slits has begun. (author)

  17. Characterization of residues from waste combustion in fluidized bed boilers. Evaluation report

    International Nuclear Information System (INIS)

    Hagman, U.; Elander, P.

    1996-04-01

    In this report a thorough characterization of the solid residues from municipal solid waste combustion in a Kvaerner EnviroPower bubbling fluidized bed boiler in Lidkoeping, is presented. Three different end products are generated, namely bottom ash, cyclone ash, and filter ash. The bottom ash, consisting of bed ash and hopper ash, is screened and useful bed material recycled. In the characterization, also the primary constituents bed ash and hopper ash have been included. A chemical characterization have been performed including total inorganic contents, content of unburnt matter, leaching behaviour (availability tests, column tests, pH-static tests) and leaching tests according to certain standards for classification (AFX31-210, DIN38414, TCLP). Physical characterization have included grain size distribution, grain density, compaction properties and stabilization of cyclone ash with subsequent testing of comprehensive strength and saturated hydraulic conductivity. From an environmental point of view, the quality of the bottom ash and probably the cyclone ash from fluidized bed combustion as determined in this study, indicate a potential for utilization. Utilization of the bottom ash could be accepted in certain countries, e.g. France, according to their current limit values. In other countries, e.g. Sweden, no general limit values are given and utilization have to be applied for in each case. The judgement is then based, not only on total contents in the residue and its leaching behaviour, but also on the specific environmental conditions at the site. 7 refs, 17 figs, 12 tabs

  18. Comparision between bed side testing of blood glucose by glucometer vs centralized testing in a tertiary care hospital.

    Science.gov (United States)

    Baig, Ayaz; Siddiqui, Imran; Jabbar, Abdul; Azam, Syed Iqbal; Sabir, Salman; Alam, Shahryar; Ghani, Farooq

    2007-01-01

    To determine the accuracy, turnaround time and cost effectiveness of bedside monitoring of blood glucose levels by non-laboratory health care workers and centralized testing of blood glucose by automated analyzer in a tertiary care hospital. The study was conducted in Section of Chemical Pathology, Department of Pathology and Microbiology and Section of Endocrinology Department of Medicine, Aga Khan University and Hospital Karachi, from April 2005 to March 2006. One hundred and ten patients were included in the study. The blood glucose levels were analyzed on glucometer (Precision Abbott) by finger stick, using Biosensor Technology. At the same time venous blood was obtained to analyze glucose in clinical laboratory on automated analyzer (SYNCHRON CX7) by glucose oxidase method. We observed good correlation between bed side glucometer and laboratory automated analyzer for glucose values between 3.3 mmol/L (60 mg/dl) and 16.7 (300 mg/dl). A significant difference was observed for glucose values less than 3.3 mmol/L (p = 0.002) and glucose values more than 16.67 mmol/l (p = 0.049). Mean Turnaround time for glucometer and automated analyzer were 0.08 hours and 2.49 hours respectively. The cost of glucose testing with glucometer was 48.8% lower than centralized lab based testing. Bedside glucometer testing, though less expensive does not have good accuracy in acutely ill patient with either very high or very low blood glucose levels.

  19. Ceramic breeder pebble bed packing stability under cyclic loads

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunbo, E-mail: chunbozhang@fusion.ucla.edu [Fusion Science and Technology Center, University of California, Los Angeles, CA 90095-1597 (United States); Ying, Alice; Abdou, Mohamed A. [Fusion Science and Technology Center, University of California, Los Angeles, CA 90095-1597 (United States); Park, Yi-Hyun [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • The feasibility of obtaining packing stability for pebble beds is studied. • The responses of pebble bed to cyclic loads have been presented and analyzed in details. • Pebble bed packing saturation and its applications are discussed. • A suggestion is made regarding the improvement of pebbles filling technique. - Abstract: Considering the optimization of blanket performance, it is desired that the bed morphology and packing state during reactor operation are stable and predictable. Both experimental and numerical work are performed to explore the stability of pebble beds, in particular under pulsed loading conditions. Uniaxial compaction tests have been performed for both KIT’s Li{sub 4}SiO{sub 4} and NFRI’s Li{sub 2}TiO{sub 3} pebble beds at elevated temperatures (up to 750 °C) under cyclic loads (up to 6 MPa). The obtained data shows the stress-strain loop initially moves towards the larger strain and nearly saturates after a certain number of cyclic loading cycles. The characterized FEM CAP material models for a Li{sub 4}SiO{sub 4} pebble bed with an edge-on configuration are used to simulate the thermomechanical behavior of pebble bed under ITER pulsed operations. Simulation results have shown the cyclic variation of temperature/stress/strain/gap and also the same saturation trend with experiments under cyclic loads. Therefore, it is feasible for pebble bed to maintain its packing stability during operation when disregarding pebbles’ breakage and irradiation.

  20. Thermal safety analysis for pebble bed blanket fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Wei Renjie

    1998-01-01

    Pebble bed blanket hybrid reactor may have more advantages than slab element blanket hybrid reactor in nuclear fuel production and nuclear safety. The thermo-hydraulic calculations of the blanket in the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor developed in China are carried out using the Code THERMIX and auxiliary code. In the calculations different fuel pebble material and steady state, depressurization and total loss of flow accident conditions are included. The results demonstrate that the conceptual design of the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor with dump tank is feasible and safe enough only if the suitable fuel pebble material is selected and the suitable control system and protection system are established. Some recommendations for due conceptual design are also presented

  1. Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed

    Science.gov (United States)

    Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J.P.; Ritter, Daniel J.; McIntosh, Jennifer C.; Clark, Arthur C.; Ruppert, Leslie F.; Cunningham, Alfred B.; Vinson, David S.; Orem, William H.; Fields, Matthew W.

    2016-01-01

    Biogenic coalbed methane (CBM), a microbially-generated source of natural gas trapped within coal beds, is an important energy resource in many countries. Specific bacterial populations and enzymes involved in coal degradation, the potential rate-limiting step of CBM formation, are relatively unknown. The U.S. Geological Survey (USGS) has established a field site, (Birney test site), in an undeveloped area of the Powder River Basin (PRB), with four wells completed in the Flowers-Goodale coal bed, one in the overlying sandstone formation, and four in overlying and underlying coal beds (Knoblach, Nance, and Terret). The nine wells were positioned to characterize the hydraulic conductivity of the Flowers-Goodale coal bed and were selectively cored to investigate the hydrogeochemistry and microbiology associated with CBM production at the Birney test site. Aquifer-test results indicated the Flowers-Goodale coal bed, in a zone from about 112 to 120 m below land surface at the test site, had very low hydraulic conductivity (0.005 m/d) compared to other PRB coal beds examined. Consistent with microbial methanogenesis, groundwater in the coal bed and overlying sandstone contain dissolved methane (46 mg/L average) with low δ13C values (−67‰ average), high alkalinity values (22 meq/kg average), relatively positive δ13C-DIC values (4‰ average), and no detectable higher chain hydrocarbons, NO3−, or SO42−. Bioassay methane production was greatest at the upper interface of the Flowers-Goodale coal bed near the overlying sandstone. Pyrotag analysis identified Aeribacillus as a dominant in situbacterial community member in the coal near the sandstone and statistical analysis indicated Actinobacteria predominated coal core samples compared to claystone or sandstone cores. These bacteria, which previously have been correlated with hydrocarbon-containing environments such as oil reservoirs, have demonstrated the ability to produce biosurfactants to break down

  2. An experimental simulation study of debris quenching in a radially stratified porous bed

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Nayak, A.K.; Stepanyan, A.

    2004-01-01

    test section with dimensions 350x350 mm containing sand which simulates the corium debris. The height of the bed was 500 mm. The sand bed with lower porosity was put at the centre of test section and the bed with higher porosity was put at the periphery. The porosities and size of the sand chosen were close to that observed in a corium debris bed. The sand beds were heated directly with heaters of maximum capacity 46 kW. The bed was quenched by flooding water from the top of the bed. For this, seven downcomers (six small size and the centre one large) were placed inside the test section to study their effects on quenching of the various sections of the debris bed. Those downcomers bring water from the top of the debris bed to the bottom and enable quenching from the bottom. In addition, provisions were made for water injection into the bed at four different points located symmetrically in the side wall of the test section. The level of water above the bed was always maintained at 0.5 m for each experiment. In order to study the effects of non-condensable gases on quenching and CCFL (counter current flooding limitations), air was injected at different velocities and its effect on quenching rate and possible existence of CCFL was investigated. Fig.1 shows a typical quenching result measured with top flooding using all downcomers. Also, we allowed water injection at four locations through the side walls. The bed was heated to a temperature of about 500 deg. C before water at 95 deg. C was added to the top of the bed. The graph shows the temperature listing at different axial locations in one radial plane. Thermocouples 0 to 5 are distributed from top to bottom at equally spaced axial intervals. The results show that the top and bottom of the bed are quenched much earlier than the middle section of the bed. The time for water to ingress to middle of section bed is quite large as evident from the above figure. The experiments are continuing and further results on the

  3. Fluidized bed gasification of selected South African coals

    CSIR Research Space (South Africa)

    Engelbrecht, AD

    2010-05-01

    Full Text Available that due to the good heat and mass transfer properties of fluidised beds, coal with ash contents up to 70% can be utilised. The CSIR’s research and development work resulted in the installation of five bubbling fluidised bed combustors (BFBCs) between... 1989 and 1999. Other companies, such as Babcock and Scientific Design, also installed a number of BFBC plants during this time. It was realised during the development of BFBC technology that due to the low lateral dispersion coefficient of coal...

  4. Experimental investigation of multidimensional cooling effects on the coolability of a debris bed

    International Nuclear Information System (INIS)

    Rashidi, M.; Kulenovici, R.; Laurieni, E.

    2011-01-01

    During a severe accident in a light water reactor, the core can melt and be relocated to the lower plenum of the reactor pressure vessel. There it can form a particulate debris bed due to the possible presence of water. Within the reactor safety research, the removal of decay heat from a debris bed (formed from corium and residual water) is of great importance. In order to investigate experimentally the long-term coolability of debris beds, the down-scaled non nuclear test facility DEBRIS has been established at IKE. The major objectives of the experimental investigations at this test facility are the determination of local pressure drops for steady state boiling to check friction laws, the determination of dryout heat fluxes under various conditions for validation of numerical models, and the analysis of quenching processes of dry hot debris beds. A large number of 1D-experiments were carried out to investigate the coolability limits for different bed configurations at various thermohydraulic conditions, and to validate numerical models which can be used in reactor safety studies. Analyses based on one-dimensional configurations underestimate the coolability in realistic multidimensional configurations, where lateral water access and water inflow via bottom regions are favored. This paper presents 2D experimental results, based on various kinds of water inflow conditions into the bed, boiling and dryout tests with different bed configurations and different system pressures. Preliminary results show that the system pressure has no significant effect on the fundamental shape of the pressure gradient inside the bed, whereas with increasing system pressure the coolability limits are increased

  5. The NASA Bed Rest Project

    Science.gov (United States)

    Rhodes, Bradley; Meck, Janice

    2005-01-01

    NASA s National Vision for Space Exploration includes human travel beyond low earth orbit and the ultimate safe return of the crews. Crucial to fulfilling the vision is the successful and timely development of countermeasures for the adverse physiological effects on human systems caused by long term exposure to the microgravity environment. Limited access to in-flight resources for the foreseeable future increases NASA s reliance on ground-based analogs to simulate these effects of microgravity. The primary analog for human based research will be head-down bed rest. By this approach NASA will be able to evaluate countermeasures in large sample sizes, perform preliminary evaluations of proposed in-flight protocols and assess the utility of individual or combined strategies before flight resources are requested. In response to this critical need, NASA has created the Bed Rest Project at the Johnson Space Center. The Project establishes the infrastructure and processes to provide a long term capability for standardized domestic bed rest studies and countermeasure development. The Bed Rest Project design takes a comprehensive, interdisciplinary, integrated approach that reduces the resource overhead of one investigator for one campaign. In addition to integrating studies operationally relevant for exploration, the Project addresses other new Vision objectives, namely: 1) interagency cooperation with the NIH allows for Clinical Research Center (CRC) facility sharing to the benefit of both agencies, 2) collaboration with our International Partners expands countermeasure development opportunities for foreign and domestic investigators as well as promotes consistency in approach and results, 3) to the greatest degree possible, the Project also advances research by clinicians and academia alike to encourage return to earth benefits. This paper will describe the Project s top level goals, organization and relationship to other Exploration Vision Projects, implementation

  6. Steady-state and dynamic evaluation of the electric propulsion system test bed vehicle on a road load simulator

    Science.gov (United States)

    Dustin, M. O.

    1983-01-01

    The propulsion system of the Lewis Research Center's electric propulsion system test bed vehicle was tested on the road load simulator under the DOE Electric and Hybrid Vehicle Program. This propulsion system, consisting of a series-wound dc motor controlled by an infinitely variable SCR chopper and an 84-V battery pack, is typical of those used in electric vehicles made in 1976. Steady-state tests were conducted over a wide range of differential output torques and vehicle speeds. Efficiencies of all of the components were determined. Effects of temperature and voltage variations on the motor and the effect of voltage changes on the controller were examined. Energy consumption and energy efficiency for the system were determined over the B and C driving schedules of the SAE J227a test procedure.

  7. The influence of fine char particles burnout on bed agglomeration during the fluidized bed combustion of a biomass fuel

    Energy Technology Data Exchange (ETDEWEB)

    Scala, Fabrizio; Chirone, Riccardo [Istituto di Ricerche sulla Combustione, CNR, P.le V. Tecchio, 80-80125 Naples (Italy); Salatino, Piero [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli Federico II, P.le V. Tecchio, 80-80125 Naples (Italy)

    2003-11-15

    The combustion of biomass char in a bubbling fluidized bed is hereby addressed, with specific reference to the influence that the combustion of fine char particles may exert on ash deposition and bed agglomeration phenomena. Experiments of steady fluidized bed combustion (FBC) of powdered biomass were carried out with the aim of mimicking the postcombustion of attrited char fines generated in the fluidized bed combustion of coarse char. Experimental results showed that the char elutriation rate is much smaller than expected on the basis of the average size of the biomass powder and of the carbon loading in the combustor. Samples of bed material collected after prolonged operation of the combustor were characterized by scanning electron microscopy (SEM)-EDX analysis and revealed the formation of relatively coarse sand-ash-carbon aggregates. The phenomenology is consistent with the establishment of a char phase attached to the bed material as a consequence of adhesion of char fines onto the sand particles. Combustion under sound-assisted fluidization conditions was also tested. As expected, enhancement of fines adhesion on bed material and further reduction of the elutriation rate were observed. Experimental results are interpreted in the light of a simple model which accounts for elutriation of free fines, adhesion of free fines onto bed material and detachment of attached fines by attrition of char-sand aggregates. Combustion of both free and attached char fines is considered. The parameters of the model are assessed on the basis of the measured carbon loadings and elutriation rates. Model computations are directed to estimate the effective size and the peak temperature of char-sand aggregates. The theoretical estimates of the effective aggregate size match fairly well those observed in the experiments.

  8. Management bedding : vrijloopstal met composterende bedding van houtsnippers

    NARCIS (Netherlands)

    Boer, de H.C.; Wiersma, M.; Galama, P.J.; Szanto, G.L.

    2015-01-01

    In de vrijloopstal liggen de koeien meestal op een organische bedding en scheiden daar mest (feces en urine) uit. Om de bedding voldoende droog en schoon te houden wordt er regelmatig nieuw strooisel aangevoerd en wordt de toplaag bewerkt. Op basis van onderzoek- en praktijkervaringen tot nu toe

  9. Endotoxin, Coliform, and Dust Levels in Various Types of Rodent Bedding

    OpenAIRE

    Whiteside, Tanya E; Thigpen, Julius E; Kissling, Grace E; Grant, Mary G; Forsythe, Diane B

    2010-01-01

    Endotoxins in grain dust, household dust, and animal bedding may induce respiratory symptoms in rodents and humans. We assayed the endotoxin, coliform, and dust levels in 20 types of rodent bedding. Endotoxin concentrations were measured by using a commercial test kit, coliform counts were determined by using conventional microbiologic procedures, and dust content was evaluated by using a rotating–tapping shaker. Paper bedding types contained significantly less endotoxin than did other beddin...

  10. Hydriding and dehydriding characteristics of small-scale DU and ZrCo beds

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Dongyou; Lee, Jungmin; Koo, Daeseo [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong, Daejeon 305-353 (Korea, Republic of); Chung, Hongsuk, E-mail: hschung1@kaeri.kr [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong, Daejeon 305-353 (Korea, Republic of); Kim, Ki Hwan [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong, Daejeon 305-353 (Korea, Republic of); Kang, Hyun-Goo; Chang, Min Ho [National Fusion Research Institute, 113 Gwahakro, Yuseong, Daejeon 305-333 (Korea, Republic of); Camp, Patrick [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Jung, Ki Jung; Cho, Seungyon; Yun, Sei-Hun; Kim, Chang Shuk [National Fusion Research Institute, 113 Gwahakro, Yuseong, Daejeon 305-333 (Korea, Republic of); Yoshida, Hiroshi [Fusion Science Consultant, 3288-10 Sakado-cho, Mito-shi 310-0841, Ibakaki-ken (Japan); Paek, Seungwoo; Lee, Hansoo [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong, Daejeon 305-353 (Korea, Republic of)

    2013-10-15

    Highlights: • We have designed and fabricated a twosome small-scale getter bed for a comparison of ZrCo with DU on the hydriding/dehydriding properties. • We provide preliminary experimental results of our ZrCo and DU beds. -- Abstract: With the development of fusion technology, it will be necessary to store large amounts of tritium during the nuclear fusion fuel cycle. Stable metal tritides are viewed as potential candidates for the high-density storage of tritium. Metal tritide formers offer a safe and convenient method for tritium storage. For the storage, supply, and recovery of hydrogen isotopes, zirconium cobalt (ZrCo) and depleted uranium (DU) have been extensively proposed. Thus, we have designed and fabricated two identical small-scale getter beds for a comparison of ZrCo with DU on the hydriding/dehydriding properties. After the powderization of the metals, the hydriding/dehydriding performance at different stoichiometries of ZrCo and DU was measured. We provide preliminary experimental results of our ZrCo and DU beds.

  11. A Six-DOF Buoyancy Tank Microgravity Test Bed with Active Drag Compensation

    Science.gov (United States)

    Sun, Chong; Chen, Shiyu; Yuan, Jianping; Zhu, Zhanxia

    2017-10-01

    Ground experiment under microgravity is very essential because it can verify the space enabling technologies before applied in space missions. In this paper, a novel ground experiment system that can provide long duration, large scale and high microgravity level for the six degree of freedom (DOF) spacecraft trajectory tracking is presented. In which, the most gravity of the test body is balanced by the buoyancy, and the small residual gravity is offset by the electromagnetic force. Because the electromagnetic force on the test body can be adjusted in the electromagnetic system, it can significantly simplify the balancing process using the proposed microgravity test bed compared to the neutral buoyance system. Besides, a novel compensation control system based on the active disturbance rejection control (ADRC) method is developed to estimate and compensate the water resistance online, in order to improve the fidelity of the ground experiment. A six-DOF trajectory tracking in the microgravity system is applied to testify the efficiency of the proposed compensation controller, and the experimental simulation results are compared to that obtained using the classic proportional-integral-derivative (PID) method. The simulation results demonstrated that, for the six-DOF motion ground experiment, the microgravity level can reach to 5 × 10-4 g. And, because the water resistance has been estimated and compensated, the performance of the presented controller is much better than the PID controller. The presented ground microgravity system can be applied in on-orbit service and other related technologies in future.

  12. BED-Volume histograms calculation for routine clinical dosimetry in brachytherapy

    International Nuclear Information System (INIS)

    Galelli, M.; Feroldi, P.

    1995-01-01

    The consideration of volumes is essential in Brachytherapy clinical dosimetry (I.C.R.U). Indeed, several indices, all based on dose-volume histograms (DVHs), have been designed in order to evaluate: before the therapy the volumetric quality of different possible implant geometries; during the therapy the consistency of the real and the previsional implants. Radiobiological evaluations, considering the dose deposition temporal pattern of treatment, can be usefully added to dosimetric calculations, to compare different treatment schedules. The Linear-Quadratic model is the most used: radiobiological modelisation and Biologically Effective Dose (BED) is principal related dosimetric quantity. Therefore, the consideration of BED-volume histogram (BED-VHs) is a straightforward extension of DVHs. In practice, BED-VHs can help relative comparisons and optimisations in treatment planning when combined to dose-volume histograms. Since 1994 the dosimetric calculations for all the gynecological brachytherapy treatments are performed considering also DVHs and BED-VHs. In this presentation we show the methods of BEDVHs calculation, together with some typical results

  13. ITER diagnostics: Maintenance and commissioning in the hot cell test bed

    International Nuclear Information System (INIS)

    Walker, C.I.; Barnsley, R.; Costley, A.E.; Gottfried, R.; Haist, B.; Itami, K.; Kondoh, T.; Loesser, G.D.; Palmer, J.; Sugie, T.; Tesini, A.; Vayakis, G.

    2005-01-01

    In-vessel diagnostic equipment in ITER integrated in six equatorial and 12 upper ports, 16 divertor cassettes and five lower ports is designed to be removed in modules and then repaired, tested and commissioned in the same location at the ITER hot cell. The repair requirements and tests on these components are described along with design features that facilitate repair. The testing establishes the repair strategy, qualifies the refurbishment work and finally checks the mechanical and diagnostic function before the return of the modules. At the hot cell, a dummy port is provided for tests of mechanical and vacuum integrity as well as commissioning of the diagnostic equipment. The scope of the hot cell maintenance and commissioning activities is summarised and an overview of the integration of the diagnostic equipment is given

  14. Effect of β-hydroxy-β-methylbutyrate (HMB) on lean body mass during 10 days of bed rest in older adults.

    Science.gov (United States)

    Deutz, Nicolaas E P; Pereira, Suzette L; Hays, Nicholas P; Oliver, Jeffery S; Edens, Neile K; Evans, Chris M; Wolfe, Robert R

    2013-10-01

    Loss of muscle mass due to prolonged bed rest decreases functional capacity and increases hospital morbidity and mortality in older adults. To determine if HMB, a leucine metabolite, is capable of attenuating muscle decline in healthy older adults during complete bed rest. A randomized, controlled, double-blinded, parallel-group design study was carried out in 24 healthy (SPPB ≥ 9) older adult subjects (20 women, 4 men), confined to complete bed rest for ten days, followed by resistance training rehabilitation for eight weeks. Subjects in the experimental group were treated with HMB (calcium salt, 1.5 g twice daily - total 3 g/day). Control subjects were treated with an inactive placebo powder. Treatments were provided starting 5 days prior to bed rest till the end rehabilitation phase. DXA was used to measure body composition. Nineteen eligible older adults (BMI: 21-33; age: 60-76 year) were evaluable at the end of the bed rest period (Control n = 8; Ca-HMB n = 11). Bed rest caused a significant decrease in total lean body mass (LBM) (2.05 ± 0.66 kg; p = 0.02, paired t-test) in the Control group. With the exclusion of one subject, treatment with HMB prevented the decline in LBM over bed rest -0.17 ± 0.19 kg; p = 0.23, paired t-test). There was a statistically significant difference between treatment groups for change in LBM over bed rest (p = 0.02, ANOVA). Sub-analysis on female subjects (Control = 7, HMB = 8) also revealed a significant difference in change in LBM over bed rest between treatment groups (p = 0.04, ANOVA). However, differences in function parameters could not be observed, probably due to the sample size of the study. In healthy older adults, HMB supplementation preserves muscle mass during 10 days of bed rest. These results need to be confirmed in a larger trial. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  15. Ion leakage from mixed beds in condensate polishing plants

    International Nuclear Information System (INIS)

    Venderbosch, H.W.; Overman, L.J.; Snel, A.

    1977-01-01

    In view to the interest for theoretical and practical factors, which influence the ion slip of mixed bed filters, these facts were studied in detail. It proved to be necessary that the slip shall be subdivided into kinetic - and elution slip. The kinetic slip is depending e.g. on the electrolyte concentration of the influenct condensate, as well as on the period of contact, however it does not depend on the regeneration condition; the elution slip however depends clearly on the regeneration condition. Incomplete regeneration of the exchangers, a too low excess of regenerant, incomplete separation of cation - and anion exchanger, and the contact of an exchanger layer with the wrong regenerant in the separation zone, during the internal regeneration are raising the slip. With tests on mixed bed filters, which have been well regenerated, (less than 0.1% Na in the cation exchanger) and by using filters with normal regenerated exchangers, (approx. 10% Na in the cation exchanger) the quality of the effluent was compared with values, which were expected from calculations. In order to decrease the elution leakage, the contamination of the exchangers, especially at NH 4 OH - mixed bed filters, must be limited to a very low percentage. Several possibilities to obtain this, will be discussed in the lecture. Special attention will be paid to the internal regeneration procedure. KEMA has developed a method, the so-called partial regeneration method, in order to operate internal regenerated mixed bed filters, which have been designed for the HOH cycle, also in the ammonia form, without the occurence of an undue slip of sodium or chloride. Not only extended running periods and lower operating- and regeneration costs are of advantage, but also the reducing of salt- and ammonia containing sewage were achieved. (orig.) [de

  16. Program Helps Design Tests Of Developmental Software

    Science.gov (United States)

    Hops, Jonathan

    1994-01-01

    Computer program called "A Formal Test Representation Language and Tool for Functional Test Designs" (TRL) provides automatic software tool and formal language used to implement category-partition method and produce specification of test cases in testing phase of development of software. Category-partition method useful in defining input, outputs, and purpose of test-design phase of development and combines benefits of choosing normal cases having error-exposing properties. Traceability maintained quite easily by creating test design for each objective in test plan. Effort to transform test cases into procedures simplified by use of automatic software tool to create cases based on test design. Method enables rapid elimination of undesired test cases from consideration and facilitates review of test designs by peer groups. Written in C language.

  17. Dry out of a fluidized particle bed with internal heat generation

    International Nuclear Information System (INIS)

    Keowen, R.S.; Catton, I.

    1975-03-01

    An apparatus was designed to adequately simulate the characteristics of a particle bed formed by nuclear reactor fuel after the reactor has been operable for some length of time at high power. This was accomplished by using a 10 KW, 453 Kc induction heater, coupled through a multi-turn work coil to particle beds of cast steel shot and lead shot in water. The temperature response and dryout condition was determined for various bed levels, particle diameters, and heat fluxes. Analysis of the data retrieved from the bed was used to generate a family of curves to predict the necessary conditions for dryout to occur within a fluidized particle bed with internal heat generation. The results presented here, with internal heat generation, show that previous results with bottom heating and volume heating are conservative. (U.S.)

  18. Thermal fatigue and creep evaluation for the bed in tritium SDS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Woo-seok, E-mail: wschoi@kaeri.re.kr [Korea Atomic Energy Research Institute, Yuseong, Daejeon (Korea, Republic of); Park, Chang-gyu [Korea Atomic Energy Research Institute, Yuseong, Daejeon (Korea, Republic of); Ju, Yong-sun [KOASIS, Yuseong, Daejeon (Korea, Republic of); Kang, Hyun-goo; Jang, Min-ho; Yun, Sei-hun [National Fusion Research Institute, Yuseong, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • To evaluate the integrity of the ITER tritium SDS bed, three kinds of assessments were conducted. • The structural analysis showed that the stress induced from the thermal load and the internal pressure is within the design stress intensity. • The combined fatigue and creep assessment was also performed according to the procedure of ASME code Subsection NH. • A new operation procedure to obtain more integrity margin was recommended. • The other operation procedure could be considered which makes the rapid operation possible giving up the marginal integrity. - Abstract: The primary vessel of ITER tritium SDS bed is made of stainless steel. It is heated beyond 500 °C to desorb tritium. During this process the primary vessel is subject to thermal stress. And it is also subject to thermal fatigue by the iterative process of absorption and desorption. In addition, its operation temperature range is in the thermal creep temperature region. Therefore, the tritium SDS bed should have sufficient design stress intensity under the high temperature operating conditions. It should also be free of damage due to fatigue during the design life. Thermal analysis and structural analysis was performed using a finite element method to calculate the temperature and the stress distribution of the ITER tritium SDS bed due to the internal pressure and thermal loads. The thermal fatigue and creep effects were also evaluated since the tritium SDS bed was heated to hot temperature region where creep occurs. Based on the distribution of the primary stress and secondary stress results, two evaluation cross-sections were selected. The evaluation showed that the calculated value on the cross-sections satisfied all of the limits of the design code requirements.

  19. Design and deployment of an elastic network test-bed in IHEP data center based on SDN

    Science.gov (United States)

    Zeng, Shan; Qi, Fazhi; Chen, Gang

    2017-10-01

    High energy physics experiments produce huge amounts of raw data, while because of the sharing characteristics of the network resources, there is no guarantee of the available bandwidth for each experiment which may cause link congestion problems. On the other side, with the development of cloud computing technologies, IHEP have established a cloud platform based on OpenStack which can ensure the flexibility of the computing and storage resources, and more and more computing applications have been deployed on virtual machines established by OpenStack. However, under the traditional network architecture, network capability can’t be required elastically, which becomes the bottleneck of restricting the flexible application of cloud computing. In order to solve the above problems, we propose an elastic cloud data center network architecture based on SDN, and we also design a high performance controller cluster based on OpenDaylight. In the end, we present our current test results.

  20. Thermal activation and characterization of clay aiming their use as sorbent in fixed bed columns to remove cadmium

    International Nuclear Information System (INIS)

    Silva, M.M. da; Rodrigues, M.G.F.; Silva, M.L.P.; Kleinübing, S.J.; Silva, M.G.C.

    2011-01-01

    In this work we studied the removal of cadmium in a synthetic wastewater using clay of Pernambuco - Brazil, in systems of fixed bed column. Clay was thermally activated at 500 °C. The materials were characterized using X-ray Fluorescence (XRF), X-ray Diffraction (XRD) and nitrogen adsorption (BET method). For tests in fixed bed column, we applied a factorial design 2"2 and found that increasing the flow adversely affects the process of removing cadmium concentration while acting positively. The studies showed these materials as promising for the removal of Cd"2"+ ions in synthetic wastewater containing low levels of this metal. (author)